
 1

This technical report is an extended version of the homonymous paper published in
Computer Communications,

special issue on Advanced Location-Based Services,
Elsevier, Spring 2008.

The PoSIM Middleware for Translucent and Context-aware

Integrated Management of Heterogeneous Positioning Systems

Paolo Bellavista, Antonio Corradi, Carlo Giannelli
Dip. Elettronica, Informatica e Sistemistica - Università di Bologna

Viale Risorgimento, 2 - 40136 Bologna - ITALY
Phone: +39-051-2093001; Fax: +39-051-2093073
{pbellavista, acorradi, cgiannelli}@deis.unibo.it

Abstract

The widespread availability of devices with multiple
wireless interfaces and the abundance of heterogene-
ous positioning techniques open new market potentials
for Location Based Services (LBSs), even if complicat-
ing their development. The paper claims the need for
novel middleware supports capable of managing dy-
namically retrieved client-side positioning systems in a
synergic way and depending on context, i.e., LBS re-
quirements, user preferences, device characteristics,
and overall system state. To pursue this objective, we
have designed and implemented PoSIM, a context-
aware middleware for the synergic exploitation and
control of heterogeneous positioning systems that faci-
litates the development and portability of LBSs. PoSIM
is translucent, i.e., it can provide LBS developers with
differentiated visibility of data characteristics and con-
trol possibilities of available positioning solutions,
thus dynamically adapting to application-specific dep-
loyment requirements and enabling cross-layer man-
agement decisions. The paper describes the translu-
cent PoSIM architecture, some primary implementa-
tion insights about our PoSIM prototype, and how to
practically use our middleware to simplify LBS devel-
opment via either the exploitation of pre-defined or the
ad-hoc instantiation of events, filters, and policies.

1. Introduction

The growing presence of powerful mobile nodes with
relatively high wireless bandwidth, e.g., via UMTS,
IEEE 802.11, and Bluetooth 2.0 connectivity, is going
to leverage the widespread availability of Location
Based Services (LBSs). LBSs can provide service con-

tents depending on the current position of served users,
on the mutual location of clients and accessed server
resources, and on the mutual position of users in a
group [1]. To enable LBSs, the availability of low-cost
and effective positioning systems is crucial. Several
research activities have deeply worked on evaluating
positioning mechanisms, techniques and systems: some
solutions have been specifically designed for determin-
ing location, e.g., the well known Global Positioning
System (GPS) [2]; other proposals try to estimate loca-
lization by monitoring characteristics of general-
purpose communication channels, such as the IEEE
802.11-based Ekahau [3]. Detailed surveys about posi-
tioning solutions and systems can be found in [4, 5].

The point motivating our research activity is that
the relevant work recently accomplished on position-
ing techniques has produced a wide set of currently
available solutions that greatly differ on capabilities
and provided facilities. For instance, they exhibit dif-
ferences on:
• model used to represent location information. The

representation model could be either physical (lo-
cation information is provided as a longitude, lati-
tude, and altitude triple), or symbolic (e.g., room
X in building Y), or both;

• deployment environment. For instance, GPS can
properly work outdoor, while another positioning
system, such as Ekahau, may be more suitable for
indoor environments;

• accuracy and precision of the positioning informa-
tion. Accuracy is defined as the location data error
range (10 meters for GPS), while precision is the
error range confidence (95% for GPS);

• power consumption. The energy required for posi-
tioning typically depends on location update fre-

 2

quency;
• user privacy, e.g., high for GPS because it deter-

mines the localization information in a completely
client-side way with no explicit server-side visibil-
ity [2], low and deployment-dependent for Ekahau
because a centralized Ekahau server positions
clients by monitoring the received signal strength
of their wireless interfaces [3];

• additional system-specific attributes, such as, for
instance, the possibility to provide positioning da-
ta as a probability distribution function.

That heterogeneity of current positioning solutions,
while being evidence of the relevant academ-
ic/industrial interest in the field, significantly compli-
cates the development and deployment of LBSs. LBS
developers currently have to know the details of the
positioning system that will be available when deploy-
ing their services; LBS implementation is typically not
portable and depends on the characteristics of the tar-
get positioning system (sometimes on the specific im-
plementation of that positioning solution). Therefore,
also due to the fact that current wireless clients tend to
simultaneously host several wireless technologies use-
ful for positioning (e.g., terminals with Wi-Fi and/or
Bluetooth connectivity and/or equipped with GPS),
there is a recent and emerging research trend in sup-
port infrastructures for uniformly integrating heteroge-
neous positioning techniques. The ultimate goal is easy
LBS portability over different positioning solutions
dynamically retrieved at LBS provisioning time.

The paper claims that also the above kind of sup-
port infrastructures is insufficient and that there is the
need for novel context-aware middleware solutions
capable of propagating differentiated levels of visibili-
ty up to the application level and of synergically man-
aging heterogeneous positioning systems depending on
LBS requirements, user preferences, device characte-
ristics, and overall system state. To make practical ex-
amples of usage scenarios, such a middleware should
seamlessly and transparently switch an LBS on its top
from a positioning system to another depending on
their availability, e.g., GPS outdoor and Ekahau in-
door. The middleware should also associate, at any
time, any LBS with the positioning technique that best
fits the execution context, possibly by leaving that
choice even to the LBS application logic, e.g., the po-
sitioning system with lower power consumption or the
one with greater precision/update frequency. In addi-
tion, when several positioning systems can concurrent-
ly work, the middleware should either perform posi-
tioning data merging/fusion, e.g., according to context-
aware requirements about robustness and confidence,
or propagate a suitable view of all the location data
produced by simultaneously working positioning sys-

tems to enable application-level choices on which posi-
tioning information to exploit. Let us note that proper
management decisions could depend on synergic con-
siderations deriving from the whole set of both running
LBSs and positioning systems available at a client. For
instance, if a positioning system is switched on be-
cause of LBS1 requirements, it makes sense to exploit
that positioning technique also for LBS2, even if LBS2
accuracy requirements are satisfied also by other posi-
tioning systems with lower energy consumption.

In other words, to take informed context-aware
management decisions, the middleware should have
easy access to low-level characteristics and control
features of positioning systems. That visibility should
sometimes be opened, in a highly portable and extensi-
ble way, also to advanced LBSs, which could take ap-
plication-level service management choices depending
on the awareness of low-level positioning details. We
call translucent the original approach of middlewares
that can support LBSs with both transparent and visi-
ble access to dynamically available positioning solu-
tions in an integrated way.

By taking into account the above original guidelines
of cross-layering, translucent, integrated control de-
pending on execution context, we have designed and
implemented the Positioning System Integration and
Management (PoSIM) middleware. First of all, PoSIM
is translucent in the sense that it enables differentiated
visibility levels to flexibly answer all possible applica-
tion requirements stemming from different LBS dep-
loyment scenarios. On the one hand, PoSIM enables
LBSs to access and control positioning information at
a high level of abstraction via the usage of pre-defined
management policies and/or their refinement. On the
other hand, PoSIM also allows LBSs to have full visi-
bility of the characteristics of the underlying position-
ing systems via a PoSIM-mediated uniform access to
them. In addition, application-level and system-level
data are exploited in a cross-layer way to perform the
most suitable management decisions on both LBSs and
positioning systems.

Secondly, PoSIM enables the dynamic and inte-
grated control of positioning systems by flexibly ex-
posing their heterogeneous control/configuration fea-
tures and location information at runtime, with no need
of static knowledge about positioning-specific charac-
teristics. In particular, PoSIM adopts declarative repre-
sentations based on rules, policies, and ontologies, thus
permitting to self-describe positioning system informa-
tion, related metadata, and more generally execution
context. In this way, PoSIM allows the access to hete-
rogeneous positioning systems in a uniform and sim-
plified manner, for both choosing (possibly merged)
location information and configuring positioning sys-

 3

tem characteristics depending on applicable context.
The PoSIM prototype is freely available for download
at the PoSIM Web site [6] for educational and research
purposes.

The rest of the paper is structured as follows. First,
we present how the PoSIM proposal originally posi-
tions with regards to the main literature in the field.
Then, Section 3 points out the primary design guide-
lines of the translucent and context-aware PoSIM mid-
dleware, while Section 4 details the PoSIM architec-
ture and its primary components. Section 5 shows how
we have integrated four heterogeneous positioning
systems via our PoSIM prototype, also by practically
describing a testbed deployment scenario where an
example of advertising LBS is implemented. Conclu-
sive remarks and directions of on-going research end
the paper.

2. Related Work

Several research activities have recently started to ad-
dress the emerging field of the integration of heteroge-
neous positioning systems. The main goal is to put
together and suitably merge location information from
different sources, by providing a uniform interface that
LBSs can easily exploit independently of the position-
ing solutions available at runtime in their deployment
environments. However, most researches only concen-
trate on the issues of uniform access and location fu-
sion, without giving possibilities neither for synergic
management of heterogeneous positioning systems nor
for exploitation of context awareness to guide man-
agement decisions, which we claim as crucial aspects
for advanced LBSs.

In this section, we first present research efforts on
integration middlewares organized depending on the
level of visibility propagated to LBSs, from transparent
solutions that hide any low-level positioning system
detail, to contributions with partial visibility and con-
trol for LBSs built on their top. The second part of the
section, instead, focuses on JSR-179 that represents the
most notable standardization effort for Java-based
LBSs on mobile phones [7]. JSR-179 provides a stan-
dardized API to perform coarse-grained integration
and some limited forms of control of underlying posi-
tioning systems.

2.1. Positioning Integration Middlewares

As already stated, a main property to differentiate posi-
tioning integration solutions in the literature is the de-
gree of visibility propagated up to the LBS application
level. Contributions in the field span from completely

transparent approaches hiding LBSs from the complex-
ity of direct interaction with positioning systems but
not providing any control capability, to integration
solutions allowing limited controllability but compli-
cating the development of LBSs, which have to stati-
cally embed details about the exploited positioning
techniques directly in their application logic.

In order of increasing level of visibility, the Alipes
architecture focuses on the integration of heterogene-
ous positioning systems through appropriate wrappers
to provide LBSs with a uniform API [8]. The goal is to
force the exploitation of the available positioning sys-
tem that best fits LBS accuracy requirements, by pos-
sibly performing location data fusion in order to
achieve the required robustness of positioning data.
Moreover, Alipes provides user-controlled privacy, by
requesting explicit user permission before disclosing
location information. The integration system proposed
in [9] has the primary goal of seamless navigation via
uniform map-based interfaces, regardless the actually
exploited positioning system. Its main solution guide-
line is to exploit middleware components, called me-
diators-wrappers, to abstract from specific peculiarities
of used positioning systems and maps. In addition, [9]
permits to dynamically switch exploited positioning
system in a completely transparent way. The integrated
Platform for Location-based services (PoLoS) offers
an API to facilitate the development of new LBSs [10].
It also supports the introduction of new positioning
systems through a plug-in architecture; the middleware
interacts with positioning systems in a standardized
way via OSA/Parlay. Similarly, the Framework for
Location Aware ModElling (FLAME) is a transparent
integration middleware: it bases its positioning abstrac-
tions on a multi-step architecture for location data fu-
sion, generation of geometric relationships, and event-
based location data disclosure [11]. Finally, the Loca-
tion Operating REference model (LORE) originally
proposes different abstracting steps to provide high-
level location data, independently from low-level de-
tails: positioning, modeling, fusion, query tracking,
and intelligent notification [12]; in addition, it ensures
privacy and security management, by controlling in-
formation disclosure, similarly to Alipes. Positioning
system integration in LORE is achieved by the Com-
mon Adapter Framework that provides a standard API
to fetch location information.

The above middlewares integrate positioning sys-
tems with the primary goal to facilitate LBS develop-
ment. They tend to propose transparent approaches that
hide LBSs from positioning complexity, but do not
support any application-specific form of configuration,
control, and management of positioning techniques.
The main contribution of those proposals is to offer a

 4

framework to quickly prototype and deploy LBSs.
However, they relevantly limit the capabilities of ad-
vanced LBSs, often interested in performing context-
aware, cross-layer, and portable positioning manage-
ment operations.

Only a few proposals have recently started to pro-
vide some forms of visibility of low-level fea-
tures/characteristics, by introducing the partial possi-
bility of cross-layer approaches and limited control.
This demonstrates that it starts to be recognized the
need for mediated visibility of underlying positioning
systems, in order to achieve effective, application-
specific, and context-aware management decisions,
even if risking to complicate and slow down the reali-
zation of LBSs.

In particular, MiddleWhere provides LBSs with
some low-level positioning details, such as location
resolution, confidence, and freshness [13]. Adapter
components act as device drivers, thus permitting to
MiddleWhere to communicate with positioning system
implementations: each adapter makes location descrip-
tions uniform by hiding positioning system implemen-
tation peculiarities. The Location Services Module
(LSM) supports not only positioning data merging but
also some forms of control of heterogeneous position-
ing systems [14]. However, it performs merging and
control in a hard-coded and not flexible manner: to
achieve visibility of data/control features for a specific
positioning system, LSM-based LBSs should have full
static knowledge of positioning characteristics, e.g.,
should know name and syntax of positioning-specific
control functions. Location Stack represents a state-of-
the-art model of solution for location (and also context
in general) data fusion [15]. It identifies several mid-
dleware components, deployed in layers, which can
sequentially (as stages of a pipeline) provide increas-
ing levels of abstraction: Sensors, Measurements, Fu-
sion, Arrangements, Contextual Fusion, Activities, and
Intentions. However, the first implementation of it,
namely the Unified Location Framework (ULF), has
shown that such a highly-layered system is unsuitable
for properly propagating the visibility of low-level data
such as accuracy and precision, often useful for appli-
cation-level LBS decisions [16]. In other words, the
ULF implementation experience points out the need
for cross-layering to expose low-level details to LBSs
and to activate direct control of positioning features
from application logic.

In conclusion, most proposals in the literature only
address the positioning integration issue while hiding
low-level details depending on positioning technique
and system implementation. MiddleWhere, LSM, and
ULF are the only ones that offer partial visibility of
positioning data characteristics and control features,

but in a statically pre-determined way.

2.2. The JSR-179 Location API for J2ME

In the last years, the industrial research activity has
primarily focused on the development of standards to
address the wide heterogeneity of available positioning
systems. The JSR-179 API, also known as Location
API for J2ME, represents the most notable result of
that standardization effort for Java-based LBSs on mo-
bile phones [7]. JSR-179, inspired by the widespread
interface of the GPS positioning solution, provides a
standardized API to perform coarse-grained integration
and control of positioning systems (location providers
according to the JSR-179 terminology). To better un-
derstand how JSR-179 works and why it may be lack-
ing for advanced context-aware management of simul-
taneously available positioning systems, here we rapid-
ly report its main characteristics and offered functions.

To access an available positioning system, LBSs
built on top of the JSR-179 API have to explicitly re-
quest for the instantiation of a location provider. In this
request, an LBS may optionally specify selection crite-
ria, i.e., constraints that drive the JSR-179 choice of
the available positioning system to return. For instance,
selection criteria may indicate that the location provid-
er must supply speed and altitude data, and/or that the
provided horizontal/vertical coordinates have to re-
spect a minimum accuracy threshold. In addition, an
LBS may specify the desired power consumption (low,
medium, or high). Let us notice that these selection
criteria are exploited only at location provider instan-
tiation time, when the LBS requests the binding to a
currently available positioning system for the first
time; variations in positioning system availability and
in selection criteria at provisioning time cannot induce
any automatic modification in location provider selec-
tion. Figure 1 depicts the case of an LBS requesting a
location provider: the result is the selection (and possi-
bly activation if that implementation was switched off)
of the available positioning system best fitting the cri-
teria according to the pre-defined and not modifiable
strategy embedded in JSR-179. Location Provider 2 is
associated with the LBS permanently until a new ex-
plicit location provider selection request is made.

The selected location provider returns location data
to its associated LBS either on demand or via event
notification. In both cases, there are several limitations
on expressive power: in on-demand requests, if several
LBSs are using the same location provider, each of
them has to separately ask for location data; about noti-
fication of events depending on positioning data, there
is the possibility only to specify proximity conditions,
i.e., events are triggered only when the distance be-

 5

tween the positioned client and fixed coordinates goes
under a threshold. The provided positioning informa-
tion may be a physical location (qualified coordinates),
a symbolic one (address info), or both. Moreover, it
may include additional data such as estimated speed
and timestamp.

Location info
(from LocProv2)

Standard JSR-179
Location API

Criteria

Location
Provider 1

Location
Provider 2

Location
Provider N...

Location info
(from LocProv2)

Standard JSR-179
Location API

Criteria

Location
Provider 1

Location
Provider 2

Location
Provider N...

Figure 1. The JSR-179 API for criteria-based location

provider selection.

Recognizing the limitations of JSR-179, a few academ-
ic research activities are working on the extension of
JSR-179 capabilities to achieve greater flexibility and
dynamicity. This extension work is still at its very be-
ginning, also due to the novelty of the JSR-179 stan-
dardization effort. [17] proposes the integration and
management of multiple positioning systems via a
JSR-179 compliant API by increasing dynamicity with
automatic transparent switch between location provid-
ers: it supports the simple case of automatically pass-
ing from GPS to Bluetooth-based positioning depend-
ing on outdoor/indoor location. However, [17] sup-
ports neither the dynamic change of positioning selec-
tion criteria (positioning system availability is the only
criteria) nor the integration with statically unforeseen
positioning solutions. Most important, the proposal
does not include any function to control positioning
systems from the application layer in an integrated and
synergic way.

As better detailed in the following, PoSIM original-
ly extends those approaches by relevantly increasing
the flexibility and dynamicity of middlewares for inte-
grated management of heterogeneous positioning sys-
tems. To the best of our knowledge, PoSIM is the only
solution addressing the challenge of providing LBSs
with translucent visibility of positioning data/control,
by enabling context-aware management decisions de-
pending on cross-layer considerations at service provi-
sioning time. For an extensive and detailed comparison
of the differences between JSR-179 and PoSIM API,
the interested readers can also refer to [18].

3. PoSIM Objectives and Guidelines of So-
lution

PoSIM has the ultimate goal of providing a highly dy-
namic, flexible, and reconfigurable LBS support capa-
ble of mediating visibility of positioning system cha-
racteristics/data and of managing heterogeneous posi-
tioning systems in a context-dependent way. In fact, on
the one hand, positioning systems should propagate via
PoSIM any capability they are able to offer, dynami-
cally retrieved by PoSIM components and made ac-
cessible to the application level in a properly simpli-
fied way. On the other hand, LBSs should be able to
command the reconfiguration of positioning system
behaviors in relation to their current requirements, e.g.,
by keeping switched-on only the positioning system
with minimum energy consumption and satisfying ac-
curacy when the client battery lifetime is under a speci-
fied threshold. However, it is crucial that the visibility
of low-level details and the synergic control of posi-
tioning systems do not increase too much the complex-
ity of LBS development.

PoSIM pursues these objectives by following three
primary design guidelines: i) the provisioning of a
translucent API favoring cross-layer interactions, ii)
the exploitation of context to openly describe execut-
ing conditions and system/service/user requirements at
the proper level of abstraction, and iii) the possibility
to actively control not only location data merg-
ing/selection but also positioning system behavior.

First of all, PoSIM provides integrated management
of heterogeneous positioning systems by adopting a
translucent approach, intended as the simultaneous
provisioning to the application layer of both high- and
low-level API. Thanks to PoSIM, LBSs aiming to inte-
ract with positioning systems in a simplified manner,
namely simple LBSs, can get a transparent access via
high-level PoSIM API, thus perceiving the underlying
available positioning systems as a unique multi-
behavior positioning facility. On the contrary, LBSs
willing to have direct visibility and to manage peculiar
information/features of positioning systems, namely
smart LBSs, can interact in a middleware-mediated but
fully aware fashion, via low-level PoSIM API.

The translucent approach also allows LBSs built on
top of PoSIM to get a uniform and aggregated access
to all the characteristics of integrated positioning sys-
tems. On the one hand, PoSIM provides LBSs with a
uniform API independently of the specific positioning
solution, e.g., to reduce overhead it is possible to limit
the accuracy of Ekahau-based and BTProximity-based
positioning in the same way. On the other hand, Po-
SIM permits to access/configure all the available posi-

 6

tioning systems aggregately, e.g., to gather all the data
about current accuracy from all activated positioning
system, with no need to interact with each positioning
system separately. In this manner, LBSs can achieve a
uniform aggregated (and thus simplified) access to
lower layers. Let us note that other different research
fields use “translucency” to name the flexible combi-
nation of both visibility and transparency: for instance,
[19] and [20] adopt the translucent term to indicate
similar hybrid visibility in the area of optical networks.

About the second solution guideline, PoSIM takes
full advantage of information provided by LBSs and
positioning systems both to provide location informa-
tion at the application layer and to manage lower-layer
characteristics effectively, by adopting a context-aware
approach. PoSIM provides LBSs with a fully context-
aware but simplified access to location information and
positioning system control via pre-defined triggering
events, to specify when information must be delivered,
filtering rules, to specify which information must be
selected, merged, and delivered, and declarative poli-
cies, to specify how positioning systems should be-
have. For instance, LBSs can specify their interest in
receiving location information only when particular
events occur, e.g., only when the user is close to her
office, and only the positioning data with specified
characteristics, e.g., discarding location information
whose accuracy is below a threshold. Moreover, Po-
SIM-based LBSs can manage positioning system be-
havior in relation to dynamically changing lower-layer
characteristics, e.g., turning off a positioning system
only when its accuracy goes under a given threshold
and it is not currently used by any other LBS. In other
words, LBSs exploit context-awareness by simply
de/activating pre-defined events, filters, and policies
which, in their turn, depend on context information
about underlying positioning characteristics and LBS
requirements.

Delegating to PoSIM any support procedure to
gather and manage context information greatly simpli-
fies context-aware LBS development, but at the same
time requires effectively dealing with heterogeneous
data originated by several different components. For
this reason, to allow an extremely open execution envi-
ronment, we claim the need for representation formats
that combine flexibility, openness, and interoperability.
PoSIM achieves this goal by enabling the integration
of ontologies to describe the semantic of positioning
data and control facilities at runtime. PoSIM does not
assume the mandatory adoption of a particular com-
mon ontology: it dynamically retrieves the ontology to
be exploited in the deployment environment, thus not
limiting at all the set of information and capabilities a
positioning system is able to provide. The only re-

quirement is that the integrated positioning systems
must be wrapped to offer a generic flexible API, as
better detailed in Section 4.4. Let us rapidly observe
that, even if PoSIM has been specifically designed to
integrate positioning systems, its architecture is also
suitable to manage any context sources in general: Po-
SIM provides a uniform access, in terms of both visi-
bility and information syntax, to context data and con-
text source control.

By focusing on the third solution guideline, PoSIM
not only works to expose the location data uniformly
to the LBS application level, but originally permits to
control positioning systems behavior with different
levels of opportunities. While most state-of-the-art
integration middlewares limit their efforts in merging
heterogeneous systems to provide a uniform static in-
terface for location gathering, PoSIM actually puts
together positioning systems to enable the integrated
synergic control of their behavior by considering them
aggregately. For instance, via PoSIM an LBS could
command to simultaneously lower the power con-
sumption of every positioning system just specifying to
set the PowerConsumption PoSIM control feature to
low. In addition, an LBS built on top of PoSIM can
take into account the available positioning systems in a
relative way. For example, it is possible to turn on the
two best positioning systems with regards to power
consumption, while switching off the other ones.
About translucency in positioning system control, sim-
ple LBSs only have the burden of specifying desired
behaviors, by delegating PoSIM for any required ac-
tion. In fact, PoSIM provides a set of pre-defined dec-
larative policies that simple LBSs can only decide to
de/activate. Note that the opportunity to control posi-
tioning systems via declarative policies greatly facili-
tates LBS development because LBSs leave the burden
of any required monitoring/control action to the Po-
SIM middleware. Smart LBS, instead, can directly
control each positioning system features and capabili-
ties in a fully-aware manner, via uniform middleware-
mediated API. In this case, LBSs can access low-level
PoSIM API to interact with and control each position-
ing system separately, e.g., for the purpose of switch-
ing on/off and configuring a specific component.

4. PoSIM Architecture and Primary Com-

ponents

We have followed the above guidelines of translucent,
context-aware, and cross-layer control to design and
develop our PoSIM middleware for the integrated
management of heterogeneous positioning systems.
PoSIM has the twofold goal of enabling both the me-

 7

diated visibility of all the information provided by un-
derlying positioning systems and the mediated control
of their configurable characteristics for a synergic con-
text-dependent management. In particular, PoSIM pro-
vides the application layer with mediated and facili-
tated access to either low- and high-level API: LBSs
can interact with underlying positioning systems in
either a visible or transparent manner, respectively.
Nevertheless, PoSIM can appear to the application
level as a middleware offering a single, multi-faceted,
and flexible API, thus simplifying its usage and poten-
tially leveraging its adoption.

Figure 2 depicts our PoSIM middleware architec-
ture. To interact transparently with positioning sys-
tems, simple LBSs can exploit the Policy Manager
(PM) and Data Manager (DM) high-level API to re-
spectively control positioning systems behavior and
get their location information. To interact in a more
visible and flexible way, smart LBSs can exploit the
Positioning System Access Facility (PSAF) low-level
API to directly access the Positioning System Wrap-
pers (PSWs) for the currently available and integrated
positioning systems.

About control (top-down colored arrows) and data
(bottom-up white arrows) flows in Figure 2, let us an-
ticipate that i) PM is the middleware component de-
voted to control and enables application-level man-
agement capabilities based on context information ga-
thered from PSAF, and ii) DM, instead, plays the role
of exposing location information according to dynami-
cally configurable differentiated modes. PSAF, in-
stead, can provide LBS with both control capabilities
and positioning data. Let us stress PM and DM ex-
ploits low-level PoSIM API, i.e., PSAF methods, to
offer an encapsulated high-level API with more articu-
lated and easy-to-use services at a higher level of ab-
straction.

PoSIM does not rely on any particular statically
predefined ontology and on syntactic/semantic conven-
tions on how to represent control capabilities and posi-
tioning data. It only defines a simple model distin-
guishing between positioning system features and in-
fos. Features describe positioning system characteris-
tics and capabilities, possibly with settable values use-
ful for control/configuration, e.g., power consumption
or ensured privacy level. Infos are not configurable
location-related data, e.g., positioning information and
its accuracy. Infos are the only data provided to simple
LBSs while smart LBSs have visibility of both features
and infos.

In the following, this section presents the main de-
sign and implementation guidelines of the PoSIM mid-
dleware. For each PoSIM component, it provides an
overview of its functions and offered API, some prac-

tical usage examples to show how to take full advan-
tage of its capabilities, and design/implementation in-
sights.

Positioning
System

Wrapper

Policy
Manager

PoSIM API
transparent visible

low-
level

high-
level

Positioning
System

Wrapper
Positioning

System

Wrapper

Applications

Data
Manager

Positioning System
Access Facility

Positioning
System

Wrapper
Positioning

System

Wrapper

Policy
Manager

PoSIM API
transparent visible

PoSIM API
transparent visible

low-
level

high-
level

Positioning
System

Wrapper
Positioning

System

Wrapper
Positioning

System

Wrapper
Positioning

System

Wrapper

Applications

Data
Manager

Positioning System
Access Facility

Figure 2. The PoSIM architecture (white arrows

represent data flows, colored arrows are control flows).

4.1. Policy Manager

The Policy Manager (PM) is the PoSIM component
responsible for enforcing the policies for dynamic con-
trol and management of heterogeneous positioning
systems. In particular, the PM API allows simple LBSs
to ask for pre-defined behaviors specified via default
policies. It is PM to be in charge of autonomously and
dynamically interacting with positioning systems to
transparently satisfy LBS requirements. Let us point
out that PM provides a context-aware control of posi-
tioning systems: it can take into account both applica-
tion-level requirements, e.g., minimum power con-
sumption, and current system state, e.g., by avoiding to
turn off a positioning system in the case it is the only
one switched on and there is at least one LBS calling
for positioning data.

Via the high-level and transparent PM API, LBSs
can actively control positioning systems by simply
specifying the desired behavior with no visibility of

 8

any low-level positioning detail. In particular, the PM
provided methods are:
• insert(newBehavior)/delete(aBehavior), to

add/remove a new/existing PoSIM behavior;
• activate(aBehavior)/deactivate(aBehavior),

to effectively require the activation of a behavior
among the already defined ones.

Behaviors are implemented as declarative policies, i.e.,
set of actions that PM must perform whenever condi-
tions specified in the policy apply. Conditions are rela-
tional expressions related to positioning system in-
fos/features; actions are management operations that
PM performs over positioning system features. Let us
observe that PoSIM allows not only to enable/disable a
given behavior at service provisioning time by
de/activating declarative policies, but also to introduce
novel behaviors by adding new policies. In addition,
any activity related to behavior definition and
de/activation is independent from the actual implemen-
tation of both PoSIM and positioning system compo-
nents below the PM level. In this manner, on the one
hand, changes in integrated positioning systems cannot
affect behaviors; on the other hand, LBSs can actively
specify the desired control behavior transparently, thus
facilitating and leveraging their development.

Table 1. PoSIM policy representation.

policy ::= [salience] name policy_type
policy_type ::= isolated | ordering

isolated ::= conditions actions
ordering ::= ord_data bestN bestAct worstAct

bestAct ::= actions
worstAct ::= actions

conditions ::= cond | cond conditions
actions ::= action | action actions
cond ::= data value operator
action ::= Feature value
ord_data ::= numeric data

data ::= Info | Feature
bestN ::= non negative integer
salience ::= integer
name ::= string
value ::= string | integer | double
operator ::= =|!=|<|>|<=|>=|eq|neq

As Table 1 shows, PoSIM supports the specification
and activation of two types of policies: isolated and
ordering policies. Isolated policies separately apply the
same condition-action rules to each positioning system
retrieved at runtime in the execution environment.
Conditions are a set of relational expressions, each
one described with a data name/value and a relational
operator. Supported relational operators include =, !=,
<, >, <=, >=, and ‘eq'/'neq' (i.e., =/!= among strings).
Actions are a set of operations on modifiable features,

each one with an associated name and value. Given a
positioning system, if all conditions are satisfied, the
policy is triggered, namely fired, and all the features in
actions are set to the values indicated in the policy,
i.e., the policy actions are enforced. For instance, a
PoSIM isolated policy could turn off the positioning
systems with higher energy consumption if that does
not endanger application-specific requirements about
positioning precision and accuracy.

Table 2. The lowPowerConsumption isolated policy.
name:lowPowerConsumption
conditions:
 Feature(name:Power, value:8) op:>
 Info(name:Accuracy, value:5) op:<
actions:
 Feature(name:State, value:off)

Table 2 reports the lowPowerConsumption policy that
switches off a currently available positioning system if
its power consumption is greater than 8 and its accura-
cy below 5 (rapid notes about the mapping between
power/accuracy values in the policy and their actual,
possibly proprietary, counterparts in the integrated
positioning systems are in Section 4.4).

Table 3. The onBestAccuracy ordering policy.

name: onBestAccuracy
ord_data:
 Info(name:Accuracy)
bestN:
 1
best actions:
 Feature(name:State, value:on)
worst actions:
 none

Ordering policies, instead, can compare available posi-
tioning systems in order to sort them according to a
desired indicator, e.g., listing positioning systems from
the best to the worst one in terms of accuracy. In other
words, in a sense the scope of ordering policies is wid-
er than that of isolated ones, since ordering policies
tend to intrinsically manage positioning systems ag-
gregately. Ordering policy actions consist of two sets
of features, best and worst: PM enforces best actions
for the best bestN positioning systems, while it ex-
ecutes worst actions for the remaining ones. For in-
stance, an ordering policy could request to always turn
on the positioning system with best accuracy. Table 3
depicts the onBestAccuracy policy that sorts position-
ing systems in relation to provided accuracy, and turns
on the one with maximum accuracy.

In addition to the above examples, we have speci-
fied default policies in PoSIM, ready to be activated by
simple LBSs. PoSIM already includes the following
isolated policies of common usage:
• onlyPhysical/onlySymbolic, which activates

 9

only the positioning systems that offer physi-
cal/symbolic location information;

• highAccuracy(threshold), which switches off all
positioning systems whose accuracy is below
threshold;

• highPrivacy(threshold), which sets the privacy
level of available positioning systems (at least) to
the threshold value.

In addition, PoSIM defines the following ordering pol-
icies of common usage:
• onlyBestAccuracy(bestN), which activates the

bestN positioning systems (in terms of accuracy)
by switching off all the others;

• onlyBestConsumption(bestN), which keeps ac-
tive only the bestN positioning systems in terms of
lower consumption.

Let us notice that isolated policies compare in-
fo/feature values gathered at runtime with thresholds: a
given isolated policy can be concurrently fired on dif-
ferent positioning systems (its triggering condition
could be verified for several positioning systems at the
same time); that should be carefully considered when
specifying policies to avoid undesired behaviors. For
instance, the above described lowPowerConsumption
isolated policy is badly defined for most deployment
environments because it could turn off all available
positioning systems, thus making impossible to obtain
any updated positioning information. This is one of the
motivations why PoSIM also integrates ordering poli-
cies that provide the additional capability to manage
positioning systems comparatively. In fact, ordering
policies can enforce different actions depending on
positioning system order and do not require specifying
threshold values, which may be a hard task in many
real-world deployment scenarios.

When different policies are simultaneously fired, in
general there is also the possibility of conflicting ac-
tions. For instance, in the case of lowPowerConsump-
tion and onBestAccuracy firing in the same time
interval, the former may request switching off every
positioning system, while the latter would turn on the
positioning solution with highest accuracy. To help
avoiding possible conflicts, any PoSIM policy is asso-
ciated with a priority, either provided at development
time (namely salience) or depending on policy activa-
tion order, e.g., recently activated policies are favored.
Fired policies are enforced from the most prioritized to
the least one, as further detailed in the following.

Let us also note that the definition of conflicting
rules may not always be erroneous. For instance, con-
sider again the simultaneous firing of lowPowerCon-
sumption and onBestAccuracy, the former with less
priority than the latter. If any integrated positioning

system provides limited accuracy and imposes too high
power consumption, lowPowerConsumption would turn
off every positioning system. On the contrary, since
onBestAccuracy has higher priority, certainly at least
one positioning system will be maintained on, i.e., the
one with best accuracy. In fact, as better detailed in the
following, PoSIM recognizes conflicting actions (sets
of operations working on the same positioning system
features) and, in the case, only executes actions with
higher priority.

Figure 3 depicts the PM architecture. The Policy
Controller (PC) i) provides the capability to in-
sert/delete and de/activate policies, ii) interacts with
PSAF to get up-to-date info/feature values needed to
evaluate the conditions of activated policies, iii) re-
quests the Policy Engine (PE) to check for policy con-
dition satisfaction and to execute the actions specified
in fired policies.

insert

deactivate

Policy
Engine

insert/
delete rules

assert facts

actions

Policy
Controller

PSAF

activate

delete

insert

deactivate

Policy
Engine

insert/
delete rules

assert facts

actions

Policy
Controller

PSAF

activate

delete

Figure 3. The architecture of the Policy Manager.

Delving into finer implementation details, the PoSIM
PE exploits Jess [21], a rule engine based on the Rete
algorithm [22]. PC automatically transforms new poli-
cies, described as Java classes, in Jess rules and, at
their activation, provides PE with them. The Jess
knowledge base includes only the infos and features
that appear in at least one active policy condition, i.e.,
only infos and features relevant for currently activated
policies. In that way, PC only retrieves the needed
monitoring indicators from the underlying positioning
systems, thus limiting the PoSIM middleware over-
head.

By default, PE enforces policies by following the
standard Jess “depth” (age-based) strategy, i.e., if sev-
eral policies are simultaneously fired, PE performs the
enforcement of the most recently activated one first
and then fires the remaining ones in activation order.
In addition, PoSIM administrators can add new poli-
cies by explicitly specifying a salience integer value,
thus possibly affecting the order of policy enforce-
ment. In particular, when specified, PoSIM policies are
fired in relation to their salience, from the highest to

 10

the lowest: policies with the same salience value are
fired with the Jess standard strategy (depth first); poli-
cy salience is set to 0 by default.

Let us observe that the PoSIM goal is not to specifi-
cally provide an original, powerful, and general-
purpose policy management support. PoSIM simply
exploits a subset of Jess existing capabilities, with the
purpose of providing LBSs with the capability of dy-
namically adding and/or removing policies, even at
service provisioning time, in an easy but conveniently
flexible way. In fact, while in principle it could be
possible to add in PoSIM whatever policy written in
the Jess native language, we decided to limit the range
of valid policies by imposing the mandatory structure
reported in Table 1. On the one hand, that simplifies
the work of PoSIM administrators by providing a rigid
but sufficiently expressive discipline for policy speci-
fication. On the other hand, that limitation reduces the
risks of erroneous policy specification, by also paving
the way to effective automatic tools for conflict identi-
fication and analysis. Moreover, Jess policies do not
apply actions directly; in other words, Jess has no di-
rect access to the PSAF component. When policies are
fired, requested actions are not performed immediately
but first ordered according to policy priorities. Then, if
PoSIM recognizes conflicting actions, it only executes
the actions related to the policy with highest priority,
by inhibiting remaining actions. For instance, if both
policy1 and policy2 are fired and the higher-priority
policy1 requires to set power consumption to 3 while
policy2 would set consumption to 5, then PoSIM sets
power consumption to 3 by not considering policy2 at
all. Finally, PM does not allow Jess loop rule activa-
tion, i.e., action enforcement does not produce the im-
mediate re-evaluation of the conditions of all activated
policies in a cyclic way, in order to simplify policy
management and to limit enforcement costs.

4.2. Data Manager

The Data Manager (DM) is the PoSIM component
responsible for offering an aggregated view of posi-
tioning information to the application level, thus pro-
viding differentiated context-dependent views of loca-
tion data. In particular, DM aggregately provides Po-
SIM-based LBSs (specifying when and which posi-
tioning information they are interested in via the DM
API) with the location info produced by the different
integrated positioning systems and collected together
in a single XML document. Let us stress that DM pro-
vides context-aware location information: PoSIM re-
turns positioning data by taking into consideration both
LBS requirements and positioning system information,
e.g., by comparing the minimum accuracy required by

an LBS with the accuracy level offered by each posi-
tioning system available.

In particular, LBSs can ask to be provided with
the XML location data document in three different
ways:
• on demand, exploiting either onDemand() or onDe-

mand(listener) methods, which immediately
provide the already estimated positioning data
(last performed estimate). The latter method addi-
tionally applies LBS-specific filters, as better de-
tailed in the following;

• at regular time intervals, exploiting the periodi-
cal(interval, listener) method, which com-
mands a periodical delivery process to notify the
listener every interval milliseconds;

• in an event-driven fashion, exploiting the addE-
vent(event, listener) method, which permits
to specify a specific event to trigger future deli-
very of the location document.

LBSs can simply exploit easy-to-use pre-defined con-
ditions to trigger location data delivery. For instance,
the pre-defined atLocation condition triggers location
notification only when the current symbolic location
coincides with what specified as the invocation para-
meter. In addition, the addFilter(filter, listener)
method provides a simple way to filter positioning
data: for instance, the pre-defined highAccuracy filter
automatically discards location information whose
accuracy is below a given threshold. In addition, the
proper exploitation of filtering rules permits to rele-
vantly reduce the middleware overhead by avoiding
useless notifications of non-relevant location changes.
In summary, by exploiting the above methods, LBSs
can specify both which information they are interested
in and when they are interested in getting it without
specific knowledge about the implementation details of
the positioning systems they are using.

Let us notice that declarative policies and filter
rules have very different roles in PoSIM and behave
much differently. Policies actively control positioning
system behaviors: they can modify positioning system
features, which may impact on other features and on
positioning info performance. For instance, the lowPo-
werConsumption policy deactivates positioning sys-
tems with a too high power consumption level, by pos-
sibly affecting positioning accuracy since some sys-
tems could be switched off by the policy enforcement
actions. Moreover, a policy activation impacts on any
LBS on top of PoSIM. For instance, the highAccuracy
policy forces LBSs not to exploit positioning systems
with low accuracy. On the contrary, a filter rule just
avoids to deliver positioning information considered
useless by a specific LBS, without any impact on posi-

 11

tioning system working. Each LBS can declare its fil-
tering rules, without any possible interference with
other simultaneously working LBSs.

As rapidly mentioned, DM offers the access to any
information generated by the integrated positioning
systems, possibly added with context data from other
sources, as an XML document. In that way, smart
LBSs can have access to the wide set of location data
and feature-related information available, in order to
flexibly decide which information to exploit at the ap-
plication level. In particular, the provided XML docu-
ment consists of:
• a timestamp describing when DM created the

XML document;
• a source for each exploited positioning system

(embedded in a common sources parent tag);
• an info tag for each information provided by a

source.

Table 4. The structure of the PoSIM document with
positioning data and their characteristics.

<Data>
 <timestamp time=docTS/>
 <sources>
 <source name="GPS">
 <info Location="xyz" />
 <info Accuracy="high" />
 <info Timestamp =locTS />
 </source>
 ...
 </sources>
</Data>

PoSIM describes a delivery triggering event as a triple
including an info name, a value, and an eva-

luate(...) method, which returns true if the position-
ing info must be delivered, false elsewhere, usually
depending on the evaluation of the positioning info
itself. In particular, we have decided to implement two
main triggering event categories of common usage:
isolated and comparing. An isolated event exploits an
evaluate(Info threshold) method that compares the
current info value with a fixed threshold. A compar-
ing event, instead, uses an evaluate(Info current-
Value, Info previousValue) method to compare the
current info value with the data provided in the pre-
vious delivery.

To clarify how these two event types can cover
most common usage scenarios, let us rapidly present
the following simple examples of pre-defined PoSIM
events:
• atLocation(loc) is an isolated event that triggers

data delivery only if the current symbolic location
is equal to loc;

• distance(dist) is a comparing event that trig-
gers data delivery only when the current location

differs from the previously delivered positioning
info for more than dist meters.

Let us note that the distance(...) triggering event
has the result of providing positioning information by
exploiting spatial variation as the triggering period
(“space-periodical” positioning update). For instance,
that could be useful for an advertising LBS interested
in providing new information to the user whenever she
moves more than 50 meters from the previous update
location. In addition, PoSIM allows to specify and/or-
aggregated events, i.e., sets of isolated/comparing
events that trigger information delivery whenever all
events occur (and modality) or at least one event oc-
curs (or modality) during a specified time interval.

Filtering rules, instead, consist of an info name, a
value, and an evaluate(...) method which, given the
gathered info value, returns true if the info should be
discarded, false otherwise. In other words, whenever
an integrated positioning system (or any context source
more generally) has the specified info and that info
does not satisfy the given evaluate(...) method, DM
discards the entire source (see Table 4). For instance,
one of the PoSIM pre-defined filter rule is called only-
HighAccuracy(acc) and discards every source whose
accuracy is below acc (in a scale from 0 to 9, see Sec-
tion 5.2).

Finally, let us note that expert users, such as PoSIM
administrators, can develop and deploy new policies,
new triggering events, and new filtering rules in a rela-
tively easy way. In fact, all of them are implemented as
Java classes that can be simply sub-classed to specify
new specialized policies, events, and filters. In that
way, the PoSIM behavior can be easily extended with
impact on neither its implementation nor the applica-
tion logic code. At the same time, simple LBSs and
novice LBS developers can also work by only select-
ing their policies, events, and filters of interest among
the set of pre-defined and most common ones already
provided by default in the PoSIM distribution.

Figure 4 depicts the DM architecture. Data Builder
(DB) collects infos from the currently exploited posi-
tioning systems and possibly aggregates them with
context information of interest. DB periodically (every
configurable polling period, 2 seconds is the default
value) gets information from PSAF and provides ga-
thered data as an XML document. Data Disclosure
(DD) is the component that actually exhibits DM API,
by exposing appropriate methods to specify how inter-
ested LBSs can get data. In other words, fed by DB
monitoring information, DD delivers the XML docu-
ment with positioning data to every registered LBS
listener when either the polling period expires or an
associated event occurs.

 12

onDemand
periodical
addEvent

Data
Disclosure

aggregated
data

Data Builder
locationcontext

filters &
trigger
events

location

PSAF

context
Context
source

addFilter

onDemand
periodical
addEvent

Data
Disclosure

aggregated
data

Data Builder
locationcontext

filters &
trigger
events

location

PSAF

context
Context
source

addFilter

Figure 4. The Data Manager architecture.

The delivered XML document is the result of filtering
the raw positioning data produced by the activated
positioning systems with the filters specified by the
interested listeners. Let us observe that each method of
the DM API allows to specify a listener, apart from
onDemand(); that increases the flexibility of our mid-
dleware solution if compared with other recently
emerging proposals for positioning integration [17]. In
fact, LBSs not only are able to simply gather location
information with a one-shot interaction with PoSIM
(onDemand() method), but also can ask for a more per-
sonalized delivery based on LBS-specific requirements
implemented via the listener parameter. PoSIM can
perform several articulated positioning data manage-
ment actions, such as continuous location monitoring
to verify if the available data are really of interest
(addFilter(...) method) or if relevant events occur
(addEvent(...) method). In that way, LBS develop-
ment and deployment are greatly simplified; the only
burden for LBS providers is to decide the triggering
events, filtering rules, and time intervals for each of
their listeners.

4.3. Positioning System Access Facility

Smart LBSs and PM/DM can directly control the inte-
grated positioning systems by exploiting the lower
level API of the Positioning System Access Facility
(PSAF). PSAF supports APIs to dynamically handle
the registration/cancellation and to retrieve/control
infos/features of all the positioning systems locally
available at the controlled client node. In particular, the
PSAF API allows:
1. to dynamically un/register a positioning system

implementation in the set of locally available posi-

tioning solutions (the only constraint is that the
registered positioning implementation offers a
PSW-compliant interface, see the following);

2. to interact with registered positioning systems via
the Query/Control interface.

The PSAF Query/Control interface enables the interac-
tion with registered positioning systems in an aggre-
gated and synergic way, by taking decisions depending
on the whole set of available systems. In particular, the
Query interface includes the following methods:
• getInfos(posSysSet)/getFeatures (posSys-

Set), which returns the set of info/features for the
specified set of positioning systems;

• getInfo(posSysSet,name)/getFeature (posSys-
Set, name), which returns the value of a specific
info/feature for the specified set of positioning
systems;

• getAvailable(), which returns the list of the cur-
rently available positioning systems.

The Control interface, instead, offers the method:
• setFeature(posSysSet, name, value), which

changes the value of the name feature for the spe-
cified set of positioning systems.

For instance, in response to the invocation of getIn-
fos(null), PSAF provides all the info of every regis-
tered positioning system, while the invocation of set-
Feature(GPS, State, off) commands PSAF to
change to off the value of the feature State of the posi-
tioning system named GPS.

Cancel

Register

Query Control

Pos
Sys
Set

Positioning
System

Wrapper

Positioning
System

Wrapper

Positioning System
Access Facility Cancel

Register

Query ControlQuery Control

Pos
Sys
Set

Pos
Sys
Set

Positioning
System

Wrapper

Positioning
System

Wrapper

Positioning
System

Wrapper

Positioning
System

Wrapper

Positioning System
Access Facility

Figure 5. The architecture of the Positioning System

Access Facility.

Smart LBSs and PoSIM middleware components can
invoke the Query/Control methods; only PoSIM ad-
ministrators, instead, can access the Register/Cancel
interface. Let us stress that PSAF is the only way for
higher middleware and application layers to access
integrated positioning systems, thus guaranteeing con-
trolled and system-safe accesses to low-layer position-
ing components, independently of their specific tech-
nique and implementation peculiarities. The only re-

 13

quirement is that positioning systems provide their
infos/features via a specified interface; that interface is
practically obtained by wrapping the implementations
of positioning systems with PoSIM Positioning System
Wrappers (PSWs). PSAF exploits Java introspection to
dynamically determine and access the set of in-
fos/features exposed by the wrappers and actually im-
plemented by the underlying positioning systems that
are currently available in its deployment environment.

4.4. Positioning System Wrapper

As already pointed out, the Positioning System Wrap-
per (PSW) is the crucial middleware component that
hides positioning system heterogeneity. It exposes to
the upper middleware layers a common API, indepen-
dent of the wrapped positioning system and of its im-
plementation details, by providing infos/features com-
pliant to the exploited ontology for representing posi-
tioning-related data. For instance, if the ontology in
use specifies that accuracy values are integers in the [0,
9] range, the PSW getAccuracy() method will provide
location accuracy as an integer value. Any PSW com-
ponent will interact with its wrapped positioning sys-
tem, retrieve the associated accuracy value by exploit-
ing positioning-specific awareness and syntax, and
transform it accordingly to the adopted ontology, e.g.,
transforming a “high accuracy” string return value in
the correspondent integer. That ontology is the only
knowledge to be shared among the PoSIM compo-
nents, which allows policies, triggers, and filters ex-
ploiting that ontology to be specified independently of
the positioning implementation details.

Delving into finer details, PSW offers:
• a getX() method for each feature provided by the

wrapped positioning system, where X is the name
of the feature;

• a setX(value) method for each available modifi-
able feature, where value is the new value to be
set for that feature;

• an infoX() method to read each location-related
information provided by the wrapped positioning
system, where X is the info name.

PSAF exploits Java reflection to correctly map its
getX()/setX()/infoX() methods to the corresponding
(sets of) lower-level invocations in the wrapped im-
plementations of currently available positioning sys-
tems. For instance, given the wrapper of a particular
positioning system, to get the current value of the Lo-
cation info, PSAF invokes its infoLocation() me-
thod, while, to change the value of the PowerCon-
sumption feature, PSAF invokes its setPowerConsump-
tion(newStrategy) method, which changes the value

of that feature to newStrategy.
As already pointed out, the distinction between in-

fos and features is the only assumption PoSIM per-
forms on provided information. In fact, thanks to the
adoption of Java introspection, PoSIM components are
independent from the details of information representa-
tion. The integration of a new and unexpected type of
positioning system into PoSIM only requires encapsu-
lating it in a PSW that provides its infos and features
through the above PSW interface.

getX
setX

Positioning
System

Wrapper

infoX
getX
setX

Positioning
System

Wrapper

infoX

Figure 6. The Positioning System Wrapper API.

We have already stated the flexibility stemming from
not relying upon any statically specified ontology. In
this manner it is possible to adapt PoSIM to any legacy
component/application, even if not known at middle-
ware development time. In the current PoSIM proto-
type implementation, we propose and adopt a simple
ontology that should be taken into account when defin-
ing declarative policies, filter rules, and triggering
events. The definition of such an ontology is not the
specific scope of our research work and the currently
exploited ontology can be easily modified/replaced
without affecting the implementation of PoSIM com-
ponents. In particular, the adopted ontology defines
three main feature/info categories: mandatory, com-
mon, and peculiar. According to the ontology, any
integrated positioning system must offer mandatory
features/infos. We consider as mandatory:
• Location info, the last location information pro-

vided by the wrapped positioning system,
• Timestamp info, the time in which the provided

location info has been estimated,
• PSState info, either on or off to indicate whether

the positioning data has been obtained either cor-
rectly or not,

• Name feature, to get positioning system name,
• State feature, a modifiable feature to switch on/off

a positioning system,
• ExploitedComm feature, e.g., IEEE 802.11 for

Ekahau and Bluetooth for the GPS solutions using
Bluetooth connectivity towards their clients, and,

• LocationType feature, whose value can be physi-
cal, symbolic or both.

 14

The infos/features classified as common are optional
(some positioning systems may decide not to imple-
ment them) but pre-defined as they are of common and
frequent usage. For instance:
• Accuracy info, related to the provided location

information,
• PrivacyLevel feature, to indicate if the positioned

client can hide its location information,
• PowerConsumption feature.
Finally, we consider also the possibility to include oth-
er a-priori unknown infos/features, peculiar to a specif-
ic positioning system and thus not usually shared be-
tween PSWs. For instance:
• GPS FixType info, which can be 2D, 3D or no fix

and that makes sense only when considering the
GPS positioning system,

• the Ekahau Status feature, providing detailed Eka-
hau-specific information about the working status
of the Ekahau Positioning Engine.

Let us stress again the differences between common
and peculiar features/infos. For instance, PoSIM mod-
els the power consumption feature as common (not
mandatory) because it is not always possible to eva-
luate power consumption for every positioning system
but the feature is of common usage and LBS develop-
ers could be aware of its possible availability. When
the feature is available, there is the need to agree on
the measurement unit of its returned value, e.g., in
mwatt or in a scale from 0 to 9, and that is specified in
the ontology. On the contrary, peculiar features/infos
can be added freely by PSW implementers, with no
impact on the adopted ontology and without any re-
quirement on returned value semantic.

Table 5 reports mandatory, common, and some ex-
amples of peculiar features/infos. In the implemented
ontology, the physical location information is modeled
in terms of latitude, longitude, and altitude, while sym-
bolic location information is represented as a layered
(hierarchical) location, e.g. [Italy, Bologna, Eng-
School, Lab2] [23]. Accuracy is represented by an in-
teger value between 0 (minimum) and 9 (maximum).
The privacy level has a value between 0, uncontrolled
location information delivery, and 9, stealth mode, i.e.,
only the positioned client has access to its own loca-
tion. Power consumption is modeled with a value in
the [0, 9] range, usually measured in a static way (see
the PoSIM implementation insights in the following
section).

Among the above listed infos/features, let us rapidly
focus on two of them, State and PSState, to better ex-
plain their semantic. The State feature returns on/off
depending on the fact that the positioning system is
switched on/off, thus being exploitable or not to obtain

positioning data. Even if a currently switched off posi-
tioning system cannot provide localization info, the
correspondent PSW can continue to offer old position-
ing data based on previous values, implicitly specify-
ing they are history-based estimations via the time-
stamp info. Also PSState is either on or off,
representing if the positioning operations of a switch-
ed-on positioning system have been performed in a
correct way in the last time interval. For instance, even
if a GPS device is active (State is on), it could not be
able to provide a correct location information (PSState
is off) since there are not enough satellites in line of
sight (no fix according to the GPS terminology).

Table 5. Mandatory, optional, and peculiar in-

fos/features as defined in the default PoSIM ontology.

Category Name Modifia-
ble

Mandato-
ry

Info
Location n.a.
Timestamp n.a.
PSState n.a.

Fea-
ture

Name no
State yes
ExploitedComm no/yes
LocationType no/yes

Common

Info Accuracy n.a.

Fea-
ture

PrivacyLevel no/yes
PowerConsump-
tion no/yes

Peculiar
Info FixType (GPS) n.a.
Fea-
ture Status (Ekahau) no

5. PoSIM Implementation Insights

In this section we present our actual test-bed to exem-
plify how it is possible to provide infos and set/get
features of three off-the-shelf positioning solutions
(GPS, an IEEE 802.11-based positioning system, and a
Bluetooth-based one) and a generic positioning system
compliant with the JSR-179 Location API for J2ME.
In addition, we present an example of development
and deployment of an LBS built on top of PoSIM. Ad-
ditional information and the downloadable code of the
PoSIM prototype, together with the PSWs for the pre-
sented positioning systems, are available at the PoSIM
Web site [6].

 15

5.1. Integrated Positioning Systems

Several heterogeneous positioning systems are current-
ly widespread. Here we focus our attention on three of
them, GPS, Ekahau and BTProximity, because they
exemplify positioning system heterogeneity in terms of
exploited positioning technique (e.g., triangulation,
proximity), provided information (e.g., physical, sym-
bolic location), and positioning delivery mode (e.g., on
demand, event-driven). The sub-section provides the
few needed implementation insights about these three
positioning techniques to understand the implementa-
tion decisions described in the following.

GPS is currently the most spread positioning sys-
tem, exploited in several commercial applications
ranging from navigation aid to car tracking. GPS de-
termines node location via triangulation by exploiting
knowledge about satellite constellation position and
node-satellite constellation distance [2].

Ekahau [3] is a positioning system for Wi-Fi-based
nodes and is based on techniques of scenario analysis
and on characteristics of IEEE 802.11 communica-
tions, similarly to RADAR [24]. Scene analysis tech-
niques include two phases: a preliminary off-line phase
and an operational one. In the former phase, the posi-
tioning system gets knowledge about AP RSSI in the
monitored environment, i.e., it associates physical lo-
cations with neighbor AP MAC addresses and corres-
ponding RSSIs. In the latter phase, nodes send RSSI
data to the Ekahau Positioning Engine (EPE), the Eka-
hau component which actually calculates node locali-
zation. EPE compares historical and currently ob-
served RSSI data, inferring node current location. In
our past research work, we have developed an original
Wi-Fi-based positioning solution, someway similar to
Ekahau, but along the guideline of avoiding the long
and expensive phase of scenario analysis at the ex-
pense of a generally lower accuracy in positioning es-
timation [25].

BTProximity [6] is our original positioning system
with user privacy capabilities, based on proximity
techniques and Bluetooth communication technology.
In particular, BTProximity simply associates one node
with the location of the closest reference point, i.e.,
Bluetooth device, whose distance is inferred by ex-
ploiting baseband connection RSSI. Other Bluetooth-
based positioning systems are available in the literature
[26, 27]. Differently from them, BTProximity specifi-
cally focuses on privacy management: user privacy is
achieved by carefully hiding node presence to refer-
ence points, that is not revealing to infrastructure
nodes where the node is notwithstanding the node ex-
ploits reference points to determine its location. In

particular, BTProximity supports the provisioning of
three privacy levels: low, medium, and high. Each pri-
vacy level corresponds to a different Bluetooth device
configuration, as better detailed in the following. In
particular, when BTProximity privacy level is
• Low, the Bluetooth node periodically broadcasts a

message, as reference points do, by revealing its
presence to anyone (the Bluetooth node is in
Page/Inquiry Scan mode [28]);

• Medium, the Bluetooth node does not broadcast
messages but only accept incoming connections
(the Bluetooth node is in Page Scan mode). If an
external device knows the MAC address of the
Bluetooth node, it could try to connect to it by per-
forming a sort of blind connect; if the connection
attempt is successful, node location is revealed.
Moreover, the Bluetooth node connects to visible
reference points to determine RSSI values, by po-
tentially revealing its presence (the Bluetooth pro-
tocol requires active baseband connections to de-
termine RSSI);

• High, the Bluetooth node completely hides its
presence (stealth mode – the node is in No Scan
mode). It neither broadcasts messages nor accepts
incoming connections; it can only listen to refer-
ence points broadcasting messages. To maximize
user privacy, the Bluetooth node does not even
connect to reference points. Since without connec-
tion RSSI data is not available in Bluetooth, the
Bluetooth node cannot understand which is its
closest reference point. In this case, BTProximity
provides, as current location, the set of the loca-
tions of all reference points in radio communica-
tion range.

Let us rapidly observe that BTProximity accuracy re-
levantly depends on required privacy level: the high-
privacy level is intrinsically associated with a signifi-
cantly lower accuracy than low and medium BTProx-
imity privacy levels.

5.2. PSW Implementation Insights and Sup-

ported Infos/Features

The current PoSIM prototype includes wrappers for all
the positioning systems presented in the previous sec-
tion plus an additional generic PSW suitable for any
positioning solution exposing a JSR-179-compliant
API. Table 6 reports infos and features offered by the
implemented PSWs and describes how they trans-
form/represent gathered information to comply with
the proposed ontology.

 16

Table 6. Features/infos for the 4 positioning systems integrated in the current PoSIM prototype.
Positioning

System Category Capability PSW Implementation Modifi-
able

GPS

Info

Location no required actions n.a.
PSState off if invalid fix, on if valid fix n.a.
Timestamp time of the last location update n.a.
Accuracy dependent on HDOP n.a.
FixType no fix, 2D fix, 3D fix n.a.

Feature

Name GPS no

State on: reading and parsing NMEA sentences
off: not reading yes

ExploitedComm serial port name, e.g., COM2 or rfcomm yes
LocationType physical no
PrivacyLevel 9 (stealth mode) no

Ekahau

Info

Location actions required to transform Ekahau map depen-
dent information in absolute information n.a.

PSState off: location information are not available
on: location information are available n.a.

Timestamp time of the last location update n.a.
Accuracy either 5 (LatestLocation) or 7 (AccurateLocation) n.a.

Feature

Name Ekahau no

State on: RSSI sending and location gathering
off: neither RSSI nor location gathering yes

ExploitedComm IEEE 802.11a/b/g no
LocationType both yes

PowerConsumption dependent to the underlying IEEE 802.11 network
interface (7 if always on, 4 if in power saving) yes

PrivacyLevel either 3 (remote EPE) or 6 (local EPE) no
Accuracy either 5 (LatestLocation) or 7 (AccurateLocation) yes
Status detailed state information provided by EPE no

BTProximity

Info

Location no required actions n.a.
PSState off: positioning deactivated, on: elsewhere n.a.
Timestamp time of the last location update n.a.
Accuracy 8 if only one location, 6 if more than a location n.a.

Feature

Name BTProximity no
State off: positioning deactivated, on: elsewhere yes
ExploitedComm Bluetooth device name, e.g., hci0 yes
LocationType symbolic no
PowerConsumption 2 (Bluetooth imposes limited power consumption) no
PrivacyLevel 5 (low), 7 (medium), 9 (high) yes

JSR-179
(Location API

for J2ME)

Info

Location no required actions n.a.
PSState on: state is AVAILABLE, off: elsewhere n.a.
Timestamp time of the last location update n.a.
Accuracy horizontal accuracy dependent n.a.

Feature

Name JSR179 no

State on: gather location every second
off: location gathering deactivated yes

ExploitedComm JSR179 no
LocationType both yes

 17

GPS provides physical location information in terms of
latitude, longitude, and altitude: no additional trans-
formation actions on determined positioning data are
required to be compliant with our default PoSIM on-
tology. The GPS PSW gathers information from a GPS
device communicating through a serial port (possibly
via a Bluetooth-based virtual serial port) by exploiting
the standard Java Communication API [29]. This per-
mits to achieve full portability independently of the
underlying operating system.

In particular, when the State feature is on, the GPS
PSW reads and parses NMEA 0183 sentences to
achieve location information from the wrapped GPS
positioning system. When that info is valid, i.e., the
GPS device has a 2D or 3D fix, the PSState info value
is set to on. The privacy level is fixed at the maximum
value because the node computes its location in a com-
pletely decentralized manner, without any support by
neighbors or network servers. Finally, the GPS accura-
cy is dynamically inferred from the Horizontal Dilu-
tion Of Precision (HDOP), a GPS-specific value de-
pendent on the current configuration of the satellite
constellation. In particular, our experiments have
pointed out a rather linear relationship between HDOP
values and accuracy in meters (see Figure 7). There-
fore, the GPS PSW sets accuracy to 9 when HDOP is
close to 0, to 0 when HDOP is greater than 30, and to
linearly determined intermediate values otherwise.

0
5

10
15
20
25
30
35

0 10 20 30

HDOP

Ac
cu

ra
cy

 (m
)

0

9
0
5

10
15
20
25
30
35

0 10 20 30

HDOP

Ac
cu

ra
cy

 (m
)

0

9

Figure 7. Experimental results about the relationship

between HDOP and accuracy in GPS.

Ekahau can provide both physical and symbolic loca-
tion data via event-driven API. However, positioning
info is provided in relation to Ekahau internal maps;
therefore, the Ekahau PSW must perform actions to
transform the “proprietary” Ekahau location info ac-
cordingly to the exploited ontology. In particular, the
Ekahau PSW is in charge of transforming physical
coordinates and logical areas of Ekahau maps into lati-
tude/longitude/altitude and layered location informa-
tion, respectively, by exploiting additional context data
related to maps. To this purpose, the only requirement

is that Ekahau administrators orient their Ekahau maps
to north and specify their top-left and bottom-right
point coordinates, altitude, and possibly higher-layer
symbolic location information, e.g., [Italy, Bologna],
the country and the city where the map is located.
When State is off, the Ekahau PSW stops locally ga-
thering and sending RSSI data to EPE, with the benefit
of relevantly limiting power consumption. To this pur-
pose, we do not exploit the proprietary non-
controllable Ekahau client but our own original and
more flexible Ekahau client implementation with pow-
er consumption optimizations [6]. The Ekahau privacy
level is limited: in fact, to gather RSSI values, the
IEEE 802.11 node willing to be positioned must turn
on its wireless card, thus providing the network infra-
structure with a certain degree of knowledge of its lo-
cation. Moreover, when the EPE server is not local
(the location estimation is made by an EPE server not
running on the client node itself), the location info is
necessarily disclosed to the EPE node. Finally, let us
note that Ekahau allows accuracy tuning: it is possible
to request either an accurate or a latest computed loca-
tion.

BTProximity only provides symbolic information
via event-driven API, directly in the form required by
the ontology. The BTProximity PSW accuracy de-
pends on the number of locations provided; when only
one location is provided, the accuracy is 8 (due to Blu-
etooth short range), when BTProximity provides a set
of multiple locations corresponding to the visible Blu-
etooth reference points (e.g., because the privacy level
is set to high), the accuracy level is set to 6.

Finally, as already stated, the JSR-179 PSW imple-
ments a generic wrapper to every JSR-179 compliant
positioning system. The JSR-179 PSW provides both
physical and symbolic information (when made avail-
able by the wrapped positioning solution). To test our
implementation, we have developed a JSR-179 PSW
encapsulating GPS devices and offering an interface
that partially implements the JSR-179 API [6].

Figure 8 provides a global overview of our inte-
grated positioning systems and related PSWs. An in-
teresting aspect is that most middleware components
are completely independent of the underlying operat-
ing system. On the contrary, each positioning system
actively interacts, to some extent, with the operating
system, often in a proprietary and non-portable way.
Given that frequent dependency on operating system
implementations, in order to maximize portability, we
have designed and implemented a few interoperability
middleware components (striped in the figure). Both
GPS and Ekahau PSWs already have a good level of
portability: on the one hand, the Comm API provides a
portable access to serial port; on the other hand, the

 18

80211NetworkInterface component allows to porta-
bly access IEEE 802.11 device features (we exploit the
Comm API implementation provided by the rxtx
project [30] since the Sun Comm API does not support
Windows platform anymore). On the contrary,
BTProximity can work only on Linux because its im-
plementation is based on BlueZ drivers [31]; similar
drivers are not yet available for Windows platforms (in
particular, it is currently impossible to gather Blu-
etooth connection RSSI on Windows XP/Vista).

By delving into finer details, we have originally de-
veloped the 80211NetworkInterface component to
transparently gather IEEE 802.11 AP RSSIs. In fact,
due to the relative novelty and high heterogeneity of
wireless technologies, there is currently no standard
specification, widely accepted by vendors and availa-
ble in most common operating systems, of an applica-
tion-level API to achieve full RSSI visibility. For this
reason, we have implemented our own portable
80211NetworkInterface component including differ-
ent implementations of RSSI monitoring mechanisms,
which are automatically selected depending on the
characteristics of the client to be positioned. By ex-

ploiting 80211NetworkInterface, our Ekahau PSW
accesses an operating-system-transparent Java API to
obtain the list of all APs in current visibility and their
related RSSI data: for Linux clients, RSSI info is col-
lected via the standardized Linux Wireless Extensions
API [32]; for Windows CE/.NET clients, instead,
80211NetworkInterface transparently binds the same
Java API to the monitoring functionality provided by
the Microsoft Network Driver Interface Specification
User-mode I/O (NDISUIO), which is platform-
dependent but portable among different wireless inter-
face implementations [33]. For instance, it exploits the
NDISUIO function DeviceIOControl() to query the
OID_802_11_ BSSID_LIST_SCAN object to retrieve the
complete list of currently reachable IEEE 802.11 APs.
Finally, for rapid prototyping, testing, and evaluation
purposes, the 80211NetworkInterface component can
also interwork with our original IEEE 802.11 simula-
tor, thus making possible to exploit Ekahau positioning
also if a real Wi-Fi deployment testbed is not available.
For further details about our IEEE 802.11 simulator for
positioning systems, please refer to http://lia.deis
.unibo.it/Research/SOMA/MobilityPrediction/

higher PoSIM layers

Ekahau PSW

Ekahau client

80211
Network
Interface

location
gather

GPS PSW

NMEA sentences
gather/parser

RSSI
send

EPE

GPS

Bluetooth
Device

JSR-179 PSW

JSR-179

GPS

Bluetooth
DeviceBluetooth

Device

LBS1 LBS2 LBSn

...

Comm API

Comm APIRSSI
gather
IEEE

802.11

BTProximity

BlueZ

Bluetooth

Serial Port

Bluetooth

Serial Port

Bluetooth

NMEA sen-
tences parser

BTProximity PSW
location gather location

gather

start/
stop

start/
stop position position

po
si

tio
n

E
xt

er
na

l
po

si
tio

ni
ng

 s
ys

te
m

s
W

ra
pp

er
s

raw
data

start/
stop

start/
stop

P
oS

IM

higher PoSIM layers

Ekahau PSW

Ekahau client

80211
Network
Interface

location
gather

GPS PSW

NMEA sentences
gather/parser

RSSI
send

EPE

GPS

Bluetooth
Device

JSR-179 PSW

JSR-179

GPS

Bluetooth
DeviceBluetooth

Device

LBS1 LBS2 LBSn

...

Comm API

Comm APIRSSI
gather
IEEE

802.11

BTProximity

BlueZ

Bluetooth

Serial Port

Bluetooth

Serial Port

Bluetooth

NMEA sen-
tences parser

BTProximity PSW
location gather location

gather

start/
stop

start/
stop position position

po
si

tio
n

E
xt

er
na

l
po

si
tio

ni
ng

 s
ys

te
m

s
W

ra
pp

er
s

raw
data

start/
stop

start/
stop

P
oS

IM

OS-independent OS-dependent providing transparency
to the underlying OS

Legend
OS-independent OS-dependent providing transparency

to the underlying OSOS-independent OS-dependent providing transparency
to the underlying OS

Legend

Figure 8. The detailed architecture of the implemented PSWs and integrated positioning systems.

 19

Another interesting implementation insight is that
PSW complexity greatly depends on the characteristics
of wrapped positioning systems, in particular the posi-
tioning data format and the adopted access method.
For instance, the BTProximity PSW can access the
underlying positioning system via event-driven API,
thus reducing possible overhead due to unnecessary
polling; in addition, in this case, gathered information
are already compliant with the adopted ontology. On
the contrary, the GPS PSW has to command the read-
ing of NMEA 0183 sentences provided by GPS via
serial port and to parse these sentences to extract loca-
tion information, while the Ekahau PSW has to trans-
form map-related location information in absolute
coordinates, thus increasing PSW implementation
complexity. Further implementation details, out of the
scope of this paper, and the PoSIM prototype source
code are available at the project Web site [6].

5.3 An Example of PoSIM-based LBS

To practically show how PoSIM integrates heteroge-
neous positioning systems and supports rapid LBS
prototyping and deployment, this section presents an
example of LBS that takes advantage of PoSIM capa-
bilities. In particular, we report about the development
and testing of an Advertising service, deployed in a
wide shopping mall consisting of several distributed
buildings. The Advertising LBS aims to offer commer-
cial information whenever a user is in the proximity of
pre-defined locations, such as previously registered
shops. Moreover, if the user accepts to disclose her
location data, the LBS wants to record user paths for
user movement pattern analysis, both inside buildings
and in the paths between buildings. To gather the max-
imum amount of positioning-related data, the LBS
needs to simultaneously exploit all the available posi-
tioning systems: GPS for outdoor localization, Ekahau
for indoor physical and symbolic localization, and
BTProximity for indoor symbolic localization.

Delving into finer details, it is possible to summar-
ize the Advertising LBS requirements as follows: i) to
simplify LBS working, the collected location informa-
tion must be represented in a uniform way, ii) to cor-
rectly perform user tracking, physical information must
be delivered at least every 10 meters, despite the ac-
tually exploited positioning system, and iii) a second-
ary requirement is to improve the robustness of LBS
results by exploiting the location information from the
most accurate source whenever multiple sources are
simultaneously available.

PoSIM dramatically facilitates the design and im-
plementation of such an Advertising LBS. First of all,

PoSIM provides uniform location information in com-
pliance with the representation syntax and semantic
described in the adopted ontology. For instance, Table
7 reports the information provided by PoSIM inside a
building: note that GPS accuracy is minimum because
GPS is unsuitable for indoor localization (PSState is
off), Ekahau provides both physical and symbolic loca-
tion data, and BTProximity accuracy is only 6 because
in this case it can only provide multiple locations of
Bluetooth reference points in visibility.

Since Ekahau provides physical information in
terms of latitude, longitude, and altitude, the dis-
tance(...) triggering event presented in Section 4.2
could be exploited even when the user moves from
inside to outside a building, i.e., even when Ekahau
becomes unavailable and GPS starts to be the position-
ing system actually providing the location data (and
vice versa). In that way, the second requirement is
easily fulfilled.

Table 7. The positioning information document pro-

vided by LBS in the Advertising LBS example.
<Data>
 <timestamp time="1173974696718" />
 <sources>
 <source name="GPS">
 <info Location = "physical: latitude =

00.00 N, longitude = 00.00 E, al-
titude = 50.0" />

 <info PSState="off" />
 <info Accuracy="0" />
 <info FixType="No fix" />
 <info Timestamp="..." />
 </source>
 <source name="Ekahau">
 <info Location = "physical: latitude =

44.48 N, longitude = 11.32 E, al-
titude = 103; symbolic: [(Italy,
Bologna, ShopCentre, TravelAgen-
cy)]"/>

 <info PSState="on" />
 <info Accuracy="7" />
 <info Timestamp="..." />
 </source>
 <source name="BTProximity">
 <info Location= "symbolic: [(Italy,

Bologna, ShopCentre, TravelAgen-
cy), (Italy, Bologna, ShopCenter,
CoffeShop)]" />

 <info PSState="on" />
 <info Accuracy="6" />
 <info Timestamp="..." />
 </source>
 </sources>
</Data>

Finally, it is possible to answer to the third requirement
by simply activating the highAccuracy(8) isolated
policy and the onBestAccuracy(1) ordering policy.
The former automatically deactivates positioning sys-
tems with accuracy lower than 8; the latter, with higher
priority, always maintain the positioning system with
highest priority switched on. Therefore, consequently

 20

to the enforcement of these two policies, the only posi-
tioning system available outdoor is GPS, and both
Ekahau and BTProximity are deactivated there. When
the node to be positioned moves indoor, the GPS accu-
racy rapidly decreases while Ekahau and BTProximity
become available (BTProximity with high privacy lev-
el and thus with limited accuracy). When GPS accura-
cy goes lower than 8, the highAccuracy policy would
try to deactivate it but the prioritized onBestAccuracy
policy keeps GPS active because it is still the only po-
sitioning system available. Only when GPS accuracy
goes lower than 7, i.e., below Ekahau accuracy, PoSIM
deactivates GPS and activates Ekahau.

In place of highAccuracy and onBestAccuracy
policies, the Advertising LBS could exploit the only-
HighAccuracy filter rule, thus gathering information
only related to positioning systems with high accuracy.
However, by adopting the two policies above, it is
possible to achieve the additional goal of limiting
power consumption because policies switch off posi-
tioning systems instead of just discarding unnecessary
positioning information.

6. Conclusions

The widespread diffusion of several heterogeneous
positioning systems pushes towards their integration to
dynamically take maximum advantage of their capabil-
ities also in a synergic way. Current middleware solu-
tions for the integration of positioning systems lacks in
dynamicity and flexibility: for instance, they typically
do not allow to integrate positioning systems retrieved
at service provisioning time and statically unknown.
Moreover, they tend to hide underlying implementa-
tion characteristics, which are crucial for smart LBSs
to have the needed fine-grained control of all the posi-
tioning solutions available on their client nodes.

The original translucent approach of the PoSIM
middleware permits to access integrated positioning
systems in both a transparent and middleware-
mediated way, respectively fitting simple and smart
LBS requirements. PoSIM not only supplies low-level
information, but also permits an active control of inte-
grated positioning systems, via the proper exploitation
and/or definition of policies, events, and filters. In ad-
dition to providing a useful integration tool freely
available for download and further refinement to the
LBS community, the PoSIM project has also demon-
strated, via practical examples, how the adoption of
our middleware can leverage LBS development by
relevantly facilitating both the synergic exploitation of
positioning systems and the rapid LBS prototyp-
ing/deployment.

The encouraging results already obtained are stimu-
lating further PoSIM-related research activities. We
are extending the middleware openness by including
even context sources not strictly related to positioning
systems. For instance, we are currently testing an ex-
tended PoSIM prototype that can predict mobile node
movements by monitoring RSSI sequences from IEEE
802.11 APs and Bluetooth peer nodes in visibility. The
inference on future client movements may be exploited
for different purposes, e.g., to dynamically change the
interface exploited for wireless communications de-
pending on previsions about user location and charac-
teristics of nearby mobile nodes in next time intervals,
thus realizing the needed first step towards a prompt
and proactive always-best-connected communication
system.

ACKNOWLEDGMENTS
Work supported by the MiUR FIRB TOCAI, the MiUR
PRIN MOMA, and the CNR IS-MANET Italian
projects.

References
[1] G. Chen, D. Kotz, "A survey of context-aware mobile

computing research", Dartmouth College Technical Report
TR2000-381, http://www.cs.dartmouth.edu/reports/

[2] J.G. McNeff, "The global positioning system", IEEE
Transactions on Microwave Theory and Techniques, Vol.50,
Iss.3, Mar 2002, pp. 645-652.

[3] Ekahau Positioning Engine, www.ekahau.com
[4] J. Hightower, G. Borriello, “Location systems for ubiquitous

computing”, Computer, Vol. 34, No. 8, Aug. 2001.
[5] J. Hightower, G. Borriello, "Location sensing techniques", UW

CSE Technical Report, 2001.
[6] PoSIM Web site, http://lia.deis.unibo.it/Research/PoSIM
[7] JSR-179 Location API for J2ME, http://www.jcp.org/

aboutJava/communityprocess/final/jsr179/index.html
[8] J. Nord, K. Synnes, P. Parnes, “An Architecture for Location

Aware Applications“, 35th Hawaii Int. Conf. on System
Sciences, Hawaii, USA, Jan. 2002.

[9] Y. Hosokawa, N. Takahashi, H. Taga, “A System Architecture
for Seamless Navigation”, Int. Conf. on Distributed Computing
Systems Workshops (MDC), Tokyo, Japan, Mar. 2004.

[10] M. Spanoudakis, A. Batistakis, I. Priggouris, A. Ioannidis, S.
Hadjiefthymiades, L. Merakos, “Extensible Platform for
Location Based Services Provisioning”, Int. Conf. Web
Information Systems Engineering Workshops, Rome, Italy,
Dec. 2003.

[11] G. Coulouris, H. Naguib, K. Samugalingam, “FLAME: An
Open Framework for Location-Aware Systems”, Int. Conf. on
Ubiquitous Computing, Goteborg, Sweden, Sept. Oct. 2002.

[12] Y. Chen, X.Y. Chen, F.Y. Rao, X.L. Yu, Y. Li, D. Liu, “LORE:
An infrastructure to support location-aware services”, IBM
Journal of Research & Development, Vol. 48, No 5/6,
Sept./Nov. 2004.

[13] A. Ranganathan, J. Al-Muhtadi, S. Chetan, R. Campbell, M. D.
Mickunas, “MiddleWhere: A Middleware for Location
Awareness in Ubiquitous Computing Applications”,

 21

ACM/IFIP/USENIX Int. Conf. on Middleware, Oct. 2004,
Toronto, Ontario, Canada.

[14] J. Agre, D. Akenyemi, L. Ji, R. Masuoka, P. Thakkar, "A
Layered Architecture for Location-based Services in Wireless
Ad Hoc Networks", IEEE Aerospace Conf., Big Sky, Montana,
USA, Mar. 2002.

[15] J. Hightower, B. Brumitt, G. Borriello, “The Location Stack: A
Layered Model for Location in Ubiquitous Computing”, IEEE
Work. on Mobile Computing Systems and Applications,
Callicoon, NY, USA, Jun. 2002.

[16] D. Graumann, W. Lara, J. Hightower, G. Borriello, “Real-
world Implementation of the Location Stack: The Universal
Location Framework”, IEEE Work. on Mobile Computing
Systems and Applications, Monterey, CA, USA, Oct. 2003.

[17] C. di Flora, M. Ficco, S. Russo, V. Vecchio, “Indoor and
outdoor location based services for portable wireless devices”,
Int. Conf. on Distributed Computing Systems Workshops
(SIUMI), Columbus, Ohio, USA, Jun. 2005.

[18] P. Bellavista, A. Corradi, C. Giannelli, “Enhancing JSR-179 for
Positioning System Integration and Management”, 1st Work.
on Distributed Agent-based Retrieval Tools (DART'06), Pula-
Cagliari, Sardinia, Italy, June 2006.

[19] B. Ramamurthy, H. Feng, D. Datta, J.P. Heritage, B.
Murkjerjee, “Transparent vs. Opaque vs. Translucent,
Wavelength-Routed Optical Networks,” OFC 1999 Tech. Dig.,
Washington, DC, Mar. 1999, vol. 1, pp. 59–61.

[20] G. Shen, R.S. Tucker, “Translucent optical networks: the way
forward”, IEEE Communications Magazine, Vol.45, Iss.2, Feb.
2007, pp. 48-54.

[21] Jess, http://herzberg.ca.sandia.gov/jess/
[22] C.L. Forgy, “Rete: A Fast Algorithm for the Many Pattern/

Many Object Pattern Match Problem", Artificial Intelligence,
Vol. 19, No. 1, Sept. 1982, pp. 17-37.

[23] P. Bellavista, A. Corradi, C. Giannelli, "Efficiently Managing

Location Information with Privacy Requirements in Wi-Fi
Networks: a Middleware Approach", Second International
Symposium of Wireless Communication Systems 2005
(ISWCS 2005), Siena, Italy, Sept 2005.

[24] P. Bahl, V.N. Padmanabhan, “RADAR: an in-building RF-
based user location and tracking system”, 19th Annual Joint
Conference of the IEEE Computer and Communications
Societies (INFOCOM 2000), Vol. 2, pp. 775-784, Mar. 2000.

[25] P. Bellavista, A. Corradi, C. Giannelli, "Adaptive Buffering
based on Handoff Prediction for Wireless Internet Continuous
Services", The 2005 International Conference on High
Performance Computing and Communications (HPCC-05),
Sorrento, Italy, September 2005.

[26] A. Genco, “Three Step Bluetooth Positioning”, International
Workshop on Location- and Context-Awareness (LoCA 2005),
Munich, Germany, May 2005.

[27] G. Anastasi, R. Bandelloni, M. Conti, F. Delmastro, E. Gregori,
G. Mainetto, “Experimenting an indoor bluetooth-based
positioning service”, Int. Conf. on Distributed Computing
Systems Workshops (ICDCSW’03), Providence, Rhode Island,
USA, May 2003.

[28] Bluetooth Special Interest Group, "Bluetooth Specification
Version 2.0 + EDR", www.bluetooth.org, Nov. 2004.

[29] Java Communications 3.0 API, http://java.sun.com/products/
javacomm/

[30] “RXTX : serial and parallel I/O libraries supporting Sun's
CommAPI”, http://www.rxtx.org/

[31] M. Holtmann, "BlueZ, Official Linux Bluetooth protocol
stack", http://www.bluez.org.

[32] J. Tourrilhes, "Wireless Extensions for Linux", http://www
.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Linux.Wireless.Ex
tensions.html

[33] "NDIS - Network Driver Interface Specification", http://www.
microsoft.com/whdc/device/network/ndis/default.mspx

