Context-aware Middleware for Multi-hop Multi-path Heterogeneous Connectivity in Social Sharing Scenarios

DEIS, Università degli Studi di Bologna, Viale Risorgimento, 2 - 40136 Bologna Italy carlo.giannelli@unibo.it

Agenda

- Wireless scenario state-of-the-art analysis
 - CAMPO model and taxonomy
 - from traditional homogeneous to novel **heterogeneous** wireless scenarios
 - several communication technologies
 - infrastructure and peer points of access/services
- Social sharing of connectivity resources
 - dynamic management of heterogeneous connectivity resources
 - sharing of Internet connectivity and peer-to-peer services
 - pushing for node cooperation
- <u>Multi-hop Multi-path Heterogeneous Connectivity (MMHC)</u>
 - middleware for context-aware dynamic reliable connections to the Internet
 - context information: node mobility, path throughput, energy availability
 - MMHC vs. IEEE 802.11s
- Ongoing work
 - from Internet-based to p2p-driven networking
 - incentives to resources exploitation fairness in semi-cooperative environments
 - cluster-based mobility and smart environment management

```
Bologna, Italy — 18.09.2009
```

Carlo Giannelli

1/36

18.09.2009

The Wireless Scenario

- Client: node requiring connectivity, e.g., user PDA
- **Connector**: node **providing** connectivity, e.g., UMTS Base Station (BS)
- Channel: active client-connector IP connection, e.g., IEEE 802.11 association and DHCP configuration
- Handover procedure
 - a client node changes current connector while moving
- Evaluation process
 - context gathering: which information is important?
 - metric application: which is the most suitable connector?

Single/Multi-hop Wireless Networking

- Single-hop networking: direct communication among nodes
 - ad-hoc: point-to-point communication
 - Bluetooth Piconet or IEEE 802.11 IBSS
 - **infrastructure**: communication mediated by special purpose equipment
 - IEEE 802.11 AP or UMTS BS

- Multi-hop networking: communication among distant nodes based on packet routing performed by intermediate nodes
 - different hypothesis on
 - availability of infrastructure components
 - **mobility degree** of communicating and intermediate nodes

Carlo Giannelli

- one interface per time, selected without user intervention <N:1:1>
- infrastructure-based connectors
- dynamic connection migration among interfaces
- **ABC** (Always Best Connected)
 - several interfaces simultaneously
 - infrastructure and peer connectors
 - only-one/multiple channels per interface $\langle N M M \rangle / \langle N M L \rangle$
- Social Sharing

Bologna, Italy - 18.09.2009

Internet connectivity + peer-to-peer services

Carlo Giannelli

- user's behavior active monitoring
- reward-based mechanisms

- differences:
 - management scope
 - working environment capabilities
 - evaluation process
 - context gathering: which information are important?
 - metric application: which interface/connector is the most suitable one?
 - continuity management
 - trigger: when performing a handover?
 - switcher: how to update active channels?

Bologna, Italy - 18.09.2009

CAMPO Taxonomy (2)

- Management scope:
 - interface: switch on/off, select a connector
 - mobile node: only one/multiple interfaces
 - environment: external components support

CAMPO Taxonomy (3

valuation

Process

00000

Lessons Learned

- Primary operations of CAMPO systems
- Evaluation process
 - available channels suitability
 - input: context information
 - processing: how to exploit input
 - output: channel suitability, best channels
- Continuity management
 - update active channels at service provisioning time
 Continuity Management
 - integration: relationship between origin and destination connectors
 - granularity: every-/per-channel migration

Context-aware evaluation process

infrastructure and peer connectors

Decentralized connectivity management

Hybrid deployment scenarios

visibility: external support

Carlo Giannelli

9/36

CAMPO Taxonomy (4)

CAMPO	Dep	oloyment Scen	ario	Eva	luation Pro	cess	Con	tinuity N	lanagement
System	interface	mobile node	environment	input	processing	output	inte- gration	granu- larity	visibility
[19]	interface	mainly single- on	eval on client, cm on infra	static, phy	embedded, local	interface, single value	loose	per node	proxy
[52]	infrastructure	single-on	eval on infra	static, net	embedded, global	connector, single value	na	na	na
[20]	interface (infrastructure)	single-on	eval on client, cm on infra	primarily static, phy	embedded, local (global)	both, single value	tight	per node	transparent
[50]	infrastructure	single-on	eval on client	dynamic, phy	embedded, local	connector, single value	tight	per node	transparent

- A survey positioning about 80 work
 - many systems provide only partial solutions
 - deployment scenario: connector scope, single-on
 - evaluation process: local scope, function, connector
 - continuity management: loosely-coupled, per-node, proxy

dynamic adaptation of the execution environment trade-off between effectiveness and expressiveness

multi-hop multi-path heterogeneous connectivity

collaborating components distributed on different nodes, eventually even on the infrastructure side

Homogeneous **Wireless Scenario**

- Current scenario: static, infrastructure-based, one-hop
- **One** communication **interface** at a time
 - the client node does not change wireless interface
- Horizontal handover
 - infrastructure connectors only
 - origin and destination connectors based on the same wireless technology
- **Simple** evaluation metric
 - IEEE 802.11: metric based on Received Signal Strength Indication (RSSI) and Signal to Noise Ratio (SNR), usually embedded in interface firmware
- Already available many heterogeneous wireless interfaces on the same mobile node
 - IEEE 802.11, Bluetooth, GPRS/UMTS
 - bandwidth, power consumption, coverage range

Bologna, Italy - 18.09.2009

Carlo Giannelli

12/36

Heterogeneous **Wireless Scenario**

IEEE,

802.11

- Heterogeneous interfaces
 - the client node exploits multiple wireless interfaces, even simultaneously
- Heterogeneous connectors
 - can be infrastructure or peer nodes
 - single-/multi-hop paths
- Connectivity management
 - managing interfaces/connectors/channels/paths considering several context data to take advantage of the many networking opportunities

Heterogeneity and cooperation increases client node capabilities:

- heterogeneous connectors enable the most suitable form of connectivity
 - Bluetooth to limit power consumption, IEEE 802.11 to get larger bandwidth
- peer connectors extend connectivity opportunities via multi-hop paths
 - UMTS link accessed via Bluetooth through a peer connector

Bologna, Italy - 18.09.2009

Carlo Giannelli

13/36

Social Sharing of Connectivity Resources (2)

- 1) Alice's client autonomously selects the free-of-charge IEEE 802 11 connector
- 2) Alice provides connectivity via Bluetooth
- Carol provides her lesson's notes 3) via a file sharing service
- Bob accesses Carol's notes via 4) Alice
- When Alice moves, she gets 5) connectivity via Carol and then re-establish active connections

Bologna, Italy - 18.09.2009

Carlo Giannelli

Social Scenario: Design Guidelines

- Trade-off between **static and dynamic** management
 - re-evaluation of connectivity opportunities to
 - modify available channels
 - reconfigure routing rules
 - static approaches achieve sub-optimal solutions
 - dynamic approaches impose non-negligible monitoring/managing overhead
- Trade-off between **local and global** management
 - monitoring scope greatly impact on required solution
 - local knowledge: easy to gather but with limited expressiveness
 - **global knowledge**: best resource exploitation but with networking overhead and delay
- Trade-off between single- and multi-path granularity
 - basic solution: every flow of every client sent to the same destination
 aggregated routing rules
 - client-granularity: different flows of the same client sent to the same destination
 per-client routing rules
 - flow-granularity: **each flow** is managed differently
 - per-request routing rules

```
Bologna, Italy — 18.09.2009
```

```
Carlo Giannelli
```


MMHC: Objectives

- Novel metric considering a wide set of context information at different abstraction levels
 - traditional RSSI/SNR based evaluation processes are not enough
 - evaluation metric specifically designed for heterogeneous wireless scenarios
- 2) **Two-phase** procedure to separately consider path **establishment** and **enhancement**
 - local-phase: connectors suitable for path realization to maximize reliability and throughput
 - regional-phase: long-term connectivity based on additional context information, eventually slight modifications of the network topology
- 3) Static and dynamic management
 - reactive approach for single-hop connectivity
 - proactive approach for **multi-hop** path reconfiguration

Carlo Giannelli

18/36

16/36

MMHC: <u>Multi-hop Multi-path</u> <u>Heterogeneous Connectivity</u>

- Full exploitation of already available wireless interfaces
 - **multi-hop paths**, eventually based on heterogeneous single-hop links
 - dynamic connectivity evaluation and management
 - connectivity provisioning in a peer-to-peer fashion
 - context-aware evaluation metric
- Efficient connectivity support via proper trade-off among
 - static and dynamic management
 - time-consuming single-hop connections performed reactively (rather static)
 - efficient routing rules modifications performed proactively (dynamic)
 - local and regional management
 - local management to quickly provide Internet connectivity
 - **regional** management to incrementally **improve** connectivity capabilities
 - single- and multi-path granularity
 - aggregated connectivity to the Internet
 - differentiated access to peer to peer services

Bologna, Italy — 18.09.2009

Carlo Giannelli

17/36

Internet

MPP

STA

MAP

STA

MP

MAP

STA

IEEE 802.11s for Extended Service Set mesh networking

- Multi-hop connectivity at lower OSI layers, by extending IEEE 802.11
 - efficiency: no en/decapsulation of data into/from higher layer protocols
 - **availability**: compatibility with the many already available IEEE 802.11a/b/g interfaces
- Node roles
 - STA: mobile client STAtion only getting connectivity
 - MAP: Mash Access Point **providing connectivity** to STAs
 - MP: Mesh Point performing as **intermediate node** (not providing connectivity to STA)
 - MPP: Mesh Portal interconnecting the mesh network and the **Internet**
- Path establishment
 - metric: **airtime cost** reflecting the amount of **channel resources consumed** by transmitting a frame over a particular link
 - path selection: hybrid reactive/proactive

MMHC vs. IEEE 802.11s

- Both IEEE 802.11s and MMHC support multi-hop wireless connectivity, but with relevant differences
- Roles
 - IEEE 802.11s: STA. MP. MAP. MPP
 - MMHC: clients, (peer) connectors
- Laver
 - IEEE 802.11s: MAC protocol
 - MMHC: interconnection of IP networks
- Technology
 - IEEE 802.11s: only standard-compliant interfaces
 - MMHC: interconnection of heterogeneous networks
- Evaluation metric
 - IEEE 802.11s: low-level radio-aware link metric
 - MMHC: meaningful context information
- IEEE 802.11s and MMHC are complementary, not competitors

```
Bologna, Italy - 18.09.2009
```

Carlo Giannelli

20/36

Context Awareness

- Provide highly reliable/durable paths (crucial issue in mobile wireless networks) with sufficient quality (to maximize user satisfaction)
- Path reliability
 - peer connectors are less reliable, since may abruptly **move away**
 - monitor client node and peer **mobility** to provide **reliability**
- Path quality
 - quality mainly depends on wireless technology, number of active clients, and number of hops to the Internet
 - coarse-grained estimation of actual throughput
- Path durability
 - interrupt the connectivity to limit **power consumption**
 - residual battery level to ensure path long-term durability

```
Bologna, Italy - 18.09.2009
```

Carlo Giannelli

21/36

Path Reliability (1)

Transient connector

- e.g., a mobile node in the same sidewalk but with opposite direction
- not suitable for connectivity since has a high probability of becoming unavailable
- Joint connector
 - e.g., PDA connector in the same train wagon
 - greater durability \rightarrow suitable for connectivity
- Client-connector **mutual distance** inferred by monitoring connector **RSSI variability**
 - **CMob** to evaluate **client** node mobility degree [0,1]
 - Joint to evaluate peer connector relative mobility degree [0,1]

Path Reliability (2)

- **Discrete Fourier Transform (DFT)** applied twice to
 - low pass filter RSSI fluctuations due to signal noise
 - estimate CMob (fixed infrastructure connectors) and Joint (peer connectors)

Carlo Giannelli

- Single-hop: EstimatedEndurance
 - (1-CMob) CoverageRange Joint • CoverageRange
- (for APs/BSs) (for mobile peers)
- Multi-hop: PathMobility at kth hop EstimatedEndurance_k
 - EstimatedEndurance_k PathMobility_{k-1}

(single-hop, i.e., k=1)

(multi-hop, i.e., k>1)

Path Quality (1)

- Coarse-grained estimation of multi-hop paths throughput
 - adopted wireless technology: e.g., Bluetooth represents a bottleneck
 - number of active clients: fair bandwidth sharing
 - number of **hops** to the Internet: 20-30% per-hop degradation

- Heterogeneous wireless interfaces provided by different manufactures, e.g., IEEE 802.11 Orinoco Gold, Buffalo and PRO/Wireless interfaces
 - heterogeneous interfaces better mimics actual wireless environments
 - greater performance with homogeneous hardware

Bologna, Italy — 18.09.2009	Carlo Giannelli	25/36
-----------------------------	-----------------	-------

Path Quality (2)

EstimatedThroughput (ET):

 NominalBandwidth (NB) (for APs/BSs)
 (1 - HopDegr) • MaxThr / #clients (for mobile peers)
 where MaxThr=min{previous hop ET, current hop NB}

 ET_{AP} = NB_{AP} = 4 Mbps
 ET_A = (1-0.2) • 4 Mbps / 3 clients = 1.07 Mbps
 ET_B = (1-0.2) • 1.07 Mbps / 2 clients = 0.428 Mbps

Lessons learned: push for **short paths** with **few clients**, particularly when exploiting Bluetooth

Path Durability (1)

- Expected long-term path durability due to energy consumption
 - avoid paths composed by mobile peers with **low battery levels** probably unavailable in a short time
 - fairly exploit energy of mobile peers not overloading only one path
 traversing traffic increase power consumption
- ResidualPathEnergy at kth hop

– NodeBatteryLevel _k	(single-hop, i.e., k=1)
- NodeBatteryLevel _k • ResidualPathEnergy _{k-1}	(multi-hop, i.e., k>1)

AveragePathEnergy at kth hop
 NodeBattervLevel.

NodeBatteryLevel _k	(single-hop, i.e., k=1)
$(AveragePathEnergy_{k-1}) \cdot (k-1) + NodeBatteryLevel_{k}$	(multi-hop, i.e., k>1)

111

Path Durability (2)

MMHC Local Phase

- Main goal: quickly achieve connectivity to the Internet
 - locally gathers RSSI and estimates CMob/Joint
 - performs single-hop reliable connections based on EstimatedEndurance (completely distributed evaluation)
 - select the most suitable path based on PathMobility and EstimatedThroughput (distribution of few crucial context information)
- Local phase **path selection metric**: select the path with best trade-off among **PathMobility** and **EstimatedThroughput**:
 - avoid highly unreliable paths
 - maximize throughput

Bologna, Italy - 18.09.2009

Internet

BS₁

С

Reactively activated at path disruption

Internet

BS₂

В

D

F

Greater priority to connection reliability than quality

Carlo Giannelli

Bologna, Italy - 18.09.2009

MMHC Regional Phase

- Main goal: ensure long-term availability enhancing connectivity capabilities
 - periodically interact with nearby node to collect PathMobility, Estimated Throughput, Average PathEnergy and Residual PathEnergy
 - trigger **path modification** whenever a link is broken (reactive). ResidualPathEnergy lowers below 0.1 (proactive), or PathMobility lowers below 0.3 (proactive)
 - select the path with best trade-off among Estimated Throughput and AverageBatteryEnergy
 - avoid nodes with low battery level
 - fairly exploit available paths
 - achieve high connectivity quality
- Maximize user perceived quality of service
 - available paths periodic monitoring and proactive reconfiguration
 - enhance connectivity opportunities via the role-switch procedure

Carlo Giannelli

30/36

- the **peer connector** contribute providing the **physical network**. e.g., performing as Bluetooth master
- a client starts forwarding data via one of its available paths: it acts as a gateway
- Note: role-switch aim at providing only Internet connectivity
- F has two paths to the Internet
- When A fails C exploits F as **1**11 gateway
- Both C and E keep connectivity to the Internet via F

Е

Ongoing Work

- Current MMHC prototype is mainly focused on Internet connectivity
 - main goal is to provide multi-hop Internet access to nodes
 - peer-to-peer communication limited to subnets
- Extending Internet connectivity provisioning via peer-topeer networking
 - incremental knowledge of the (whole) wireless environment
 - local (vs. Internet) service provisioning/discovery/invocation
- Pushing for service/connectivity provisioning
 - supporting trust and fairness in semi-cooperative environments

iannelli 32/36
3

Peer-to-peer Information Delivery

- Supporting context information spreading among NAT-separated but interconnected networks
 - not only top-down but also bottom-up and sibling information delivery
- Information delivery with no global knowledge of network topology
 - multiple single-hop information dissemination among neighbor nodes
 - time/hop bounded information delivery
- Service discovery/provisioning as a special case of context distribution
 - context-aware service discovery/selection
 - automatic service rebinding

Bologna, Italy — 18.09.2009

Carlo Giannelli

33/36

Connectivity Fairness in Multi-hop Wireless Networks

400.0

- Connectivity starvation in multi-hop multiclient paths
 - closest node achieves almost all the bandwidth
- Decentralized fairness management
 - traffic monitor to perceive starvation
 - traffic control to
 - maximize local traffic
 - avoid traffic starvation
- Incentives for connectivity sharing based on low/high level context information
 - traversing vs. generated packets
 - number of invoked/offered services
 - number of connected nodes

34/36

Conclusions & Ongoing Work

- MMHC supports multi-hop multi-path connectivity exploiting off-the-shelf heterogeneous equipment
 - IEEE 802.11, Bluetooth, Ethernet
- MMHC proposes innovative context data suitable for heterogeneous wireless scenarios
 - node mobility, path throughput, energy availability
- MMHC main goal is to provide reliable connections in wireless mobile environments
 - throughput as secondary objective
- Ongoing work
 - Social Sharing: from Internet-based to peer-to-peer connectivity
 - security issues: peer mutual authentication, user incentives, dynamic level of trust management
 - spontaneous smart environments based on dynamic clustering

Bologna, Italy — 18.09.2009

Carlo Giannelli

Any question?

Prototype code and implementation insights:

- http://lia.deis.unibo.it/research/MAC/
- http://lia.deis.unibo.it/research/MACHINE/
- http://lia.deis.unibo.it/research/MMHC/
- http://lia.deis.unibo.it/Staff/CarloGiannelli/

Carlo Giannelli

Bologna, Italy — 18.09.2009