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Abstract. New challenging deployment scenarios are accommodating portable 
devices with limited and heterogeneous capabilities that roam among wireless 
access localities during service provisioning. That calls for novel middlewares 
to support different forms of mobility and connectivity in wired-wireless inte-
grated networks, to provide runtime service personalization based on client cha-
racteristics, preferences, and location, and to maintain service continuity not-
withstanding temporary disconnections due to handoff. The paper focuses on 
how to predict client horizontal handoff between IEEE 802.11 cells in a porta-
ble way, only by exploiting RSSI monitoring and with no need of external 
global positioning, and exploits mobility prediction to preserve audio/video 
streaming continuity. In particular, handoff prediction permits to dynamically 
and proactively adapt the size of client-side buffers to avoid streaming interrup-
tions with minimum usage of portable device memory. Experimental results 
show that our prediction-based adaptive buffering outperforms traditional static 
solutions by significantly reducing the buffer size required for streaming conti-
nuity and by imposing a very limited overhead.  

1   Introduction 

The increasing availability of wireless Internet Access Points (APs) and the populari-
ty of wireless-enabled portable devices stimulate the provisioning of distributed ser-
vices to a wide variety of mobile terminals, with very heterogeneous and often limited 
resources. Even if device/network capabilities are always increasing, the development 
of wireless applications is going to remain a very challenging task. Their design 
should take into account several factors, from limited client-side memory to limited 
display size/resolution, from temporary loss of connectivity to frequent bandwidth 
fluctuations and high connectivity costs, from extreme client heterogeneity to local 
resource availability that may abruptly change in the case of client roaming. [1]. 

Let us consider the common deployment scenario where wireless solutions extend 
the accessibility to the traditional Internet via APs working as bridges between fixed 
hosts and wireless devices [2]. The most notable example is the case of IEEE 802.11 
APs that support connectivity of Wi-Fi terminals to a wired local area network [3]. In 
the following, we will indicate these integrated networks with fixed Internet hosts, 



wireless terminals, and wireless APs in between, as the Wireless Internet (WI). 
WI service provisioning must consider the specific characteristics of client devices, 

primarily their limits on local resources and their high heterogeneity. Limited 
processing power, memory, and file system make portable devices unsuitable for 
traditional services designed for fixed networks. These constraints call for both assist-
ing wireless terminals in service access and downscaling service contents depending 
on terminal resource constraints. In addition, portable devices currently exhibit ex-
treme heterogeneity of hardware capabilities, operating systems, installed software, 
and network technologies. This heterogeneity makes hard to provide all needed ser-
vice versions with statically tailored contents and calls for on-the-fly adaptation. 
Client limits and heterogeneity are particularly crucial when providing continuous 
services, i.e., applications that distribute time-continuous flows of information to their 
requesting clients, such as audio and video streaming [4]. WI continuous services 
should address the very challenging issue of avoiding temporary flow interruptions 
when clients roam from one wireless locality to one another, also by considering 
client memory limitations, which do not allow traditional buffering solutions based on 
proactive client caching of large chunks of multimedia flows.  

We claim the need of middleware solutions to support WI service provisioning to 
portable devices, by locally mediating their service access and by dynamically adapt-
ing results to client terminal properties, location, and runtime resource availability [3-
6]. Middleware components should follow client roaming in different WI localities 
and assist them locally during their service sessions. Moreover, client memory limita-
tions suggest deploying middleware components over the fixed network, where and 
when needed, while portable devices should only host thin clients. By following the 
above guidelines, we have developed an application-level middleware, based on Se-
cure and Open Mobile Agent (SOMA) proxies, to support the distribution of location-
dependent continuous services to wireless devices with limited on-board resources [7, 
8]. The primary design idea is to dynamically deploy mobile proxies acting on behalf 
of wireless clients over fixed hosts in the network localities that currently offer client 
connectivity.  

The paper focuses on an essential aspect of our middleware: how to avoid interrup-
tions of continuous service provisioning when a client roams from one WI locality to 
one another (wireless cell handoff) at runtime. To achieve this goal, handoff predic-
tion is crucial. On the one hand, it permits to migrate mobile proxies in advance to the 
wireless cells where mobile clients are going to reconnect, so to have enough time to 
proactively reorganize user sessions in newly visited localities, as detailed in a pre-
vious work [9]. On the other hand, service continuity requires maintaining client-side 
buffers of proper size with flow contents to play during the handoff process and to 
reconnect to mobile proxies in the new WI localities. Handoff prediction can enable 
the adaptive management of client buffers, by increasing buffer size (of the amount 
expectedly needed) only in anticipation of client handoffs, thus improving the effi-
ciency of memory utilization, which is essential for portable devices. Let us observe 
that the proposed adaptive buffering, specifically developed for our mobile proxy-
based middleware to avoid streaming interruptions, can help any class of WI applica-
tions that benefit from content pre-fetching in the client locality. 

In particular, the paper presents how to exploit handoff prediction to optimize the 



utilization of client-side pre-fetching buffers for streaming data. The primary guide-
line is to provide handoff prediction-based adaptive management of client buffers 
with the twofold goal of minimizing buffer size and triggering pre-fetch operations 
only when needed. Our adaptive buffering exploits an original solution to predict 
handoffs between IEEE 802.11 cells, by using only client-side Received Signal 
Strength Indication (RSSI) from the wireless APs in visibility. Our prediction me-
chanisms originally adopt a first-order Grey Model (GM) to reduce RSSI fluctuations 
due to signal noise; they are portable, lightweight, and completely decentralized, and 
do not require any external global positioning system [8,10]. 

The paper also reports a thorough performance evaluation of our handoff predic-
tion-based adaptive buffering in a wide-scale simulated environment, which can 
model nodes randomly roaming among IEEE 802.11 APs. In addition, we have col-
lected in-the-field experimental results by deploying our system prototype over an 
actual set of Wi-Fi laptops. Experimental results show that our adaptive buffering 
outperforms not only traditional solutions based on statically pre-determined buffer 
size, but also adaptive dimensioning solutions based on non-GM-filtered RSSI val-
ues, also when considering different implementations of communication-level han-
doff by different Wi-Fi client card vendors. The proposed solution has shown to re-
duce the buffer size needed to maintain streaming continuity and to impose a very 
limited overhead, by only exploiting local RSSI data already available at clients. 

2   Related Work 

Few researches have addressed position prediction in wireless networks, most of 
them by proposing solutions based on either the estimate of current position/speed or 
usual movement patterns. [11] predicts future location/speed by exploiting a dynamic 
Gauss-Markov model applied to the current and historical movement data. [12] bases 
its trajectory prediction on paths followed in the recent past and on the spatial know-
ledge of the deployment environment, e.g., by considering admissible path databases. 
Note that exploiting these position prediction solutions as the basis for handoff pre-
diction requires coupling them with the knowledge of AP coverage area maps. In 
addition, in open and extremely dynamic scenarios, with medium/short-range wire-
less connectivity, user mobility behaviors change very frequently and irregularly, thus 
making almost inapplicable handoff predictions based on past user mobility habits.  

There are a first few approaches in the literature that have already investigated 
RSSI prediction. [13] predicts future RSSI values by using a retroactive adaptive 
filter to mitigate RSSI fluctuations; device handoff is commanded when the differ-
ence between the current and the predicted RSSI values is greater than a threshold. 
[14] exploits GM to decide when to trigger the communication handoff by comparing 
RSSI predictions with average and current RSSI values. However, both [13] and [14] 
apply RSSI prediction to improve communication-level handoff, e.g., to reduce unne-
cessary bouncing, and not to predict the movements of wireless clients so to adaptive-
ly manage their streaming buffers. 

Adaptive buffer management for stream interruption avoidance is a well investi-
gated area in traditional fixed distributed systems. [15] exploits predicted network 



delay to adapt buffer size to the expected packet arrival time; its goal is to avoid 
stream interruptions due to packet jitter variations. [16] compares different algorithms 
for adaptive buffer management to minimize the effect of delay jitter: packet delay 
and/or packet peak recognition are exploited to dynamically adapt the buffer size. 
[17] predicts buffer occupation with a Proportional Integral Derivative predictor; the 
goal is to minimize packet loss due to buffer overflow. [18] is the only proposal deal-
ing with wireless clients: it suggests a proxy-based infrastructure exploiting neural 
networks to predict client connection state; proxies execute on the wired network to 
manage the state/connections of their associated clients. Its primary goal is to pre-
serve session state and not to maintain service continuity.  

To the best of our knowledge, our middleware is definitely original in integrating 
a lightweight, portable, completely decentralized, and modular handoff prediction 
solution, only based on RSSI data, and in exploiting it to increase the efficiency of 
adaptive buffer management for continuous services. 

3   Client-side Adaptive Buffering based on Handoff Prediction 

Given the crucial role of efficiently managing client buffers to prevent streaming 
interruptions during client roaming, we propose an innovative buffer management 
solution that tends to save limited client memory by increasing buffer size only when 
a client handoff is going to occur. To this purpose, it is first necessary to exactly clari-
fy how communication-level handoff works. In fact, the IEEE 802.11 standard does 
not impose any specific handoff strategy and communication hardware manufacturers 
are free to implement their own strategies, as detailed in the following. The different 
communication-level handoff strategies motivate different variants of our prediction-
based adaptive buffering: for this reason, the paper proposes and compares two alter-
native buffer implementations specifically designed for the two most relevant classes 
of possible handoff strategies, i.e., Hard Proactive (HP) and Soft Proactive (SP). 

3.1   Reactive and Hard/Soft Proactive Communication-level Handoff 

Several communication-level handoff strategies are possible, which mainly differ in 
the event used to trigger handoff. We can identify two main categories: reactive and 
proactive. Reactive handoff strategies tend to delay handoff as much as possible: 
handoff starts only when wireless clients lose their current AP signal. Reactive strate-
gies are effective in minimizing the number of handoffs, e.g., by avoiding to trigger a 
handoff process when a client approaches a new wireless cell without losing the ori-
gin signal and immediately returns back to the origin AP. However, reactive handoffs 
tend to be long because they include looking for new APs, choosing one of them, and 
asking for re-association. In addition, in reactive handoffs the RSSI of associated APs 
tends to be low in the last phases before de-association, thus producing time intervals 
before handoff with limited effective bandwidth. Proactive strategies, instead, tend to 
trigger handoff before the complete loss of the origin AP signal, e.g., when the new 
cell RSSI is greater than the origin one. These strategies are less effective in reducing 



the number of useless handoffs but are usually prompter, by performing search opera-
tions for new APs before starting the actual handoff procedure and by limiting time 
intervals with low RSSI before handoffs.  

By concentrating on proactive strategies, two primary models can be identified. On 
the one hand, HP strategies trigger a handoff any time the RSSI of a visible AP over-
comes the one of currently associated AP of more than an Hysteresis Handoff Thre-
shold (HHT); HHT is usually introduced to prevent heavy bouncing effects. On the 
other hand, SP strategies are “less proactive” in the sense that they trigger handoff 
only if i) the HP condition applies (there is an AP with RSSI greater than current AP 
RSSI plus HHT), and ii) the current AP RSSI is lower than a Fixed Handoff Thre-
shold (FHT). For instance, the handoff strategies implemented by Cisco Aironet 350 
and Orinoco Gold Wi-Fi cards follow, respectively, the HP and SP models. More in 
detail, Cisco Aironet 350 permits to configure its handoff strategy with the “Scan for 
a Better AP” option: if the current AP RSSI is lower than a settable threshold, the Wi-
Fi card monitors RSSI data of all visible APs, looking for a better AP; for sufficiently 
high threshold values, the Cisco cards behave according to the HP model. Orinoco 
Gold cards implements the SP strategy, applied to the Signal to Noise Ratio (SNR) in 
place of RSSI, without giving any possibility to configure the used thresholds. 

3.2   HP- and SP-Handoff Predictors 

The goal of our handoff prediction-based buffer management is to have client buffers 
of the maximum size and full exactly when actual re-associations to destination APs 
occur. Wrong handoff predictions produce incorrect dimensioning of client-side buf-
fers; correct but late handoff predictions cause correctly-sized buffers that are not 
fulfilled with the needed pre-fetched streaming data.  

Just to give a rough idea of the magnitude order of the advance time needed in 
handoff prediction, let us briefly consider the example of a client receiving a multi-
media stream played at 1000Kbps constant bit-rate and a handoff procedure taking 
1.5s to complete. That time interval includes the time for communication-level han-
doff and the time to locally reconnect to the migrated companion proxy, and largely 
overestimates the actual time measured in [8]. In this case, the client-side buffer size 
must be at least 187.5KB. If the client available bandwidth is 1500Kbps on average, 
the buffer fills with a speed of 500Kbps on average, by becoming full (from an empty 
state) in about 3s. Therefore, in the worst case, our handoff prediction should be ca-
pable of anticipating the actual handoff of 3s, to trigger buffer pre-fetching in time. 

Our buffer management solution exploits a predictor structured in three pipelined 
modules. The first module (Filter) is in charge of filtering RSSI sequences to mitigate 
RSSI fluctuations due to signal noise. The second module tries to estimate handoff 
probability in the near future (Prob) based on RSSI values provided at its input. The 
last module (Dim) determines the correct buffer size to enforce, depending on han-
doff probability. More formally, our predictor consists of three modules, each of them 
implementing a function with the following domain and co-domain of definition: 
• SIFilteredRSRSSI:Filter →  



• obabilityHandoverPrSIFilteredRS:Prob →  
• Dim : HandoverProbability BufferSize→  
The modular architecture of our predictor permits a completely separated implemen-
tation and deployment of Filter, Prob, and Dim modules, thus simplifying the exploi-
tation and experimentation of different filtering, handoff prediction, and buffer size 
management mechanisms, even dynamically composed at provision time by down-
loading the needed module code [19]. For instance, the experimental results in Sec-
tion 4 will show the performance of our middleware when feeding the Prob module 
with either actual RSSI sequences (Filter is the identity function) or GM-filtered ones 
(by pointing out the improvement due to the only GM-based RSSI filtering). 

By delving into finer details about the already implemented predictor modules 
available in our middleware, Prob can assume three different states: 
• LowProb, if handoff is considered highly improbable in the near future; 
• HighProb, if handoff is considered almost certain in the near future; 
• MedProb, otherwise. 
Dim exploits the state delivered by Prob to dynamically modify the size of associated 
client-side buffers: in the current implementation, when in the HighProb state, Dim 
sets the buffer size at the maximum for that multimedia flow (flow bit-rate * 1.5s); 
when in LowProb, Dim sets the size at the minimum (maximum/10); and when in 
MedProb, it sets the size at (maximum+minimum)/2. We are currently evaluating if 
more complex processing functions for Prob and Dim modules (e.g., with finer gra-
nularity for the discrete states of handoff probability and buffer size) could improve 
our middleware performance; first results encourage to exploit simple and lightweight 
module functions, which can achieve the needed performance results with a limited 
computational overhead (see Section 4). 

The Prob module runs at the client side, is completely decentralized, and only ex-
ploits local monitoring information about the RSSI of all IEEE 802.11 APs in current 
visibility. The awareness of RSSI monitoring data is achieved in a completely porta-
ble way over heterogeneous platforms, as detailed in Section 3.4. In particular, we 
have implemented two variants of our Prob module, one suitable for communication-
level HP handoffs and the other for SP ones. We have decided not to develop Prob 
modules for reactive strategies because reactive handoffs are inherently unsuitable for 
continuous service provisioning environments, given their longer time needed to 
complete handoff. In addition, handoff prediction is less challenging in the case of 
reactive communication-level handoffs than when dealing with proactive ones: the 
triggering of a reactive handoff only depends on one AP RSSI data. 

The HP-variant of our Prob module is in the state: 
• LowProb, if the filtered value for the current AP RSSI is greater than the filtered 

RSSI values for any visible AP plus a Hysteresis Superior Threshold (HST); 
• HighProb, if the filtered value for the current AP RSSI is lower than at least one 

filtered RSSI value for one visible AP plus a Hysteresis Inferior Threshold (HIT); 
• MedProb, otherwise. 
Figure 1 represents filtered RSSI values for current and next APs, in proximity of a 
HP handoff. A wireless client, moving from the origin AP locality to the destination 
AP one, is first associated with the origin AP (white background), then with the des-



tination AP (grey background). The HP Prob module state changes from LowProb to 
MedProb and finally to HighProb. When the actual RSSI of destination AP over-
comes the actual RSSI of origin AP plus HHT, the handoff is triggered (for the sake 
of simplicity, the figure considers filtered RSSI values equal to actual ones in HO). 
 

 
Figure 1. The different states of the Prob HP-variant. 

The SP-variant of the Prob module can assume the following states: 
• LowProb, if the filtered RSSI value for current AP is greater than either a Fixed 

Superior Threshold (FST) or the filtered RSSI value for any visible AP plus HST; 
• HighProb, if the filtered RSSI value for current AP is lower than a Fixed Inferior 

Threshold (FIT) and than at least one filtered RSSI of a visible AP plus HIT; 
• MedProb, otherwise. 
Similarly to Figure 1, Figures 2a and 2b represent filtered RSSI values for the origin 
and destination APs in proximity of an SP handoff. Figure 2a depicts a case where 
filtered RSSI values for current and next APs change relatively slow: in this case, 
changes in Prob results and actual handoff are triggered by the overcoming of hyste-
resis thresholds. In Figure 2b, instead, filtered RSSI values rapidly evolve and it is the 
passing of fixed thresholds that triggers Prob state variations and handoff. 
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Figure 2a. The different states of the Prob 

SP-variant for slow RSSI evolution. 
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Figure 2b. The different states of the Prob 

SP-variant for relatively fast RSSI evolution. 



Both HP and SP variants of the Prob module take advantage of our GM-based Fil-
ter module. Filter exploits a very simple and lightweight first-order GM [10] to obtain 
filtered RSSI values on the basis of RSSI values monitored in the recent past, as de-
scribed in the following section.  Let us stress again that our modular handoff predic-
tor is completely local and decentralized: each wireless client hosts its handoff predic-
tor, whose Prob results only depend on either monitored or filtered RSSI values for 
all APs in visibility, with no need of interacting with any other client or SOMA-based 
middleware component running in the wired infrastructure. 

3.3   Grey Model-based RSSI Prediction 

Given one visible AP and the set of its actual RSSI values measured at the client side 
R0 = {r0(1), …, r0(n)}, where r0(i) is the RSSI value at the discrete time i, it is possi-
ble to calculate R1 = {r1(1), …, r1(n)}, where: 

∑
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Then, from the GM(1,1) discrete differential equation of the first order [8]: 
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the wireless client can autonomously determine a and u, which are exploited to ob-
tain the predicted RSSI value pr(i) at discrete time i according to the GM(1,1) predic-
tion function [10]: 
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Let us observe that the average accuracy of the RSSI prediction may also depend 
on the number of actual RSSI values r0(i) employed by the adopted GM(1,1). In prin-
ciple, longer the finite input series R0, more regular the RSSI predicted values, and 
slower the speed with which the GM(1,1) prediction anticipates the actual RSSI se-
quence in the case of abrupt evolution [10]. We have evaluated the performance of 
our predictors, as extensively presented in Section 4, also while varying the number n 
of values in R0. We did not experience any significant improvement in the predictor 
performance, on average, by using n values greater than 15. For this reason, all the 
experimental results reported in the following will refer to the usage of R0 sets with 
15 past RSSI values. 

4   Experimental Results 

To quantitatively evaluate the effectiveness of the proposed modular handoff predic-
tor and of its application in our adaptive buffer management infrastructure, we have 
identified some performance indicators and measured them both in a simulated envi-
ronment, with a large number of Wi-Fi clients roaming among a large number of 
wireless AP localities, and in our campus deployment scenario, where four laptops 



move among the different coverage areas of six APs. Two laptops are Linux-based, 
while the other two host Microsoft Windows.NET; they alternatively exploit Cisco 
Aironet 350 (HP handoff) and Orinoco Gold (SP handoff) IEEE802.11 cards. In 
addition, we have compared the performance of our HP/SP Prob modules when con-
nected to either our GM(1,1) Filter function or an identity Filter function that pro-
vides output values identical to its input: the goal was of understanding the isolated 
contribution of the GM(1,1) Filter function to the overall performance of our adaptive 
buffer management infrastructure.  

In particular, we have considered the following performance indicators: 

• Average Buffer Size (ABS) = 
0

1 ( )
T

BS t dt
T ∫

,  

where BS(t) is the time-varying buffer size. In other words, ABS is the time-
weighted average of the buffer size; 

• Average Buffer Duration (ABD) = 
0

1 ( )
T

BD t dt
T ∫

  

where BD(t) is the time-varying validity of a chosen buffer size. In other words, 
ABD is the average time interval between two successive operations of buffer re-
sizing; 
• Successful Handoff (SH%) = 100*1 ⎟

⎠
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⎜
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⎛ −

NH
DH  

where DH is the number of actual client handoffs and NH is the number of han-
doffs predicted by the proposed HP/SP predictors.  

In general, the goal of an optimal buffer management solution is to contemporari-
ly achieve minimum values for ABS and sufficiently large ABD values, with maxi-
mum SH%. Obviously, ABS and SH% are strongly correlated: on the one hand, very 
good values for SH% can be easily achieved with large ABS values; on the other hand, 
it is possible to obtain very low ABS values by simply delaying as much as possible 
the buffer size enlargement, but with the risk of streaming interruptions (too low SH% 
value). Moreover, it is necessary to maintain sufficiently large ABD values not to 
continuously perform useless and expensive buffer re-size operations. 

We have measured the three indicators above in a challenging simulated environ-
ment where 17 APs are regularly placed in a 62m x 84m area and RSSI fluctuation 
has a 3dB standard deviation. Wireless clients follow trajectories with a randomly 
variable speed and with a randomly variable direction (with a Gaussian component 
for the standard deviation of Π/6). The speed is between 0.6m/s and 1.5m/s to mimic 
the behavior of walking mobile users; FST = 66dB; FIT = 70dB; FHT = 80dB; HST 
= 10dB; HIT = 6dB; HHT = 6dB. On the average, each wireless client has the visi-
bility of ten APs at the same time, which represents a worst case scenario significant-
ly more complex than the actually deployed Wi-Fi networks (where no more than five 
APs are usually visible at any time and from any client position). 

Table 1 reports the average results for the three performance indicators over a 
large set of simulations, each one with about 500 handoffs. For the video streaming 
exploited in all the experiments, the buffer size required to avoid interruptions in the 
case of static fixed dimensioning is 200KB. The most important result is that any 
proposed Prob module, when provided with either GM-filtered RSSI values or actual 



RSSI values, significantly reduces ABS (between 27.5% and 33.5%), thus relevantly 
improving the client memory utilization. In addition, Prob modules fed with GM-
filtered RSSI values largely outperform the cases with actual RSSI values, especially 
with regard to the ABD performance indicator. In fact, even if ABS has demonstrated 
to maintain good values in all cases, directly monitored non-filtered RSSI (with its 
more abrupt fluctuations) tends to trigger a higher number of useless handoff predic-
tions and, consequently, more useless modifications in the enforced buffer size. 

Table 1 Performance indicators for HP and SP predictors.In the case of static fixed buffer: 
ABS=200KB, SH%=100, and ABD=∞. 

Handover  
Strategy 

Filter  
Function 

ABS 
(KB) SH% ABD 

(s)

HP Identity 140 92.1 2.80 
GM(1,1) 133 92.8 5.20 

SP Identity 145 91.6 2.79 
GM(1,1) 138 97.5 5.66 

 
Figure 3 points out the correlation between GM-filtered RSSI and buffer size. In 
particular, it depicts the time evolution of buffer size (dotted line) depending on both 
GM-filtered RSSI of the currently associated AP (grey line) and the greatest RRSI 
among the non-associated visible APs (black line). Let us stress that when the cur-
rently associated AP RSSI is significantly greater than RSSI from other APs, our 
buffer management infrastructure maintains buffer size at its minimum (20KB in the 
example); when the RSSI of the currently associated AP, instead, is similar to the 
RSSI of another AP, buffer size increases at its maximum (200KB); otherwise, our 
infrastructure works to manage a medium-sized buffer (110KB). 
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Figure 3. Buffer size variations depending on time evolution of GM-filtered RSSI 

values for the currently associated AP and for another AP in visibility. 

In addition to simulations, we have evaluated the performance of HP/SP Prob mod-
ules also by using a service prototype, built on top of our middleware, and by moving 
four client laptops among the campus WI localities during streaming provisioning. 
Even if the number of considered in-the-field handoffs is largely lower than the simu-



lated one (thus, less relevant from the statistical point of view), in-the-field perfor-
mance results confirm the simulation-based ones. In particular, the prototype-based 
ABS, SH%, and ABD results have demonstrated to be better than simulation-based 
ones, on the average, also due to the lower number of considered APs, and the conse-
quently simpler handoff prediction. However, we have experienced a significant 
degradation of prototype-based performance indicators in the case of extreme RSSI 
fluctuations, e.g., when a client follows a trajectory in strict proximity of relevant 
obstacles, such as the reinforced concrete walls of our campus buildings. 

The code of the handoff prediction prototype, additional details about prototype 
implementation, and further simulation/prototype-based experimental results are 
available at http://lia.deis.unibo.it/Research/SOMA/SmartBuffer/ 

5   Conclusions and On-going Research 

The exploitation of mobile middleware proxies that work over the fixed network on 
behalf of their resource-constrained clients is showing its suitability and effectiveness 
in the WI, especially when associated with handoff prediction. In particular, handoff 
prediction can help in realizing novel adaptive buffering solutions that optimize buf-
fer size and pre-fetching. Our work of design, implementation, and evaluation of 
different buffering solutions has shown that our dynamic and simple GM-based pro-
posal outperforms static buffering strategies, by preserving service continuity with 
limited requirements on client memory capabilities.  

The promising performance results obtained are stimulating further related re-
search activities. We are experimenting other handoff prediction techniques based on 
either higher-level GM models or the GM application to Ekahau-provided estimates 
of client positions (not directly to RSSI data) [20]. The goal is to evaluate whether a 
greater complexity of the Prob module of our predictor can significantly improve 
prediction quality, thus justifying the replacement of the currently adopted GM(1,1), 
which is extremely simple and lightweight.  
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