Enhancing JSR-179 for Positioning System Integration and Management

Paolo Bellavista Antonio Corradi Carlo Giannelli

>

26.06.2006

DEIS, University of Bologna, V.le Risorgimento n.2, 40136 Bologna Italy {pbellavista, acorradi, cgiannelli}@deis.unibo.it

- Location based services and positioning systems
- JSR-179 Location API for J2ME
- The Translucent approach
 - coupling transparency and visibility
- PoSIM middleware
 - integration and control
- JSR-179 and PoSIM API comparison

Positioning Systems

- Location Based Services (LBSs)
 - virtual museum assistance
 - service discovery
- Positioning systems
 - special purpose modules, e.g., GPS
 - communication purpose wireless technologies, e.g., IEEE 802.11 (Ekahau), Bluetooth (BTProximity), GSM/GPRS/UMTS
- Heterogeneity
 - location information: symbolic vs. physical
 - environment: indoor vs. outdoor
 - accuracy: few centimeters vs. several kilometers
 - power consumption: 1mW 1W
 - additional features, e.g., location information as probability distribution function

Our Proposal

- Devices may contemporarily access several positioning systems which differ in provided information and capabilities
- A middleware solution to provide
 - an homogeneous access to positioning systems, while preserving their peculiarities
 - integration of available positioning systems
 - to perform location fusion
 - dynamically control integrated positioning systems
 - to switch among available ones depending on their availability and application requirements

JSR-179: introduction

■ JSR-179: Location API for J2ME

- Standardization effort
- Coarse-grained integration and management
- Deployment device: J2ME-based smart phones
- Positioning system leveraging technology: GPS

JSR-179: API (1)

LocationProvider

- the component actually providing location
- provided at instantiation time

Criteria

- selected provider must satisfy particular criteria
 - required speed and altitude information
 - required minimum horizontal/vertical accuracy
 - required maximum power consumption

JSR-179: API (2)

- Provided information:
 - location related: Location class
 - qualified coordinates (physical)
 - address info (symbolic)
 - behavior related: state
 - available, out of service, temporarily not available
- Location information delivery:
 - on demand
 - getLastKnownLocation(), getLocation(timeout)
 - periodic
 - setLocationListener(listener, interval, timeout, maxAge)
 - only one listener at a time
 - event-driven
 - addProximityListener(listener, coordinates, proximityRadius)
 - the only one available triggering event

JSR-179: limits

- No dynamic and flexible management
 - one location provider at a time
 - LBSs have to monitor location provider performance
 - criteria considered only once, at instantiation time
- Completely transparent
 - no positioning system low level details at LBSs
 - no positioning system control

The Translucent Approach

Differentiated visibility:

- Transparent (similar to JSR-179 approach)
 - useful for simple LBSs
 - integrated positioning systems perceived as a unique multi-behavior component
- Visible
 - underlying components low level details and management capabilities at application level
 - uniform access to underlying components for smart LBSs

PoSIM middleware

Positioning System Integration and Management

- based on translucent approach
 - Transparent: Policy and Data Managers
 - Visible: Positioning System Access Facility

PoSIM components (1)

- Policy Manager (PM)
 - pre-defined behaviors as policies, e.g., POWER_USAGE_LOW
 - transparent control API
 - declarative policy de/activation
- Data Manager (DM)
 - aggregated data delivery as an XML document
 - transparent delivery API
 - on demand: provides already available XML document
 - periodical: provides it at a time interval
 - event-driven: several triggering events
 - atLocation, atChanges and user defined ones
 - filtering rules: filter XML document and provides only LBS-relevant data
 - highAccuracy and user defined ones

PoSIM components (2)

- Positioning System Access Facility (PSAF)
 - positioning system integration in a plug-in fashion
 - underlying layers information access and behavior control
 - visible control and delivery API
 - register/cancel positioning systems
 - request for available information and manage capabilities
- Positioning System Wrapper (PSW)
 - uniform interface to interact homogeneously with positioning systems

PoSIM and JSR-179 APIs (1)

- Integration
 - JSR-179: one location provider at a time (Location class)
 - PoSIM: every available positioning system (XML document), integrated in a plug-in fashion
- Event-driven data delivery:
 - JSR-179: only proximity-based triggering event
 - PoSIM: proximity, movement and user defined events
- Transparent Management
 - JSR-179: criteria exploited only once, at instantiation time
 - PoSIM: criteria exploited to actively and dynamically control positioning system behavior
- Visible Management
 - JSR-179: only available, temporarily not available, out of service
 - PoSIM: uniform access to underlying systems

PoSIM and JSR-179 APIs (2)

- equivalent
 - on demand and periodical delivery
- extended
 - event-driven delivery, underlying layers details and control
- additional
 - delivery filtering, dynamic integration

API category		JSR-179 API	PoSIM API	PoSIM Component	Comparison
n.a.		getInstance(criteria)	getInstance()	PoSIM API	extended
transparent	info delivery	getLastKnownLocation()	onDemand(listener)	DM	equivalent
		addProximityListener()	addEvent(event,listener)	DM	extended
		setLocationListener()	periodical(interval,listener)	DM	equivalent
		n.a.	addFilter(filter,listener)	DM	additional
	control	getInstance(criteria)	activateCriteria(criteria)	PM	extended
visible	control	n.a.	insertPosSys(newPosSys)	PSAF	additional
			getFeatures(posSys)		
		getState()	getFeature(posSys, aFeature)	PSAF	extended
			setFeature(posSys, aFeature)		

Conclusions & Ongoing work

- Management of positioning systems integrated dynamically coupling both transparent and visible approaches, i.e., Translucent approach
- PoSIM greatly extends the JSR-179 capabilities, while mimicking its API to facilitate adoption
- wrapper for BTProximity (GPS and Ekahau PSWs already available)
- several pre-defined policies, filter rules, triggering events

Any question?

- Acknowledgements:
 - Work supported by MIUR FIRB WEBMINDS and CNR Strategic IS-MANET Projects
- Web references for software and additional documents:
 - http://lia.deis.unibo.it/Research/PoSIM/
 - http://lia.deis.unibo.it/Staff/CarloGiannelli/

Pula, Italy - 26.06.2006