

Enhancing JSR-179 for
Positioning System Integration and Management

Paolo Bellavista, Antonio Corradi, Carlo Giannelli
Dip. Elettronica, Informatica e Sistemistica - Università di Bologna

Viale Risorgimento, 2 - 40136 Bologna - ITALY
Phone: +39-051-2093001; Fax: +39-051-2093073
{pbellavista, acorradi, cgiannelli}@deis.unibo.it

Abstract
Several heterogeneous positioning systems are
more and more widespread among client wire-
less terminals, thus leveraging the market rele-
vance of Location Based Services (LBSs). Posi-
tioning techniques are very differentiated, e.g., in
terms of precision, accuracy, and bat-
tery/bandwidth consumption, and several of them
are simultaneously available at clients. That mo-
tivates novel middleware solutions capable of in-
tegrating the dynamically accessible positioning
techniques, of controlling them in a synergic
way, and of switching from a positioning system
to another at service provisioning time by choos-
ing the most suitable solution depending on ap-
plication-level LBS context. In this perspective,
the paper proposes the original PoSIM solution,
which significantly extends the emerging JSR-
179 standard specification to allow differenti-
ated forms of visibility/control of low-level posi-
tioning characteristics, greater flexibility in lo-
cation change-driven event triggering, and the
simultaneous management of multiple and dy-
namically introduced location techniques.

1 Introduction

The growing availability of powerful mobile de-
vices with relatively high wireless bandwidth, e.g., via
UMTS, IEEE 802.11, and Bluetooth 2.0 connectivity,
is going to leverage the widespread diffusion of Loca-
tion Based Services (LBSs). LBSs can provide service
contents depending on current user positions, on the
mutual location of clients and accessed server re-
sources, and on the mutual position of users in a group
[1]. To enable LBSs, positioning techniques are cru-
cial. Several research activities have deeply worked on
evaluating mechanisms and technologies for position-

ing: some solutions have been specifically designed for
determining location, e.g., the well known Global Posi-
tioning System (GPS); other proposals try to estimate
positioning information by monitoring characteristics
of general-purpose communication channels, such as
the IEEE 802.11-based Ekahau [2]. For a more exhaus-
tive positioning system survey please refer to [3, 4].

Currently available positioning solutions greatly dif-
fer on capabilities and provided facilities. For instance,
they diverge in:
• the representation model of the provided location

information. That model could be either physical
(longitude, latitude, and altitude triple), or sym-
bolic (e.g., room X in building Y), or both;

• the applicable deployment environment. For in-
stance, GPS can work only outdoor, Ekahau pri-
marily indoor;

• accuracy and precision of the positioning informa-
tion. Accuracy is defined as the location data error
range (10 meters for GPS), while precision is the
error range confidence (95% for GPS);

• power consumption, which usually depends on lo-
cation update frequency;

• user privacy. For instance, client nodes that exploit
IEEE 802.11-based positioning have to disclose
their location, to some extent and at a certain
granularity, to be capable of communications (they
must associate to an AP for communication pur-
poses);

• and additional supported features, which can be
peculiar of specific positioning systems. For in-
stance, some positioning solutions can provide lo-
cation data as a probability distribution function.

That heterogeneity among the available positioning
systems, together with the fact that current wireless cli-
ents tend to simultaneously host several wireless tech-
nologies useful for positioning (e.g., terminals with
Wi-Fi and/or Bluetooth connectivity and/or equipped
with GPS), motivate the need for novel middleware
solutions capable of integrating the available position-

ing techniques, of controlling them in a synergic way,
and of dynamically selecting the most suitable solution
depending on context. First of all, that middleware
should allow to seamlessly switch from a positioning
system to another based on availability, e.g., GPS out-
door and Ekahau indoor. Then, it should suggest ex-
ploiting, at any time, the positioning technique which
best fits user preferences, application requirements, and
device resource constraints: for instance, the position-
ing system with lower power consumption in the case
of priority given to battery preservation, or the one
with greater accuracy and precision, or the one with
most frequent updates, or the one providing physi-
cal/symbolic location information. Moreover, when
several positioning systems can concurrently work, the
middleware could perform fusion operations on loca-
tion data, e.g., to increase accuracy and/or confidence.

For all these purposes, there is also the need to
make low-level characteristics of positioning systems
easily accessible to the upper layers (middleware
and/or application levels), thus enabling application-
specific control of positioning techniques, possibly by
avoiding to complicate LBS development and deploy-
ment.

The paper extensively discusses the integration and
management of heterogeneous positioning systems.
Section 2 describes related work about middleware so-
lutions for positioning integration, while Section 3 fo-
cuses on JSR-179, an emerging standard API for posi-
tioning. Section 4 rapidly sketches our original PoSIM
middleware and its main components, while Section 5
compares the proposed PoSIM API with the JSR-179
one. Conclusions and on going work end the paper.

2 Related Work

Several academic research activities have recently
addressed the area of dynamically fusing positioning
information from different sources. Here, we only pre-
sent a few of them to point out the primary solutions
related to context/location information and positioning
system integration.

Some positioning middleware proposals have the
main goal to support the easy development and de-
ployment of LBSs. The main idea is to hide the com-
plexity due to the adoption of several, heterogeneous
positioning systems, by providing integrated position-
ing services in a transparent manner. Every low level
information and detail is hidden and there is no possi-
bility to control positioning system behavior. Most of
them make positioning system integration completely
transparent from the LBS point of view. [5] focuses on
the integration of several positioning systems through
appropriate wrappers exploited to provide a uniform

API to heterogeneous positioning systems. The goal is
to exploit the positioning system which is currently
available or which best fits accuracy requirements,
eventually performing location data fusion. Moreover,
[5] provides user-controlled privacy actively, by re-
questing explicit user permission before disclosing lo-
cation information. [6] has the primary goal of seam-
less navigation, i.e., to provide location information
regardless actually exploited positioning systems and
maps. Its main solution guideline is to exploit middle-
ware components called mediators-wrappers, to ab-
stract from each exploited positioning system peculiari-
ties and map implementations. In addition, it permits to
dynamically change the exploited positioning system
and map, in a transparent way from the user/application
point of view. [7] supplies a specific interface to de-
velop new LBSs. Moreover, it supports the introduc-
tion of new positioning systems through a plug-in ar-
chitecture; the middleware kernel interacts with posi-
tioning systems in a standardized manner, via
OSA/Parlay. Similarly, [8] tries to abstract from the
adoption of several positioning system: it performs in-
formation abstraction through a multi-step architecture
for location data fusion, generation of geometric rela-
tionships, and event-based information disclosure. [9]
goes further by proposing different abstracting steps to
provide high-level location data: positioning, modeling,
fusion, query tracking, and intelligent notification.
Moreover, it ensures privacy and security management,
by controlling information disclosure, similarly to [5];
the positioning system integration is achieved by the
Common Adapter Framework that provides standard
APIs to fetch the location information of the mobile
devices.

The previously described middlewares integrate
several positioning systems with the goal to facilitate
LBS development. They tend to propose transparent
approaches that hide applications from positioning
complexity, but do not support any application-specific
form of control of currently available positioning tech-
niques. A few proposals start to delineate cross-layer
supports that provide visibility of low-level details and
control features at the application level. In the follow-
ing part of the related, we will focus on middleware
solutions that, to some extent, propagate the visibility
of low level details at the application level.

MiddleWhere [10] offers some abstracting facili-
ties, like previously described solutions, but also pro-
vides applications with low-level details. In particular,
it can provide requesting clients with additional data
about location resolution, confidence, and freshness.
An adapter component acts as a device driver allowing
MiddleWhere to communicate with positioning system
implementations: the adapter makes location descrip-
tion uniform by hiding any positioning implementation

peculiarity. [11] supports the integration and control of
several positioning systems providing low-level details
at the application layer. However, it performs integra-
tion and control in a hard-coded and not flexible man-
ner. In addition, the visibility of data/features peculiar
to a specific positioning system requires its full static
knowledge, thus significantly increasing the LBS de-
velopment complexity. Location Stack [12] represents
a state-of-the-art model of solution for location/context
fusion: it identifies several sequential components, de-
ployed in a layered manner, which provide increasing
abstraction: Sensors, Measurements, Fusion, Arrange-
ments, Contextual Fusion, Activities, Intentions. How-
ever, the Unified Location Framework [13], a possible
implementation of Location Stack, demonstrates that
such a layered system does not easily allow to propa-
gate the visibility of useful low-level data such as accu-
racy and precision. In fact, [13] points out that cross-
layering is required both to supply low-level details to
LBSs and to control positioning systems from the ap-
plication level.

In conclusion, most proposed middlewares mainly
address the location fusion issue and tend to hide any
low-level detail depending on positioning technique
and implementation. [10], [11] and [13] offer some
low-level details, but they have to be statically pre-
determined. To the best of our knowledge, no middle-
ware solution in the literature addresses the challenge
of dynamic and integrated control of available position-
ing systems by considering application-level require-
ments in a flexible and extensible way.

3 The JSR-179 Location API

In the last years, the industrial research activity has
primarily focused on the development of standards to
address the wide heterogeneity of available positioning
systems. The JSR-179 API [14], also known as Loca-
tion API for J2ME, represents the most notable result
of that standardization effort for Java-based LBSs on
mobile phones. JSR-179, inspired by the usual and
widespread interface of the GPS solution, provides a
standardized API to perform coarse-grained integration
and control of positioning systems (location providers
according to the JSR-179 terminology). To better un-
derstand how JSR-179 provides location information,
here we rapidly report its main characteristics and of-
fered functions.

The LocationProvider class is the JSR-179 API
entry point. Applications invoke the getInstance()
method of LocationProvider to retrieve an actual lo-
cation provider implementation among the currently
available ones. The actual location provider is the se-
lected positioning system that returns location informa-

tion to applications.
When invoking the getInstance() method, an ap-

plication optionally specifies particular criteria (Crite-
ria class) that the actual location provider must satisfy.
If several actual location providers are compatible with
the passed criteria, LocationProvider selects the one
which best fits the requirements according to a pre-
determined strategy. Criteria can specify that the ac-
tual location provider must supply speed and altitude,
and/or that the provided horizontal/vertical coordinates
have to respect a minimum accuracy level. Moreover, it
is possible to specify the desired power consumption
(low, medium, or high). Let us notice that the passed
criteria are exploited only at the moment of the selec-
tion of the actual location provider; they are completed
neglected at provisioning time.

Figure 1 depicts an example of application that re-
quests an actual location provider implementation, by
specifying the desired selection criteria. The result is
the activation of the positioning system best fitting the
criteria among the currently available ones (Location
Provider 2 in the figure). Location Provider 2 is associ-
ated with the application until a new explicit request of
location provider selection to the JSR-179 API.

location info
(LocProv2)

Standard JSR-179
Location API

Criteria

Location
Provider 1

Location
Provider 2

Location
Provider N...

location info
(LocProv2)

Standard JSR-179
Location API

Criteria

Location
Provider 1

Location
Provider 2

Location
Provider N...

Figure 1. The JSR-179 API for criteria-based selection

of an actual LocationProvider implementation.

Location providers return location data in three differ-
ent ways:
• on demand, via the getLastKnownLocation() and

getLocation(timeout) methods, which respec-
tively provide cached and just updated location in-
formation, the latter actively requesting for new
data to the underlying positioning system;

• periodically at fixed time intervals, via the method
setLocationListener(listener, interval,

timeout, maxAge). Only one periodical listener at
a time can be registered with each location pro-
vider instance;

• in an event-driven fashion via the
addProximityListener(listener, coordi-

nates, proximityRadius) method. The only trig-
gering event that can be exploited in JSR-179 is
the proximity of the located client to specified co-

ordinates. Several proximity listeners may con-
temporarily indicate multiple coordinates close to
which a location provider triggers the events.

The provided location information specifies qualified
coordinates (physical location), address info (symbolic
location), or both. Moreover, it may include additional
data such as speed, timestamp, and the technology of
the actual location provider.

JSR-179 is a good example of standardization effort
in the industrial research area to leverage the adoption
of positioning systems and LBSs. Its architecture and
API have the goal of representing a standardized model
for every developer willing to provide new positioning
systems or LBSs. However, we claim that JSR-179
does not provide a sufficiently expressive API to per-
form efficient integration and control of positioning
systems. In particular, it supports neither the dynamic
management of multiple location providers nor the
provisioning of low-level system-specific details to the
application level as required by many LBSs.

First of all, it does not support the dynamic and
flexible management of dynamically retrieved location
provider implementations. On the one hand, JSR-179
only permits to exploit one location provider at a time
among the ones currently available at a client, even if
several of them satisfy the specified criteria. On the
other hand, according to the JSR-179 specification,
LBSs have the full duty of monitoring the performance
of the selected location provider and of taking suitable
management operations consequently, e.g., requesting
for a new location provider selection in response to ac-
curacy degradation. In other words, once JSR-179 has
selected a location provider, the specified criteria are
no more considered even if the capabilities of the ac-
tual location provider do not satisfy the LBS require-
ments any more or if a new more suitable location pro-
vider becomes available at the client.

In addition, the JSR-179 API assumes that the char-
acteristics of location providers are statically identified
and do not considerably change over time: that is par-
tially true for static features, e.g., ability to provide
speed/altitude or not, but not applicable to dynamic
characteristics such as horizontal/vertical accuracy. For
example, GPS accuracy may abruptly decrease when
the user moves from an outdoor to an indoor environ-
ment. Moreover, JSR-179 has dynamicity and flexibil-
ity limitations also due to its impossibility to accom-
modate new positioning systems newly introduced at
service provisioning time. The actual location provider
implementation is determined only once at the moment
of location provider instantiation; JSR-179 does not
consider any context change after that instantiation, un-
til a new LBS request for actual location provider de-
termination. Another limitation of JSR-179 is that se-
lection criteria are limited to few and statically pre-

determined elements. It is possible to specify as re-
quirements only the features defined in the criteria
class before service provisioning. Moreover, also the
event handling functions of JSR-179 exhibit non-
negligible limitations, as already pointed out: only one
type of triggering event is supported, the one related to
proximity to a fixed location.

But, according to our opinion, corroborated by our
experience in developing and prototyping LBSs, JSR-
179 exhibits the most relevant lack in its limited capa-
bilities to propagate the visibility of low-level details of
underlying location providers when needed. In fact, the
only state information available about location provid-
ers is their availability status (available, temporarily
unavailable, or out of order). This full and uniform
transparency of low-level positioning system features
does not always fit the requirements of application-
level visibility typical of LBSs. For example, a LBS
would get and control peculiar positioning system
functions, such as to get and possibly change the loca-
tion provider privacy level.

The academic research on the extension of JSR-179
capabilities to achieve greater flexibility and dynamic-
ity is still at its very beginning, also due to the novelty
of the standardization effort. [15] proposes the integra-
tion and management of multiple positioning systems
via a JSR-179 fully compliant API. It tries to increase
dynamicity by transparently switching among available
positioning systems: in particular, it alternatively ex-
ploits either GPS/Bluetooth-based positioning depen-
dently on client outdoor/indoor location. However, the
proposal does support neither the dynamic change of
positioning selection criteria (only system availability),
nor the integration with new positioning systems at
provisioning time. Moreover, it does not provide any
function at all to control integrated positioning systems
from the application layer.

4 The PoSIM Middleware

Our goal is to go further than just hiding position-
ing systems integration behind the JSR-179 API. The
objective is to provide a middleware solution that sig-
nificantly extends JSR-179 with new and more power-
ful features to support positioning system integration
and management in a flexible, dynamic, and extensible
way. At the same time, our middleware proposal
should adopt an API similar to the JSR-179 one, at
least when possible, to facilitate its adoption by devel-
opers of both positioning systems and LBSs.

This section describes our Positioning System Inte-
gration and Management (PoSIM) middleware for the
efficient and flexible integrated management of differ-
ent positioning systems. In particular, PoSIM focuses

on three aspects. First of all, it is capable of integrating
positioning systems at service provisioning time in a
plug-in fashion, by exploiting their possibly synergic
capabilities and by actively controlling their features.
Secondly, PoSIM allows positioning systems to flexi-
bly expose their capabilities and location data at run-
time and without requiring any static knowledge of po-
sitioning-specific data/functions. Third, it can perform
location data fusion depending on applicable context,
e.g., application-specific requirements about accuracy
or client requirements about device battery consump-
tion.

Furthermore, PoSIM enables differentiated visibility
levels to flexibly answer all possible application re-
quirements stemming from different LBS deployment
scenarios and application domains. On the one hand,
PoSIM enables LBSs to access and control the whole
set of available location providers in a transparent way
at a high level of abstraction: LBSs can simply specify
the behavior positioning systems must comply with via
declarative policies; PoSIM is in charge of actually and
transparently enforcing the selected policies. On the
other hand, PoSIM allows LBSs to have full visibility
of the characteristics of the underlying positioning sys-
tems via a PoSIM-mediated simplified access to them.
In this case, PoSIM provides LBSs with a uniformed
API, independently of the specific positioning solution,
that permits to access/configure heterogeneous location
providers homogeneously and aggregately. We call
translucent the original PoSIM approach that supports
LBSs with both transparent and visible integrated ac-
cess to available positioning solutions.

Thanks to the translucent approach, two different
classes of PoSIM-based LBSs can properly manage
heterogeneous positioning systems: simple LBSs and
smart ones. Via PoSIM, simple LBSs can interact
transparently with location providers perceived as a
single service exposing a JSR-179-like API. They can
control positioning systems easily, just specifying the
required behaviors via declarative policies or simply
selecting the policies to enforce among pre-defined
ones, e.g., by privileging low energy consumption or
high location accuracy. Instead, smart LBSs, i.e., appli-
cations willing to have direct visibility and manage lo-
cation information or peculiar capabilities of position-
ing systems, interact in a middleware-mediated aware
fashion: they can have a PoSIM-based uniform access
to all functions of underlying positioning solutions,
even the system-specific ones, e.g., the possibility to
limit Ekahau accuracy to reduce network overhead.

Let us stress that we distinguish between positioning
features and infos. Features describe positioning sys-
tem characteristics and capabilities, possibly with

settable values and useful for positioning system con-
trol, e.g., power consumption or ensured privacy level.
Infos are location-related information, e.g., actual posi-
tioning data and their accuracy, not modifiable from
outside the positioning systems. Infos are the only data
provided to simple LBS.

In the following, the section briefly presents all the
PoSIM components, in order to point out how the
translucent approach is implemented to provide a more
dynamic, extensible and powerful version of the JSR-
179 API. For further implementation details about
PoSIM components, please refer to http://lia.
deis.unibo.it/Research/PoSIM.

To interact with positioning systems in a transpar-
ent manner, simple LBSs can exploit the Policy Man-
ager (PM) and Data Manager (DM) components de-
picted in Figure 2. Via those APIs, simple LBSs can
ask for pre-defined behaviors implemented as declara-
tive policies, without any knowledge of how actually
the integrated positioning systems are exploited. For
example, the POWER_USAGE_LOW policy turns off all the
positioning systems with high energy consumption by
preserving application-specific requirements about pre-
cision and accuracy. PM is in charge of maintaining
pre-defined policies and enforcing active ones; it is im-
plemented on top of the Java-based rule engine Jess
[16].

Via the DM component, PoSIM provides integrated
positioning system info in an aggregated way as a sin-
gle XML document, where tags are exploited to specify
the content semantics, thus permitting a significantly
higher level of dynamicity.

In addition, PoSIM can offer location data for any
integrated and currently active positioning system. Lo-
cation data access retrieval is possible either on re-
quest, or specifying a time period, or via event notifica-
tion. LBSs can easily specify the conditions to trigger
XML document delivery. For instance, the pre-defined
atLocation condition triggers location data notifica-
tion only when the current physical location of the user
is close to a known location, similarly to the only pos-
sibility available in JSR-179 via the proximity listener.
In addition, LBSs may request DM to work as a filter,
e.g., the pre-defined highAccuracy data filter discards
location information with accuracy below a given
threshold. Note that the proper exploitation of filtering
rules permits to reduce the network overhead due to
non-relevant changes of location data. PoSIM imple-
ments triggering events and filtering rules as Java
classes, which can be easily sub-classed to specify spe-
cialized triggers and filters.

Positioning
System

PSW

Positioning
System

PSW

Positioning
System

PSW

Data
Manager A

pplications

Policy
Manager

P
oS

IM
 A

P
I

transparent
(JSR

-179 like) visible

P
ositioning S

ystem
A

ccess Facility

Positioning
System

PSW
Positioning

System

PSW
Positioning

System

PSW

Positioning
System

PSW
Positioning

System

PSW
Positioning

System

PSW

Positioning
System

PSW
Positioning

System

PSW
Positioning

System

PSW

Data
Manager A

pplications

Policy
Manager

Policy
Manager

P
oS

IM
 A

P
I

transparent
(JSR

-179 like) visible
P

oS
IM

 A
P

I
transparent

(JSR
-179 like) visible

P
ositioning S

ystem
A

ccess Facility

Figure 2 The PoSIM architecture (white arrows represent data flows, grey arrows control flows).

Let us stress that expert users, such as PoSIM ad-

ministrators, can develop and deploy new policies, i.e.,
selection/fusion criteria, triggering events, and filtering
rules. The PoSIM behavior can thus be specialized and
extended with impact on neither its implementing code
nor the application logic code. That permits to easily
extend and personalize the PoSIM middleware. For in-
stance, it is possible to dynamically extend PoSIM ca-
pabilities by introducing the atChanges condition that
triggers location notification only when current and
previous physical location differ more than a specified
distance. Anyway, simple LBSs and novel developers
can also work, simply and rapidly, by selecting among
the existing set of most common policies, events, and
filters.

Smart LBSs and PM/DM can directly control posi-
tioning systems by exploiting the lower level API of
the Positioning System Access Facility (PSAF). PSAF
supports API to dynamically handle the inser-
tion/removal of positioning systems and to re-
trieve/control data/features of all the currently available
positioning systems. The only requirement is that posi-
tioning systems provide their data/features via a speci-
fied interface; that interface is the result of the wrap-
ping of another PoSIM middleware component, i.e., the
Positioning System Wrapper (PSW). PSAF exploits
Java introspection to dynamically determine and access
the set of data/features actually implemented by the
underlying positioning solutions currently available in
its deployment environment.

5 Comparing PoSIM and JSR-179 API

This section aims at pointing out and discussing the
main differences between the PoSIM API and the JSR-

179 one. As depicted in Figure 2, PoSIM offers two
levels of visibility to LBS developers: a transparent
API, which is similar to the JSR-179 one, and a visible
API, which extends traditional JSR-179 by providing
the capability to directly interact with integrated posi-
tioning systems.

The transparent part of the PoSIM API, provided by
PM and DM, is similar to the JSR-179 one. However,
since PoSIM offers extended and richer integration
functions, there are necessarily a few API differences
also in the transparent part.

Delving into finer details, PM supplies many capa-
bilities that JSR-179 does not provide. As already de-
picted, the JSR-179 API only exploits the location pro-
vider which best fits the criteria specified once at re-
quest time. On the contrary, PoSIM permits to specify
and modify criteria at service provisioning time. In
fact, PM accepts declarative criteria similarly to JSR-
179, but it actively and dynamically controls position-
ing system behaviors instead of simply selecting the
one which best fulfills the specified requirements. Fur-
thermore, since PoSIM criteria are implemented as Jess
rules, it is possible to create new criteria and provide
them at runtime, without either recompiling or restart-
ing the system.

Also DM exposes many capabilities that the stan-
dard JSR-179 API cannot provide. First of all, since
PoSIM can exploit several positioning systems at a
time, it can also perform location fusion, for instance to
possibly increase location information accuracy. Then,
LBSs may take advantage of every available position-
ing system suitable to their requirements. For this rea-
son, PoSIM provides location information as an XML
document, not as a single Location class like JSR-179
does.

Both JSR-179 and PoSIM may perform data deliv-

ery in a event-driven fashion. However, while the JSR-
179 API only supports statically determined triggering
events, i.e., proximity-based event notification, PoSIM
also provides the capability to exploit new events,
specified and deployed at service provisioning time,
thus relevantly increasing system flexibility and exten-
sibility. For instance, it is possible to specify the
aforementioned atLocation and atChanges triggering
events, the former similar to the only supported JSR-
179 proximity event, the latter not available through
the standard JSR-179 API.

Capabilities provided by PSAF are completely ab-
sent from JSR-179. First of all, PSAF offers the possi-
bility to integrate new positioning systems at service
provisioning time. Newly integrated positioning sys-

tems can be immediately exploited by PoSIM. Active
criteria will be dynamically applied to new positioning
systems and their location information automatically
inserted in the provided XML document. On the con-
trary, to exploit a new positioning system through JSR-
179, LBSs must explicitly request for another location
provider instance, by actively providing their specific
selection criteria again.

Finally, the JSR-179 API tends to hide application
developers from low-level positioning system details.
On the contrary, if necessary, the PoSIM API provides
full visibility of and fine-grained control over the inte-
grated positioning systems, by permitting the access to
both standard and system-specific features/info.

Table 1 Relationships between the primary functions of JSR-179 and PoSIM API.

API category JSR-179 API PoSIM API PoSIM
Component Comparison

n.a. getInstance(criteria) getInstance() PoSIM API extended
getLastKnownLocation() onDemand(listener) DM equivalent
addProximityListener(...) addEvent(event,listener) DM extended
setLocationListener(...) periodical(interval,listener) DM equivalent

info
delivery

n.a. addFilter(filter,listener) DM additional
transparent

control getInstance(criteria) activateCriteria(criteria) PM extended
n.a. insertPosSys(newPosSys) PSAF additional

visible control getState()
getFeatures(posSys)

getFeature(posSys, aFeature)
setFeature(posSys, aFeature)

PSAF extended

Table 1 reports and compares the main functions for

info delivery or positioning system control available in
the JSR-179 and PoSIM API, categorized as either
transparent or visible. For each JSR-179 API method,
the table reports the corresponding PoSIM one, by un-
derlining which PoSIM component provides it and by
pointing out possible differences between JSR-179 and
PoSIM implementation. In particular, a PoSIM method
is classified as i) equivalent to the correspondent JSR-
179 one if and only if they offer exactly the same capa-
bility, ii) extended if providing more expressive and
powerful features, and iii) additional if introducing
completely new behaviors not available in JSR-179.

Most PoSIM methods offer the capability to control
and interact with integrated positioning systems in a
transparent manner. By considering these first trans-
parent functions and going into finer details:
• both PoSIM and JSR-179 offer a getInstance()

method, but with significantly different expres-
siveness. While JSR-179 selects only one location
provider among the currently available ones
dependently on given criteria, PoSIM just returns a
middleware-mediated interface instance. Let us
stress that the PoSIM getInstance() method pro-

vides LBS developers with the capability to get
multiple simultaneous location data from any inte-
grated positioning system, while JSR-179 allows
the access to only the actual location provider.

• PoSIM onDemand(...)and JSR-179 getLastLoca-
tion() methods behave similarly. Both immedi-
ately provide the last known location information,
even if PoSIM returns the data obtained by possi-
bly fusing information from every integrated posi-
tioning system, while JSR-179 the data from the
previously selected actual location provider.

• addEvent(...) relevantly extends the expressive
power of the correspondent addProximityLis-
tener(...). In fact, the former provides the capa-
bility to specify which kinds of event trigger loca-
tion information delivery, while the latter can ex-
ploit only proximity events.

• setLocationListener(...) and periodi-

cal(...) are almost equivalent. Both periodically
provide location information at a given time inter-
val. However, while the JSR-179 API specifies
that only one location listener can be registered at
a time, periodical(...) permits to register sev-
eral listeners, also by possibly serving multiple ap-

plications with the same location data at a time.
• The PoSIM addFilter(...) method permits to

define new filters for location information (possi-
bly after fusion). That capability is not supported
at all in JSR-179 API.

• The PoSIM activateCriteria(...) could seem
similar to JSR-179 getInstance(...) since both
permit to specify selection criteria. However, they
are greatly different since the former activates a
management policy exploited to control integrated
positioning systems at service provisioning time,
while the latter simply selects the actual location
provider at invocation time.

In addition to the above transparent functions, the
following methods provide LBS developers with full
but middleware-mediated visibility of the integrated
positioning systems.
• insertPosSys(...) is available only in PoSIM.

JSR-179 does not provide any method to add new
positioning systems at service provisioning time.

• The JSR-179 getState() simply provides coarse-
grained information about the availability of the
actual location provider. PoSIM extends this func-
tion by providing a method to get all the available
features of a given positioning system, getFea-
ture(...), and a method to configure their val-
ues, setFeature(...), if allowed by the underly-
ing positioning systems. Features are described in
a portable and interoperable way according to the
representation described at the PoSIM Web site
lia.deis.unibo.it/Research/PoSIM.

Let us rapidly observe that the PSAF getInfo(...)
method is equivalent to the JSR-179 getLocation()
one to get just updated info. The only difference is that
the former provides information in a visible manner,
the latter transparently.

6 Conclusions

The widespread diffusion of several and heteroge-

neous positioning systems pushes towards the adoption
of widely accepted standard to provide location infor-
mation. The already proposed JSR-179 tries to ad-
dresses issues raised from positioning system hetero-
geneity, by hiding positioning systems behind a well
standardized API. However, it does not address the
crucial issue of dynamically and flexibly integrating,
with full access to fine-grained control features, several
positioning systems at a time. The paper proposes the
original translucent PoSIM approach: our middleware
permits to control integrated positioning systems both
in transparent and non-transparent way, respectively
fitting simple and smart LBS requirements. In particu-
lar, the paper focuses on similarities and differences

between the PoSIM API and the standard JSR-179 one,
by pointing out how PoSIM relevantly extends JSR-
179 capabilities, while mimicking its API to facilitate
and accelerate adoption.

The encouraging results already obtained in the
PoSIM project are stimulating further related research
activities. We are extending the middleware openness
by including an additional wrapper for our original
Bluetooth-based positioning system (at the moment the
PoSIM prototype includes wrappers for GPS and Eka-
hau). Moreover, we are extending the set of pre-defined
set of criteria, filter rules, and triggering events, to fit
all the personalization requirements of most common
LBSs by simply requesting developers to select the in-
tegration/control strategies to apply.

Acknowledgements
Work supported by the MIUR FIRB WEB-MINDS and
the CNR Strategic IS-MANET Projects.

References
[1] G. Chen, D. Kotz, "A Survey of Context-Aware Mo-

bile Computing Research", Dartmouth College Tech-
nical Report TR2000-381, http://www.cs.dartmouth.
edu/reports/, 2000.

[2] Ekahau, http://www.ekahau.com
[3] J. Hightower, G. Borriello, “Location systems for

ubiquitous computing”, Computer, Vol. 34, No. 8,
Aug. 2001, pp. 57-66.

[4] J. Hightower, G. Borriello, "Location Sensing Tech-
niques", UW CSE 01-07-01, University of Washing-
ton, Department of Computer Science and Engineer-
ing, Seattle, WA, July 2001.

[5] J. Nord, K. Synnes, P. Parnes, “An Architecture for
Location Aware Applications“, 35th Hawaii Int. Conf.
on System Sciences, Hawaii, USA, Jan. 2002.

[6] Y. Hosokawa, N. Takahashi, H. Taga, “A System Ar-
chitecture for Seamless Navigation”, Int. Conf. on Dis-
tributed Computing Systems Workshops (MDC), To-
kyo, Japan, Mar. 2004.

[7] M. Spanoudakis, A. Batistakis, I. Priggouris, A. Ioan-
nidis, S. Hadjiefthymiades, L. Merakos, “Extensible
Platform for Location Based Services Provisioning”,
Int. Conf. Web Information Systems Engineering
Workshops, Rome, Italy, Dec. 2003.

[8] G. Coulouris, H. Naguib, K. Samugalingam,
“FLAME: An Open Framework for Location-Aware
Systems”, Int. Conf. on Ubiquitous Computing, Gote-
borg, Sweden, Sept. Oct. 2002.

[9] Y. Chen, X.Y. Chen, F.Y. Rao, X.L. Yu, Y. Li, D. Liu,
“LORE: An infrastructure to support location-aware
services”, IBM Journal of Research & Development,
Vol. 48, No 5/6, Sept./Nov. 2004.

[10] A. Ranganathan, J. Al-Muhtadi, S. Chetan, R. Camp-
bell, M. D. Mickunas, “MiddleWhere: A Middleware
for Location Awareness in Ubiquitous Computing Ap-

plications”, ACM/IFIP/USENIX Int. Conf. on Mid-
dleware, Oct. 2004, Toronto, Ontario, Canada.

[11] J. Agre, D. Akenyemi, L. Ji, R. Masuoka, P. Thakkar,
"A Layered Architecture for Location-based Services
in Wireless Ad Hoc Networks", IEEE Aerospace Con-
f., Big Sky, Montana, USA, Mar. 2002.

[12] J. Hightower, B. Brumitt, G. Borriello, “The Location
Stack: A Layered Model for Location in Ubiquitous
Computing”, IEEE Work. on Mobile Computing Sys-
tems and Applications, Callicoon, NY, USA, Jun.
2002.

[13] D. Graumann, W. Lara, J. Hightower, G. Borriello,

“Real-world Implementation of the Location Stack:
The Universal Location Framework”, IEEE Work. on
Mobile Computing Systems and Applications, Mon-
terey, CA, USA, Oct. 2003.

[14] JSR-179, http://www.jcp.org/aboutJava/community
process/final/jsr179/index.html

[15] C. di Flora, M. Ficco, S. Russo, V. Vecchio, “Indoor
and outdoor location based services for portable wire-
less devices”, Int. Conf. on Distributed Computing
Systems Workshops (SIUMI), Columbus, Ohio, USA,
Jun. 2005.

[16] Jess, http://herzberg.ca.sandia.gov/jess/

