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Abstract 
 

The rapid diffusion of heterogeneous forms of wire-
less connectivity is pushing the tremendous growth of 
the commercial interest in mobile services, i.e., dis-
tributed applications to portable wireless terminals 
that roam during service provisioning. In the case of 
both location-dependent mobile services and mobile 
services with session continuity requirements, there is 
a growing need for decentralized and lightweight solu-
tions to predict cell handovers, in order to enable pro-
active service management operations that anticipate 
actual terminal reconnections at their newly visited 
cells. The paper discusses how to predict client hand-
overs between IEEE 802.11 cells in a portable and 
completely decentralized way, only by exploiting RSSI 
monitoring and with no need of external global posi-
tioning systems. In particular, the paper focuses on 
proposing and comparing different filtering techniques 
for mitigating Received Signal Strength Indication 
abrupt fluctuations. Experimental results point out that 
i) filtering techniques can relevantly improve the effi-
ciency and effectiveness of handover prediction, and ii) 
the choice of the most appropriate filtering solution to 
adopt should be made at provisioning time depending 
on specific service/system requirements, e.g., privileg-
ing minimum overhead vs. greater prediction proactiv-
ity. 
 
1. Introduction 
 

The increasing availability of mobile devices with 
wireless communication capabilities stimulates consid-
ering new service provisioning environments where 
accessibility to the traditional Internet is provided via 
Access Points (APs) working as bridges between fixed 
hosts and wireless devices [1]. The most notable ex-
ample is the case of IEEE 802.11 APs that support 

connectivity of Wi-Fi terminals to a wired local area 
network [2]. In the following, we will indicate these 
integrated networks with fixed Internet hosts, wireless 
terminals, and wireless APs in between, as the Wire-
less Internet (WI).  

WI opens new challenging scenarios for mobile ser-
vice provisioning. On the one hand, time-continuous 
services, such as audio/video streaming, relevantly 
suffer from the temporary disconnections that mobile 
clients experience at their handovers from old Wi-Fi 
access localities to new ones; in addition, they often 
require moving reached session states in newly visited 
localities. On the other hand, WI pushes towards the 
possibility to provide novel services whose contents 
depend on client location; location dependency com-
plicates application design and implementation, and 
requires innovative support functions [3]. 

We claim that both mobile services with session 
continuity requirements and location-dependent ones 
can relevantly benefit from the adoption of lightweight 
and decentralized mechanisms capable of predicting 
wireless client handover between WI access localities. 
In particular, the idea is to provide support functions 
for i) handover prediction, to notify interested services 
that one of their clients is going to change AP in a 
given time interval, and ii) mobility prediction, to no-
tify interested services that one client is going to leave 
its current access locality by specifying which is the 
most probable next AP. For instance, handover predic-
tion could help continuous services to pre-fetch data 
chunks just before handovers, thus simplifying service 
interruption avoidance while preserving wireless client 
memory when handovers are not probable [4]. Mobil-
ity prediction can permit to perform location-
dependent service management operations, e.g., re-
source re-bindings, in next WI localities before the 
actual connections of mobile clients [3]. 

Our work on handover and mobility prediction is 



part of our original middleware for the support of WI 
service provisioning, which transparently mediates 
wireless client access to distributed applications via 
mobile proxies that dynamically adapt service results 
to client terminal properties, location, and runtime re-
source availability [2,5,6,7].  

The paper specifically discusses how to predict cli-
ent handover/mobility between IEEE 802.11 cells in a 
portable and completely decentralized way, with no 
need of external global positioning systems. The solu-
tion guideline is to only exploit the standard monitor-
ing information about Received Signal Strength Indi-
cation (RSSI) for both the currently connected AP and 
all other APs in client visibility. In particular, the paper 
presents, analyses, and quantitatively compares differ-
ent techniques (Grey Model, Fourier Transform, Dis-
crete Kalman, and Particle) for filtering RSSI fluctua-
tions due to signal noise, by pointing out how filtering 
can positively impact on handover/mobility prediction 
performance.  

The paper also includes a thorough experimental 
validation of the proposed mechanisms in a wide-scale 
simulated environment, which can model nodes ran-
domly roaming among IEEE 802.11 APs. Reported 
results show that the performance of our hand-
over/mobility predictor notably improves when adopt-
ing RSSI filtering techniques. In addition, the choice of 
the most appropriate filtering mechanism should be 
performed at service provisioning dependently on spe-
cific application requirements, for instance in order to 
privilege either minimum overhead or greater advance 
time in the handover/mobility prediction. 
 
2. Handover and Mobility Prediction  
 

The goal of our handover/mobility prediction solu-
tion is to provide information about the probability a 
handover process is going to start and to which AP the 
involved mobile client is going to connect at. To pre-
cisely describe how our handover/mobility prediction 
mechanism performs, it is first necessary to exactly 
clarify how communication-level handover works. In 
fact, the IEEE 802.11 standard does not impose any 
specific handover strategy: that permits network 
equipment manufacturers to be free to implement their 
own handover strategies, as detailed in the following. 
The different communication-level handover strategies 
in the market motivate different variants of our hand-
over/mobility prediction mechanism: therefore, the 
paper proposes and compares two implementations 
specifically designed for the two most relevant classes 
of possible handover strategies, i.e., Hard Proactive 
(HP) and Soft Proactive (SP). 

 

2.1. Communication-level Handover: Reactive 
and Hard/Soft Proactive Strategies 

 
Cell-based wireless communications can adopt di-

verse strategies for communication-level handover, 
which mainly differ in the event used to trigger the 
handover process. In particular, it is possible to iden-
tify two main handover classes: reactive and proactive. 
Reactive handover tends to delay handover as much as 
possible: handover starts only when wireless clients 
completely lose their current AP signal. These strate-
gies are effective in minimizing the number of hand-
overs, e.g., by avoiding to trigger a handover proce-
dure when a client approaches a new wireless cell, 
without losing the origin signal, and immediately re-
turns back to the origin AP. However, reactive hand-
overs tend to be long because they include looking for 
new APs, choosing one, and asking for re-association 
only after having lost previous AP signal.  

Proactive handover, instead, tends to trigger hand-
over before the complete loss of origin cell signal, e.g., 
when the new cell RSSI overpasses the origin one. In 
general, these strategies are less effective in reducing 
the number of useless handovers, but are prompter by 
performing search operations for new APs before the 
handover procedure starts. By concentrating on proac-
tive handover, a further classification is possible. On 
the one hand, HP strategies trigger a handover any 
time the RSSI of a visible AP is greater than the RSSI 
of the currently associated AP plus an Hysteresis 
Handover Threshold (HHT); HHT is introduced 
mainly to prevent heavy bouncing effects. On the other 
hand, SP strategies are “less proactive” in the sense 
that they trigger handover only if i) the HP condition 
applies (there is an AP with RSSI greater than current 
AP RSSI plus HHT), and ii) the current AP RSSI is 
lower than a Fixed Handover Threshold (FHT). 

For instance, the handover strategies implemented 
by Cisco Aironet 350 and Orinoco Gold Wi-Fi cards 
follow, respectively, the HP and SP models. More in 
detail, Cisco Aironet 350 permits to configure its hand-
over with the “Scan for a Better AP” option: if the cur-
rent AP RSSI is lower than a settable threshold, the 
Wi-Fi card monitors RSSI data for all visible APs; for 
sufficiently high threshold values, the Cisco cards be-
have according to the HP model. Orinoco Gold cards 
exactly implements the SP strategy, without giving any 
possibility to configure the used thresholds. 
 
2.2. Our Modular Solution for Hand-

over/Mobility Prediction 
 
We have developed a middleware for proactive ses-

sion migration and location-dependent services in WI; 



our middleware exploits handover/mobility prediction 
to proactively perform service management operations 
only in the WI access localities that are going to be 
visited by mobile clients [4]. Here, we specifically fo-
cus on the proposed prediction mechanisms and, in 
particular, on the impact of filtering techniques on pre-
diction performance.  

Our handover/mobility prediction solution is based 
on a pipelined architecture consisting of two modules. 
The first one (Filter) is in charge of filtering RSSI se-
quences to mitigate RSSI fluctuations due to signal 
noise. The second module (Prob) tries to estimate the 
probability a handover happens in the near future and 
which is the most probable next AP based on RSSI 
values provided at its input from Filter. The modular 
architecture of our predictor permits a completely 
separated implementation and deployment of Filter and 
Prob, thus simplifying the exploitation and experimen-
tation of different filtering and handover/mobility pre-
diction mechanisms, even dynamically composed at 
provision time by downloading the needed module 
code [3]. For instance, the experimental results in Sec-
tion 4 will show the performance of our middleware 
when the Prob module is fed with either actual RSSI 
sequences (Filter is the identity function) or filtered 
RSSI values produced by 4 alternative filters, exten-
sively described in the next section. 

By delving into finer details, we have implemented 
two variants of the Prob module, one suitable for com-
munication-level HP handovers and the other for SP 
ones. We have decided not to work on Prob prototypes 
for reactive strategies because of two reasons: first, 
handover prediction is less challenging in the case of 
reactive handovers than of proactive ones since the 
triggering of a reactive handover only depends on the 
RSSI data from one single AP; secondly, reactive com-
munication-level handovers are of minor interest for 
services with session continuity requirements, given 
their longer time needed to complete handover [4].  

The HP-variant of our Prob module is in the state: 
LowProb, if the filtered value for the current AP RSSI 
is greater than the filtered RSSI values for any visible 
AP plus a Hysteresis Prediction Threshold (HPT); 
HighProb, otherwise. The SP-variant of the Prob mod-
ule can assume the following states: LowProb, if the 
filtered RSSI value for the current AP is greater than 
either a Fixed Prediction Threshold (FPT) or the fil-
tered RSSI value for any visible AP plus HPT; High-
Prob, otherwise. Figure 1 represents filtered RSSI val-
ues for current and next APs, in proximity of a HP 
(left) and SP (right) handover. A wireless client, mov-
ing from the origin AP locality to the destination AP 
one, is first associated with the origin AP (white back-
ground), then with the destination AP (grey back-

ground).  
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Figure 1 The different states of our two Prob variants: 

HP (left) and SP (right). 
 
The performance of our prediction mechanisms can 

be quantitatively evaluated in terms of hit rate, effi-
ciency, and stability. Informally speaking, hit rate es-
timates how many actual client handovers are correctly 
predicted, efficiency the capability to predict only cli-
ent handovers that actually occur, and stability the abil-
ity to minimize Prob state changes. Our primary goal is 
to maximize hit rate to be able to proactively re-
arrange the new wireless access localities. In addition, 
as a secondary requirement, our prediction mechanism 
tries to maximize efficiency and stability. In fact, as 
better detailed in Section 4, both factors affect the 
overall system performance: depending on the type of 
provisioned service, handover/mobility predictions can 
produce service management operations of non-
negligible overload, e.g., buffer migration and resource 
re-binding, and thus it is recommended to reduce use-
less predictions as much as possible.  

 
3 RSSI Filtering 
 

RSSI fluctuations due to signal noise significantly 
affect both stability and efficiency. For instance, in HP 
communication-level handover, when the RSSI value 
of the current AP is slightly greater than the sum of 
another AP RSSI plus HHT, even small RSSI fluctua-
tions can produce several Prob changes, thus relevantly 
reducing stability. In addition, in those conditions 
RSSI over/under-estimation may trigger unnecessary 
predictions, thus lowering efficiency. The section pre-
sents 4 different filtering components we have imple-
mented to mitigate RSSI fluctuations: Grey Model, 
Fourier Transform, Discrete Kalman, and Particle.  
 
3.1  Grey Model 
 

We have designed and implemented a first-order 
Grey Model filtering module that calculates filtered 
RSSI values on the basis of a finite series of RSSI val-
ues monitored in the recent past [8]. In particular, 
given one visible AP and the set of its actual RSSI 



values measured at the client side R0 = {r0(1), …, 
r0(n)}, where r0(i) is the RSSI value at the discrete time 
i, it is possible to calculate R1 = {r1(1), …, r1(n)}, 
where: 

∑
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Then, from the Grey Model discrete differential 
equation of the first order: 
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the wireless client can autonomously determine a 
and u, which are exploited to obtain the predicted RSSI 
value pr(i) at discrete time i according to the Grey 
Model prediction function: 
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Let us observe that filtered RSSI depends on N, the 
number of actual RSSI values r0(i) employed in the 
Grey Model. In principle, greater N, more regular the 
RSSI filtered values, and slower the filtered RSSI se-
quence follows the possibly abrupt time evolution of 
actual RSSI. We have experimentally evaluated the 
Grey Model performance while varying N. The best 
trade-off between RSSI fluctuation mitigation and ac-
tual-to-filtered RSSI delay has demonstrated to be for 
N=15 in most common deployment scenarios. We used 
that value to obtain the reported experimental results 
(see Section 4). 
 
3.2  Fourier Transform 
 

Our Discrete Fourier Transform (DFT) filtering 
module extract from R0 a Fourier coefficient set (Ai and 
Bi) representing the RSSI sequence in the frequency 
domain in a time window of duration (R0 size)*(RSSI 
sampling period), with R0 as defined in Section 3.1 [9]. 
The coefficient set is extracted with the usual Fourier 
equations:  
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The Fourier coefficient set is the basis to define an 
Inverse Discrete Fourier Transform (IDFT) to regener-
ate the RSSI signal: 
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When IDFT exploits only a subset of the above se-

ries terms, the regenerated RSSI sequence do not ex-
hibit its high frequency components and shows a more 
regular trend, i.e., IDFT behaves as a low pass filter. 
We have tested our Fourier Transform filter with sev-
eral N values and different numbers of addends. We 
have found a good trade-off between fluctuation miti-
gation and actual-to-filtered delay with N=4 and M=1. 

 
3.3  Discrete Kalman  
 

Our Discrete Kalman filtering module tries to esti-
mate RSSI values by representing the RSSI time evolu-
tion as a combination of signal noise (measurement 
noise) and maximum signal evolving (process noise) 
[10]. A linear stochastic equation models the RSSI 
evolution, with signal/process noise assumed to be 
independent of each other, white, and with normal 
probability distribution (standard deviation Q/R). 

Our filter works by minimizing process noise (w) 
through a two phase algorithm: first, a predictor per-
forms next RSSI estimation (equations 8 and 9); then, 
a corrector improves RSSI estimation by exploiting 
current RSSI measurement (equations 10, 11, and 12). 
Therefore, an iteration of our Discrete Kalman filtering 
module processes:  
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where P(k) is the covariance matrix of the state estimate 
error at step k, with initial value Q, and K(k) is usually 
indicated as the Kalman Gain in the filtering literature. 

In our scenario x and z are RSSI values, the state 
coincides with the output (A is a 1x1 identity matrix), 
and the estimation of the next state estimate is equal to 
the current state (H is a 1x1 identity matrix). After sev-
eral tests, we have found a good trade-off between 
RSSI fluctuation mitigation and filtered-to-actual RSSI 
delay by setting Q=1.6 and R=6. 
 
3.4  Particle  
 

Like Discrete Kalman, our Particle filtering module 
tries to estimate RSSI by minimizing measurement and 
process noise, but without imposing a linear equation 
modeling and, more important in our deployment sce-
nario, without imposing normal distribution for signal 
noise [11]. The main idea at its basis is to have an al-
gorithm that computes, at each step, several possible 
filtered RSSI values for each measured RSSI; then, the 
filter associates each candidate value with a weight and 



chooses the most promising values among them when 
a new measured RSSI is available; finally, it perturbs 
candidate values, according to the rules shown below, 
thus obtaining a new filtered RSSI (the average value 
of the most promising candidates). 

To better and practically understand how Particle 
Filter works, let us show a rapid example of algorithm 
iteration with 10 particles, which represents 10 possi-
ble filtered RSSI values (Figure 2): 
1. starting step - there are 10 possible filtered RSSI 

values (light circles), all with the same weight; 
2. importance weight step - by exploiting state esti-

mate probability (black curve) obtained from RSSI 
measurement, the algorithm assigns a weight at 
each filtered RSSI value (dark circles); 

3. re-sampling step - heavy RSSI are spread in dif-
ferent RSSI values, all with the same weight (light 
circles), while light RSSI values are discarded; 

4. sampling/prediction step - filtered RSSI are ran-
domly perturbed (light circles). 

 

 
Figure 2 An example of Particle iteration. 

 
The number of particles strongly influences the Par-

ticle filter performance; in general greater is the parti-
cle number, better the filtered RSSI follows the actual 
RSSI sequence. Differently from the previous 3 filters, 
Particle has a non-negligible computational load, 
which deeply depends on the particle number. For in-
stance, by exploiting an Intel Pentium4 2.80GHz, 1024 
MB of RAM machine, one iteration of our Particle 
filter takes about 132ms with 250 particles and 521ms 
with 500 particles; in a practical deployment scenario, 
where multiple APs are simultaneously visible from 
wireless clients, that time should be multiplied by the 
number of visible APs, and the computation occurs at 
any sampling interval. For the sake of completeness, 
Section 4 will report also Particle performance, when 
used with 250 particles and with the same Q and R are 
as in Discrete Kalman; however, current client-side 
resource limitations discourage the exploitation of the 
Particle filtering module. 

 
3.5  A Rapid Preliminary Comparison of 

RSSI Filtering Modules 
 

Just to give a preliminary rough comparison of the 
behaviors of the proposed filters, Figure 3 reports 60 
RSSI samples, either actually measured or filtered ac-
cording to one of the 4 filtering modules. In particular, 
the figure points out how much filters are able to miti-
gate RSSI fluctuations and how fast filtered RSSI se-
quences follow the actual ones in the case of rapid 
RSSI evolving, e.g., samples 5 and 45. 

Figure 3 is exemplar of the actual RSSI strong fluc-
tuations (filter = Identity). Compared to actual RSSI, 
the output of the Grey Model has definitely less fluc-
tuations, but tends to overestimate and to amplify RSSI 
growth in the case of rapid increasing, for instance 
when wireless clients are very close to their APs (see 
samples 10 and 50). Fourier and Kalman have similar 
behaviors: both tend to mitigate RSSI fluctuations 
quite well and accurately follow the actual RSSI se-
quence, without overestimating RSSI changes. Particle 
mitigates RSSI fluctuations very well, but sometimes 
introduces a non-negligible delay between actual and 
filtered values (see samples 8 and 47). 
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Figure 3 Actual and filtered RSSI. 

 
4. Experimental Results 
 

This section reports experimental results about the 
different hit rate, efficiency, and stability performance 
achieved when feeding our Prob module either with 
actual RSSI data or filtered RSSI (exploiting each time 
one of the 4 proposed filters). As already stated, the 
primary goal of RSSI filtering in our proposal is to 
mitigate RSSI fluctuations due to signal noise in order 
to primarily improve hit rate, with simultaneous ac-
ceptable values for efficiency and stability. However, 
better a filter mitigates RSSI fluctuations and longer is 
filtered-to-actual RSSI delay; in the following, for each 
filter we have adopted the parameter tuning described 



in Section 3, which achieves a suitable trade-off be-
tween introduced delay and filtering performance.  

In particular, in the case of handover prediction we 
have defined the following performance indicators: 

• hit rate = 100*⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
HPopt
HPpre ; 

where HPpre is the total time elapsed in HighProb 
state in the t-long interval before handover and HPopt 
is the time an optimal predictor should stay in High-
Prob state (exactly t seconds before each handover). 
We have chosen t=4s because such a time interval is 
largely sufficient to perform the needed service man-
agement operations in the WI localities going to be 
visited [3];  
• efficiency = *100HPopt

HPtot
⎛ ⎞
⎜ ⎟
⎝ ⎠

; 

where HPtot is the total time elapsed in HighProb 
state; 

• stability = 100*⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
PCopt

PC ; 

where PC is the number of Prob state changes of our 
predictor and PCopt the optimal number of Prob state 
changes. 

On the contrary, in the case of mobility prediction, 
we are interested in evaluating: 
• hit rate = 100*⎟

⎠
⎞

⎜
⎝
⎛

NH
CP  

where CP is the number of correctly predicted hand-
overs and NH is the total number of performed hand-
overs; 
• efficiency = 100*⎟

⎠
⎞

⎜
⎝
⎛

NP
CP  

where NP is the total number of triggered predictions. 
Note that we do not propose a stability indicator for 

mobility prediction since our proactive middleware for 
service management automatically inhibits further mo-
bility predictions for a configurable time interval after 
a triggered prediction [4]. 

Obviously, efficiency and hit rate are strongly cor-
related: on the one hand, very good values for hit rate 
can be achieved at the expense of poor efficiency; on 
the other hand, it is possible to obtain very good effi-
ciency by simply delaying as much as possible hand-
over predictions, with the risk of missing handovers 
(too low hit rate). Moreover, it is necessary to maintain 
sufficiently high stability not to continuously perturb 
the service infrastructure with useless and expensive 
management operations. 

We have measured the five indicators above in a 
challenging simulated environment, with a large num-
ber of Wi-Fi clients roaming among a large number of 
wireless APs (17 APs regularly deployed in a hexago-

nal cell topology); RSSI fluctuation has a 3dB standard 
deviation, FPT=72dB, FHT=80dB, HPT=2dB, 
HHT=6dB. Wireless clients follow movement trajecto-
ries according to the usual Random Waypoint model: 
speed is in the range [0.6m/s, 1.5m/s] and “thinking 
time” between 0s and 10s [12]. 

We have compared the behavior of the 4 proposed 
filtering modules within 6 scenarios (about 200 hand-
overs performed in each one), differentiated for AP to 
AP distance (20m, 30m or 40m) and type of communi-
cation-level handover (HP or SP). For the sake of 
briefness, the paper reports the results for the most 
challenging deployment environment with greatest AP 
density (AP distance=20m); results about the other 
scenarios are rapidly commented in the following and 
extensively described at http://lia.deis.unibo.it/ 
Research/SOMA/MobilityPrediction 

Figures 4 and 5 reports average values of perform-
ance indicators for handover and mobility prediction, 
respectively. In general, the adoption of the proposed 
filtering techniques significantly improves stability, 
with relevant benefits from the point of view of system 
overhead due to useless Prob state changes. Efficiency 
also increases when exploiting filtered RSSI, except 
than in the case of Grey Model: in fact, Grey Model 
filtering tends to amplify the growth/decreasing trends 
of actual RSSI values, as observed in the previous sec-
tion; that produces handover/mobility predictions with 
a large advance time but also with limited efficiency. 
Fourier, Kalman, and Particle filters, instead, tend to 
delay a little more Prob state changes, thus increasing 
efficiency. Let us observe that the hit rate performance 
indicator slightly decreases when adopting filtering 
techniques, except than in the Grey Model case. That 
effect is tied to what observed before: a slightly greater 
delay in handover prediction tends to weakly worsen 
hit rate, but with the relevant advantage of a signifi-
cantly greater stability. 

Similarly to handover prediction, the adoption of 
filtering techniques slightly lowers mobility prediction 
hit rate but, most important, increases its efficiency. 
Note that the reported efficiency is quite low, but it can 
be significantly improved with a better tuning of the 
Prob module configuration parameters e.g., HPT and 
FPT, as demonstrated in a previous work focused on 
Prob performance [13]. However, this paper specifi-
cally concentrates on pointing out the independent 
contribution on prediction performance of the 4 pro-
posed filters and, for that reason, we have decided to 
exploit generic Prob settings here. 

By taking a look at the whole set of reported per-
formance results, it is clear that there is not a filtering 
technique always outperforming the others. Filtering 
exploitation has demonstrated to be crucial for increas-



ing stability; the decision on which filter to exploit 
depends on the specific goals of the provisioned mo-
bile service. On the one hand, if it is of key relevance 
to achieve very high hit rates, the Grey Model is to be 
considered. On the other hand, if prediction costs must 
be as low as possible (high efficiency), Fourier and 
Kalman are good candidates. 
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Figure 4 Handover prediction performance. 
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Figure 5 Mobility prediction performance. 

 
Let us stress that, thanks to the modular architec-

ture of our middleware, it is possible to choose the 
exploited filtering module at provisioning time, by 
adapting middleware behavior to the current service 
context. For instance, consider the case that our mid-
dleware exploits handover prediction to support the 
pre-fetching of data chunks before handover, in order 
to continuously provide service flows also during AP 
changes with temporary disconnections [4]. If the cru-
cial point is to avoid temporary service interruptions, 
the best choice is Grey Model filtering; otherwise, if 
the priority is to minimize useless exploitation of cli-
ent-side buffers, either Fourier or Kalman should be 
chosen. Finally, as already stated, Particle should be 
excluded from possible choices because of its high 
client-side computational load. 

In addition to the proposed dense deployment sce-
nario, we have evaluated our filtering modules in envi-
ronments with greater AP-to-AP distance (30m/40m). 
The primary difference is a uniform increase in hit 
rate: when clients perform their handovers, APs are 
more distant and RSSI values exhibit a slower time 

evolution, thus facilitating handover/mobility predic-
tion. That confirms the suitability of presenting only 
the most challenging deployment scenario: the trend of 
performance indicators is the same, with no tight de-
pendence on AP density.  
 
5. Related Work 
 

Several research activities have already addressed 
handover/mobility prediction in wireless environments 
[14], especially in cellular networks [15]. However, 
most of them propose solutions based on either usual 
movement patterns, or statistics of mobility habits, or 
the estimate of current position/speed. For instance, 
[16] predicts future location/speed by exploiting a dy-
namic Gauss-Markov model applied to current and 
historical movement data. [17] bases its trajectory pre-
diction on paths followed in the recent past and on the 
spatial knowledge of the deployment environment, 
e.g., by considering admissible path databases. Note 
that exploiting these position prediction solutions as 
the basis for handover/mobility prediction requires 
coupling them with the full knowledge of maps with 
AP coverage areas. In addition, in open and extremely 
dynamic scenarios, with medium/short-range wireless 
connectivity, user mobility behaviors change very fre-
quently and irregularly, thus reducing the applicability 
of mobility statistics. 

Some other approaches in the literature have spe-
cifically focused on RSSI filtering. [18] exploits the 
Grey Model to decide when triggering handovers, by 
comparing filtered RSSI values with average/current 
RSSI ones. Differently from our proposal, [18] ex-
ploits RSSI filtering to improve communication-level 
handover, e.g., to reduce unnecessary bouncing, and 
not to perform handover/mobility prediction. Other 
researchers use Kalman and Particle filtering tech-
niques to combine RSSI measurements with mobility 
models: the goal is to reduce noise impact on localiza-
tion, and not to low-pass filter RSSI sequences to re-
duce signal fluctuation for handover/mobility predic-
tion [19, 20]. The Fourier Transform is widely ex-
ploited to perform signal processing but, to the best of 
our knowledge, our proposal to use it in RSSI filtering 
is original. 

In summary, if compared with the literature in the 
field, our middleware is definitely original in integrat-
ing a lightweight, portable, completely decentralized, 
and modular handover/mobility prediction solution, 
only based on RSSI data, and in exploiting several 
different filters with the main goal of increasing hit 
rate while ensuring good efficiency and stability. 

 
 



6. Conclusions 
 

The widespread utilization of wireless technologies 
pushes towards the adoption of handover/mobility pre-
diction mechanisms to facilitate the support of services 
with session continuity requirements and/or dependent 
on client location. The proposed solution can not only 
perform prediction in a lightweight, scalable, and com-
pletely decentralized manner, but also adapt its behav-
ior at provisioning time depending on service/system 
requirements, thus ensuring minimal intrusiveness and 
good stability. A relevant contribution to adaptivity is 
given by the possibility of dynamically choosing which 
RSSI filtering technique to adopt, thus influencing the 
expected performance of the prediction solution, e.g., 
by emphasizing either proactivity or efficiency.  

The promising performance results already ob-
tained are stimulating further related research activi-
ties. We are experimentally evaluating the performance 
of an improved version of our prediction mechanism 
that also exploits first-order RSSI derivate and chooses 
the filtering technique depending on a more refined 
RSSI evolution model; the goal is understanding 
whether more complicated RSSI models are justified 
by a relevant performance improvement. Moreover, we 
are evaluating the in-the-field behavior of our filtering 
techniques in the challenging application domain of 
WI multimedia streaming with session continuity re-
quirements. 
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