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Abstract

Most problems addressed by the software optimization flow for
multi-processor systems-on-chip (MPSoCs) are NP-complete, and
have been traditionally tackled by means of heuristics and high-
level approximations. Complete approaches have been effectively
deployed only under unrealistic simplifying assumptions.We pro-
pose a novel methodology to formulate and solve to optimality the
allocation, scheduling and discrete voltage selection problem for
variable voltage/frequency MPSoCs, minimizing the systemenergy
dissipation and the overhead for frequency switching. We integrate
the optimization and validation steps to increase the accuracy of
cost models and the confidence in quality of results. Two demon-
strators are used to show the viability of the proposed methodology.

1. Introduction

Multi-Processor Systems-on-Chip (MPSoCs) represent today
the main trend for future architectural designs, since theyare able
to provide scalable computation horsepower while still retaining
the flexibility to support different job mixes. Unfortunately, as the
complexity of MPSoCs evolves toward ultra-large scale integration,
design technology for MPSoCs is hampered by limited scalabil-
ity and composability. Task mapping problem or compilationsub-
problems are combinatorial optimisation problems [18] andhave
been shown to be NP-complete.

Traditionally, the three main approaches followed by the sys-
tem design community when facing a combinatorial optimization
problem are: (i) Modelling and solving the problem with Integer
Linear Programming (ILP). Unfortunately, scheduling problems are
not well tackled by ILP approaches. In addition, pure ILP formu-
lations are suitable only for very small problem instances.(ii) De-
ployment of heuristic methods [20] to provide good (even if not
optimal) solutions. However, heuristic algorithms still impose sig-
nificant computational requirements without guarantees onthe op-
timality of final solutions. (iii) Moving from highly simplifed, ab-
stract modelling assumptions and problem instances to makethem
more tractable. As the complexity of MPSoCs raises, second order
effects are going to impair the quality of derived solutions, lowering
the confidence level on constraint satisfaction and on the value of
the objective function.

Many optimisation problems can be decomposed into well
known, structured and widely studied sub-problems. It is widely
acknowledged that exploiting the structure of these problems im-
proves the performances of the corresponding algorithms. In gen-
eral, merging different algorithmic aspects leads to an efficient
solving process and may determine significant performance speed
ups in finding an optimal solution (see [22]). As a result, many

practical problem configurations, traditionally tackled by means of
approximate methods and over-symplifying assumptions, become
now tractable by complete approaches providing the optimalsolu-
tion in reasonable time. On the other hand, the critical issue of how
to make the different algorithms interact in a cooperative solving
framework arises.

The objective of this paper is to extend this trend to one of the
most important optimization problems in system level design for
variable voltage/frequency MPSoCs: power consumption.

The major challenge that we face in this paper is to devise a
cooperative solving framework where the allocation, the schedul-
ing and the discrete voltage/frequency selection problem models
can be suitably accommodated and solving algorithms integrated.
By leveraging the principle of logic-based Benders Decomposi-
tion [23], we come up with an iterative two-step mapping frame-
work that is proved to converge to the optimal solution. We tackle
problem complexity without paying the price of a lack of accuracy
in modelling assumptions. In fact, an MPSoC virtual platform was
deployed to refine the theoretical framework and prove the accuracy
of the solutions provided by the optimizer.

Our methodology derives static allocation, scheduling andfre-
quency settings, therefore targets applications with design-time pre-
dictable behaviour. Signal processing and multimedia applications
employing pipelining as workload allocation policy are themost
common example of such applications, therefore our optimizer was
tuned for energy-efficient mapping of pipelined task graphson MP-
SoCs. Finally, we used two demonstrators to prove the applicability
of the developed methodology to real-life scenarios.

This paper is structured as follows: we first describe previous
work in the field. The target architecture and the virtual platform
environment are presented in section 3 while the model of theDy-
namic Voltage Scaling Problem is defined in section 4. Discus-
sions on computational efficiency, validation and experimental re-
sults follow.

2. Related Work

In the following, we restrict ourselves to off-line volt-
age/frequency selection techniques, since the presented approach
falls into this category.

A number of techniques have been developed for single proces-
sor systems. Yao et al. proposed in [12] the first DVS approach
which can dynamically change the supply voltage over a continu-
ous range. Ishihara and Yasuura [6] modeled the discrete voltage
selection problem using an integer linear programming (ILP) for-
mulation. Xie et al. [11] present an algorithm for calculating the
bounds on the power savings achievable through voltage selection.
Jejurikar and Gupta [8] propose an algorithm that combines voltage
scaling and shutdown in order to minimize dynamic and leakage
energy in single.

Andrei et al. [2] proposed an approach that solves optimallythe
voltage scaling problem for multi-processor systems with imposed



Figure 1. Distributed MPSoC architecture.

time constraints. The continuous voltage scaling is solvedusing
convex nonlinear programming with polynomial time complexity,
while the discrete problem is proved strongly NP hard and is for-
mulated as mixed integer linear programming (MILP).

The previously mentioned approaches, assume that the mapping
and scheduling are given. However, the achievable energy savings
of dynamic voltage scaling are greatly influenced by the mapping
and the scheduling of the tasks on the target processors.

Task mapping and scheduling are known NP complete prob-
lems [3] that have been previously addessed, without and with the
objective of minimizing the energy. Both heuristic [9], [5]and exact
solutions [1] have been proposed.

Assuming the mapping of the tasks on the processors is given as
input, the authors from [4] present a scheduling technique that max-
imizes the available slack, which is then used to reduce the energy
via voltage scaling. Schmitz et al. [9] present a heuristic approach
for mapping, scheduling and voltage scaling on multiprocessor ar-
chitectures.

A leakage-aware approach for combined dynamic voltage se-
lection and adaptive body-biasing has been proposed in [2, 24].
Although we concentrate in this paper on the dynamic power and
supply voltage selection, our methodology can handle with minor
changes the combined supply and body bias scaling problem with
only marginal implications on computational complexity.

The closest approach to our work is the one of Leung et al.,
[7]. They propose a mixed integer programming formulation for
mapping, scheduling and voltage scaling of a given task graph to a
target multiprocessor platform. They assume continuous voltages,
so the overall result is suboptimal.

3. Target Architecture

The target architecture for our mapping strategy is a general
template for a parallel MPSoC architecture. The platform consists
of computation tiles, an AMBA AHB-compliant communication
architecture (a shared bus) and of a shared memory for inter-tile
communication(see Fig. 1). The computation tiles are supposed to
be homogeneous and consist of ARM7 cores (including instruction
and data caches) and of tightly coupled software-controlled scratch-
pad memories.

Messages can be exchanged by tasks through communication
queues, which can be allocated at design time either in scratch-pad
memory or in remote shared memory, depending on whether tasks
are mapped onto the same processor or not. Synchronization be-
tween a producer/consumer pair is implemented by means of dis-
tributed hardware semaphores. The software support is provided by
a real-time operating system called RTEMS and by a set of high-
level APIs to support message passing on the underlying hardware
architecture [13].

Our virtual platform environment provides power statistics for
ARM cores, caches, on-chip memories and AMBA AHB bus, lever-
aging technology-homogeneous power models for a 0.13µ m tech-
nology provided by STMicroelectronics. When all tasks mapped

on a processor core are suspended, then the core enters powersave
mode, where the power consumption is assumed to be negligi-
ble. The virtual platform supports different working frequencies for
each processor core [16] (see the synchronization modules,and the
programmable register driving the clock tree generator in Fig. 1).
The maximum AMBA AHB frequency of 200MHz was kept as the
maximum processing core frequency, to which frequency dividers
were applied. The scaling factor for the power supply was derived
from [17].

4. Dynamic Voltage Scaling Problem - DVSP

We consider a task graphG whose nodes represent a set ofT
tasks, that are annotated with their deadlinedlt and with the worst
case number of clock cyclesWCNt. Arcs represent dependencies
among tasks. Each arc is annotated with the amount of data twode-
pendent tasks should exchange, and therefore the number of clock
cycles for exchanging (reading and writing) these dataWCNR and
WCNW . Tasks are running on a set of processorsP . Each proces-
sor can run withM energy/speed modes and has a maximum load
constraintdlp. Each task spends energy both in computing and in
communicating. In addition, when the processor switches between
two modes it spends time and energy. We have energy overheadEf

for switching from frequencyf to any other, and time overheadTf

for switching from frequencyf to any other.
The Dynamic Voltage Scaling Problem (DVSP) is the problem

of allocating tasks to processors, define the running speed of each
task and schedule each of them minimizing the total energy con-
sumed. In order to solve the DVSP to optimality without incurring
accuracy limitations, we applied the concept behind the logic-based
Benders decomposition technique [23] to this new application prob-
lem.

We therefore decompose the problem in two parts: the first,
called Master Problem, is the allocation of processors and frequen-
cies to tasks and the second, called Subproblem, is the schedul-
ing of tasks given the static allocation and frequency assignments
provided by the master. The master problem is tackled by an Inte-
ger Programming solver while the subproblem through a Constraint
Programming solver. The two solvers interact via no-good and cut-
ting planes generation. The solution of the master is passedto the
subproblem in an iterative procedure that is proved to converge to
the optimal solution [23].

4.1 The Master Problem model

We model the allocation problem with binary variablesXptm

which take value 1 if taskt is mapped on the processorp and runs
in (energy-speed) modem, 0 otherwise. Since we also take into
account communication, we assume that two tasks consume energy
and time for communication only if they are allocated on two dif-
ferent processors. Both the read and write activities are performed
at the same speed of the task and use the bus (which instead works
at the maximum speed). For modelling this aspect, we introduce in
the model two variablesRpt1t2m andWpt1t2m taking value 1 if the
taskt1 running on processorp reads (resp. writes) data (at mode m)
from (resp. for) a taskt2 not running onp.

Any task can be mapped on only one processor and can run at
only one speed, that is:
PP

p=1

PM

m=1
Xptm = 1 ∀t

Also, if each task can read data from (resp. write data for) only
one task as for instance in a pipelined workload, we have these
constraints:
PT

t2=1,t2 6=t1

PP

p=1

PM

m=1
Rpt1t2m ≤ 1 ∀t1

PT

t2=1,t2 6=t1

PP

p=1

PM

m=1
Wpt1t2m ≤ 1 ∀t1

The objective function is tominimize the energy consumption of
the task execution, and of the task communication:

Ecomp =
PP

p=1

PM

m=1

PT

t=1
XptmWCNttclockmPtm

ERead =
PP

p=1

PM

m=1

PT

t,t1=1
Rptt1mWCNRtt1tclockmPtm



EWrite =
PP

p=1

PM

m=1

PT

t,t1=1
Wptt1mWCNWtt1 tclockmPtm

OF = Ecomp + ERead + EWrite

wherePtm is the power consumed by taskt when running in
execution modem.

The objective function defined up to now depends only on mas-
ter problem variables. However, switching from one speed toan-
other introduces transition costs, but their value can be computed
only at scheduling time. Therefore, we update the objectivefunc-
tion with frequency transition (or setup) costs:

OFMaster = OF +
PP

p=1
Setupp

but we force them to be 0 in the first iteration, while from the
second iteration cuts are produced by the subproblem, constraining
variablesSetupp.

Finally, we impose that on each processor the sum of the time
spent for the the computation, plus the time spent for communica-
tion (read and write) should be less than or equal to the deadline of
the processor, in oder to prevent trivially infeasible solutions:

T p
compp

=
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t=1
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m=1
Xptm

WCNt
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write =
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read + T p
write ≤ dlp ∀p

In the same way task deadlines can be captured, which are the
same formulas but the sums are computed for each task.

4.2 The Sub-Problem model

For the scheduling part each taskt has an associated variable
representing its starting timeStarti. The duration is fixed since the
frequency is decided, i.e.,durationi = WCNi/fi. In addition, if
two communicating tasksti and tj are allocated on two different
processors, we should introduce two additional activities(one for
writing data on the shared memory and one for reading data from
the shared memory). We model the starting time of these activities
StartWriteij andStartReadij. These activities are carried on at
the same frequency of the corresponding task. Ifti writes andtj

reads data , the writing activity is performed at the same frequency
of ti and its durationdWriteij depends on the frequency and on
the amount of datati writes, i.e.,WCNWij/fi. Analogously, the
reading activity is performed at the same frequency oftj and its du-
rationdReadij depends on the frequency and on the amount of data
tj reads, i.e.,WCNRij

/fj . Clearly the read and write activities
are linked to the corresponding task:

Starti + durationi ≤ StartWriteij ∀j
StartReadij + dReadij = Startj ∀i

In the subproblem, we model precedence constraints in the fol-
lowing way: if tasksti should precede tasktj and they run on the
same processor at the same frequency the precedence constraint is
simply:

Starti + Durationi ≤ Startj

If instead the two tasks run on the same processor at different
speed, we should add the timeTi for switching between the two
frequencies.

Starti + Durationi + Ti ≤ Startj

If the two tasks run on different processors and should commu-
nicate we should add the time for communicating.

Starti + Durationi + dWriteij + dReadij ≤ Startj

Resources are modelled as follows. We have a unary resource
constraint for each processor, modelled through a cumulative con-
straint having as parameters a list of all tasks sharing the same re-
sourcep, their durations, their resource consumption (which is a list
of 1) and the capacity of the processor which is 1

cumulative(TaskListp, DurationListp, [1], 1) ∀p
We model the bus through an additive model we have already

validated in [15]. We have an activity on the bus each time a task
writes or reads data to and from the shared memory.
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Figure 2. Search time for an increasing number of tasks.

The objective function we want to minimize in the scheduling
problem is the setup energy, i.e., the energy spent for frequency
switchings. For this purpose we have energy overheadsEi for
switching from frequencyi to any other frequency.

Once the subproblem has been solved, we generate Benders
Cuts. The cuts are of two types: (i) if there is no feasible sched-
ule given an allocation, we have to compute a no-good on variables
Xptm avoiding the same allocation to be found again.
(ii) if a feasible and optimal schedule exists, we cannot simply stop
the iteration since the master objective function depends also on
subproblem variables. Therefore, we have to produce cuts saying
that the one just computed is the optimal solution unless a better
one exist with a different allocation. These cuts produce a lower
bound on the setup costs of single processors.

The procedure converges when the master problem produces a
solution with the same objective function value of the previous one.

5. Computational efficiency

We tested the computation efficiency of our hybrid approach
on a 2GHz Pentium 4 machine with 512 Mb RAM and leveraged
state-of-the-art professional solving tools, namely ILOGCPLEX
8.1, ILOG Solver 5.3 and ILOG Scheduler 5.3. We increased the
number of tasks and of processors, and noticed that the algorithm
scales quite smoothly in both cases. In Fig.2 we plot the search
time for an increasing number of tasks. The behavior is similar for
increasing number of processors (going from 4 to 10).

We also noticed that the phase transition of the problem happens
when the deadline is not too tight to have few solutions (among
which is easy to find the optimal one) and not too loose so as the
problem is trivially solvable assigning all tasks to the same proces-
sor and the lowest speed. In addition, varying the deadline con-
straints, the best and the worst search time remain within anorder
of magnitude, so our methodology efficiently faces instances with
different density of feasible solutions.

6. Experimental Results

We have deployed a cycle accurate MPSoC simulator [14] to
characterize task model parameters for the optimizer and vali-
date the optimizer results. Two types ofvalidation experiments
were performed, namely (i) comparison of simulated energy and
throughput with optimizer-derived values, and (ii) prove of viability
of the proposed approach for real-life demonstrators (GSM,JPEG).

6.1 Validation of optimizer solutions

We have deployed the virtual platform to implement the allo-
cations, schedules and frequency assignments generated bythe op-
timizer for 200 problem instances. The results of the validation
phase are reported in Fig.3, which shows the distribution ofenergy
deviations. The average difference between measured and predicted
energy values is 2.9%, with 1.72 standard deviation. Fig.4 shows
the cumulative probability of throughput differences: in this case



Figure 3. Distribution of Energy Consumption differences.

Figure 4. Cumulative probability of throughput deviations.

the average difference between measured and predicted values is
4.7%, with 0.08 standard deviation. This confirms the high level
of accuracy achieved by the developed optimization framework in
modelling real-life MPSoC systems with the assumed architectural
template.

6.2 Demonstrators

The methodology has been applied to a GSM codec parallelized
in 6 pipelined tasks. The validation process on the virtual platform
showed an accuracy on processor energy by 2% When restricting
the real-time requirement, the behaviour of the optimizer can be
deduced from Fig.5. When the deadline is loose, all tasks areal-
located to one single processor at the minimum frequency. Asthe
deadline gets tighter, the optimizer prefers to employ a second pro-
cessor and to progressively balance the load, instead of increasing
task frequencies. Only under very tight deadlines, the optimizer
leverages increased task frequencies to speed-up the system. To the
limit, the system works with 1 task on each processor, although not
all tasks run at the maximum frequency. In fact, the GSM pipeline
turns out to be unbalanced, therefore it would be energy inefficient
to run the shorter tasks at maximum speed, and would not even pro-
vide performance benefits. The problem becomes infeasible if more
stringent deadlines than 710 ns are required.

Our methodology was then applied to a JPEG decoder parti-
tioned in 4 pipelined tasks, and the accuracy on energy estimation
was again very high (3.1%). In contrast to GSM, user require-
ments on a JPEG decoding usually consist of the minimizationof
the execution time and not of a deadline to be met. However, a
performance-energy conflict arises, therefore we derived the Pareto-
optimal frontier in Fig.6. The constraint on the execution time on
the x-axys has been translated into a constraint on the blockdecod-
ing time. The curve is not linear since there is a discrete number of
voltage-frequency pairs, which makes the problem for the optimizer
much more complex.

7. Conclusions
In this paper, we built a cooperative framework to solve the allo-

cation, scheduling and voltage/frequency selection problem to op-
timality for energy-efficient MPSoCs. The integration of the opti-
mizer with a virtual platform allowed us to prove the accuracy of
our methodology.

Figure 5. Behaviour of the optimizer with varying real-time re-
quirements. Allocation is given as an array indicating the processor
ID on which each task is mapped. Similarly, the frequency of each
task is expressed in terms of the integer divider of the baseline fre-
quency. Only 3 dividers are used for this example.

Figure 6. Pareto-optimal frontier in the performance-energy de-
sign space
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