Risk analysis and Deployment Security Issues in a Multi-agent System

Ambra Molesini & Marco Prandini Elena Nardini & Enrico Denti {ambra.molesini, marco.prandini, elena.nardini, enrico.denti}@unibo.it

ALMA MATER STUDIORUM—Università di Bologna

ICAART 2010, Valencia, Spain, 22nd January 2010

2 Risk Analysis

Conclusions and Future Works

 Our work is aimed at performing a security analysis of a selected case study – an access control system [Molesini et al., 2009] – for

- Our work is aimed at performing a security analysis of a selected case study an access control system [Molesini et al., 2009] for
 - identifying threats coming both from
 - ★ the system domain
 - its MAS-based implementation

- Our work is aimed at performing a security analysis of a selected case study an access control system [Molesini et al., 2009] for
 - identifying threats coming both from
 - ★ the system domain
 - its MAS-based implementation
 - assessing risks

- Our work is aimed at performing a security analysis of a selected case study an access control system [Molesini et al., 2009] for
 - identifying threats coming both from
 - ★ the system domain
 - ★ its MAS-based implementation
 - assessing risks
 - discussing deployment strategies that could interfere with the achievement of the application goal

- Our work is aimed at performing a security analysis of a selected case study an access control system [Molesini et al., 2009] for
 - identifying threats coming both from
 - ★ the system domain
 - ★ its MAS-based implementation
 - assessing risks
 - discussing deployment strategies that could interfere with the achievement of the application goal
- In order to do this we

- Our work is aimed at performing a security analysis of a selected case study an access control system [Molesini et al., 2009] for
 - identifying threats coming both from
 - ★ the system domain
 - ★ its MAS-based implementation
 - assessing risks
 - discussing deployment strategies that could interfere with the achievement of the application goal
- In order to do this we
 - present our case study

- Our work is aimed at performing a security analysis of a selected case study an access control system [Molesini et al., 2009] for
 - identifying threats coming both from
 - ★ the system domain
 - ★ its MAS-based implementation
 - assessing risks
 - discussing deployment strategies that could interfere with the achievement of the application goal
- In order to do this we
 - present our case study
 - present the risk analysis phase

- Our work is aimed at performing a security analysis of a selected case study an access control system [Molesini et al., 2009] for
 - identifying threats coming both from
 - ★ the system domain
 - ★ its MAS-based implementation
 - assessing risks
 - discussing deployment strategies that could interfere with the achievement of the application goal
- In order to do this we
 - present our case study
 - present the risk analysis phase
 - discuss about security deployment issues

• MASs should be conceived also as providers of security functionalities

- MASs should be conceived also as providers of security functionalities
- The flexibility of the agent paradigm proves very valuable in

- MASs should be conceived also as providers of security functionalities
- The flexibility of the agent paradigm proves very valuable in
 - modelling the different aspects of security schemes

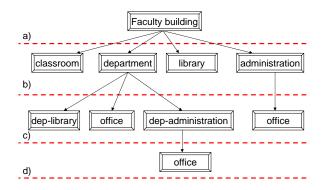
- MASs should be conceived also as providers of security functionalities
- The flexibility of the agent paradigm proves very valuable in
 - modelling the different aspects of security schemes
 - capturing the concepts needed for achieving a robust design at the most appropriate abstraction levels

- MASs should be conceived also as providers of security functionalities
- The flexibility of the agent paradigm proves very valuable in
 - modelling the different aspects of security schemes
 - capturing the concepts needed for achieving a robust design at the most appropriate abstraction levels
- However, a MAS needs a complex underlying infrastructure, whose intrinsic security is fundamental for the correct

- MASs should be conceived also as providers of security functionalities
- The flexibility of the agent paradigm proves very valuable in
 - modelling the different aspects of security schemes
 - capturing the concepts needed for achieving a robust design at the most appropriate abstraction levels
- However, a MAS needs a complex underlying infrastructure, whose intrinsic security is fundamental for the correct
 - behaviour of agents

- MASs should be conceived also as providers of security functionalities
- The flexibility of the agent paradigm proves very valuable in
 - modelling the different aspects of security schemes
 - capturing the concepts needed for achieving a robust design at the most appropriate abstraction levels
- However, a MAS needs a complex underlying infrastructure, whose intrinsic security is fundamental for the correct
 - behaviour of agents
 - implementation of the policy to be enforced

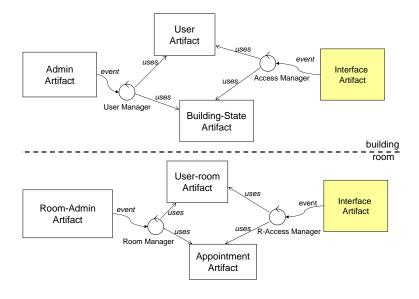
- MASs should be conceived also as providers of security functionalities
- The flexibility of the agent paradigm proves very valuable in
 - modelling the different aspects of security schemes
 - capturing the concepts needed for achieving a robust design at the most appropriate abstraction levels
- However, a MAS needs a complex underlying infrastructure, whose intrinsic security is fundamental for the correct
 - behaviour of agents
 - implementation of the policy to be enforced
- Various solutions exist for the design of MAS-supporting platforms and for exploiting a MAS as a security provider [Yamazaki et al., 2004, Bordini et al., 2006, JADE, 2005] ...



- MASs should be conceived also as providers of security functionalities
- The flexibility of the agent paradigm proves very valuable in
 - modelling the different aspects of security schemes
 - capturing the concepts needed for achieving a robust design at the most appropriate abstraction levels
- However, a MAS needs a complex underlying infrastructure, whose intrinsic security is fundamental for the correct
 - behaviour of agents
 - implementation of the policy to be enforced
- Various solutions exist for the design of MAS-supporting platforms and for exploiting a MAS as a security provider [Yamazaki et al., 2004, Bordini et al., 2006, JADE, 2005] ...
- ... but the field of their security assessment is largely unexplored

Our case study

- Reference domain: access control system
- Case study: management of the access control to a university building [Molesini et al., 2009]
- System's scenario:



The developing methodology

- The case study was analysed and designed [Molesini et al., 2009] according to SODA
- SODA is an agent-oriented methodology for the analysis and design of agent-based systems
 - ... adopts agents and artifacts (A&A meta-model) as the main building blocks for MAS development
 - * agents model individual and social activities
 - * artifacts are adopted for the environment engineering since they glue agents together, as well as MAS and the environment

The system logical architecture [Molesini et al., 2009]

Risk analysis

• Risk analysis is a part of the more general process called *"Security risk assessment and management"* [Sommerville, 2007]

Risk analysis

- Risk analysis is a part of the more general process called *"Security risk assessment and management"* [Sommerville, 2007]
- Risk analysis should start from the identification of the system's
 - assets the system resources to be protected because of their value
 - exposures represent the possible loss or harm that results from a successful attack
 - threats
 - ★ fortuitous events flooding, storms, etc...
 - ★ deliberate attacks sniffing, spoofing, etc...

System's assets, values and exposures

Asset	Value	Exposure		
Interface Artifact	high	medium		
Admin Artifact	high	high		
User Artifact	high	high		
Building-State Artifact	low	low		
Room-Admin Artifact	high	high		
User-room Artifact	high	high		
Appointment Artifact	medium	medium		
User Manager	high	high		
Access Manager	high	high		
R-Access Manager	high	high		
Room Manager	high	high		
Physical Device	high	high		
Infrastructure	high	high		

System's threats

Threat	Probability					
Stealing admin credential	low					
Stealing user credential	high					
Personifying user	high					
Social Engineering	high					
Introducing malicious agent	medium - high					
Disappearing agent	medium - high					
Agent bugs	high					
Modifying agent code	low - medium					
Tampering artifact data	high - very high					
Sniffing artifact data	high - very high					
Artifact bugs	high					
Replacing artifact	medium - high					
Men in the middle	medium - high					
Sniffing communication	medium - high					
Damaging physical device	high					

Threats for each asset

Threat	Asset												
	Interface Artifact	Admin Artifact	User Artifact	Building-State Artifact	Room-Admin Artifact	User-room Art.	Appointment Artifact	User Manager	Access Manager	R-Access Manager	Room Manager	Physical Device	Infrastructure
Stealing admin credential	*	*	*										
Stealing user credential	*		*	*	*								
Personifying user	*		*	*	*	*	*						
Social Engineering	*	*	*	*	*	*	*						
Introducing malicious agent	*	*	*	*	*	*	*	*	*	*	*		
Disappearing agent								*	*	*	*		
Agent bugs								*	*	*	*		
Modifying agent code	*	*	*	*	*	*	*	*	*	*	*		
Tampering artifact data	*	*	*	*	*	*	*						
Sniffing artifact data	*	*	*	*	*	*	*						
Artifact bugs	*	*	*	*	*	*	*						
Replacing artifact	*	*	*	*	*	*	*	*	*	*	*		
Men in the middle	*	*	*	*	*	*	*	*	*	*	*		*
Sniffing communication	*	*	*	*	*	*	*	*	*	*	*		*
Damaging physical device	*	*										*	

• Assumption: all the infrastructures exhibit the same basic set of concepts

• Assumption: all the infrastructures exhibit the same basic set of concepts

Nodes — logical *loci* where agents and artifacts can be allocated

- Assumption: all the infrastructures exhibit the same basic set of concepts
 - Nodes logical *loci* where agents and artifacts can be allocated
 - Artifacts passive components of the systems

- Assumption: all the infrastructures exhibit the same basic set of concepts
 - Nodes logical *loci* where agents and artifacts can be allocated
 - Artifacts passive components of the systems
 - resource artifacts wrap external resources

- Assumption: all the infrastructures exhibit the same basic set of concepts
 - Nodes logical *loci* where agents and artifacts can be allocated
 - Artifacts passive components of the systems
 - resource artifacts wrap external resources
 - social artifacts mediate between two or more agents in a MAS

- Assumption: all the infrastructures exhibit the same basic set of concepts
 - Nodes logical *loci* where agents and artifacts can be allocated
 - Artifacts passive components of the systems
 - resource artifacts wrap external resources
 - social artifacts mediate between two or more agents in a MAS
 - individual artifacts mediate between an individual agent and the environment

- Assumption: all the infrastructures exhibit the same basic set of concepts
 - Nodes logical *loci* where agents and artifacts can be allocated
 - Artifacts passive components of the systems
 - resource artifacts wrap external resources
 - social artifacts mediate between two or more agents in a MAS
 - individual artifacts mediate between an individual agent and the environment

Agents — pro-active components of the systems

Artifacts security deployment issues

• The artifacts deployment is critical from the security viewpoint

Artifacts security deployment issues

- The artifacts deployment is critical from the security viewpoint
 - resource artifacts abstract the functions and behaviours of devices

- The artifacts deployment is critical from the security viewpoint
 - resource artifacts abstract the functions and behaviours of devices
 - ★ smart device = artifact + physical device

- The artifacts deployment is critical from the security viewpoint
 - resource artifacts abstract the functions and behaviours of devices
 - ★ *smart device* = artifact + physical device
 - ★ smart device should be protected in order to prevent possible artifact tampering, replacement and sniffing

- The artifacts deployment is critical from the security viewpoint
 - resource artifacts abstract the functions and behaviours of devices
 - ★ *smart device* = artifact + physical device
 - smart device should be protected in order to prevent possible artifact tampering, replacement and sniffing
 - physical devices should be protected so that the "artifacts corruption" does not damage the integrity and confidentiality of the devices

- The artifacts deployment is critical from the security viewpoint
 - resource artifacts abstract the functions and behaviours of devices
 - ★ *smart device* = artifact + physical device
 - smart device should be protected in order to prevent possible artifact tampering, replacement and sniffing
 - physical devices should be protected so that the "artifacts corruption" does not damage the integrity and confidentiality of the devices
 - social artifacts are the core of interactions

- The artifacts deployment is critical from the security viewpoint
 - resource artifacts abstract the functions and behaviours of devices
 - ★ *smart device* = artifact + physical device
 - smart device should be protected in order to prevent possible artifact tampering, replacement and sniffing
 - physical devices should be protected so that the "artifacts corruption" does not damage the integrity and confidentiality of the devices
 - social artifacts are the core of interactions
 - \star agents use them for communicating with each other

- The artifacts deployment is critical from the security viewpoint
 - resource artifacts abstract the functions and behaviours of devices
 - ★ *smart device* = artifact + physical device
 - smart device should be protected in order to prevent possible artifact tampering, replacement and sniffing
 - physical devices should be protected so that the "artifacts corruption" does not damage the integrity and confidentiality of the devices
 - social artifacts are the core of interactions
 - ★ agents use them for communicating with each other
 - their deployment is critical and should take into account all the measures to ensure that they remain trusted

- The artifacts deployment is critical from the security viewpoint
 - resource artifacts abstract the functions and behaviours of devices
 - ★ *smart device* = artifact + physical device
 - smart device should be protected in order to prevent possible artifact tampering, replacement and sniffing
 - physical devices should be protected so that the "artifacts corruption" does not damage the integrity and confidentiality of the devices
 - social artifacts are the core of interactions
 - ★ agents use them for communicating with each other
 - their deployment is critical and should take into account all the measures to ensure that they remain trusted
 - individual artifacts equip agents with all the protocols they can adopt for interacting

- The artifacts deployment is critical from the security viewpoint
 - resource artifacts abstract the functions and behaviours of devices
 - ★ *smart device* = artifact + physical device
 - smart device should be protected in order to prevent possible artifact tampering, replacement and sniffing
 - physical devices should be protected so that the "artifacts corruption" does not damage the integrity and confidentiality of the devices
 - social artifacts are the core of interactions
 - ★ agents use them for communicating with each other
 - their deployment is critical and should take into account all the measures to ensure that they remain trusted
 - individual artifacts equip agents with all the protocols they can adopt for interacting
 - their deployment is particularly critical, since the corruption of this kind of artifact could allow a malicious agent to misbehave

• In a system developed according to the A&A meta-model, only agents can take proactive security measures

- In a system developed according to the A&A meta-model, only agents can take proactive security measures
- A smart device can be made even smarter by introducing a device manager agent to detect and promptly face dangerous situations

- In a system developed according to the A&A meta-model, only agents can take proactive security measures
- A smart device can be made even smarter by introducing a device manager agent to detect and promptly face dangerous situations
- The agents present several vulnerabilities and are subject to different threats

- In a system developed according to the A&A meta-model, only agents can take proactive security measures
- A smart device can be made even smarter by introducing a device manager agent to detect and promptly face dangerous situations
- The agents present several vulnerabilities and are subject to different threats
- In particular, autonomy, pro-activity and learning capabilities could act as drawbacks from the security view point
 - $\rightarrow\,$ these properties restrict the designer's control on the agent execution flow

- In a system developed according to the A&A meta-model, only agents can take proactive security measures
- A smart device can be made even smarter by introducing a device manager agent to detect and promptly face dangerous situations
- The agents present several vulnerabilities and are subject to different threats
- In particular, autonomy, pro-activity and learning capabilities could act as drawbacks from the security view point
 - $\rightarrow\,$ these properties restrict the designer's control on the agent execution flow
- Other malicious agents and corrupted artifacts can induce agent misbehaviour

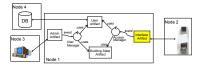
• Analysis of the "deployment requirements" coming from the physical world

- Analysis of the "deployment requirements" coming from the physical world
 - ▶ four logical nodes labelled Node 1, Node 2, Node 3, Node 4

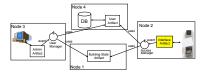
- Analysis of the "deployment requirements" coming from the physical world
 - ▶ four logical nodes labelled Node 1, Node 2, Node 3, Node 4
 - the physical resources are allocated respectively in
 - ***** the device capturing the user credential \rightarrow *Node 2*
 - \star the administrator position \rightarrow *Node 3*
 - \star the database ightarrow Node 4

- Analysis of the "deployment requirements" coming from the physical world
 - ▶ four logical nodes labelled Node 1, Node 2, Node 3, Node 4
 - the physical resources are allocated respectively in
 - ***** the device capturing the user credential \rightarrow *Node 2*
 - \star the administrator position \rightarrow *Node 3*
 - \star the database ightarrow Node 4
 - assumption: the protection of these devices is realised at the infrastructural level...

- Analysis of the "deployment requirements" coming from the physical world
 - ▶ four logical nodes labelled Node 1, Node 2, Node 3, Node 4
 - the physical resources are allocated respectively in
 - ***** the device capturing the user credential \rightarrow *Node 2*
 - ***** the administrator position \rightarrow *Node 3*
 - \star the database ightarrow Node 4
 - assumption: the protection of these devices is realised at the infrastructural level...
 - here we focalise only the MAS security deployment



Centralised and distributed deployments


Centralised deployment

- It is sufficient to build a "secure boundary" around Node 1 to obtain a "secure" system
- The compromission of a single software entity means that the secure boundary of *Node 1* is broken
- The threat probabilities regarding the assets increases
 - an attacker will try to force Node 1 for accessing the system
 - the threat probabilities regarding the intra-MAS communications decrease
- The chosen protection mechanisms should be suitable for protecting the more valuable asset
 - \rightarrow the costly, effective countermeasures have to be sized to protect the whole Node 1, including less valuable assets

Distributed deployment

- All the system entities and the communication channels need to be protected
- Decoupling the exposures level of assets, choosing the most suitable protection mechanism for each
- Leading to reduce the inter-dependency between threat probabilities
- Presenting higher probability values associated with intra-MAS communication
 - $\rightarrow\,$ the communications between entities always occur between network nodes
- The compromission of one node does not automatically implies the compromission of the whole system

Conclusions

• In this paper we have

- explored the topic of security assessment in a MAS, taking a MAS-based access control system as our reference
- performed a detailed risk analysis then, we studied how the deployment choices can influence the opportunity for attacks and the effects of their success
- Our deployment analysis can be situated at the end of the design phase in order to identify the "most adequate" deployment strategy in terms of security assessment
- Beyond the valuable context-specific results, the work hopefully provides an excellent opportunity for further, broader research

- Our work is just the starting point of the story
- Much broader research is needed to
 - ▶ devise a general model of the security requirements for MAS-based systems → opening the way towards the integration of security aspects into a suitable agent-oriented design methodology
 - further investigations concerning the security issues at the infrastructural level \rightarrow the role of the MAS infrastructures is becoming more and more relevant in the whole MAS development process

Bibliography I

```
Bordini, R., Braubach, L., et al. (2006).
```

A survey of programming languages and platforms for multi-agent systems.

Informatica, 30:33-44.

JADE (2005).

 ${\sf Jade.tilab.com/doc/tutorials/JADE_Security.pdf}.$

```
    Molesini, A., Denti, E., and Omicini, A. (2009).
    RBAC-MAS & SODA: Experimenting RBAC in AOSE.
    In Engineering Societies in the Agents World IX, volume 5485 of LNCS. Springer.
```

```
Sommerville, I. (2007).
Software Engineering 8th Edition.
Addison-Wesley.
```


Bibliography II

Yamazaki, W., Hiraishi, H., and Mizoguchi, F. (2004). Designing an agent-based rbac system for dynamic security policy. In *Proc. 13th IEEE Int. Workshops on Enabling Technologies* (*WETICE'04*), pages 199–204, Washington, DC, USA. IEEE CS.

Risk analysis and Deployment Security Issues in a Multi-agent System

Ambra Molesini & Marco Prandini Elena Nardini & Enrico Denti {ambra.molesini, marco.prandini, elena.nardini, enrico.denti}@unibo.it

ALMA MATER STUDIORUM—Università di Bologna

ICAART 2010, Valencia, Spain, 22nd January 2010

