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Abstract 
 
The widespread availability of devices with multiple 
wireless interfaces and the abundance of heterogene-
ous positioning techniques open new market potentials 
for Location Based Services (LBSs), even if complicat-
ing their development. The paper claims the need for 
novel middleware supports capable of managing dy-
namically retrieved client-side positioning systems in a 
synergic way and depending on context, i.e., LBS re-
quirements, user preferences, device characteristics, 
and overall system state. To pursue this objective, we 
have designed and implemented PoSIM, a context-
aware middleware for the synergic exploitation and 
control of heterogeneous positioning systems that faci-
litates the development and portability of LBSs. PoSIM 
is translucent, i.e., it can provide LBS developers with 
differentiated visibility of data characteristics and con-
trol possibilities of available positioning solutions, 
thus dynamically adapting to application-specific dep-
loyment requirements and enabling cross-layer man-
agement decisions. The paper describes the translu-
cent PoSIM architecture, some primary implementa-
tion insights about our PoSIM prototype, and how to 
practically use our middleware to simplify LBS devel-
opment via either the exploitation of pre-defined or the 
ad-hoc instantiation of events, filters, and policies. 
 
1. Introduction 
 
The growing presence of powerful mobile nodes with 
relatively high wireless bandwidth, e.g., via UMTS, 
IEEE 802.11, and Bluetooth 2.0 connectivity, is going 
to leverage the widespread availability of Location 
Based Services (LBSs). LBSs can provide service con-

tents depending on the current position of served users, 
on the mutual location of clients and accessed server 
resources, and on the mutual position of users in a 
group [1]. To enable LBSs, the availability of low-cost 
and effective positioning systems is crucial. Several 
research activities have deeply worked on evaluating 
positioning mechanisms, techniques and systems: some 
solutions have been specifically designed for determin-
ing location, e.g., the well known Global Positioning 
System (GPS) [2]; other proposals try to estimate loca-
lization by monitoring characteristics of general-
purpose communication channels, such as the IEEE 
802.11-based Ekahau [3]. Detailed surveys about posi-
tioning solutions and systems can be found in [4, 5]. 

The point motivating our research activity is that 
the relevant work recently accomplished on position-
ing techniques has produced a wide set of currently 
available solutions that greatly differ on capabilities 
and provided facilities. For instance, they exhibit dif-
ferences on: 
• model used to represent location information. The 

representation model could be either physical (lo-
cation information is provided as a longitude, lati-
tude, and altitude triple), or symbolic (e.g., room 
X in building Y), or both; 

• deployment environment. For instance, GPS can 
properly work outdoor, while another positioning 
system, such as Ekahau, may be more suitable for 
indoor environments; 

• accuracy and precision of the positioning informa-
tion. Accuracy is defined as the location data error 
range (10 meters for GPS), while precision is the 
error range confidence (95% for GPS); 

• power consumption. The energy required for posi-
tioning typically depends on location update fre-
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quency; 
• user privacy, e.g., high for GPS because it deter-

mines the localization information in a completely 
client-side way with no explicit server-side visibil-
ity [2], low and deployment-dependent for Ekahau 
because a centralized Ekahau server positions 
clients by monitoring the received signal strength 
of their wireless interfaces [3]; 

• additional system-specific attributes, such as, for 
instance, the possibility to provide positioning da-
ta as a probability distribution function. 

That heterogeneity of current positioning solutions, 
while being evidence of the relevant academ-
ic/industrial interest in the field, significantly compli-
cates the development and deployment of LBSs. LBS 
developers currently have to know the details of the 
positioning system that will be available when deploy-
ing their services; LBS implementation is typically not 
portable and depends on the characteristics of the tar-
get positioning system (sometimes on the specific im-
plementation of that positioning solution). Therefore, 
also due to the fact that current wireless clients tend to 
simultaneously host several wireless technologies use-
ful for positioning (e.g., terminals with Wi-Fi and/or 
Bluetooth connectivity and/or equipped with GPS), 
there is a recent and emerging research trend in sup-
port infrastructures for uniformly integrating heteroge-
neous positioning techniques. The ultimate goal is easy 
LBS portability over different positioning solutions 
dynamically retrieved at LBS provisioning time. 

The paper claims that also the above kind of sup-
port infrastructures is insufficient and that there is the 
need for novel context-aware middleware solutions 
capable of propagating differentiated levels of visibili-
ty up to the application level and of synergically man-
aging heterogeneous positioning systems depending on 
LBS requirements, user preferences, device characte-
ristics, and overall system state. To make practical ex-
amples of usage scenarios, such a middleware should 
seamlessly and transparently switch an LBS on its top 
from a positioning system to another depending on 
their availability, e.g., GPS outdoor and Ekahau in-
door. The middleware should also associate, at any 
time, any LBS with the positioning technique that best 
fits the execution context, possibly by leaving that 
choice even to the LBS application logic, e.g., the po-
sitioning system with lower power consumption or the 
one with greater precision/update frequency. In addi-
tion, when several positioning systems can concurrent-
ly work, the middleware should either perform posi-
tioning data merging/fusion, e.g., according to context-
aware requirements about robustness and confidence, 
or propagate a suitable view of all the location data 
produced by simultaneously working positioning sys-

tems to enable application-level choices on which posi-
tioning information to exploit. Let us note that proper 
management decisions could depend on synergic con-
siderations deriving from the whole set of both running 
LBSs and positioning systems available at a client. For 
instance, if a positioning system is switched on be-
cause of LBS1 requirements, it makes sense to exploit 
that positioning technique also for LBS2, even if LBS2 
accuracy requirements are satisfied also by other posi-
tioning systems with lower energy consumption.  

In other words, to take informed context-aware 
management decisions, the middleware should have 
easy access to low-level characteristics and control 
features of positioning systems. That visibility should 
sometimes be opened, in a highly portable and extensi-
ble way, also to advanced LBSs, which could take ap-
plication-level service management choices depending 
on the awareness of low-level positioning details. We 
call translucent the original approach of middlewares 
that can support LBSs with both transparent and visi-
ble access to dynamically available positioning solu-
tions in an integrated way. 

By taking into account the above original guidelines 
of cross-layering, translucent, integrated control de-
pending on execution context, we have designed and 
implemented the Positioning System Integration and 
Management (PoSIM) middleware. First of all, PoSIM 
is translucent in the sense that it enables differentiated 
visibility levels to flexibly answer all possible applica-
tion requirements stemming from different LBS dep-
loyment scenarios. On the one hand, PoSIM enables 
LBSs to access and control positioning information at 
a high level of abstraction via the usage of pre-defined 
management policies and/or their refinement. On the 
other hand, PoSIM also allows LBSs to have full visi-
bility of the characteristics of the underlying position-
ing systems via a PoSIM-mediated uniform access to 
them. In addition, application-level and system-level 
data are exploited in a cross-layer way to perform the 
most suitable management decisions on both LBSs and 
positioning systems. 

Secondly, PoSIM enables the dynamic and inte-
grated control of positioning systems by flexibly ex-
posing their heterogeneous control/configuration fea-
tures and location information at runtime, with no need 
of static knowledge about positioning-specific charac-
teristics. In particular, PoSIM adopts declarative repre-
sentations based on rules, policies, and ontologies, thus 
permitting to self-describe positioning system informa-
tion, related metadata, and more generally execution 
context. In this way, PoSIM allows the access to hete-
rogeneous positioning systems in a uniform and sim-
plified manner, for both choosing (possibly merged) 
location information and configuring positioning sys-
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tem characteristics depending on applicable context. 
The PoSIM prototype is freely available for download 
at the PoSIM Web site [6] for educational and research 
purposes. 

The rest of the paper is structured as follows. First, 
we present how the PoSIM proposal originally posi-
tions with regards to the main literature in the field. 
Then, Section 3 points out the primary design guide-
lines of the translucent and context-aware PoSIM mid-
dleware, while Section 4 details the PoSIM architec-
ture and its primary components. Section 5 shows how 
we have integrated four heterogeneous positioning 
systems via our PoSIM prototype, also by practically 
describing a testbed deployment scenario where an 
example of advertising LBS is implemented. Conclu-
sive remarks and directions of on-going research end 
the paper. 
 
2. Related Work 

 
Several research activities have recently started to ad-
dress the emerging field of the integration of heteroge-
neous positioning systems. The main goal is to put 
together and suitably merge location information from 
different sources, by providing a uniform interface that 
LBSs can easily exploit independently of the position-
ing solutions available at runtime in their deployment 
environments. However, most researches only concen-
trate on the issues of uniform access and location fu-
sion, without giving possibilities neither for synergic 
management of heterogeneous positioning systems nor 
for exploitation of context awareness to guide man-
agement decisions, which we claim as crucial aspects 
for advanced LBSs.  

In this section, we first present research efforts on 
integration middlewares organized depending on the 
level of visibility propagated to LBSs, from transparent 
solutions that hide any low-level positioning system 
detail, to contributions with partial visibility and con-
trol for LBSs built on their top. The second part of the 
section, instead, focuses on JSR-179 that represents the 
most notable standardization effort for Java-based 
LBSs on mobile phones [7]. JSR-179 provides a stan-
dardized API to perform coarse-grained integration 
and some limited forms of control of underlying posi-
tioning systems.  
 
2.1. Positioning Integration Middlewares 
 
As already stated, a main property to differentiate posi-
tioning integration solutions in the literature is the de-
gree of visibility propagated up to the LBS application 
level. Contributions in the field span from completely 

transparent approaches hiding LBSs from the complex-
ity of direct interaction with positioning systems but 
not providing any control capability, to integration 
solutions allowing limited controllability but compli-
cating the development of LBSs, which have to stati-
cally embed details about the exploited positioning 
techniques directly in their application logic.  

In order of increasing level of visibility, the Alipes 
architecture focuses on the integration of heterogene-
ous positioning systems through appropriate wrappers 
to provide LBSs with a uniform API [8]. The goal is to 
force the exploitation of the available positioning sys-
tem that best fits LBS accuracy requirements, by pos-
sibly performing location data fusion in order to 
achieve the required robustness of positioning data. 
Moreover, Alipes provides user-controlled privacy, by 
requesting explicit user permission before disclosing 
location information. The integration system proposed 
in [9] has the primary goal of seamless navigation via 
uniform map-based interfaces, regardless the actually 
exploited positioning system. Its main solution guide-
line is to exploit middleware components, called me-
diators-wrappers, to abstract from specific peculiarities 
of used positioning systems and maps. In addition, [9] 
permits to dynamically switch exploited positioning 
system in a completely transparent way. The integrated 
Platform for Location-based services (PoLoS) offers 
an API to facilitate the development of new LBSs [10]. 
It also supports the introduction of new positioning 
systems through a plug-in architecture; the middleware 
interacts with positioning systems in a standardized 
way via OSA/Parlay. Similarly, the Framework for 
Location Aware ModElling (FLAME) is a transparent 
integration middleware: it bases its positioning abstrac-
tions on a multi-step architecture for location data fu-
sion, generation of geometric relationships, and event-
based location data disclosure [11]. Finally, the Loca-
tion Operating REference model (LORE) originally 
proposes different abstracting steps to provide high-
level location data, independently from low-level de-
tails: positioning, modeling, fusion, query tracking, 
and intelligent notification [12]; in addition, it ensures 
privacy and security management, by controlling in-
formation disclosure, similarly to Alipes. Positioning 
system integration in LORE is achieved by the Com-
mon Adapter Framework that provides a standard API 
to fetch location information. 

The above middlewares integrate positioning sys-
tems with the primary goal to facilitate LBS develop-
ment. They tend to propose transparent approaches that 
hide LBSs from positioning complexity, but do not 
support any application-specific form of configuration, 
control, and management of positioning techniques. 
The main contribution of those proposals is to offer a 
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framework to quickly prototype and deploy LBSs. 
However, they relevantly limit the capabilities of ad-
vanced LBSs, often interested in performing context-
aware, cross-layer, and portable positioning manage-
ment operations. 

Only a few proposals have recently started to pro-
vide some forms of visibility of low-level fea-
tures/characteristics, by introducing the partial possi-
bility of cross-layer approaches and limited control. 
This demonstrates that it starts to be recognized the 
need for mediated visibility of underlying positioning 
systems, in order to achieve effective, application-
specific, and context-aware management decisions, 
even if risking to complicate and slow down the reali-
zation of LBSs.  

In particular, MiddleWhere provides LBSs with 
some low-level positioning details, such as location 
resolution, confidence, and freshness [13]. Adapter 
components act as device drivers, thus permitting to 
MiddleWhere to communicate with positioning system 
implementations: each adapter makes location descrip-
tions uniform by hiding positioning system implemen-
tation peculiarities. The Location Services Module 
(LSM) supports not only positioning data merging but 
also some forms of control of heterogeneous position-
ing systems [14]. However, it performs merging and 
control in a hard-coded and not flexible manner: to 
achieve visibility of data/control features for a specific 
positioning system, LSM-based LBSs should have full 
static knowledge of positioning characteristics, e.g., 
should know name and syntax of positioning-specific 
control functions. Location Stack represents a state-of-
the-art model of solution for location (and also context 
in general) data fusion [15]. It identifies several mid-
dleware components, deployed in layers, which can 
sequentially (as stages of a pipeline) provide increas-
ing levels of abstraction: Sensors, Measurements, Fu-
sion, Arrangements, Contextual Fusion, Activities, and 
Intentions. However, the first implementation of it, 
namely the Unified Location Framework (ULF), has 
shown that such a highly-layered system is unsuitable 
for properly propagating the visibility of low-level data 
such as accuracy and precision, often useful for appli-
cation-level LBS decisions [16]. In other words, the 
ULF implementation experience points out the need 
for cross-layering to expose low-level details to LBSs 
and to activate direct control of positioning features 
from application logic. 

In conclusion, most proposals in the literature only 
address the positioning integration issue while hiding 
low-level details depending on positioning technique 
and system implementation. MiddleWhere, LSM, and 
ULF are the only ones that offer partial visibility of 
positioning data characteristics and control features, 

but in a statically pre-determined way.  
 

2.2. The JSR-179 Location API for J2ME 
 
In the last years, the industrial research activity has 
primarily focused on the development of standards to 
address the wide heterogeneity of available positioning 
systems. The JSR-179 API, also known as Location 
API for J2ME, represents the most notable result of 
that standardization effort for Java-based LBSs on mo-
bile phones [7]. JSR-179, inspired by the widespread 
interface of the GPS positioning solution, provides a 
standardized API to perform coarse-grained integration 
and control of positioning systems (location providers 
according to the JSR-179 terminology). To better un-
derstand how JSR-179 works and why it may be lack-
ing for advanced context-aware management of simul-
taneously available positioning systems, here we rapid-
ly report its main characteristics and offered functions. 

To access an available positioning system, LBSs 
built on top of the JSR-179 API have to explicitly re-
quest for the instantiation of a location provider. In this 
request, an LBS may optionally specify selection crite-
ria, i.e., constraints that drive the JSR-179 choice of 
the available positioning system to return. For instance, 
selection criteria may indicate that the location provid-
er must supply speed and altitude data, and/or that the 
provided horizontal/vertical coordinates have to re-
spect a minimum accuracy threshold. In addition, an 
LBS may specify the desired power consumption (low, 
medium, or high). Let us notice that these selection 
criteria are exploited only at location provider instan-
tiation time, when the LBS requests the binding to a 
currently available positioning system for the first 
time; variations in positioning system availability and 
in selection criteria at provisioning time cannot induce 
any automatic modification in location provider selec-
tion. Figure 1 depicts the case of an LBS requesting a 
location provider: the result is the selection (and possi-
bly activation if that implementation was switched off) 
of the available positioning system best fitting the cri-
teria according to the pre-defined and not modifiable 
strategy embedded in JSR-179. Location Provider 2 is 
associated with the LBS permanently until a new ex-
plicit location provider selection request is made. 

The selected location provider returns location data 
to its associated LBS either on demand or via event 
notification. In both cases, there are several limitations 
on expressive power: in on-demand requests, if several 
LBSs are using the same location provider, each of 
them has to separately ask for location data; about noti-
fication of events depending on positioning data, there 
is the possibility only to specify proximity conditions, 
i.e., events are triggered only when the distance be-
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tween the positioned client and fixed coordinates goes 
under a threshold. The provided positioning informa-
tion may be a physical location (qualified coordinates), 
a symbolic one (address info), or both. Moreover, it 
may include additional data such as estimated speed 
and timestamp.  

 
Location info
(from LocProv2)

Standard JSR-179
Location API

Criteria

Location
Provider 1

Location
Provider 2

Location
Provider N...

Location info
(from LocProv2)

Standard JSR-179
Location API
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Location
Provider 1

Location
Provider 2

Location
Provider N...

 
Figure 1. The JSR-179 API for criteria-based location 

provider selection. 
 

Recognizing the limitations of JSR-179, a few academ-
ic research activities are working on the extension of 
JSR-179 capabilities to achieve greater flexibility and 
dynamicity. This extension work is still at its very be-
ginning, also due to the novelty of the JSR-179 stan-
dardization effort. [17] proposes the integration and 
management of multiple positioning systems via a 
JSR-179 compliant API by increasing dynamicity with 
automatic transparent switch between location provid-
ers: it supports the simple case of automatically pass-
ing from GPS to Bluetooth-based positioning depend-
ing on outdoor/indoor location. However, [17] sup-
ports neither the dynamic change of positioning selec-
tion criteria (positioning system availability is the only 
criteria) nor the integration with statically unforeseen 
positioning solutions. Most important, the proposal 
does not include any function to control positioning 
systems from the application layer in an integrated and 
synergic way. 

As better detailed in the following, PoSIM original-
ly extends those approaches by relevantly increasing 
the flexibility and dynamicity of middlewares for inte-
grated management of heterogeneous positioning sys-
tems. To the best of our knowledge, PoSIM is the only 
solution addressing the challenge of providing LBSs 
with translucent visibility of positioning data/control, 
by enabling context-aware management decisions de-
pending on cross-layer considerations at service provi-
sioning time. For an extensive and detailed comparison 
of the differences between JSR-179 and PoSIM API, 
the interested readers can also refer to [18]. 

 

3. PoSIM Objectives and Guidelines of So-
lution  
 
PoSIM has the ultimate goal of providing a highly dy-
namic, flexible, and reconfigurable LBS support capa-
ble of mediating visibility of positioning system cha-
racteristics/data and of managing heterogeneous posi-
tioning systems in a context-dependent way. In fact, on 
the one hand, positioning systems should propagate via 
PoSIM any capability they are able to offer, dynami-
cally retrieved by PoSIM components and made ac-
cessible to the application level in a properly simpli-
fied way. On the other hand, LBSs should be able to 
command the reconfiguration of positioning system 
behaviors in relation to their current requirements, e.g., 
by keeping switched-on only the positioning system 
with minimum energy consumption and satisfying ac-
curacy when the client battery lifetime is under a speci-
fied threshold. However, it is crucial that the visibility 
of low-level details and the synergic control of posi-
tioning systems do not increase too much the complex-
ity of LBS development.  

PoSIM pursues these objectives by following three 
primary design guidelines: i) the provisioning of a 
translucent API favoring cross-layer interactions, ii) 
the exploitation of context to openly describe execut-
ing conditions and system/service/user requirements at 
the proper level of abstraction, and iii) the possibility 
to actively control not only location data merg-
ing/selection but also positioning system behavior. 

First of all, PoSIM provides integrated management 
of heterogeneous positioning systems by adopting a 
translucent approach, intended as the simultaneous 
provisioning to the application layer of both high- and 
low-level API. Thanks to PoSIM, LBSs aiming to inte-
ract with positioning systems in a simplified manner, 
namely simple LBSs, can get a transparent access via 
high-level PoSIM API, thus perceiving the underlying 
available positioning systems as a unique multi-
behavior positioning facility. On the contrary, LBSs 
willing to have direct visibility and to manage peculiar 
information/features of positioning systems, namely 
smart LBSs, can interact in a middleware-mediated but 
fully aware fashion, via low-level PoSIM API.  

The translucent approach also allows LBSs built on 
top of PoSIM to get a uniform and aggregated access 
to all the characteristics of integrated positioning sys-
tems. On the one hand, PoSIM provides LBSs with a 
uniform API independently of the specific positioning 
solution, e.g., to reduce overhead it is possible to limit 
the accuracy of Ekahau-based and BTProximity-based 
positioning in the same way. On the other hand, Po-
SIM permits to access/configure all the available posi-
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tioning systems aggregately, e.g., to gather all the data 
about current accuracy from all activated positioning 
system, with no need to interact with each positioning 
system separately. In this manner, LBSs can achieve a 
uniform aggregated (and thus simplified) access to 
lower layers. Let us note that other different research 
fields use “translucency” to name the flexible combi-
nation of both visibility and transparency: for instance, 
[19] and [20] adopt the translucent term to indicate 
similar hybrid visibility in the area of optical networks. 

About the second solution guideline, PoSIM takes 
full advantage of information provided by LBSs and 
positioning systems both to provide location informa-
tion at the application layer and to manage lower-layer 
characteristics effectively, by adopting a context-aware 
approach. PoSIM provides LBSs with a fully context-
aware but simplified access to location information and 
positioning system control via pre-defined triggering 
events, to specify when information must be delivered, 
filtering rules, to specify which information must be 
selected, merged, and delivered, and declarative poli-
cies, to specify how positioning systems should be-
have. For instance, LBSs can specify their interest in 
receiving location information only when particular 
events occur, e.g., only when the user is close to her 
office, and only the positioning data with specified 
characteristics, e.g., discarding location information 
whose accuracy is below a threshold. Moreover, Po-
SIM-based LBSs can manage positioning system be-
havior in relation to dynamically changing lower-layer 
characteristics, e.g., turning off a positioning system 
only when its accuracy goes under a given threshold 
and it is not currently used by any other LBS. In other 
words, LBSs exploit context-awareness by simply 
de/activating pre-defined events, filters, and policies 
which, in their turn, depend on context information 
about underlying positioning characteristics and LBS 
requirements.  

Delegating to PoSIM any support procedure to 
gather and manage context information greatly simpli-
fies context-aware LBS development, but at the same 
time requires effectively dealing with heterogeneous 
data originated by several different components. For 
this reason, to allow an extremely open execution envi-
ronment, we claim the need for representation formats 
that combine flexibility, openness, and interoperability. 
PoSIM achieves this goal by enabling the integration 
of ontologies to describe the semantic of positioning 
data and control facilities at runtime. PoSIM does not 
assume the mandatory adoption of a particular com-
mon ontology: it dynamically retrieves the ontology to 
be exploited in the deployment environment, thus not 
limiting at all the set of information and capabilities a 
positioning system is able to provide. The only re-

quirement is that the integrated positioning systems 
must be wrapped to offer a generic flexible API, as 
better detailed in Section 4.4. Let us rapidly observe 
that, even if PoSIM has been specifically designed to 
integrate positioning systems, its architecture is also 
suitable to manage any context sources in general: Po-
SIM provides a uniform access, in terms of both visi-
bility and information syntax, to context data and con-
text source control. 

By focusing on the third solution guideline, PoSIM 
not only works to expose the location data uniformly 
to the LBS application level, but originally permits to 
control positioning systems behavior with different 
levels of opportunities. While most state-of-the-art 
integration middlewares limit their efforts in merging 
heterogeneous systems to provide a uniform static in-
terface for location gathering, PoSIM actually puts 
together positioning systems to enable the integrated 
synergic control of their behavior by considering them 
aggregately. For instance, via PoSIM an LBS could 
command to simultaneously lower the power con-
sumption of every positioning system just specifying to 
set the PowerConsumption PoSIM control feature to 
low. In addition, an LBS built on top of PoSIM can 
take into account the available positioning systems in a 
relative way. For example, it is possible to turn on the 
two best positioning systems with regards to power 
consumption, while switching off the other ones. 
About translucency in positioning system control, sim-
ple LBSs only have the burden of specifying desired 
behaviors, by delegating PoSIM for any required ac-
tion. In fact, PoSIM provides a set of pre-defined dec-
larative policies that simple LBSs can only decide to 
de/activate. Note that the opportunity to control posi-
tioning systems via declarative policies greatly facili-
tates LBS development because LBSs leave the burden 
of any required monitoring/control action to the Po-
SIM middleware. Smart LBS, instead, can directly 
control each positioning system features and capabili-
ties in a fully-aware manner, via uniform middleware-
mediated API. In this case, LBSs can access low-level 
PoSIM API to interact with and control each position-
ing system separately, e.g., for the purpose of switch-
ing on/off and configuring a specific component.  
 
4. PoSIM Architecture and Primary Com-

ponents  
 

We have followed the above guidelines of translucent, 
context-aware, and cross-layer control to design and 
develop our PoSIM middleware for the integrated 
management of heterogeneous positioning systems. 
PoSIM has the twofold goal of enabling both the me-
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diated visibility of all the information provided by un-
derlying positioning systems and the mediated control 
of their configurable characteristics for a synergic con-
text-dependent management. In particular, PoSIM pro-
vides the application layer with mediated and facili-
tated access to either low- and high-level API: LBSs 
can interact with underlying positioning systems in 
either a visible or transparent manner, respectively. 
Nevertheless, PoSIM can appear to the application 
level as a middleware offering a single, multi-faceted, 
and flexible API, thus simplifying its usage and poten-
tially leveraging its adoption.  

Figure 2 depicts our PoSIM middleware architec-
ture. To interact transparently with positioning sys-
tems, simple LBSs can exploit the Policy Manager 
(PM) and Data Manager (DM) high-level API to re-
spectively control positioning systems behavior and 
get their location information. To interact in a more 
visible and flexible way, smart LBSs can exploit the 
Positioning System Access Facility (PSAF) low-level 
API to directly access the Positioning System Wrap-
pers (PSWs) for the currently available and integrated 
positioning systems.  

About control (top-down colored arrows) and data 
(bottom-up white arrows) flows in Figure 2, let us an-
ticipate that i) PM is the middleware component de-
voted to control and enables application-level man-
agement capabilities based on context information ga-
thered from PSAF, and ii) DM, instead, plays the role 
of exposing location information according to dynami-
cally configurable differentiated modes. PSAF, in-
stead, can provide LBS with both control capabilities 
and positioning data. Let us stress PM and DM ex-
ploits low-level PoSIM API, i.e., PSAF methods, to 
offer an encapsulated high-level API with more articu-
lated and easy-to-use services at a higher level of ab-
straction.  

PoSIM does not rely on any particular statically 
predefined ontology and on syntactic/semantic conven-
tions on how to represent control capabilities and posi-
tioning data. It only defines a simple model distin-
guishing between positioning system features and in-
fos. Features describe positioning system characteris-
tics and capabilities, possibly with settable values use-
ful for control/configuration, e.g., power consumption 
or ensured privacy level. Infos are not configurable 
location-related data, e.g., positioning information and 
its accuracy. Infos are the only data provided to simple 
LBSs while smart LBSs have visibility of both features 
and infos.  

In the following, this section presents the main de-
sign and implementation guidelines of the PoSIM mid-
dleware. For each PoSIM component, it provides an 
overview of its functions and offered API, some prac-

tical usage examples to show how to take full advan-
tage of its capabilities, and design/implementation in-
sights. 
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Figure 2. The PoSIM architecture (white arrows 

represent data flows, colored arrows are control flows). 
 

4.1. Policy Manager 
 
The Policy Manager (PM) is the PoSIM component 
responsible for enforcing the policies for dynamic con-
trol and management of heterogeneous positioning 
systems. In particular, the PM API allows simple LBSs 
to ask for pre-defined behaviors specified via default 
policies. It is PM to be in charge of autonomously and 
dynamically interacting with positioning systems to 
transparently satisfy LBS requirements. Let us point 
out that PM provides a context-aware control of posi-
tioning systems: it can take into account both applica-
tion-level requirements, e.g., minimum power con-
sumption, and current system state, e.g., by avoiding to 
turn off a positioning system in the case it is the only 
one switched on and there is at least one LBS calling 
for positioning data.  

Via the high-level and transparent PM API, LBSs 
can actively control positioning systems by simply 
specifying the desired behavior with no visibility of 
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any low-level positioning detail. In particular, the PM 
provided methods are: 
• insert(newBehavior)/delete(aBehavior), to 

add/remove a new/existing PoSIM behavior; 
• activate(aBehavior)/deactivate(aBehavior), 

to effectively require the activation of a behavior 
among the already defined ones. 

Behaviors are implemented as declarative policies, i.e., 
set of actions that PM must perform whenever condi-
tions specified in the policy apply. Conditions are rela-
tional expressions related to positioning system in-
fos/features; actions are management operations that 
PM performs over positioning system features. Let us 
observe that PoSIM allows not only to enable/disable a 
given behavior at service provisioning time by 
de/activating declarative policies, but also to introduce 
novel behaviors by adding new policies. In addition, 
any activity related to behavior definition and 
de/activation is independent from the actual implemen-
tation of both PoSIM and positioning system compo-
nents below the PM level. In this manner, on the one 
hand, changes in integrated positioning systems cannot 
affect behaviors; on the other hand, LBSs can actively 
specify the desired control behavior transparently, thus 
facilitating and leveraging their development. 

 
Table 1. PoSIM policy representation. 

policy ::= [salience] name policy_type 
policy_type ::= isolated | ordering 
 
isolated ::= conditions actions 
ordering ::= ord_data bestN bestAct worstAct 
 
bestAct ::= actions 
worstAct ::= actions 
 
conditions ::= cond | cond conditions  
actions ::= action | action actions 
cond ::= data value operator 
action ::= Feature value 
ord_data ::= numeric data 
 
data ::= Info | Feature 
bestN ::= non negative integer 
salience ::= integer 
name ::= string 
value ::= string | integer | double 
operator ::= =|!=|<|>|<=|>=|eq|neq 
 
As Table 1 shows, PoSIM supports the specification 
and activation of two types of policies: isolated and 
ordering policies. Isolated policies separately apply the 
same condition-action rules to each positioning system 
retrieved at runtime in the execution environment. 
Conditions are a set of relational expressions, each 
one described with a data name/value and a relational 
operator. Supported relational operators include =, !=, 
<, >, <=, >=, and ‘eq'/'neq' (i.e., =/!= among strings). 
Actions are a set of operations on modifiable features, 

each one with an associated name and value. Given a 
positioning system, if all conditions are satisfied, the 
policy is triggered, namely fired, and all the features in 
actions are set to the values indicated in the policy, 
i.e., the policy actions are enforced. For instance, a 
PoSIM isolated policy could turn off the positioning 
systems with higher energy consumption if that does 
not endanger application-specific requirements about 
positioning precision and accuracy.  

 
Table 2. The lowPowerConsumption isolated policy. 
name:lowPowerConsumption 
conditions:  
 Feature(name:Power, value:8) op:> 
 Info(name:Accuracy, value:5) op:< 
actions: 
 Feature(name:State, value:off) 

 
Table 2 reports the lowPowerConsumption policy that 
switches off a currently available positioning system if 
its power consumption is greater than 8 and its accura-
cy below 5 (rapid notes about the mapping between 
power/accuracy values in the policy and their actual, 
possibly proprietary, counterparts in the integrated 
positioning systems are in Section 4.4). 

 
Table 3. The onBestAccuracy ordering policy. 

name: onBestAccuracy 
ord_data:  
 Info(name:Accuracy) 
bestN: 
 1 
best actions: 
 Feature(name:State, value:on) 
worst actions: 
 none

 
Ordering policies, instead, can compare available posi-
tioning systems in order to sort them according to a 
desired indicator, e.g., listing positioning systems from 
the best to the worst one in terms of accuracy. In other 
words, in a sense the scope of ordering policies is wid-
er than that of isolated ones, since ordering policies 
tend to intrinsically manage positioning systems ag-
gregately. Ordering policy actions consist of two sets 
of features, best and worst: PM enforces best actions 
for the best bestN positioning systems, while it ex-
ecutes worst actions for the remaining ones. For in-
stance, an ordering policy could request to always turn 
on the positioning system with best accuracy. Table 3 
depicts the onBestAccuracy policy that sorts position-
ing systems in relation to provided accuracy, and turns 
on the one with maximum accuracy. 

In addition to the above examples, we have speci-
fied default policies in PoSIM, ready to be activated by 
simple LBSs. PoSIM already includes the following 
isolated policies of common usage: 
• onlyPhysical/onlySymbolic, which activates 
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only the positioning systems that offer physi-
cal/symbolic location information; 

• highAccuracy(threshold), which switches off all 
positioning systems whose accuracy is below 
threshold; 

• highPrivacy(threshold), which sets the privacy 
level of available positioning systems (at least) to 
the threshold value. 

In addition, PoSIM defines the following ordering pol-
icies of common usage: 
• onlyBestAccuracy(bestN), which activates the 

bestN positioning systems (in terms of accuracy) 
by switching off all the others; 

• onlyBestConsumption(bestN), which keeps ac-
tive only the bestN positioning systems in terms of 
lower consumption. 

Let us notice that isolated policies compare in-
fo/feature values gathered at runtime with thresholds: a 
given isolated policy can be concurrently fired on dif-
ferent positioning systems (its triggering condition 
could be verified for several positioning systems at the 
same time); that should be carefully considered when 
specifying policies to avoid undesired behaviors. For 
instance, the above described lowPowerConsumption 
isolated policy is badly defined for most deployment 
environments because it could turn off all available 
positioning systems, thus making impossible to obtain 
any updated positioning information. This is one of the 
motivations why PoSIM also integrates ordering poli-
cies that provide the additional capability to manage 
positioning systems comparatively. In fact, ordering 
policies can enforce different actions depending on 
positioning system order and do not require specifying 
threshold values, which may be a hard task in many 
real-world deployment scenarios. 

When different policies are simultaneously fired, in 
general there is also the possibility of conflicting ac-
tions. For instance, in the case of lowPowerConsump-
tion and onBestAccuracy firing in the same time 
interval, the former may request switching off every 
positioning system, while the latter would turn on the 
positioning solution with highest accuracy. To help 
avoiding possible conflicts, any PoSIM policy is asso-
ciated with a priority, either provided at development 
time (namely salience) or depending on policy activa-
tion order, e.g., recently activated policies are favored. 
Fired policies are enforced from the most prioritized to 
the least one, as further detailed in the following.  

Let us also note that the definition of conflicting 
rules may not always be erroneous. For instance, con-
sider again the simultaneous firing of lowPowerCon-
sumption and onBestAccuracy, the former with less 
priority than the latter. If any integrated positioning 

system provides limited accuracy and imposes too high 
power consumption, lowPowerConsumption would turn 
off every positioning system. On the contrary, since 
onBestAccuracy has higher priority, certainly at least 
one positioning system will be maintained on, i.e., the 
one with best accuracy. In fact, as better detailed in the 
following, PoSIM recognizes conflicting actions (sets 
of operations working on the same positioning system 
features) and, in the case, only executes actions with 
higher priority. 

Figure 3 depicts the PM architecture. The Policy 
Controller (PC) i) provides the capability to in-
sert/delete and de/activate policies, ii) interacts with 
PSAF to get up-to-date info/feature values needed to 
evaluate the conditions of activated policies,  iii) re-
quests the Policy Engine (PE) to check for policy con-
dition satisfaction and to execute the actions specified 
in fired policies.  
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Figure 3. The architecture of the Policy Manager. 
 

Delving into finer implementation details, the PoSIM 
PE exploits Jess [21], a rule engine based on the Rete 
algorithm [22]. PC automatically transforms new poli-
cies, described as Java classes, in Jess rules and, at 
their activation, provides PE with them. The Jess 
knowledge base includes only the infos and features 
that appear in at least one active policy condition, i.e., 
only infos and features relevant for currently activated 
policies. In that way, PC only retrieves the needed 
monitoring indicators from the underlying positioning 
systems, thus limiting the PoSIM middleware over-
head.  

By default, PE enforces policies by following the 
standard Jess “depth” (age-based) strategy, i.e., if sev-
eral policies are simultaneously fired, PE performs the 
enforcement of the most recently activated one first 
and then fires the remaining ones in activation order. 
In addition, PoSIM administrators can add new poli-
cies by explicitly specifying a salience integer value, 
thus possibly affecting the order of policy enforce-
ment. In particular, when specified, PoSIM policies are 
fired in relation to their salience, from the highest to 
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the lowest: policies with the same salience value are 
fired with the Jess standard strategy (depth first); poli-
cy salience is set to 0 by default.  

Let us observe that the PoSIM goal is not to specifi-
cally provide an original, powerful, and general-
purpose policy management support. PoSIM simply 
exploits a subset of Jess existing capabilities, with the 
purpose of providing LBSs with the capability of dy-
namically adding and/or removing policies, even at 
service provisioning time, in an easy but conveniently 
flexible way. In fact, while in principle it could be 
possible to add in PoSIM whatever policy written in 
the Jess native language, we decided to limit the range 
of valid policies by imposing the mandatory structure 
reported in Table 1. On the one hand, that simplifies 
the work of PoSIM administrators by providing a rigid 
but sufficiently expressive discipline for policy speci-
fication. On the other hand, that limitation reduces the 
risks of erroneous policy specification, by also paving 
the way to effective automatic tools for conflict identi-
fication and analysis. Moreover, Jess policies do not 
apply actions directly; in other words, Jess has no di-
rect access to the PSAF component. When policies are 
fired, requested actions are not performed immediately 
but first ordered according to policy priorities. Then, if 
PoSIM recognizes conflicting actions, it only executes 
the actions related to the policy with highest priority, 
by inhibiting remaining actions. For instance, if both 
policy1 and policy2 are fired and the higher-priority 
policy1 requires to set power consumption to 3 while 
policy2 would set consumption to 5, then PoSIM sets 
power consumption to 3 by not considering policy2 at 
all. Finally, PM does not allow Jess loop rule activa-
tion, i.e., action enforcement does not produce the im-
mediate re-evaluation of the conditions of all activated 
policies in a cyclic way, in order to simplify policy 
management and to limit enforcement costs. 

 
4.2. Data Manager 

 
The Data Manager (DM) is the PoSIM component 
responsible for offering an aggregated view of posi-
tioning information to the application level, thus pro-
viding differentiated context-dependent views of loca-
tion data. In particular, DM aggregately provides Po-
SIM-based LBSs (specifying when and which posi-
tioning information they are interested in via the DM 
API) with the location info produced by the different 
integrated positioning systems and collected together 
in a single XML document. Let us stress that DM pro-
vides context-aware location information: PoSIM re-
turns positioning data by taking into consideration both 
LBS requirements and positioning system information, 
e.g., by comparing the minimum accuracy required by 

an LBS with the accuracy level offered by each posi-
tioning system available. 

In particular, LBSs can ask to be provided with 
the XML location data document in three different 
ways: 
• on demand, exploiting either onDemand() or onDe-

mand(listener) methods, which immediately 
provide the already estimated positioning data 
(last performed estimate). The latter method addi-
tionally applies LBS-specific filters, as better de-
tailed in the following; 

• at regular time intervals, exploiting the periodi-
cal(interval, listener) method, which com-
mands a periodical delivery process to notify the 
listener every interval milliseconds; 

• in an event-driven fashion, exploiting the addE-
vent(event, listener) method, which permits 
to specify a specific event to trigger future deli-
very of the location document. 

LBSs can simply exploit easy-to-use pre-defined con-
ditions to trigger location data delivery. For instance, 
the pre-defined atLocation condition triggers location 
notification only when the current symbolic location 
coincides with what specified as the invocation para-
meter. In addition, the addFilter(filter, listener) 
method provides a simple way to filter positioning 
data: for instance, the pre-defined highAccuracy filter 
automatically discards location information whose 
accuracy is below a given threshold. In addition, the 
proper exploitation of filtering rules permits to rele-
vantly reduce the middleware overhead by avoiding 
useless notifications of non-relevant location changes. 
In summary, by exploiting the above methods, LBSs 
can specify both which information they are interested 
in and when they are interested in getting it without 
specific knowledge about the implementation details of 
the positioning systems they are using. 

Let us notice that declarative policies and filter 
rules have very different roles in PoSIM and behave 
much differently. Policies actively control positioning 
system behaviors: they can modify positioning system 
features, which may impact on other features and on 
positioning info performance. For instance, the lowPo-
werConsumption policy deactivates positioning sys-
tems with a too high power consumption level, by pos-
sibly affecting positioning accuracy since some sys-
tems could be switched off by the policy enforcement 
actions. Moreover, a policy activation impacts on any 
LBS on top of PoSIM. For instance, the highAccuracy 
policy forces LBSs not to exploit positioning systems 
with low accuracy. On the contrary, a filter rule just 
avoids to deliver positioning information considered 
useless by a specific LBS, without any impact on posi-
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tioning system working. Each LBS can declare its fil-
tering rules, without any possible interference with 
other simultaneously working LBSs. 

As rapidly mentioned, DM offers the access to any 
information generated by the integrated positioning 
systems, possibly added with context data from other 
sources, as an XML document. In that way, smart 
LBSs can have access to the wide set of location data 
and feature-related information available, in order to 
flexibly decide which information to exploit at the ap-
plication level. In particular, the provided XML docu-
ment consists of: 
• a timestamp describing when DM created the 

XML document; 
• a source for each exploited positioning system 

(embedded in a common sources parent tag); 
• an info tag for each information provided by a 

source. 
 

Table 4. The structure of the PoSIM document with 
positioning data and their characteristics. 

<Data> 
    <timestamp time=docTS/> 
    <sources> 
        <source name="GPS"> 
            <info Location="xyz" /> 
            <info Accuracy="high" /> 
            <info Timestamp =locTS /> 
        </source> 
        ... 
    </sources> 
</Data> 
 

PoSIM describes a delivery triggering event as a triple 
including an info name, a value, and an eva-

luate(...) method, which returns true if the position-
ing info must be delivered, false elsewhere, usually 
depending on the evaluation of the positioning info 
itself. In particular, we have decided to implement two 
main triggering event categories of common usage: 
isolated and comparing. An isolated event exploits an 
evaluate(Info threshold) method that compares the 
current info value with a fixed threshold. A compar-
ing event, instead, uses an evaluate(Info current-
Value, Info previousValue) method to compare the 
current info value with the data provided in the pre-
vious delivery.  

To clarify how these two event types can cover 
most common usage scenarios, let us rapidly present 
the following simple examples of pre-defined PoSIM 
events: 
• atLocation(loc) is an isolated event that triggers 

data delivery only if the current symbolic location 
is equal to loc; 

• distance(dist) is a comparing event that trig-
gers data delivery only when the current location 

differs from the previously delivered positioning 
info for more than dist meters. 

Let us note that the distance(...) triggering event 
has the result of providing positioning information by 
exploiting spatial variation as the triggering period 
(“space-periodical” positioning update). For instance, 
that could be useful for an advertising LBS interested 
in providing new information to the user whenever she 
moves more than 50 meters from the previous update 
location. In addition, PoSIM allows to specify and/or-
aggregated events, i.e., sets of isolated/comparing 
events that trigger information delivery whenever all 
events occur (and modality) or at least one event oc-
curs (or modality) during a specified time interval. 

Filtering rules, instead, consist of an info name, a 
value, and an evaluate(...) method which, given the 
gathered info value, returns true if the info should be 
discarded, false otherwise. In other words, whenever 
an integrated positioning system (or any context source 
more generally) has the specified info and that info 
does not satisfy the given evaluate(...) method, DM 
discards the entire source (see Table 4). For instance, 
one of the PoSIM pre-defined filter rule is called only-
HighAccuracy(acc) and discards every source whose 
accuracy is below acc (in a scale from 0 to 9, see Sec-
tion 5.2).  

Finally, let us note that expert users, such as PoSIM 
administrators, can develop and deploy new policies, 
new triggering events, and new filtering rules in a rela-
tively easy way. In fact, all of them are implemented as 
Java classes that can be simply sub-classed to specify 
new specialized policies, events, and filters. In that 
way, the PoSIM behavior can be easily extended with 
impact on neither its implementation nor the applica-
tion logic code. At the same time, simple LBSs and 
novice LBS developers can also work by only select-
ing their policies, events, and filters of interest among 
the set of pre-defined and most common ones already 
provided by default in the PoSIM distribution.  

Figure 4 depicts the DM architecture. Data Builder 
(DB) collects infos from the currently exploited posi-
tioning systems and possibly aggregates them with 
context information of interest. DB periodically (every 
configurable polling period, 2 seconds is the default 
value) gets information from PSAF and provides ga-
thered data as an XML document. Data Disclosure 
(DD) is the component that actually exhibits DM API, 
by exposing appropriate methods to specify how inter-
ested LBSs can get data. In other words, fed by DB 
monitoring information, DD delivers the XML docu-
ment with positioning data to every registered LBS 
listener when either the polling period expires or an 
associated event occurs. 

 



 12

onDemand
periodical
addEvent

Data
Disclosure

aggregated
data

Data Builder
locationcontext

filters &
trigger
events

location

PSAF

context
Context
source

addFilter

onDemand
periodical
addEvent

Data
Disclosure

aggregated
data

Data Builder
locationcontext

filters &
trigger
events

location

PSAF

context
Context
source

addFilter

 
Figure 4. The Data Manager architecture. 

 
The delivered XML document is the result of filtering 
the raw positioning data produced by the activated 
positioning systems with the filters specified by the 
interested listeners. Let us observe that each method of 
the DM API allows to specify a listener, apart from 
onDemand(); that increases the flexibility of our mid-
dleware solution if compared with other recently 
emerging proposals for positioning integration [17]. In 
fact, LBSs not only are able to simply gather location 
information with a one-shot interaction with PoSIM 
(onDemand() method), but also can ask for a more per-
sonalized delivery based on LBS-specific requirements 
implemented via the listener parameter. PoSIM can 
perform several articulated positioning data manage-
ment actions, such as continuous location monitoring 
to verify if the available data are really of interest 
(addFilter(...) method) or if relevant events occur 
(addEvent(...) method). In that way, LBS develop-
ment and deployment are greatly simplified; the only 
burden for LBS providers is to decide the triggering 
events, filtering rules, and time intervals for each of 
their listeners. 

 
4.3. Positioning System Access Facility 
 
Smart LBSs and PM/DM can directly control the inte-
grated positioning systems by exploiting the lower 
level API of the Positioning System Access Facility 
(PSAF). PSAF supports APIs to dynamically handle 
the registration/cancellation and to retrieve/control 
infos/features of all the positioning systems locally 
available at the controlled client node. In particular, the 
PSAF API allows: 
1. to dynamically un/register a positioning system 

implementation in the set of locally available posi-

tioning solutions (the only constraint is that the 
registered positioning implementation offers a 
PSW-compliant interface, see the following); 

2. to interact with registered positioning systems via 
the Query/Control interface. 

The PSAF Query/Control interface enables the interac-
tion with registered positioning systems in an aggre-
gated and synergic way, by taking decisions depending 
on the whole set of available systems. In particular, the 
Query interface includes the following methods: 
• getInfos(posSysSet)/getFeatures (posSys-

Set), which returns the set of info/features for the 
specified set of positioning systems; 

• getInfo(posSysSet,name)/getFeature (posSys-
Set, name), which returns the value of a specific 
info/feature for the specified set of positioning 
systems; 

• getAvailable(), which returns the list of the cur-
rently available positioning systems. 

The Control interface, instead, offers the method: 
• setFeature(posSysSet, name, value), which 

changes the value of the name feature for the spe-
cified set of positioning systems. 

For instance, in response to the invocation of getIn-
fos(null), PSAF provides all the info of every regis-
tered positioning system, while the invocation of set-
Feature(GPS, State, off) commands PSAF to 
change to off the value of the feature State of the posi-
tioning system named GPS. 
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Figure 5. The architecture of the Positioning System 

Access Facility. 
 

Smart LBSs and PoSIM middleware components can 
invoke the Query/Control methods; only PoSIM ad-
ministrators, instead, can access the Register/Cancel 
interface. Let us stress that PSAF is the only way for 
higher middleware and application layers to access 
integrated positioning systems, thus guaranteeing con-
trolled and system-safe accesses to low-layer position-
ing components, independently of their specific tech-
nique and implementation peculiarities. The only re-
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quirement is that positioning systems provide their 
infos/features via a specified interface; that interface is 
practically obtained by wrapping the implementations 
of positioning systems with PoSIM Positioning System 
Wrappers (PSWs). PSAF exploits Java introspection to 
dynamically determine and access the set of in-
fos/features exposed by the wrappers and actually im-
plemented by the underlying positioning systems that 
are currently available in its deployment environment.  

 
4.4. Positioning System Wrapper 
 
As already pointed out, the Positioning System Wrap-
per (PSW) is the crucial middleware component that 
hides positioning system heterogeneity. It exposes to 
the upper middleware layers a common API, indepen-
dent of the wrapped positioning system and of its im-
plementation details, by providing infos/features com-
pliant to the exploited ontology for representing posi-
tioning-related data. For instance, if the ontology in 
use specifies that accuracy values are integers in the [0, 
9] range, the PSW getAccuracy() method will provide 
location accuracy as an integer value. Any PSW com-
ponent will interact with its wrapped positioning sys-
tem, retrieve the associated accuracy value by exploit-
ing positioning-specific awareness and syntax, and 
transform it accordingly to the adopted  ontology, e.g., 
transforming a “high accuracy” string return value in 
the correspondent integer. That ontology is the only 
knowledge to be shared among the PoSIM compo-
nents, which allows policies, triggers, and filters ex-
ploiting that ontology to be specified independently of 
the positioning implementation details. 

Delving into finer details, PSW offers: 
• a getX() method for each feature provided by the 

wrapped positioning system, where X is the name 
of the feature; 

• a setX(value) method for each available modifi-
able feature, where value is the new value to be 
set for that feature; 

• an infoX() method to read each location-related 
information provided by the wrapped positioning 
system, where X is the info name. 

PSAF exploits Java reflection to correctly map its 
getX()/setX()/infoX() methods to the corresponding 
(sets of) lower-level invocations in the wrapped im-
plementations of currently available positioning sys-
tems. For instance, given the wrapper of a particular 
positioning system, to get the current value of the Lo-
cation info, PSAF invokes its infoLocation() me-
thod, while, to change the value of the PowerCon-
sumption feature, PSAF invokes its setPowerConsump-
tion(newStrategy) method, which changes the value 

of that feature to newStrategy.  
As already pointed out, the distinction between in-

fos and features is the only assumption PoSIM per-
forms on provided information. In fact, thanks to the 
adoption of Java introspection, PoSIM components are 
independent from the details of information representa-
tion. The integration of a new and unexpected type of 
positioning system into PoSIM only requires encapsu-
lating it in a PSW that provides its infos and features 
through the above PSW interface.  
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Figure 6. The Positioning System Wrapper API. 

 
We have already stated the flexibility stemming from 
not relying upon any statically specified ontology. In 
this manner it is possible to adapt PoSIM to any legacy 
component/application, even if not known at middle-
ware development time. In the current PoSIM proto-
type implementation, we propose and adopt a simple 
ontology that should be taken into account when defin-
ing declarative policies, filter rules, and triggering 
events. The definition of such an ontology is not the 
specific scope of our research work and the currently 
exploited ontology can be easily modified/replaced 
without affecting the implementation of PoSIM com-
ponents. In particular, the adopted ontology defines 
three main feature/info categories: mandatory, com-
mon, and peculiar. According to the ontology, any 
integrated positioning system must offer mandatory 
features/infos. We consider as mandatory: 
• Location info, the last location information pro-

vided by the wrapped positioning system, 
• Timestamp info, the time in which the provided 

location info has been estimated,  
• PSState info, either on or off to indicate whether 

the positioning data has been obtained either cor-
rectly or not,  

• Name feature, to get positioning system name,  
• State feature, a modifiable feature to switch on/off 

a positioning system,  
• ExploitedComm feature, e.g., IEEE 802.11 for 

Ekahau and Bluetooth for the GPS solutions using 
Bluetooth connectivity towards their clients, and,  

• LocationType feature, whose value can be physi-
cal, symbolic or both.  
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The infos/features classified as common are optional 
(some positioning systems may decide not to imple-
ment them) but pre-defined as they are of common and 
frequent usage. For instance:  
• Accuracy info, related to the provided location 

information, 
• PrivacyLevel feature, to indicate if the positioned 

client can hide its location information, 
• PowerConsumption feature.  
Finally, we consider also the possibility to include oth-
er a-priori unknown infos/features, peculiar to a specif-
ic positioning system and thus not usually shared be-
tween PSWs. For instance:  
• GPS FixType info, which can be 2D, 3D or no fix 

and that makes sense only when considering the 
GPS positioning system, 

• the Ekahau Status feature, providing detailed Eka-
hau-specific information about the working status 
of the Ekahau Positioning Engine. 

Let us stress again the differences between common 
and peculiar features/infos. For instance, PoSIM mod-
els the power consumption feature as common (not 
mandatory) because it is not always possible to eva-
luate power consumption for every positioning system 
but the feature is of common usage and LBS develop-
ers could be aware of its possible availability. When 
the feature is available, there is the need to agree on 
the measurement unit of its returned value, e.g., in 
mwatt or in a scale from 0 to 9, and that is specified in 
the ontology. On the contrary, peculiar features/infos 
can be added freely by PSW implementers, with no 
impact on the adopted ontology and without any re-
quirement on returned value semantic.  

Table 5 reports mandatory, common, and some ex-
amples of peculiar features/infos. In the implemented 
ontology, the physical location information is modeled 
in terms of latitude, longitude, and altitude, while sym-
bolic location information is represented as a layered 
(hierarchical) location, e.g. [Italy, Bologna, Eng-
School, Lab2] [23]. Accuracy is represented by an in-
teger value between 0 (minimum) and 9 (maximum). 
The privacy level has a value between 0, uncontrolled 
location information delivery, and 9, stealth mode, i.e., 
only the positioned client has access to its own loca-
tion. Power consumption is modeled with a value in 
the [0, 9] range, usually measured in a static way (see 
the PoSIM implementation insights in the following 
section).  

Among the above listed infos/features, let us rapidly 
focus on two of them, State and PSState, to better ex-
plain their semantic. The State feature returns on/off 
depending on the fact that the positioning system is 
switched on/off, thus being exploitable or not to obtain 

positioning data. Even if a currently switched off posi-
tioning system cannot provide localization info, the 
correspondent PSW can continue to offer old position-
ing data based on previous values, implicitly specify-
ing they are history-based estimations via the time-
stamp info. Also PSState is either on or off, 
representing if the positioning operations of a switch-
ed-on positioning system have been performed in a 
correct way in the last time interval. For instance, even 
if a GPS device is active (State is on), it could not be 
able to provide a correct location information (PSState 
is off) since there are not enough satellites in line of 
sight (no fix according to the GPS terminology). 

 
Table 5. Mandatory, optional, and peculiar in-

fos/features as defined in the default PoSIM ontology. 

Category Name Modifia-
ble 

Mandato-
ry 

Info 
Location n.a. 
Timestamp n.a. 
PSState n.a. 

Fea-
ture 

Name no 
State yes 
ExploitedComm no/yes 
LocationType no/yes 

Common 

Info Accuracy n.a.

Fea-
ture 

PrivacyLevel no/yes 
PowerConsump-
tion no/yes 

Peculiar 
Info FixType (GPS) n.a. 
Fea-
ture Status (Ekahau) no 

 
 
5. PoSIM Implementation Insights 

 
In this section we present our actual test-bed to exem-
plify how it is possible to provide infos and set/get 
features of three off-the-shelf positioning solutions 
(GPS, an IEEE 802.11-based positioning system, and a 
Bluetooth-based one) and a generic positioning system 
compliant with the JSR-179 Location API for J2ME. 
In addition, we present an example of development 
and deployment of an LBS built on top of PoSIM. Ad-
ditional information and the downloadable code of the 
PoSIM prototype, together with the PSWs for the pre-
sented positioning systems, are available at the PoSIM 
Web site [6]. 
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5.1. Integrated Positioning Systems 
 
Several heterogeneous positioning systems are current-
ly widespread. Here we focus our attention on three of 
them, GPS, Ekahau and BTProximity, because they 
exemplify positioning system heterogeneity in terms of 
exploited positioning technique (e.g., triangulation, 
proximity), provided information (e.g., physical, sym-
bolic location), and positioning delivery mode (e.g., on 
demand, event-driven). The sub-section provides the 
few needed implementation insights about these three 
positioning techniques to understand the implementa-
tion decisions described in the following. 

GPS is currently the most spread positioning sys-
tem, exploited in several commercial applications 
ranging from navigation aid to car tracking. GPS de-
termines node location via triangulation by exploiting 
knowledge about satellite constellation position and 
node-satellite constellation distance [2].  

Ekahau [3] is a positioning system for Wi-Fi-based 
nodes and is based on techniques of scenario analysis 
and on characteristics of IEEE 802.11 communica-
tions, similarly to RADAR [24]. Scene analysis tech-
niques include two phases: a preliminary off-line phase 
and an operational one. In the former phase, the posi-
tioning system gets knowledge about AP RSSI in the 
monitored environment, i.e., it associates physical lo-
cations with neighbor AP MAC addresses and corres-
ponding RSSIs. In the latter phase, nodes send RSSI 
data to the Ekahau Positioning Engine (EPE), the Eka-
hau component which actually calculates node locali-
zation. EPE compares historical and currently ob-
served RSSI data, inferring node current location. In 
our past research work, we have developed an original 
Wi-Fi-based positioning solution, someway similar to 
Ekahau, but along the guideline of avoiding the long 
and expensive phase of scenario analysis at the ex-
pense of a generally lower accuracy in positioning es-
timation [25].  

BTProximity [6] is our original positioning system 
with user privacy capabilities, based on proximity 
techniques and Bluetooth communication technology. 
In particular, BTProximity simply associates one node 
with the location of the closest reference point, i.e., 
Bluetooth device, whose distance is inferred by ex-
ploiting baseband connection RSSI. Other Bluetooth-
based positioning systems are available in the literature 
[26, 27]. Differently from them, BTProximity specifi-
cally focuses on privacy management: user privacy is 
achieved by carefully hiding node presence to refer-
ence points, that is not revealing to infrastructure 
nodes where the node is notwithstanding the node ex-
ploits reference points to determine its location. In 

particular, BTProximity supports the provisioning of 
three privacy levels: low, medium, and high. Each pri-
vacy level corresponds to a different Bluetooth device 
configuration, as better detailed in the following. In 
particular, when BTProximity privacy level is 
• Low, the Bluetooth node periodically broadcasts a 

message, as reference points do, by revealing its 
presence to anyone (the Bluetooth node is in 
Page/Inquiry Scan mode [28]); 

• Medium, the Bluetooth node does not broadcast 
messages but only accept incoming connections 
(the Bluetooth node is in Page Scan mode). If an 
external device knows the MAC address of the 
Bluetooth node, it could try to connect to it by per-
forming a sort of blind connect; if the connection 
attempt is successful, node location is revealed. 
Moreover, the Bluetooth node connects to visible 
reference points to determine RSSI values, by po-
tentially revealing its presence (the Bluetooth pro-
tocol requires active baseband connections to de-
termine RSSI); 

• High, the Bluetooth node completely hides its 
presence (stealth mode – the node is in No Scan 
mode). It neither broadcasts messages nor accepts 
incoming connections; it can only listen to refer-
ence points broadcasting messages. To maximize 
user privacy, the Bluetooth node does not even 
connect to reference points. Since without connec-
tion RSSI data is not available in Bluetooth, the 
Bluetooth node cannot understand which is its 
closest reference point. In this case, BTProximity 
provides, as current location, the set of the loca-
tions of all reference points in radio communica-
tion range. 

Let us rapidly observe that BTProximity accuracy re-
levantly depends on required privacy level: the high-
privacy level is intrinsically associated with a signifi-
cantly lower accuracy than low and medium BTProx-
imity privacy levels. 
 
5.2. PSW Implementation Insights and Sup-

ported Infos/Features 
 
The current PoSIM prototype includes wrappers for all 
the positioning systems presented in the previous sec-
tion plus an additional generic PSW suitable for any 
positioning solution exposing a JSR-179-compliant 
API. Table 6 reports infos and features offered by the 
implemented PSWs and describes how they trans-
form/represent gathered information to comply with 
the proposed ontology. 
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Table 6. Features/infos for the 4 positioning systems integrated in the current PoSIM prototype. 
Positioning 

System Category Capability PSW Implementation Modifi-
able 

GPS 

Info 

Location no required actions n.a. 
PSState off if invalid fix, on if valid fix n.a.
Timestamp time of the last location update n.a. 
Accuracy dependent on HDOP n.a. 
FixType no fix, 2D fix, 3D fix n.a. 

Feature 

Name GPS no 

State on: reading and parsing NMEA sentences 
off: not reading  yes 

ExploitedComm serial port name, e.g., COM2 or rfcomm yes 
LocationType physical no 
PrivacyLevel 9 (stealth mode) no

Ekahau 

Info 

Location actions required to transform Ekahau map depen-
dent information in absolute information n.a. 

PSState off: location information are not available 
on: location information are available n.a. 

Timestamp time of the last location update n.a.
Accuracy either 5 (LatestLocation) or 7 (AccurateLocation) n.a. 

Feature 

Name Ekahau no 

State on: RSSI sending and location gathering 
off: neither RSSI nor location gathering yes 

ExploitedComm IEEE 802.11a/b/g no 
LocationType both yes 

PowerConsumption dependent to the underlying IEEE 802.11 network 
interface (7 if always on, 4 if in power saving) yes 

PrivacyLevel either 3 (remote EPE) or 6 (local EPE) no 
Accuracy either 5 (LatestLocation) or 7 (AccurateLocation) yes 
Status detailed state information provided by EPE no 

BTProximity 

Info 

Location no required actions n.a.
PSState off: positioning deactivated, on: elsewhere n.a. 
Timestamp time of the last location update n.a. 
Accuracy 8 if only one location, 6 if more than a location n.a. 

Feature 

Name BTProximity no 
State off: positioning deactivated, on: elsewhere yes 
ExploitedComm Bluetooth device name, e.g., hci0 yes 
LocationType symbolic no 
PowerConsumption 2 (Bluetooth imposes limited power consumption) no 
PrivacyLevel 5 (low), 7 (medium), 9 (high) yes 

JSR-179 
(Location API 

for J2ME) 

Info 

Location no required actions n.a. 
PSState on: state is AVAILABLE, off: elsewhere n.a. 
Timestamp time of the last location update n.a. 
Accuracy horizontal accuracy dependent n.a. 

Feature 

Name JSR179 no 

State on: gather location every second 
off: location gathering deactivated yes 

ExploitedComm JSR179 no 
LocationType both yes 
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GPS provides physical location information in terms of 
latitude, longitude, and altitude: no additional trans-
formation actions on determined positioning data are 
required to be compliant with our default PoSIM on-
tology. The GPS PSW gathers information from a GPS 
device communicating through a serial port (possibly 
via a Bluetooth-based virtual serial port) by exploiting 
the standard Java Communication API [29]. This per-
mits to achieve full portability independently of the 
underlying operating system.  

In particular, when the State feature is on, the GPS 
PSW reads and parses NMEA 0183 sentences to 
achieve location information from the wrapped GPS 
positioning system. When that info is valid, i.e., the 
GPS device has a 2D or 3D fix, the PSState info value 
is set to on. The privacy level is fixed at the maximum 
value because the node computes its location in a com-
pletely decentralized manner, without any support by 
neighbors or network servers. Finally, the GPS accura-
cy is dynamically inferred from the Horizontal Dilu-
tion Of Precision (HDOP), a GPS-specific value de-
pendent on the current configuration of the satellite 
constellation. In particular, our experiments have 
pointed out a rather linear relationship between HDOP 
values and accuracy in meters (see Figure 7). There-
fore, the GPS PSW sets accuracy to 9 when HDOP is 
close to 0, to 0 when HDOP is greater than 30, and to 
linearly determined intermediate values otherwise. 
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Figure 7. Experimental results about the relationship 

between HDOP and accuracy in GPS.  
 

Ekahau can provide both physical and symbolic loca-
tion data via event-driven API. However, positioning 
info is provided in relation to Ekahau internal maps; 
therefore, the Ekahau PSW must perform actions to 
transform the “proprietary” Ekahau location info ac-
cordingly to the exploited ontology. In particular, the 
Ekahau PSW is in charge of transforming physical 
coordinates and logical areas of Ekahau maps into lati-
tude/longitude/altitude and layered location informa-
tion, respectively, by exploiting additional context data 
related to maps. To this purpose, the only requirement 

is that Ekahau administrators orient their Ekahau maps 
to north and specify their top-left and bottom-right 
point coordinates, altitude, and possibly higher-layer 
symbolic location information, e.g., [Italy, Bologna], 
the country and the city where the map is located. 
When State is off, the Ekahau PSW stops locally ga-
thering and sending RSSI data to EPE, with the benefit 
of relevantly limiting power consumption. To this pur-
pose, we do not exploit the proprietary non-
controllable Ekahau client but our own original and 
more flexible Ekahau client implementation with pow-
er consumption optimizations [6]. The Ekahau privacy 
level is limited: in fact, to gather RSSI values, the 
IEEE 802.11 node willing to be positioned must turn 
on its wireless card, thus providing the network infra-
structure with a certain degree of knowledge of its lo-
cation. Moreover, when the EPE server is not local 
(the location estimation is made by an EPE server not 
running on the client node itself), the location info is 
necessarily disclosed to the EPE node. Finally, let us 
note that Ekahau allows accuracy tuning: it is possible 
to request either an accurate or a latest computed loca-
tion. 

BTProximity only provides symbolic information 
via event-driven API, directly in the form required by 
the ontology. The BTProximity PSW accuracy de-
pends on the number of locations provided; when only 
one location is provided, the accuracy is 8 (due to Blu-
etooth short range), when BTProximity provides a set 
of multiple locations corresponding to the visible Blu-
etooth reference points (e.g., because the privacy level 
is set to high), the accuracy level is set to 6.  

Finally, as already stated, the JSR-179 PSW imple-
ments a generic wrapper to every JSR-179 compliant 
positioning system. The JSR-179 PSW provides both 
physical and symbolic information (when made avail-
able by the wrapped positioning solution). To test our 
implementation, we have developed a JSR-179 PSW 
encapsulating GPS devices and offering an interface 
that partially implements the JSR-179 API [6]. 

Figure 8 provides a global overview of our inte-
grated positioning systems and related PSWs. An in-
teresting aspect is that most middleware components 
are completely independent of the underlying operat-
ing system. On the contrary, each positioning system 
actively interacts, to some extent, with the operating 
system, often in a proprietary and non-portable way. 
Given that frequent dependency on operating system 
implementations, in order to maximize portability, we 
have designed and implemented a few interoperability 
middleware components (striped in the figure). Both 
GPS and Ekahau PSWs already have a good level of 
portability: on the one hand, the Comm API provides a 
portable access to serial port; on the other hand, the 
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80211NetworkInterface component allows to porta-
bly access IEEE 802.11 device features (we exploit the 
Comm API implementation provided by the rxtx 
project [30] since the Sun Comm API does not support 
Windows platform anymore). On the contrary, 
BTProximity can work only on Linux because its im-
plementation is based on BlueZ drivers [31]; similar 
drivers are not yet available for Windows platforms (in 
particular, it is currently impossible to gather Blu-
etooth connection RSSI on Windows XP/Vista).  

By delving into finer details, we have originally de-
veloped the 80211NetworkInterface component to 
transparently gather IEEE 802.11 AP RSSIs. In fact, 
due to the relative novelty and high heterogeneity of 
wireless technologies, there is currently no standard 
specification, widely accepted by vendors and availa-
ble in most common operating systems, of an applica-
tion-level API to achieve full RSSI visibility. For this 
reason, we have implemented our own portable 
80211NetworkInterface component including differ-
ent implementations of RSSI monitoring mechanisms, 
which are automatically selected depending on the 
characteristics of the client to be positioned. By ex-

ploiting 80211NetworkInterface, our Ekahau PSW 
accesses an operating-system-transparent Java API to 
obtain the list of all APs in current visibility and their 
related RSSI data: for Linux clients, RSSI info is col-
lected via the standardized Linux Wireless Extensions 
API [32]; for Windows CE/.NET clients, instead, 
80211NetworkInterface transparently binds the same 
Java API to the monitoring functionality provided by 
the Microsoft Network Driver Interface Specification 
User-mode I/O (NDISUIO), which is platform-
dependent but portable among different wireless inter-
face implementations [33]. For instance, it exploits the 
NDISUIO function DeviceIOControl() to query the 
OID_802_11_ BSSID_LIST_SCAN object to retrieve the 
complete list of currently reachable IEEE 802.11 APs.  
Finally, for rapid prototyping, testing, and evaluation 
purposes, the 80211NetworkInterface component can 
also interwork with our original IEEE 802.11 simula-
tor, thus making possible to exploit Ekahau positioning 
also if a real Wi-Fi deployment testbed is not available. 
For further details about our IEEE 802.11 simulator for 
positioning systems, please refer to http://lia.deis 
.unibo.it/Research/SOMA/MobilityPrediction/ 
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Figure 8. The detailed architecture of the implemented PSWs and integrated positioning systems. 
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Another interesting implementation insight is that 
PSW complexity greatly depends on the characteristics 
of wrapped positioning systems, in particular the posi-
tioning data format and the adopted access method. 
For instance, the BTProximity PSW can access the 
underlying positioning system via event-driven API, 
thus reducing possible overhead due to unnecessary 
polling; in addition, in this case, gathered information 
are already compliant with the adopted ontology. On 
the contrary, the GPS PSW has to command the read-
ing of NMEA 0183 sentences provided by GPS via 
serial port and to parse these sentences to extract loca-
tion information, while the Ekahau PSW has to trans-
form map-related location information in absolute 
coordinates, thus increasing PSW implementation 
complexity. Further implementation details, out of the 
scope of this paper, and the PoSIM prototype source 
code are available at the project Web site [6]. 
 
5.3 An Example of PoSIM-based LBS  

 
To practically show how PoSIM integrates heteroge-
neous positioning systems and supports rapid LBS 
prototyping and deployment, this section presents an 
example of LBS that takes advantage of PoSIM capa-
bilities. In particular, we report about the development 
and testing of an Advertising service, deployed in a 
wide shopping mall consisting of several distributed 
buildings. The Advertising LBS aims to offer commer-
cial information whenever a user is in the proximity of 
pre-defined locations, such as previously registered 
shops. Moreover, if the user accepts to disclose her 
location data, the LBS wants to record user paths for 
user movement pattern analysis, both inside buildings 
and in the paths between buildings. To gather the max-
imum amount of positioning-related data, the LBS 
needs to simultaneously exploit all the available posi-
tioning systems: GPS for outdoor localization, Ekahau 
for indoor physical and symbolic localization, and 
BTProximity for indoor symbolic localization. 

Delving into finer details, it is possible to summar-
ize the Advertising LBS requirements as follows: i) to 
simplify LBS working, the collected location informa-
tion must be represented in a uniform way, ii) to cor-
rectly perform user tracking, physical information must 
be delivered at least every 10 meters, despite the ac-
tually exploited positioning system, and iii) a second-
ary requirement is to improve the robustness of LBS 
results by exploiting the location information from the 
most accurate source whenever multiple sources are 
simultaneously available. 

PoSIM dramatically facilitates the design and im-
plementation of such an Advertising LBS. First of all, 

PoSIM provides uniform location information in com-
pliance with the representation syntax and semantic 
described in the adopted ontology. For instance, Table 
7 reports the information provided by PoSIM inside a 
building: note that GPS accuracy is minimum because 
GPS is unsuitable for indoor localization (PSState is 
off), Ekahau provides both physical and symbolic loca-
tion data, and BTProximity accuracy is only 6 because 
in this case it can only provide multiple locations of 
Bluetooth reference points in visibility. 

Since Ekahau provides physical information in 
terms of latitude, longitude, and altitude, the dis-
tance(...) triggering event presented in Section 4.2 
could be exploited even when the user moves from 
inside to outside a building, i.e., even when Ekahau 
becomes unavailable and GPS starts to be the position-
ing system actually providing the location data (and 
vice versa). In that way, the second requirement is 
easily fulfilled.  

 
Table 7. The positioning information document pro-

vided by LBS in the Advertising LBS example. 
<Data> 
  <timestamp time="1173974696718" /> 
  <sources> 
    <source name="GPS"> 
      <info Location = "physical: latitude = 

00.00 N, longitude = 00.00 E, al-
titude = 50.0" /> 

      <info PSState="off" /> 
      <info Accuracy="0" /> 
      <info FixType="No fix" /> 
      <info Timestamp="..." /> 
    </source> 
    <source name="Ekahau"> 
      <info Location = "physical: latitude = 

44.48 N, longitude = 11.32 E, al-
titude = 103; symbolic: [(Italy, 
Bologna, ShopCentre, TravelAgen-
cy)]"/> 

      <info PSState="on" /> 
      <info Accuracy="7" /> 
      <info Timestamp="..." /> 
    </source> 
    <source name="BTProximity"> 
      <info Location= "symbolic: [(Italy, 

Bologna, ShopCentre, TravelAgen-
cy), (Italy, Bologna, ShopCenter, 
CoffeShop)]" /> 

      <info PSState="on" /> 
      <info Accuracy="6" /> 
      <info Timestamp="..." /> 
    </source> 
  </sources> 
</Data>

 
Finally, it is possible to answer to the third requirement 
by simply activating the highAccuracy(8) isolated 
policy and the onBestAccuracy(1) ordering policy. 
The former automatically deactivates positioning sys-
tems with accuracy lower than 8; the latter, with higher 
priority, always maintain the positioning system with 
highest priority switched on. Therefore, consequently 
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to the enforcement of these two policies, the only posi-
tioning system available outdoor is GPS, and both 
Ekahau and BTProximity are deactivated there. When 
the node to be positioned moves indoor, the GPS accu-
racy rapidly decreases while Ekahau and BTProximity 
become available (BTProximity with high privacy lev-
el and thus with limited accuracy). When GPS accura-
cy goes lower than 8, the highAccuracy policy would 
try to deactivate it but the prioritized onBestAccuracy 
policy keeps GPS active because it is still the only po-
sitioning system available. Only when GPS accuracy 
goes lower than 7, i.e., below Ekahau accuracy, PoSIM 
deactivates GPS and activates Ekahau.  

In place of highAccuracy and onBestAccuracy 
policies, the Advertising LBS could exploit the only-
HighAccuracy filter rule, thus gathering information 
only related to positioning systems with high accuracy. 
However, by adopting the two policies above, it is 
possible to achieve the additional goal of limiting 
power consumption because policies switch off posi-
tioning systems instead of just discarding unnecessary 
positioning information. 

 
6. Conclusions 
 
The widespread diffusion of several heterogeneous 
positioning systems pushes towards their integration to 
dynamically take maximum advantage of their capabil-
ities also in a synergic way. Current middleware solu-
tions for the integration of positioning systems lacks in 
dynamicity and flexibility: for instance, they typically 
do not allow to integrate positioning systems retrieved 
at service provisioning time and statically unknown. 
Moreover, they tend to hide underlying implementa-
tion characteristics, which are crucial for smart LBSs 
to have the needed fine-grained control of all the posi-
tioning solutions available on their client nodes.  

The original translucent approach of the PoSIM 
middleware permits to access integrated positioning 
systems in both a transparent and middleware-
mediated way, respectively fitting simple and smart 
LBS requirements. PoSIM not only supplies low-level 
information, but also permits an active control of inte-
grated positioning systems, via the proper exploitation 
and/or definition of policies, events, and filters. In ad-
dition to providing a useful integration tool freely 
available for download and further refinement to the 
LBS community, the PoSIM project has also demon-
strated, via practical examples, how the adoption of 
our middleware can leverage LBS development by 
relevantly facilitating both the synergic exploitation of 
positioning systems and the rapid LBS prototyp-
ing/deployment.  

The encouraging results already obtained are stimu-
lating further PoSIM-related research activities. We 
are extending the middleware openness by including 
even context sources not strictly related to positioning 
systems. For instance, we are currently testing an ex-
tended PoSIM prototype that can predict mobile node 
movements by monitoring RSSI sequences from IEEE 
802.11 APs and Bluetooth peer nodes in visibility. The 
inference on future client movements may be exploited 
for different purposes, e.g., to dynamically change the 
interface exploited for wireless communications de-
pending on previsions about user location and charac-
teristics of nearby mobile nodes in next time intervals, 
thus realizing the needed first step towards a prompt 
and proactive always-best-connected communication 
system. 
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