
LIFE.net over Web: an Advanced
Monitoring Protocol for UPS Systems

Paolo Mistroni*, Carlo Giannelli**, Paolo Bellavista**, Letizia Ghirardello*
Chloride UPS Systems*

Via Fornace, 30 - 40023 Castel Guelfo (BO) - ITALY
Phone: +39-0542-632358; Fax: +39-0542-632251

[paolo.mistroni, letizia.ghirardello]@chloridepower.com
Dip. Elettronica, Informatica e Sistemistica - Università di Bologna**

Viale Risorgimento, 2 - 40136 Bologna - ITALY
Phone: +39-051-2093001; Fax: +39-051-2093073

[cgiannelli, pbellavista]@deis.unibo.it

Abstract - The remote monitoring and control of UPS devices
performed remotely by control centers is a commonly adopted
solution to limit required human interventions on site.
Nowadays, the most usually adopted communication link is still
represented by Public Switched Telephone Network (PSTN)
lines, which offer relatively limited bandwidth at relatively high
economic costs. The paper proposes a novel control center
communication solution for UPS devices that exploits Internet-
based connectivity instead of PSTN lines. The Internet
represents a widely accepted standard; its adoption as
communication infrastructure relevantly simplifies the
management and integration of UPS monitoring solutions with
other Internet-based systems and tools. For instance, it
facilitates the provisioning of UPS information via standard
Web browsers, possibly integrated with other customer-related
data, such as billing information. In addition, the Internet
exploitation allows the transmission of great amounts of
monitoring data, thus enabling fine-grained control, at
reasonable economic costs. In particular, the proposed solution
is based on the encapsulation of standard UPS data and
commands inside Hyper Text Transfer Protocol (HTTP)
packets, exchanged between UPS devices residing inside
enterprise networks and a HTTP server located in France at the
edge of the Chloride private network. By exploiting HTTP as
encapsulating protocol, there is the positive side effect of
overcoming usually adopted enterprise security policies, which
limit network traffic between local and remote nodes, thus
facilitating the deployment in enterprise scenarios with no
intervention on usual security settings. The paper reports
implementation details that point out the feasibility of the
proposed solution, in relation both to the client side capability to
perform on microcontrollers with limited resources and to the
server side to properly scale when managing large numbers of
simultaneous clients.

I. INTRODUCTION

The monitoring and control of UPS critical power supplies
are commonly adopted to simplify (and increase the
efficiency of) several management operations, e.g., to
decrease site interventions and maintenance, to reduce human
error risk, and to gather data for statistical analysis. To this

purpose, there is the need for suitable mechanisms and tools
for UPS information monitoring and system control.
Common monitoring data are alarms, events, measurements,
data recording, and event logs, while UPS control operations
include equipment commands such as alarm
acknowledgements, configuration, and settings.

Offering UPS monitoring and control remotely performed
by experts requires an advanced and flexible management
system and a suitable service organization. However, the
complexity of such a monitoring/control system largely
increases when data are gathered not only from a single UPS
installation but from a large UPS population installed in
different and geographically distributed sites, belonging to
different customers within different organizations and
management constraints.

Our current LIFE.net system is able to provide these
challenging functions specialized for Chloride UPS
equipments. The data gathering system exploits the Public
Switched Telephone Network (PSTN) to receive UPS
information from heterogeneous sites in a data center
accessible for expert analysis. However, the continuous
growth of monitored UPS devices, the constant demand of
new services and monitoring capabilities, and the relative
difficulty in having available PSTN lines in UPS installations
are pushing the development of novel communication modes,
both to improve monitoring/control capabilities and to reduce
communication costs.

The paper describes our experience in migrating from the
PSTN lines used by the current LIFE.net system to the
standard IP-based network infrastructure exploited by the
novel LIFE.net over Web solution, thus allowing the
Internet-based interconnection of already installed UPS
devices with our data center. Let us additionally note that
there is not a single centralized data center; instead, it is
distributed in different localities, thus allowing to allocate the
monitoring load to several control sub-centers, also in
relation with the geographic distribution of UPS devices. In
particular, the proposed novel LIFE.net over Web protocol is

based on the Hyper Text Transfer Protocol (HTTP) [1]
encapsulation of the LIFE.net protocol. The exploitation of
HTTP as encapsulating protocol permits to achieve the non-
negligible benefit of the conformance to standard Internet
solutions, such as Web server technologies to manage HTTP
traffic. In addition, adopting HTTP as transmission protocol
permits not to be filtered out by most common security
policies installed at enterprise firewalls, without requiring
any direct manual intervention of enterprise network
administrators. The drawback is the necessity of reproducing
both a multi-step session abstraction and the capability to
start the interaction from the server-side, which are features
that standard HTTP tends not to provide but the LIFE.net
protocol strictly requires.

The rest of the paper is structured as follows. Section 2
motivates the adoption and presents the main characteristics
of HTTP as tunneling protocol for the standard LIFE.net
protocol. Section 3 presents the general architecture of the
proposed solution, by depicting how the HTTP encapsulation
of LIFE.net is actually performed. Section 4 provides most
relevant implementation insights and experimental evidences
of the feasibility of the proposed solution. Section 5
compares the adopted HTTP tunneling solution specifically
implemented for Chloride LIFE.net with other general-
purpose ones. Conclusive remarks end the paper.

II. MOTIVATIONS

Traditional monitoring and control solutions for UPS
systems mainly rely on limited bandwidth PSTN lines at not
negligible economic costs. The current version of LIFE.net is
based on the idea of buffering every event transition on local
memory and periodically, usually once a day, transmitting
them to a dedicated LIFE.net Watch Station (LWS). At every
communication the UPS device provides the minimum and
maximum values of locally performed analogue measures,
e.g., battery voltage or load currents, gathered after the last
communication with the LWS. In particular, the LIFE.net
protocol is half-duplex and consists of three different layers.
Each layer provides services for the upper layer and performs
specific actions: Layer 3 is the physical layer, Layer 2 is in
charge of fragmenting and eventually retransmitting packets,
Layer 1 exchanges protocol commands and replies at a higher
level of abstraction, with LWS that plays the role of master
and the UPS device acting as slave.

The requirement of richer monitoring/control capabilities
and lower costs push for novel and more powerful solutions
taking advantage of the widely available Internet-based
connectivity. In fact, in order to achieve a more fine-grained
UPS monitoring and control, it is required to gather amounts
of data largely greater than the currently connected, possibly
more frequently, e.g., the battery voltage every 10 minutes
instead of once a day. However, that is not currently feasible
because the adopted PSTN lines limits the available link
bandwidth and increases communication costs. In order both

to get a greater bandwidth and to limit communication costs,
there is the need to exploit the IP-based network
infrastructure commonly available in almost all the served
companies.

Layer 3
Layer 2

PSTN link

Layer 1

UPS device

Layer 3
Layer 2
Layer 1

LWS
commands

answers

Layer 3
Layer 2

PSTN link

Layer 1

UPS device

Layer 3
Layer 2
Layer 1

LWS
commands

answers

Figure 1: UPS - LIFE Watch Station protocol stack.

Besides the greater bandwidth and the limited costs, the

adoption of IP-based communication protocols provides
other valuable advantages. First of all, it permits the easy
integration of our monitoring solution with other IP-based
systems. For instance, it could be possible to easily integrate
UPS data with other customer-related information, such as
current billing conditions dynamically gathered on the Web.
In addition, there is the valuable possibility of exploiting
standard software and hardware solutions to offer access to
the collected and managed monitoring information. For
instance, Web servers installed on Internet-based enterprise
networks can enable the access to UPS gathered information
via standard Web browsers.

However, common enterprise network configurations do
not allow a direct communication between UPS devices
located inside the local network and control centers reachable
via the Internet. In fact, enterprises generally adopt firewall-
based network security policies to block data traffic from the
Internet to their internal network and to limit the data traffic
from the internal network to the external Internet. Generally,
standard services of wide interest such as Web browsing are
allowed, thus enabling HTTP clients within a corporate
internal network to communicate with HTTP servers over the
Internet.

Therefore, due to the wide adoption of HTTP and the
availability of several mechanisms to manage HTTP traffic,
HTTP seems to be an excellent candidate for our purpose of
porting the standard LIFE.net protocol to the Internet, with
the non-negligible benefit of not requiring any modification
to the network security policies commonly adopted in most
enterprises. The basic HTTP is rather simple. First of all, it is
request-response, i.e., the client always starts the
communication by performing a request to a server, and it is
the contacted server that always ends the communication,
immediately after returning a response. In addition, HTTP is
one-shot, i.e., a communication act consists of only one
request and only one response, after which the client-server
connection is closed. Finally, HTTP is stateless: there is no

correlation between successive requests from the same client
to the same server, which is not required to maintain any state
related to the communication stage with that client. Let us
rapidly observe that, while their primary objective is to ask
for information, HTTP clients are even able to send data to
servers. For example, HTTP clients can transmit data to
HTTP servers as POST requests, sending information as key-
value pairs. The simplicity of HTTP, based on few
straightforward interactions between a client and a server,
made possible the widespread and rapid availability of
scalable Web applications on heterogeneous distributed
nodes.

Fig. 2 shows the communication schema that the current
PSTN-based LIFE.net protocol adopts. The UPS device
directly communicates with LWS via a PSTN line, without
any other intermediate component between them. Both UPS
device and LWS can start the communication by performing
a PSTN call.

UPS
device LWS

Enterprise Control Center
PSTN linkUPS

device LWS

Enterprise Control Center
PSTN link

Figure 2: Traditional LIFE.net components and protocol link.

Fig. 3 considers the alternative scenario that LIFE.net over

Web aims to support. The UPS device and LWS are not
connected directly via PSTN lines, but instead via the
Internet through intermediate components (described in the
following), adopting HTTP as communication protocol. In
particular, Fig. 3 depicts the most common case of enterprise
network architecture: enterprise network nodes (and also the
UPS device) access the Internet via a proxy server, acting as
a firewall, that allows only HTTP traffic with requests
generated inside the enterprise network. LWS is connected
via the Internet directly, acting as an HTTP server able to
manage HTTP packets.

UPS
device

Proxy
Server

LWS

Internet

Enterprise Control Center

HTTP
requests

HTTP
responses

node node node

UPS
device

Proxy
Server

LWS

InternetInternet

Enterprise Control Center

HTTP
requests

HTTP
requests

HTTP
responses

HTTP
responses

node node node

Figure 3: Most diffused enterprise network configuration.

LIFE.net over Web carefully takes into account these
common network topologies to facilitate its immediate
deployment in enterprise networks without requiring any
modifications to commonly adopted network architectures
and security policies. In particular, LIFE.net over Web
encapsulates the traditional LIFE.net protocol inside HTTP,
by performing UPS-specialized HTTP tunneling: the primary
idea is to realize communications from the UPS device to the
control center as HTTP requests, from the control center to
UPS device as HTTP responses. The HTTP adoption is
required to communicate without any policy modification
between a UPS device residing inside an enterprise network
and a control center located in the Internet. However, the
simple adoption of HTTP is not sufficient: UPS monitoring
and control protocols, such as LIFE.net, require features that
the standard and simple HTTP typically does not provide,
such as control center-driven start of communications and
maintenance of connection state. For instance, a typical
LIFE.net communication consists of a connection phase, the
UPS device providing its identification details, a
conversation phase, allowing the actual transmission of data
and commands, and a disconnection phase, when the
connection is closed.

To this purpose, we have designed and implemented the
LIFE.net over Web protocol, which exploits HTTP, thus
achieving the benefit of adopting a widely accepted
communication standard, while overcoming its major UPS-
related drawbacks. In particular, LIFE.net over Web exploits
HTTP by adding the capabilities of both starting the
communication from outside the enterprise network and
maintaining connection states.

III. LIFE.NET OVER WEB

As emerged in the previous section, the standard LIFE.net
protocol is an articulated monitoring solution providing
several features. First of all, each LIFE.net connection is
composed by several steps, one related to the state reached by
the previous ones. Secondly, both the UPS device and LWS
can start the communication interaction, in order to send data
and commands respectively. Thirdly, while the standard
LIFE.net protocol is based on a pre-defined sequence of
commands sent by LWS, during a LIFE.net connection it is
also possible to switch to an on-line mode: in this case, LWS
stops its pre-defined procedure and a human operator can
directly specify other commands manually via a shell-based
textual interface. At the end of the on-line phase, the standard
procedure continues as usual, until it is complete.

The main objectives of the proposed LIFE.net over Web
solution are i) the HTTP tunneling of the LIFE.net protocol
to allow the communications between UPS devices and
control centers via Internet through enterprise proxies, and ii)
the maintenance of the communication state to allow a
multiple step communication as required by LIFE.net
protocol. At the same time, the proposed solution must allow

both the UPS device and LWS to start the communication
and must admit also a human controlled command sequence.

Let us stress that Fig. 3 represents only an ideal
deployment scenario: both to minimize on site expensive
intervention on already deployed UPS devices and to
maintain compatibility with the standard LIFE.net LWS, on
the one hand, it is not possible to directly connect UPS
devices to the enterprise network and, on the other hand,
LWS cannot autonomously perform as Web server. In fact,
already deployed UPS devices and LWS are not equipped
with HTTP capabilities; for this reason we decided to
develop and deploy additional components with the purpose
of making possible the UPS-LWS proper communication via
HTTP.

As Fig. 4 shows, the adopted architecture, similarly to [2],
consists of multiple components, where already deployed
LIFE.net ones are not assumed to change:
• UPS is the actual UPS device;
• HTTP Client (HC) communicates with both the UPS

device (via standard LIFE.net protocol) and server side
(via HTTP);

• Proxy Server (PS) is the enterprise proxy server;
• HTTP Server (HS) communicates with HC via HTTP

and with the server side via standard sockets;
• LIFE Gate (LG) forwards communications to the

appropriate local control center;
• Life Watch Stations (LWSs) are multiple control centers

geographically distributed in different locations.

UPS
device

Proxy
Server

HTTP
Server

Internet

Enterprise
Network

VPN
Control
Center

LIFE
Gate

LWS1

HTTP
Client

Serial
Port

HTTP

socket

HTTP HTTP

socket

LWS2 LWSn

UPS
device

Proxy
Server

HTTP
Server

InternetInternet

Enterprise
Network

VPN
Control
Center

LIFE
Gate

LWS1

HTTP
Client

Serial
Port

HTTP

socket

HTTP HTTP

socket

LWS2 LWSn

Figure 4: LIFE.net over Web architecture (striped ovals represent already

deployed LIFE.net components, while filled ovals are the components
originally added by LIFE.net over Web).

Delving into finer details, HC is the component

encapsulating the LIFE.net protocol in HTTP packets: it
communicates directly with the UPS device, emulating the
role of a PSTN modem to gather data and to send commands;
it sends data to HS as HTTP POST requests via the enterprise

PS and Internet, by possibly providing HTTP authentication
credentials to PS if required. HC starts a LIFE.net standard
communication at every fixed time interval, e.g., every hour,
by communicating, on the one hand with the UPS device via
a serial port to gather data and to send commands, and on the
other hand with HS via HTTP to provide gathered data and
receive commands. In addition, at a higher frequency if
compared with the standard LIFE.net, HC starts a heartbeat
connection with the purpose of notifying to the server side it
is still alive and able to correctly communicate. Note that the
usual HTTP request-response process is inverted in this case:
HC sends information via HTTP requests, HS sends
commands via HTTP responses. This behavior is mandatory
due to commonly adopted enterprise network security
policies. In fact, HC is the only component which can start a
HTTP communication, while HS can send data to HC only
via HTTP responses and only after a previously received
HTTP request.

HS is the component that provides a LIFE.net connection
abstraction maintaining the connection state. In particular, it
is implemented as a standard Web server: it accepts HC
HTTP requests, communicates with LG via sockets by
sending HC data and receiving LWS commands, and sends
commands to HC as HTTP responses. Let us note that HS
maintains the connection state to allow multi-step
communications, by associating any on-going session of
communications with a unique identifier. The state mainly
includes the identifier of the socket towards LG, opened at
the beginning of each LIFE.net connection and maintained
until its completion. Delving into finer details, at the
beginning of each LIFE.net connection, HS opens a new
socket to LG and associates it to a unique identifier, namely
the connection identifier. At each HTTP response, HS
appends the connection identifier to the other commands
related to the LIFE.net protocol; in this manner, HC gathers
the connection identifier and can specify it in the following
HTTP requests, thus permitting to HS to retrieve the already
available LIFE.net connection state.

As better detailed in Section 5, HTTP tunneling is a
commonly adopted solution to overcome the limitations that
HTTP proxies impose. However, the proposed solution not
only provides the capability to maintain the state of the
communication, but also is able to invert the standard
request-response HTTP communication model, i.e., sending
commands via HTTP responses and data via HTTP requests.

LG and LWS are completely unaware of the adoption of
HTTP. The former is in charge of forwarding connection data
to the correct LWS, the latter is the component that actually
manages UPS device data and sends commands. Different
LWSs may be deployed in different geographical locations,
in order to distribute the monitoring and control procedures
close to the actual location of managed UPS devices. LWSs
are not able to directly start a communication with a UPS
device, as it was possible with the previous LIFE.net protocol
based on PSTN lines, due to usually adopted enterprise

network traffic limitations. However, each LWS can start the
LIFE.net over Web connection, making manifest its desire to
communicate with a given UPS device by providing LG with
the UPS device serial number. At the following UPS device
heartbeat, LG will notify to the UPS device that there is a
pending reservation, and the UPS will start the
communication immediately, even if the given time interval
is not yet elapsed.

IV. IMPLEMENTATIONS INSIGHTS AND EXPERIMENTAL
DETAILS

The presented architecture has been developed and
deployed in order to test both its effectiveness and efficiency.
In particular, HC has been implemented in the C language, by
exploiting standard library functions provided by the POSIX
interface, e.g., the pthread library for multithreading
purposes and the termios functions for serial port interaction
and control. The exploitation of the standard POSIX API
enables the portability of our HC implementation on any
Linux-based platform, included μCLinux [3], the Linux
operating system specifically designed for devices with
limited capabilities. In particular, HC has been actually
deployed and tested on a MOXA UC-7112 [4] device, a
microcontroller equipped with a serial port and an Ethernet
end point and provided with a μCLinux environment. Let us
stress that our solution is completely transparent from the
point of view of the UPS device, requiring no modifications
to already installed components. In fact, HC communicates
locally with the UPS device acting as a standard PSTN
modem, interacting via the serial port, and communicates
remotely via the Internet with the control center,
encapsulating the LIFE.net protocol in HTTP packets.

HS has been implemented in terms of Java HTTP servlets,
a server side technology to manage HTTP requests and
provide HTTP responses. While it is possible to deploy Java
servlets on both most spread Web servers, i.e., Apache HTTP
server [5] and Microsoft IIS [6], for the sake of simplicity,
we have adopted a standalone Tomcat [7] HTTP server
(version 5.23) as servlet container, installed on a HP ProLiant
DL380, 1Gbyte RAM.

Between HC and HS, we have alternatively deployed
either a Squid proxy [8] (version stable.2.51) or a ISA Server
2004 [9]. Both proxy servers have been configured in order
to allow only outgoing HTTP requests and ingoing HTTP
responses, while discarding any other traffic category, e.g.,
not permitting FTP traffic and closing any network port
different from 80 (the standard HTTP port). Moreover, both
proxy servers have been alternatively configured to either
request or not HTTP basic authentication: in the case of
HTTP basic authentication, HTTP traffic is forwarded only if
HC provides correct credentials as a user name/password
pair.

In addition, we have performed some experimental tests
with the twofold goal of i) evaluating HS scalability in terms

of served clients and transferred data, and ii) of verifying the
reliability of the HC implementation on the MOXA UC-7112
device. In particular, in order to verify the adopted solution
performance, we have deployed a test prototype on a laptop
configured with a Linux operating system (Ubuntu 6.10
distribution) equipped with Ethernet and RS-232 ports. The
prototype does not actually interact with a single UPS device,
but performs multiple LIFE.net over Web connections
simultaneously (emulation of multiple HCs), by transferring a
variable amount of data. In particular, we have tested a
number of simulated clients which ranges from 1 to 100,
transferring 100 byte, 1 Kbyte, or 50 Kbyte per connection,
each connection repeated periodically (10 seconds). Let us
stress that the emulated HCs are particularly challenging
since successive HTTP requests are performed largely more
frequently than in common industrial deployment scenarios.
The main goal is to test the computational load imposed by
HTTP servlets, to point out the scalability of the proposed
solution with the number of served clients and the size of
transmitted data.

Our experimental results about the performance of
LIFE.net over Web demonstrate the feasibility of the
approach even when considering cases that generate a huge
amount of monitoring traffic with stringent delay
requirements. In fact, the proposed solution provides great
scalability, not presenting notable performance degradation,
even when 100 clients transmit 50 kbyte per connection. In
addition, our experiments have not exhibited any notable
performance difference in the case of basic HTTP
authentication or not. Let us additionally note that the server
used in these experiments has limited capabilities if
compared with a usual HTTP server host; thus, we expect
even better performance in a real-world scenario.

Finally, we have tested our prototype on the MOXA UC-
7112 device (see Fig. 5). In particular, the compliance with
the POSIX standard has permitted to rapidly port our
prototype on a μCLinux environment without any relevant
coding issue. The main technical aspect to be re-considered
was due to the absence of the memory management unit in
μCLinux, which required specific care in dynamic memory
allocation. In addition, as a further mechanism to provide
reliability, we have included a watchdog in the HC
implementation in order to avoid locking conditions. We
have measured the system overall performance and found it
in line with the results of the preliminary tests with the
laptop-based deployment environment.

As a final remark, let us notice that the MOXA device is
also connected to an external device, such as an operator
laptop, via serial port for configuration purposes (as depicted
in Fig. 5). In that way, it is possible to set the main
configuration parameters of the HTTP client, such as IP
addresses of PS and HS, and authentication credentials when
required.

MOXA - μClinux

UPS

life http
client

proxy
serverEthernet

serial
ports

LI
FE

.n
et

LI
FE

.n
et

ov
er

 W
eb

external
device

configuration
parameters

MOXA - μClinux

UPS

life http
client

proxy
serverEthernet

serial
ports

LI
FE

.n
et

LI
FE

.n
et

ov
er

 W
eb

external
device

configuration
parameters

Figure 5: LIFE.net over Web deployment on the MOXA UC-7112 device.

V. RELATED WORK

HTTP tunneling is a well-known mechanism to enable
communications between nodes residing in different
networks separated by proxy servers. This related work
section briefly focuses on the differences among our HTTP
tunneling solution and other already available ones, with the
purpose of clarifying why an ad-hoc tunneling solution was
required in our UPS-specific environment.

Many commercial projects provide general-purpose
solutions specifically developed for Windows platforms [10],
[11]. We have preferred to develop our own lightweight and
portable HTTP client by limiting the set of supported features
to only the strictly required ones, in order to impose only a
limited computational load. [12] represents an interesting
open source solution, available even for Linux operating
system. However, it does not perform memory management
efficiently; therefore, we claim that it is not suitable for
critical applications, such as UPS monitoring and controlling,
with strict availability requirements (24 hours per day, 7 days
per week) and for running at devices with limited memory
resources, e.g., MOXA UC-7112 devices.

In addition, it is not clear if the above products can
effectively manage some aspects of the HTTP protocol
(usually not addressed since not widely exploited) that are
crucial in relation with our UPS-related application. In
particular, LIFE.net over Web has requirements on URL safe
base64 encoding (required to send arbitrary binary data via
POST requests) and automatic client-to-proxy server socket
re-establishment (required whenever a HTTP server closes a
connection - Connection: close HTTP header).

VI. CONCLUSIONS

While UPS device monitoring and control are widely
accepted as crucial aspects of power supplying, the lack in

communication capabilities in terms of both bandwidth and
costs has greatly limited its performance and wide
applicability. The paper demonstrates how it is possible to
greatly improve monitoring and control facilities by
exploiting, as communication medium, the Internet in place
of traditional PSTN lines. In particular, the developed
solution permits the communication of UPS devices and
control centers (geographically distributed in several
locations) via the Internet, in a completely transparent
manner, thus allowing its adoption even for already deployed
UPS devices. LIFE.net over Web achieves the twofold goal
of transmitting a much greater amount of data between UPS
devices and control centers while minimizing economic
costs. The preliminary experimental results reported in the
paper have demonstrated that the proposed solution has great
scalability, thus permitting its industrial adoption also in
deployment scenarios with a large population of UPS
devices.

ACKNOWLEDGMENTS
Work supported by the MiUR PRIN MOMA, the MiUR
FIRB TOCAI, and the CNR Strategic IS-MANET projects.

REFERENCES

[1] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-
Lee, "Hypertext Transfer Protocol -- HTTP/1.1", http://www.
ietf.org/rfc/rfc2068.txt, January 1997.

[2] "Tunneling through the corporate network", http://www.ibm.
com/developerworks/java/library/j-tunnel/

[3] μCLinux, http://www.uclinux.org/
[4] MOXA Embedded Computers, "UC-7112/UC-7110", http://

www.moxa.com/product/download/UC-7112 _7110.pdf
[5] Apache, http://www.apache.org/
[6] Internet Information Services (IIS), http://www.microsoft.com/

windowsserver2003/iis/default.mspx.
[7] Apache Tomcat, http://tomcat.apache.org/
[8] Squid Web Proxy Cache, http://www.squid-cache.org/
[9] Microsoft Internet Security and Acceleration Server (ISA),

http://www.microsoft.com/isaserver/default.mspx
[10] HTTP-Tunnel, http://www.http-tunnel.com/
[11] Hopster, http://www.hopster.com/
[12] httptunnel, http://www.nocrew.org/software/httptunnel.html

