
Valutazione di efficienza ed eseguibilitá dell’allocazione e

scheduling in un Multi-Processor Systems-on-Chip

Measuring Efficiency and Executability of Allocation

and Scheduling in Multi-Processor Systems-on-Chip

Luca Benini, Davide Bertozzi, Alessio Guerri, Michela Milano, Francesco Poletti

SOMMARIO/ABSTRACT

I Multi-Processor Systems-on-Chips (MPSoCs)
stanno diventando sempre piú complessi, e
l’allocazione e lo scheduling di applicazioni multi-task
sulle unitá computazionali é di cruciale importanza
per rispettare i vincoli di esecuzione e di consumo di
potenza. La definizione di modelli astratti delle com-
ponenti del sistema e lo sviluppo di tecniche avanzate
per l’ottimizzazione possono aiutare nel velocizzare
la ricerca di soluzioni ottime. In [3] é stato proposto,
per risolvere il problema in analisi, un approccio
ibrido basato sull’integrazione di Programmazione
Intera (IP) e Programmazione a Vincoli (CP), dove
IP realizza l’allocazione e CP lo scheduling. La
soluzione ibrida decompone il problema e sceglie, per
ogni sottoproblema, l’algoritmo risolutivo piú idoneo.
É stata dimostrata l’efficienza dell’approccio ibrido
rispetto agli approcci puri CP e IP. In questo lavoro
utilizziamo una piattaforma virtuale MPSoC per
trovare le differenze tra la formulazione del problema
e il mondo reale al fine di stimare il loro impatto
sui risultati. Abbiamo quindi valutato l’accuratezza
e l’eseguibilitá delle soluzioni usando un simulatore
della piattaforma MPSoC.

Multi-Processor Systems-on-Chips (MPSoCs) are be-
coming increasingly complex, and mapping and
scheduling of multi-task applications on computational
units is key to meeting performance constraints and
power budgets. Abstract models of system components
and deployment of advanced algorithmic techniques for
the optimization problem can provide for fast design
space exploration and for optimal solutions. In [3] we
have proposed an efficient hybrid approach for solving
the problem based on an integrated Constraint Pro-
gramming (CP) and Integer Programming (IP) so-
lution where IP performs the allocation and CP the
scheduling. The hybrid solution exploits problem de-

composition and chooses for each subproblem the best
algorithm for solving it given its structure. We have
proved the efficiency of the hybrid approach w.r.t. both
stand alone CP and IP approaches. In this paper, we
go a step further and exploit an accurate MPSoC vir-
tual platform for capturing mismatches between prob-
lem formulation and real-life systems, and for assess-
ing their impact on expected performance. We there-
fore evaluate the efficiency and the executability of the
solution found by the algorithm using a MPSoCs plat-
form simulator.

Keywords: Constraint Programming, Integer Pro-
gramming, Allocation and Scheduling, Benders De-
composition, Multi-Processor Systems-on-Chips

1 Introduction

Constraint Satisfaction Problems - CSPs and Con-
straint Optimization Problems - COPs are difficult to
solve and efficiency is an issue. Therefore, the exper-
imentation process on algorithms solving CSPs and
COPs is in general aimed at measuring the compu-
tational time. Indeed, this is not the only important
parameter.

Problem models might contain simplifying hypothe-
sis leading the algorithm to produce a solution (called
off-line solution) which could be different from the one
that can be executed in the real world (called on-line
solution). In the extreme case, the off-line solution is
even not executable in the real world, i.e., it violates
problem constraints. This means that it is possible
that the assumptions made while modelling the prob-
lems are so strong that the solution does not corre-
spond at all to the reality. To establish a solid opti-
mization methodology, differences between the on-line
and off-line solutions should be measured and evalu-
ated. Therefore, if the model is simplified, as it hap-
pens in all difficult cases, the experimentation, besides

efficiency, should measure the solution quality.
Moving from these considerations, in this paper we

present an application of allocation and scheduling
techniques to Multi Processor Systems on Chip - MP-
SoCs [9] where an entire system is integrated onto the
same silicon die, consisting of multiple processor cores
(the computational units), a memory hierarchy and
channels for interprocessor communication. The main
purpose of this paper is to define a robust experimen-
tal setting for validating the design-time allocation
and scheduling on an accurate simulation platform.

Mapping and scheduling require a pre-
characterization of the application, abstracted
as a task graph, i.e. a collection of nodes and edges.
The nodes represent functional program abstractions
and arcs in the graph correspond to precedence and
communication constraints. The application consid-
ered in this paper is a pipeline of tasks, representing
the structure of a typical throughput-optimized
streaming multi-media application.

Our theoretical and experimental frameworks are
aimed at measuring the efficiency of the proposed al-
location and scheduling algorithms and the accuracy
of the model by checking if the off-line solution is exe-
cutable and, in that case, how far the on-line solution
is from the off-line one. For this purpose we used an
MPSoC virtual platform, called MP-Arm [2, 8].

We show the benefits of validating the model accu-
racy on a virtual platform for the purpose of defin-
ing and refining an effective allocation and scheduling
methodology on MPSoCs.

2 Problem description

Recent advances in very large scale integration (VLSI)
of digital electronic circuits have made it possible
to integrate more than a billion of elementary de-
vices onto a single chip, thereby enabling the de-
velopment of low-power, low-cost, high-performance
single-chip multi-processors. These devices, called
multi-processor systems-on-chip (MPSoCs), are find-
ing widespread application in embedded systems (such
as cellular phones, automotive control engines, etc.)
where they are employed as special-purpose comput-
ing engines. In other words, once deployed in field,
they always run the same application, in a well-
characterized context. It is therefore possible to spend
a large amount of time for finding an optimal alloca-
tion and scheduling off-line and then deploy it on the
field. For this reason, many researchers in digital de-
sign automation have explored complete approaches
for allocating and scheduling pre-characterized work-
loads on MPSoCs [9], instead of using on-line, dynamic
(sub-optimal) schedulers [7, 6].

The multi-processor system we consider consists of a
pre-defined number of distributed computation nodes,

Figure 1: Single chip multi-processor architecture.

as depicted in Figure 1. All nodes are assumed to be
homogeneous and made by a processing core and by a
tightly coupled local memory. This latter is a low ac-
cess cost scratchpad memory, which is commonly used
both as hardware extension to support message pass-
ing and as a storage means for computation data and
processor instructions which are frequently accessed.

Unfortunately, the scratchpad memory is of limited
size, therefore data in excess must be stored externally
in a remote on-chip memory, accessible via the bus.
The bus for state-of-the-art MPSoCs is a shared com-
munication channel, and serialization of bus access re-
quests of the processors (the bus masters) must be car-
ried out by a centralized arbitration mechanism. The
bus is re-arbitrated on a transaction basis, based on
several policies (fixed priority, round-robin, latency-
driven, etc.).

Each task also has three kinds of memory require-
ments. Program Data: storage locations are re-
quired for computation data and for processor in-
structions. They can be allocated either on the local
scratchpad memory or on the remote on-chip memory.
Internal State: when needed, an internal state of the
task can be stored either locally or remotely. Com-
munication queues: the task needs queues to trans-
mit and receive messages to/from other tasks, eventu-
ally mapped on different processors. In the platform
we are considering, such queues should be allocated
only on local memories, in order to implement an ef-
ficient inter-processor communication mechanism. Fi-
nally, the communication requirements of each task
are automatically determined depending on the size
of communication data and on the physical location
of computation data in scratchpad or remote memory.

A task graph representation of the target applica-
tion is input to our methodology. For each node/task,
the average case execution time (ACET) is extracted
by means of functional simulation of a significant num-
ber of runs and plays a critical role whenever appli-
cation real time (RT) constraints (expressed here in
terms of minimum required throughput) are to be met.
In fact, tasks are scheduled on each processor based

on a time-wheel. The sum of the ACETs of the tasks
for one iteration of the time wheel must not exceed
time period RT , which is the same for each processor
since the minimum throughput is an application re-
quirement. We consider the ACET since it is likely to
better match the task durations measured on the vali-
dation virtual platform; when our stable methodology
will be used for design purposes, the worst case exe-
cution time (WCET) should be used instead, so as to
avoid temporal constraints violation. The methodol-
ogy proposed in this paper has been applied to a syn-
thetic signal processing pipeline, a widely used multi-
media application. Task parameters have been derived
from a real video graphics pipeline processing pixels
of a digital image, but it can be easily extended to any
task graph. In the open literature, approaches to this
kind of problems usually make very strong simplifying
assumptions, like infinite number of processing units,
zero time communication or unlimited memory capac-
ity [4, 5, 1]. In addition, they often do not consider
the real implementation of the solution they produce.
We make simplifying assumptions to derive a problem
model as well, but we also include a validation stage
in our framework, in order to assess the impact of such
approximations and verify the mismatch between off-
line and on-line solution.

After the optimization algorithm produces an off-
line solution, we used an MPSoC virtual platform,
called MP-Arm [2, 8], to check if it is indeed exe-
cutable. The target platform introduces restrictions
on the solutions that can be executed, i.e., it intro-
duces constraints that are hereafter denoted as exe-
cution constraints. If the model does not take them
into account, the model represents a relaxation of the
real problem and thus provides a super-optimal solu-
tion. The execution constraint we are considering for
scheduling the application under test states that the
solution should be representable as a list of tasks or a
list of task priorities.

3 Model definition

The two main approaches followed by the system de-
sign community when facing a COP are: (1) either
modelling and solving the problem as an Integer Pro-
gram whatever the problem structure is or (2) using a
special purpose heuristic algorithm requiring sophisti-
cated debugging and tuning.

The intuition behind our approach is to decompose
the problem and exploit the structure of each com-
ponent to chose the best algorithm to solve it. The
problem we are facing can be split into 2 problems:
(1) the allocation of tasks to processors and memory
requirement to storage devices minimizing the com-
munication cost and (2) the scheduling sub-problem
minimizing its makespan. The structure of these prob-

lems suggests to model and solve the first through In-
teger Linear Programming (IP), while the second is
better faced through Constraint Programming (CP)
techniques. The two solvers interact through the gen-
eration of no-goods. This technique is described in
detail in [3]. In section 5 we will validate the strength
of this approach comparing it with pure CP and IP
approaches.

3.1 Allocation problem model

The allocation problem is the problem of allocating
n tasks to m processors and memory requirements to
storage devices. The objective function is the min-
imization of the amount of data transferred on the
bus. Since in this problem we do not have temporal
constraints, we can model the problem as an IP model.

We consider four decision variables: Tij , taking
value 1 iff task i executes on processor j; Yij , taking
value 1 iff task i allocates the program data on the
scratchpad memory of processor j; Zij , taking value 1
iff task i allocates the internal state on the scratchpad
memory of processor j; Xij , taking value 1 iff tasks i
and i + 1 execute on different processors, one of them
being processor j.

The linear constraints introduced in the model are:
m∑

j=1

Tij = 1,∀i ∈ 1 . . . n (1)

Tij + Ti+1j + Xij − 2Kij = 0 , ∀i ∈ 1 . . . n ,∀j (2)

Constraints (1) state that each process can execute
only on a processor, while constraints (2) state that
Xij can be equal to 1 iff Tij 6= Ti+1j , that is, iff task i
and task i+1 execute on different processors. Kij are
integer binary variables forcing the sum Tij + Ti+1j +
Xij to be either equal to 0 or 2 (in fact, Xij is the
exor of Tij and Ti+1j).

We also add to the model the constraints stating
that Tij = 0 ⇒ Yij = 0, Zij = 0, and, for each group
of consecutive tasks whose execution times sum ex-
ceeds the RT requirement, we introduce in the model
a constraint preventing the solver to allocate all the
tasks in the group to the same processor. To generate
these constraints, we find out all groups of consec-
utive tasks whose execution times sum exceeds RT.
Constraints are the following:

∑

i∈S

Duri > RT ⇒
∑

i∈S

Tij ≤ |S| − 1 ∀j (3)

This is a relaxation of the subproblem, added to the
master problem to prevent the generation of trivially
infeasible solutions for the overall problem (solutions
allocating most communicating tasks on few proces-
sors to minimize communication cost, but at the same
time violating real-time constraints).

The objective function is the minimization of the
communication cost, i.e., the total amount of data
transferred on the bus for each pipeline iteration. This
amount consists of three contributions: when a task
allocates its program data in the remote memory, it
reads them throughout the execution time; when a
task allocates its internal state in the remote memory,
it reads it before its execution and writes it immedi-
ately after the execution; if two consecutive tasks exe-
cute on different processors, their communication mes-
sages must be transferred through the bus from the
communication queue of one processor to the other.
Using the decision variables described above, we have
a contribution respectively when: Tij = 1, Yij = 0;
Tij = 1, Zij = 0; Xij = 1. Therefore, the objective
function is to minimize:
m∑

j=1

n∑

i=1

(
Memi(Tij − Yij) + 2× Statei(Tij − Zij) +

+(DataiXij)/2)
)

(4)

where Memi, Statei and Datai are the amount of
data used by task i to store respectively the program
data, the internal state and the communication queue.

3.2 Scheduling problem model

Once tasks have been allocated to the processors, we
need to schedule process execution. Since we are con-
sidering a pipeline of tasks, we need to analyze the
system behavior at working rate, that is when all pro-
cesses are running or ready to run. To do that, we
consider several instantiations of the same process;
to achieve a working rate configuration, the number
of repetitions of each task must be at least equal to
the number of tasks n; in fact, after n iterations, the
pipeline is at working rate. So, to solve the scheduling
problem, we must consider at least n2 tasks (n itera-
tions for each process), see Figure 2. In the scheduling

Figure 2: Precedence constraints among the activities

problem model, for each task Taskij we introduce a
variable Aij , representing the computation activity of
the task. Aij is the j-th iteration of the i-th process.
Once the allocation problem is solved, we statically
know if a task needs to use the bus to communicate
with another task, or to read/write computation data
and internal state in the remote memory. In partic-
ular, each activity Aij must read the communication
queue from the activity Ai−1j , or from the pipeline
input if i = 0. To schedule these phases, we introduce

in the model the activities Inij . If a process requires
an internal state, the state must be read before the ex-
ecution and written after the execution: we therefore
introduce in the model the activities RSij and WSij

for each task i requiring an internal state. The dura-
tion of these activities depends on whether the data
are stored in the local or the remote memory (data
transfer through the bus needs more time than the
transfer of the same amount of data using the local
memory) but, after the allocation, these times can be
statically estimated.

Figure 2 depicts the precedence constraints among
the tasks. Each task Taskij represents the activity
Aij possibly preceded by the internal state reading
activity RSij , and input data reading activity Inij ,
and possibly followed by the internal state writing ac-
tivity WSij . The precedence constraints among the
activities are:

Ai,j−1 ≺ Inij , ∀ i, j (5)
Inij ≺ Aij , ∀ i, j (6)

Ai−1,j ≺ Inij , ∀ i, j (7)
RSij ¹ Aij , ∀ i, j (8)
Aij ¹ WSij , ∀ i, j (9)

Ini+1,j−1 ≺ Aij , ∀ i, j (10)
Ai,j−1 ≺ Aij , ∀ i, j (11)

where the symbol ≺ means that the activity on the
right should follow the activity on the left, and the
symbol ¹ means that the activity on the right must
start as soon as the execution of the activity on the
left ends: i.e., A ≺ B means StartA+DurA ≤ StartB ,
and A ¹ B means StartA + DurA = StartB .

Constraints (5) state that each task iteration can
start reading the communication queue only after the
end of its previous iteration. Constraints (6) state
that each task can start only when it has read the in-
put data, while constraints (7) state that each task can
read the input data only when the previous task has
generated them. Constraints (8) and (9) state that
each task must read the internal state just before the
execution and write it just afterwards. Constraints
(10) state that each task can execute only if the pre-
vious iteration of the following task has read the in-
put data; in other words, it can start only when the
memory allocated to the process to store the commu-
nication queue has been freed. Constraints (11) state
that the iterations of each task must execute in order.

We also introduced the real time requirement con-
straints Start(Aij) − Start(Ai,j−1) ≤ RT , ∀ i, j ,
whose relaxation is used in the allocation problem
model. The time elapsing between two consecutive
executions of the same task can be at most RT .

Each processor is modelled as a unary resource, that
is a resource with capacity one. To model the bus, we

made a simplifying assumption. In the real hardware
platform, the bus is shared among the processors and
can be considered as a unary resource, i.e., it is ac-
cessed by a single processor at a time by means of
an arbitration mechanism, which serializes bus access
requests. However, the arbiter grants the bus at the
fine granularity of individual bus transactions (single
or burst reads and writes). On the contrary, commu-
nication requirements annotated on the task graph of
the application are expressed at a much coarser gran-
ularity, i.e. the average bandwidth requirements for
each couple of communicating tasks. We bridge the
abstraction gap considering the bus as a shared re-
source which can be virtually accessed by many pro-
cesses at a time. Each process consumes a fraction of
the maximum available bandwidth, which limits the
number of processes concurrently using the bus.

Figure 3: Bus allocation in a real processor (left) and
in our model (right)

Figure 3 depicts the assumption done. The leftmost
figure represents the bus allocation in a real processor,
where the bus is assigned to different tasks at differ-
ent times. Each task, when owning the bus, uses its
entire bandwidth. The rightmost figure, instead, rep-
resents how we model the bus. Clearly the areas of the
resource required by each task in the two figures are
the same. The bus arbitration mechanism will then
transform the bus allocation into the interleaving of
fine granularity bus transactions on the real platform.

According to this assumption, to model the read-
ing of computation data stored in the remote mem-
ory, we evaluate the real bus requirement B for each
task (whose duration is d) and we simply stretch this
requirement for its entire duration, i.e., the task will
require B/d bus bandwidth for its entire duration. Be-
sides, each task starts by reading its input data and
its internal state, and completes by updating its inter-
nal state to memory. Here, we assume that such reads
can rely on 1/N -th of the total bus bandwidth, where
N is the number of processors. We therefore derive
an approximated model of the bus activity.

4 Simplifying assumptions

In this section we show which simplifying assumption
have been done while characterizing the application
and modelling the problem. In order to be able to
generate a schedule off-line, we must estimate the ac-

tivity durations as well as consider some simplifying
assumptions to make the problem solvable using the
models described so far. The problem that arises when
considering these assumptions is that the durations
might be inaccurate and the model might not exactly
describe the considered problem, so we must check a
posteriori if the schedule is feasible, executable and
the mismatch between actual system behaviour and
theoretical results.

4.1 Activity durations

Each execution run of the same processing activity
usually has a different duration. We need to find a
mean value for each activity. Here we consider dif-
ferent ways to deduce these values depending on the
kind of the activities introduced in Section 3.2, on
the amount of data to be transferred and on where
they are stored. Considering some parameters typ-
ical of the platform we take into account (e.g. the
cache miss percentage, the number of clock cycle to
read/write a single data from the local/remote mem-
ory), we are able to define some formulae to compute
a mean value for the duration of the activities.

4.2 Modelling the Bus

As introduced in Section 3, modelling bus allocation
at the fine granularity of individual bus transaction
interleaving would make the problem overly complex.
Therefore a more abstract bus model was devised, thus
also bridging the abstraction gap with our high level
task models.

Whenever predictable performance is needed for ap-
plications, it is important to avoid high levels of con-
gestion on the bus, since this makes completion time
of bus transactions much less predictable. Moreover,
under a low congestion regime, performance of state-
of-the-art shared busses scales almost in the same way
as that of advanced busses with topology and commu-
nication protocol enhancements. Finally, bus mod-
elling turns out to be simpler under these working
conditions. Communication cost is therefore critical
for determining overall system performance, and will
be minimized in our task allocation framework.

Assuming that the bus is a shared resource, we do
not take in account the time spent by the bus arbitra-
tion mechanism to schedule bus accesses; in fact this
time is hard to estimate since it strongly depends on
the number of processes requiring the bus.

4.3 Pipeline iterations

In this problem we want to schedule a sequence of
tasks represented in a task graph. If the task graph
contains a finite and known number of nodes (tasks) it
is simple to transform an off-line schedule in an on-line

one. We simply have to substitute the on-line sched-
uler with the optimal off-line scheduler. In the appli-
cation considered here, we have to schedule a pipeline
of tasks, and the number of repetitions is not known
in advance. Therefore, either the off-line solution is
expressible with priorities (and therefore the on-line
solution becomes optimal) or the off-line solution is
produced for a single pipeline cycle (at working rate)
and repeated several times.

5 Experiments performed

In this section we describe the experiments performed
for evaluating both the efficiency of the solving algo-
rithm and the accuracy of the model. In particular, for
each assumption described in section 4, we check how
much it influences the results and their applicability.

We generate a large variety of problems, varying
both the number of tasks and processors. All the re-
sults presented are the mean over a set of 10 problems
instances for a given task or processor number. All
problems have a solution. We performed the experi-
ments on a 2GHz P4 with 512 Mb RAM, using ILOG
CPLEX 8.1 and ILOG Solver 5.3 as solving tools.

5.1 Measuring efficiency

To validate the choice of our solving algorithm we have
to compare its efficiency with alternative approaches.
To motivate the decomposition of the problem we
compare the results obtained using our hybrid model
(Hybrid in the following) with results obtained using
only CP and IP alone to solve the overall problem.
Actually, since the first experiments showed that both
CP and IP were not able to find a solution, except for
the easiest instances, within 15 minutes, we simplified
these models removing some variables and constraints;
even with these simplifications, IP was still not able to
find a solution. We found that CP is not comparable
(except when the number of tasks and processors is
low) with Hybrid being the search time several order
of magnitude greater than the Hybrid one. Further-
more, for problems with 6 tasks or 3 processors and
more, CP can find the solution only in the 50% or
less of the cases. It is therefore profitable to use a
decomposition technique to solve the problem.

We have now to motivate the use of both IP and
CP to solve the sub-problems. We solved the two sub-
problems using the same technique (CP and IP) and
in Figure 4 we compare these results with Hybrid.

Times are expressed in seconds and the y-axis has a
logarithmic scale. (The comparison for different num-
ber of processors has the same behaviours). We can
see that these algorithms are not comparable with Hy-
brid, except when the number of tasks and processors
is low. As soon as the number of tasks and/or proces-

0.1

1

10

100

1000

4 5 6 7 8 9 10

Number of Tasks

T
im

e
in

 s
ec

. (
lo

g)

Hybrid

IP

CP

Figure 4: Comparison between algorithms search
times for different task number

sors grows, IP and CP performance worsens and their
search times become order of magnitudes higher w.r.t.
Hybrid. Also in these experiments, IP approach was
able to find a solution only in a fraction of the consid-
ered instances.

5.2 Measuring accuracy on activity dura-
tion

To validate the accuracy of the pre-characterization
and its impact on the computed schedule we compared
the activity durations proposed by the scheduler and
the simulator. To simulate the activity duration we
used parameters from the simulation and we compute
the average duration on 100 runs.

Table 1 shows Activity Accuracy
Processing 99.5%
Data read 99.5%

State read/write 96%
Throughput 95%

Table 1: Activity duration accu-
racy

the percentage of
accuracy (ratio of
the durations) for
each kind of ac-
tivity and for the
throughput. As
we can see, activ-
ities accuracy is
very high and this leads to an high throughput accu-
racy, that is the most important parameter to be taken
into consideration, since we are working in scenario
with RT constraints. Clearly, if the accuracy were low,
the should be a feed back of the pre-characterization
phase, in order to compute more realistic activity du-
rations.

5.3 Verifying executability

Once we have verified the correspondence between the
scheduler and the simulator activity durations, we can
focus our analysis on the executability of the optimal
schedule, checking if the off-line schedule found by the
scheduler can be really executed by the MPSoC plat-
form. A schedule of tasks to be repetitively performed
on a data stream of unknown length is executable only
if it is periodic. In particular, if the sequence con-
tains only one iteration for each activity (the period is

length one), providing the simulator with a task prior-
ity list derived from the off-line sequence ensures that
all constraints and RT requirements will be satisfied
also by the on-line schedule, given that the accuracy
on execution time estimation is very high, as shown
in subsection 5.2. We found that, in over 90% of the
cases out of a set of 100 problems, after the initial
set-up stage, the first off-line schedule found by our
tool is periodic thus executable. If it is not the case,
it is still possible that more than one optimal solution
exists. Our efforts are currently focusing toward veri-
fying that, for each instance, at least one periodic op-
timal solution exists, as well as trying to prove it the-
oretically. Concerning this point, we solved again the
instances for which a periodic solution was not found
inserting executability constraints in the model, in or-
der to find an executable schedule. We measured the
difference between the throughputs of the two sched-
ules. We found that, even if for some instances the
executable schedule is also optimal, in general it is
not the case. Figure 5 depicts the probability (y-axis)

0

10

20

30

40

50

60

70

80

90

100

1 6 11 16 21 26

Troughput difference less than x%

P
ro

b
ab

ili
ty

 (
%

)

Figure 5: Probability of throughput difference

for the difference between the throughputs of the op-
timal (but not periodic) solution and the periodic one
to be equal or less than the corresponding value in the
x-axis (in %). As an example, the probability for the
difference to be less than 15% is 90%. We can see that,
for most of the cases, the difference is within 10%.

6 Conclusions

We have analyzed the problem of allocating and
scheduling a pipelined task graph on a MPSoC. Be-
sides the traditional assessment of efficiency of the al-
gorithm applied to an NP-hard problem, other aspects
should be taken into account for this domain. First,
in the pre-characterization phase of the application,
the duration of tasks is estimated. We should indeed
assess the accuracy of such estimations to come up
with a meaningful solution. In the performed exper-
iments, the pre-characterization phase has been ac-
curate enough since the estimated throughput differs

from the real one of the 5%, acceptable in real appli-
cations. The assumptions made on the bus are very
strong, but do not affect the quality of the result, be-
cause the bus utilization is kept low during the whole
application. Concerning executability, even though of-
ten the first schedule found is periodic, some non pe-
riodic exceptions have been found. Future work will
focus on proving that exists, for each instance, at least
one optimal periodic schedule.

REFERENCES

[1] B.M. Al-Hashimi, A. Andrei, P. Eles, M.T.
Schmitz, and Z. Peng. Quasi-static voltage scal-
ing for energy minimization with time constraints.
In Proceedings of the IEEE Design and Test in Eu-
rope Conference, pages 230–235, Munich, 2005.

[2] F. Angiolini, L. Benini, D. Bertozzi, M. Loghi, and
R. Zafalon. Analyzing on-chip communication in a
MPSoC environment. In Proceedings of the IEEE
Design and Test in Europe Conference (DATE),
pages 752–757, Paris, February 2004.

[3] L. Benini, D. Bertozzi, A. Guerri, and M. Milano.
Allocation and scheduling for MPSoCs via decom-
position and no-good generation. In Procs. of the
11th Intern. Conference on Principles and Prac-
tice of Constraint Programming (CP 2005), to ap-
pear, Sitges, Spain, Oct. 2005.

[4] S. Chakraborty, S. Kunzli, and L. Thiele. A gen-
eral framework for analysing system properties in
platform-based embedded system designs. pages
190–195, Munich, March 2003.

[5] K.S. Chatha and K. Srinivasan. An ILP formula-
tion for system level throughput and power opti-
mization in multiprocessor SoC architectures. In
17th International Conference on VLSI Design,
pages 255–260, Arizona, 2004.

[6] K. Compton and S. Hauck. Reconfigurable com-
puting: A survey of systems and software. ACM
Computing Surveys, 34(2):171–210, 1999.

[7] D. A. Culler and J. P. Singh. Parallel Com-
puter Architecture: A Hardware/Software Ap-
proach. Morgan Kaufmann, 1999.

[8] P. Marchal, A. Poggiali, and F. Poletti. Flexi-
ble hardware/software support for message pass-
ing on a distributed shared memory architecture.
In Procs. of the IEEE Design and Test in Europe
Conference, pages 736–741, Munich, 2005.

[9] W. Wolf. The future of multiprocessor systems-
on-chips. In In Procs. of the 41st Design and Au-
tomation Conference - DAC 2004, pages 681–685,
San Diego, CA, USA, June 2004.

