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Abstract. Haplotype Inference is a challenging problem in bioinformatics that
consists in inferring the basic genetic constitution of diploid organisms on the
basis of their genotypes. This piece of information makes it possible to perform
association studies for the genetic variants involved in multifactorial diseases
and the individual responses to therapeutic agents. A notable approach to the
problem is to encode it as a combinatorial problem (under certain hypotheses,
such as the pure parsimony criterion) and to solve it using combinatorial op-
timization techniques. Recently, several new approaches to the problem were
presented. Among them, solvers based on hybrid metaheuristics have been
proven to be effective in solving large size instances. In this paper, we present
an master-slave hybrid approach, in which a master solver optimize the param-
eters used by a slave solver for constructing a solution. By testing the algorithm
on common Haplotype Inference benchmarks, we show that this approach can
produce good quality solutions in a very short execution time.
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1 Introduction

The role of genetic variation and inheritance in human diseases is extremely im-
portant, though still largely unknown [21]. To this aim, the assessment of a full
Haplotype Map of the human genome has become one of the current high priority
tasks of human genomics [20]. Diploid organisms, such as mammals, have their ge-
netic material arranged in pairs of chromosomes, one inherited from the father and
the other from the mother. A haplotype is one of the two non identical copies of a
chromosome of a diploid organism. The information conveyed by haplotypes allows
to perform association studies for the genetic variants involved in diseases and the
individual responses to therapeutic agents. The most important DNA variations
considered by biologists are the Single Nucleotide Polymorphisms (SNPs), which
occur when a nucleotide in the DNA sequence is replaced by another one. Tech-
nological limitations make it currently impractical to directly collect haplotypes by
experimental procedures, but it is possible to collect genotypes, i.e., the conflation of
pairs of haplotypes, in which the origins of SNPs can not be distinguished. Therefore,
haplotypes have to be inferred from genotypes in order to reconstruct the detailed
information and trace the precise structure of DNA variations in a population. This
process is called Haplotype Inference (also known as haplotype phasing) and the goal
is to find a set of haplotype pairs (i.e., a phasing) so that all the given genotypes
are resolved, that is, they can be obtained by combining a pair of haplotypes from
the set.

The main methods to tackle the Haplotype Inference are either combinatorial
or statistical. Both, however, being of non-experimental nature, need some genetic
model that could provide criteria for evaluating the solution returned with respect to
actual genetic plausibility. In the case of the combinatorial methods, which are the
subject of the present work, one of the most often used criterion is pure parsimony.
The pure parsimony criterion [11] suggests to search for the smallest collection of
distinct haplotypes that solves the Haplotype Inference problem. This criterion
is consistent with current observations in natural populations for which the actual
number of haplotypes is vastly smaller than the total number of possible haplotypes.

In this paper, we present a hybrid metaheuristic [4] technique to tackle the
Haplotype Inference by pure parsimony. The method is a master-slave solver in
which the master tries to optimize the parameters used by the slave to construct the
solution.

The remainder of this paper is structured as follows. In Section 2 we briefly
summarize the state of the art of Haplotype Inference solvers in the case of pure par-
simony. In Section 3 we formally define the problem and its related main concepts.
The master-slave solver is described in Section 4 and in Section 5 an experimental
analysis on common benchmarks is illustrated. Finally, we conclude with Section 6
and we summarize ongoing and future work.



2 Related work

Current approaches for solving the Haplotype Inference problem by parsimony in-
clude simple greedy heuristics [6] and exact methods, such as Integer Linear Pro-
gramming [5, 11, 12, 17], Semidefinite Programming [15, 16], SAT models [18, 19]
and Pseudo-Boolean Optimization algorithms [10]. These approaches, however, at
present seem not to be particularly adequate for very-large size instances.

Metaheuristic and hybrid approaches have been also proposed, trying to pro-
vide better scalability than exact approaches. To the best of our knowledge, the
first attempt to employ metaheuristic techniques for the problem is a Genetic Algo-
rithm [22]. However, in [22] results on real size instances are not reported. Recently,
new metaheuristic approaches have been proposed. Stochastic local search [7], Ant
colony optimization [2] and hybrid metaheuristic techniques [1] have been proven to
efficiently solve large size instances. Among them, the hybrid approach dominates
the other methods as it effectively combines the strengths of its components.

3 The Haplotype Inference problem

In the Haplotype Inference problem we deal with genotypes, that is, strings of length
m that correspond to a chromosome with m sites. Each value in the string belongs to
the alphabet {0,1,2}. A position in the genotype is associated with a site of interest
on the chromosome and it has value 0 (wild type) or 1 (mutant) if the corresponding
chromosome site is a homozygous site (i.e., it has that state on both copies) or the
value 2 if the chromosome site is heterozygous. A haplotype is a string of length
m that corresponds to only one copy of the chromosome (in diploid organisms) and
whose positions can assume the symbols 0 or 1.

3.1 Genotype resolution

Given a chromosome, we are interested in finding an unordered! pair of haplotypes
that can explain the chromosome according to the following definition:

Definition 1 (Genotype resolution). Given a chromosome g, we say that the un-
ordered pair (h, k) resolves g, and we write (h,k)>g (or g = h @ k), if the following
conditions hold (for j =1,...,m):

(1a)
(1b)

glil=0= Rl =0Ak[j]=0
gil=1= hll=1Ak[j]=1
NEk[j]=1)V

1ANK[j] =0)

c>
=
Il

glil=2= (h[j]
(1c)

'In the problem there is no distinction between the maternal and paternal haplotypes.



If (h, k)>g we indicate the fact that the haplotype h (respectively, k) contributes
in the resolution of the genotype g writing h < g (resp., & < g). We also say that
h is a resolvent of g. This notation can be extended to set of haplotypes, writing
H ={hy,...,} < g, with the meaning that h; < g for alli = 1,...,l. The operator
@ is defined accordingly.

Conditions (1a) and (1b) require that both haplotypes must have the same value
in all homozygous sites, while condition (1c) states that in heterozygous sites the
haplotypes must have different values.

Observe that, according to the definition, for a single genotype string the haplo-
type values at a given site are predetermined in the case of homozygous sites, whereas
there is a freedom to choose between two possibilities at heterozygous places. This
means that for a genotype string with [ heterozygous sites there are 2/~ possible
pairs of haplotypes that resolve it.

As an example, consider the genotype g = (0212), then possible pairs of haplo-
types that resolve it are ((0110), (0011)) and ((0010), (0111)).

After these preliminaries we can state the Haplotype Inference problem as follows:

Definition 2 (Haplotype Inference problem). Given a population of n individu-
als, each of them represented by a genotype string g; of length m we are inter-
ested in finding a set ¢ of n pairs of (not necessarily distinct) haplotypes ¢ =
{(h1,k1), ..., {(hn,kn)}, so that (h;, k;)>g;,i =1,...,n. We call H the set of haplo-
types used in the construction of ¢, i.e., H = {hy,..., hp,k1,... kn}.

From the mathematical point of view, there are many possibilities for building
the set H, since there is an exponential number of possible haplotypes for each
genotype. Therefore, a criterion has to be added to the model for evaluating the
solution quality.

One natural model of the Haplotype Inference problem is the already mentioned
pure parsimony approach that consists in searching for a solution that minimizes the
total number of distinct haplotypes used or, in other words, |H|, the cardinality of
the set H. A trivial upper bound for |H| is 2n in the case of all genotypes resolved
by a pair of distinct haplotypes. It has been shown that the Haplotype Inference
problem under the pure parsimony criterion is APX-hard [17] and therefore NP-hard.

It is important to stress, at this point, that finding a proven optimal solution
is not particularly relevant, because the criteria defining the objective functions are
an approximation of an (unknown) actual quality function. Therefore, approximate
approaches that are able to return solutions of a good quality, even if not optimal,
are of notable practical importance.



3.2 Compatibility and complementarity

It is possible to define a graph that expresses the compatibility between genotypes,
so as to avoid unnecessary checks in the determination of the resolvents. In the
graph G = (G, E), the set of vertices coincides with the set of the genotypes. Two
genotypes g1, g2 are connected by an edge if they are compatible, i.e., one or more
common haplotypes can resolve both of them. The formal definition of this property
is as follows.

Definition 3 (Genotypes compatibility). Let g; and g2 be two genotypes, g and

go are compatible if, for all j = 1,...,m, the following conditions hold:
ailil =0 = go[j] € {0,2} (2a)
glil=1 = g¢ljle{1,2} (2b)
9lil=2 = ¢l[jl€{0,1,2} (2¢)

The same concept can be expressed also between a genotype and a haplotype as
in the following definition.

Definition 4 (Compatibility between genotypes and haplotypes). Let g be a geno-
type and h a haplotype, g and h are compatible if, for all j = 1,...,m, the following
conditions hold:

glil=0 = h[j]=0 (3a)
glil=1 = hljl=1 (3b)
glil=2 = hl[jl €{0,1} (3¢)

We denote this relation with h — g, and we write h[j] — ¢[j] when the conditions
hold for the single site j. Moreover with an abuse of notation we indicate with
h+— {g1,g2,...} the set of all genotypes that are compatible with haplotype h.

Notice that the set of genotypes that are compatible with a haplotype can contain
only mutually compatible genotypes (i.e., they form a clique in the compatibility
graph).

We also point out that disconnected components of the compatibility graph are
necessarily resolved by distinct haplotypes, therefore the optimal set of haplotypes
is the union of the optimal sets of each disconnected subgraph. This property is
exploited in a specific preprocessing phase of our algorithm.

In the remainder of this paper, we will call ambiguous genotypes those which
contains at least a heterozigous site. Conversely, non-ambiguous genotypes contains
only homozigous sites and are therefore resolved by a pair of identical haplotypes,
in turn identical to the genotype.

Due to the resolution definition, when one of the two haplotypes composing the
pair, say h, has been selected, then the other haplotype can be directly inferred from
h and the genotype g thanks to the resolution conditions:



Proposition 1 (Haplotype complement). Given a genotype g and a haplotype h —
g, there exists a unique haplotype k such that h & k = g. The haplotype k is called
the complement of h with respect to g and is denoted with k = g & h.

4 Master-slave algorithm

The Haplotype Inference problem definition makes constructive procedures very ap-
pealing. Indeed, a constructive procedure can incrementally build a set H of hap-
lotypes which, taken in pairs, resolve the genotypes. Such a procedure can start
from an empty set and add one or two haplotypes at a time, while it scans the set
of genotypes G. The objective is to build H as small as possible, i.e., to find a
minimal cardinality set of haplotypes that composes the phasing. To this aim, new
haplotypes should be added to H only when necessary, i.e., when no pair of haplo-
types already in H resolves the current genotype g. In principle, an optimal solution
could be found if an oracle were to indicate the right order of visiting the genotypes
and the right starting pair of haplotypes, along with properly defined criteria for
choosing the values to assign. This is in general not possible, but an iterative and
adaptive search strategy could be very effective in exploring these possibilities.

Algorithm 1 Master-slave high-levelframework

: P « buildInitialPopulation(n)

. evaluate(P)

: while terminating conditions not met do
P’ — applyGeneticOperators(P)
evaluate(P’) {use slave algorithm}

P « bestOf(n, P, P')
end while

: return min(P)

The general idea of the master-slave algorithm we propose is that it is possible
to split the solution construction in two, nested, phases: in the first phase the
parameters of a solution construction procedure are set by a master solver and
in the second phase the solution is actually built by a slave solver. For example,
in the first phase genotypes are ordered and this sequence is used to construct a
solution in the second phase. In a sense, this algorithmic structure is such that the
problem is decomposed into two, interdependent, sub-problems. The solution to the
first problem is an input to the procedure that resolves the second, that actually
computes a solution. In our case, the algorithm that provides the input to the
second is a population-based metaheuristic, namely a genetic algorithm, while the
solver for the second sub-problem is a greedy procedure. The quality of the genotype
order provided by the master is then evaluated on the basis of the objective value



of the solution built by the slave. In fact, the master explores a search space of
‘parameters’: the objective value of the points of this space is the value of the
solution returned by the slave. The master-slave scheme we designed is detailed
in Algorithm 1. The division of the problem into master and slave facilitates a
separation of concerns that helps to design a more extensible solver and to have a
simple and neat implementation.

The slave algorithm can be, in general, any constructive procedure that needs
to be fed with an initial set of resolving haplotypes and some criteria to complete
the solution. The procedure we will describe is variations of a constructive pro-
cedure known as Clark’s rule [6]. Clark’s inference rule exploits the property of
complementarity between a genotype and a haplotype and it works as follows:

1. Let G’ C G be a set containing only genotypes with zero or one ambiguous site
only. From that, an initial set of haplotypes H explaining G’ can be inferred
by complementarity. Be G «+ G’.

2. Choose a pair (g,h) g € G,h € H|h < g. If such pair exists, set H «
HU{goh} and G — G\ {g}.

3. Iterate step 2 until:

e (G = (): in that case H is a solution to the problem;

e Cannot find a pair (g, h): in that case the algorithm fails.

Although the procedure is very fast and simple, it has some drawbacks. First
of all, it needs an initial haplotype set to ‘bootstrap’, which might be impossible to
obtain. In fact, in non-trivial instances the presence of non-ambiguous genotypes or
containing one heterozigous site is quite unlikely.

Secondly, the algorithm must make an arbitrary choice in step 2 because here
there are two sources of non-determinism:

1. The set of genotypes that can be solved by a haplotype in the current set H
can have cardinality grater than one;

2. The genotype chosen could be solvable by more than one haplotype in H.

As a consequence of that, the quality of the solution returned is strongly depen-
dent on the order in which genotypes are explained and haplotypes selected each
step.

Nevertheless, the application of Clark’s rule to Haplotype Inference is appealing
because it naturally tries to re-use haplotypes in the current partial solution to
explain remaining genotypes. It is reasonable to think that some haplotypes in an
optimal solution to the Haplotype Inference cover more than one genotype.



The main idea is thus to employ a learning procedure, in the form of a population-
based metaheuristic, to guide the non-deterministic choices made in step 2; therefore,
such procedure have to learn a good optimal genotype resolution order and some
criteria to choose the most promising haplotype when asked to resolve a genotype.

4.1 Master solver

In order to effectively use heuristic constrcutive procedures a la Clark, we have
to learn genotype resolution order and haplotype selection. Our first version of
the master-slave uses a master genetic algorithm to compute a permutation of the
genotypes composing the instance.

To fully define a genetic algorithm one has to specify:

an solution coding for defining the individual structure

a selection procedure

a population update procedure

genetic operators and how they are applied to the population

an evaluation criterion for assigning fitness to the individuals

An individual represents a single permutation of genotypes, that is, a geno-
type ordering. That ordering is crucial for the slave procedure to compute a good
solution. Moreover, the evaluation criterion, in our master-slave architecture, is ac-
tually provided by the slave algorithm, that builds a solution and computes its value
according to the objective function. The selection procedure is a simple roulette-
wheel, in which individuals are taken for mating with a probability proportional to
their respective fitness values. As for population update, we chose to implement a
steady-state genetic algorithm. Concerning genetic operators, we adopted the usual
definition of crossover and mutation for permutations of length n, which are detailed
in the following.

Mutation: the mutation of an individual encoded as a permutation simply involves
a random swap of two elements.

Crossover: first a random point-cut is chosen and the permutations p, ¢ are split
into two sub-sequences (p1,p2), (¢1,¢2). Then the new permutations p’ and ¢’ are
constructed in this way?: at first p’ = p1, then all the elements of ¢ which are not
in py are orderly appended to p'; if the length of p’ is still less than n, the procedure
keeps appending elements to p’ taken from sub-sequence ¢ if the given elements are
not already present in p;.

2We take into account only the construction of p’, since the other is symmetrical.



4.2 Slave solver

Our implementation of the slave is similar to the constructive procedure first pre-
sented in [2]. Basically, it implements Clark’s Algorithm, but uses:

e the provided permutation to establish a genotype resolution order;

e a deterministic heuristic procedure in order to select among multiple candidate
haplotypes a resolvent for the currently visited genotype.

The algorithm starts from the first genotype of the permutation 7 supplied by
the master. At each step, each visited genotype has its corresponding index in the
permutation removed. The procedure then deterministically chooses a number of
haplotypes to be included in the partial solution. Excluding the case in which H
already contains a pair of haplotypes resolving g, the are three different cases to be
considered for the resolution of a genotype ¢ in this step of the algorithm: (i) no
resolving candidates in H, (i) one candidate, (ii7) more than one candidate. In the
following, we detail the procedure defined for these cases:

Case (i): The procedure takes the first non-visited neighbor, according to the su-
perimposed visiting order, and deterministically produces a haplotype h that solves
both. If needed, ambiguous sites are arbitrarily set to 0. h and g © h are added to
the solution.

Case (ii): When only one resolvent candidate is available, g © h is added to the
solution. This is a straightforward application of complementarity.

Case (iii): When more than one candidate is present in H the procedure chooses
deterministically from these using a heuristic similar to case (i). Let H' be this
candidate set: the procedure takes the first non-visited neighbor, according to the
supplied visiting order, and chooses deterministically a haplotype from H’ that ex-
plains both. In the case that such a neighbor is not available, any haplotype of H’
would be fine and one is deterministically chosen.

In Algorithm 2, we give the pseudocode of the slave procedure in which:

e 7 is the permutation of the genotypes. At each iteration, the visited genotype
is removed from 7 (line 9);

e M, is the partial solution, that is the set of haplotypes that explain at least
all of the visited genotypes.

e resolveGenotype(g, Hy) is the procedure that implements the heuristic for
haplotype selection described above and returns an updated partial solution.
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o pickGenotype AccordingToOrder(m,G') uses the current permutation 7 to es-
tablish an ordering of the genotypes in G'.

The algorithm stops when a feasible solution has been built, that is, when 7 is
empty.

Algorithm 2 Slave: Haplotype selection

1: while 7 is not empty do
2 G —{g e G|3h € Hy,h 4 g} {first choose among genotypes with at least
one candidate (cases ((ii)) or ((4ii)))}

3. if G’ =( then

4: g < m[0] {else try with a genotype with no candidates (case ((7)))}
5.  else

6: g < pickGenotype AccordingToOrder(n,G")

7. end if

8:  H, «— resolveGenotype(g, Hp)

9: 7w« removeVisitedGenotype(m, g)
10: end while

The choice of a deterministic slave procedure has one major advantage over a
stochastic one because the evaluation of the solution returned by the master, i.e.,
the permutation, has a unique evaluation. In case of a stochastic algorithm for the
slave, solution quality would be a stochastic variable and one would need to estimate
it, for example by taking the average of a sample. This issue can be tackled by using
the techniques adopted for algorithms tackling stochastic problems [3].

4.3 Preprocessing phase

The instances of the Haplotype Inference Problem can be reduced by analyzing their
structure, while preserving the property that a solution to the reduced instance is a
solution to the original one.

The first preprocessing step consists in eliminating duplicated genotypes; in fact,
some instances contain identical genotypes that can be substituted by a unique
representant without loosing information.

Furthermore, as introduced in Section 3, the analysis of the structure of the
compatibility graph enables us to identify independent sub-instances. Indeed, the
genotypes belonging to an isolated sub-graph, i.e., a disconnected component, iden-
tify a sub-instance that can be solved independently. Therefore, a solution to the
original instance can be found by separately solving the sub-instances composing
it. A special case of independent instance is represented by isolated nodes. The
contribution of such a genotype to the solution of the Haplotype Inference instance

11



is composed by a pair of haplotypes that, by definition of compatibility, cannot be
used to resolve any other genotype.

5 Experimental Analysis

To investigate the performance variance with respect to parameter selection and
to measure the contribution of the learning component, we have run four different
versions of the algorithm:

ga : is the plain master-slave genetic algorithm;

+

ga’ : is the master-slave genetic with increased computational resources;

ga,, : is the ga version of the algorithm, but with learning component disabled;

ga>TS : is the ga hybridized with the local search procedure (a tabu search) intro-
duced in [1].

As explained in [1], for ga>TS we chose to have a simple integration to better
asses the contribution to solution quality of each algorithm. For this reason, the two
algorithms have been serialized: first the master-slave is run and the best solution
returned is passed to the local search as initial state.

In Table 1 the main parameters of the algorithms are summarized. Parameters
have been set after a brute-force analysis on a subset of instances.

alg. pop. size max iter. max idle iter.
ga 100 500 100
ga™t 200 500 200
9Uno 100 500 100
ga>TS 100 500 100

Table 1: Parameters of the solvers.

The algorithms have been tested on well known benchmarks such as Harrower
Hapmap, Harrower Uniform, Marchini SU1, Marchini SU2, Marchini SU3 and Mar-
chini SU-100kb whose main characteristics are summarized in Table 2.

In Figures 1-6, boxplots relative to solution quality (left) and running times
(right) are drawn. The plots represent statistics of ten independent runs of the algo-
rithms on all the instances of each set; values shown are sums of the aforementioned
measures on all the instances.

The algorithms have been developed in C++; the software was compiled with
the GNU g++ compiler v. 4.1.3 and tested on a Intel Pentium 4 3.0GHz machine

12



Benchmark set N. of N. of N. of

inst. geno. sites
Harrower Uniform 200 10+-100  30--50
Harrower Hapmap 24 568 3075

Marchini SU1 100 90 179
Marchini SU2 100 90 171
Marchini SU3 100 90 187
Marchini SU-100kb 29 90 18

Table 2: Main features of the benchmarks.

harrower_hapmap

368.0

367.0

solution vaiues (summea,)
366.0

365.0
|

ga ga_hybrid ga'no  ga plus

harrower_hapmap

umes In secs. (summea)
10 20 30 40 50 60 70 80

o

ga ga_hybrid ga no  ga plus

Figure 1: Harrower Hapmap

running Ubuntu 7.10 (kernel 2.6.22). The local search of ga>TS was implemented
with EAsyLocAL++ [8].
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harrower_uniform

-

2750
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1

ga ga_hybrid ga'no  ga plus

harrower_uniform

=

umes In secs. (summea)
100 200 300 400 500 600

ga ga_hybrid ga no  ga plus

Figure 2: Harrower Uniform

If we consider ga and gay,, graphics show that the learning component has a
remarkable positive impact on solution quality while the cost in terms of computa-
tional resources is negligible. This proves that a simple constructive procedure can
benefit from a careful selection of genotype resolution order.

In general, all solvers (except for ga,,) have the desirable property of being
stable: although they are stochastic algorithms, the distribution of the solution
values is rather packed around the mean and even zero for Harrower Hapmap.

As for solvers gat and ga>TS, their results in term of solution quality are com-
parable to ga, the basic version of the algorithm, while their execution times are
considerably higher than that of ga. If we examine the graphics in more detail, we
notice that the hybrid solver is better than ga™ in Harrower Uniform and Marchini
SU-100kb since solution distribution has lower mean and standard deviation val-
ues. Analogously, ga™ is better than the hybrid in Marchini SU2 and Marchini SU3

14



marchini_SU1
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solution values (summea,)
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Figure 3: Marchini SU1

instances. On Marchini SU1 both algorithms exhibit the same behavior.

To assess the overall performace of the master-slave algorithm, we confronted
ga to the hybrid solver presented in [1] that is, to the best of our knowledge, the
state-of-the-art metaheuristic for Haplotype Inference. In Figures 7-12 the boxplots
representing the statistics of both the algorithms w.r.t. solution quality and running
time are plotted. We observe that the overall solution quality returned by ga is lower
than that of the hybrid solver, but the execution time is remarkably shorter.

6 Conclusion and future work

We have presented a master-slave approach to Haplotype Inference by pure parsi-
mony. The master searches in the space of parmeters used by the slave to build
a solution. We have implemented the master as a genetic algorithm and the slave
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Figure 4: Marchini SU2

as a deterministic constructive procedure. Results show that the approach is very
efficient and reaches a good balance between solution quality and execution time.

The approach is general and the algorithm can be extended in several directions.
First of all, different procedures for implementing the slave can be adopted, espe-
cially stochastic ones, even though they require a more complex solution quality
estimation. Besides extending the slave, also the algorithm of the master can be
changed. For example, other population-based metaheuristics can be chosen, such
as Ant colony optimization [9] or also stochastic local search techniques [14] can be
tested. Furthermore, the approach could also be improved by adding a mechanism
such as the one used in Benders decomposition techniques [13], in which the slave
return the master a set of constraints to reduce the search space.
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Figure 5: Marchini SU3
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