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ABSTRACT

Many combinatorial problems coming from the real world may not have a clear

and well defined structure, typically being dirtied by side constraints, or being com-

posed of two or more sub-problems, usually not disjoint. Such problems are not suit-

able to be solved with pure approaches based on a single programming paradigm,

because a paradigm that can effectively face a problem characteristic may behave

inefficiently when facing other characteristics. In these cases, modelling the prob-

lem using different programming techniques, trying to ”take the best” from each

technique, can produce solvers that largely dominate pure approaches. We demon-

strate the effectiveness of hybridization and we discuss about different hybridization

techniques by analyzing two classes of problems with particular structures, exploit-

ing Constraint Programming and Integer Linear Programming as solving tools and

Algorithm Portfolios and Logic Based Benders Decomposition as integration and

hybridization frameworks.
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Introduction & Preliminaries





Chapter 1

Introduction

The thesis defended in this dissertation is the following:

Constraint Programming and Integer Linear Programming are

effective programming paradigms for dealing with Combinatorial

Optimization Problems. The structural characteristics of some classes

of Combinatorial Optimization Problems can guide the selection of

the solving approach. The structure can also suggest to develop

solvers based on both the approaches, or to split the problem in two or

more subproblems solved with different approaches.

This Chapter introduces the arguments discussed in the dissertation and is orga-

nized as follows: Section 1.1 discusses about the motivations underlying our work;

Section 1.2 introduces the problems analyzed to support our thesis and Section 1.3

gives an overview of the dissertation organization.

1.1 Modelling the world

Dealing with decisions is an important part of the real life. Taking a decision that

will not clash with other people preferences is of basic importance for economic

life. Examples of decision making are; deciding which customers will be visited by

a travelling salesman and in which order, what goods and in what amount will be

delivered to each of them; deciding which workers to assign to each stage of an
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assembly line; packing a set of items in a bag when taking a journey; scheduling the

set of activities everyone has to deal with during the day. Even without realizing it,

it is clear that decisions are made continuously during our daily life.

In general, these decisions are constrained. Let us suppose, for example, that we

want to schedule the lectures given in a university. The final schedule must fulfill

a number of requirements: the university has a limited number of rooms with a

given number of seats; each lecture must be hold in a room having enough seats for

students attending it; preparatory courses must be attended before other courses

for propaedeutical reasons; lecturers may have preferences on the day of the week

and on the part of the day where they have to teach.

These kind of problems are classified, in computer science, as optimization or

feasibility problems. Finding the best solution, or simply a solution satisfying all

the constraints involved in the problem, is hard. Modelling a problem is the aim of a

huge part of computer science. Since 1960 the Operation Research (OR) community

has worked on these problems introducing Linear Programming (LP) [28, 29], where

problems are modelled using linear inequalities involving variables ranging over the

real numbers. A solution to a LP problem is an assignment of a real value to each

variable so as to satisfy all the inequalities. Often real decisions deal with discrete

choices and disjunctive decisions; only an integer number can represent the amount

of goods to be delivered; a stage of the assembly line can be assigned to worker A

or to worker B, but not to both of them. These problems are called combinatorial

and, to deal with them the OR community proposed the so called Integer Linear

Programming (IP), where, beside the LP model, some variables are constrained to

assume only integer values. This simple constraint turns a polynomial problem (as

LP is) into a NP-Hard problem. In over fifty years the OR community proposed

lots of techniques to solve the IP problems.

From the seventies, the Artificial Intelligence community started looking at com-

binatorial problems, defining the Constraint Satisfaction process. In the late eight-

ies, the Constraint Programming (CP) paradigm was proposed. CP models a prob-

lem posting a set of constraints over a set of variables. Each variable is annotated

with a domain of possible values it can assume. These values can be of any kind:

real, integer or symbolic. A solution to a CP problem is an assignment of a value

to each variable so as to satisfy all the constraints.
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The same problems solved using an IP-based approach can be solved using a CP

approach. From the literature, it is well known that, depending on the structure

of the problem to be solved, one approach can be significantly better than another.

The problem structure suggests the best solving technique and, for some classes of

problems, the best approach can vary from an instance to another.

When modelling a real world problem it is of primary importance to choose

the best solving technique. The first way one can try is to find some similarities

between the problem faced and an existing problem for which it is well known, from

the literature, the best solving approach: it is likely that the same approach can

successfully solve both the problems. Often the difference between an appropriate

solving technique and an unadvisable one lies not only in the solving time, but even

in the capability to solve the problem or not.

Unfortunately, the theory is most often far from practice. It is not always pos-

sible to recognize similarities between different problems; furthermore, a very little

difference can change so much the problem characteristics that the same solving

approach has completely different behaviours. To cite an example, let us consider

the well known Travelling Salesman Problem (TSP): considering complete methods,

the TSP is best solved by an IP approach [3], and we can solve instances with up

to some tens of thousands cities with IP [100], while we can hardly face problems

with only 50 cities using a CP based approach. But when temporal constraints are

introduced in the problem, facing the so called TSP with time windows (TSP-TW),

CP becomes effective: in this case, a CP based approach, or an approach integrating

CP and IP, can outperform a pure IP based approach [38, 39].

The problem structure can suggest the best solving approach, but for some classes

of problems a single approach can be inadequate to solve them. The structure can

suggest to combine together two different approaches, or to use one approach rather

than another depending on the particular instance we are solving. In this disser-

tation evidence will be given, to support our thesis, that Constraint Programming

and Integer Linear Programming are suitable programming paradigms for solving

combinatorial optimization problems and, in particular, can be combined together

to develop advanced solving tools for the classes of problems described above.

We will support the thesis analyzing two classes of combinatorial optimization

problems: the Bid Evaluation Problem in Combinatorial Auctions, a generalization
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of the Winner Determination Problem with temporal constraints; the Allocation

and Scheduling Problem in Multi Processor System-on-Chip platforms, considering

two variants with and without voltage scaling. These problems will be described

in Section 1.2. As we will see in Section 1.2, for the first class of problems the

best approach depends on the single instance and not on the problem, while the

second presents a structure where it is possible to recognize two well known sub-

problems, the allocation and the scheduling, best solved respectively by an IP and

a CP based approach. Trying different approaches for the former problem, and

hybridizing the two techniques for the latter, can lead to a great enhancement of

the solvers behaviours and quality.

1.2 Problem descriptions

In the following we will introduce the two problems analyzed during our research

activity, describing the characteristics making them suitable for supporting our the-

sis.

1.2.1 Bid Evaluation Problem

The Bid Evaluation Problem (BEP) is a problem rising in the context of electronic

auctions, in particular of Combinatorial Auctions (CA). In CAs the auctioneer puts

up for auction a set of items at the same time and the bidders can bid on combination

of them, indicating a price for the whole bundle of proposed items. In this context,

the so called Winner Determination Problem (WDP) rises: given a set of items put

up for auction and a set of bids, each proposing a price for buying (resp. selling)

a subset of the items, the goal is to find the combination of winning bidders such

that all the items are sold (resp. bought) at the maximum (resp. minimum) revenue

(resp. cost). The WDP is NP-hard [70]. The BEP is a WDP where the items put up

for auction are services that must be executed: each bidder associates to each item

(service) appearing in its bid a temporal window inside which he can start supplying

the service and the duration. The auctioneer imposes temporal precedences between

couple of services. Let us think, for example, of a transportation service from city

A to city C. When buying the service from A to B and from B to C, of course the

former service, from A to B, must be supplied first. The problem is to find the set of
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bids covering all the services at the maximum (resp. minimum) revenue (resp. cost)

such that all the temporal constraints (time windows and precedences) are met. In

the Chapter 6 we will give a formal description of the WDP and the BEP.

For what introduced above, the BEP is a WDP with temporal side constraints.

The side constraints can be seen as constraints added to a model that can describe,

even without the side constraints, an optimization problem as well. Side constraints

are, for example, temporal constraints, problem specific constraints, labor union

rules.

The WDP is a well known problem, equivalent to a set partitioning problem,

with a very clear structure, and, as we will see in Section 4.1.1, the best complete

approach to solve the WDP is Integer Programming (IP). As soon as the tempo-

ral side constraints are added to the model, the structure is lost and it is no more

straightforward that IP is the best solving strategy. The BEP can be efficiently

solved by a Constraint Programming (CP) based approach. Depending on the in-

stance structure, and in particular depending on the predomination of constraints

coming from the covering or the temporal part of the problem, one approach (either

IP or CP) can perform better than the other. This is exactly the class of problems

where an Algorithm Portfolio (see Section 4.2) can be used.

In the second part of this dissertation we will analyze in deep the BEP structure

developing a portfolio of algorithms, based on IP and CP, to solve the BEP. Our idea

is to select the fastest algorithm in the portfolio by analyzing the instance structure

before starting the search. If a way to automatically select the best algorithm can be

found, it is possible, instead of running in parallel all the algorithms in the portfolio,

to execute only the best one speeding up the search. The automatic method to select

the best strategy we developed is based on Decision Trees, a Machine Learning

approach, and on the off-line analysis of the instance structure.

This work has been subject of some publications: in [52] we proposed the differ-

ent algorithms we developed to solve the BEP, defining the algorithm portfolio and

describing a preliminary selection strategy; in [45] and [53] we exploited two dif-

ferent Machine Learning based algorithm selection techniques, namely Case-Based

Reasoning (CBR) and Decision Trees (DT); in [44] we presented other selection

techniques, namely Binomial Logistic Regression and Weighted Random, compar-

ing them with CBR and DT and founding that DT provides the best results for the
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problem considered.

1.2.2 Allocation and Scheduling on a Multi-Processor System-on-Chip

The Multi-Processor System-on-Chip (MPSoC) is the state of the art for the system

design technology. A set of homogeneous processors lie on the same silicon die, to-

gether with memories and an interconnection bus. When the MPSoC platforms are

used to perform always the same application (or set of applications), an important

design choice is to decide, for each process to be executed on top of the platform,

which resources (memories and processors) to use. In fact, MPSoCs are typically

used for realtime applications and finding the best allocation of resources to pro-

cesses can lead to a significant cutting down of, for example, the power consumption

or the inter-processors communication overhead, and, essential thing, to the com-

pliance with the realtime constraints. Recent MPSoCs platforms can tune their

speed changing the working frequency. Another degree of choice for the designer is

therefore the working frequency of each process.

The Allocation and Scheduling problem (ASP) on a MPSoC is the problem of

finding, given the characterization of the set of processes running on top of the plat-

form, a feasible (or the optimal) allocation of processors and memories to processes,

scheduling the process execution and respecting the capacity of all the resources (pro-

cessors, memories and interconnection busses) as well as the realtime constraints.

If we are interested in the optimal solution, the objective function could be the

minimization of a time-related quantity as the makespan (the end of the last task),

the tardiness (the delay of a process ending after the deadline), the late processes

(the number of processes ending after the deadline). Another important objective

function can be the minimization of the total amount of data transferred on the

interconnection bus. The bus is a shared resource, and when a number of processes

try to use it at the same time, collisions may occur and therefore a bus arbitrage

mechanism is needed. The execution time of the processes becomes thus higher

due to the arbitrage overhead and, if the number of collision becomes considerably

higher, the real time constraints can be violated. Minimizing the total amount of

data transferred on the shared bus reduces the collision probability.

If we consider a MPSoC able to change the working frequency, besides the re-

source allocation, the assignment of a frequency to each process is another degree
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of choice. This problem is called the Dynamic Voltage Scaling Problem (DVSP).

In the DVSP, one might be interested in minimizing the total power consumed; in

fact, MPSoCs can be embedded in mobile devices, where the power consumption

reduction is the main issue.

Differently from the BEP, the structure of this problem is almost the same for

every instances, but presents a very interesting characteristic: we can recognize two

sub-problems, the allocation of resources, and eventually frequencies, to tasks and

the scheduling of the tasks execution using the allocated resources over the time.

The allocation problem is an optimization problem and is best solved by an IP

approach, while the scheduling, dealing with temporal constraints, is best faced by

a CP approach. Solving the overall problem using a single solving technique (either

IP or CP) is very inefficient, but, as the structure suggests, it is possible to split the

two sub-problems and to solve them separately using the most appropriate technique

for each sub-problem.

In the third part of this dissertation we will analyze and solve the problem,

focussing in particular on the questions connected with the problem splitting and

with the interaction between the sub-problems. In fact, the allocation and the

scheduling part are, in general, linked together sharing some constraint and hence

they must interact in order to find the optimal solution for the problem overall.

We exploit the Logic-Based Benders Decomposition technique [56] to make the two

sub-problems cooperating.

This work has been subject of some publications: in [13] and [14] we proposed a

Logic-Based Benders Decomposition approach to solve the ASP, comparing it with

pure CP and IP based approaches; in [113] we validated the approach simulating

our solutions on a real MPSoC platform. In [15] we proposed a Logic-Based Benders

Decomposition approach for the DVSP, validating it in [16].

1.3 Organization of the Dissertation

This dissertation is divided into three parts, organized as follows.

Part I - Introduction & Preliminaries

Chapter 1, Introduction: we introduce our research and we briefly describe the

problems we face in the dissertation.



10 Chapter 1. Introduction

Chapter 2, Constraint Programming: we report the background knowledge

on Constraint Programming necessary to read the dissertation. We present con-

straint satisfaction and optimization problems, some techniques and algorithms to

solve them, ordering heuristics and global constraints.

Chapter 3, Integer Linear Programming: we report the background knowl-

edge on Integer Linear Programming necessary to read the dissertation. We present

linear programming, the duality concept, integer programming and techniques to

solve these problems, with particular stress on decomposition methods.

Chapter 4, Integration of Constraint and Integer Linear Programming:

we summarize Constraint Programming and Integer Linear Programming strong and

weak points and we introduce the integration techniques used.

Part II - The Bid Evaluation Problem in Combinatorial Auctions

Chapter 5, Introduction: we introduce some auction mechanisms and the com-

binatorial auctions.

Chapter 6, Problem description and modelling: we describe the BEP and

we introduce the CP and IP models for the problem. We discuss on previous works

related to the arguments of the Part II.

Chapter 7, Algorithms and Experimental Results: we introduce the solv-

ing tools we developed and we show the experimental results obtained. We compare

our tools with another BEP solving tool.

Chapter 8, Algorithm Portfolio Analysis: we discuss and present the algo-

rithm portfolio we developed and the machine learning tool we used to select the

best algorithm in the portfolio on the basis of the instance structure. We show some

experimental results.

Part III - The Allocation and Scheduling Problem on a Multi-Processor

System-on-Chip

Chapter 9, Introduction: we introduce the MPSoC platform and simulator and

we describe the problems faced in the Part III. We conclude discussing on previous

works related to the arguments of the Part III.

Chapter 10, ASP model: we describe the ASP problem and its model based

on decomposition. We discuss about design choices and simplifying assumptions.
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Chapter 11, ASP Results: we compare the results obtained when modelling

and solving the ASP using hybrid or pure approaches. We validate the efficiency

of our solving tool and the executability of the solutions found by comparing our

results with those found by the MPSoC simulator.

Chapter 12, DVSP model: we describe the DVSP problem and its model

based on decomposition. We discuss about design choices and simplifying assump-

tions.

Chapter 13, DVSP Results: we compare the results obtained when modelling

and solving the DVSP using hybrid or pure approaches. We validate the efficiency

or our solving tool and the executability of the solutions found by comparing our

results with those found by the MPSoC simulator.

Chapter 14, Conclusions and future works: we conclude the dissertation

presenting our contribution, discussing on lessons learnt, strong and weak points of

our work and presenting some future extension and lines of research.





Chapter 2

Constraint Programming

Introduction

In this chapter a formal background on Constraint Programming will be given. In

section 2.1 Constraint Satisfaction and Optimization Problems will be defined; in

sections 2.2 and 2.3 the concepts and techniques required to solve a Constraint

Satisfaction Problem and a Constrained Optimization Problem will be described;

section 2.4 introduces the Global Constraints.

2.1 Constraint Satisfaction Problem

In a Constraint Satisfaction Problem (CSP) we have a set of variables, each with a

domain of possible values, and a set of constraints involving a subset of the variables.

A constraint is a relation between some variables limiting the set of values the

variables can assume. A constraint can involve any number of variables. A solution

to a CSP is an assignment of one value to all the variables such that each constraint

is met.

More formally:

Definition 1 A Constraint Satisfaction Problem (CSP) consists of:

• a set of variables X = {X1 . . . Xn};

• a set of finite domains of values D = {DX1 . . . DXn}, one for each variable Xi.

The cartesian product of all the domains DX1 × DX2 × · · · × DXn−1 × DXn is

called search space;
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• a set C of constraints imposed on the variables. Each constraint ci(X
i
1 . . . X i

j) ∈
C, imposed on a subset X1 . . . Xj of the variables X, defines a subset of the

domains DX1 . . . DXj
containing only the combination of values allowed.

A CSP is thus described by a tuple {X, D,C}. When a variable Xi assumes a

value in DXi
we have an assignment. If all variables are assigned, we have a total

assignment and, if all the constraints are met, a solution to the CSP is found.

If we are not only interested in whatever solution, but we want to find the best

solution w.r.t. a given objective function, the problem is called Constraint Opti-

mization Problem (COP).

Solving a CSP (or a COP) is usually NP-Hard, that is it does not exist (unless

P=NP) a method to solve the problem in a time polynomial in the size of the

problem. A CSP is intractable, is thus necessary to define search strategies to prune

the search space and to reach a solution in a reasonable time.

2.2 Search, Consistency and Constraint Propagation

A CSP conceptually uses a search tree, i.e. a tree where a node represents a variable,

an edge starting from a node represents an assignment and each leaf is a total

assignment. If the total assignment meets all the constraints, the leaf represents a

solution to the problem.

The simplest technique to solve a CSP is to perform a complete assignment

traversing the search tree from the root node to a leaf, and checking a posteriori

if the assignment is feasible and, thus, is a solution. If it is unfeasible, the search

proceeds ascending the tree (this technique is known as backtracking) until the first

node with an alternative branch is found, hence repeating the search on unexplored

paths. This technique is called Generate and Test: a solution is generated and

then tested for the feasibility. It is easy to understand that this technique, in the

worst case, traverses the whole search tree enumerating and testing all the possible

total assignments.

Another technique, slightly better than Generate and Test, is the Standard

Backtracking: each time an assignment is performed, the compatibility with all

the other assignments done so far is checked, avoiding to traverse a path that will

surely lead to a failure.
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Figure 2.1: Example of search tree

It is possible to use the constraints in a smart fashion, in order to reduce the

search tree. Figure 2.1 represents a small example of a search tree for a problem

with 3 variables (X, Y, Z) with domains {0, 1} and 3 constraints (X 6= Y, X 6=
Z,Z ≥ X). Considering this small example, we can easily understand that Generate

and Test technique will backtrack 4 times before finding a solution, while Standard

Backtracking will backtrack only twice. We can note that, if after the assignment

X = 0 the value 0 from the domains of variables Y and Z would be immediately

removed, since they are both incompatible with the constraints imposed, the solution

could be found without backtracking.

In practice, no CP solvers implement the techniques described above, but more

efficient techniques able to prevent failures removing the infeasible values as soon as

possible and thus exploring a lower portion of the search tree. These techniques are

called Consistency and Constraint Propagation Techniques.

2.2.1 Consistency Techniques

The Consistency Techniques (CT) propagate the constraints before starting the

search, removing from the domains those values that will not lead to any feasible

solution. CT therefore derive a smaller, and thus simpler, problem from the original

one.

Conceptually, the CT are based on a constraint graph: each node represents a

variable and each arc represents a constraint. Arcs can be directed or not, e.g.

the constraint 6= is represented by a bidirectional (or not directed) arc, while the

constraint ≤ is represented by a directed arc. Unary constraints (e.g. 0 ≤ X ≤
10) are represented by an arc starting and ending in the same node, while binary
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constraints (e.g. X ≥ Y ) are represented by an arc joining 2 nodes. The simplest

level of consistency, namely the Node Consistency or consistency with degree 1, is

obtained when all the values in a variable domain are consistent with the unary

constraints involving the variable.

Starting from a constraint graph, several degrees of consistency are reached by

the commercial CP solvers.

• Arc Consistency (AC): consistency with degree 2. A constraint graph is arc

consistent if it is node consistent and all the arcs in the graph are consistent:

an arc between 2 nodes (i.e. a constraint between 2 variables) is consistent

if, for each value in the domain of a variable, exists at least one value in the

domain of the other variable satisfying the constraint. If it is not the case, the

value must be removed from the domain of the first variable. Removal due

to AC check can lead to a graph that is no more node consistent; thus node

consistency must be checked again, as well as AC, iterating the analysis until

the graph converges to a stable node consistent state.

• Bound Consistency (BC): is a relaxation of the AC. BC enforces AC only

on the outer bounds of the variables domains. BC was originally proposed for

continuous domains and then extended to discrete ones with the only require-

ments that the domains must be ordered. Achieving BC is less time and space

consuming than AC.

• Generalized Arc Consistency (GAC): is a generalization of the AC to deal

with constraints of arity higher than 2. A constraint c(X1, . . . , Xn) is GAC if,

taken a variable Xi, for each assignment to the remaining n− 1 variables

X1 = v1, . . . , Xi−1 = vi−1, Xi+1 = vi+1, . . . , Xn = vn

exists a value d in the domain of Xi such that the constraint

c(v1, . . . , vn−1, d, vn+1, . . . , vn)

is satisfied.

2.2.2 Constraint Propagation Techniques

Constraint Propagation Techniques remove from the variable domains those values

that, by virtue of the partial assignments done so far, will lead to a failure. Typically,
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in a CSP, consistency is first checked, then propagation is performed and, if a solution

is still not found, an assignment is tried. Consistency, propagation and assignments

iterate until a solution is found or a failure occurs: in the latter case, backtracking

is performed.

Among the Constraint Propagation Technique, Forward Checking (FC) and Look

Ahead (LA) are the most used. FC removes, from the domains of all the variables

till not assigned, all the values incompatible with the last assignment done. If a

domain becomes empty, backtracking is performed. LA performs FC and, besides,

checks if the values left in the domains can still lead to a solution or, due to the

assignments and propagation done they will lead to a failure. LA achieves the AC.

The main difference between FC and LA is that FC propagates only the con-

straints involving the last variable assigned, while LA also propagates all the con-

straints involving at least one unassigned variable. It is easy to understand that LA

is more powerful than FC to avoid backtracks but, on the other side, it requires an

higher computational effort: it is necessary to find the technique that supplies the

best tradeoff between search space reduction and computational effort.

2.3 Constraint Optimization Problem

2.3.1 Objective functions

As introduced in Section 2.1, a Constraint Optimization Problem (COP) is a CSP

with an objective function. An objective function is a function of the variables that

must be minimized, or maximized. In a COP we are interest in finding the opti-

mal solution, the solution with the minimum (or maximum) value of the objective

function. In a COP, objective functions are handled in a naive way: the first solu-

tion is found, the objective function value is retrieved and a new constraint in the

problem is imposed stating that the new solution objective function must be lower

(or greater) than the current one. The constraint is updated each time a solution

is found and, when the problem becomes infeasible, the last solution found is the

optimal one.
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2.3.2 Branch and bound

Branch and bound (B&B) is a general method for finding, in a reasonable time,

optimal solutions for various optimization problems, especially for COPs. It belongs

to the class of implicit enumeration methods and was first proposed in [32] for linear

programming. The general idea is to apply a procedure that requires two phases

(Branching and Bounding).

Branching is a smart way of splitting the problem in several smaller sub-problems.

Each time an assignment is done in a node of the tree, an edge starting from the

node is traversed (branch) and the underlying sub-tree is explored. If the procedure

is repeated recursively for each possible edge of each node in the tree, the union of

all the subtrees partitions the original search space.

Bounding is a way of finding an upper (lower) bound for the optimal solution

within a subtree. The core of the approach is a simple observation that, for a

minimization problem, if the lower bound for a subtree A of the search tree is greater

than the solution for any other previously examined subtree B (or if it is greater than

a solution already found), then A may be safely discarded from the search. This

step is called pruning. It is usually implemented by maintaining a global variable m

that records the minimum solution found among all subtrees examined so far; any

node whose lower bound is greater than m can be discarded.

Ideally the procedure stops when all nodes of the search tree are traversed, but it

is possible to terminate the procedure after a given time; at that point, an incomplete

search is performed and the best solution found is returned.

The efficiency of the method depends critically on the effectiveness of the B&B

algorithm used; bad choices could lead to repeated branching, without any pruning,

until the subtrees become very small. In that case the method would be reduced to

an exhaustive enumeration of the domain, which is often impractically large. B&B

methods may be classified according to the bounding methods and according to the

ways of creating/inspecting the search tree nodes: the way of creating a search tree

depends on the variables and variable values selection heuristics, while the way of

inspecting the tree depends on the search algorithms.
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2.3.3 Variables and variable values selection heuristics

The B&B technique can avoid many parts of the search space, but it is of the utmost

importance to create the search tree in the ”right” way in order to have tight bounds

up at the first nodes of the tree. To create a tree, nodes and edges must be ordered:

a node represents a variable to be assigned, while an edge starting from a node

represents a trial value for the variable in the node. To order a tree is therefore

sufficient to decide the order in which the variables will be assigned, as well as the

order in which the values in the domain of a variable will be tried. This ordering is

done using the variables and variable values selection heuristics.

Heuristics can be static or dynamic: static heuristics order the search tree before

starting the search and the order remains the same over all the search. Dynamic

heuristics choose, at each node of the search tree, which is the best edge to branch

on depending on the status of the search. A dynamic heuristic is, obviously, better

w.r.t. a static one, but finding the perfect heuristic, that is the heuristic that always

suggests the right choice, has the same complexity as the original problem: it is

therefore important (as usual) to find the right tradeoff between heuristic goodness

and complexity.

It is very important to choose a good heuristic, that reflects on the number of

nodes that will be visited. In fact, when dealing with a CSP, a heuristic that reliably

estimates the distance of a node from a solution allows us to select, at each node,

the shortest way to a feasible solution. Similarly, when dealing with a COP, finding

a feasible solution early in the search allows us to find an upper (or lower) bound

for the objective function and thus to remove some parts of the search tree.

Among the heuristics usually considered, we can find:

• First Fail Principle (FFP), tries to solve first the harder subproblems, those

that are likely to lead to a failure;

• Least Constraining Principle (LCP), tries to choose first the least con-

straining paths, those paths that propagate less on the variable domains;

• Most Constraining Principle (MCP), opposite to LCP, tries to choose first

the most constraining paths, those paths that propagate more on the variable

domains.
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Heuristics are used to order the tree by selecting, at each node, a variable and a

trial value for the variable. Among the most common variables selection heuristic

principles, are used the FFP, that tries to assign first the variables whose domains

have the lower cardinality, or the MCP, that tries to assign first the variables in-

volved in a greater number of constraints. These principles tries to assign first the

variables that are likely to lead to a failure. As variable values selection heuristic is

usually used the LCP, the values with the higher probability to appear in a feasible

solution are tried first. Besides, problem-dependent heuristics can be defined, either

specializing the common heuristics adapting them to the problem characteristics or

creating a new one.

2.3.4 Tree Search algorithms

Even though smart selection heuristics can order the tree in such a way that the

search will lead directly (or after a small number of backtracking) to a solution, it

is also important, when a failure occurs, to decide where to go on with the search.

Search algorithms define the way the search tree will be inspected, in particular

when, in backtracking, a node is re-explored.

The search algorithms differ in their completeness or incompleteness. A com-

plete algorithm explores the whole search space that is not pruned by propagation,

while an incomplete one explores only a portion of the space and the best solution

found in that portion is returned; the higher the probability for the solution to be

the optimal one (or within a given percentage w.r.t. the optimum), the better the

incomplete algorithm is. While some algorithms, for example Local Search, can

typically perform only an incomplete search, some others can perform both a com-

plete and incomplete search, depending on limitations imposed, such as maximum

number of nodes explored or maximum depth of a search path.

A great number of search algorithms exists in literature. In the following some

of them, based on tree search, will be explained in detail.

Depth First Search

Depth First Search (DFS) is the simplest search algorithm. The search is performed

in depth, i.e. at each node a variable is bound and an edge starting from the

node is traversed until a solution is found or a failure occurs. Ascending the tree
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in backtracking, as soon as a node with at least one unexplored edge is reached,

the left-most unexplored edge is traversed. This algorithm visits the leaves of the

tree tidily from the left-most to the right-most. Considering Figure 2.2, where a

simple binary tree is depicted and leaves are labelled, DFS will visit the leaves in

the lexicographic order.

Figure 2.2: Example of search tree

Limited Discrepancy Search

Proposed in [48], Limited Discrepancy Search (LDS) explores the tree allowing, at

each search iteration, up to a given number of discrepancies in the path. A discrep-

ancy is a branch where the value selection heuristic is not followed; in Figure 2.2,

if the left branch represents the value suggested by the heuristic, each right branch

is a discrepancy. LDS starts searching for the solution with 0 discrepancies, that

is the left-most leaf, then searches for all the solutions with 1 discrepancy, and so

on increasing the maximum number of allowed discrepancies at each iteration. LDS

traverses the tree as DFS but prunes, at each iterations, all the paths with a num-

ber of discrepancies higher than the maximum allowed. In Figure 2.2 leaves are

explored in the following order: 1, 2, 3, 5, 9, 4, 6, 7, 10, 11, 13, 8, 12, 14, 15, 16. Consid-

ering a non-binary tree, if all the edges are ordered from left to right according to

the values selection heuristic, the discrepancy of each branch is the ranking of the

edge among its siblings.

LDS can be implemented as an incomplete algorithm by limiting the maximum

number of discrepancies allowed.

A problem when implementing LDS is that, in backtracking, some nodes are

explored more than once. Furthermore, LDS does not discriminate discrepancies



22 Chapter 2. Constraint Programming

on the basis of the level of the tree where they occurs. To eliminate these limita-

tions, LDS has been enhanced by Improved LDS (ILDS) [76] and Depth-bounded

Discrepancy Search (DDS) [122].

Discrepancy-Bounded Depth First Search

Proposed in [7], Discrepancy-Bounded DFS (DB-DFS) is strongly based on LDS

but performs an important integration: LDS explores the search tree using DFS

increasing the maximum number of allowed discrepancies by one unit at a time,

while DB-DFS increases it by k units at a time. k is called discrepancy step. So,

given a value k, at iteration i = [0, . . . , n] DB-DFS explores all the nodes with a

number of discrepancies between i ∗ k and (i + 1)k − 1 inclusive. If k = 1, we

obtain LDS. In Figure 2.2, with k = 2 the leaves are explored in the following order:

1, 2, 3, 5, 9, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16. DB-DFS is also known as Slice Based

Search (SBS).

2.4 Global Constraints

A huge impulse to CP is certainly due to Global Constraints (GC). GC were intro-

duced in [9] and allow to express a symbolic constraint over a set of variables. The

power of the GC is twofold: declaratively, they can express the constraint concisely;

operationally, they encapsulate a specialized global propagation technique with a

complexity polynomial in space and time, that is therefore very efficient. As an

example, we will describe here three GC.

• AllDifferent: with arity 1. The argument is a list of variables: the constraint

states that all the variables in the list must have different values one each

other. This constraint is much more concise than imposing a 6= constraint for

each pair of variables in the list and the encapsulated propagation technique

can remove much more infeasible values. Let us consider, for example, the

constraint AllDifferent([X1, X2, X3, X4]), where the variables X1, X2 and X3

have the same domain [1, 2, 3], while X4 has the domain [1, 2, 3, 4]; it is possible

to deduce that X4 must necessary be equal to 4. The same reasoning could not

be done if the 6= binary constraints were used. In [108] the author proposes a

polynomial algorithm based on the flow theory able to achieve the Generalized
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Arc Consistency for the AllDifferent global constraint. The space complexity

is O(nd) and the time complexity is O(n2d2), where n is cardinality of the list

of variables and d is the maximum cardinality of the variable domains.

• Global Cardinality Constraint: [109] with arity 4. The global cardinality

constraint is gcc(V ar, V al, LB, UB), where V ar is a list of variables, V al a

list of values, LB and UB two lists of values. The gcc constrains the number

of occurrences of each value V ali among the variables V ar to be within the

interval [LBi . . . UBi]. In other words, the gcc limits the number of occurrences

of a list of values among a list of constrained variables. Let consider 5 variables

X1 = [1, 2], X2 = [1, 2, 3], X3 = [1, 2, 3], X4 = [3, 4], X5 = [4], and the

constraint gcc(X,[1,2,3,4],[0,0,2,2],[2,2,3,2]). The constraint forces values 1 and

2 to appear at most twice among the variables X; value 3 can appear at least

twice and at most three times, while value 4 must appear exactly twice (in fact

the lower and the upper bound for value 4 are equal). Since value 4 must appear

twice, both X4 and X5 must take the value 4. Value 3 can now appear at most

twice, and this complies with the constraint: thus X2 = X3 = 3. Finally, X1

can assume both the values 1 and 2, so the example has two feasible solutions

(X1 = 1, X2 = 3, X3 = 3, X4 = 4, X5 = 4) and (X1 = 2, X2 = 3, X3 = 3,

X4 = 4, X5 = 4). Figure 2.3 is a bipartite graph where the higher nodes

represent the variables and the lower nodes represent the values. The graph

depicts the gcc constraint, the constraint propagation and a feasible solution.

Each line represents an assignment: the dotted lines are pruned by propagation

while the bold lines represent a feasible solution. In [108] the author proposes a

polynomial algorithm based on the flow theory able to achieve the Generalized

Arc Consistency for the Global Cardinality Constraint. The space complexity

is O(nd) and the time complexity is O(n2d), where n is cardinality of the V ars

list and d is the cardinality of the V al list.

• Cumulative: with arity 4. The first three arguments are lists of n values

representing, respectively, the start time, the duration and the resource re-

quirement of n different activities. The last argument is a value and repre-

sents the maximum quantity of resource available (this value can vary over

the time). The constraint tries to schedule the activities so as to meet the
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Figure 2.3: Example of the Global Cardinality Constraint

constraint on the resource availability. Let us consider four activities A1 . . . A4

having duration 5, 4, 3 and 4 and needing respectively 3, 2, 4 and 2 units of

a resource having maximum availability equal to 8. If we want to schedule

these activities finding each starting time, we can use the Cumulative global

constraint: cumulative([X1, X2, X3, X4], [5, 4, 3, 4], [3, 2, 4, 2], 8). Variables X

represent the starting times; a feasible assignment is X = [0, 3, 0, 3] and is de-

picted in Figure 2.4. Several algorithms exist to propagate the Cumulative con-

straints: Time-Table constraint, Not-First Not-Last constraint, Edge Finding

constraint [6] to cite few, based on energetic reasonings and on the obligatory

parts of a schedule. These techniques can reduce the variable domains, but can

not achieve the Generalized Arc Consistency in polynomial time.

Figure 2.4: Example of the Cumulative global constraint
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Integer Linear Programming

Introduction

In this chapter a formal background on Integer Linear Programming will be given.

In section 3.1 Linear Programming will be defined and in sections 3.2 and 3.3 we will

focus on two advanced methods in the context of Linear Programming, respectively

the duality theory and the decomposition methods. Section 3.4 introduces Integer

Programming.

3.1 Linear Programming

Linear programming (LP) is an important field of optimization. Many practical

problems in Operations Research can be expressed as linear programming problems.

The standard form of an LP problem is:

min : cT x (3.1a)

s.t. : Ax ≥ b (3.1b)

x ≥ 0 (3.1c)

where x ∈ <n, c ∈ <n, b ∈ <n and A ∈ <m×n. (3.1a) is the Objective Function

(OF), a linear function of the variables x that must be minimized and (3.1b) are the

linear constraints imposed on the variables x.

We can graphically explain a LP problem by an example. Suppose we have the
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Figure 3.1: Example of a LP problem in the Cartesian plane

following LP problem involving two variables:

min : x1 − 3x2 (3.2a)

4x1 + 2x2 ≥ 20 (3.2b)

x1 − x2 ≥ −4 (3.2c)

− x1 + x2 ≥ −8 (3.2d)

− x1 − x2 ≥ −20.5 (3.2e)

x ≥ 0 (3.2f)

Figure 3.1 depicts the example in the Cartesian plane. Each inequality in the

model defines a hyperplane. The four lines labelled from 1 to 4 define respectively

the inequalities (3.2b), (3.2c), (3.2d) and (3.2e). Each inequality is fulfilled in the

hyperplane denoted by the short parallel segments. The intersection of all the hyper-

planes defines a convex polytope; the lower part is limited by the constraint (3.2f),

forcing the polytope to lie only in the first quadrant of the Cartesian plane. The

dotted parallel lines represent the OF (3.2a). These are isocost lines defined by

the equations x1 − 3x2 = K, where K is a constant. The arrow denotes the rise

direction of the OF value associated to each isocost line. The optimal solution is the

point of the polytope where the OF value is minimum; since only one isocost line

intersects each point in the Cartesian plane, the optimal solution is the point in the

polytope where the value of K is minimum. For the example, the optimal solution
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is represented by the vertex D = (8.25, 12.25).

The Minkowski-Weyl theorem ensures that, if a LP model defines a convex poly-

tope, the optimal solution always lies in a vertex [111]. Some particular or degenerate

cases can happen:

• If the OF isocost lines are parallel to a side of the convex polytope, all the

points of the side have the same OF value and, if it is the minimum one, the

problem has infinite optimal solutions. See Figure 3.2a.

• If the polytope is not closed, the problem does not have a finite solution and

the problem is called unbounded. See Figure 3.2b.

• If the semiplanes associated to the inequalities do not define any convex poly-

tope, the problem does not have a feasible solution and is called infeasible.

See Figure 3.2c.

Figure 3.2: LP problem degenerate cases

To solve a LP problem, in the 1947 George B. Dantzig developed the simplex

method [28, 29], with a complexity exponential in the size of the problem in the worst

case, but very efficient in practice. In 1979, Leonid G. Khachiyan [71] proposed a

polynomial method to solve a LP problem based on a previous method proposed

by Naum Shor, namely the ellipsoid method in nonlinear optimization. Even if

this method was polynomial, it was inefficient in practice due to the high degree of

the polynomial and its performances was worse w.r.t. the simplex algorithm, but

the important thing was that this method opened up an interest in finding new

polynomial algorithms to solve LP problems. In 1984 the so called Karmarkar’s

algorithm, polynomial in the worst case, was proposed in [69].
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Even if there have been attempts for faster or specialized algorithms, the simplex

method is still used to solve LP problems. It is not the aim of this dissertation

to enter into detail of the simplex algorithm, we only need to say that among the

methods connected or derived from LP the most important are duality theory and

decomposition methods, for sure the driving forces behind the success of the simplex

method.

3.2 Duality Theory

Given the primal LP problem described by (3.1), the corresponding dual LP is given

by:

max : λT b (3.3a)

s.t. : λT A ≤ cT (3.3b)

λ ≥ 0 (3.3c)

where λ ∈ <m. Similarly to the primal model, (3.3a) is the Objective Func-

tion and (3.3b) are the linear constraints. The duality theory has three important

properties:

Theorem 1 (Symmetry) The dual of the dual is the primal problem.

Theorem 2 (Strong duality) If any of the primal or dual has a finite optimal

solution, so does the other and both have the same objective function value.

If the primal is unbounded or infeasible, the Strong duality theorem can not be

applied and it is therefore useful the following theorem:

Theorem 3 (Weak duality) If x and λ are feasible solutions for the primal and

dual respectively, then cT x ≥ λT b.

From theorem 3 we can argue that the OF of the dual solution is a lower bound

for the OF of any feasible primal solution. Viceversa, the OF of the primal solution

is an upper bound for any feasible dual solution. From theorems 2 and 3 it follows:

Corollary 1 When solving the primal and the corresponding dual LP problems, only

the following cases can happen:
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(i) Both the problems have a finite optimal solution. If x∗ and λ∗ are feasible solu-

tions for the primal and the dual respectively, and if cT x∗ = λ∗T b, then x∗ and λ∗

are the optimal solutions.

(ii) The primal is unbounded and the dual is infeasible.

(iii) The dual is unbounded and the primal is infeasible.

(iv) Both the primal and the dual are infeasible.

Starting from the solution of the dual we can extract the so called reduced costs

associated to variables x. The reduced cost of a variable is the minimum change

in the OF if the variable value is increased by one unit in the current solution.

The formula to extract the reduced cost rci associated to the variable xi is rci =

ci − λ∗T Ai, where λ∗ is the optimal dual solution.

3.3 Decomposition methods

The underlying idea of a decomposition method is to split the problem variables in

two disjoint subsets and to solve the two subproblems separately. In the context

of LP, the most famous decomposition method is the so called Benders Decompo-

sition [11], presented in 1962. Benders Decomposition (BD) applies to problems in

which the subproblem is linear:

min : cT x + f(y) (3.4a)

s.t. : Ax + F (y) ≥ b (3.4b)

x ≥ 0 (3.4c)

y ∈ Y (3.4d)

The constraints involving the variables x define the LP subproblem, while those

involving the variables y can be of any kind and defines the so called master problem.

The BD technique fixes the variables y to values ȳ compatible with the master prob-

lem constraints, then solves to optimality the following LP sub-problem containing

only the variables x (being variables y fixed to the trial values):
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min : cT x + f(ȳ) (3.5a)

s.t. : Ax ≥ b− F (ȳ) (3.5b)

x ≥ 0 (3.5c)

From the solution of the dual problem:

max : λT (b− F (ȳ)) + f(ȳ) (3.6a)

s.t. : λT A ≤ cT (3.6b)

λ ≥ 0 (3.6c)

we obtain a lower bound for the OF when y = ȳ. It is provable that the same

lower bound remains valid for any y.

If the dual has a finite solution λ̄, we have the valid lower bound λ̄(b−F (y))+f(y)

for the OF. If the primal is infeasible we have the valid inequality λ̄(b− F (y)) ≤ 0.

These inequalities are called Benders cut and are added to the master problem

model. The process iteratively solves the master problem finding the values ȳ, then

solves the subproblem fixing the variables y to ȳ finding a lower bound for the OF

and adding the Benders cut to the master problem. The process converges to the

optimal solution for the original problem when the master problem OF equals the

last bound found. Degenerate cases can happen: if the master problem is infeasible,

the original problem is infeasible; if the subproblem dual is infeasible, the original

problem is unbounded.

The BD technique is based on the work of Dantzig and Wolfe [30], where the

original problem is a LP problem as well, having the property that can be decom-

posed in two LP subproblems tied together by a smaller number of constraints w.r.t.

those imposed on the original problem.

BD can therefore be seen as a generalization of the Dantzig-Wolfe method where

the master problem can be of any kind. Hooker [56] applied BD to problems where

the subproblem as well can be of any kind. These method is called Logic-Based

Benders Decomposition (LB-BD); in Chapter 9.4 we will describe LB-BD in detail.
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3.4 Integer Programming

An Integer Programming (IP) problem is defined as follows:

min : cT x (3.7a)

s.t. : Ax ≥ b (3.7b)

x ≥ 0 (3.7c)

x integer (3.7d)

We can easily see that an IP problem is an LP problem (3.1) augmented with the

integrality constraints (3.7d) forcing all the variables to assume only integer values.

The integrality constraints are non-linear; they can be mathematically expressed

as sin(πxi) = 0 , ∀i. If the integrality constraints involve only a subset of the x

variables, the problem is called Mixed Integer Linear Programming (MILP).

Many real life problems are easily modelled in IP using the so called decision

variables, i.e. variables that can assume only the values 0 and 1. Decision variables

are usually associated to choices: if a variable is equal to 1, than the corresponding

option is chosen.

By removing the integrality constraint (3.7d) we obtain the so called Linear Re-

laxation (LR) of the IP problem. The LR is a LP problem.

Let us consider the same example of Section 3.1 augmented with the integrality

constraints.

min : x1 − 3x2 (3.8a)

4x1 + 2x2 ≥ 20 (3.8b)

x1 − x2 ≥ −4 (3.8c)

− x1 + x2 ≥ −8 (3.8d)

− x1 − x2 ≥ −20.5 (3.8e)

x ≥ 0 (3.8f)

x integer (3.8g)

The graphical representation of the example is shown in Figure 3.3. It represents

the same polytope, and in addition all the integer points inside the polytope are



32 Chapter 3. Integer Linear Programming

depicted. The optimal solution is now the integer point with the lower OF value.

Following the same line of reasoning used for the LP example 3.2, we can see that

the optimal solution is represented by the point P = (8, 12). The solution of the LR,

in this case (8.25, 12.25) (see the example (3.2), in general is not a valid solution for

the IP problem because it may violate some integrality constraints, but nevertheless

it can be used to bound the IP problem OF using branch and bound.

The optimal solution found for the LP problem (8.25, 12.25) is a super-optimal

solution for the IP problem.

Figure 3.3: Example of an IP problem

Due to the presence of the integrality constraints, that are non-linear constraints,

it is not possible to use the simplex algorithm (or any another method developed

for the LP) to solve an IP or a MILP problem. Solving an IP problem is, in the

general case, NP-hard [70] and several advanced algorithms have been developed to

solve an IP problem, the most important being Branch and Bound.

3.4.1 Branch and Bound

Branch and Bound (B&B) is based on the LR of an IP problem. The B&B scheme

interleaves two steps: solving the linear relaxation and branching. When the LR is

solved, if the OF value is worse than the best solution found for the original problem,

then we can stop searching because the LR solution is a bound for the IP problem

OF. If it is not the case, than a variable xi with a non-integer value v is chosen and
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the problem is split in two subproblems; the first subproblem contains the original

model plus the constraint xi ≤ dve−1, while the second contains the original model

plus the constraint xi ≥ dve. The subproblems are solved again via B&B until all

variables take an integer value. To select, at each iteration, the variable to branch

on, a ranking criterion, called search heuristic, must be decided.

3.4.2 Reduced Costs

We recall that from the dual model solution of a LP problem we can extract the

reduced cost associated to each variable of the primal model, being it the minimum

change in the OF if the value of the variable is increased by one unit in the current

solution. In IP, we can obtain the reduced cost of a variable solving the LR of the

IP problem.

The reduced cost of a decision variable (a variable that can assume only values

0 and 1), represents the minimum change in the OF if the variable value is set to

1. Of course, variables having value 1 in the optimal solution have a reduced cost

equal to 0 and variables having value 0 have a reduced costs greater or equal than

0. The reduced cost of a decision variable can be seen as the minimum cost we will

pay to change our decision by choosing another option.





Chapter 4

Integration of Constraint and

Integer Linear Programming

Introduction

In this chapter we will discuss about Constraint Programming and Integer Program-

ming integration methods. In Section 4.1 we will summarize the strong and weak

points of CP and IP and in Section 4.2 we will introduce the integration techniques

used in our research.

4.1 Solving techniques: pros and cons

In this Section we will summarize Constraint Programming and Integer Linear Pro-

gramming, introduced in Chapters 2 and 3, discussing about their strong and weak

points.

4.1.1 Integer Linear Programming

As introduced in Chapter 3, Integer Linear Programming (IP) models a problem

using numeric variables and linear inequalities representing the constraints, and

one linear function representing the objective function (the objective can be, for

example, to minimize a cost, minimize a time, maximize a revenue). A solution to

an IP problem is an assignment of values to variables such that all the constraints

are satisfied and the value of the objective function is minimized (or maximized).
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In IP the variables are forced to assume only integer values, (e.g. if a variable

models a decision it can assume only values 0 or 1, if a variable models the number

of worker employed on a task it can obviously assume only integer values); it is

demonstrated that these problems, called Combinatorial Optimization Problems,

are in the general case NP-hard ([43]). The Operation Research (OR) community

analyzed a wide number of combinatorial optimization problems and proposed a

number of algorithms to solve them, namely the Simplex algorithm, the Branch and

Bound method, the cutting planes, the column generation technique to cite few.

When combinatorial optimization problems have a very clear and regular struc-

ture, IP is an efficient approach to model and solve them, but often an optimization

problem involves side constraints that break the regularity of the model structure.

The side constraints enlarge and complicate the problem model, and the IP solving

algorithms usually worsen their behaviours when the number of constraints becomes

too large or the regularity of the model structure is broken.

Summarizing, IP is an effective method to face optimization problems with a clear

geometric structure (for example set packing, set covering, travelling salesman) but

raises difficulty when side constraints are introduced in the problem breaking the

regularity of the model.

4.1.2 Constraint Programming

Constraint Programming (CP) models a problem using generic variables that can not

only assume numeric values, but also, for example, sets of values or symbolic values.

Constraints imposed over the variables are not restricted to linear inequalities like in

IP, but can range on mathematical relations, logical constraints, symbolic constraints

and Global Constraints.

Thanks to specialized filtering algorithms, able to remove infeasible values as soon

as they are recognized, the time spent in trying infeasible assignments in considerably

reduced. CP should be the technique of choice when the main difficult of a problem is

to find a feasible solution; when a problem has so many constraints that even finding

a solution can require a large amount of computational effort, smart propagation

techniques can speed up the search. On the contrary, if the problem has a great

number of feasible solutions and the main difficulty is to find the optimal one, CP

should not be the technique of choice. In fact, CP faces optimization problems in a
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very naive way: CP finds the first feasible solution and then, each time a solution is

found, adds to the model an additional constraint simply stating that, from now on,

each feasible solution must have an objective function value better than the best one

already found. Using search heuristics (see Section 2.3.3), the search can be guided

towards the portion of the search space that most probably contains the optimal

solution, but nevertheless when a problem model contains a stronger optimization

part w.r.t. the feasibility part CP should not be the preferred technique to solve it.

When side constraints are added to a model, the density of feasible solutions

decreases (side constraints can only render infeasible some combinations of assign-

ments). The feasibility part of the problem becomes therefore more prominent and

at the same time the optimization part becomes simpler, because the optimum must

be searched within a smaller set of possible solutions. So, CP can take advantage of

the introduction of side constraints in pure optimization problems.

4.2 Integration of Constraint Programming and Integer Pro-

gramming

In the previous subsections we have described the strong and the weak points of

CP and IP summarizing that IP is more suitable for optimization problems and CP

for feasibility. Typically, real problems involve both feasibility and optimization, it

could therefore pay off to integrate the two techniques to solve a problem, especially

when it is not clear whether optimization or feasibility is the main issue.

The underlying idea when integrating different techniques is to take the best from

each technique. The simplest way is to somehow recognize the best approach and use

it. This is done in the so called Algorithm Portfolios, where a set of algorithms based

on different paradigms are developed. When facing an instance of the problem, two

different ways can be followed:

• All the algorithms in the portfolio start the search in parallel and, when the

fastest one finds the solution, all the others are stopped and the solution found

is returned. This technique recognizes a posteriori, only when the search is

finished, the best algorithm.

• The fastest algorithm for each problem instance is recognized a priori in order
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to use only it. The selection can be done by analyzing some characteristics of

the instance model, for example the structure, or the search space dimension.

Recognizing the best algorithm is not a trivial task, and in general advanced

techniques must be explored.

Another integration method is to develop a solver based on both the techniques.

IP can be used by CP to rank the variables and the variable values, CP and IP

can interleave their execution during the search so that each technique can take

advantage of the information gained by the other.

Some problems may have a structure where it is possible to recognize two or

more sub-problems, best solved by different techniques. In this case, the integration

methodology is to use the most appropriate paradigm to solve each sub-problem,

building a communication mechanism allowing the two solvers to co-operate in order

to find the best solution for the problem overall. This is typical for Decomposition

Techniques, where a problem is decomposed in two sub-problems independent one

each other or sharing a limited number of constraints. In Section 9.4 we will further

discuss about Decomposition Techniques.

Of course, integration is not limited to CP and IP. Integration of CP and local

search has been proposed, for example, by P. Shaw, in [118], where the author defines

the so called large neighborhood search, and by G. Pesant and M. Gendreau [103]

in the context of the TSP-TW. As far as our research is concerned, we will only

investigate IP and CP.
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Chapter 5

Introduction

This Part of the dissertation is devoted to the Bid Evaluation Problem (BEP),

quickly introduced in Section 1.2.1. Through the analysis of the problem we will

give evidence that both IP and CP are suitable programming paradigms for solving

the BEP. As introduced in Section 1.2.1, the structure of the BEP, due to the

presence of the temporal side constraints, is not regular: an IP approach, usually

suitable for optimization problems, can thus worsen its performances because of

the introduction of the side constraints. On the contrary, a CP approach, good for

feasibility problems, can take advantage of the side constraints, because they reduce

the number of feasible solutions and thus feasibility becomes the major issue of the

problem resolution.

In the following chapters we will describe the BEP and we will present two models,

based on IP and CP. We will develop several solving tools based on these models

and we will show some experimental results pointing out that some of the developed

algorithms are not dominated by the others on all the instances of the problem.

We will put these algorithm in an Algorithm Portfolio. Next step is to find an

automatic way to select, given an instance, the best algorithm to solve it. This is

possible by analyzing the instance structure before modelling it using either IP or

CP. Exploiting a Machine Learning approach on few structural characteristics of the

instance we are able to select the best algorithm in over the 90% of the cases.

The research described in this Part of the dissertation supports the thesis that

Constraint Programming and Integer Linear Programming are ef-
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fective programming paradigms for dealing with Combinatorial Opti-

mization Problems. The structural characteristics of some classes of

Combinatorial Optimization Problems can guide the selection of the

solving approach.. . .

In this chapter we will give an overview of some auction mechanisms described

in literature, focussing in particular on Combinatorial Auctions (CAs) and bidding

languages for CAs.

5.1 Auctions

Business to business e-commerce applications are becoming more and more popular.

Among them, auctions are an important way of allocating items among autonomous

and self-interested agents. Items are not limited to goods, but can represent also

resources and services. Traditionally, auctions are aimed at selling or buying a single

item; the auctioneer tries to maximize his/her profit if selling an item or minimize

his/her outcome if buying an item. Since bidders make bids on a single item, it is

easy to choose the best bid, i.e., the one providing the highest revenue. This kind

of auction follows the sequential auction mechanism. However, it is difficult to bid

in these auctions when more than one item is needed since one bidder can have

preferences on bunches of items. In this case, a bidder should make hypothesis on

what the other bidders will bid.

To partially solve the problem, the parallel auction mechanism has been proposed,

where bidders can bid on a set of items simultaneously. Again, it is easy to choose

the best bid by simply selecting the best one. A problem in parallel auctions can

arise: it can happen that no bidding should start since all bidders wait for other

bids to perform the best offer.

Recently, a third kind of auction mechanism has been proposed, the so called

combinatorial auctions (CAs) (see [115] for an overview). In our research, we face

the BEP, rising in the context of CAs, not only for its structural characteristics but

also because there is a growing interest in auctions, as introduced above.

In the following we will give an overview of the most common type of sequential

auctions, while in the next Section we will focus our attention on CAs.

The simplest type of auction, the one we all know, is called English Auction.
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The auctioneer sells one item at a time, starting the auction from a reserve price

(the lowest acceptable price) and accepting higher and higher bids from the bidders

until no one will increase the offer. The last bid (the highest) is the winning one. If

the auctioneer wants to buy an item the auction starts from the highest price the

auctioneer is willing to pay and each bid must be lower than the last one proposed.

Several variants of the English Auction exists: in the Absolute Auction, no reserve

price is stated. In the Dutch Auction, the auctioneer tries to sell the item at the

highest price and then lowers the price until a bidder accepts the offer. In this

case the auctioneer receives only one bid, the winning one. The English and Dutch

auctions are also known as Ascending and Descending auctions respectively.

The great disadvantage of the English auction mechanism (and its variants), is

that each bidder and the auctioneer must be in communication one each other over

the course of the auction, which can be expensive or difficult. To overcome this

limitation, several auction mechanisms have been proposed: in the First-Price

Sealed-Bid Auction (FPSB) each bidder proposes a single bid for the object

without knowing the other bids. The highest bid is the winning one and pays the

proposed price. The Vickrey auction is identical to the FPSB auction except

that the winning bid pays the second highest price instead of its own. This auction

boosts the bidders to bid for the true value of the item, but does not maximizes the

auctioneer revenue that, in the extreme case, can be 0 if all the bidders but one do

not bid for the object.

The Vickrey and the English auctions are mathematically equivalent because in

both cases the winner obtains the item at the price proposed by the runner-up. This

is evident for the Vickrey auction; regarding the English auction, the mechanism

encourages the bidder to propose the last accepted price plus an increment. When

no other bids are proposed, the price of the winner is thus equal to the second-place

bidder plus the last increment.

5.2 Combinatorial Auctions

The auctions described in the last section allow to bid for an item at a time. Some-

times it could be useful to put up for auction a set of items at the same time, for

example if the auctioneer wants to be sure to sell all the items he holds (or to buy



46 Chapter 5. Introduction

all the items he needs). From the bidder side, the possibility to bid for a set of items

allows to better express his preferences. Let us consider an auction for a transporta-

tion service: if a bidder have to transfer a good from city A to city C, going through

city B, it is completely useless to buy only the service from A to B or from B to C.

The bidder can make a bid on both the services; he is therefore sure to buy, in case

he wins the auction, exactly what he needs.

Combinatorial Auctions (CAs), first proposed in [107] to solve the take off and

landing time slots allocation problem in an airport, allow the bidders to submit a

bid for a bundle of items proposing a price for the whole bundle: B(S, p), where S

is the set of proposed items and p the price. Either the bid is accepted and all the

items in the subset are sold for the proposed price or the bid is refused and no items

are sold. In this context rises the Winner Determination Problem: the auctioneer

opens an auction for a set of items and his goal is to accept a set bids that cover all

the items at the maximum revenue or minimum cost.

In CAs, the auctioneer can therefore maximize his profit. On the other side,

bidders are free to propose bids reflecting their preferences in order to maximize

their own profit. The real auctions may have some characteristics for which bidders

are prone to give a particular evaluation to some bundle of items. For example, if

we consider an auction for a set of similar items, the bidder will prefer to buy only

one item rather than two or more similar items. In this case, the bidder gives an

higher evaluation to two disjoint sets rather than their union. More formally:

Definition 2 A valuation function v is a function that returns the price a bidder is

willing to pay for a set of items. Given a bid (S, p), v(S) = p.

Definition 3 Two disjoint sets of items, S and T , are called complementary or

substitutes for a bidder respectively if:

• v(S
⋃

T ) > v(S) + v(T )

• v(S
⋂

T ) < v(S) + v(T )

Two sets of items are complementary if the bidder prefers to win both of them

rather than only one; two sets are substitutes if the bidder prefers to win only one

of them rather then both.

To express these preferences, several bidding languages have been proposed. In

[97] the author defines six bidding languages subsuming all other bidding languages
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considered in the literature, and using which each bidder can express his preferences

on every kind of auction. The bidding languages described in [97] are:

• Atomic bid: a simple bid B = (S, p) where the bidder proposes a price p for

a subset S of the items put up for auction.

• OR bid: a bidder can submit an arbitrary number of atomic bids Bi = (Si, pi).

An arbitrary number of these atomic bids can be accepted, with the obvious

limitation for all the subsets Si of the winning bids to be disjoint. An OR bid

is equivalent to a set of atomic bids proposed by different bidders. With an OR

bid it is impossible to express substitutability.

• XOR bid: a bidder can submit an arbitrary number of atomic bids Bi =

(Si, pi), but at most one of them can be accepted. With a XOR bid it is

possible to express both complementarity and substitutability, but to express

some kinds of valuation functions an exponential number of atomic bids in XOR

one each other is needed. This is the case, for example, when a bidder gives

a unary value to each item and thus v(S) = |S|: we need 2m atomic bids to

express the preference using a XOR bid, where m is the number of the items,

while it is possible to express the same bid using an OR bid with only m atomic

bids.

• OR-of-XORs bid: a bidder can submit an arbitrary number of XOR bids,

willing to win an arbitrary number of them.

• XOR-of-ORs bid: a bidder can submit an arbitrary number of OR bids,

willing to win at most one of them.

• OR/XOR formula: the most generic bids. The bidder can propose any

combination of OR and XOR bids. All the other bids described above are

special case of an OR/XOR formula.

Using there bidding languages it is possible to define auctions reflecting real world

situations such as auctions for paths extending in the space or for lots of land, e.g.

railways routes assignment, network bandwidth allocation, gas pipeline networks

distribution, drilling rights, where the bidders prefer to bid on contiguous paths or

adjacent lots rather that sparse or overlapping ones; auctions for rights on services
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for a limited slot of time, e.g. airport take-off and landing, resources allocation in

the job-shop scheduling, where the bidders prefer to have several rights at the same

time rather that few rights for a large amount of time.

5.3 Overview of the Part II

Part II is organized as follows: in Chapter 6 we will introduce the IP and CP models

for the BEP, showing and modelling a simple combinatorial auction. In chapter 7

we will describe the implemented algorithms and we will compare themselves and

with an existing tool to solve the BEP. Finally, in Chapter 8, we will present our

algorithm portfolio analysis and the tool we developed to select the best algorithm

in the portfolio.



Chapter 6

Problem description and

modelling

Introduction

In this Chapter we will introduce the BEP. In Section 6.1 we formally describe the

Bid Evaluation Problem and we will present a simple example of a combinatorial

auction on coordinated services. In Section 6.2 we will introduce the CP and IP

models for the WDP and in Section 6.3 we will extend these models showing the

CP and IP models for the BEP. Finally, in Section 6.4, we will discuss about related

works on the WDP and the BEP and on the Algorithm Portfolio analysis.

6.1 Problem description

Combinatorial Auctions (CA) are auctions where bidders have the possibility to ex-

press their preferences in a more expressive way w.r.t. classical auctions mechanisms,

but the problem of selecting the winning bids, the so called Winner Determination

Problem (WDP), is NP-hard. In the WDP the auctioneer has to find the set of win-

ning bids covering all the items put up for auction; usually the auctioneer considers

one or more optimization criteria.

When the items put up for auction are services to be executed, another problem

arises, namely the Bid Evaluation Problem (BEP). In the BEP, beside a WDP, we

have time windows and temporal constraints to take into account.

Different variants of combinatorial auctions exist. We consider the single unit
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reverse auctions, where the auctioneer wants to buy a set M of distinguishable

items (services) which are sequenced by temporal precedence constraints and are

associated to temporal windows and durations, minimizing the cost. In single unit

auctions the items are distinguishable while in multi unit auctions there are several

units of each item. The auctions we consider are called reverse since the auctioneer

has to buy items, while in traditional auctions items are sold.

We now give a formal description of the BEP.

We have one auctioneer, a set B of bidders (|B| = n) and a set M of services

(|M | = m) that must be bought by the auctioneer during the auction. With-

out loss of generality, we assume that each bidder j posts only one bid Bj =

(Sj, Estj, Lstj, Dj, pj), where Sj ⊆ M is proposed to be sold at the price pj. Estj

and Lstj are lists of earliest and latest starting time of the services in Sj and Dj

their duration.

The auctioneer posts an auction for buying all services in M . In addition, the auc-

tioneer considers temporal constraints on the services in M . For example, between

two services i and k there might be a precedence constraint Starti + Durationi ≤
Startk . These constraints are not communicated to bidders that can therefore

submit bids not fulfilling these constraints. When the auctioneer selects the set of

winning bids, covering M , he/she should check that temporal windows provided by

the bidders satisfy the constraints.

The problem is to find the set of bids covering M at the minimum cost, respecting

all the temporal constraints.

We describe here a simple example of a BEP, where the auctioneer wants to buy 3

services, t1, t2 and t3, minimizing the total cost. A precedence constraint is imposed,

stating that t3 must be executed after both t1 and t2 are completed. Figure 6.1 shows

the precedence graph (private to the auctioneer) for the example, while Table 6.1

shows some bids that are received for this auction.

Some qualitative considerations follow:

• Each bidder gives a single price for a bundle of services.

• Each bidder provides an earliest start time (Est), a latest start time (Lst) and

a duration (D) for each service individually.

• Bid b3 must be a winner because it is the only one proposing the service t3.
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t2

t1
t3

Figure 6.1: Precedence graph for the example in

Table 6.1

Bid Services Est Lst D p

b1 t2 110 135 120 290

b2 t2 140 160 140 150

b3

t1 15 30 110
300

t3 225 250 95

b4 t1 10 40 100 120

Table 6.1: Example of bids on three services

• Bids b1 and b2 cannot be accepted together because they both provide the ser-

vice t2. Each service must be covered by exactly one bid. For the same reason,

bids b3 and b4, both providing the service t1, cannot be accepted together.

• Bids b2 and b3 cannot be accepted together, because the precedence relation

t2 ≺ t3 would be violated. This happens because the earliest time b2 could

complete t2 is 280, while the latest time b3 could start t3 is 250.

• In the optimal solution for this problem the winning bids are (b1, b3). Service t1

starts at 15, ends at 125 and is executed by b3; service t2 starts at 110, ends at

230 and is executed by b1; service t3 starts at 230, ends at 325 and is executed

by b3. t3 starts at 230 and not at 225 (the early start time proposed by b1)

because the execution of t2 ends at 230 and t3 must start after the end of t2.

The total cost is 590.

In the example in Table 6.1, if we do not consider the temporal constraints, we

obtain a WDP; in this case, the solution found for the BEP is still a feasible solution,

being the WDP a sub-problem of the BEP, but now (b2, b3) is the optimal solution

since the cost, 450, is lower.

6.2 Modelling the Winner Determination Problem

As introduced, the BEP is a WDP with temporal side constraints. In this section,

we introduce the IP and CP models for the WDP and we will extend them to cope

with temporal constraints in the next section.
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6.2.1 IP model

In the integer linear model of the WDP we have decision variables xj taking the

value 1 if the bid Bj = (Sj, Estj, Lstj, Dj, pj) is winning, 0 otherwise. The IP model

for the WDP is the following:

min
n∑

j=1

pjxj (6.1)

s.t. :
∑

j|i∈Sj

xj = 1 , ∀i (6.2)

xj ∈ {0, 1} , ∀j (6.3)

The objective function (6.1) minimizes the total cost which is computed as the

sum of prices pj of winning bids. Constraints (6.2) state that the number of winning

bids containing the same item (service) should be equal to one. This means that all

services should be covered and each service should be covered by exactly one bid.

We can see that the model structure is very simple and very clear. It is the

formulation of a set partitioning problem that is a structured, well known and widely

studied problem in the Operations Research community [18], best solved by an IP

approach.

An important assumption that can be done in combinatorial auctions is that

of free disposal. In this case, not all services should be covered. In the reverse

combinatorial auctions, under the free disposal assumption items can be bought

more than once by the auctioneer. Thus, if free disposal would be assumed, symbols

= in constraints (6.2) in the above model are transformed in ≥. The only constraint

imposed on winning subsets of bids is that the union of all the subsets should be

equal to the set of services put up for auction.

6.2.2 CP model

The WDP can be easy modelled also in Constraint Programming. We have a set

of m variables X1, . . . , Xm representing the services to be bought. Each variable

Xi ranges on a domain containing the bids mentioning service i. We have a set of

n variables Cost1, . . . , Costn representing the cost of the bid in the solution. Each

variable Costj can assume either the value 0, if bid j is a losing bid, or pj, if it is a

winning one. The CP model for the WDP is the following:
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min

n∑
j=1

Costj (6.4)

Xi = j → Xk = j , ∀i, ∀k ∈ Sj (6.5)

Xi = j → Costj = pj , ∀i (6.6)

The objective function (6.4) minimizes the sum of the variables Costj. (6.5) and

(6.6) are channelling constraints modelling the following ideas: if a service is taken

from the bid Bj, all other services in Sj should be taken from the same bid (6.5)

and the cost of the bid in the solution should be pj (6.6).

This model completely describes the WDP, but another important constraint

that can trigger an effective propagation is a specialization of the global cardinality

constraint (gcc) [109], introduced in 2.4. We briefly recall that gcc limits the number

of occurrences of a set of values among a set of variables within a given interval.

The specialization we use, namely the Distribute constraint, has the same heading

of gcc:

Distribute(V ar, V al, LB, UB) (6.7)

The Distribute constraint forces the number of occurrences of each value V ali

among the variables V ar to be either LBi or UBi. In other words, the only differ-

ence between Distribute and gcc is that gcc imposes V ali ∈ [LBi, . . . , UBi], while

Distribute imposes V ali ∈ {LBi, UBi}.
In our CP model, we can use the Distribute constraint as follows:

Distribute(X, [1, . . . , n], 0, |S|) (6.8)

where X is the array of variables representing services to be sold, the second pa-

rameter is an array of numbers tidily from 1 to n, n being the number of bids,

and |S| is an array where each element |Sj| is the cardinality of the set of services

contained in the bid j. This constraint holds iff the number of occurrences of each

value j ∈ [1, . . . , n] assigned to X is exactly either 0 or |Sj|. In other words, the

constraints state that, if the bid Bj is chosen as winning, the number of variables

Xi taking the value j is exactly the cardinality of the set Sj. Otherwise, if the bid

Bj is not chosen as winning, that number is 0. For example, let us consider a bid

b1 providing three services S1 : [1, 2, 3]. If b1 is a winner, variables X1, X2 and X3



54 Chapter 6. Problem description and modelling

Lstij

Dij

Estij

Lsti’j’Esti’j’

Lstij

Dij

Estij

Lsti’j’Esti’j’

(a) (b)

Figure 6.2: Example of temporal overlapping windows

must take the value 1, while if it is a loser no Xi variables will take the value 1.

The Distribute constraint states that the value 1 (first element of the second argu-

ment), must appear among the Xi variables either 0 or |S1| (first element of the last

argument) times, being |S1| = 3.

6.3 Modelling the Bid Evaluation Problem

In this section, starting from the models described in Sections 6.2.1 and 6.2.2, we

introduce the IP and CP models used to solve the BEP.

6.3.1 IP model

The BEP is a WDP augmented with temporal constraints, thus the IP model for

the BEP contains the constraints (6.1), (6.2) and (6.3), defining the IP model for

the WDP. In addition, we also have temporal constraints, introduced as follows: we

have variables Startij associated to each service i = 1 . . . m taken from each bid

j = 1 . . . n. These variables range on the temporal windows [Estij, Lstij]. For each

pair of services i and i′ linked by a precedence constraint, where i′ must be executed

after the end of i, we find all pairs of bids j and j′ containing that services; if Sj

and Sj′ have an empty intersection we compute Estij + Dij − Lsti′j′ , where Dij is

the duration of i in bid j. In case the result is positive (see Figure 6.2(a), where an

example of temporal overlapping windows is given), that is the domains of Startij

and Starti′j′ do not contain any pair of values that could satisfy the precedence

relation, we introduce the constraint (6.9) which prevents both bids from appearing

in the same solution; otherwise, if the result is zero or negative (Figure 6.2(b)), we
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introduce the constraint (6.10), where M is a large number. The term M(xj + xj′)

makes the constraint satisfied in cases where either xj = 0 or xj′ = 0.

xj + xj′ ≤ 1 (6.9)

Startij + Dij − Starti′j′ + M(xj + xj′) < 2M (6.10)

Therefore, recalling that Bj = (Sj, Estj, Lstj, D, j, pj), j = 1 . . . n, the complete

IP model for the BEP is the following:

min
n∑

j=1

pjxj (6.1)∑
j|i∈Sj

xj = 1 , ∀i (6.2)

xj ∈ {0, 1} , ∀j (6.3)

∀ i, i′, j, j′|i ≺ i′, Sj ∪ Sj′ = ∅, i ∈ Sj, i
′ ∈ Sj′{

xj+xj′ ≤ 1, if Estij+Dij−Lsti′j′ > 0 (6.9)

Startij+Dij−Starti′j′+M(xj+xj′) < 2M, if Estij+Dij−Lsti′j′ ≤ 0 (6.10)

Estij ≤ Startij ≤ Lstij , ∀j , ∀i ∈ Sj (6.11)

We can see that the BEP model structure is much more complex w.r.t. the WDP;

in fact, the temporal side constraints introduce some irregularities in the structure

that worsen the IP behaviours.
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The IP model for the example in Table 6.1 is the following:

minimize (290x1 + 150x2 + 300x3 + 120x4) (6.12a)

x3 = 1 (6.12b)

x1 + x2 = 1 (6.12c)

x3 + x4 = 1 (6.12d)

x2 + x3 ≤ 1 (6.12e)

Start13 + 110− Start33 + M(x3 + x3) < 2M (6.12f)

Start14 + 100− Start33 + M(x3 + x4) < 2M (6.12g)

Start21 + 120− Start33 + M(x1 + x3) < 2M (6.12h)

Start22 + 140− Start33 + M(x2 + x3) < 2M (6.12i)

x1, x2, x3, x4 ∈ {0, 1} (6.12j)

Start21 ∈ {110..135} (6.12k)

Start22 ∈ {140..160} (6.12l)

Start13 ∈ {15..30} (6.12m)

Start33 ∈ {225..250} (6.12n)

Start14 ∈ {10..40} (6.12o)

6.3.2 CP model

Similarly to the IP models, also for CP we start from the WDP model, defined by the

constraints (6.4), (6.5), (6.6) and (6.8). To deal with the temporal constraints, we

introduce the variables Durationi and Starti, associated to each service i. Durationi

ranges on the set of all duration Dij for service i taken from all bids j mentioning i.

Starti ranges on the union of all temporal windows [Estij, Lstij] for service i taken

from all bids j mentioning i.

In addition, if two services i and i′ are linked by a precedence constraint, then

the constraint (6.13) is introduced. Obviously, variables Start, Duration and X

are connected by channelling constraints, in the sense that, if a value j is assigned
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to a variable Xi, the domain of Starti should be set to [Estij . . . Lstij] (6.14), and

Durationi should be set to Dij (6.15).

Starti + Durationi ≤ Starti′ (6.13)

Xi = j → Starti :: [Estij, Lstij] (6.14)

Xi = j → Durationi = Dij (6.15)

The complete CP model for BEP is the following:

min
n∑

j=1

Costj (6.4)

Xi = j → Xk = j , ∀i , ∀k ∈ Sj (6.5)

Xi = j → Costj = pj , ∀i (6.6)

Distribute(X, [1, . . . , n], 0, |S|) (6.8)

Starti + Durationi ≤ Starti′ , ∀i, i′|i′ � i (6.13)

Xi = j → Starti :: [Estij, Lstij] , ∀i (6.14)

Xi = j → Durationi = Dij , ∀i (6.15)

Xi :: {j|i ∈ Sj} , ∀i (6.16)

Costj :: [0, pj] , ∀j (6.17)

Starti ::
{

[Estij..Lstij]|i ∈ Sj

}
, ∀i (6.18)

Durationi :: {Dij|i ∈ Sj} , ∀i (6.19)

We can see that the CP model is not complicated too much by the temporal

side constraints. We simply introduce the precedence constraints (6.13) and the

channelling constraints (6.14) and (6.15).
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The CP model for the example in Table 6.1 is the following:

minimize (Cost1 + Cost2 + Cost3 + Cost4) (6.20a)

Distribute([X1, X2, X3], [1, 2, 3, 4], [0, 0, 0, 0], [1, 1, 2, 1]) (6.20b)

Start1 + Duration1 ≤ Start3 (6.20c)

Start2 + Duration2 ≤ Start3 (6.20d)

X1 :: [3, 4] , X2 :: [1, 2] , X3 :: [3] (6.20e)

Cost1 :: [0, 290] , Cost2 :: [0, 150] , Cost3 :: [0, 300] , Cost4 :: [0, 120] (6.20f)

Start1 :: [10..40] , Duration1 :: [100, 110] (6.20g)

Start2 :: [110..135, 140..160] , Duration2 :: [120, 140] (6.20h)

Start3 :: [225..250] , Duration3 :: [95] (6.20i)

augmented with the channelling constraints (6.5), (6.6), (6.14) and (6.15).

6.4 Related work

The aim of our work is twofold. We will develop a portfolio of BEP solvers and an

algorithm selection tool based on machine learning. In this Section we will discuss

previous works related to WDP and BEP solvers and to algorithm portfolios and

algorithm selection tools.

6.4.1 Existing tools to solve the WDP and the BEP

CAs are receiving always growing attention since the computational power of com-

puters and sophisticated optimization methods enable the solution of hard problems

in a reasonable time. The WDP is equivalent to a set partitioning problem, a well

known problem in Operation Research, that is best solved by Integer Programming

techniques. In literature, the WDP is largely analyzed and both IP-based approach

and specialized search algorithms are presented. In [20] the authors apply a stochas-

tic local search algorithm, called Casanova, to the WDP. In [101], after describing

and analyzing various CA mechanisms, the authors address bidding languages and

efficiency matters. They discuss search strategies for solving the WDP and describe
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five real world applications where CAs can be successfully applied. In [121] a survey

on CA is presented, describing design methods and WDP solving techniques based

on IP. In [115] the author presents a search algorithm based on a structure called

BidTree and some heuristics to improve the search, and tests them on a variety of

different bid distributions. Starting from this work, in [95] the authors implement

the WDP in ECLiPSe and they solve the problem using a BidTree-based solving

algorithm introduced above, comparing it with general selection heuristics such as

the Most Constrained Bid (MCB) and the Most Valuable Bid (MVB) heuristics; at

each branch, the former heuristic chooses the bid involved in the greatest number

of covering constraint, while the latter chooses the bid with the lowest value of the

price divided by the number of items, that is the cheapest bid. We will use the MVB

heuristic for our research (see Sections 7.1 and 7.3).

Combinatorial Auctions Test Suite (CATS)

In [88] the authors present CATS, a suite of distributions for modelling realistic bid-

ding behaviours able to generate realistic WDP instances. With CATS it is possible,

by setting several parameters, to generate WDP instances where the bidders use a

particular bidding language (see Section 5.2) and can express complementarities or

substitutability on the subsets of item put up for auction. CATS can also generate

instances reflecting previous distributions described in literature, for example those

listed in [114], [41], [19]. These distributions do not reflect real situations, but make

use of different functions to select the number of items each bid will contain: to cite

some of them, the Uniform distribution randomly selects the number of items in the

interval [1 . . . n], where n is the number of items put up for auction; the Decay distri-

bution adds successive items to a bid with a decaying probability; the Exponential

distribution creates bids with x items with a probability inversely proportional to

an exponential function of x.

Multi AGent Negotiation Testbed (MAGNET)

As described above, the WDP has been largely analyzed in the literature. On the

contrary, the BEP received much less attention. To the best of our knowledge,

the only solving tool addressing the BEP is MAGNET (Multi AGent Negotiation

Testbed) [24], a commercial tool, developed at the University of Minnesota, that
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provides support for complex agent interactions and is able to generate and solve

BEP instances. MAGNET is based on Integer Programming and can perform both

complete and incomplete search implementing Simulated Annealing, a search strat-

egy that overcomes the problem of local optima allowing, during the search, to

select branches that worsens the objective function. This strategy is inspired by

metal annealing process.

The traditional IP solver is based on branch and bound and provides the optimal

solution, if able. The incomplete strategy is an anytime algorithm: we can stop the

search when a timeout occurs or when no improvements are found within a given

time, so also sub-optimal solutions can be found.

6.4.2 Algorithm portfolio

In [49] an algorithm portfolio is defined as ”. . . a collection of different algorithms

and/or different copies of the same algorithm running on different processors.”. The

algorithm portfolio design appears first in [60]. The authors consider a portfolio of

algorithms and, using the notion of economic risk, derive the probability distribution

for an algorithm to end the search within a given time. Using information from this

probability distribution they interleave the algorithms to solve instances of the graph

coloring problem. Experimental results show a performance increasing of about 30%

w.r.t. using a single algorithm.

[49] consider stochastic algorithms and hard combinatorial problems such as the

Quasigroup Completion Problem. They show that, running the algorithms in par-

allel or interleaving them on a single processor (this technique is called the restart

technique [36]) achieves strong computational advantage.

[42] propose a dynamic algorithm portfolio method, where the algorithms run in

parallel on different machines and, at each time slot, the relative priority between

them is updated on the basis of their expected closeness to the solution.

Usually, in the context of algorithm portfolio, the algorithm selection problem is

considered. The algorithm selection problem, that is the problem of selecting the

best, or simply a good, algorithm to solve a problem, can arise in a large variety of

cases. When defining an algorithm portfolio for the selection problem it is important

to include in the portfolio only the algorithms that could be selected. In particular,

if, given a set of algorithms, one of them is dominated by at least one of the others
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on all the experiments performed, it must not be included in the portfolio because

it will never be the best algorithm.

In literature, the algorithm selection problem has been studied since the seventies.

It is first formulated in [110], where an abstract model for the problem is defined.

Algorithm selection is particularly useful when solving hard combinatorial opti-

mization problems where the difference between a good algorithm and a bad one

determines the capability of solving the problem or not. Typically, the algorithm

selection is performed finding a way to predict the computational effort an algo-

rithm spends to solve a particular instance of a problem. [90] analyze a set of well

known Branch and Bound algorithms, taking advantage on the Knuth sampling

method [73] to estimate the size of the search tree. Experimental results show that

the proposed method is effective both on randomly generated and realistic highly

structured problems. [37] describes a statistical technique for algorithm selection

in planning and transportation problems. [58] propose a complete knowledge-based

tool for problem specification and algorithm description and selection for scientific

software.

Machine learning as been extensively used for algorithm performance prediction

and algorithm selection. [99] use a Bayesian model to predict the algorithm run time

on the basis of structural characteristics of the instances and applied the technique

to hard CSP and SAT problems with high running time variance. A Bayesian

approach is also used in [22] in the context of scheduling problems. The authors use

a low-knowledge approach: only few and inexpensive measurements can be done to

identify the features describing the algorithms. [79] exploit reinforcement learning

for dynamic algorithm selection in the context of sorting problems. In [123] WEKA,

a machine learning tool for data mining, is used for algorithm selection in planning

problems.

[99] propose a portfolio of algorithms for SAT problems. They identify a set

of easy-to-compute features to describe the empirical hardness of SAT instances

and they use a regression technique to predict the algorithms running time. [61]

show that machine learning techniques for algorithm selection can be effective also

with stochastic algorithms. They analyzed the Bayesian Linear Regression and the

Gaussian Process Regression methods.

[8] address the question of selecting an algorithm from a predefined set that will
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have the best performance on a scheduling problem instance. The aim is to use low-

knowledge dynamic techniques. Each algorithm, is run for a fixed number of CPU

seconds on the problem instance. The results of each run are then used to select the

algorithm that will achieve the best performance given the time remaining.

As we will describe in deep in Section 8.1, our work is strongly based on [85]:

in particular, we will take advantage of the structural features of a WDP instance

described in [85] to characterize our BEP instances. In the same paper, the authors

propose a statistical regression method to predict the CPLEX running time to solve

WDP instances. This is a first step in the direction of automatic algorithm selection,

since the authors do not select the algorithm, but predict the algorithms run-time

to deduce whether it will perform well or not on a given instance.

The same authors, together with Andrew and McFadden, in [84] propose a port-

folio of algorithms for the same problem and compare the predicted running times.

This work is extended in [83] exploiting another machine learning paradigm, namely

the Boosting technique [116], for algorithm running time prediction.

A survey of these works also appears in [87] and in [86]. In the latter the authors

claim that decision tree based selections, performing off-line classifications, ”. . .

penalize misclassifications equally regardless of their cost.” Their idea is to minimize

the average portfolio running time, not the selection tool misclassification. Here we

will give evidence that our tool is effective for selecting the best algorithm and this

minimizes the average running time. In fact, we will show that, when our tool misses

the right classification, the algorithms running times are very close one each other.

[54] face the Most Probable Explanation problem for bayesian networks. They

consider six solving algorithms, one of which is complete, and try to answer two ques-

tions: is the instance exactly solvable? If the answer is yes the complete algorithm is

chosen, otherwise they try to answer another question: which incomplete algorithm

is the best one to solve the instance? To answer the latter question they use and

compare six machine learning methods, one of which is Decision Trees, based on few

easy-to-compute features describing the instance. Experimental results show that

Decision Trees is the best learning method, having the higher prediction rate. Of

course, results show that the prediction rate is higher when the features accurately

describe the instance structure [45].

In our opinion, [85] and [54] motivate our work. In fact, [85] propose a set of
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parameters that accurately describe a WDP instance while, as introduced above,

[54] show that Decision Trees is an appropriate technique for algorithm selection

when used in conjunction with accurate features. For these reasons, given that the

BEP can be seen as a WDP generalization, we believe that our approach can lead

to satisfactory results.





Chapter 7

Algorithms and Experimental

Results

Introduction

In this Chapter we will describe the implemented algorithms to solve the BEP and

we will show the experimental results. In Sections 7.1 and 7.2 we will describe a CP

based algorithm, some experimental results and a comparison with another existing

tool to solve the BEP. In Section 7.3 we will describe two algorithms, one based

on IP and an Hybrid one based on both IP and CP, to solve the BEP, presenting

some experimental results and comparing their behaviours in Section 7.4. We will

see that some of the developed algorithms are not dominated by the others on all

the instance. Depending on the instance, one algorithm can be better than another;

this is one of the cases where an algorithm portfolio approach (see 8.1) can pay off.

In Section 7.5 we will draw some considerations on the portfolio, referring the reader

to the next Chapter for a deep dealing with the argument.

7.1 CP algorithms

We implemented a pure CP based approach based on the CP model described in

Section 6.3.2. Variables and variable values selection heuristics are defined on the

variables X. We recall that each variable represents a service to be bought and the

domain ranges on all the bids proposing the service.

The variable selection heuristic is based on the First Fail Principle, that selects
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the variable with the smallest remaining domain. We try to buy first the services

that are sold by the lower number of bidders.

For the variable value selection we used a specialized heuristic, namely the Most

Valuable Bid (MVB) principle introduced in Section 6.4.1, that selects first the value

representing the bid j with the lower pj/|Sj| value, that is the price-for-service value,

the cost for each single service in the bid, assuming that all the services in a bid

have the same cost. This assumption is not misleading since each bid can only be

accepted as a whole, or rejected. The objective is to minimize the cost for buying

the services, so we first try to buy the services from the cheaper bidders, those with

the lower price-for-bid value. If choosing the cheaper bidders is consistent with the

problem constraints, the optimal solution is found, otherwise other bidders, with an

higher price-for-service value, are tried until the optimal solution is found.

We implemented two variant of this CP solver exploring the search tree using

Depth First Search (DFS) and Slice Based Search (SBS)1 with a discrepancy step

experimentally set to 4 (see Section 2.3.4). In the following, this two solving tools

will be referred to respectively as CP-DFS and CP-SBS.

7.2 Experimental results

In this Section we will describe the tool used to generate our data set, we will show

the results solving the BEP with the two CP approaches described above and we

will compare them with MAGNET, introduced in Section 6.4.1.

7.2.1 Data set generation

The most important parameters when generating BEP instances are: the number

of bids and services; the number of services included in each bid; the type of the

services, i.e. an estimation of their execution hardness and thus of their mean

duration and price proposed by a bidder.

To generate the problem instances we will solve, we used MAGNET [24], mainly

because it is able to generate and solve BEP instances and therefore we can directly

compare the results obtained when solving the same instances with MAGNET and

with our solvers on the same machine. With MAGNET it is possible to set some

1also known as Depth Bounded DFS (DB-DFS)
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parameters to differentiate the instances, e.g. the bid-size variability, that is a

number, ranging from 0 to 1, defining the variability of the number of services

proposed by each bidder; it is also possible to label the services with a type.

We generated four kinds of instances: the first, very easy to solve, with 5 services

requested by the auctioneer and a number of bids varying from 13 to 19; the second

with 10 services and a number of bids varying from 29 to 41; the third with 10

services and a number of bids varying from 88 to 109; the last, very hard to solve,

with 20 services and a number of bids varying from 372 to 4212.

7.2.2 Comparing CP and Magnet

In this section we will show and compare the results when solving the instances de-

scribed above with our CP solvers (CP-DFS and CP-SBS) and with MAGNET in its

complete and incomplete version. The complete one, based on Integer Programming,

will be referred to as M-IP, while the incomplete one, based on Simulated Annealing,

will be referred to as M-SA. We ran our experiments on a 2.4GHz Pentium 4 with

512MB RAM and using ILOG Solver 5.3 [65] as CP solving tool.

In Table 7.1 each line represents a BEP instance. The Services, Bids and Opt

columns report the number of services requested by the auctioneer, the number of

bids and the optimal solution respectively. The Best M-SA column reports the best

solution found by M-SA and, if it is not optimal, the percentage w.r.t. the optimal

solution is shown. The other four columns represent the search time (in ms) respec-

tively for MAGNET implementing IP (column M-IP), MAGNET implementing SA

(M-SA) and the CP-DFS and CP-SBS algorithms (columns CP-DFS and CP-SBS).

The symbol ’-’ in the Time column means that the algorithm was not able to find

a feasible solution within the time limit, set to 15 minutes. The last two columns

represent the number of failures occurred when solving the problem using CP-DFS

or CP-SBS. We do not have the same information from MAGNET.

In the first two sets of experiments (5 services and 15 bids on average and 10

services and 35 bids on average), the M-IP approach always finds the optimal so-

lution, while in the third (10 services and 100 bids on average) it does not provide

any optimal solution within the time limit. In the first set also M-SA provides the

optimal solution, while, in the second set, it finds the optimal solution only in the

2These instances are available on the web at http://www-lia.deis.unibo.it/Staff/AlessioGuerri/BEP LIB



68 Chapter 7. Algorithms and Experimental Results

Services Bids Opt Best M-SA

Time (ms) Failures

MAGNET CP CP

M-IP M-SA CP-DFS CP-SBS CP-DFS CP-SBS

5 13 6624 6624 80 10 10 10 2 3

5 14 10311 10311 70 10 10 10 4 7

5 15 8496 8496 60 40 30 30 16 3

5 16 9508 9508 70 30 30 30 19 17

5 16 9622 9622 71 30 10 10 6 8

5 16 10920 10920 141 311 10 10 1 1

5 16 12319 12319 60 10 10 10 3 3

5 16 12979 12979 70 30 11 10 6 6

5 17 11384 11384 60 50 10 10 2 2

5 19 10333 10333 90 40 10 10 3 8

10 29 17653 17653 160 2100 10 10 8 8

10 30 19758 19758 100 1582 421 40 220 27

10 31 15318 15318 160 1532 20 10 5 5

10 31 15317 16532 (92%) 80 1933 10 10 0 0

10 32 15172 15172 100 1091 20 20 6 6

10 33 17297 17297 90 831 10 10 4 4

10 34 16492 16492 281 1993 10 10 4 4

10 34 19115 22927 (83%) 140 1812 60 40 59 44

10 36 17795 18059 (98%) 100 2085 20 20 7 7

10 41 15865 17005 (93%) 150 1352 10 10 4 4

10 88 14088 18037 (78%) - 3265 761 51 16414 230

10 98 14107 16746 (84%) - 4186 12458 490 99300 2543

10 98 17519 20643 (85%) - 1131 6609 70 57486 398

10 100 16065 20862 (77%) - 2173 10 10 1 1

10 100 12106 14031 (86%) - 3175 20 10 20 17

10 106 19468 22521 (86%) - 1873 1372 40 11119 138

10 109 15274 17994 (85%) - 3245 341 30 2148 76

10 110 13815 19063 (72%) - 2093 20 30 4 4

Table 7.1: Results on instances generated by MAGNET

60% of the cases. In the third set of experiments M-SA never computes the optimal

solution, but solutions that are quite far (between 72% and 86%) from the optimum.

Our algorithm always finds the optimal solution for all the instances and the time

to produce it is always the lowest.

These results point out that our approach always outperforms MAGNET both

in search time and in solution quality for the instances considered.

We analyzed harder instance to further give evidence that our approach outper-

form MAGNET. Table 7.2 shows the results on the fourth instance set: each line

represents an instance with 20 services and 400 bids on average. These instances are
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Services Bids

Best solution found Search time (ms) Failures

Magnet CP Magnet CP CP

M-SA CP-DFS CP-SBS M-SA CP-DFS CP-SBS CP-DFS CP-SBS

20 372 55% 88% 19490 8700 25 100 30 454

20 372 - 96% 28036 - 25 256049 39 1.1M

20 377 56% 24789 96% 5038 381036 90618 2.09M 249k

20 378 72% 97% 26859 9006 25 32 33 29

20 393 68% 24718 99% 2956 25 46202 28 152k

20 401 69% 75% 26833 5560 30 7354 64 28991

20 407 63% 98% 25997 6297 1018 591627 4157 1.3M

20 408 24467 98% 24467 6450 25 30 10 10

20 421 66% 99% 23887 8131 575051 48 2.5M 67

Table 7.2: Results on hard instances generated by MAGNET

very hard to solve so it is not possible to find the optimal solution (or to prove the

optimality of a solution) with any of the approaches considered within the time limit

set to 15 minutes. In the columns Best Solution Found we report the best solutions

found by M-SA, CP-DFS and CP-SBS within the time limit; for each instance, the

best solution obtained by one of the three algorithms is reported, while the other

two results are described as percentage w.r.t. the best solution found. In this table,

we compare only M-SA, CP-DFS and CP-SBS since M-IP does not compute any

solution within the time limit. The letter k in the failure column means 103 while

M means 106. It is worth noting that our solutions are, on average, 30% better

than those produced by M-SA. Moreover, the time to produce the best solution is

in general considerably lower than 15 minutes.

The relative quality of M-SA with respect to CP-DFS and CP-SBS is also depicted

in Figure 7.1, where we show the trend of the solution quality for hard instances

solved using M-SA, CP-DFS and CP-SBS. The y-axis represents the solution quality

in terms of percentage of the solution w.r.t. the best solution found for the instance

considered. The x-axis represents the percentage of occurrence of a given solution

quality. For example, M-SA finds a solution with a quality of 80% in the 12% of the

cases, CP-DFS in around the 90% of the cases and CP-SBS in the 96%: viceversa,

in the 70% of the cases CP-SBS ensures a solution quality of 100% (i.e. the optimal

solution), while CP-DFS ensures a quality of 97% and MAGNET only 60%.

In this Section we have given evidence that MAGNET is always outperformed

by our CP approaches both in search time and solution quality for all the kind
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Figure 7.1: Trend of the solution quality for instances of 20 services and 400 bids

of instances considered, from the simplest with only 5 services and 10 bids to the

hardest with 20 services and 400 bids. As far as our analysis is concerned, we will

not include MAGNET in the algorithm portfolio. Furthermore, we can see that

CP-SBS always outperforms CP-DFS, therefore in the following we consider only

SBS as search strategy and we will refer to the CP-SBS algorithm as CP.

7.3 IP based and hybrid algorithms

In the last section we have given evidence that our CP based approaches always

outperform MAGNET. In this Section we will describe two algorithms based on the

IP model and one hybrid algorithm based on both the CP and IP models, introduced

in Chapter 6.

7.3.1 IP based algorithms

The first IP algorithm, based on the IP model presented in Section 6.3.1, implements

the IP Branch and Bound. As introduced in Section 3.4, the Branch and Bound

algorithm selects the variables on the basis of a search heuristic: similarly to the CP

based algorithm, we used the Most Valuable Bid (MVB) principle, choosing first the

cheaper bid according to the price-for-service value, that is the bid price divided by

the number of services proposed. The variable xj which associated bid has the lower
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pj/|Sj| value are selected first. In the following, this algorithm will be referred to as

IP.

We developed an incomplete IP algorithm based on the IP model presented in

Section 6.3.1. The algorithm implements Branch and Bound and is based on the

reduced costs of the variables x. It works as follows: first, the linear relaxation

of the WDP subproblem of the BEP instance is solved to optimality (temporal

constraints are removed for efficiency reasons). Variables xj are ranked according

to their reduced cost rcj from lower to higher. Then, we solve the IP problem

considering only the first r% variables, where r is a parameter to be experimentally

tuned. The other variables are fixed to 0. We solved the LR relaxing also temporal

constraints since the search time to solve the LR with temporal constraints was

sensibly higher and the rankings obtained in the two cases are very similar. The

Branch and Bound algorithm selects first the variable xj with the lower rcj. In the

following, this algorithm will be referred to as LR+IP.

7.3.2 Hybrid algorithm

The last algorithm we implemented is a hybrid algorithm based on both the IP and

CP models presented in Section 6.3. The hybrid algorithm is very similar to the CP

algorithms presented in Section 7.1, but integrates the linear relaxation of the IP

model and exploits its results in the CP solving strategy. First, the LR of the WDP

is solved to optimality (temporal constraints are relaxed as for LR+IP); for each bid

we consider the minimum between pj/|Sj| and the reduced cost rcj of the associated

IP variable xj, both normalized w.r.t. the maximum of each value over all bids.

We used these numbers to rank the variable values, starting from the variable with

the lower value. The heuristic integrates the MVB principle and the reduced costs

based ranking. We explore the search tree using SBS with a discrepancy step set to

4. In the following, this algorithm will be referred to as HCP3.

7.4 Experimental results

In this Section we will show the results solving the BEP with the IP-based and

hybrid approaches described above and we will compare them with the CP based

3indeed it is strongly based on CP



72 Chapter 7. Algorithms and Experimental Results

one, introduced in Section 7.1.

7.4.1 Data set generation

We consider again the instances generated using MAGNET and besides we tried to

generate other instances with a different structure. In fact, even though MAGNET

can set some parameters, the instances generated are quite similar one another

and, in particular, the average number of services for bid is typically lower than

2. We used CATS (see Section 6.4.1) to generate more realistic instances with

a very different structure one another. With CATS we can specify the minimum,

maximum and average number of services for bid and the variance of the average: to

do that, when creating a bid, the minimum number of services is added and than any

subsequent service is added with a certain probability until possibly the maximum

number is reached. The probability can be fixed or can increase or decrease each

time a service is added.

Unfortunately, CATS produces only WDP instances, i.e. bids without temporal

information: we overcome this limitation generating WDP instances using CATS,

producing BEP instances with the same number of services using MAGNET and

finally extracting the temporal information from MAGNET instances and including

them in the CATS instances.

We generated a large variety of realistic instances with a number of services

ranging from 15 to 30 and a number of bidders ranging from 400 to 1000.4.

7.4.2 Comparing IP and CP

In this section we will show and compare the results when solving the instances

described above with our solvers (IP, LR+IP, CP and HCP). We do not consider

MAGNET having shown, in section 7.2, that the CP algorithm always outperforms

it. We ran our experiments on a 2.4GHz Pentium 4 with 512MB RAM and using

ILOG Solver 5.3 [65] as CP solving tool and ILOG CPLEX 8.1 [63] as IP solving

tool using its default parameters except for the variable selection heuristic.

In Table 7.3 we compare the four algorithms on instances with 15 services and

500 bids, 20 services and bids varying from 400 to 1000 and 30 services and 1000

bids. Each line shows the mean search time over a set of 10 instances. We also
4These instances are available on the web at http://www-lia.deis.unibo.it/Staff/AlessioGuerri/BEP LIB
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report the mean services for bid (S/B) value shown in the column S/B, with a

variance of 1%, that will be useful in later discussions. Columns CP, HCP, IP and

LR+IP show the search time (in milliseconds) to solve the problems to optimality.

The symbol ’-’ means that the optimal solution was not found within a time limit

of 15 minutes. Column r% represents the percentage of variables considered in the

LR+IP incomplete algorithm.

Services Bids S/B Search time (ms) r%

CP HCP IP LR+IP

15 500 2.59 8539 11475 7423 1772 40

15 500 4.29 590 523 16740 1765 20

15 500 7.57 874 720 12022 9782 30

20 400 2.76 4118 5898 2754 357 40

20 500 4.69 1794 1694 - 56822 55

20 800 4.58 16453 9334 359437 21658 50

20 1000 1.12 13688 17063 1610 281 65

20 1000 1.15 - - 687 360 95

20 1000 4.49 3085 2082 - 9319 20

30 1000 1.40 - - 36328 1235 70

30 1000 3.34 - - 900000 6975 25

30 1000 6.52 - - - 25969 30

Table 7.3: Comparison between algorithms

Some consideration follows from Table 7.3.

• When CP outperforms HCP, both IP and LR+IP outperform HCP and CP, so

we can remove CP from the portfolio of algorithms because the best one always

lies between IP, LR+IP and HCP.

• LR-IP is faster w.r.t. IP but it always happens that both of them outperforms

HCP or are both outperformed by HCP, so we can remove LR+IP from the

portfolio and consider only the complete algorithms IP and HCP.

We take for grant that, if we are interested in incomplete algorithms, it is possible

to obtain them from HCP by limiting the maximum number of discrepancies allowed,

and from IP simply considering the LR+IP algorithm.
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7.5 Algorithm Portfolio

In this Section we analyze the algorithm behaviours when solving BEP instances

with different S/B values. Table 7.4 shows the comparison of the two algorithms

(HCP and IP) search times on instances with 20 services and 400 bids. Each line

represents the mean over 10 instances having the same S/B value (reported in the

columns S/B). All the instances have been solved to optimality by both the algo-

rithms.

S/B HCP IP S/B HCP IP

2,291 4391 750 2,497 10750 797

2,563 2828 907 2,705 5468 844

2,777 5468 844 2,846 12940 828

3,111 731 937 4,179 344 2406

4,356 641 2281 4,446 343 1453

6,935 250 9047 7,086 625 3563

7,181 5719 8282 7,696 407 8032

7,795 78 11047 7,876 63 5485

7,878 78 8891 8,052 235 12890

Table 7.4: Comparison between algorithms for instances of 20 services and 400 bids

We can observe a correlation between the S/B value and the best algorithm: in

particular we notice that the higher the S/B value, the better the HCP approach

performances. This result was expected because an higher S/B value leads to an

higher number of side constraints complicating IP model and, at the same time,

reducing the number of feasible solutions in the CP model.

We have two algorithms and none of them dominates the other over all problems,

and we can see a correlation between the instance structure and the best solving

approach. The algorithms are therefore good candidates for an algorithm portfolio

design where the best algorithm can be recognized a priori analyzing the instance

structure.

We used the S/B value to guide the selection of the best algorithm between IP

and HCP and we tested the accuracy on a test set of 280 instances. We found that

the prediction of the algorithm is correct in the 72% of the cases. This result is

encouraging but the error rate is unacceptable, and moreover this analysis can be
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hardly generalized if other algorithms or different problems will be considered. In

fact, the S/B value is a good indicator in this particular case because optimization

and feasibility hardness are directly affected by this value. Let us think what hap-

pens removing the temporal constraints, thus obtaining the WDP. The S/B value

remains unchanged but now we know that the best algorithm is always IP.

Our claim is that, given an instance, it is possible to select the best algorithm by

statically analyzing the structure of the instance itself, and our goal is to develop an

automatic tool to discern the best algorithm on the basis of the instance structure,

but in order to obtain a generalizable tool we need to find a more accurate description

of the instance structure other than the S/B indicator.

Next Chapter is devoted to the algorithm portfolio analysis and the automatic

selection tool development.





Chapter 8

Algorithm Portfolio Analysis

Introduction

In this Chapter we will describe in deep the algorithm portfolio approach to solve

the BEP and the tool to automatically select the best algorithm. In Section 8.2 we

will introduce the portfolio and we will list the features, describing a BEP instance,

we will base the selection tool on. In Section 8.4 we will introduce the tool we have

developed to select the best algorithm before starting the search and we will show

some experimental results. In Section 8.6 we will give evidence that our selection tool

is flexible and extensible by testing it on BEP and WDP instances with differentiated

structural characteristics.

8.1 Algorithm Portfolio

As introduced in Section 4.2, the Algorithm Portfolio (AP) is a method to inte-

grate different programming paradigms. A portfolio of algorithms is a collection

of different algorithms or several instances of the same algorithm, differing in some

parameters or in the initial state, able to solve the same problem: to find a solution,

a common AP approach is to run all the algorithms (or a subset of them) in parallel

on different processors. When the fastest one finds the solution, all the others are

stopped. Of course, an AP containing different algorithms pays off when none of

them dominates all the others.

An AP can also embed several repetitions of the same algorithm. This is typical

when using, for example, stochastic algorithms, where the result depends on the
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initial state (defined by a random seed) of the search. In this case the AP runs

several instantiation of the same algorithm starting with different seeds, or combines

several short runs of the same algorithm. The latter technique is called restart for

stochastic algorithms [36]. In [49] the authors provide results showing that, for some

classes of problems, an AP approach implementing the restart technique can lead

to strong computational advantage.

The restart technique is also effective if we are interested in finding a solution

quickly. The first algorithm runs searching for a solution and when a given event,

for example the maximum running time or the maximum number of nodes explored,

occurs, the search is stopped and another algorithm is tried [92].

All the AP techniques described above run several different algorithms or different

instantiations of the same algorithm, discovering the best algorithm only at the

end of the search. Furthermore, running several algorithms in parallel requires a

higher computational effort. Finding, for each problem instance, the best algorithm

before the search can dramatically reduce the computational requirements of the

portfolio providing the same results both in terms of solution quality and search

time. Of course, finding the best algorithm given an instance, is not a trivial task.

The selection must be based on information taken from the static analysis of the

instance. One of the most distinctive characteristics of an instance is its structure.

Starting from an instance model, several representations of the structure can be

extracted: flow graph, constraint graph, parameter list.

In our research we have developed a portfolio of algorithms to solve the BEP,

and an automatic approach based on machine learning (see Section 8.3) for select-

ing, given an instance, the best algorithm. The selection is based on information

extracted from the constraint graph associated to the problem instance. In the fol-

lowing Section, we will introduce the constraint graph and some parameters that

can be extracted.

8.2 The instance structure

In the last Chapter we have analyzed some algorithms to solve the BEP, and two

of them are not dominated by the others on all the instances considered. As far

as the Algorithm Portfolio (AP) analysis is concerned (see Section 8.1) they are
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good candidates to be included in a portfolio. Our idea is to run, for each problem

instance we face, only the fastest algorithm: we therefore need to find some structure

based characteristics able to discern a BEP instance best solved by HCP rather than

IP and viceversa. We based our analysis on a list of 25 features presented in [85] to

discern a WDP instance hardness.

Table 8.1: BEP instance features

Table 8.1, taken from [85], lists the features. They are divided in four groups.

The first group contains features extracted from the Bid-Good graph, a bipartite

graph associated to a combinatorial auction problem with a node for each bid, a node

for each service, and an edge between a bid and a service if the service is proposed

by the bid; Figure 8.1(a) shows the Bid-Good graph for the example reported in

Table 6.1 of Chapter 6. The second group is extracted from the Bid graph, that is

the constraint graph of the BEP instance. This graph represents conflicts among

bids: each node represents a bid and an edge between a couple of bids exists if

the two bids appear together in one or more constraints. Figure 8.1(b) shows the

Bid graph for the example in Table 6.1. The third group of features is based on

the slack values of the linear relaxation of the problem; the slack values vector is

calculated starting from the solution vector x of a LR of the problem and replacing

each element xi with min(|xi|, |1− xi|). The last group is based on the bid prices.

Since the BEP contains the WDP as a sub-problem, we based our AP analysis
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Figure 8.1: Bid-Good graph and Bid graph for the example in Table 6.1

on the same features. We extracted these 25 features from our BEP instances.

Clearly it is not possible to manually select those attributes that are correlated to

the instance structure. We need an automatic way to decide, given the list of values

describing an instance, the best algorithm to solve it. We exploited the Decision

Trees Machine Learning technique, in particular the software tool c4.5 [106], using

the 25 features to describe the instances and find a classification rule.

8.3 Decision Trees

The machine learning technique for inducing a decision tree from data is called Deci-

sion Tree Learning (DT). DT is a predictive model; that is, a mapping of observations

about an item to conclusions about the item’s target value. DT conceptually creates

a tree where each interior node corresponds to a attribute of the item; an arc to a

child represents a possible value of that attribute. A leaf represents the predicted

value of target variable given the values of the variables represented by the path

from the root. Observations are provided as training set in form of attribute-value

tuples, with the corresponding target value, the class.

At each node, the method recursively selects an attribute and divides the cases

in subsets, one for each branch of the test until all cases in each subset belong to the

same class or a stopping criterion is reached. At each node, the attribute selected

for the test is the one that maximizes the information gain. The information gain

is based on the notion of entropy. Intuitively, the entropy of a set of examples is

the information about the non-uniformity of the collection itself. The entropy is

minimum when all cases belong to the same class, otherwise the entropy is maxi-
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mum when cases are uniformly classified over all possible classes. The entropy of a

collection of cases S is defined as follows:

Entropy(S) =
k∑

j=1

(
freq(Cj, S)

|S|
× log2

(
freq(Cj, S)

|S|

))
where freq(Cj, S) is the number of cases in S belonging to class Cj, j = 1 . . . k.

Beside the information gain, other measures can be used, such as the Gini in-

dex [47] (a measure of the inequality of a distribution) or the misclassification mea-

sure. Once the decision tree has been computed, it is important to test its accuracy

in classifying new instances. For this purpose, a test set is defined. A test set has the

same structure of the training set. In this way, we can establish which is the error

rate and which is the accuracy of the decision tree when analyzing unseen cases.

One important aspect of DT is the ability to generalize the results. In general,

only a small subset of the attributes provided in the data set are indeed used in the

resulting decision tree. Small trees, involving a small set of attributes, are preferred

to large trees.

In our research we have used c4.5 [106], a decision tree learning system. c4.5

creates a decision tree as explained above and then prunes it finding a tree containing

only those features that lead to a minimum of the entropy of the training set,

therefore decision trees generated by c4.5 are in general very small.

The DT technique has several advantages: results are simple to understand and

interpret; require little data preparation avoiding, for example, normalization; are

robust and perform well with large data in a short time.

8.4 Decision Trees experimental results

We considered a data set of 400 instances, split in training set (70%) and test set

(30%). Each instance in the training set is described by the best algorithm (either

IP or HCP) to solve it and by the value of the 25 static features defined in [85] and

listed in Table 8.1.

We built the decision tree using the training set, and we verify the quality of

the resulting systems using the test set. We record the percentage of cases that are

classified correctly. To avoid the generation of decision trees depending from the
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particular training and test sets used, we repeat the analysis randomly splitting the

data set 10 times into different training and testing sets. We obtained ten trees with

the same structure, i.e., at each level the same attribute is chosen for splitting the

training set. Since we have continuous parameters, the ten trees slightly differ only

in the threshold used for splitting. Therefore, the resulting tree has thresholds that

are the mean of the thresholds computed in the ten experiments.

8.4.1 Constraint graph and features

As introduced in the previous Section, c4.5 generates a decision tree using only those

features that lead to a maximum information gain. We describe here three features,

out of the 25 presented in Table 8.1, that will appear in the decision trees generated

by c4.5.

These features are extracted from the constraint graph, that is a graph with

a node for each variable and an edge between each couple of nodes representing

variables involved in one or more constraints.

Starting from this graph, we can extract the following structural features:

• Standard Deviation of the Node Degree (ND): the ND is the number

of edges starting from a node. Once collected in a vector this value for all

the variables, the ND is the standard deviation of the vector. Given a set of

numbers, their Standard Deviation gives the valuation of how scattered they

are around their mean value. Given a vector x = {x1, x2, . . . , xn}, and the

mean of all its values x̄, the Standard Deviation of the vector x, σx, is defined

as follows:

σx =

√∑n
i=1(xi − x̄)2

n

The ND for the graph in Figure 8.1(b) is the standard deviation of the vector

x = {2, 2, 1, 3}, that is 1√
2
.

• Edge Density (ED): the ED is the ratio between the number of edges in the

graph and the number of edges in a complete graph with the same number of

nodes. If k in the number of nodes, k(k − 1)/2 is the number of edges in the

complete graph. This value can range from 0 to 1. The ED for the graph in

Figure 8.1(b) is 4
6

= 0.6̄.
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• Clustering Coefficient (CC): the CC is a measure of the local cliqueness

of the graph. It is computed as follows: for each node N we consider its

neighborhood, formed by the nodes in the graph directly connected to N , and

we compute the ED of the neighborhood. We compute this value for each node

and the CC is the mean value. This parameter can range from 0 to 1. Let us

consider the Figure 8.1(b): the neighborhood of b1 is the subgraph formed by

b2 and b3, that are connected in their turn by an edge. In this case the ED

is 1. Analogously, the ED for the neighborhood of b2 is 1, while for b4 it is 0.

The neighborhood of b3 contains all the other three nodes and the subgraph

contains only one edge. The ED is therefore 1
3
. The CC of the graph in Figure

8.1(b) is the mean value of (1, 1, 0, 0.3̄), that is 0.583̄.

We can see that extracting the ND and the ED is quite simple, in fact we have to

traverse the graph extracting a simple value from each node and to apply a simple

formula. Extracting CC is, on the contrary, more complex. We have to visit each

node in the graph extracting the neighborhood, and then we have to traverse each

neighborhood. This reflects on the computational time required to calculate the CC

values.

8.4.2 Experimental results

We performed our analysis starting from a training set of 280 tuples with 25 at-

tributes and we obtained a decision tree (referred to as DT-1) with a prediction

error equal to 9%. The resulting tree has only one level consisting in a test on

the Clustering Coefficient (CC). This means that for each new instance we need to

extract only the CC to decide which algorithm best solves the instance itself.

Unfortunately, for some instances the CC is very expensive to be computed. In

particular, for those instances with high S/B value the CC is very expensive, because

an higher S/B value leads to an higher number of constraints in the model and of

edges in the Bid graph, and therefore and higher features extraction time. We

therefore removed from the training set the expensive features and we performed

again the experiments. As a result, we get a decision tree (referred to as DT-2) with

a prediction error equal to 11%. The features considered significant by c4.5 are only

the Edge Density (ED) and the Standard Deviation of the Node Degree (ND).
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Figure 8.2: Extraction time for attributes

Figure 8.2 shows, for groups of instances with similar S/B values, the ratio be-

tween the feature values extraction times and the difference between the search

times of the best and the worst algorithm. When the ratio is greater than 1 it is

not worth extracting the feature since the time used in selecting the best algorithm

plus the time to solve the instance using it is greater than the time used by the

worst algorithm to solve the instance. The threshold above which extracting CC

is not convenient has been fixed to 2. We can also see from the Figure that the

ratio between the ED and the ND extraction time and the difference between the

search times of the best and the worst algorithm is always lower than 1, thus it is

always worth using DT-2 (except for the fact that the error rate is a bit higher w.r.t.

DT-1).

Figure 8.3: Decision tree for the BEP

The whole decision tree for the BEP is depicted in Figure 8.3. The left most
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sub-tree is DT-1, while the right most is DT-2. This tree can be easily translated

in an automatic selection algorithm, reported in Figure 8.4.

if (S/B < 2)
then if (CC < 0.87)

then IP 
else HCP

else if (ED < 0.82)
then if (ND < 104)

then IP
else HCP

else HCP

Figure 8.4: Selection algorithm for the BEP

These results support our claim that structure at the instance level may be enough

to discriminate among solution strategies.

8.4.3 Time saving using Decision Tree Technique

We have shown in the last subsection that, using some instance structure based

parameters, we can achieve a prediction rate of about 90%; on the other hand, using

only the S/B parameter (S/B in the following), which extraction time is negligible,

we have a prediction rate of 72%. It is therefore important to verify whether the

prediction rate improvement achieved extracting the ED, ND and CC pays back with

a reduction of the total search time (parameter extraction plus solution search).

We first analyzed the 10% of the instances incorrectly classified by DT. We found

that all but two of them are incorrectly classified also by S/B; in the two instances

where S/B predicts the right choice and DT does not, the search time of the worst

algorithm is only one order of magnitude higher w.r.t. the best. On the contrary,

analyzing the instances correctly classified only by DT (about 18% of our data set)

we found that the 53% of them can be solved only by the best algorithm and in the

remaining cases the worst algorithm search time is up to two order of magnitude

w.r.t. the best one.

These results show that DT not only achieves an higher prediction rate, but can

also predict the right algorithm for instances where a wrong choice causes a much

higher solving time up to, in the worst case, the time deadline. As a further analysis
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we split the ratios between the parameters extraction time and the algorithm search

time difference shown in Figure 8.2 for the cases correctly classified by S/B and

DT, correctly classified only by DT and where both the approaches miss the clas-

sification. Table 8.2 summarizes the results. The first two columns report whether

the approaches correctly classifies the instances or not, the third columns report the

percentage of cases falling in the row, while the last two columns report the ratio be-

tween the parameters extraction time and the search time difference. The extraction

time is calculated only for the instances where the parameter is used for classifica-

tion (thus CC is calculated if S/B is lower then 2 and ED and ND otherwise). We

consider in Table only instances solved by both the algorithms.

Approach Parameters

S/B DT % ED+ND CC

Yes Yes 72% 1.40% 11.66%

No Yes 18% 0.98% 13.72%

No No 10% 1.66% 16.80%

Table 8.2: Comparison between classification approaches

We can see that, using the DT approach, we have a search time increase of 1.4%

or 11.66% (depending on the parameters used) on the instances correctly classified

by S/B, but we have a search time reduction of 99.02% or 86.28% on the instances

where S/B fails. In addition, we have considered only the instances where both the

algorithms can find a solution, so the time saved in the latter case is actually higher.

The last row shows that, on the instance we can not classify we waste the 1.66% or

16.8% of the time extracting the parameters.

Summarizing the results presented in Table 8.2 we can see that, using the ED

and ND parameters we have a time wasting of 1.4% in the 72% of cases and 1.66 in

the 10%, but we have a time saving of 99.02% in the 18% of the cases. The mean of

these values gives a time saving of 16.65% using the ED and ND parameters. The

same value for the CC is 5.45%. Given that, in the instances considered, the S/B

is lower then 2 in the 47% of the cases, we can summarize these vales stating that,

using DT, we have a time saving of 11.39%. In addition, we remind again that we

considered only the instances where both the algorithm can find a solution, so the

percentages presented are lower than the real time saving value.
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8.5 Comparison with other learning techniques

To further validate the strength of our approach, we compared Decision Trees with

other learning techniques. namely Case Based Reasoning (CBR) [75] and Binomial

Logistic Regression (BLR) [119], to select the best algorithm. In the following, we

describe these techniques and we show the experimental results.

8.5.1 CBR Framework

CBR enables past problem solving experiences to be reused to solve new problems

[75]. CBR has been successfully used in the context of, e.g. diagnosis and decision

support [81], design and configuration [26]. CBR is based on the intuition that if two

instances are similar, then it follows that the same technology should be appropriate

for both instances.

Experiences are stored along with the problems they solve as cases. A case is

a representative example of a group of instances (a group can contain any number

of instances) that are similar to one another, but different from other groups of

instances. A particular technology (CP or HCP for this analysis), is associated with

one or more groups of instances i.e. cases.

A case is composed two parts; a problem part and an experience part. In the

present context, the problem part consists of some information about a BEP instance

in the form of a set of descriptive features. The experience part is what technology

between HCP and IP solves that instance efficiently.

Two important decisions must be made in the design of a CBR system. Firstly

how should problems be represented and secondly how should similarity between

problems be computed. In this work, the set of features i.e. how to represent

problems is decided for us. We use a similarity measure that computes the Euclidean

distance between the features used to represent the two problems being compared.

A CBR system consists of a four step cycle; retrieve, reuse, revise, and retain. To

solve a new problem, we retrieve a case from the casebase, whose problem part is

most similar to the new problem. We then reuse the experience part to recommend

what technology should be used to solve the new problem. The casebase may be

revised in light of what has been learned during this most recent problem solving

episode and if necessary the retrieved experience, and the new problem, may be



88 Chapter 8. Algorithm Portfolio Analysis

retained as a new case. Every time a new problem instance is presented to the

system, this cycle enables a CBR system to both learn new experiences and maintain

or improve its ability to predict.

A CBR system typically must be trained before it can classify new instances. To

facilitate training we divide our dataset into two sub-sets for training and testing

purposes. In training mode, a casebase is assembled using the training problems.

We expect that the instances retained in the casebase constitute examples of when

to use the appropriate technology.

8.5.2 Binomial Logistic Regression

In [85], the authors use regression (linear and quadratic) to learn a real-valued

function of the features that predicts the runtime. In [83], they extend their approach

to allow them to predict an algorithm (among a given pool) that best solves a given

instance. They do this by firstly predicting the runtime for each algorithm (using

the approach outlined in [85]). This requires a different set of dynamic features for

each algorithm. Then they simply choose the algorithm whose predicted runtime is

smallest.

Using linear or quadratic regression for our task is inappropriate however. Unlike

[85], where the dependent variable, the runtime, of the regression is continuous,

here the dependent variable is discrete; either 0 for IP or 1 for HCP. Hence we must

utilize a different form of regression called Binary Logistic Regression (BLR).

The logistic regression model has become the standard method of data analysis

for describing the relationship between a discrete dependent variable that takes one

of two values and one or more predictor variables. Logistic regression is used to

model the probability p of occurrence of a binary or dichotomous outcome.

BLR is used to find a fit for data when the dependent variable (the choice of solu-

tion strategy in the present context) has two discrete values mapped to 0 or 1 [119].

Logistic Regression uses the Logit model to determine the relationship between the

probability of an outcome occurring and the predictor variables (problem features

in the present context).
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8.5.3 Weighted Random

The weighted random selection technique looks at how often each solution strategy

is the best for all instances in each dataset, and builds a corresponding frequency

distribution for that dataset. The probability to suggest a strategy is based on this

frequency distribution. In other words, the strategy that in the dataset is most

often the best strategy has an higher probability to be suggested and so on for all

the remaining strategies.

8.5.4 Experimental Results

In this section we will show the results obtained when predicting the best algorithm

using the techniques described above. We used the same dataset described in 8.4

and, to directly compare the results, we consider only the three features described

in 8.4 (CC, ED and ND) to describe our BEP instances.

• CBR results: To account for the fact that some features are more impor-

tant than others, we introduce weights to control the importance of each fea-

ture when computing the similarity between two instances. Our CBR system

must search for the best combination of feature weights. It does so by exhaus-

tively trying all combinations of weights for all features. We exhaustively cycle

through all possible weights for every feature from 0.00 to 1.00 in steps of 0.05

and thus find the optimal combination of weights for the features used. Note

that we are able to afford this exhaustive search because we only consider 3

features. A more sophisticated weight learning method is required once the

number of features grows much beyond 3.

We use weighted city block as the similarity measure. Thus our similarity mea-

sure for two instances ~pp and ~ci, and a set of problem features pf = {a, b} for

each; ~pp = 〈a1, b1〉, ~ci = 〈a2, b2〉 looks like this:

sim(~pp, ~ci) = (wa(1−
|a1 − a2|

amax − amin

) + wb(1−
|b1 − b2|

bmax − bmin

))/{wa + wb}

Occasionally, the similarity between a given instance and some cases is the

same. That is we have a tie for the best case. In this situation we decide which

case to use from this set of best scoring cases by a majority voting scheme and

break ties randomly.
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The median prediction rate averaged over 10 trials is around 85% (with a

median of 84% and standard deviation of 5.3%). The weights for the three

features are 0.05 for ED, 0.1 for ND, and 0.21 for CC.

• BLR results: We use the Zelig library [66], an add-on to the R statistical

package [62] to carry out the BLR calculations.

With BLR, we obtain a 79% prediction rate averaged over 10 trials with a

median of 79% and standard deviation of 5.7%.

Table 8.3 compares the results obtained using the techniques described above.

Technique DT-1 DT-2 CBR BLR WR

Prediction rate 91% 89% 85% 79% 49%

Table 8.3: Machine learning techniques comparison.

These results show that different machines learning techniques have different per-

formances even within the same domain and the same dataset and, for the instances

considered, Decision Trees seem to be the best approach.

Our analysis suggests that, using the decision trees technique in the context of

the BEP, we are able to build a practical and useful system that is able to select

the best solution strategy within a reasonable prediction rate using only static and

cheap features. Static features make it possible to have an off-line prediction system

that does not rely on runtime knowledge.

In the next Section we will show that our tool is flexible when used in the context

of the BEP and is extensible to the WDP.

8.6 Modifying and eliminating the time windows

In Section 7.5 we noted that the number of temporal constraints between services

affects the size of the IP model more than the CP model. We can explain this

fact considering the precedence graph associated to the BEP. In the CP model, we

introduce a constraint for each edge in the precedence graph, while in the IP model

we introduce a constraint for each pair of services joined by a precedence constraint

and for each pair of bids proposing them.
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The latter constraints can be of different kinds, depending on the time windows.

In fact, as described in section 6.3.1, considering two services i and i′, appearing

respectively in bids j and j′, joined by the precedence constraint i ≺ i′, three

different situations regarding time windows can occur: all values in the windows

are compatible, so we do not need to add any constraint; only some values are

compatible, so we need to add the constraint Startij +Dij−Starti′j′ +M(xj +xj′) <

2M (6.10); all values in the windows are incompatible each other, so we need to add

the constraint xj + xj′ ≤ 1 (6.9). The first constraint involves the Start variables

and uses the Big-M method, while the second is a very simple constraint involving

only two decision variables: the first kind of constraints complicates the model more

than the second, so depending on the temporal windows we can have different models

with different computational complexity.

The instance structure, and thus the feature values, are therefore affected not only

by the services-for-bid value, as mentioned in Section 7.5, but also by the width of

the temporal windows associated to the services.

To further validate the strength of our approach, and in particular to show that

it is extensible to problems having a different structure, we applied our selection

tool to different instances of the same BEP, obtained widening the time windows,

and to WDP instances, that can be seen as BEP instances having the time windows

infinitely widened.

We tested the selection algorithm in Figure 8.4 widening the time windows of a

set of instances. Starting from each instance we generated eleven different instances

enlarging the time windows ten percent each time, up to doubling them. After this

point, further enlarging the time window has the same effect obtained removing the

time window. To enlarge time windows, we fixed the central point of each time

windows and we simply enlarged its width by a coefficient ranging from 1.0 to 2.0

with a step of 0.1, consequently modifying Estij and Lstij, ∀j = 1 . . . n, ∀i ∈ Sj. We

extracted the ED, the ND and the CC from each instance with each time windows

modification and we solved them with the algorithms in the portfolio. In Table 8.4 we

show, for four instances with 20 services, 400 bids and different S/B values, reported

in the first column, the ED, ND and CC value and thus the predicted algorithm,

as well as the search time in seconds for the two portfolio algorithms, namely HCP

and IP. Each column represents the instances with the time windows enlarged using
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the coefficient in the first row. We can see that there is a perfect correspondence

between the predicted and the best algorithm (in bold), except for the third column

of the instance 2.95, where the prediction is wrong. We can however see that in

this case the two algorithms behaviours are very close one each other. In general,

from the experimental results, we have seen that, when the decision tree misses the

prediction, the algorithm behaviours are quite similar.

S/B 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 ∞

ED 0.196 0.113 0.112 0.110 0.109 0.108 0.107 0.106 0.105 0.104 0.103 0.069

ND 29.367 19.028 18.849 18.649 18.425 18.270 17.986 17.838 17.731 17.548 17.438 9.956

CC 0.736 0.787 0.787 0.787 0.787 0.788 0.788 0.788 0.789 0.790 0.791 0.818

1.07 Pred IP IP IP IP IP IP IP IP IP IP IP IP

HCP 27.52 100.44 262.53 291.35 289.25 20.20 24.84 70.11 176.05 4.33 1.11 0.06

IP 1.39 1.77 7.09 19.80 3.36 7.09 17.23 5.25 3.61 0.84 0.94 0.01

ED 0.863 0.831 0.821 0.811 0.804 0.800 0.798 0.795 0.793 0.791 0.789 0.691

ND 59.481 65.875 66.265 66.558 66.844 67.338 67.592 67.871 68.140 68.357 68.547 74.158

CC 0.904 0.886 0.880 0.862 0.860 0.858 0.856 0.854 0.853 0.851 0.850 0.783

2.95 Pred HCP HCP HCP IP IP IP IP IP IP IP IP IP

HCP 43.64 26.45 24.17 21.73 24.11 15.06 15.89 14.25 16.08 11.94 12.66 0.19

IP 52.38 39.81 21.14 7.70 6.05 5.14 5.09 6.44 6.94 8.30 7.59 0.05

ED 0.865 0.835 0.831 0.828 0.825 0.821 0.818 0.815 0.812 0.809 0.807 0.679

ND 108.633114.558115.215115.826116.387116.941117.415118.024118.444118.902119.388121.710

CC 0.914 0.900 0.898 0.896 0.894 0.891 0.889 0.887 0.885 0.883 0.881 0.778

4.80 Pred HCP HCP HCP HCP HCP HCP HCP HCP HCP HCP HCP IP

HCP 4.32 4.01 3.34 3.42 5.41 4.41 3.42 3.43 4.44 5.45 3.05 2.65

IP 9.83 12.08 18.03 31.69 44.02 54.80 45.41 48.74 42.89 49.67 56.33 0.09

ED 0.912 0.905 0.904 0.903 0.902 0.901 0.900 0.899 0.898 0.897 0.896 0.798

ND 58.444 60.228 60.516 60.901 61.193 61.548 62.016 62.356 62.660 62.968 63.293 78.705

CC 0.972 0.941 0.940 0.939 0.939 0.938 0.938 0.937 0.937 0.936 0.936 0.854

7.09 Pred HCP HCP HCP HCP HCP HCP HCP HCP HCP HCP HCP IP

HCP 4.20 7.97 16.84 49.06 1.74 2.30 5.22 5.84 12.19 14.89 19.58 2.76

IP 26.52 75.77 142.52 243.45 219.75 191.30 101.38 90.44 44.92 39.00 44.22 0.37

Table 8.4: Algorithm’s comparison in instances with 20 services and 400 bids modifying time

windows

We can note that the HCP behaviours when solving an instance with differ-

ent time windows remain quite similar one each other, while, regarding the IP

behaviours, we note an higher variability. This result was expected because the

number of constraints, and so the computational hardness, in the CP model does
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not depend on the time windows width but only on the number of services involved

in the precedence graph. On the contrary, in the IP model, different time windows

lead to different constraints in the model (in fact we can have the constraints (6.9)

or (6.10) depending on the time windows overlapping).

In the last column of Table 8.4 (column ∞) we report the search time widening

the time windows to infinity, thus when solving the WDP, and we can see that also

for the WDP the algorithm described in Figure 8.4 suggests the right solver, that is

always IP.

In [85] the authors found that ED and CC are the most appropriate features to

derive the computational hardness of a WDP problem, and here we show that these

parameters can also discern the best algorithm, both for BEP and WDP. We have

also shown that, using these features, it is possible to create a flexible and extensible

automatic selection tool. In fact, adding new algorithms to the existing pool does

not increase the number of considered features and modifying the instance structure

the tool keep on suggesting the right solver.
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Chapter 9

Introduction

This Part of the dissertation is devoted to analyze allocation and scheduling prob-

lems rising in the context of Multi-Processor System-on-Chip (MPSoC) platforms,

quickly described in Section 1.2.2. The structure of the problems has the interest-

ing characteristic that it is possible to recognize two distinct sub-problems in it,

the allocation and the scheduling problem. This suggests to apply a decomposition

technique to solve the problem. We exploited logic-based Benders Decomposition

(see Section 9.4); we decompose the problem into Allocation Master problem and

Scheduling Sub-Problem, solving the former using IP and the latter using CP.

In the following chapters we will analyze two problems rising in the context of

MPSoCs, namely the Allocation and Scheduling Problem (ASP) and the Dynamic

Voltage Scaling Problem (DVSP) and we will describe the decomposition method

we used, comparing the results with those obtained by solving the problem as a

whole using only a single programming paradigm, either IP or CP, and validating

our results on a real platform.

The research described in this Part of the dissertation supports the thesis that

. . .The structure can also suggest to develop solvers based on both the

approaches, or to split the problem in two or more subproblems solved

with different approaches.

In this chapter we will describe the MPSoC platform we consider and MP-ARM,

a multi-processor cycle-accurate architectural simulator we used to validate our ex-
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perimental results. We will conclude giving a general overview of the problems we

face and describing the Decomposition Techniques, we will take advantage of for our

research.

9.1 The Multi-Processor System-on-Chip platform

Advances in very large scale integration (VLSI) of digital electronic circuits have

made it possible to integrate one billion of elementary devices on the same chip, and

currently integrated hardware platforms for high-end consumer application (e.g.

multimedia-enabled phones) can contain multiple processors and memories, as well

as complex on-chip interconnects. Integrating more than one processing core on

the same silicon die can provide a high degree of flexibility and represents the most

efficient architectural solution for supporting multimedia applications, characterized

by the request for highly parallel computation.

These platforms are called Multi-Processor Systems-on-Chip (MPSoCs), and are

finding widespread application in embedded systems (such as cellular phones, auto-

motive control engines, etc.). Once deployed in field, usually these devices always

run the same application, in a well-characterized context.

The multi-processor system we considered in our research is a reference template

[112] for a distributed MPSoC architecture and consists of a pre-defined number of

distributed computation nodes, as depicted in Figure 9.1. All nodes are assumed

to be homogeneous and consist of ARM7 processor cores, low-power 32-bit RISC

microprocessor cores (including instruction and data caches) optimized for cost and

power-sensitive consumer applications, and of tightly coupled software-controlled

scratchpad memories. This latter is a low-access-cost scratchpad memory, which is

commonly used both as hardware extension to support message passing and as a

storage means for computation data and processor instructions which are frequently

accessed. Data storage onto the scratchpad memory is directly managed by the

application, and not automatically in hardware as is the case for processor caches.

The MPSoC platform embeds ARM7 processors.

Being the scratchpad memory of limited size, data in excess can also be stored

externally in a remote on-chip memory, accessible via the bus. The bus for state-

of-the-art MPSoCs is a shared communication resource, and serialization of bus
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Figure 9.1: Single chip multi-processor architecture

access requests of the processors (the bus masters) is carried out by a centralized

arbitration mechanism. The bus is re-arbitrated on a transaction basis (e.g., after

single read/write transfers, or bursts of accesses of pre-defined length), based on

several policies (fixed priority, round-robin, latency-driven, etc.).

If two tasks need to communicate, messages can be exchanged through commu-

nication queues [104], which can be allocated at design time either in scratch-pad

memory or in remote shared memory, depending on whether tasks are mapped onto

the same processor or not.

Recent MPSoCs platforms can also change the working frequency of each pro-

cessor, making it possible to reduce the processor speed and, most of all, the power

consumption, when the computational workload is low. These platforms are called

energy-aware MPSoCs. The frequency of each processor core is derived from a base-

line system frequency by means of integer dividers. Moreover, a synchronization

module must be inserted between the bus and the processor cores to allow fre-

quency decoupling (usually a dual-clock FIFO). The bus operates at the maximum
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frequency (e.g., 200 MHz). For each processor core, a set of voltage and frequency

couples is specified, since the feasible operating points for these cores are not con-

tinuous but rather discrete. For modern variable voltage/variable frequency cores,

this set is specified in the data-sheet.

Typically, MPSoCs always run the same set of applications, so it pays off to

spend a large amount of time for finding an optimal allocation and scheduling off-

line and then deploy it on the field. For this reason, many researchers in digital

design automation have explored complete approaches for allocating and scheduling

pre-characterized workloads on MPSoCs [124], instead of using on-line, dynamic

(sub-optimal) schedulers [25, 27].

9.2 MP-ARM

In the last section we have introduced the bus, that is re-arbitrated on a transac-

tion bases. We will see in the following chapters that modelling the bus at a so

fine granularity would make the problem overly complex, so, as we will describe in

Section 10.3.2, we modelled the bus as a shared resource: more than one process

can use the bus at the same time, each consuming a fraction of the total bandwidth

until the maximum is reached.

In general, modelling a real world scenario deciding some simplifying assumption

could result in a misalignment between the expected behaviour and the real one.

To verify the effective executability of an optimal allocation and scheduling found,

we need to execute it on the real platform. To simulate our solutions, we used MP-

ARM [12], a MPSoC platform simulator. MP-ARM is a complete multi-processor

cycle-accurate architectural simulator. Its purpose is the system-level analysis of de-

sign tradeoffs in the usage of different processors, interconnects, memory hierarchies

and other devices. MP-ARM is based on SystemC as modelling and simulation

environment, and includes models for several processors, interconnection busses,

memory devices and support for parallel programming [1].
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9.3 Problems description

In the following Chapters, we will analyze two allocation and scheduling problems

on a MPSoC. Here we give a quick description of the problems:

• Allocation and Scheduling Problem (ASP): We have a set of pre-charac-

terized tasks to be executed on a MPSoC platform and a task graph representing

communications (and thus precedences) among tasks. For each task, we know

the worst case execution time (WCET), and the amount of memory needed

to store program data, communication data and the internal state. In the

platform we have a set of homogeneous processors. We know the dimension

of each processor internal scratchpad memory, the dimension of the remote

memory and the total bandwidth of the interconnection bus. Furthermore, we

have deadline constraints on the tasks. The problem is to allocate and schedule

each task on a processor and each memory requirement to a storage device such

that all the constraints (precedences and resources availability) are met. The

objective function is the minimization of the total amount of data transferred

on the bus. We have a communication on the bus each time data are stored

in the remote memory and each time two communicating tasks execute on

different processors. The objective function minimizes the traffic on the bus,

usually a bottleneck resource in a MPSoC.

• Dynamic Voltage Scaling Problem (DVSP): We have a set of pre-char-

acterized tasks to be executed on an energy-aware MPSoC platform and a task

graph representing precedences among tasks. For each task, we know the worst

case execution number of clock cycles (the WCET depends on the processor

working frequency). In the platform we have a set of homogeneous processors.

For each processor, we have a list of possible frequencies the processors can

run at, and for each frequency we know the power consumption. We know

the total bandwidth of the interconnection bus. Furthermore, we have dead-

line constraints both on processors and on tasks. The problem is to allocate

and schedule each task on a processor deciding a working frequency for each

task, such that all the constraints (precedences and resources availability) are

met. The objective function is to minimize the total power consumed, because

energy-aware MPSoCs are typically embedded in mobile or battery operated
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devices, where the power consumption reduction is the main issue.

If the applications to be executed represent tasks to be repeated an unknown

number of times, we schedule several repetitions of each task, to achieve a working

rate configuration. This is the case, for example, for MPEG video stream encoding

or for GSM encoding/decoding. In fact, we can not know in advance the duration

of a video stream or a phone call.

In this context, our approach leverages a decomposition of the synthesis problem

of on-chip multi-processor systems into two related sub-problems: (i) mapping of

tasks to processors and of memory slots to storage devices and (ii) scheduling of

tasks in time on their execution units. We then tackle each sub-problem with CP

or IP, depending on which modelling paradigm best matches the sub-problem char-

acteristics. The interaction is regulated by cutting planes and no-good generation

and the process is proved to converge to the optimal solution. Our problem formu-

lation will be compared with the most widely used traditional approaches, namely

CP and IP modelling the entire mapping and scheduling problem as a whole, and

the significant cut down on search time is showed.

In the next Section we will introduce the Decomposition Techniques we used to

model our problems.

9.4 Decomposition Techniques

Decomposition techniques typically apply when facing a problem where it is possible

to recognize two distinct sub-problems. The main idea is to split the problem and

solve the two sub-problems separately. The two problems are called Master Problem

and Sub-Problem. Typically the two sub-problems are not completely disjoint, but

they share a limited number constraints w.r.t. the number of constraints involve in

the original problem.

In 1961, Dantzig and Wolfe [30] proposed a decomposition algorithm where both

the Master and the Sub-problem was based on Integer Linear Programming. In

1962, Benders [11] proposed the so called Benders Decomposition, extending the

Dantzig-Wolfe algorithm for dealing with sub-problems of any kind. We presented

the general model of the Benders Decomposition framework in Section 3.3.

Hooker and Ottosson [56] proposed, in 1995, the so called Logic-Based Benders
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Decomposition (LB-BD), generalizing the classical Benders Decomposition for deal-

ing with both master and sub problems of any kind. They applied this methodology

to several planning and scheduling problems, with different objective functions, and

in particular with objective functions depending on master problem variables, sub

problem variables, or both.

Master Problem

No solution

(b) Feasible

No-good

Optimal solution

Sub-Problem

(d) Feasible

(c) Infeasible

(a) Infeasible

Figure 9.2: Benders Decomposition method when the objective function depends only on master

problem variables

The general solving method when the objective function depends only on master

problem variables is depicted in Figure 9.2. First, the master problem is solved to

optimality. If it is infeasible, Figure 9.2(a), the whole problem is infeasible, being

the master problem a relaxation of the original problem. If, on the contrary, we find

an optimal solution for the master problem, we fix the master problem variables to

the values found in the solution and we solve the subproblem, Figure 9.2(b). If it

is feasible, the solution is the optimum for the original problem because it is the

optimum for the master problem and the objective function depends only on master

problem variables, Figure 9.2(d). If the sub-problem is infeasible a cut is generated,

namely a Benders Cut, Figure 9.2(c). In this case the cut is simply a no-good: the

solution, and all its symmetric, optimal for the master problem, are not feasible for

the subproblem and so they must not be found again. The process iterates until the

sub-problem becomes feasible.

Figure 9.3 depicts the decomposition technique when the objective function de-



104 Chapter 9. Introduction

Master Problem

No solution

(b) Feasible

No-good

Sub-Problem (c) Infeasible

(a) Infeasible

Cutting Plane

(OF bound)

(d) Feasible

Optimal solution

(e) Infeasible

Figure 9.3: Benders Decomposition method when the objective function depends only both master

and sub problem variables

pends on both master and sub-problem variables, or only on sub-problem variables.

If an optimal solution for the Master is found but the subproblem is infeasible,

similarly to the latter case a Benders cut is generated, Figure 9.3(a), (b) and (c).

When we found an optimal sub-problem solution the search can not be stopped

because the solution found is the optimum for the original problem unless a better

one exists with a different master problem solution. A Benders cut is generated,

Figure 9.3(d), with information on the best solution found, and thus on the Ob-

jective Function bound. The process iterates and it is proven [46] that converges

to the optimal solution for the original problem when the master problem becomes

infeasible, Figure 9.3(e). In this case the last solution found is the optimal one.

9.5 Related work

The synthesis of distributed system architectures has been studied extensively in the

past. The mapping and scheduling problems on multi-processor systems have been

traditionally modelled as integer linear programming problems. An early example

is represented by the SOS system, which used mixed integer linear programming

(MILP) model [105]. SOS considers processor nodes with local memory, connected

through direct point-to-point channels. The algorithm does not consider real-time

constraints. Partitioning under timing constraints has been addressed in [80]. A

MILP model that allows to determine a mapping optimizing a trade-off function
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between execution time, processor and communication cost is reported in [10].

Extensions of the ILP formulation have also been used to account for memory

allocation requirements, besides communication and computation ones. A hard-

ware/software co-synthesis algorithm of distributed real-time systems that optimizes

the memory hierarchy (caches) along with the rest of the architecture is reported

in [89]. An integer linear programming model is used in [94] to obtain an optimal

distributed shared memory architecture minimizing the global cost to access shared

data in the application, and the memory cost.

The above techniques lead to static allocations and schedules that are well suited

for applications whose behaviour can be accurately predicted at design time, with

minimum run-time fluctuations. This is the case of signal processing and multime-

dia applications. Pipelining is one common workload allocation policy for increasing

throughput of such applications, and this explains why research efforts have been

devoted to extending mapping and scheduling techniques to pipelined task graphs.

An overview of these techniques is presented in [31]. ILP formulations as well as

heuristic algorithms have been traditionally employed. In [23] a retiming heuristic

is used to implement pipelined scheduling, that optimizes the initiation interval, the

number of pipeline stages and memory requirements of a particular design alterna-

tive. Pipelined execution of a set of periodic activities is also addressed in [40], for

the case where tasks have deadlines larger than their periods. Palazzari et al. [102],

focus on scheduling to sustain the throughput of a given periodic task set and to serve

aperiodic requests associated with hard real-time constraints. Mapping of tasks to

processors, pipelining of system specification and scheduling of each pipeline stage

have been addressed in [5], aiming at satisfying throughput constraints at minimal

hardware cost.

Also the voltage selection approaches have been extensively studied. They can

be broadly classified into on-line and off-line techniques. In the following, we re-

strict ourselves to the off-line techniques since the presented approach falls into this

category.

Yao et al. proposed in [126] the first DVS approach for single processor systems

which can dynamically change the supply voltage over a continuous range. Ishihara

and Yasuura [67] modelled the discrete voltage selection problem using an integer

linear programming formulation. Xie et al. presented in [125] an algorithm for
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calculating the bounds on the power savings achievable through voltage selection,

but is restricted to applications running on single processor systems. Jejurikar and

Gupta [68] propose an algorithm that combines voltage scaling and shutdown in

order to minimize dynamic and leakage energy in single processor systems.

Andrei et al. [2] proposed an approach that solves optimally the voltage scaling

problem for multi-processor systems with imposed time constraints. Their solution

explicitly takes into account the transition overheads implied by changing voltage

levels. The continuous voltage scaling is solved using convex nonlinear programming

with polynomial time complexity, while the discrete problem is proved strongly NP

hard and is formulated as a MILP.

The previously mentioned approaches assume that the mapping and the schedule

are given. However, the achievable energy savings of dynamic voltage scaling are

greatly influenced by the mapping and the scheduling of the tasks on the target

processors. Task mapping and scheduling are known NP complete problems [43]

that have been previously addressed, without and with the objective of minimizing

the energy. Both heuristic [117], [59] and exact solutions [13] have been proposed.

Assuming the mapping of the tasks on the processors is given as input, the authors

from [51] present a scheduling technique that maximizes the available slack, which

is then used to reduce the energy via voltage scaling. The allocation of the tasks on

the processors (mapping) has a great influence on the energy consumption. Schmitz

et al. [117] present a heuristic approach for mapping, scheduling and voltage scaling

on multiprocessor architectures.

In the context of a network-on-chip platform, Hu and Marculescu [59] presented a

mapping and scheduling algorithm for tasks and communications with the objective

of minimizing the energy. They use a suboptimal heuristic and do not consider

voltage-scalable cores.

The trend in deep-submicron CMOS technology to statically reduce the supply

voltage levels and consequently the threshold voltages (in order to maintain peak

performance) is resulting in the fact that a substantial portion of the overall power

dissipation will be due to leakage currents [17, 72]. Martin et al. [93, 2] presented

an approach for combined dynamic voltage selection and adaptive body-biasing and

showed its effectiveness. At this point it is interesting to note that the approach

presented in this dissertation can handle with minor changes the combined supply
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and body bias scaling problem. To each discrete frequency, instead of associating

one supply voltage with the corresponding dynamic power, in the combined problem,

we would associate to each frequency a supply and body bias voltage pair with the

corresponding dynamic and leakage power. Moreover, the consideration of the body

bias would not increase the computational complexity of the proposed approach.

The closest approach to the work presented in this dissertation is the one of Leung

et al., [82]. They propose a MILP formulation for mapping, scheduling and voltage

scaling of a given task graph to a target multiprocessor platform. They assume

continuous voltages, so the overall result is suboptimal. Modelling the scheduling

by means of Integer Programming, as opposed to Constraint Programming, is inef-

ficient, resulting in an artificial explosion of the search space.

In general, even though ILP is used as a convenient modelling formalism, there

is consensus on the fact that pure ILP formulations are suitable only for small

problem instances (task graphs with a reduced number of nodes) because of their

high computational cost. For this reason, heuristic approaches are widely used. A

comparative study of well-known heuristic search techniques (genetic algorithms,

simulated annealing and tabu search) is reported in [4]. Eles et al. [33] compare

the use of simulated annealing and tabu search for partitioning a graph into hard-

ware and software parts while trying to reduce communication and synchronization

between parts. More scalable versions of these algorithms for large real-time sys-

tems are introduced in [74]. Many heuristic scheduling algorithms are variants and

extensions of list scheduling [34].

Heuristic approaches provide no guarantees about the quality of the final solu-

tion. On the other hand, complete approaches which compute the optimum solution

(possibly, with a high computational cost), can be attractive for statically scheduled

systems, where the solution is computed once and applied throughout the entire

lifetime of the system.

Constraint Programming is an alternative approach to Integer Programming for

solving combinatorial optimization problems. The work in [78] is based on Con-

straint Programming to represent system synthesis problem, and leverages a set of

finite domain variables and constraints imposed on these variables. Optimal so-

lutions can be obtained for small problems, while large problems require use of

heuristics. The proposed framework is able to create pipelined implementations in



108 Chapter 9. Introduction

order to increase the design throughput. In [77] the embedded system is represented

by a set of finite domain constraints defining different requirements on process tim-

ing, system resources and interprocess communication. The assignment of processes

to processors and interprocess communications to buses as well as their scheduling

are then defined as an optimization problem tackled by means of constraint solving

techniques.

Both CP and IP techniques can claim individual successes but practical experi-

ence indicates that neither approach dominates the other in terms of computational

performance. The development of a hybrid CP-IP solver that captures the best

features of both would appear to offer scope for improved overall performance [96].

However, the issue of communication between different modelling paradigms arises.

One method is inherited from the Operations Research and is known as Benders De-

composition [11]: it is proved to converge producing the optimal solution. Benders

Decomposition (BD) technique has been extensively used to solve a large variety

of problems. In [57] BD is applied to a numeric algorithm in order to solve the

problem of verifying logic circuits: results show that, for some kind of circuits, the

technique is an order of magnitude faster w.r.t. other state of the art algorithms.

[35] embed BD in the CP environment ECLiPSe and show that it can be useful

in practice. There are a number of papers using Benders Decomposition in a CP

setting. [120] proposes the branch and check framework using Benders Decomposi-

tion. They applied this technique to the problem of scheduling orders on dissimilar

parallel machines. Here, a set of tasks, linked by precedence constraints, must be

performed on a set of parallel machine minimizing the total cost of the process. The

machines are dissimilar, so the same task can be executed on a different machine

with a different cost and processing time. [50] applied Benders decomposition to

minimum cost planning and scheduling problems in a scenario similar to the one

described in this paper, considering also release and due date constraints; in these

two works, [120] and [50], the objective function involves only master problem vari-

ables, while the subproblem is simply a feasibility problem; costs depend only on the

assignment of tasks to machines, differently from our problem, where contributes

to the objective function depend on pairs of assignments. [21] applied BD to an

allocation and scheduling problem; the master problem (allocation) is based on CP

and the sub-problem (scheduling) is solved using a real-time scheduler. They con-
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sidered a hardware architecture where the processors are connected via a network

and communications are based on a token ring protocol: a task can communicate

only when it holds the token, using all the network bandwidth and for a period of

time large enough to send all the waiting messages. Tasks are scheduled with a fixed

priority strategy. [55] uses Logic-Based BD for Planning and Scheduling problems.

The paper explores two different planning and scheduling problems with different

objective functions. In the first problem the main objective is to minimize the cost,

that can be computed directly in terms of master problem variables, since the cost

depends only on the allocation. The sub-problem becomes a feasibility problem and

the cuts generated forbid the master problem to assign the same set of tasks to the

same resource. In the second problem the objective is to minimize the makespan,

thus the objective function depends also on the sub-problem variables, that be-

comes an optimization problem itself. The sub-problem provides lower bounds on

the makespan of each processor and a Benders cut for the total makespan is derived

and posted in the master problem. They do not consider tasks with precedence

constraints, but with release and due date; communication between tasks are not

addressed in the work.

Although a lot of work has been done applying BD to allocation and scheduling

problems, we believe that our approach is not directly comparable with them, mainly

because we take in consideration a real application where data must be exchanged

between tasks and each task must read/write data (and thus must use the bus

resource) during its execution.

9.6 Overview of the Part III

Part III is organized as follows: in Chapter 10 we describe the ASP and its model

based on decomposition, discussing about design choices and simplifying assump-

tions. In Chapter 11 we will show experimental results to give evidence that our

tool is efficient to solve the ASP and we will validate the executability of our so-

lutions by simulating them on a virtual MPSoC platform, comparing the results.

Chapters 12 and 13 are devoted to the DVSP analysis and have the same structure

of Chapters 10 and 11.





Chapter 10

ASP model

Introduction

In this Chapter we will analyze the ASP, describing the model we used to solve it,

as well as the modelling assumption we have done. In Section 10.1 we will formalize

our problem, defining the problem decomposition in Section 10.2. In Section 10.3

we will present the complete model for the ASP.

10.1 Allocation and Scheduling Problem description

We consider the MPSoC platform introduced in Section 9.1. The target applica-

tion to be executed on top of the hardware platform is input to our methodology,

and for this purpose is represented as a task graph. This latter consists of a graph

pointing out the parallel structure of the program. The application workload is

therefore partitioned into computation sub-units denoted as tasks, which are the

nodes of the graph. Graph edges connecting any two nodes indicate task commu-

nication dependencies, in the sense that the output data of a task are the input

data for the subsequent task. Each task is annotated with computation, storage

and communication requirements.

In detail, the worst case execution time (WCET) is specified for each task and

plays a critical role whenever application real time constraints (expressed here in

terms of minimum required throughput) are to be met. Each task also has 3 kinds

of associated memory requirements:

• Program Data: storage locations are required for computation data and for
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processor instructions. They can be allocated either on the local scratchpad

memory or on the remote on-chip memory.

• Internal State: when needed, an internal state of the task can be stored either

locally or remotely.

• Communication queues: the task needs queues to transmit and receive mes-

sages to/from other tasks, eventually mapped on different processors. In the

class of MPSoCs we are considering, such queues should be allocated only on lo-

cal memories, in order to implement an efficient inter-processor communication

mechanism.

Communication requirements of each task are automatically determined once

computation data and internal state are physically allocated to scratchpad or remote

memory, and obviously depend on the size of such data.

We have a real time constraint on the application throughput: each task, and in

particular the last one, must generate the output data at most every time period

RT .

The goal is to allocate and scheduling tasks to resources and memory require-

ments to storage device such that all the precedence, real time and resource capacity

constraints are satisfied, minimizing the total amount of data transferred on the bus.

We have a communication on the bus when:

• Program data are stored on the remote memory. These data are accessed during

the task execution;

• Internal state is stored on the remote memory. Internal state is read immedi-

ately before the task execution and written immediately after the task execu-

tion;

• Two communicating tasks are allocated to different processors. If task A must

communicate with task B, A writes the data in a buffer queue internal to its

processor during the execution, and B reads these data using the bus before

starting the execution.

The objective function minimizes the bus congestion. In the real platforms, the

bus is usually a bottleneck resource and a congestion on the bus leads to an higher
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probability of collisions and an higher bus arbitrage mechanism time overhead. This

causes an increase in the application total execution time and, in the worst case, the

real time requirement could be violated.

We applied our methodology to task graphs extracted from a real video graphics

application processing pixels of a digital image. Many real-life signal processing ap-

plications are subject to tight throughput constraints, therefore leverage a pipelined

workload allocation policy. As a consequence, the input graph to our methodology

consists of a pipeline of processing tasks, and can be easily extended to all pipelined

applications. These applications process an unknown number of video frames and

each task in the pipelined task graph must be executed once for each frame. We can

not know in advance the number of repetitions of the pipeline, so we need to sched-

ule an adequate number of repetitions of each task to analyze the system behaviour

at full rate.

Figure 10.1: Pipelined task graph and pipeline repetition

Figure 10.1(a) depicts a pipeline of tasks, where each edge represents a precedence

constraint due to communication. Figure 10.1(b) depicts several repetitions of the

pipeline: here the horizontal edges represent communication constraints, while the

diagonal ones represent precedence constraints due to the fact that repetitions must

be executed in order; in other words, the i − th repetition of each task must be

executed before the (i + 1) − th repetition. Analyzing the Figure 10.1(b) we can

argue that, if n is the number of tasks to be scheduled, after the n − th repetition

the system is at full rate. Therefore, we need to schedule only n repetitions of the

pipeline.

10.2 Motivation for problem decomposition

The problem described in the previous section has a very interesting structure. As

a whole, it is a scheduling problem with alternative resources. In fact, each task
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should be allocated to one of the processors. In addition, each memory slot required

for processing the task should be allocated to a memory device. Clearly, tasks should

be scheduled in time subject to real time constraints, precedence constraints, and

capacity constraints on all unary and cumulative resources. However, on a different

perspective, the problem decomposes into two problems:

• the allocation of tasks to processors and the memory slots required by each

task to the proper memory device;

• a scheduling problem with static resource allocation.

The objective function of the overall problem is the minimization of communica-

tion cost. This function involves only variables of the first problem. In particular,

we have a communication cost each time two communicating tasks are allocated on

different processors, and each time a memory slot is allocated on a remote memory

device. Once we have optimally allocated tasks to resources, if the allocation is

feasible for the scheduling problem, an optimal solution for the problem overall is

found.

We used a Logic-Based Benders Decomposition approach, introduced in Sec-

tion 9.4 to solve the problem. We solve the allocation master problem using IP and

the scheduling sub-problem using CP. The mechanism the two solvers use to interact

is the one described in Figure 9.2, depicting the case when the objective function

depends only on master problem variables.

Now let us note the following: the assignment problem allocates tasks to pro-

cessors, and memory requirements to storage devices. However, since real time

constraints are not taken into account by the allocation module, the solution ob-

tained tends to pack all tasks in the minimal number of processors. In other words,

the only constraint that prevents to allocate all tasks to a single processors is the

limited capacity of the tightly coupled memory devices. However, these trivial as-

signments do not consider throughput constraints which make them most probably

infeasible for the overall problem. To avoid the generation of these (trivially infea-

sible) assignments, we should add to the master problem model a relaxation of the

subproblem. In particular, we should state in the master problem that the sum of

the durations of all the tasks allocated to a single processor does not exceed the real

time requirement. In this case, the allocation is far more similar to the optimal one
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for the problem at hand. The use of a relaxation in the master problem is widely

used in practice and helps in producing better solutions.

10.3 Modelling the Allocation and Scheduling Problem

As described in the last Section, the problem we are facing can be split into the

resource allocation master problem and the scheduling sub-problem.

10.3.1 Allocation problem model

We start from the pipelined task graph presented in Figure 10.1(a). Each task Taski

should be allocated to a processor. In addition each task needs a given amount of

memory to store data, memi to store the program data, statei to store the internal

state and datai to store the communication queues. Data can be allocated either in

the local memory of the processor running the task (of dimension MEMj) or in the

remote one except for communication queues that are always mapped locally.

The allocation problem is the problem of allocating n tasks to m processors, such

that the total amount of memory allocated to the tasks, for each processor, does

not exceed the maximum available.

We assume the remote on-chip memory to be of unlimited size since it is able

to meet the memory requirement of the application we are facing. The problem

objective function is the minimization of the amount of data transferred on the bus.

We model the problem as an IP model. In the IP model we consider four decision

variables:

• Tij, taking value 1 if task i executes on processor j, 0 otherwise,

• Yij, taking value 1 if task i allocates the program data on the scratchpad mem-

ory of processor j, 0 otherwise,

• Zij, taking value 1 if task i allocates the internal state on the scratchpad mem-

ory of processor j, 0 otherwise,

• Xij, taking value 1 if task i executes on processor j and task i + 1 does not, 0

otherwise.
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The constraints we introduced in the model are:
m∑

j=1

Tij = 1,∀i ∈ 1 . . . n (10.1)

Xij = |(Tij − Ti+1j)|,∀i ∈ 1 . . . n, ∀j ∈ 1 . . . m (10.2)
n∑

i=1

(Yij ×memi + Zij × statei + Tij × datai) ≤ MEMj,∀j (10.3)

Tij = 0 ⇒ Yij = 0, Zij = 0 (10.4)

Constraints (10.1) state that each process can execute only on a processor, while

constraints (10.2) state that Xij must be equal to 1 iff Tij 6= Ti+1j, that is, iff task i

and task i+1 execute on different processors. Constraints (10.2) are not linear, thus

we cannot use them in a IP model. If we consider that the sum Xij + Tij + Ti+1j

must always equal either to 0 or 2, constraints (10.2) can be rewritten as:

Tij + Ti+1j + Xij − 2Kij = 0 ,∀i , ∀j (10.5)

where Kij are integer binary variables that enforce the sum Tij + Ti+1j + Xij to be

equal either to 0 or 2.

Constraints (10.3) state that the total amount of tasks memory requirements allo-

cated to each internal memory must not exceed the maximum capacity. Constraints

(10.4) state that if a processor j is not assigned to a task i neither its program data

nor the internal state can be stored in the local memory of processor j.

As explained in section 10.2, in order to prevent the master problem solver to

produce trivially infeasible solutions, we need to add to the master problem model

a relaxation of the subproblem. For this purpose, for each set of consecutive tasks

whose execution times sum exceeds the real time requirement (RT), we impose

constraints preventing the solver to allocate all the tasks in the group to the same

processor. To generate this constraints, we find out all groups of consecutive tasks

whose execution times sum exceeds RT. Constraints are the following:

∑
i∈S

Duri > RT ⇒
∑
i∈S

Tij ≤ |S| − 1 , ∀j (10.6)

The objective function is the minimization of the total amount of data transferred

on the bus for each pipeline. This amount consists of three contributions: when a

task allocates its program data in the remote memory, it reads these data throughout

the execution time; when a task allocates the internal state in the remote memory,
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it reads these data at the beginning of its execution and updates them at the end; if

two consecutive tasks execute on different processors, their communication messages

must be transferred through the bus from the communication queue of one processor

to the other. Using the decision variables described above, we have a contribution

respectively when: Tij = 1, Yij = 0; Tij = 1, Zij = 0; Xij = 1. Therefore, the

objective function is:

min
m∑

j=1

n∑
i=1

(memi(Tij − Yij) + statei(Tij − Zij) + (dataiXij)/2) (10.7)

The third contribution to the objective function is divided by 2 because the same

communication is considered twice: in fact, from constraints (10.5) it follows that, if

exactly one task among Taski and Taski+1 executes on processor j, we have Xij = 1

and also Xi+1j = 1.

10.3.2 Scheduling problem model

Once tasks and memory requirements have been allocated to the resources, we need

to schedule the tasks execution. Since we are considering a pipeline of tasks, we

need to analyze the system behavior at working rate, that is when all the tasks are

running or ready to run. To do that, we need to consider several instantiations of the

same task; as explained in Section 10.1, to achieve a working rate configuration, the

number of repetitions of each task must be at least equal to the number of tasks n.

So, to solve the scheduling problem, we must consider at least n2 tasks (n iterations

for each task), see Figure 10.1(b).

In the scheduling problem model, we split each task into the several activities it

is composed of: for each task Taskij we introduce a variable Aij, (i = [0 . . . n − 1],

j = [0 . . . n − 1]), representing the computation activity of the task. Aij is the

j− th iteration of the computational activity of Taski. Once the allocation problem

is solved, we statically know if a task needs to use the bus to communicate with

another task, or to read/write computation data and internal state in the remote

memory. In particular, each activity Aij must read the communication queue from

the activity Ai−1j, or from the pipeline input if i = 0. To schedule these phases, we

introduce in the model the activities Inij. If a task requires an internal state, the

state must be read just before the execution and written just after: we therefore
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introduce in the model the activities RSij and WSij for each Taski requiring an

internal state.

The duration of the activities described so far depends on whether the data are

stored in the local or the remote memory (data transfer through the bus needs more

time than the transfer of the same amount of data using the local memory) but, after

the allocation, these durations can be statically calculated. For each activity, we

have a variable Start representing the starting time, and a value Dur representing

the duration.

Figure 10.2: Precedence constraints among the activities

Figure 10.2 depicts the precedence constraints among the activities. Each task

Taskij is represented by the activity Aij, preceded by the input data reading activity

Inij and, possibly, preceded by the internal state reading activity RSij and followed

by the internal state writing activity WSij.

The precedence constraints among the activities introduced in the model are the

following (labels are used in Figure 10.2):

Ai,j−1 ≺ Inij , ∀ i, j (10.8)

Inij ≺ Aij , ∀ i, j (10.9)

Ai−1,j ≺ Inij , ∀ i, j (10.10)

RSij � Aij , ∀ i, j (10.11)

Aij � WSij , ∀ i, j (10.12)

Ini+1,j−1 ≺ Aij , ∀ i, j (10.13)

Ai,j−1 ≺ Aij , ∀ i, j (10.14)

Start Aij − Start Ai,j−1 ≤ RT , ∀ i, j (10.15)

where the symbol ≺ means that the activity on the right should precede the activity

on the left, and the symbol � means that the activity on the right must start
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as soon as the execution of the activity on the left ends: e.g., Inij ≺ Aij means

Start Inij +Dur Inij ≤ Start Aij, and RSij � Aij means Start RSij +Dur RSij =

Start Aij.

Constraints (10.8) state that each task iteration can start reading the communi-

cation queue only after the end of its previous iteration. Constraints (10.9) state

that each task can start only when it has read the communication queue, while con-

straints (10.10) state that each task can read the data in the communication queue

only when the previous task has generated them. Constraints (10.11) and (10.12)

state that each task must read the internal state just before the execution and write

it just after. Constraints (10.13) state that each task can execute only if the pre-

vious iteration of the following task has read the input data; in other words, it can

start only when the memory allocated to the process for storing the communication

queue has been freed. Constraints (10.14) state that tasks iterations must execute

in order. Furthermore, we introduced the real time requirement constraints (10.15),

whose relaxation is used in the allocation problem model. Each task must execute

at most each time period RT .

10.3.3 Modelling the BUS

Each processor is modelled as a unary resource, that is a resource with capacity

one. As far as the bus is concerned, we made a simplification. A real bus is a unary

resource: if we model a bus as a unary resource, we should describe the problem at

a finer grain with respect to the one we use, i.e., we have to model task execution

using the clock cycle as unit of time. The resulting scheduling model would contain

a huge number of variables. We therefore consider the bus as an additive resource,

in the sense that more activities can share the bus using only a fraction of the total

bandwidth available. We experimentally found that a good value for the fraction of

bus granted to each activity is 1/m of the total bandwidth, where m is the number

of processors.

Figure 10.3 depicts this assumption. The leftmost figure represents the bus allo-

cation in a real processor, where the bus is assigned to different tasks at different

times. Each task, when owning the bus, uses its total bandwidth (400 MByte/sec in

the platform we consider). The rightmost figure, instead, represents how we model

the bus. The bus arbitration mechanism will then transform the bus allocation into
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Figure 10.3: Bus allocation in a real processor (left) and in our model (right)

the interleaving of fine granularity bus transactions on the real platform. We exper-

imentally found that this additive model is valid if the bus workload is under the

60% of its total bandwidth (240 MByte/sec). We therefore modelled the bus as an

additive resource with a capacity equal to the 60% of the total. In Figure 10.3 this

is depicted by the dotted line labelled theoretical max bandwidth. This value will be

motivated in Section 11.3.1.

To define the communication requirements of each activity (the amount of com-

putation data stored in the remote memory) we consider the amount of data they

have to communicate and we spread it over its WCET. In this way we consume only

a fraction of the overall bus bandwidth for the duration of the activity. In particular,

the activities INij, RSij and WSij use the whole fraction of the bus bandwidth they

own and the execution time thus depends on the amount of data they have to trans-

fer, while the activities Aij spread the bus usage over all the execution. The latter

activities thus consume only a little slice of the bus bandwidth. Figure 10.4 depicts

these assumptions: the height of state reading/writing activities is the maximum

fraction f available for an activity, thus their duration is statei/f . On the contrary,

we know the duration of the computational activities Duri, and the height of the

bus requirement is datai/Duri.

10.3.4 Generation of Logic-based Benders cut

When an allocation is provided, the minimal makespan schedule is computed if it

exists. On the contrary, if no feasible schedule exists, we have to generate a Logic-

Based Benders Cut, that in this case is a no-good, and pass it to the allocation

module. Since the allocation module is a Integer Programming solver, the no-good

should have the form of a linear constraint.
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Figure 10.4: Activities bus usage

We investigated two kind of no-goods:

• The first kind of no-good should prevent from finding again an infeasible allo-

cation. The resulting no-good is:

m∑
j=1

∑
i∈Sj

Xij < n (10.16)

where Sj is the set of tasks allocated to processor j. We also introduce no-goods

to cut symmetric allocations.

• The cuts described above remove only complete solutions. It is possible to

refine the analysis and to find tighter cuts that remove only the allocation of

tasks to bottleneck resources. In particular, we select all the resources that

provoke a failure, i.e. resources that lead to a violation of real time constraints.

We call them conflicting resources, CR. Then, we impose that for each resource

in R ∈ CR the set of tasks STR allocated to R should not be reassigned to the

same resource in the next iteration. The resulting no-goods are:

∑
i∈STR

TiR ≤ |STR| − 1 , ∀ R ∈ CR (10.17)

This constraints prevent the same allocation to appear again on each conflicting

resource. Identifying the conflicting resources requires to solve a one machine

scheduling for each processor p considering constraints involving only tasks run-
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ning on p. Finding these cuts is therefore a NP-Hard problem; in Section 11.2

we will experimentally show when it pays off.

10.4 Simplifying assumptions on the activities duration

In the last Section we have described the simplifying assumption we have done when

modelling the bus. This is not the only simplification we did: in fact, in order to

be able to generate a schedule off-line, we must estimate the activity durations.

Each execution run of the same activity usually has a different duration, due to bus

congestion or processor overhead to perform internal processes. We need to find

a mean value for each activity. Here we consider different ways to deduce these

values depending on the kind of the activity. Names introduced in subsection 10.3.2

are used. The following notation is used in the formulae for computing activities

duration: B is the amount of data to be read/written; tr, tw, trl, twl are respectively

the time for reading, writing, reading locally and writing locally one data; CM is

the cache miss percentage and n is the available fraction of the bus, in the sense

that each task owns 1/n of the total bandwidth.

• Durations of activities (Aij): we characterize the tasks duration depending

on where program data are stored. If they are in the local memory, we compute

the task duration as the mean over 100 simulation runs of the execution time of

the task alone on a processor with all its data stored in the local scratchpad and

this value is Duri. If, instead, the task has the program data allocated remotely,

it must access the bus several times to read these data, so its execution time

must be increased by the time spent accessing remote data. Access efficiency to

remote program data is typically enhanced by means of local caches, therefore

the task has to actually access the bus only when a cache miss occurs. Using

the notation introduced, in case program data are stored remotely, the total

execution time is Duri + B × tr × CM × n.

• Duration of communication queue reads (Inij): the duration of the read-

ing activities depends on whether 2 communicating tasks are running on the

same processor or not. In the former case, no bus transactions are needed since

exchange data are produced and consumed directly to/from scratchpad mem-

ory, and activity duration is equal to B × trl, while in the latter case the value
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B × tr × n accounts for data transfers through the bus.

• Internal state reads/writes (RSij/WSij): the internal state can be stored

either in the local scratchpad or remotely. Though, remote internal state data

are efficiently accessed via cache memories. Depending on where data are

stored, formulae for the durations of internal state reading are respectively

B × trl or B × tr × CM × n, while formulae for the internal state writing are

B × twl or B × tw × CM × n.

The problem that arises when considering the assumptions we did (activities

duration and additive bus model) is that the durations might be inaccurate and the

model might not exactly describe the considered problem. In the extreme case, the

solutions found could even be not executable in the real platform, so we must check

a posteriori if a schedule is feasible, executable and evaluate the mismatch between

the real system behaviour and the theoretical results.





Chapter 11

ASP Experimental Results

Introduction

In this Chapter we will show the experimental results obtained when solving the

ASP. In Section 11.1 we will solve the problem using the hybrid solver based on

both the IP and CP models described in the last Chapter implementing the Logic-

Based Benders Decomposition (LB-BD) methodology. We will show the experimen-

tal results and we will compare them with those obtained when solving the problem

using a single technology, either IP or CP. In section 11.2 we will discuss about using

different no-goods to make the two solvers interacting. Section 11.3 is devoted at

measuring the accuracy of the solutions found and their executability on the real

platform.

11.1 Computational Efficiency

To validate the strength of our approach, we now compare the results obtained

using the hybrid model described in the last Chapter (Hybrid in the following)

with results obtained using only a CP or IP model to solve the overall problem.

Actually, since the first experiments showed that both CP and IP were not able

to find a solution, except for the easiest instances, within 15 minutes, we simplified

these models removing some variables and constraints. In CP, we fixed the activities

execution time not considering the execution time variability due to remote memory

accesses, therefore we do not consider the Inij, RSij and WSij activities, including

them statically in the activities Aij. In IP, we do not consider all the variables and
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constraints involving the bus: we do not model the bus resource and we therefore

suppose that each activity can access data whenever it is necessary.

In the Hybrid model we introduced the first kind of no-goods described in Sec-

tion 10.3.4, those removing complete allocations. In Section 11.2 we will discuss

about using different cuts.

We generate a large variety of problems, varying the number of tasks from 4

to 10 and the number of processors from 1 to 9. We considered only task graphs

representing a pipeline. All the results presented are the mean over a set of 10

problems having the same number of tasks and processors. All problems considered

have a solution. Experiments were performed on a 2GHz Pentium 4 with 512 Mb

RAM. We used ILOG CPLEX 8.1 [63], ILOG Solver 5.3 [65] and ILOG Scheduler

5.3 [64] as solving tools.

In figures 11.1 and 11.2 we compare the algorithms search time for problems

with a different number of, respectively, tasks and processors. Times are expressed

in seconds and the y-axis has a logarithmic scale.

Figure 11.1: Comparison between algorithms search times for different task number

Although CP and IP deal with a simpler problem model, we can see that these

algorithms are not comparable with Hybrid, except when the number of tasks and

processors is very low; this is due to the fact that the problem instance is very easy

to be solved, and Hybrid loses time creating and solving two models, the allocation

and the scheduling. As soon as the number of tasks and/or processors grows, IP and

CP performances worsen and their search times become order of magnitude higher
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Figure 11.2: Comparison between algorithms search times for different processor number

w.r.t. Hybrid. Furthermore, we considered in the figures only instances where the

algorithms are able to find the optimal solution within 15 minutes, and, for problems

with 6 tasks or 3 processors and more, IP and CP can find the solution only in the

50% or less of the cases, while Hybrid always finds the optimal solution.

Alloc Sched Procs Time(s) Iters

4 32/64 3 0,42 1,01

4 32/64 4 0,41 1,05

5 50/100 4 0,5 1,01

5 50/100 5 0,57 1,07

6 72/144 4 0,6 1,06

6 72/144 5 0,85 1,09

6 72/144 6 1,26 1,10

7 98/196 5 2,84 1,08

7 98/196 6 6,14 1,09

8 128/256 5 0,98 1,03

8 128/256 6 9,53 1,07

8 128/256 7 14,37 1,12

9 162/324 6 7,71 1,11

9 162/324 7 9,25 1,02

10 200/400 4 3,85 1,03

10 200/400 7 27,85 1,06

10 200/400 9 46,69 1,11

Table 11.1: Search time and number of iterations for ASP instances

From now on we will solve the ASP instances only with the Hybrid solver. Ta-
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ble 11.1 shows the search time (in seconds) and the mean number of iterations be-

tween the master and the sub-problem when solving different ASP instances, with

the number of allocated tasks and processors shown respectively in the first (Alloc)

and third (Procs) column. We recall that, since each task is decomposed, for the

scheduling subproblem, into two or four activities (data reading, execution and, if it

is the case, state reading and writing) and we schedule n repetitions of each activity,

where n is the number of tasks in the pipeline, the number of scheduled activities

can vary from 2 × n2 to 4 × n2. Column Sched shows these two possible values.

Each line represents the mean over 10 instances with the same number of tasks and

processors.

We can see that the optimal solution can always be found within one minute

and the mean number of iteration is very close to 1: this means that, in the most

of the cases, the optimal solution can be found without iterations. In other words,

the first optimal allocation found is also schedulable. This happens thanks to the

relaxation of the sub-problem introduced in the master problem to take into account

task durations. The only case to have an infeasibility in the sub-problem is when we

find an allocation so close to the real time requirement that even a communication

on the bus, usually shorter w.r.t. the execution, will cause a violation of the real

time constraint. In Chapter 13 we will analyze in deep the importance of adding a

relaxation in the master problem.

11.2 Effectiveness of the Benders Cuts

In Section 10.3.4 we have described two kinds of Benders Cut. The first kind (re-

ferred to as Base cut), very easy to be calculated and added to the model, has been

used in all the experiments presented so far. To show the effectiveness of the second

kind of cuts (referred to as Advanced cut), found solving a NP-Hard problem for

each processor, we selected a hard ASP instance with 10 tasks allocated and 298

activities scheduled, and we solved it with different deadline values, starting from

a very weak one to the tightest one. The deadline constraint values and the tasks

characteristics have been selected to force an high number of iterations between the

master and the sub-problem.

Table 11.2 shows the search time (in seconds) and the number of iterations when
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Number of Iterations Search time (sec.)

Deadline Base Advanced Base Advanced

1000000 3 3 1,23 0,609

647824 1 1 0,771 0,765

602457 1 1 0,562 0,592

487524 18 6 6,045 1,186

459334 185 16 198,452 9,546

405725 192 23 325,142 9,954

357491 79 17 60,747 6,144

345882 6 4 5,375 1,657

340218 4 3 3,347 1,046

315840 5 3 3,896 1,703

307465 2 2 2,153 0,188

Table 11.2: Number of iterations varying the deadline and with different Benders Cuts

solving these instances respectively without (row Base) and with (row Advanced)

the second kind of cuts described in 10.3.4 for descending deadline values (row

Deadline). We can see that, when the number of iterations is high, the Advanced

cuts reduce them notably. These cuts are extremely tight, but we experimentally

see that the time to generate them is one order of magnitude greater w.r.t. the time

to generate the Base cuts. The mean time to find a Base cut is 7.4ms, while finding

an Advanced cut needs 50ms on average, so finding the latter pays off only on hard

instances where the two solvers iterates an high number of times.

11.3 Validation of the results

In Section 11.1 we have given evidence that our tool is efficient and scalable for

solving to optimality the ASP problem. As introduced in Section 10.4, we have

performed some simplifying assumption at design time. First of all, we modelled

the bus as an additive resource, and secondly we statically calculated a fixed time

for the activities execution time. We therefore need to validate our choices and to

simulate our optimal solutions on the real platform, comparing the two executions.

We have performed four kinds of experiments, namely (i) validation and cal-

ibration of the bus additive model, (ii) measurement of deviations of simulated

throughput from theoretically derived one for a large number of problem instances,
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(iii) verification of the solutions executability on the real platform and (iv) showing

the viability of the proposed approach by means of two real applications, namely

the GSM codec and the MIMO processing.

11.3.1 Validation of the bus additive model

Figure 11.3: Implications of the bus additive model

The intuitive meaning of the bus additive model is illustrated by the experiment

of Figure 11.3. An increasing number of uniform traffic generators, consuming each

10% of the maximum theoretical bandwidth (400 MByte/sec), have been connected

to the bus, and the resulting real bandwidth provided by the bus measured in the

virtual platform. It can be clearly observed that the delivered bandwidth keeps

up with the requested one until the sum of the requirements amounts to 60% of

the maximum theoretical bandwidth. This defines the real maximum bandwidth,

notified to the optimizer, under which the bus works in a predictable way. If the

communication requirements exceed the threshold, as a side effect we observe an

increase of the execution times of running tasks with respect to those measured

without bus contention, as depicted in Figure 11.4. For this experiment, synthetic

tasks running on each processor have been employed. The 60% bandwidth threshold

value corresponds to an execution time variation of about 2% due to longer bus

transactions.
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Figure 11.4: Execution time variation

However, the threshold value also depends on the ratio of bandwidth require-

ments of the tasks concurrently trying to access the bus. Contrarily to Figure 11.3,

where each processor consumes the same fraction of bus bandwidth, Figure 11.5

shows the deviations of offered versus required bandwidth for competing tasks with

different bus bandwidth requirements. Configurations with different number of pro-

cessors are explored, and numbers on the x-axys show the percentage of maximum

theoretical bandwidth required by each task. It can be observed that the most

significant deviations arise when one task starts draining most of the bandwidth,

thus creating a strong interference with all other access patterns. The presence of

such communication hotspots suggests that the maximum cumulative bandwidth

requirement which still stimulates an additive behaviour of the bus is lower than

the one computed before, and amounts to about 50% of the theoretical maximum

bandwidth.

The latter results do not discredit our assumption to set the theoretical maximum

bandwidth to the 60% of the real value because each task owns only 1/m of the

band, where m is the number of processors. Whit this assumption, in Figure 11.5

the configurations with the higher error are not possible. Furthermore, given that

the real applications executed on the MPSoCs are typically CPU intensive, the BUS

is seldom congested.
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Figure 11.5: Bus additive model for different ratios of bandwidth requirements among competing

tasks for bus access

11.3.2 Measuring accuracy on activity duration

To validate the accuracy of the pre-characterization and its impact on the computed

schedule we compared the activity durations proposed by the scheduler and the

simulator. To simulate the activity duration we used parameters from the simulation

and we compute the average duration on 100 runs.

Activity Accuracy

Processing 99.5%

Data read 99.5%

State read/write 96%

Throughput 95%

Table 11.3: Activity duration accuracy

Table 11.3 shows the percentage of accuracy (ratio of the durations) for each

kind of activity and for the throughput. As we can see, activities accuracy is very

high and this leads to an high throughput accuracy, that is the most important

parameter to be taken into consideration, since we are working in scenario with RT

constraints. Clearly, if the accuracy were low, the should be a feed back of the

pre-characterization phase, in order to compute more realistic activity durations.
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11.3.3 Validation of allocation and scheduling solutions

We have deployed the virtual platform to implement the allocations and sched-

ules generated by the optimizer, and we have measured deviations of the simulated

throughput from the predicted one for 50 problem instances. A synthetic bench-

mark has been used for this experiment, allowing to change system and application

parameters (local memory size, execution times, data size, etc.). We want to make

sure that modelling approximations are not such to significantly impact the accuracy

of optimizer results with respect to real-life systems.

Figure 11.6: Probability of throughput differences

The results of this validation phase are reported in Figure 11.6, which shows

the probability for throughput differences. The average difference between mea-

sured and predicted values is 4.7%, with 0.08 standard deviation. This confirms the

high level of accuracy achieved by the developed optimization framework, thanks

to the calibration of system model parameters against functional timing-accurate

simulation and to the control of system working conditions.

Figure 11.7 shows that our optimizer is not only accurate within acceptable limits,

but also conservative in predicting system performance, and this is very important

for meeting real-time requirements. For a given problem instance, the plot compares

the throughput provided by the optimizer with the simulated one for the same allo-

cations and schedules. The range of throughputs has been spanned by progressively

making the real-time constraint of the solver tighter. This latter provides an al-
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Figure 11.7: Conservative performance predictions of the optimizer

location and a schedule that are able to guarantee an entire range of throughput

constraints. If a lower throughput is required, than the configuration found by the

solver changes. Moving from one configuration to another corresponds to increas-

ing steps on the x-axys. At each new point, the simulated throughput is reported

as well, and it is showed to provide a conservative throughput with respect to the

predicted one, within the accuracy limits found above.

11.3.4 Verifying executability

Once we have verified the correspondence between the scheduler and the simulator

activity durations, we can focus our analysis on the executability of the optimal

schedule, checking if the off-line schedule found by the solver can be really executed

by the MPSoC platform. A schedule of tasks to be repetitively performed on a data

stream of unknown length is executable only if it is periodic. A periodic schedule is

defined by a priority table of finite dimension. If the table has dimension one, it is

called a priority list: in this case we say that the schedule is periodic with a period

of length one. In other words, called Succij the task to be executed after Taskij,

a schedule is periodic of length one if, at full rate, it is Succij = Succij+1 , ∀i =

1 . . . n , ∀j ∈ N.

At the state of the art, we can provide our simulator only with priority lists.

So, if the optimal solution is periodic with a period of length one, providing the
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simulator with a task priority list derived from the off-line sequence ensures that

all constraints and RT requirements will be satisfied also by the on-line schedule,

given that the accuracy on execution time estimation is very high, as shown in

subsections 11.3.2 and 11.3.3.

We can demonstrate (see Appendix 1 at the end of this Chapter) that the optimal

solutions found are always periodic, but in general the period can be longer than one.

We experimentally found that, in over 90% of the cases out of a set of 200 problems,

after the initial set-up stage, the first off-line schedule found by our tool is periodic

with period of length one, thus executable. Concerning the remaining cases, we

solved again the instances for which a periodic solution was not found inserting

executability constraints in the model, in order to find an executable schedule. We

measured the difference between the throughputs of the two schedules.
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Figure 11.8: Probability of throughput difference

Figure 11.8 depicts the probability (y-axis) for the difference between the through-

puts of the optimal (but not periodic with period one) solution and the periodic one

to be equal or less than the corresponding value in the x-axis (in %). As an example,

the probability for the difference to be less than 15% is 90%. We can see that, for

most of the cases, the difference is within 10%. We recall that an optimal but not

executable solution is found only in the 10% of the cases analyzed.
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11.3.5 Validation on real applications

To prove the viability of our approach, we solved two ASP problems, namely the

GMS Codec and the MIMO processing, and we verify the compliance of our optimal

solutions with the application requirements.

GSM Codec

We first proved the viability of our approach with a GSM encoder\decoder applica-

tion. Most state-of-the-art cell-phone chip-sets include dual-processor architectures.

Therefore GSM encoding/decoding have been among the first target applications to

be mapped onto parallel multi-processor architectures.

Figure 11.9: GSM codec task graph

Figure 11.9 depicts the GSM codec task graph. We can see that the source

code can be parallelized into 6 pipeline stages. Each stage is grouped in a task

pre-characterized by the virtual platform to provide parameters of task models to

the optimizer. Such information, together with the results of the optimization run,

are reported in Table 11.4. Each column reports information on the tasks in the

pipeline. The second row reports the duration of the computational activity and

the third the overhead to read the program data from the remote memory. This

two values represent the duration of the activities Ai (the overhead considered only

if program data are stored in the remote memory). The fourth and fifth lines

represent the duration of the activities Ini when reading data respectively from the

same processor or from another one. We do not have any task internal state in this

case study. The sixth, seventh and eighth lines report respectively the dimension

of the program data, input data and output data. The last two lines report the

optimal allocation found: the processor where we execute the task and the memory

where we allocate the program data.

The MPSoC platform we considered has 4 processors with 2KB of internal scratch-
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Task1 Tasks2 Task3 Task4 Task5 Task6

Computation Time (ns) 281639 437038 317032 308899 306213 306470

Remote Data Overhead (ns) 3978 1620 1099 2243 1916 1707

Local communication (ns) 4754 6675 5810 6020 5810

Remote Communication (ns) 8621 12266 10773 10609 10576

Program data (Byte) 420 420 560 560 560 560

Communication Data In (Byte) 0 340 444 444 444 444

Communication Data Out (Byte) 340 444 444 444 444 0

Processor 1 1 2 2 3 3

Data Location Local Local Remote Remote Remote Local

Table 11.4: GSM case study allocation

pad memory. Note that the optimizer makes use of 3 out of the 4 available processors,

since it tries to minimize the cost of communication while meeting hardware and

software constraints. The required throughput in this case is 1 frame/10ms, com-

pliant with the GSM minimum requirements. The obtained throughput was 1.35

frames/ms, even more conservative. As already seen, the simulation gave a better

throughput than the predicted one, with a difference of 4.1%. The table also shows

that program data has been allocated in scratch-pad memory for Tasks 1,2 and 6

since they have smaller communication queues. The time taken by the optimizer to

come to a solution was 0.1 seconds.

MIMO processing

One major technological breakthrough that will make an increase in data rate pos-

sible in wireless communication is the use of multiple antennas at the transmitters

and receivers (Multiple-input Multiple-output systems - MIMO). MIMO technology

is expected to be a cornerstone of many next-generation wireless communication sys-

tems. The scalable computation power provided by MPSoCs is progressively making

the implementation of MIMO systems and associated signal processing algorithms

feasible, therefore we applied our optimization framework to spatial multiplexing-

based MIMO processing [98].

The MIMO computation kernel was partitioned into 5 pipeline stages. The MP-

SoC platform we considered has 6 processors with 4KB of internal scratchpad mem-

ory. Optimal allocation and scheduling results for a MPSoC system of 6 processors

are reported in Fig.11.5. The meaning of the lines is the same of the GSM codec
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Task1 Tasks2 Task3 Task4 Task5

Computation Time (ns) 526737 1633286 66385 324883 5253632

Remote Data Overhead (ns) 8683 13734 749 2279 62899

Local communication (ns) 3639 12052 5373 10215

Remote Communication (ns) 6037 17605 10615 16960

Program data (Byte) 676 2500 256 4 3136

Communication Data In (Byte) 0 256 784 400 784

Communication Data Out (Byte) 256 784 400 784 0

Processor 1 1 1 1 2

Data Location Remote Remote Local Local Local

Table 11.5: MIMO processing allocation

case study.

The reported mapping configuration is referred to the case where the tightest

feasible real-time constraint was applied to the system (about 1.26Mbit/sec). In

this benchmark, Task 5 has the heaviest computation requirements, and requires

a large amount of program data for its computation. In order to meet the timing

requirements and to be able to allocate program data locally, this task has been

allocated on a separate processor. As can be observed, the optimizer has not mapped

each remaining task on a different processor, since this would have been a waste of

resources providing sub-optimal results. In other words, the throughput would have

been guaranteed just at the same, but at a higher communication cost. Instead,

Tasks 1-4 have been mapped to the same processor. Interestingly, the sum of the

local memory requirements related to communication queues leaves a very small

remaining space in scratchpad memory, which allows the optimizer to map locally

only the small program data of Tasks 3 and 4. The overall mapping solution was

therefore not trivial to devise without the support of the combined CP-IP solver,

which provides the optimal allocation and scheduling in about 600 ms. The derived

configuration was then simulated onto the virtual platform, and throughput accuracy

was found to be (conservatively) within 1%.
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Appendix 1: Proof of schedule periodicity

In this appendix we prove that despite our algorithm considers an unbounded num-

ber j of iterations of a pipeline with n tasks Taskij, i = 1..n, our final schedule is

always periodic. The proof assumes single token communication queues (i.e. length

one queues), but it can be easily extended to any finite length.

Tasks are partitioned by the allocation module on m processors. So let us consider

m partitions: Taskij , ∀i ∈ Spk , ∀j, where k = 1..m and Spk is the set of tasks

assigned to processor k. Our aim is to show that our (time discrete) scheduling

algorithm that minimizes the makespan produces a periodic solution even if we

have a (theoretical) infinite number of pipeline iterations.

The proof is based on the following idea: if we identify in the solution a state

of the system that assumes a finite number of configurations, than the solution is

periodic. In fact, after a given state S the algorithm performs optimal choices; as

soon as we encounter S again, the same choices are performed.

For each iteration j, the state we consider is the following: the slack of each task

in Sk to its deadline. The state of the system is the following: For each processor

k = 1..m we have 〈Slackk
1j, . . . , Slackk

lj〉, where Slackk
ij is the difference between

the deadline of Taskij running on processor k and its completion time. Therefore,

if we prove that the number of possible state configurations is finite (i.e., it does

not depend on the iteration number j), being the transitions between two states

deterministic, even if we have an infinite number of repetition of the pipeline, the

solution is periodic.

After the pipeline starts up, the deadline of each task Taskij is defined by the

first iteration of Taski. i.e., Taski1. In fact, the real time (throughput) constraint

states that every RT time points each task should be repeated. Therefore, if the first

iteration of a Taski is performed at time ti, the second iteration of Taski should be

performed at time ti + P , and the j-th iteration at time ti + (j − 1) ∗P −DurTaskij
.

Now, let us consider two cases:

• if the tasks in Sk are consecutive in the pipeline, then their repetition cannot

change. For example, if tasks Task1j, Task2j and Task3j are allocated to the

same processor (for all j), having length one queues, they can be repeated only

in this order. Indeed, one can repeat Task1j after Task2j, but minimizing the
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makespan it is not the right decision.

• if instead the tasks in Sk are not consecutive, then there could be repetitions

in between that could break the periodicity. Therefore, we should concentrate

on this case.

For the sake of readability, we now omit the index representing the iteration

since we concentrate on the maximum slack a task can assume. Let us consider

two non consecutive tasks TA ∈ Sk and TB ∈ Sk. Suppose that between TA and

TB there are v tasks allocated on other processors different from k. Let us call

them TA1, TA2, . . . TAv ordered by precedence constraints. If we have communication

queues of length one, between TA and TB there are AT MOST v iterations of TA.

In fact, TA can be repeated as soon as TA1 starts on another processor. Also, it can

be repeated as soon as another iteration of TA1 starts, that can happen as soon as

TA2 starts and so on. Clearly, v iterations are possible only if

m ∗DurTA
≤

m∑
i=1

DurTAi

but if this relation does not hold, there can be only less iterations of TA. There-

fore, v is an upper bound on the number of iterations of TA between the first TA and

TB. If tA is the time where the first repetition of TA is performed, the vth iteration

of TA has a deadline of tA +(v−1)∗P . Its slack is clearly bounded to the maximum

deadline minus its duration, tA + (v − 1) ∗ P −DurTA
.

The upper bound for v is n − 2. In fact, in a pipeline of n tasks the maximum

number of repetitions of a task happen if only the first and the last task are allocated

on the same processor. They have n − 2 tasks in between allocated on different

processors. Therefore, the maximum number of repetitions of T1 between T1 and Tn

is n− 2.

Therefore if the first iteration of T1 is executed at time t1 its (n − 2)th iteration

has a max deadline t1 + (n− 3) ∗ P −DurT1 .

Being the max deadline of a task finite, also its max slack is finite despite the

number of iteration of the pipeline.

Therefore, whatever the state is, each task belonging to the state has a finite

slack. The combination of slacks are finite, and therefore, after a finite number of

repetition, the system finds a state already found and becomes periodic.



Chapter 12

DVSP Model

Introduction

In this Chapter we will analyze the DVSP, describing the model we used to solve it,

as well as the modelling assumption we have done. In Section 12.1 we will formalize

our problem and in Section 12.2 we will present the complete model for the DVSP.

12.1 Dynamic Voltage Scaling Problem description

The new MPSoC paradigm for hardware platform design is pushing the paralleliza-

tion of applications, so that instead of running them at a high frequency on a

single monolithic core, they can be partitioned into a set of parallel tasks, which

are mapped and executed on top of a set of parallel processor cores operating at

lower frequencies. Power minimization is a key design objective for MPSoCs to be

used in portable, battery-operated devices. This goal can be pursued by means of

low power design techniques at each level of the design process, from physical-level

techniques (e.g., low swing signaling) up to application optimization for low power.

Here we focus on system-level design, where the main knobs for tuning power dissi-

pation of an MPSoC are: allocation and scheduling of a multi-task application onto

the available parallel processor cores, voltage and frequency setting of the individ-

ual processor cores. For those systems where the workload is largely predictable

and not subject to run-time fluctuations (e.g., signal processing or some multimedia

applications), the above design parameters can be statically set at design time. Tra-

ditional ways to tackle the mapping and configuration problem either incur overly
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large computation times already for medium-size task sets, or are inaccurate (e.g.,

use of heuristics and problem modelling with highly simplifying assumptions on sys-

tem operation). Therefore, design technology for MPSoCs strongly needs accurate,

scalable and composable modelling and solving frameworks.

We consider the energy-aware MPSoC platform described in Section 9.1. In real-

life MPSoC platforms, switching voltage and frequency of a processor core is not

immediate nor costless, therefore the switching overhead in terms of switching delay

(referred to as setup times) and energy overhead (referred to as setup costs) must

be carefully considered when selecting the optimal configuration of a system. In

practice, interesting trade-offs have to be studied. On one hand, tasks can be spread

across a large number of processor cores, so that these cores can operate at lower

frequencies, but more communication arises and the energy cost of many running

cores has to be compensated by a more energy-efficient execution of tasks. On the

other hand, tasks have to be grouped onto the processor cores and scheduled taking

care of minimizing the number of frequency switchings. It must be observed that

application real-time requirements play a dominant role in determining solutions for

the MPSoC mapping and configuration problem. A good methodology should be

conservative with respect to task deadlines, so to minimize the probability of timing

violations in the real system.

Similarly to the ASP, the application we should allocate and schedule are repre-

sented by a directed acyclic task graph G whose nodes represent a set of T tasks,

are annotated with their deadline dlt and with the worst case number of clock cycles

WCNt (the execution time depends on the working frequency). Arcs represent de-

pendencies/communications among tasks. Each arc is annotated with the amount

of data two dependent tasks should exchange, and therefore the number of clock

cycles for exchanging (reading and writing) these data WCNR and WCNW . Tasks

are running on a set of processors P . Each processor can run with M energy/speed

modes and has a maximum load constraint dlp. Each task spends energy both in

computing and in communicating. In addition, when a processor switches between

two modes it spends time and energy. We have both energy overhead Eij and time

overhead Tij for switching from frequency i to frequency j.

The Dynamic Voltage Scaling Problem (DVSP) is the problem of allocating tasks

to processors, define the running speed of each task and schedule each of them
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minimizing the total energy consumed.

Similarly to the ASP, the method we use for handling the DVSP is based on the

Logic-Based Benders Decomposition technique. The problem is decomposed into

master and sub-problem: the former is the allocation of processors and frequencies

to tasks and the latter is the scheduling of tasks given the static allocation and

frequency assignments provided by the master. Note that the frequency assignment

could be done in the subproblem. However, the scheduling part becomes extremely

slow and performances highly decrease because we have to deal with a scheduling

problem with variable durations. In addition, we will see in Section 12.2.5 that

the relaxation of the subproblem introduced in master problem becomes extremely

loose. Differently from the ASP, the objective function depends both on master and

subproblem variables. In fact, the master problem minimizes the communication

and execution energy, while only during the scheduling phase we could minimize the

energy overhead for frequency switching.

The master problem is tackled by an Integer Programming solver (through a

traditional Branch and Bound) while the subproblem through a Constraint Pro-

gramming solver. As described in Section 9.4, the two solvers interact via no-good

and cutting planes generation. The solution of the master problem is passed to the

subproblem. We have two possible cases: (1) there is no feasible schedule: we have

to compute a no-good avoiding the same allocation to be found again; (2) there is

a feasible and optimal schedule minimizing the second component of the objective

function: here we cannot simply stop the iteration since we are not sure to have the

optimal solution overall. We have to generate a cut saying that this is the optimal

solution unless a better one can be computed with a different allocation.

The procedure converges when the master problem produces a solution with the

same objective function of the previous one.

12.2 Modelling the Dynamic Voltage Scaling Problem

In this Section we will describe the master and the sub-problem models for the

DVSP, as well as the Benders cut and relaxations we used. Before introducing the

models, we will give an example of a DVSP instance.



144 Chapter 12. DVSP Model

12.2.1 DVSP example

As an example, let consider 5 tasks and 5 communications, with the precedence

constraints as described in Figure 12.1. Table 12.1 shows the duration (in clock

cycles) of execution and communication tasks (the durations of the reading and the

writing phase Ri and Wi of each communication Comi are the half of these values).

We have 2 processors, that can run at 2 different frequencies, 200MHz and 100MHz

(so, e.g. Task1 will last 500ns if runs at 200MHz and 1µs if runs at 100MHz).

The processors waste 10mW when running at 200MHz and 3mW when running at

100MHz. Switching from the higher frequency to the lower needs 2ns and wastes

2pJ, while the contrary needs 3ns and wastes 3pJ. The realtime requirement settles

the processor deadline at 2µs.

Nome Task1 Task2 Task3 Task4 Task5 Com1 Com2 Com3 Com4 Com5

Clock 100 54 134 24 10 20 10 8 8 8

Table 12.1: Activities durations for the example

Task1

Task3

Task2

Task4 Task5

Com1
R1-W1

Com2
R2-W2

Com3
R3-W3

Com4
R4-W4

Com5
R5-W5

Figure 12.1: Task graph for the example in Table 12.1

The first allocation found minimizing the power consumption tries to assign the

lower frequency to the third task, being the longest one and thus the most power

consuming one; this solution is however not schedulable due to the deadline con-

straint. The second allocation found is schedulable and is also the optimal one w.r.t.

the power consumption minimization. The first two tasks are allocated on the first

processor at the higher frequency and the other three tasks on the second proces-

sor: here only Task5 runs at the higher frequency. The total power consumption is

13502mW. The Gantt chart in Figure 12.2 shows the schedule of this solution.

We have seen that, in this simple example, the master and sub-problem solvers

must iterate two times to find the optimal solution. This depends on the fact that

the task graph is generic and the task graph can contain several communication
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Figure 12.2: Schedule for the example in Table 12.1

chains introducing overheads considered only while solving the subproblem; further-

more, the time overhead for frequency switching is higher w.r.t. the time overhead

for communication considered in the ASP and most probably this can cause an in-

feasibility. In addition, the objective function depends on both the problems, and

this complicates the model. In the following Chapter we will show experimental

results when considering both pipelined and generic tasks graphs and we will see

that the number of iterations is typically fairly higher than one, a quite typical value

for the ASP.

12.2.2 Allocation and voltage selection problem model

We model the allocation problem with binary variables Xptm taking value 1 if task t

is mapped on the processor p and runs at mode m, 0 otherwise. Since we also take

into account communications, we assume that two communicating tasks running on

the same processor do not consume any energy and do not spend any time (indeed

the communication time and energy spent are included in the execution time and

energy), while if they are allocated on two different processors, they both consume

energy and spend time. The first task spends time and energy for writing data on

a shared memory. This operation makes the duration of the task becoming longer:

it increases of a quantity WCNW /fm where WCNW is the number of clock cycles

for writing data (it depends on the amount of data we should write), and fm is the

clock frequency when task t is performed. The second task should read data from

the shared memory. Again its duration increases of a quantity WCNR/fm where

WCNR is the number of clock cycles for reading data (it depends on the amount of

data we should read), and fm is the clock frequency when task t is performed.

Both the read and write activities are performed at the same speed of the task
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and use the bus (which instead works at the maximum speed). For modelling this

aspect, we introduce in the model two variables Rpt1t2m and Wpt1t2m taking value

1 if the task t1 running on processor p reads (resp. writes) data at mode m from

(resp. for) task t2 not running on p.

Any task can be mapped on only one processor and can run at only one speed.

This translates in the following constraints:

P∑
p=1

M∑
m=1

Xptm = 1 , ∀t (12.1)

Also the communication between two tasks happens at most once:

P∑
p=1

M∑
m=1

Rpt1t2m ≤ 1 , ∀t1, t2 (12.2)

P∑
p=1

M∑
m=1

Wpt1t2m ≤ 1 , ∀t1, t2 (12.3)

The objective function is to minimize the energy consumption of the task execu-

tion, and of the task communication (read and write)

Ecomp =
P∑

p=1

M∑
m=1

T∑
t=1

XptmWCNttclockmPtm (12.4)

ERead =
P∑

p=1

M∑
m=1

T∑
t,t1=1

Rptt1mWCNRtt1tclockmPtm (12.5)

EWrite =
P∑

p=1

M∑
m=1

T∑
t,t1=1

Wptt1mWCNWtt1tclockmPtm (12.6)

where Ptm is the power consumed in a clock cycle (lasting tclockm) by the task t at

mode m.

OF = Ecomp + ERead + EWrite (12.7)

The objective function defined up to now depends only on master problem vari-

ables. However, switching from one speed to another introduces transition costs,

but their value can be computed only at scheduling time. In fact, they are not
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constrained in the master problem original model. They are constrained by Ben-

ders Cuts instead, after the first iteration. We will present Benders Cuts in section

12.2.4. Therefore, in the master problem the objective function is:

OFMaster = OF + Setup (12.8)

Setup =
P∑

p=1

Setupp (12.9)

It is worth noting that this contribution should be added to the master problem

objective function, but, being the Setupp variables not constrained at the first iter-

ation in the master problem, they are all forced to be 0. From the second iteration,

instead, cuts are produced constraining variables Setupp and this contribution could

be no longer 0.

This formulation will result in tasks that are potentially running initially with

lower frequencies on the same processor (thus avoiding communication). A measure

of control is provided by constraints on deadlines in order to prevent the blind selec-

tion of the lowest frequencies and the allocation of all tasks on the same processor.

The timing is not yet known in this phase, but we can introduce some constraints

that represent a relaxation of the subproblem and will reduce the solution space.

For each processor, only a certain load is allowed. Therefore, on each processor the

sum of the time spent for computation, plus the time spent for communication (read

and write) should be less than or equal to the processor deadline dlp:

T p
comp =

T∑
t=1

M∑
m=1

Xptm
WCNt

fm

(12.10)

T p
read =

T∑
t=1

M∑
m=1

T∑
t1=1

Rptt1m
WCNRtt1

fm

(12.11)

T p
write =

T∑
t=1

M∑
m=1

T∑
t1=1

Wptt1m
WCNWtt1

fm

(12.12)

T p
comp + T p

read + T p
write ≤ dlp , ∀p (12.13)

These relaxations can be tightened by considering chains of tasks in the task

graph instead of groups of tasks running on the same processor. For example, let

us consider four tasks t1, t2, t3, t4 linked by precedence constraints so that t1 → t2,
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t2 → t3 and t3 → t4. Now suppose that t1 and t4 are allocated on processor 1 and

t2 and t3 on other processors. Instead of summing only the durations of t1 and t4

that should be less than or equal to the processor deadline, one could add also the

duration of t2 and t3 since they should be executed before t4. The chains in a graph

can be many, we added only some of them.

Finally, task deadlines can be captured:

P∑
p=1

M∑
m=1

[
Xptm

WCNt

fm

+
T∑

t1=1

(
Rptt1m

WCNRtt1

fm

+ Wptt1m
WCNWtt1

fm

)]
≤ dlt , ∀t(12.14)

There are several improvements we have introduced in the master problem model.

In particular we have removed many symmetries leading the solver to explore the

same configurations several times.

12.2.3 Scheduling problem model

Once allocation and voltage selection have been solved optimally, for the scheduling

part each task t has an associated variable representing its starting time Starti.

The duration is fixed since the frequency is decided, i.e., durationi = WCNi/fi.

In addition, if two communicating tasks ti and tj are allocated on two different

processors, we should introduce two additional activities (one for writing data on

the shared memory and one for reading data from the shared memory). We model

the starting time of these activities StartWriteij and StartReadji. These activities

are carried on at the same frequency of the corresponding task. If ti writes and

tj reads data, the writing activity is performed at the same frequency of ti and its

duration dWriteij depends on the frequency and on the amount of data ti writes, i.e.,

WCNWij/fi. Analogously, the reading activity is performed at the same frequency

of tj and its duration dReadji depends on the frequency and on the amount of data

tj reads, i.e., WCNRji
/fj. Clearly the read and write activities are linked together

and to the corresponding task:

StartWriteij + dWriteij ≤ StartReadji,∀i, j s.t. i communicates with j (12.15)

Starti + durationi ≤ StartWriteij,∀i, j s.t. i communicates with j (12.16)

StartReadji + dReadji ≤ Startj,∀i, j s.t. i communicates with j (12.17)
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In the subproblem, we model precedence constraints in the following way: if task

ti should precede task tj and they run on the same processor at the same frequency

the precedence constraint is simply:

Starti + durationi ≤ Startj (12.18)

If two tasks run on different processors and should communicate we should add

the time for communicating.

Starti + durationi + dWriteij + dReadji ≤ Startj (12.19)

Deadline constraints are captured stating that each task must end its execution

before its deadline and, on each processor, all the tasks (and in particular the last

one) running on it must end before the processor deadline.

Starti + durationi ≤ dlti , ∀i (12.20)

Starti + durationi ≤ dlp , ∀i ∈ p, ∀p (12.21)

Resources are modelled as follows. We have a unary resource constraint for each

processor, modelled through a cumulative constraint having as parameters a list

of all the variables representing the starting time of the activities (tasks, readings,

writings) sharing the same resource p, their durations, their resource consumption

(which is a list of 1) and the capacity of the processor which is 1.

cumulative(StartListp, DurationListp, [1], 1) , ∀p (12.22)

We model the bus through the additive model we have presented in Chapter 10

and validated in Chapter 11. We have an activity on the bus each time a task writes

or reads data to or from the shared memory. The bus is modelled as an additive

resource and several activities can share the bus, each one consuming a fraction of

it until the total bandwidth is reached. The cumulative constraint used to model

the bus is:

cumulative(StartReadWriteList,DurationList, Fraction, TotBWidth) (12.23)

where StartReadWriteList and DurationList are lists of the starting times and

durations of all read and write activities needing the bus, Fraction is the amount

of bandwidth granted to an activity when accessing the bus1 and TotBWidth is the

total bandwidth available of the bus.
1This value was experimentally tuned to 1/4 of the total bus bandwidth.
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To model the setup time and cost for frequency switching we take advantage of

the classes defined by ILOG Scheduler [64] to manage transitions between activities.

It is possible to associate a label to each activity and to define a transition matrix

that specifies, for each couple of labels li and lj, a setup time and a setup cost that

must be paid to schedule, on the same resource, an activity having the label li just

before an activity having the label lj. When, during the search for a solution, two

activities with labels li and lj are scheduled one just after the other on the same

resource, the solver will satisfy the additional constraint:

Startli + durationlj + TransT imelilj ≤ Startlj (12.24)

where TransT imelilj is the setup time specified in the transition matrix. Like-

wise, the solver introduces TransCostlilj in the objective function. If Sp is the set of

all the tasks scheduled on processor p, the objective function we want to minimize

is:

OF =
P∑

p=1

∑
(i,j)∈Sp|next(i)=j

TransCostlilj (12.25)

12.2.4 Generation of Logic-based Benders Cuts

Once the subproblem has been solved, we generate Benders Cuts. The cuts are of

two types:

• if there is no feasible schedule given an allocation, the cuts are the same we

computed for the ASP and depend on variables Xptm.

• if the schedule exists, we cannot simply stop the iteration since the objective

function depends also on subproblem variables. Therefore, we have to produce

cuts saying that the one just computed is the optimal solution unless a better

one exists with a different allocation. These cuts produce a lower bound on the

setup of single processors.

The first type of cuts are no-good: we call Jp the set of couples (Task, Frequency)

allocated to processor p. As shown in Section 10.3.4, we can impose cuts avoiding

to find the same allocation again:

P∑
p=1

∑
(t,m)∈Jp

Xptm ≤ T − 1 (12.26)
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or, solving a one-machine scheduling for each processor to find the set of con-

flicting resources CR where the infeasibility happens, we can impose the tighter

cuts:

∑
(t,m)∈Jp

Xptm ≤ |Jp| − 1 , ∀p ∈ CR (12.27)

Let us concentrate on the second type of cuts. The cuts we produce in this case

are bounds on the variable Setup defined in the Master Problem and introduced in

equation (12.9).

Suppose the schedule we find for a given allocation has an optimal setup cost

Setup∗. It is formed by independent setups, one for each processor Setup∗ =∑P
p=1 Setup∗p.

We have a bound on the setup LBSetupp on each processor and therefore a bound

on the overall setup LBSetup =
∑P

p=1 LBSetupp .

Setupp ≥ 0 , ∀p (12.28)

Setupp ≥ LBSetupp , ∀p (12.29)

LBSetupp = Setup∗p − Setup∗p
∑

(t,m)∈Jp

(1−Xptm) , ∀p (12.30)

These cuts remove only one allocation. Indeed, we have also produced cuts that

remove some symmetric solutions.

We have devised tighter cuts removing more solutions. Intuitively, each time we

consider a solution of the problem overall, we generate an optimal setup cost Setup∗

for the given allocation. In the current solution, we know the number of frequency

switches producing Setup∗. We can consider each processor independently since the

frequency switches on one processor are independent from the other. We can impose

cuts saying that Setup∗ is bound for all solutions with the same set of frequency

switches of the last one found or a superset of it. To do that we have to introduce in

the model variables Nextt1t2f1f2p, taking value 1 if, on processor p, task t1, running

at frequency f1, executes just before t2, running at frequency f2. This variables

complicate the model too much. In fact, our experimental results show that these

cuts, even if tighter, do not lead to any advantage in terms of computational time.
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12.2.5 Relaxation of the subproblem

The iterative procedure presented so far can be improved by adding a bound on the

setup cost and setup time in the master problem based only on information derived

from the allocation.

Suppose we have five tasks running on the same processor using three different

frequencies. So for instance, tasks t1, t3 and t5 run at frequency f1, t2 runs at

frequency f2 and t4 runs at frequency f3. Since we have to compute a bound, we

suppose that all tasks running at the same speed go one after the other. We can

have six possible orders of these frequencies leading to different couples of frequency

switches. A bound on the sum of the energy spent during the frequency switches is

the minimal sum between two switches, i.e., the sum of all possible switches minus

the costliest one. This bound is extremely easy to compute and does not enlarge

the allocation problem model.

Let us introduce in the model variables Zpf taking value 1 if the frequency f is

allocated at least once on the processor p, 0 otherwise. Let us call Ef the minimum

energy for switching to frequency f , i.e. Ef = mini,i6=f{Eif}.

Setupp ≥
M∑

f=1

(ZpfEf −maxf{Ef |Zpf = 1}) , ∀p (12.31)

This bound (referred to as Energy relaxation in the following) helps in reducing

the number of iterations between the master and the subproblem.

Similarly, we can compute the bound on the setup time given an allocation. Let

us consider Tf = mini,i6=f{Tif}. Therefore, we can compute the following bound.

SetupT imep ≥
M∑

f=1

(ZpfTf −maxf{Tf |Zpf = 1}) , ∀p (12.32)

This bound (referred to as Time relaxation in the following) can be used to

tighten the constraint 12.13 in the following way.

T p
comp + T p

read + T p
write + SetupT imep ≤ dlp , ∀p (12.33)

so that solutions provided by the master problem are more likely to be feasible

for the subproblem.

A tighter bound on the setup time and cost could be achieved by introducing

in the allocation problem model variables Nextt1t2f1f2p, but as explained in section

12.2.4 they complicate the model too much and are not worth using.



Chapter 13

DVSP Experimental Results

Introduction

In this Chapter we will show the experimental results obtained when solving the

DVSP. In Section 13.1 we will show the experimental results obtained when solving

the problem using a hybrid solver based on both the IP and CP models described

in the last Chapter implementing the Logic-Based Benders Decomposition (LB-BD)

methodology. In section 13.2 we will discuss about the effectiveness of the sub-

problem relaxations introduced in the master problem showing some results obtained

when solving the problem using different relaxations. Section 13.3 is devoted at

validating our approach by measuring the accuracy of the solutions found and their

executability on the real platform.

13.1 Experimental Results

In this Section we will show the experimental results obtained when solving DVSP

instances. We will first validate our approach comparing the decomposition-based

solver with pure solver based only on IP or CP. For the DVSP, we will analyze both

pipelined (as for the ASP) and generic task graphs.

13.1.1 Data set

We have generated 500 realistic instances, with the number of tasks varying from 4 to

10 and the number of processors from 2 to 10. We assume that each processor can run

at three different frequencies. We consider, similarly to the ASP, applications with a
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pipeline workload. Therefore we refer to the number of tasks to be allocated and we

schedule a larger number of tasks corresponding to many iterations of the pipeline.

We also have generated 27 realistic instances with the number of tasks varying

from 8 to 14 and the number of processors from 2 to 6, with generic task graphs.

The generic task graph complicates the problem since it increases the parallelism

degree. We assume that each processor can run at six different frequencies. All the

considered instances are solvable and we found the proved optimal solution for each

of them. Experiments were performed on a 2.4GHz Pentium 4 with 512 Mb RAM.

We used ILOG CPLEX 8.1 [63], ILOG Solver 5.3 [65] and ILOG Scheduler 5.3 [64]

as solving tools.

13.1.2 Comparison with pure approaches

In Chapter 13, we compared our Hybrid solving tool for the ASP with pure CP or IP

based solving tools. Results shown that the pure approaches were not comparable

with the Hybrid one, being the search times for finding a solution to a relaxed (thus

easier) problem orders of magnitude higher. The DVSP is much more complex then

the ASP, since we consider also frequency switching. We developed a CP and an

IP-based approach to solve allocation, scheduling and voltage selection, but not

even a single (feasible) solution was found within 15 minutes, while the Hybrid

approach, within 4 minutes, finds the optimal solution and proves optimality for

all the pipelined instances considered. This results validate to a greater extent the

decomposition-based approach already validated for the ASP.

13.1.3 Experimental results

In this section we show the results obtained solving DVSP instances using the model

described in section 12.2. We consider first instances with the task graphs repre-

senting a pipeline workflow. Note that here, since we are considering applications

with pipeline workload, if n is the number of tasks to be allocated, the number of

scheduled tasks is n2. Results are summarized in Table 13.1. The first three columns

contain the number of allocated and scheduled activities (execution+communication

data writes and reads) and the number of processors considered in the instances (we

remind that each processor can run at three different frequencies). The last two

columns represent respectively the search time and the number of iterations. Each
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value is the mean over 10 instances with the same number of tasks and processors.

We can see that for all the instances the optimal solution can be found within four

minutes. The number of iterations is typically low, but nevertheless higher than the

value 1 as for the ASP. Table 13.2 shows the percentage of occurrence of a given

number of iterations. We can see that the optimal solution can be found at the first

step in one half of the cases and the number of iterations is at most 5 in almost the

90% of cases. This result is due to the tight relaxations added to the master problem

model. In Section 13.2 we will show the importance of the relaxations used.

Activities Activities

Alloc Sched Procs Time (s) Iters Alloc Sched Procs Time (s) Iters

4+6 16+24 2 1,73 1,98 7+12 49+84 7 34,53 6,34

4+6 16+24 3 1,43 2,91 8+14 64+112 2 4,09 3,28

4+6 16+24 4 2,24 3,47 8+14 64+112 3 10,99 1,83

5+8 25+40 2 2,91 2,36 8+14 64+112 4 12,34 4,45

5+8 25+40 3 4,19 4,12 8+14 64+112 5 22,65 10,53

5+8 25+40 4 5,65 4,80 8+14 64+112 7 51,07 6,98

5+8 25+40 5 6,69 3,41 9+16 81+144 2 1,79 1,12

6+10 36+60 2 3,84 2,90 9+16 81+144 5 60,07 7,15

6+10 36+60 3 10,76 2,17 9+16 81+144 6 70,40 9,20

6+10 36+60 4 15,25 4,66 10+18 100+180 2 5,52 1,83

6+10 36+60 5 23,17 4,50 10+18 100+180 3 3,07 1,96

6+10 36+60 6 26,14 3,66 10+18 100+180 6 120,02 6,23

7+12 49+84 2 4,67 1,75 10+18 100+180 10 209,35 10,65

7+12 49+84 3 5,90 1,90

Table 13.1: Search time and number of iterations for instances with pipelined task graphs

Iter 1 2 3 4 5 6 7 8 9 10 11+

% 50,27 18,51 7,11 4,52 4,81 2,88 2,46 2,05 1,64 1,64 4,11

Table 13.2: Number of iterations distribution ratio

We extended our analysis to instances where the task graph is a generic one, so an

activity can possibly read data from more than one preceding activity and possibly

write data that will be read by more than one following activity. The number of

reading and writing activities can become considerably higher, being higher the

number of edges in the task graph. We consider here processors that can run at six
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different frequencies, so the number of alternative resources a task can use is six times

the number of processors. Differently from the pipelined instances, here we schedule

a single repetition of each task. Table 13.3 summarizes the results. Each line

represents an instance that has been solved to optimality. Columns have the same

meaning as those already described in Table 13.1. The number of communications

in this case in not equal to 2 × (n − 1) as for the pipelined instances, but depends

on the instance task graph. We can see that typically the behaviors are similar to

those found when solving the pipelined instances, but we can note some instances

where the number of iterations or the search time is notably higher. For example,

in the last but two line the number of iterations is very high: this is due to the

particular structure of the task graph; in fact it can happens that a high degree

of parallelism between the tasks, that is a high number of tasks that can execute

only after a single task, leads to a number allocations that are not schedulable. The

master problem solver thus looses time proposing to the scheduler a high number

of unfeasible allocation. Introducing in the master problem model some relaxations

coming from an analysis of the task graph structure, and in particular from the

precedence constraints, can lead to better results.

On the contrary, in the last line the number of iterations is low but the search time

is extremely high: this is due to the tasks characteristics that make the scheduling

problem very hard to be solved.

13.2 Effectiveness of the sub-problem relaxations

To show the effectiveness of the relaxations used for the DVSP we solved the in-

stances considering either both or only one of the two relaxations (Energy and Time)

described in 12.2.5. Table 13.4 shows the percentage of occurrence of a given number

of iterations when solving the pipelined DVSP instances with different relaxations.

As already shown in Section 13.1.3, using both of the relaxations (row Both), we

found the optimal solution at the first step in one half of the cases and the number

of iterations is at most 5 in almost the 90% of cases. We tried to solve the same

instances using only one relaxation; rows Time and Energy show the results when

considering only the relaxation on the deadlines and on the sub-problem objective

function lower bound respectively. We can see that, for most of the cases, the num-
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Activities Activities

Alloc Sched Procs Time(s) Iters Alloc Sched Procs Time(s) Iters

8+16 8+16 2 1,57 1 9+16 9+16 4 29,59 26

8+12 8+12 3 1,48 2 9+16 9+16 4 4,84 6

8+16 8+16 3 0,81 1 9+20 9+20 6 158,43 39

8+12 8+12 3 4,26 6 10+18 10+18 2 5,90 1

8+16 8+16 4 0,86 1 10+18 10+18 3 2,12 1

9+24 9+24 2 2,51 1 10+16 10+16 3 12,81 3

9+12 9+12 2 1,11 1 10+12 10+12 4 0,37 1

9+8 9+8 2 2,73 3 10+16 10+16 4 13,92 14

9+16 9+16 3 35,95 43 10+24 10+24 4 4,18 5

9+20 9+20 3 2,51 1 10+12 10+12 4 11,50 27

9+22 9+22 3 6,62 2 12+20 12+20 5 551,92 213

9+12 9+12 4 1,40 3 14+22 14+22 2 14,11 1

9+12 9+12 4 2,14 5 14+62 14+62 6 3624,81 2

9+10 9+10 4 2,60 4

Table 13.3: Search time and number of iterations for instances with generic task graphs

ber of iterations is higher than 10. In addiction, experimental results showed that,

on average, the search time rises up to 1 order of magnitude and, in the worst cases,

the solution cannot be found within two hours.

Iter 1 2 3 4 5 6 7 8 9 10 11+

Both 50,27 18,51 7,11 4,52 4,81 2,88 2,46 2,05 1,64 1,64 4,11

Time 35,23 10,32 3,47 4,76 3,12 2,84 2,13 2,06 1,04 1,11 33,92

Energy 28,6 10,12 5,64 3,78 4,35 2,91 1,29 1,48 1,12 0,84 39,87

Table 13.4: Number of iterations distribution ratio with different relaxations

13.3 Validation of the results

In Section 13.1 we have given evidence that our tool is efficient and scalable for

solving to optimality the DVSP problem. In this Section we will validate our results

simulating them on the cycle accurate MPSoC simulator MP-ARM [1].

For each task in the input graph we need to extract the task execution time, the

time required for writing and for reading input data from local memory and the

overhead due for writing and reading input data if queues are allocated onto remote
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shared memory. This information are collected running simulations on MP-ARM.

The optimizer assumes that mapping two tasks onto the same processor is al-

ways more energy-efficient than having them on separate processors, since message

exchange through scratchpad memory is less power-hungry than shared memory

communication [91]. In the optimization problem, it is enough to model the cost

for communication in the objective function of the master problem as the additional

energy incurred by a producer/consumer pair for the message exchange time. As

a result, during the validation step we have to compare the deviation of predicted

values of the objective function (i.e., the energy dissipation of processor cores) with

respect to the simulation statistics.

We have performed two types of experiments, namely (i) measurement of devia-

tions of simulated energy consumption and application throughput from the values

obtained by the optimizer for 200 synthetic problem instances, (ii) showing the via-

bility of the proposed approach by means of real life demonstrators (GSM, JPEG).

13.3.1 Validation of optimizer solutions

We have deployed the virtual platform to implement the allocations, schedules and

frequency assignments generated by the optimizer. A tunable multi-task applica-

tion has been used for this experiment, allowing to change system and application

parameters (local memory size, execution times, data size, real-time requirements,

etc.) and generate 200 problem instances we used for validation. In Section 11.3 we

have already validated the bus additive model and we have verified the throughput

accuracy of our tool. Here we measure the difference between the energy consump-

tion found by the optimizer and the simulator, the most important parameter for the

DVSP. The results are reported in Figure 13.1, which shows the distribution of the

energy consumption difference. The average difference between measured and pre-

dicted energy values is 2.9%, with 1.72 standard deviation. This confirms the high

level of accuracy achieved by the developed optimization framework in modelling

real-life MPSoC systems with the assumed architectural template.

13.3.2 Validation on real applications

To prove the viability of our approach, we solved two DVSP problems, namely the

GMS Codec and the JPEG decoder, and we verify the compliance of our optimal
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Figure 13.1: Distribution of energy consumption differences

solutions with the application requirements.

GSM Codec

We consider again the GSM Codec application parallelized into 6 pipeline stages

depicted in Figure 11.9. Each task has been pre-characterized by the virtual platform

to provide parameters of task models to the optimizer. After the optimization stage,

the validation process on the virtual platform showed an accuracy on the processor

energy dissipation, as predicted by the optimizer, by 2%.

We deployed the GSM demonstrator to explore how the optimizer minimizes en-

ergy dissipation of the processor cores with varying real-time requirements. The

behaviour of the optimizer is not specific for the GSM case study, but can be ex-

tended to all applications featuring timing constraints. Results for the GSM case

study are reported in Table 13.5, where allocations and frequency assignments are

given for different values of the deadline constraint. The allocation is given as an

array indicating the processor ID on which each task is mapped. Similarly, the

frequency of each task is expressed in terms of the integer divider of the baseline

frequency. Only 3 dividers are used for this example, i.e. the processors can run at

only 3 different speeds.

When the deadline is loose, all tasks are allocated to one single processor at the
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Energy
Deadline (ns) Number of Allocation Frequency consumption

processors Assignment (nJ)

6000 1 1,1,1,1,1,1 3,3,3,3,3,3 5840

5500 2 2,1,1,1,1,1 3,3,3,3,3,3 5910

5000 2 1,1,1,1,1,2 3,3,3,3,3,3 5938

4500 2 1,1,1,1,2,2 3,3,3,3,3,3 5938

4000 2 1,1,1,2,2,2 3,3,3,3,3,3 5938

3500 2 1,1,1,2,2,2 3,3,3,3,3,3 5938

3000 3 1,2,2,3,3,3 3,3,3,3,3,3 6008

2500 3 1,2,3,3,4,4 3,3,3,3,3,3 6039

2000 4 1,2,3,4,5,6 3,3,3,3,3,3 6109

1500 6 1,2,3,4,5,6 3,3,3,3,3,3 6304

1000 6 1,2,3,4,5,6 3,2,2,2,3,2 6807

900 6 1,2,3,4,5,6 3,1,2,2,2,2 9834

750 6 1,2,3,4,5,6 2,1,2,2,2,2 9934

730 6 1,2,3,4,5,6 2,1,1,2,2,2 12102

710 6 1,2,3,4,5,6 2,1,1,1,2,2 14193

Table 13.5: GSM case study allocation and frequency assignment

minimum frequency (66 MHz, corresponding to a divisor of 3). As the deadline

gets tighter, the optimizer prefers to employ a second processor and to progressively

balance the load, instead of increasing task frequencies. This procedure is repeated

every time a new processor has to be allocated to meet the timing constraints. Only

under very tight deadlines, the optimizer leverages increased task frequencies to

speed-up system performance. When the system is pushed to the limit, its config-

uration consists of 1 task for each processor, although they are not all running at

the maximum frequency. In fact, the GSM pipeline turns out to be unbalanced,

therefore it would be energy inefficient to run the shorter tasks at maximum speed,

and would not even provide performance benefits. As a result, the optimizer deter-

mines the most energy-efficient configuration that provides the best performance.

The problem becomes infeasible if more stringent deadlines than 710 ns are required.

JPEG decoder

In this section we will show that this optimizer behaviour is a function of the

computation-communication ratio. We analyze a JPEG decoder case study. A
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Figure 13.2: JPEG case study: Pareto-optimal frontier in the performance-energy design space

JPEG decoder is partitioned into 4 pipeline stages: Huffman DC decoding, Huff-

man AC decoding, inverse quantization, inverse DCT. Each stage processes an 8x8

block, amounting to an exchange of 1024 bit among pipeline stages. The accu-

racy of the energy estimation given by the optimizer was found to be 3.1% from

functional simulation. In contrast to GSM, user requirements on a JPEG decoding

usually consist of the minimization of the execution time and not of a deadline to

be met. Therefore, two approaches to allocation and scheduling of a JPEG decoder

task graph are feasible. On one hand, the designer could be primarily interested in

reducing execution time at the cost of increased energy. On the other hand, the pri-

mary objective function could be the minimization of energy dissipation, whatever

the decoding performance. This trade-off has been investigated with the optimizer

and the Pareto-optimal frontier in the performance-energy space is illustrated in

Figure 13.2. The constraint on the execution time on the x-axis is translated into a

constraint on the block decoding time. The curve is not linear since there is a dis-

crete number of voltage-frequency pairs, which makes the problem for the optimizer

much more complex.

As we can observe, for a large range of deadlines, the optimizer is good at im-

proving system performance without significantly changing processor energy dis-

sipation. This is done by using one or two processors, changing the allocations

and using high frequency dividers. Beyond 200 ns, the optimizer is forced to use
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low frequency dividers, thus causing the energy to skyrocket. Interestingly, the in-

crease of task frequency is preferred to an increase of the number of processors,

since the communication energy would involve even higher total energy consump-

tion. This behaviour is different from the one seen for the GSM, since this time

the computation-communication ratio is lower than for GSM due to a larger size of

exchanged messages.

13.3.3 Sensitivity to initial mapping

To show the effectiveness of our approach, we have compared our optimal solutions

(with proof of optimality) with those found by an heuristic approach. We have in fact

devised a heuristic algorithm for the mapping on top of which we have computed a

scheduling and a frequency assignment. The devised heuristic balances the workload

on different processors. We have tested the optimal and heuristic solutions both on

GSM and on JPEG demonstrators for decreasing values of deadlines.

Figure 13.3: Energy consumption difference between different approaches on GSM

As shown in Fig.13.3, experiments on GSM show that for tight deadlines the

heuristic approach provides an energy consumption equal to the optimal algorithm.

This is because also the optimal allocator tends to spread tasks on different pro-

cessors so as to meet deadline constraints. When the deadline is loose, instead, the

optimal allocation provides solutions which save up to the 8% of energy w.r.t. the
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sub-optimal algorithm.

Figure 13.4: Energy consumption difference between different approaches on JPEG

The curve for the JPEG demonstrator, reported in Figure 13.4, has a similar

trend, but with significantly different extreme values: in fact, even for tight dead-

lines the optimal solution saves 13% of the energy. This is due to the increased

communication occurring when load balancing is applied. The optimal solution for

loose deadlines saves up to the 19% which is a significant gap overall. In addition,

for a very tight deadline (150ns) the heuristic approach fails to find even a feasible

solution while the optimal solver finds the optimal solution and proves optimality.





Chapter 14

Conclusions and future works

In this dissertation we have given evidence, to support our thesis, that Constraint

Programming and Integer Programming are effective paradigms to solve hard com-

binatorial problems and, for some classes of problems, the hybridization of the two

solving techniques can lead to great advantages.

In this last Chapter we will draw some conclusions, summarizing in Section 14.1

the results achieved in this thesis, evidencing in Section 14.2 the lessons learnt, the

strong points and the limitations of our approach, and concluding with future lines

of research.

14.1 Contribution

In the previous Chapters we have analyzed two classes of problems with particular

structures that suggest to develop solvers based on two techniques. Our choice is

fallen on Constraint Programming (CP) and Integer Programming (IP), mainly for

their efficiency in solving NP-Hard problems and for the fact that their character-

istics are somehow orthogonal. In fact, a strong point of an approach is a weakness

for the other, and viceversa.

The Part II of this dissertation has been devoted to the Bid Evaluation Problem

(BEP), a NP-Hard combinatorial problem rising in the context of electronic com-

merce. In Chapter 5 we have described the problem, finding that the structure can

be very different from instance to instance. What we believed could be effective to

solve the BEP is to build several solving tools, based on IP, CP or both. In Chap-

ter 6 we have described the CP and IP models for the BEP, and the implemented
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algorithms based on these models.

In Chapter 7, experimental results have shown the effectiveness of our approaches,

being order of magnitude better with respect to MAGNET, a commercial tool based

on IP, able to solve the BEP. By further analyzing the experimental results, we have

found that the solvers behaviours are strongly influenced by the instance structure.

Starting from these observation, in Chapter 8 we have introduced an algorithm

portfolio to solve the BEP and an automatic algorithm selection tool, based on a

Machine Learning approach, the Decision Trees, able to suggest the best algorithm

on the basis of few structural parameters extracted from the constraint graph as-

sociated to each BEP instance. Experimental results have shown that we are able

to predict the best algorithm in over the 90% of the cases analyzed, with a time

saving of orders of magnitude w.r.t. a single solving strategy and over than 12%

w.r.t. informed selection techniques based on the service-for-bid parameter, which

has a negligible extraction time.

The Part III of this dissertation has been devoted to two problems, rising in the

context of embedded systems design, namely the Allocation and Scheduling Problem

(ASP) and the Dynamic Voltage Scaling Problem (DVSP) of coordinated tasks in a

Multi-Processor System-on-Chip (MPSoC) platform. As for the BEP, in Chapter 9

we have analyzed in deep the problem structure and we have shown that, differently

from the BEP case, here CP and IP must be integrated in a single solver, having

recognized in the problem structure two distinct sub-problems, the allocation and

the scheduling, with such characteristics that, taken separately, the former would

be best solved by IP while the latter by CP.

In Chapters 10 and 12 we have introduced the models to solve respectively the

ASP and the DVSP, and in particular the IP models to solve the allocation part

and the CP models to schedule the allocations found. We have also exploited the

Logic-Based Benders Decomposition technique to make the two solvers interacting,

focussing our attention on the relaxations and Benders cuts used.

In Chapters 11 and 13 we have shown the experimental results obtained when

solving respectively ASP and DVSP problem instances. Our experimental analysis

was two-fold. First of all, our aim was to verify the efficiency of the hybrid approach

proposed and, being these problems strongly related on real applications in the sys-

tem design scenario, we also need to verify the accuracy and the actual executability
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of the solutions found.

We have shown that our hybrid approach is incomparably better than pure ap-

proaches based only on CP or IP on realistic instances, and we have shown the

importance of smart relaxations and tight Benders cut in reducing the iterations

between the two solvers.

To verify the accuracy of our tool, we have simulated our problem instances on

a MPSoC platform simulator, measuring the difference of some important features,

such as the activities durations, the application throughput, the power consump-

tion, for real applications such as JPEG encoding, GSM coding/decoding, MIMO

applications. We found that the relative difference always lies within the 5% for all

the features measured, thus our tool is extremely accurate in modelling and solving

real world applications.

14.2 Final considerations

14.2.1 Lessons learnt

As in nature the evolution of the species usually advances by maintaining the better

examples of each species and by hybridizing different individuals of the same species

to ”keep the best” of each individual, here we have shown that a similar technique

can be successfully exploited to solve NP-Hard combinatorial problems. Of course,

it is well known that, for a large number of classes of problems there is no space

for hybridization, being the problem structure very clear, so that a single approach

exists and is particularly well suited for that kind of ”structural skeleton”. We

believe that, being the real world rarely simple and clear, to model a real problem

in a realistic way, it is often the case that the various facets of the problem can

suggest to model and solve it in a hybrid way. We have chosen two examples in this

dissertation, very different one another, but we believe, and the literature supports

this claim, that an hybrid approach can be applied to a wide variety of problems.

When choosing the hybridization framework, a large amount of time must be

spent in analyzing the problem characteristics. In fact, besides having shown that

hybrid approaches are preferable w.r.t. pure ones for the problems considered, in this

dissertation we have also given evidence that the way the different solving paradigms

are hybridized strongly influences the solver performance.
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We have learnt therefore that hybridization needs an accurate project phase where

the way the different paradigms will interact must be deeply studied. In particular,

considering the ASP and DVSP problems, we have seen that the sub-problems

definition has a strong reflection on the overall performances. What would happen

if some of the choices done in the allocation phase would have been postponed to

the scheduler? We were often asked to answer this question by the AI community.

We can see that, splitting a problem in a different way, we would have a scheduling

dealing with a number of alternative resources: if, for example, in the ASP we

allocate the memory during the scheduling phase, we would schedule reading/writing

activities with a variable duration. The same happens in the DVSP if the frequency

assignment would be postponed to the scheduling. On the other way round, deciding

the successor of an activity in the allocation phase would affect the model size: as

seen in Section 12.2.4, to model the successors in the allocation IP model, we need

decision variables Nextt1t2f1f2p, taking value 1 if, on processor p, task t1, running

at frequency f1, executes just before t2, running at frequency f2. These variables

complicate the model too much.

We have also verified, in the context of the Logic-Based Benders Decomposition,

the importance of the sub-problem relaxations and Benders cuts, and in particular

we have learnt the importance of finding the best tradeoff between cut tightness and

computation hardness to find it.

The need to find the best tradeoff is also evident for the BEP, when developing a

portfolio and an automatic selection tool. The CC parameter is extremely accurate

in predicting the best algorithm, but is too time-expensive in the 50% of the cases.

On the other extreme, the S/B is costless but inaccurate on the 28% of the cases

and, worst of all, inaccurate for those cases where predicting the wrong algorithm

leads to the impossibility of finding the solution. As seen in Chapter 8, the ED and

ND parameters are, in this case, an optimal tradeoff.

14.2.2 Limitations and future works

In this dissertation we have combined together only CP and IP. We believe this is

not a limitation because our tools are extensible and flexible, being based on general

integration frameworks, as Benders Decomposition and algorithm portfolios. We can

extend our tools including other solving techniques or we can reuse them adapting
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to different problems presenting similar characteristics.

We can easily add other algorithms to the BEP portfolio. The selection strategy

does not depend on the solver but on the instance, and it is therefore reasonable to

believe that the same structural characteristics will remain a valid way to discern

the best among an higher number of algorithms.

Considering the MPSoC-related problems, we believe that the Benders framework

will remain a valid choice when changing the sub-problems solver. For example, we

can schedule using an heuristic approach, so finding sub-optimal (or not provably

optimal) solutions for the scheduling sub-problem, and we are still able to generate

the cuts for the master problem.

We have seen a limit for the Benders Decomposition approach when the problem

is loosely constrained, that is when the solution space is large and sparse. It is hard

to find cuts such that the number of solutions removed justifies the time spent in

generating them. One of our work in progress is aimed at improving the Benders

Decomposition framework to overcome the limitations, analyzing the structure of

the task graph to have an estimation of the number of iterations between master

and sub-problem, thus to search for tighter cuts only when their presence in the

model will considerably reduce the number of such iterations.

Another case where it is difficult to find the Benders Cuts is when the task

graph has a high degree of parallelism or when considering conditional task graphs,

where each edge outcoming from each node, thus each successor of each activity,

is annotated with the probability for the activity to be executed. We believe that

finding a methodology to derive smart cuts from conditional task graphs will allow

us to embed our allocation and scheduling module in a code compiler for optimizing

the code execution on parallel processors systems. In fact, a program can be seen

as an application where each code instruction is an activity: code dependencies and

jumps defines a task graph with conditional precedences and cycles. It is therefore

extremely difficult to find cuts, valid for all the possible execution paths in the task

graph, able to effectively reduce the solution space.





Bibliography

[1] The MPARM Project Homepage. http://www-micrel.deis.unibo.it/sitonew/

research/mparm.html.

[2] A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. Al-Hashimi. Overhead-

conscious voltage selection for dynamic and leakage power reduction of time-

constraint systems. In Proceedings of the Conference and Exposition in Design,

Automation and Test in Europe (DATE2004), pages 518–523, Paris, France,

February 2004.
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