
DOI: 10.1007/s10766-007-0032-7
International Journal of Parallel Programming (© 2007)

A Fast and AccurateTechnique
for Mapping Parallel Applications
on Stream-Oriented MPSoC Platforms
with Communication Awareness

Martino Ruggiero,1 Alessio Guerri,1 Davide Bertozzi,2,3

Michela Milano1 and Luca Benini1

Received: 22 November 2006 / Accepted: 17 January 2007

The problem of allocating and scheduling precedence-constrained tasks on
the processors of a distributed real-time system is NP-hard. As such, it has
been traditionally tackled by means of heuristics, which provide only approx-
imate or near-optimal solutions. This paper proposes a complete allocation
and scheduling framework, and deploys an MPSoC virtual platform to val-
idate the accuracy of modelling assumptions. The optimizer implements an
efficient and exact approach to the mapping problem based on a decomposi-
tion strategy. The allocation subproblem is solved through Integer Program-
ming (IP) while the scheduling one through Constraint Programming (CP).
The two solvers interact by means of an iterative procedure which has been
proven to converge to the optimal solution. Experimental results show sig-
nificant speed-ups w.r.t. pure IP and CP exact solution strategies as well as
high accuracy with respect to cycle-accurate functional simulation. Two case
studies further demonstrate the practical viability of our framework for real-
life applications.

KEY WORDS: MPSoCs; allocation; scheduling; Integer Programming;
Constraint Programming.

1University of Bologna, DEIS, Viale Risorgimento 2, Bologna 40136, Italy.
E-mails: {mruggiero; aguerri; mmilano; lbenini}@deis.unibo.it

2University of Ferrara, via Saragat 1, Ferrara 40132, Italy.
E-mail: dbertozzi@ing.unife.it

3To whom correspondence should be addressed. E-mail: dbertozzi@ing.unife.it

© 2007 Springer Science+Business Media, LLC

Ruggiero, Guerri, Bertozzi, Milano, and Benini

1. INTRODUCTION

Mapping and scheduling problems on multi-processor systems have been
traditionally modelled as Integer Linear Programming (IP) problems.(31) In
general, even though IP is used as a convenient modelling formalism, there
is consensus on the fact that pure IP formulations are suitable only for
small problem instances, i.e. applications with a reduced task-level paral-
lelism, because of their high computational cost. For this reason, heuristic
approaches are widely used, such as genetic algorithms, simulated anneal-
ing and tabu search.(5) However, they do not provide any guarantees on
the optimality of the final solution.

On the other hand, complete approaches, which compute the optimal
solution at the cost of an increasing computational cost, can be attractive
for statically scheduled systems, where the solution is computed once and
applied throughout the entire lifetime of the system.

Static allocations and schedules are well suited for applications whose
behaviour can be accurately predicted at design time, with minimum run-
time fluctuations.(24) This is the case of signal processing applications such
as baseband processing, data encryption or video graphics pipelines. Pipe-
lining is a common workload allocation policy to increase throughput
of such applications, and this explains why research efforts have been
devoted to extending mapping and scheduling techniques to pipelined task
graphs.(11)

The need to provide efficient solutions to the task-to-architecture
mapping problem in reasonable time might lead to symplifying modelling
assumptions that can make the problem more tractable. Negligible cache-
miss penalties and inter-task communication times, contention-free com-
munication or unbounded on-chip memory resources are examples thereof.
Such assumptions however, jeopardize the liability of optimizer solutions,
and might force the system to work in sub-optimal operating conditions.

In Multi-Processor Systems-on-Chip (MPSoCs) the main source of
performance unpredictability stems from the interaction of many concur-
rent communication flows on the system bus, resulting in unpredictable
bus access delays. This also stretches task execution times. Communication
architectures should be therefore accurately modelled within task mapping
frameworks, so that the correct amount of system-level communication for
a given mapping solution can be correctly estimated and compared with
the actual bandwidth the bus can deliver. A communication sub-optimal
task mapping may lead to reduced throughput or increased latency due to
the higher occupancy of system resources. This also has energy implica-
tions.

A Fast and Accurate Technique for Mapping Parallel Applications

In this paper we present a novel framework for allocation and sched-
uling of pipelined task graphs on MPSoCs with communication awareness.
We target a general template for distributed memory MPSoC architectures,
where each processor has a local memory for fast and energy-efficient access
to program data and where messaging support is implemented. A state-of-
the-art shared bus is assumed as the system interconnect. Our framework is
communication-aware in many senses.

First, we introduce a methodology that determines under which oper-
ating conditions system interconnect performance is predictable. In that
regime, we derive an accurate high-level model for bus behaviour, which
can be used by the optimizer to force a maximum level of bus uti-
lization below which architecture-related uncertainties in system execu-
tion are negligible. The limit conditions for predictable bus behaviour are
bus protocol-specific, and evolving communication protocols are extend-
ing the predictable operating region to higher levels of bus utilization. Our
methodology allows system designers to precisely assess when delivered
bus bandwidth is lower than the requirements and consequently decide
whether to revert to a more advanced system interconnect or to tolerate
a comunication-related degradation of system performance.

Second, our mapping strategy discriminates among allocation and
scheduling solutions based on the communication cost, while meeting
hardware/software constraints (e.g. memory capacity, application real-time
requirements).

Our allocation and scheduling framework is based on problem decom-
position and combines Artificial Intelligence and Operations Research
techniques: the allocation subproblem is solved through IP, while sched-
uling through Constraint Programming (CP). However, the two solvers do
not operate in isolation, but interact with each other by means of no-goods
generation, resulting in an iterative procedure which has been proven to
converge to the optimal solution. Experimental results show significant
speed-ups w.r.t. pure IP and CP exact solution strategies.

Finally, we deploy an MPSoC virtual platform to validate the results
of the optimization steps and to more accurately assess constraint sat-
isfaction and objective function optimization. The practical viability of
our framework for real-life systems and applications is shown by means
of two demonstrators, namely GSM and Multiple-Input-Multiple-Output
(MIMO) wireless communication.

The structure of this work is as follows. Section 2 illustrates related
work. Section 3 presents the target architecture while application and sys-
tem models are reported in Section 4. Highlights on CP and IP are illus-
trated in Section 5. Our combined solver for the mapping problem is
described in Section 6, its computation efficiency in Section 7 and its

Ruggiero, Guerri, Bertozzi, Milano, and Benini

integration in a software optimization methodology for MPSoCs in 8.
Section 9 finally shows experimental results.

2. RELATED WORK

System design methodologies have been investigated for more than a
decade, so that now hardware/software codesign has such a rich litera-
ture, which is impossible to survey exhaustively in one article. This sec-
tion addresses only the works that are more closely related to the problem
and to the class of applications we target. A wider insight on the specific
research themes addressed by the HW/SW codesign community over the
last decade is reported in Ref. 37, while a very comprehensive update on
the state of the art in system design can be found in Ref. 14.

Mapping and scheduling problems on multi-processor systems have
been traditionally modelled as integer linear programming problems, and
addressed by means of IP solvers. An early example is represented by the
SOS system, (MILP)(31,32). Partitioning with respect to timing constraints
has been addressed in Ref. 25. A MILP model that allows to determine
a mapping optimizing a trade-off function between execution time, pro-
cessor and communication cost is reported in Ref. 7. An hardware/soft-
ware co-synthesis algorithm of distributed real-time systems that optimizes
the memory hierarchy (caches) along with the rest of the architecture is
reported in Ref. 26.

Pipelining is a well known workload allocation policy in the signal
processing domain. An overview of algorithms for scheduling pipelined
task graphs is presented in Ref. 11. IP formulations as well as heuris-
tic algorithms are traditionally employed. In Ref. 9 a retiming heuristic is
used to implement pipelined scheduling, while simulated annealing is used
in Ref. 28.

Pipelined execution of a set of periodic activities is also addressed in
Ref. 17, for the case where tasks have deadlines larger than their periods.

The complexity of pure IP formulations for general task graphs has
led to the deployment of heuristic approaches (refer to Ref. 24 for a com-
prehensive overview of early results). A comparative study of well-known
heuristic search techniques (genetic algorithms, simulated annealing and
tabu search) is reported in Ref. 5. Unfortunately, busses are implicit in the
architecture. Simulated annealing and tabu search are also compared in
Ref. 12 for hardware/software partitioning, and minimization of communi-
cation cost is adopted as an essential design objective. A scalability analy-
sis of these algorithms for large real-time systems is introduced in Ref. 21.
Many heuristic scheduling algorithms are variants and extensions of list
scheduling.(13) In general, scheduling tables list all schedules for different

A Fast and Accurate Technique for Mapping Parallel Applications

condition combinations in the task graph, and are therefore not suitable
for control-intensive applications.

The work in Ref. 23 is based on Constraint Logic Programming to
represent system synthesis problem, and leverages a set of finite domain
variables and constraints imposed on these variables. Constraint (Logic)
Programming is an alternative approach to IP for solving combinato-
rial optimization problems.(22) Both techniques can claim individual suc-
cesses but practical experience indicates that neither approach dominates
the other in terms of computational performance on problems similar
to the one faced in this paper. The development of a hybrid CP-IP
solver that captures the best features of both would appear to offer scope
for improved overall performance. However, the issue of communication
between different modelling paradigms arises. One method is inherited
from the Operations Research and is known as Benders Decomposition:(8)

it is an iterative solving strategy that has been proven to converge produc-
ing the optimal solution. Benders Decomposition has been extended, and
called Logic-Based Benders Decomposition in Ref. 19, for dealing with
any kind of solver, like a CP solver. There are a number of papers using
Benders Decomposition in a CP setting.(15,18,20,35)

In this work, we take the Logic-Based Benders Decomposition
approach, and come up with original design choices to effectively apply it
to the context of MPSoCs. We opt for decomposing the mapping problem
in two sub-problems: (i) mapping of tasks to processors and of data to
memories and (ii) scheduling of tasks in time on their execution units. We
tackle the mapping sub-problem with IP and the scheduling one with CP,
and combine the two solvers in an iterative strategy which converges to
the optimal solution.(19) Our problem formulation will be compared with
the most widely used traditional approaches, namely CP and IP modelling
of the entire mapping and scheduling problem as a whole, and the signifi-
cant cut down on search time that we can achieve is proved. Moreover,
in contrast to most previous work, the results of the optimization frame-
work and its modelling assumptions are validated by means of cycle-accu-
rate functional simulation on a virtual platform.

3. TARGET ARCHITECTURE

Our mapping strategy targets a general architectural template for a
message-oriented distributed memory MPSoC. The distinctive features of
this template include: (i) support for message exchange between paral-
lel computation sub-systems, (ii) availability of local memory devices at
each computation sub-system and of non-local (i.e. accessible through
the system bus) memories to store program data exceeding local mem-

Ruggiero, Guerri, Bertozzi, Milano, and Benini

ory size. The remote storage can be provided by a unified memory
with partitions associated with each processor or by a separate pri-
vate memory for each processor core connected to the system bus. This
assumption concerning the memory hierarchy reflects the typical trade-off
between low access cost, low capacity local memory devices and high cost,
high capacity memory devices at a higher level of the hierarchy. Several
MPSoC platforms available on the market match our template, such as the
Cell Processor,(16) the Silicon Hive Avispa-CH1 processor,(4) the Cradle
CT3600 family of multiprocessor DSPs(10) or the ARM11 MPCore plat-
form.(3)

The only restriction that we pose in the template concerns the com-
munication queues, which are assumed to be single-token. Therefore, in a
producer-consumer pair, each time a data unit is output by the producer,
the consumer has to read it before the producer can run again, since it has
its single-entry output queue occupied. The extension of our framework to
multi-token queues is left for future work and can be seen as an incremen-
tal improvement of the optimization framework.

We modelled one instance of this architectural template in order
to test our optimization framework (see Fig. 1). The computation sub-
systems are supposed to be homogeneous and consist of ARM7 cores
(including instruction and data caches) and of tightly coupled software-
controlled scratchpad memories for fast access to program operands and
for storing input data. We used an AMBA AHB(2) bus as shared system
interconnect.

In our implementation, hardware and software support for efficient
messaging is provided. Messages can be directly moved between scratch-
pad memories. In order to send a message, a producer core writes in the
message queue stored in its local scratchpad memory, without generating
any traffic on the interconnect. After the message is ready, the consumer
can transfer it to its own scratchpad or to a private memory space. Data
can be transferred either by the processor itself or by a direct memory
access controller, when available. In order to allow the consumer to read
from the scratchpad memory of another processor, the scratchpad memo-
ries should be connected to the communication architecture also by means
of slave ports, and their address space should be visible to the other pro-
cessors.

As far as synchronization is concerned, when a producer intends to
generate a message, it checks a local semaphore which indicates whether
the queue is empty or not. When a message can be stored, its availabil-
ity is signaled to the consumer by releasing its local semaphore through a
single write operation that goes through the bus. Semaphores are therefore
distributed among the processing tiles, resulting in two advantages: the

A Fast and Accurate Technique for Mapping Parallel Applications

Fig. 1. Message-oriented distributed memory architecture.

read/write traffic to the semaphores is distributed and the producer (con-
sumer) can locally poll whether space (a message) is available, thereby
reducing bus traffic.

Furthermore, our semaphores may interrupt the local processor when
released, providing an alternative mechanism to polling. In fact, if the
semaphore is not available, the polling task registers itself on a list of tasks
waiting for that semaphore and suspends itself. Other tasks on the proces-
sor can then execute. As soon as the semaphore is released, it generates an
interrupt and the corresponding service routine reactivates all tasks on the
waiting list.

A DMA engine is attached to each core, as presented in Ref. 29,
allowing efficient data transfers between the local scratchpad and non-
local memories reachable through the bus. The DMA control logic sup-
ports multi-channel programming, while the DMA transfer engine has a
dedicated connection to the scratchpad memory allowing fast data trans-
fers from or to it.

Finally, each processor core has a private memory, which can be
accessed only by gaining bus ownership. This memory could be on-chip or
off-chip depending on the specific platform instantiation. It has a higher
access cost and can be used to store program operands that do not fit
in scratchpad memory. Optimal memory allocation of task program data
to the scratchpad versus the private memory is a specific goal of our
optimization framework, dealing with the constraint of limited size of
local memories in on-chip multi-processors.

Ruggiero, Guerri, Bertozzi, Milano, and Benini

The software support is provided by a real-time multi-processor oper-
ating system called RTEMS(34) and by a set of high-level APIs to sup-
port message passing on the considered distributed memory architecture.
The communication and synchronization library abstracts low level archi-
tectural details to the programmer, such as memory maps or explicit man-
agement of hardware semaphores.(30)

Our implementation thus supports: (i) processor or DMA-initiated
memory-to-memory transfers, (ii) polling-based or interrupt-based syn-
chronization and (iii) flexible allocation of the consumer’s message buffer
to the local scratchpad or the non-local private memory.

4. HIGH-LEVEL APPLICATION AND SYSTEM MODELS

4.1. Task Model

Our mapping methodology requires to model the multi-task applica-
tion to be mapped and executed on top of the target hardware platform
as a Directed Acyclic Task Graph with precedence constraints. In particu-
lar, we focus on pipelined task graphs, representative of signal processing
workloads. A real-time requirement is typically specified for this kind of
applications, consisting for instance of a minimum required throughput for
the pipeline of tasks. Tasks are the nodes of the graph and edges connecting
any two node indicate task dependencies. Computation, storage and com-
munication requirements should be annotated onto the graph as follows.

The task execution time is given in two cases: program data is stored
entirely in scratchpad memory and local data is stored in remote private
memory only. In this latter case, the impact of cache misses on execution
time is taken into account.

Our application model associates three kinds of memory requirements
to each task:

- Program Data: storage space is required for computation data and for
processor instructions. They can be allocated by the optimizer either on
the local scratchpad memory or on the remote private memory.

- Internal State: when needed, an internal state of the task can be stored
either locally or remotely.

- Communication queues: the task needs communication queues to store
outgoing as well as incoming messages to/from other tasks. For the
sake of efficient messaging, we pose the constraint that such commu-
nication queues should be stored in local scratchpad memory only. So,
allocation of these queues is not a degree of freedom for the optimizer.

A Fast and Accurate Technique for Mapping Parallel Applications

We assume that application tasks initially check availability of input
data and of space for writing computation results (i.e. the output queue
must have been freed by the downstream task), in an SDF-like (synchro-
nous dataflow) semantics. Actual input data transfer and task execution
occur only when both conditions are met. These assumptions simply result
in an atomic execution of the communication and computation phases of
each task, thus avoiding the need to schedule communication as a separate
task.

4.2. Bus Model

Whenever predictable performance is needed for time-critical applica-
tions, it is important to avoid high levels of congestion on the bus, since
this makes completion time of bus transactions (and hence of task execu-
tion) much less predictable. Average or peak bus bandwidth utilization can
be modulated by means of a proper communication-aware task mapping
strategy.

When the bus is required to provide a cumulative bandwidth from
concurrently executing tasks that does not exceed a certain threshold, its
behaviour can be accurately abstracted by means of a very simple addi-
tive model. In other words, the bus delivers an overall bandwidth which is
approximatively equal to the sum of the bandwidth requirements of the
tasks that are concurrently making use of it.

This model, provided the working conditions under which it holds
are carefully delimited, has some relevant advantages with respect to the
scheduling problem model. First, it allows to model time at a coarse gran-
ularity. In fact, busses rely on the serialization of bus access requests by
re-arbitrating on a transaction basis. Modelling bus allocation at such a
fine granularity would make the scheduling problem overly complex since
it should be modelled as a unary resource (i.e. a resource with capacity
one). In this case, task execution should be modelled using the clock cycle
as the unit of time and the resulting scheduling model would contain a
huge number of variables. The additive model instead considers the bus as
an additive resource, in the sense that more activities can share bus uti-
lization using a different fraction of the total bus bandwidth. Fig. 2(a)
illustrates this assumption. The figure represents the bus allocation and
scheduling in a real processor, where the bus is assigned to different tasks
at different times on a transaction-per-transaction basis. Each task, when
owning the bus, uses its entire bandwidth.

Fig. 2(b), instead, represents how we model the bus, abstracting away
the transaction-based allocation details. We assume that each task con-
sumes a fraction of the bus bandwidth during its execution time. Note that

Ruggiero, Guerri, Bertozzi, Milano, and Benini

Fig. 2. (a) Bus allocation in a unary model; (b) Bus allocation in a coarse-grain additive
model.

we have two thresholds: the maximum bandwidth that the bus is physically
able to deliver, and the theoretical one beyond which the additive model
fails to predict the interconnect behaviour because of the impact of con-
tention. We will derive this latter threshold in the experimental section by
means of extensive simulation runs.

In order to define the fraction of the bus bandwidth absorbed by each
task, we consider the amount of data they have to access from their pri-
vate memories and we spread it over its execution time. In this way we
assume that the task is uniformly consuming a fraction of the bus band-
width throughout its execution time. This assumption will be validated in
presence of different traffic patterns in the experimental section.

Another important effect of the bus additive model is that task execu-
tion times will not be stretched as an effect of busy waiting on bus trans-
action completion. Once the execution time of a task is characterized in a
congestion free regime, it will be only marginally affected by the presence
of competing bus access patterns, in the domain where the additive model
holds.

Mapping tasks in such a way that the bus utilization lies below the
additive threshold forces the system to make efficient use of available
bandwidth. However, our methodology can map tasks to the system while
meeting any requirement on bus utilization. Therefore, if a given applica-
tion cannot be mapped with the bus working in the additive regime, it is
on burden of the designer to choose whether to increase maximum allow-
able peak bus utilization (at the cost of a lower degree of confidence in
optimizer performance predictions) or to revert to a more advanced sys-
tem interconnect. Even in the first case, our methodology helps designers
to map their applications with minimum additive threshold crossing.

5. BACKGROUND ON OPTIMIZATION TECHNIQUES

In this section, we recall the basic concepts behind the method we use
in this paper, namely the Logic Based Benders Decomposition, and the

A Fast and Accurate Technique for Mapping Parallel Applications

two optimization techniques we use for solving each subproblem resulting
from the decomposition, namely CP and IP.

5.1. Logic Based Benders Decomposition

The technique we use in this paper is derived from a method, known
in Operations Research as Benders Decomposition,(8) and refined by
Hooker and Ottosson(19) with the name of Logic-based Benders Decom-
position. The classical Benders Decomposition method decomposes a
problem into two loosely connected subproblems. It enumerates values for
the connecting variables. For each set of enumerated values, it solves the
subproblem that results from fixing the connecting variables to these val-
ues. The solution of the subproblem generates a Benders cut that the
connecting variables must satisfy in all subsequent solutions enumerated.
The process continues until the master problem and subproblem con-
verge providing the same value. The classical Benders approach, however,
requires that the subproblem be a continuous linear or nonlinear pro-
gramming problem. Scheduling is a combinatorial problem that has no
practical linear or nonlinear programming model. Therefore, the Benders
decomposition idea can be extended to a logic-based form Logic Based
Benders Decomposition (LBBD), that accommodates an arbitrary sub-
problem, such as a discrete scheduling problem. More formally, as intro-
duced in Ref. 19, a problem can be written as

minf (y), (1)

s.t. pi(y) i ∈ I1 Master Problem Constraints, (2)

gi(x) i ∈ I2 Subproblem Constraints, (3)

qi(y) → hi(x) i ∈ I3 Conditional Constraints, (4)

y ∈ Y Master Problem Variables, (5)

xj ∈ Di Subproblem Variables. (6)

We have master problem constraints, subproblem constraints and condi-
tional constraints linking the two models. If we solve the master problem
to optimality, we obtain values for variables y in I1, namely ȳ and the
remaining problem is a feasibility problem:

gi(x) i ∈ I2 Subproblem Constraints, (7)

qi(ȳ) → hi(x) i ∈ I3 Conditional Constraints, (8)

xj ∈ Di Subproblem Variables. (9)

Ruggiero, Guerri, Bertozzi, Milano, and Benini

We can add to this problem a secondary objective function, say f1(x) just
to discriminate among feasible solutions. If the problem is infeasible, a
Benders cut By(y) is created constraining variables y. The master problem
thus becomes

min f (y), (10)

s.t. pi(y) i ∈ I1 Master Problem Constraints, (11)

Byi
(y) i ∈ 1..h Benders cuts, (12)

y ∈ Y Master Problem Variables. (13)

yi is the solution found at iteration i of the master problem.
In practice, to avoid the generation of master problem solutions that

are trivially infeasible for the subproblem, it is worth adding a relaxation
of the subproblem to the master problem.

Deciding to use the LBBD to solve a combinatorial optimization
problem implies a number of design choices that strongly affect the overall
performance of the algorithm. Design choices are:

• how to decompose the problem, i.e. which constraints are part of
the master problem and which instead are part of the subproblem.
This influences the objective function and its dependency on master
and subproblem variables;

• which solver to choose for each decomposition: not all problems
are solved effectively by the same solver. We consider in this paper
Constraint and Integer Linear programming that cover a variety of
optimization problems effectively;

• which model to use for feeding each solver: given the problem and
the solver we still need to design the problem model, i.e. variables,
constraints and objective function. In combinatorial optimization, a
wrong model results always in poor solver performances;

• which Benders cuts to use, establishing the interaction between the
master and the subproblem;

• which relaxation to use so as to avoid the generation of trivially
infeasible solutions in the master problem.

In the following we provide preliminaries on Constraint Programming and
Integer Programming, while in Section 6 we detail the design choices per-
formed for the mapping and scheduling problem at hand.

5.2. Constraint Programming

Constraint Programming has been recognized as a suitable model-
ling and solving tool to face combinatorial (optimization) problems. The

A Fast and Accurate Technique for Mapping Parallel Applications

CP modeling and solving activity is highly influenced by the Artificial
Intelligence area on Constraint Satisfaction Problems, CSPs (see, e.g. the
book by Tsang(36)). A CSP is a triple 〈V, D, C〉 where V is a set of vari-
ables X1, . . . , Xn, D is a set of finite domains D1, . . . , Dn representing the
possible values that variables can assume, and C is a set of constraints
C1, . . . , Ck. Each constraint involves a set of variables V ′ ⊆ V and defines
a subset of the cartesian product of the corresponding domains containing
feasible tuples of values. Therefore, constraints limit the values that vari-
ables can simultaneously assume. A solution of a CSP is an assignment of
values to variables which is consistent with constraints.

Constraints can be either mathematical or symbolic. Mathematical con-
straints have the form: t1 R t2 where t1 and t2 are finite terms, i.e. variables,
finite domain objects and usual expressions, and R is one of the constraints
defined on the domain of discourse (e.g. for integers we have the usual
relations: >, ≥, <, ≤, =, 	=). For example, if two activities i and j charac-
terized by starting times Starti and Startj and durations di and dj are
linked by a precedence constraint stating that activity i should be executed
before activity j , the following mathematical constraint can be imposed,
Starti + di ≤ Startj . Symbolic constraints, called also global constraints,
are predicates involving finite domain variables. They are expressive and
powerful constraints (which can also be defined by the user) embedding
constraint-dependent filtering algorithms. A typical global constraint is the

all different([X1, . . . , Xn]),

available in most CP solvers. Declaratively, the constraint alldifferent
([X1, . . . , Xn]) holds iff all variables are assigned to a different value.
Thus, it is declaratively equivalent to a set of n∗(n−1)/2 binary inequality
constraints. However, its compact representation allows more concise mod-
els and embeds a specialized efficient graph-based filtering algorithm.(33)

Many constraints have been devised for scheduling, which is the most suc-
cessful application of Constraint Programming. In particular, many kinds
of resource and temporal constraints have been devised so as to solve large
problem instances, see.(6) As an example, let us consider the cumulative
constraint used for modelling limited resource availability in scheduling
problems. Its parameters are: a list of variables [S1, . . . , Sn] represent-
ing the starting time of all activities sharing the resource, their duration
[D1, . . . , Dn], the resource consumption for each activity [R1, . . . , Rn] and
the available resource capacity C. Clearly this constraint holds if in any
time step where at least one activity is running the sum of the required
resource is less than or equal to the available capacity. The constraint

Ruggiero, Guerri, Bertozzi, Milano, and Benini

cumulative([S1, . . . , Sn], [D1, . . . , Dn], [R1, . . . , Rn], C) holds iff

∀j
∑

Sj ≤i<Sj +Dj

Ri ≤ C.

5.3. Integer Programming

Another solution technique, which is well known and widely used in
the system design community is IP. IP is an older method, with roots that
date back to the late 1950s. IP can be thought of as a restriction of CP. In
fact, IP has only two types of variables: integer variables whose domain con-
tain non-negative integers and continuous variables whose domain contain
non-negative real values. In addition, IP allows only one type of constraint:
linear inequalities. Finally, the objective function must be linear in the vari-
ables. It seems that these restrictions make integer programming much nar-
rower than constraint programming. However, many problems can still be
modelled effectively, and algorithms for integer programs can find optimal
solutions quickly for many applications. The solving principle of IP is based
on the solution of the linear relaxation, allowing arbitrary sets of linear con-
straints to be treated as a global constraint, providing a global view of the
problem. The relaxation provides a bound enabling efficient pruning of the
search tree and directing search towards promising regions.

The standard form of an IP is the following: let x be the vector of
variables, x = [x1, x2, . . . , xn]. A set of these variables I are required to
take on integer values, while the remaining variables can take on any real
value. Each variable can have a range, represented by vectors l and u such
that li ≤ xi ≤ ui . A linear constraint on the variables is a vector of coeffi-
cients a = [a1, . . . , an] and a scalar right-hand-side b. The constraint is
then the requirement that

∑

j

aj xj = b.

The “=” in the constraint can also be ≤ or ≥ (but not < or >). The
objective function is formed by a vector of coefficients c = [c1, c2, . . . , cn],
with the objective of minimizing (or maximizing) cx. An integer program
consists of a single linear objective and a set of constraints. If we create a
matrix A = [aij], where aij is the coefficient for variable j in the ith con-
straint, then an integer program can be written:

min cx, (14)

s.t. Ax = b, (15)

A Fast and Accurate Technique for Mapping Parallel Applications

l ≤ x ≤ u, (16)

xj integer for all j ∈ I. (17)

For many applications, it is worth working within the limits of integer
programming to achieve high performance.

6. MODEL DEFINITION

The two main approaches followed by the system design community
when facing software mapping problems in MPSoCs are: (1) either mod-
elling and solving the problem to optimality as an IP whatever the prob-
lem structure is or (2) using a special purpose heuristic algorithm requiring
sophisticated debugging and tuning and achieving sub-optimal solutions.
In this paper, we claim that:

• Whenever allocation and scheduling can be performed off-line due
to the intrinsic features of the application (predictable workload),
the correct approach is to solve these problems to optimality, since
their solution is computed once for all at design time and applied
during the entire lifetime of the system. Optimal solutions enable to
achieve significant performance speed-ups.

• Analysing and exploiting the problem structure helps in choos-
ing the best solving technique. Integer Programming is an effec-
tive solving framework but it is not always the best technique one
can use. CP effectively deals with fine time granularities, temporal
constraints, resource constraints, and different kind of activities. In
general, the best solution strategy can be applied to each subprob-
lem structure.

We have first tried to solve the overall problem (mapping and sched-
uling) to optimality using a single approach. We have tested both CP
alone and IP alone on the problem without success. Therefore, we have
switched to Logic Based Benders Decomposition. As shown in Section 5.1,
a number of design choices should be addressed.

• How to decompose the problem. We split the overall mapping prob-
lem into two sub-problems: (1) the allocation of tasks to processors
and memory requirements to storage devices, trying to minimize
the communication cost and (2) the scheduling sub-problem, where
the minimization of execution time (or makespan) can be chosen as
secondary design objective.
Given the critical role played by on-chip communication in deter-
mining performance predictability of highly integrated MPSoCs, we

Ruggiero, Guerri, Bertozzi, Milano, and Benini

select communication cost minimization as the objective function
of the overall problem. This function involves only variables of the
first problem. In particular, we have a communication cost each
time two communicating tasks are allocated on different processors,
and each time a memory slot is allocated on a remote memory
device. Once we have optimally allocated tasks to resources, we can
minimize the global schedule makespan.
Note that our decomposition choice is, to our knowledge, origi-
nal. Other approaches to allocation and scheduling(18,20) cope with
scheduling problems where tasks assigned to different machines are
not linked by any constraint. Therefore, the subproblem is com-
posed by a set of independent single machine scheduling problems.
Different objective functions can be easily supported by our tech-
nique. Clearly, one should change the relaxation of the subproblem
and the no-goods. The aim of this paper is not to prove the effec-
tiveness of Logic-Based Benders Decomposition in general, but spe-
cifically for the problem at hand.

• Which solver to choose for each decomposition. There are no gen-
eral guidelines for choosing the best solver for the problem at hand.
Indeed, it is not always possible to choose the best solver for a
given problem instance. For some problems, it is widely recognized
that either IP or CP are the techniques of choice. IP is effective for
coping with optimization problems, it has a global problem view
due to the use of linear relaxations, but sometimes its models are
too large and somewhat unnatural. On the other hand, CP has an
effective way to cope with the so called feasibility reasoning, encap-
sulating efficient and incremental filtering algorithms into global
constraints. However, CP has a naive way to cope with optimiza-
tion problems by successively solving a set of constraint satisfaction
problems with tighter bounds on the objective function.
For the problem at hand, the allocation problem has been solved
via IP. It better copes with objective functions based on the sum of
assignment costs. For the scheduling problem, the solver is instead
based on CP since it better copes with temporal resource con-
straints and finer time granularity.

• Which model to use for feeding each solver. This part will be
described in detail in the next sections. In particular, the alloca-
tion problem model is described in Section 6.1 while the scheduling
problem model is described in Section 6.2.

• Which Benders cuts to use. This aspect is essential for the inter-
action between the two solvers. We solve the allocation problem
first (called master problem), and the scheduling problem (called

A Fast and Accurate Technique for Mapping Parallel Applications

subproblem) later. The master is solved to optimality and its solu-
tion passed to the subproblem solver. If the solution is feasible,
then the overall problem is solved to optimality, since the main
objective function depends only on master problem variables. If,
instead, the master solution cannot be completed by the subprob-
lem solver, a no-good is generated and added to the model of the
master problem, roughly stating that the solution passed should not
be recomputed again (it becomes infeasible), and a new optimal
solution is found for the master problem respecting the (set of) no-
good(s) generated so far. Being the allocation problem solver an IP
solver, the no-good has the form of a linear constraint.

• Which relaxation to use. Now let us note the following: the
assignment problem allocates tasks to processors, and memory
requirements to storage devices minimizing communication costs.
However, since real-time constraints are not taken into account by
the allocation module, the solution obtained tends to pack all tasks
in the minimal number of processors. In other words, the only
constraint that prevents to allocate all tasks to a single proces-
sors is the limited capacity of the tightly coupled memory devices.
However, these trivial allocations do not consider throughput con-
straints which make them most probably infeasible for the overall
problem. To avoid the generation of these (trivial) assignments, we
should add to the master problem model a relaxation of the sub-
problem. In particular, we should state in the master problem that
the sum of the durations of tasks allocated to a single processor
does not exceed the real time requirement. In this case, the allo-
cation is far more similar to the optimal one for the problem at
hand. The use of a relaxation in the master problem is widely used
in practice and helps in producing better solutions.

6.1. Allocation Problem Model

The allocation problem is the problem of allocating n tasks to m pro-
cessors and memory requirements to storage devices. The objective func-
tion is the minimization of the amount of data transferred on the bus. We
solve the allocation problem using an IP model. We consider four decision
variables: Tij , taking value 1 iff task i executes on processor j ; Yij , taking
value 1 iff task i allocates the program data on the scratchpad memory
of processor j ; Zij , taking value 1 iff task i allocates the internal state
on the scratchpad memory of processor j ; Xij , taking value 1 iff tasks
i and i + 1 execute on different processors, one of them being processor

Ruggiero, Guerri, Bertozzi, Milano, and Benini

j , therefore the two tasks communicate using the bus. Variables Xij have
only two indexes since we are considering a pipeline, where a task i com-
municates only with the task i + 1. When modelling a general task graph
these variables must have the form Xikj , taking value 1 iff two commu-
nicating tasks i and k execute on different processors, one of them being
processor j . The linear constraints introduced in the model are:

m∑

j=1

Tij = 1, ∀i ∈ 1 . . . n, (18)

Tij + Ti+1j + Xij − 2Kij = 0, ∀i ∈ 1 . . . n, ∀j. (19)

Constraints (18) state that each process can execute only on a processor,
while constraints (19) state that Xij can be equal to 1 iff Tij 	= Ti+1j , that
is, iff task i and task i + 1 execute on different processors. Kij are inte-
ger binary variables forcing the sum Tij + Ti+1j + Xij to be either 0 or 2
(in fact, Xij is the exor of Tij and Ti+1j). We also add to the model the
constraints stating that if a task i does not execute on a processor j , it
cannot allocate its program data or its internal state in the local scratch-
pad of processor j , i.e. Tij = 0 ⇒ Yij = 0, Zij = 0. For each group of
consecutive tasks whose execution times sum exceeds the RT requirement,
we introduce in the model a constraint preventing the solver to allocate
all the tasks in the group to the same processor. To generate these con-
straints, we find out all groups of consecutive tasks whose execution times
sum exceeds RT. Constraints are the following:

∑

i∈S

Duri > RT ⇒
∑

i∈S

Tij ≤ |S| − 1 ∀j. (20)

This is a relaxation of the scheduling problem, added to the master prob-
lem to prevent the generation of trivially infeasible solutions. The objec-
tive function is the minimization of the communication cost, i.e. the total
amount of data transferred on the bus for each pipeline iteration. Contri-
butions to the communication cost arise when a task allocates its program
data and/or internal state to the remote memory, and when two consecu-
tive tasks execute on different processors, and their communication mes-
sages must be transferred through the bus from the communication queue
of one processor to that of the other one. Using the decision variables
described above, we have a contribution, respectively, when: Tij = 1, Yij = 0,

A Fast and Accurate Technique for Mapping Parallel Applications

Fig. 3. Precedence constraints among the activities.

or Tij = 1, Zij = 0, or Xij = 1. Therefore, the objective function is to
minimize:

m∑

j=1

n∑

i=1

(
Memi (Tij − Yij) + 2 × Statei (Tij − Zij)

+ (DataiXij)/2)
)
, (21)

where Memi , Statei and Datai are the amount of data used by task i to
store, respectively, the program data, the internal state and the communi-
cation queue.

6.2. Scheduling Problem Model

Once tasks have been allocated to the processors, we need to schedule
process execution. Since we are considering a pipeline of tasks, we need
to analyse the system behaviour at working rate, that is when all processes
are running or ready to run. To do that, we consider several instantiations
of the same process; to achieve a working rate configuration, the number
of repetitions of each task must be at least equal to the number of tasks
n; in fact, after n iterations, the pipeline is at working rate. So, to solve
the scheduling problem, we must consider at least n2 tasks (n iterations
for each process), see Fig. 3.

In the scheduling problem model, for each task Taskij (the j th iter-
ation of the ith process) we introduce a variable Aij , representing the
computation activity of the task. Once the allocation problem is solved,
we statically know if a task needs to use the bus to communicate with
another task, or to read/write computation data and internal state from
the remote memory. In particular, each activity Aij must read the com-
munication queue from the activity Ai−1j , or from the pipeline input if
i = 0. For this purpose, we introduce in the model the activities Inij . If a

Ruggiero, Guerri, Bertozzi, Milano, and Benini

process requires an internal state, the state must be read before the execu-
tion and written after the execution: we therefore introduce in the model
the activities RSij and WSij for each process i requiring an internal state.
The durations of all these activities depend on whether data are stored
in the local or the remote memory but, after the allocation, these times
can be statically estimated. Figure 3 depicts the precedence constraints
among tasks. The horizontal arcs (between Taskij and Taski,j+1) represent
just precedence constraints, while the diagonal arcs (between Taskij and
Taski+1,j) represent precedences due to communication and are labelled
with the amount of data to communicate. Each task Taskij is composed
by activity Aij possibly preceded by the internal state reading activity
RSij , and input data reading activity Inij , and possibly followed by the
internal state writing activity WSij . The precedence constraints among the
activities are:

Ai,j−1 ≺ Inij , ∀ i, j (22)

Inij ≺ Aij , ∀ i, j (23)

Ai−1,j ≺ Inij , ∀ i, j (24)

RSij � Aij , ∀ i, j (25)

Aij � WSij , ∀ i, j (26)

Ini+1,j−1 ≺ Aij , ∀ i, j (27)

Ai,j−1 ≺ Aij , ∀ i, j, (28)

where the symbol ≺ means that the activity on the right should follow
the activity on the left, and the symbol � means that the activity on the
right must start as soon as the execution of the activity on the left com-
pletes: i.e. A ≺ B means StartA + DurA ≤ StartB and A � B means
StartA + DurA = StartB . Constraints (22) state that each process iteration
can start reading the communication queue only after the end of its pre-
vious iteration: a task needs to access the data stored in the communica-
tion queue during its whole execution, so the memory storing these data
can only be freed when the computation activity Aij ends. Constraints (23)
state that each task can start computing only when it has read the input
data, while constraints (24) state that each task can read the input data
only when the previous task has generated them. Constraints (25) and (26)
state that each task must read the internal state just before the execution
and write it just afterwards. Constraints (27) state that each task can exe-
cute only if the previous iteration of the following task has read the input
data; in other words, it can start only when the data stored in its com-
munication queue has been read by the target process. Constraints (28)

A Fast and Accurate Technique for Mapping Parallel Applications

state that the iterations of each task must execute in order. We also intro-
duced the real-time requirement constraints Start(Aij) − Start(Ai,j−1) ≤
RT, ∀ i, j , whose relaxation is used in the allocation problem model. The
time elapsing between two consecutive executions of the same task can be
at most RT. Processors are modelled as unary resources, stating that only
one activity at a time can execute on each processor, while the bus is mod-
elled as a shared resource (see Section 4.2): several activities can share the
bus, each of them consuming a fraction of the total bandwidth; a cumu-
lative constraint is introduced ensuring that the total bus bandwidth con-
sumption (or a lower threshold) is never exceeded.

7. COMPUTATIONAL EFFICIENCY

To test the computational efficiency of our approach, we now com-
pare the results obtained using this model (Hybrid in the following) with
results obtained using only a CP or IP model to solve the overall problem
to optimality. Actually, since the first experiments showed that both CP
and IP approaches are not able to find even the first solution, except for
the easiest instances, within 15 minutes, we simplified these models remov-
ing some variables and constraints. In CP, we fixed the activities execution
time not considering the execution time variability due to remote memory
accesses, therefore we do not consider the Inij , RSij and WSij activities,
including them statically in the activities Aij . In IP, we do not consider
all the variables and constraints involving the bus: we do not model the
bus resource and we therefore suppose that each activity can access data
whenever it is necessary.

We generated a large variety of problems, varying both the number
of tasks and processors. All the results presented are the mean over a set
of ten instances for each task or processor number. All problems consid-
ered have a solution. Experiments were performed on a 2 GHz Pentium
4 with 512 Mb RAM and leveraged state-of-the-art professional solving
tools, namely ILOG CPLEX 8.1, ILOG Solver 5.3 and ILOG Scheduler
5.3.

In Fig. 4 we compare the algorithms search time for problems with a
different number of tasks and processors, respectively. Times are expressed
in seconds and the y-axis has a logarithmic scale.

Although CP and IP deal with a simpler problem model, we can
see that these algorithms are not comparable with Hybrid, except when
the number of tasks and processors is low and the problem instance is
very easy to be solved, and Hybrid incurs the communication overhead
between two models. As soon as the number of tasks and/or processors
grows, IP and CP performance worsen and their search times become

Ruggiero, Guerri, Bertozzi, Milano, and Benini

0.1

1

10

100

1000

4 10

Number of Tasks

T
im

e
in

 s
ec

. (
lo

g)

0.1

1

10

100

1000

T
im

e
in

 s
ec

. (
lo

g)

Hybrid IP CP Hybrid IP CP

Number Of Processors

5 6 7 4321 5 6 78 9

Fig. 4. Comparison between algorithms search times for different task number (left) and for
different processor number (right).

orders of magnitude higher w.r.t. Hybrid. Furthermore, we considered in
the figures only instances where the algorithms are able to find the optimal
solution within 15 minutes, and, for problems with six tasks or three pro-
cessors and more, IP and CP can find the solution only in the 50% or less
of the cases, while Hybrid can solve 100% of the instances. We can see
in addition, that Hybrid search time scales up linearly in the logarithmic
scale.

We also measured the number of times the CP and IP solvers iterate.
We found that, due to the limited size of the scratchpad and to the relax-
ation of the sub-problem added to the master, the solver iterates always
one or two times. Removing the relaxation, it iterates up to 15 times. This
result gives evidence that, in a Benders decomposition based approach, it
is very important to introduce a relaxation of the sub-problem in the mas-
ter, and that the relaxation we use is very effective although very simple.

8. VALIDATION METHODOLOGY

In this section we explain how to deploy our optimization framework
in the context of a real system-level design flow. Our approach consists of
using a virtual platform to pre-characterize the input task set, to simu-
late the allocation and scheduling solutions provided by the optimizer and
to detect deviations of measured performance metrics with respect to pre-
dicted ones.

For each task in the input graph we need to provide the follow-
ing information: bus bandwidth requirement for reading input data in
case the producer runs on a different processor, time for reading input
data if the producer runs on the same processor, task execution time
with program data in scratchpad memory, task execution overhead due to
cache misses when program data resides in remote private memory. For
each pipelined task graph, this information can be collected with 2 + N

A Fast and Accurate Technique for Mapping Parallel Applications

simulation runs on the MPARM simulator,(1) where N is the number of
tasks. Recall that this is done once for all. We model task communica-
tion and computation separately to better account for their requirement
on bus utilization, although from a practical viewpoint they are part of
the same atomic task. The initial communication phase consumes a bus
bandwidth which is determined by the hardware support for data trans-
fer (DMA engines or not) and by the bus protocol efficiency (latency for
a read transaction). The computation part of the task instead consumes
an average bandwidth defined by the ratio of program data size (in case
of remote mapping) and execution time. A less accurate characterization
framework can be used to model the task set, though potentially incur-
ring more uncertainty with respect to optimizer’s solutions. We use the vir-
tual platform also to calibrate the bus additive model, specifying the range
where this model holds. For an AMBA AHB bus, we found that tasks
should not concurrently ask for more than 50% of the theoretical band-
width the bus can provide (400 MByte/sec with one wait state memories),
otherwise congestion causes a bandwidth delivery which does not keep up
with the requirements.

The input task parameters are then fed to the optimization frame-
work, which provides optimal allocation of tasks and memory locations to
processor and storage devices, respectively, and a feasible schedule for the
tasks meeting the real-time requirements of the application. Two options
are feasible at this point. First, the optimizer uses the conservative max-
imum bus bandwidth indicated by the virtual platform, and the derived
solutions are guaranteed to be accurate (see Section 9). Second, the opti-
mizer uses a higher bandwidth than specified, in order to improve bus uti-
lization, and the virtual platform must then be used to assess the accuracy
of the optimization step (e.g. constraint satisfaction, validation of execu-
tion and data transfer times). If the accuracy is not satisfactory, a new
iteration of the procedure will allow to progressively decrease the max-
imum bandwidth until the desired level of accuracy is reached with the
simulator.

Note that the scheduler of the RTEMS operating system allows to
implement all the scheduling solutions provided by the optimizer. For the
case we are considering (stream-oriented processing with single token com-
munication among the pipeline stages) it can be proven that all schedules
are periodic. The interested reader can read the proof in Appendix 1. Our
framework assumes that no preemption nor time-slicing is implemented by
the OS. Most schedules generated by the optimizer can be implemented
by means of priority-based scheduling, but not all of them. For those
remaining cases, RTEMS provides scheduling APIs with which one task

Ruggiero, Guerri, Bertozzi, Milano, and Benini

can decide which task to activate next. In this way, all possible schedules
can be implemented.

9. EXPERIMENTAL RESULTS

We have performed three kinds of experiments, namely (i) validation
and calibration of the bus additive model, (ii) measurement of deviations
of simulated throughput from the one computed by the optimizer on a
large number of problem instances, (iii) experiments devoted to show the
viability of the proposed approach by means of two demonstrators.

9.1. Validation of the Bus Additive Model

The behaviour of the bus additive model is illustrated by the experi-
ment of Fig. 5. An increasing number of AMBA-compliant uniform traffic
generators, consuming each 10% of the maximum theoretical bandwidth
(400 MByte/sec), have been connected to the bus, and the resulting real
bandwidth provided by the bus measured in the virtual platform. It can be
clearly observed that the delivered bandwidth keeps up with the requested
one until the sum of the requirements amounts to 60% of the maxi-
mum theoretical bandwidth. This defines the actual maximum bandwidth,
notified to the optimizer, under which the bus works in a predictable
way. If the communication requirements exceed the threshold, as a side
effect we observe an increase of the execution times of running tasks with
respect to those measured without bus contention, as depicted in Fig. 6.
For this experiment, synthetic tasks running on each processor have been

Fig. 5. Implications of the bus additive model.

A Fast and Accurate Technique for Mapping Parallel Applications

Fig. 6. Execution time variation.

employed. The 60% bandwidth threshold value corresponds to an execu-
tion time variation of about 2% due to longer bus transactions.

However, the threshold value also depends on the ratio of bandwidth
requirements of the tasks concurrently trying to access the bus. Contrarily
to Fig. 5, where each processor consumes the same fraction of bus band-
width, Fig. 7 shows the deviations of offered versus required bandwidth
for competing tasks with different bus bandwidth requirements. Config-
urations with different number of processors are explored, and numbers
on the x-axis show the percentage of maximum theoretical bandwidth
required by each task. It can be observed that the most significant devi-
ations arise when one task starts draining most of the bandwidth, thus
creating a strong interference with all other access patterns. The pres-
ence of such communication hotspots suggests that the maximum cumu-
lative bandwidth requirement which still stimulates an additive behaviour
of the bus is lower than the one computed before, and amounts to about
50% of the theoretical maximum bandwidth. We also tried to reproduce
Fig. 7 varying the burstiness of the generated traffic. Till now, the traf-
fic generators have used single bus transactions to stimulate bus traffic.
We then generated burst transactions of fixed length (four beat bursts,
corresponding to a cache line refill of an ARM7 processor) but with
varying inter-burst periods. Results are not reported here since the mea-
sured upper thresholds for the additive model are more conservative than
those obtained with single transfers. Therefore, frequent single transfers
and unbalanced bus utilization frequencies of the concurrent tasks running
on different processors represent the worst case scenario for the accuracy
of the bus additive model.

Ruggiero, Guerri, Bertozzi, Milano, and Benini

Fig. 7. Bus additive model for different ratios of bandwidth requirements among competing
tasks for bus access.

9.2. Validation of Allocation and Scheduling Solutions

We have deployed the virtual platform to implement the alloca-
tions and schedules generated by the optimizer, and we have measured
deviations of the simulated throughput from the predicted one for 50
problem instances. A synthetic benchmark has been used for this experi-
ment, allowing to change system and application parameters (local memory
size, execution times, data size, etc.). We want to make sure that modelling
approximations are not such to significantly impact the accuracy of opti-
mizer results with respect to real-life systems. The results of the validation
phase are reported in Fig. 8, which shows the probability for throughput
differences between optimizer and simulator results. The average differ-
ence between measured and predicted values is 0.76%, with 0.79 standard
deviation. This confirms the high level of accuracy achieved by the devel-
oped optimization framework, thanks to the calibration of system model
parameters against functional timing-accurate simulation and to the con-
trol of system working conditions.

In general, knowing the accuracy of the optimizer with respect to
functional simulation is not enough, since the relative sign of the error
decides whether real-time requirements will be met or not in cases where
there is only very little slack time. Figure 9 tries to answer this question
by reporting the distribution of the sign of prediction vs measurement
errors. A negative error indicates that the optimizer has been conservative,
therefore the real throughput is higher than the predicted one. The con-
trary holds in case of positive errors. This latter case is the most critical,

A Fast and Accurate Technique for Mapping Parallel Applications

Fig. 8. Probability of throughput differences.

Fig. 9. Probability of throughput differences in variable realtime study.

since it corresponds to the case where the optimizer has been optimistic.
However, we clearly see that the error margin is very small (within 5%).
Moreover, since the scheduling step of the optimization framework targets
makespan minimization, the optimizer usually provides a schedule which
results in throughput values that are far more conservative than those that
were required to the optimizer. As a consequence, even if the real through-
put is 5% worse, the margins with respect to the timing constraints are
typically much larger.

The scalability of our approach with the number of tasks and pro-
cessors has already been showed in Section 7, and compared with state-
of-the-art solving techniques. In contrast, the case studies that follow
aim at proving the applicability of our approach to real-life applications
and MPSoC systems. Most applications are natively coded in imperative
sequential C language, and their efficient parallelization goes beyond the
scope of this work. We therefore manually decomposed the GSM and
MIMO benchmarks in a reasonable number of tasks and tested our map-
ping methodology with them.

Ruggiero, Guerri, Bertozzi, Milano, and Benini

Fig. 10. GSM case study.

9.3. Application to GSM

Most state-of-the-art cell-phone chip-sets include dual-processor archi-
tectures. GSM encoding and decoding have been among the first target
applications to be mapped onto parallel multi-processor architectures.
Therefore, we first proved the viability of our approach with a GSM
encoder application. The source code has been parallelized into six pipe-
line stages, and each task has been pre-characterized by the virtual
platform to provide parameters of task models to the optimizer. Such
information, together with the results of the optimization run, are reported
in Fig. 10. Note that the optimizer makes use of 3 of the 4 available pro-
cessors, since it tries to minimize the cost of communication while meeting
hardware and software constraints. The throughput required to the opti-
mizer in this case was 1 frame/10ms, compliant with the GSM minimum
requirements. The obtained throughput was 1.35 frames/ms, far more con-
servative. The simulation on the virtual platform provided an application
throughput within 4.1% of the predicted one. The table also shows that
program data has been allocated in scratchpad memory for Tasks 1,2 and
6 since they have smaller communication queues. Schedules for this prob-
lem instance are trivial. The time taken by the optimizer to come to a
solution was 0.1 seconds.

9.4. MIMO Processing

One major technological breakthrough that will make an increase
in data rate possible in wireless communication is the use of multiple
antennas at the transmitters and receivers (Multiple-input Multiple-output
systems). MIMO technology is expected to be a cornerstone of many
next-generation wireless communication systems. The scalable computation
power provided by MPSoCs is progressively making the implementation
of MIMO systems and associated signal processing algorithms feasible,

A Fast and Accurate Technique for Mapping Parallel Applications

Fig. 11. MIMO processing results.

therefore we applied our optimization framework to spatial multiplexing-
based MIMO processing.(27)

The MIMO computation kernel was partitioned into five pipeline
stages. Optimal allocation and scheduling results for a system of 6 ARM7
processors are reported in Fig. 11. The reported mapping configura-
tion is referred to the case where the tightest feasible real-time con-
straint was applied to the system (about 1.26 Mbit/sec). Obviously, further
improvements of the throughput can be obtained by replacing the ARM7
cores with more computation-efficient processor cores. In this benchmark,
Task 5 has the heaviest computation requirements, and requires a large
amount of program data for its computation. In order to meet the tim-
ing requirements and to be able to allocate program data locally, this task
has been allocated on a separate processor.

As can be observed, the optimizer has not mapped each remain-
ing task on a different processor, since this would have been a waste of
resources providing sub-optimal results. In other words, the throughput
would have been guaranteed just at the same, but at a higher communi-
cation cost. Instead, Tasks 1–4 have been mapped to the same processor.
Interestingly, the sum of the local memory requirements related to commu-
nication queues leaves a very small remaining space in scratchpad memory,
which allows the optimizer to map locally only the small program data of
Tasks 3 and 4. The overall mapping solution was therefore not trivial to
devise without the support of the combined CP-IP solver, which provides
the optimal allocation and scheduling in about 600 ms. The derived con-
figuration was then simulated onto the virtual platform, and throughput
accuracy was found to be (conservatively) within 1%.

10. CONCLUSIONS

We target allocation and scheduling of pipelined stream-oriented
applications on top of distributed memory architectures with messag-
ing support. We tackle the complexity of the problem by means of

Ruggiero, Guerri, Bertozzi, Milano, and Benini

decomposition and no-good generation, and prove the increased com-
putational efficiency of this approach with respect to traditional ones.
Moreover, we deploy a virtual platform to validate the results of the opti-
mization framework and to check modelling assumptions, showing a very
high level of accuracy. Finally, we show the viability of our approach by
means of two demonstrators: GSM and MIMO processing. Our method-
ology contributes to the advance in the field of software optimization tools
for highly integrated on-chip multiprocessors, and can be applied to all
pipelined applications with design-time predictable workloads. The exten-
sion to generic task graphs does not present theoretical hindrances and is
ongoing work.

Appendix 1: PROOF OF SCHEDULE PERIODICITY

In this section we prove that despite our algorithm considers an
unbounded number j of iterations of a pipeline with n tasks T askij ,
i = 1..n, our final schedule is always periodic. The proof assumes single
token communication queues (i.e. length one queues), but it can be easily
extended to any finite length.

Tasks are partitioned by the allocation module on p processors. So let
us consider p partitions: Taskij i ∈ Spk∀j , where k = 1..p and Spk is the
set of tasks assigned to processor k. Our aim is to show that our (time dis-
crete) scheduling algorithm that minimizes the makespan produces a peri-
odic solution even if we have a (theoretical) infinite number of pipeline
iterations.

The proof is based on the following idea: if we identify in the solution
a state of the system that assumes a finite number of configurations, than
the solution is periodic. In fact, after a given state S the algorithm per-
forms optimal choices; as soon as we encounter S again, the same choices
are performed.

For each iteration j , the state we consider is the following: the slack
of each task in Sk to its deadline. The state of the system is the following:
For each processor k = 1..p we have 〈Slackk

1j
, . . . , Slackk

lj 〉, where Slackk
ij

is the difference between the deadline of Taskij running on processor k

and its completion time. Therefore, if we prove that the number of possible
state configurations is finite (i.e. it does not depend on the iteration num-
ber j), being the transitions between two states deterministic, even if we
have an infinite number of repetition of the pipeline, the solution is peri-
odic.

After the pipeline starts up, the deadline of each task Taskij is
defined by the first iteration of task i. i.e. Taski1. In fact, the real-time

A Fast and Accurate Technique for Mapping Parallel Applications

(throughput) constraint states that every P time points each task should
be repeated. Therefore, if the first iteration of a task i is performed at time
ti , the second iteration of i should be performed at time ti + P , and the
j-th iteration at time ti + (j − 1) ∗ P − diration(Taskij).

Now, let us consider two cases:

• if the tasks in Sk are consecutive in the pipeline, then their repeti-
tion cannot change. For example, if tasks T1j , T2j and T3j are allo-
cated to the same processor (for all j), having length one queues,
they can be repeated only in this order. Indeed, one can repeat T1j

after T2j , but minimizing the makespan it is not the right decision.
• if instead the tasks in Sk are not consecutive, then there could be

repetitions in between that could break the periodicity. Therefore,
we should concentrate on this case.

For the sake of readibility we now omit the index representing the
iteration since we concentrate on the maximum slack a task can assume.
Let us consider two non consecutive tasks TA ∈ Sk and TB ∈ Sk. Sup-
pose that between TA and TB there are m tasks allocated on other pro-
cessors different from k. Let us call them TA1, TA2, . . . , TAm ordered by
precedence constraints. If we have communication queues of length one,
between TA and TB there are AT MOST m iterations of TA. In fact, TA

can be repeated as soon as TA1 starts on another processor. Also, it can
be repeated as soon as another iteration of TA1 starts, that can happen as
soon as TA2 starts and so on. Clearly, m iterations are possible only if

m∗duration(TA) ≤
m∑

i=1

duration(TAi)

but if this relation does not hold, there can be only less iterations of TA.
Therefore, m is an upper bound on the number of iterations of TA between
the first TA and TB . If tA is the time where the first repetition of TA is
performed, the mth iteration of TA has a deadline of tA + (m − 1) ∗ P .
Its slack is clearly bounded to the maximum deadline minus its duration,
tA + (m − 1) ∗ P − duration(TA).

The upper bound for m is n − 2. In fact, in a pipeline of n tasks the
maximum number of repetitions of a task happen if only the first and the
last task are allocated on the same processor. They have n − 2 tasks in
between allocated on different processors. Therefore, the maximum num-
ber of repetitions of T1 between T1 and Tn is n − 2.

Therefore, if the first iteration of T1 is executed at time t1 its (n−2)th

iteration has a max deadline t1 + (n − 3) ∗ P − duration(T1).

Ruggiero, Guerri, Bertozzi, Milano, and Benini

Being the max deadline of a task finite, also its max slack is finite
despite the number of iteration of the pipeline.

Therefore, whatever the state is, each task belonging to the state has
a finite slack. The combination of slacks are finite, and therefore, after
a finite number of repetition, the system finds a state already found and
becomes periodic.

REFERENCES

1. F. Angiolini, L. Benini, D. Bertozzi, M. Loghi, and R. Zafalon, Analyzing On-Chip
Communication in a MPSoC environment, in Proceedings of the IEEE Design and Test
in Europe Conference (DATE), Paris, France, pp. 752–757 (2004).

2. ARM Ltd., Sheffield, UK, AMBA 2.0 Specification. http://www.arm.com/arm-
tech/AMBA

3. ARM11 MPCore, http://www.arm.com/products/CPUs/ARM11MPCoreMultiproces-
sor.html

4. Avispa-CH1 Communications Signal Processor, http://www.silicon-hive.com/t.php?asset-
name=text&id=131

5. J. Axelsson, Architecture Synthesis and Partitioning of Real-Time Synthesis: A Com-
parison of 3 Heuristic Search Strategies, in Proceedings of the 5th International Work-
shop on Hardware/Software Codesign (CODES/CASHE97), Braunschweig, Germany,
pp. 161–166 (1997).

6. P. Baptiste, C. Le Pape, and W. Nuijten, Constraint-Based Scheduling, in Proceedings
of the International Series in Operations Research and Management Science, Vol. 39,
Springer, New York, USA (2001).

7. A. Bender, MILP based Task Mapping for Heterogeneous Multiprocessor Systems,
EURO-DAC ’96/EURO-VHDL ’96, in Proceedings of the conference on European
design automation, Geneva, Switzerland, pp. 190–197 (1996).

8. J. F. Benders, Partitioning Procedures for Solving Mixed-Variables Programming Prob-
lems, Numerische Mathematik, 4:238–252 (1962).

9. K. S. Chatha and R.Vemuri, Hardware-Software Partitioning and Pipelined Scheduling
of Transformative Applications, in Transactions on Very Large Scale Integration Sys-
tems, 10(3):193–208 (2002).

10. CT3600 Family of Multi-core DSPs, http://www.cradle.com/products/sil 3600 family.
shtml

11. G. De. Micheli, Synthesis and Optimization of Digital Circuits, McGraw Hill,
New York (1994).

12. P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, System Level Hardware/Software Par-
titioning Based on Simulated Annealing and Tabu search, Journal on Design Automa-
tion for Embedded Systems, 2:5–32 (1997).

13. P. Eles, Z. Peng, K. Kuchcinski, A. Doboli, and P. Pop, Scheduling of Conditional
Process Graphs for the Synthesis of Embedded Systems, in Proceedings of the confer-
ence on Design, automation and test in Europe, Paris, France, pp. 132–139 (1998).

14. Embedded microelectronic systems: status and trends, in IEE Proceedings—Computers
and Digital Techniques—March 2005 – Vol. 152, Issue 2.

15. A. Eremin and M. Wallace, Hybrid Benders Decomposition Algorithms in Constraint
Logic Programming, in Proc. of the 7th International Conference on Principles and
Practice of Constraint Programming - CP 2001, Paphos, Cyprus, pp. 1–15 (2001).

A Fast and Accurate Technique for Mapping Parallel Applications

16. B. Flachs et al., A Streaming Processor Unit for the CELL Processor, in Proceedings
of the ISSCC, San Francisco, USA, pp. 134–135 (2005).

17. G. Fohler and K. Ramamritham, Static Scheduling of Pipelined Periodic Tasks in Dis-
tributed Real-Time Systems, in Proc. of the 9th EUROMICRO Workshop on Real-Time
Systems - EUROMICRO-RTS ’97, Toledo, Spain, pp. 128–135 (1997).

18. I. E. Grossmann and V. Jain, Algorithms for Hybrid MILP/CP Models for a Class
of Optimization Problems, INFORMS Journal on Computing, 13(4):258–276 (2001).

19. J. N. Hooker and G. Ottosson, Logic-Based Benders Decomposition, Mathematical
Programming, 96:33–60 (2003).

20. J. N. Hooker, A Hybrid Method for Planning and Scheduling, in Proceedings of the
10th International Conference on Principles and Practice of Constraint Programming -
CP 2004, Toronto, Canada, pp. 305–316 (2004).

21. S. Kodase, S. Wang, Z. Gu, and K. Shin, Improving Scalability of Task Allocation
and Scheduling in Large Distributed Real-Time Systems Using Shared Buffers, in Pro-
ceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Sym-
posium (RTAS 2003), Washington, USA, pp. 181–188 (2003).

22. K. Kuchcinski, Embedded System Synthesis by Timing Constraint Solving, in Proceedings of
the 10th International Symposium on System Synthesis, Antwerp, Belgium, pp. 50–57 (1997).

23. K. Kuchcinski and R.Szymanek, A Constructive Algorithm for Memory-Aware Task
Assignment and Scheduling, in Proceedings of the 9th International Symposium on
Hardware/Software Codesign - CODES 2001, Copenhagen, Denmark, pp. 147–152
(2001).

24. Y. Kwok, and I. Ahmad, Static Scheduling Algorithms for Allocating Directed Task
Graphs to Multiprocessors, ACM Computing Surveys, 31(4):406–471 (1999).

25. C. Lee, M. Potkonjak, and W. Wolf, System-Level Synthesis of Application-Specific
Systems Using A* Search and Generalized Force-Directed Heuristics, in Proceedings
of the 9th International Symposium on System Synthesis—ISSS ’96, San Diego, USA,
pp. 2–7 (1996).

26. Y. Li and W. H. Wolf, Hardware/Software Co-Synthesis with Memory Hierarchies,
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, pp. 1405–
1417 (1999).

27. D. Novo, W. Moffat, V. Derudder, and B. Bougard, Mapping a Multiple Antenna
SDM-OFDM Receiver on the ADRES Coarse-Grained Reconfigurable Processor, in
Proceedings of the IEEE Workshop on Signal Processing Systems Design and Imple-
mentation, Athens, Greece, pp. 473–478 (2–4 Nov. 2005).

28. P. Palazzari, L. Baldini, and M. Coli, Synthesis of Pipelined Systems for the Con-
temporaneous Execution of Periodic and Aperiodic Tasks with Hard Real-Time Con-
straints, in Proceedings of the 18th International Parallel and Distributed Processing
Symposium - IPDPS’04, Santa Fe, USA, pp. 121–128 (2004).

29. F. Poletti, P. Marchal, D. Atienza, L. Benini, F. Catthoor, and J. M. Mendias, An
Integrated Hardware/Software Approach For Run-Time Scratchpad Management, in
Proceedings of the DAC 2004, San Diego, USA, pp. 238–243 (2004).

30. F. Poletti, A. Poggiali, and P. Marchal, Flexible Hardware/Software Support for Mes-
sage Passing on a Distributed Shared Memory Architecture, in Design And Test Europe
Conference 2005 Proceedings, Munich, Germany, pp. 736–741 (2005).

31. S. Prakash and A. Parker, SOS: Synthesis of Application-Specific Heterogeneous Mul-
tiprocessor Systems, Journal of Parallel and Distributed Computing, 338–351 (1992).

32. S. Prakash and A. C. Parker, Synthesis of Application-Specific Multiprocessor Sys-
tems Including Memory Components, in Proceedings of the International Conference
on Application Specific Array Processors, Berkeley, USA (1992).

Ruggiero, Guerri, Bertozzi, Milano, and Benini

33. J. C. Régin, A filtering algorithm for constraints of difference in CSPs, in Proceedings
of the 12th National Conference on Artificial Intelligence—AAAI94, Seattle, USA, pp.
362–367 (1994).

34. RTEMS Home Page, http://www.rtems.com
35. E. S.Thorsteinsson, A Hybrid Framework Integrating Mixed Integer Programming and

Constraint Programming, in Proceedings of the 7th International Conference on Princi-
ples and Practice of Constraint Programming - CP 2001, Paphos, Cyprus, pp. 16–30
(2001).

36. E. P. K. Tsang, Foundation of Constraint Satisfaction, Academic Press, New York
(1993).

37. W. Wolf, A Decade of Hardware/Software Codesign, IEEE Computer, 36(4):38–43
(2003).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

