Selezione basata sulla struttura dell’istanza in un
Algorithm Portfolio
Instance structure-based Portfolio Selection

Alessio Guerri & Michela Milano

SOMMARIO/ABSTRACT

Molti problemi combinatori hanno una struttura
complessa che impedisce di scegliere un singolo
algoritmo in grado di dominare gli altri su tutte le
istanze. In questi casi é quindi necessario progettare
un portfolio di algoritmi che contenga pit approcci
per lo stesso problema. Come possiamo scegliere
tra gli algoritmi quando tutte le istanze condividono
la stessa struttura? Questo articolo rappresenta un
primo tentativo di risposta a questa domanda usando
tecniche di apprendimento automatico, nello specifico
gli alberi decisionali, per selezionare il miglior ap-
proccio data l'istanza da risolvere. Mostreremo come
le caratteristiche strutturali dell’istanza forniscano
una chiara indicazione del miglior algoritmo da
usare. Abbiamo approfonditamente testato la nostra
congettura nel contesto delle aste combinatorie e in
particolare sul Bid Evaluation Problem. Mostreremo
come, per il problema analizzato, ’albero decisionale
ottenuto identifichi il miglior approccio nel 90%
delle istanze usando soltanto un insieme ridotto di
caratteristiche dell’istanza stessa. Crediamo che
questo risultato possa essere esteso a tutta una serie
di problemi combinatori.

Many large scale combinatorial problems have a com-
plex structure that prevents a single algorithm and a
single technology to outperform all the others on all in-
stances. Therefore algorithms portfolios can be defined
embedding more that one approach to the same prob-
lem. How do we choose among algorithms when all
instances share the same problem structure? This pa-
per is a first attempt to answer this question by using
a machine learning technique, namely decision trees,
for selecting the best approach given the instance to
be solved. We will show that structural instance fea-
tures provide a clear indication on the best approach
to be used. We have extensively tested our conjecture

on a case study: the Bid Evaluation Problem in com-
binatorial auctions, a well known e-commerce applica-
tion. We will show that, for the problem considered,
the computed decision tree identifies the best approach
for the 90% of the instances by using a small set of in-
stance features. We believe this result can be extended
to a large variety of combinatorial problems.

Keywords: Combinatorial Auctions, Constraint Pro-
gramming, Integer Programming, Decision Trees, In-
stance Structure

1 Introduction

Large scale combinatorial optimization problems do
not have a clear structure, may present many side
constraints, and may include subproblems. Different
instances of the same problem can have different char-
acteristics and structure. In these cases, it is unlikely
that a single algorithm can deal with them adequately.
Thus, we can build an algorithm portfolio and try to
select the best strategy given the instance to be solved.
Our conjecture is that the selection of the best
strategy should be based on the instance struc-
ture.

The structure of an instance has been recently
widely studied (see for example [1], [6], [15], [16], [17])
since it is considered an important parameter for ex-
plaining the algorithm behavior. The instance struc-
ture can be represented in different ways:

e through the constraint graph where nodes are
variables and arcs are constraints;

e through a set of features (pairs attribute-value)
extracted from the constraint graph;

e through some geometrical properties, e.g., the
polyhedral structure.

In this paper, we consider the instance structure based
on a set of pairs attribute-value derived by the con-
straint graph. This representation is indeed more con-
cise (and therefore less expressive) than the one based
on the whole graph, but, as we will show, it is repre-
sentative of the instance structure as well.

To test our conjecture we used a combinatorial op-
timization problem as a case study, the Bid Evalua-
tion Problem (BEP) in combinatorial reverse auctions
where a set of tasks (say, services) should be bought
by an auctioneer from a set of self interested agents
performing bids containing more than one item. The
auctioneer should cover all tasks at a minimum cost.
Each task has an associated time window and tempo-
ral constraints with other tasks. Note that the auc-
tioneer does not communicate temporal constraints
to bidders, but a posteriori checks that the tempo-
ral windows provided by bidders are consistent with
constraints.

We describe here a simple example of a BEP, where
the auctioneer wants to buy 3 tasks, ¢1,t2 and t3, min-
imizing the total cost. A precedence constraint is im-
posed, stating that t3 must be executed after the exe-
cution of both ¢; and ¢ is completed. Table 1 shows
some bids that can be received for this auction. Some
qualitative considerations follow:

e Each bidder gives a single price for a bundle of
tasks.

e Each bidder provides an early start (eStart), a
late start (IStart) and a duration (Dur) for each
task individually.

e Bid b; must be a winning one because it only
proposes tasks t1 and t3.

e Bids b, and b3 cannot both be accepted because
they both ask for task ¢5. Fach task must be
covered by exactly one bid.

e Bids b; and by cannot both be accepted, because
the precedence relation t5 < t3 would be violated.
This because the earliest time by could complete
to is 280, while the latest time b, could start t3 is
150.

e In the best solution for this problem the winning
bids are b; and bs. Task t; starts at 15, ends at
125 and is executed by b, task to starts at 110,
ends at 230 and is executed by bo, task t3 starts
at 230, ends at 325 and is executed by b;. t3
starts at 230 and not at 225 (the early start time
proposed by b1) because the execution of t5 ends
at 230 and ¢3 must start after the end of ¢5. The
total cost is 590.

Bid | Cost | Tasks | eStart | 1Start | Dur.
by 300 21 15 30 110
t3 225 250 95
by 150 to 140 160 140
b3 290 to 110 135 120

Table 1: Example of a BEP

The BEP has an interesting structure: it contains
as sub-problem the well known Winner Determina-
tion Problem (WDP), where no temporal windows
and constraints are considered. The WDP is a set par-
titioning problem, a well known and structured prob-
lem which has been successfully faced by Mathemat-
ical Programming techniques and not by Constraint
Programming techniques (see for example [7]). How-
ever, as soon as temporal constraints are introduced,
the structure is lost and there is not a single technique
that best solves all instances, but depending on the in-
stance structure one approach dominates the other.

For the BEP, in fact, both Constraint Programming
(CP) and Integer Programming (IP) can successfully
be used. Furthermore, once the basic strategy has
been chosen, that strategy can often be fine-tuned
through parameter setting as in IP, or through dif-
ferent search heuristics as in CP for example. The
difference in performance between strategies and their
variants can be significant from one problem instance
to another.

In the example in Table 1, if we don’t consider the
temporal constraints, we obtain a WDP; in this case,
the solution found for the BEP is still a feasible solu-
tion because the WDP is a sub-problem of the BEP,
but now b; and by is the optimal solution.

The purpose of this paper is to find an automatic
algorithm portfolio selection based on the instance
structure. Statistical methods have been applied for
the WDP, [10] and [11]. The authors are interested
in determining the intrinsic complexity of a problem
with respect to a given algorithm (the IP CPLEX in
the paper) by using regression to predict the empirical
hardness of an instance. In [11], again using regres-
sion, the authors propose how to build an algorithm
portfolio in an effective way exploiting an hardness
model and perform experiments on three well known
algorithms for the winner determination problem.

Here we apply a machine learning technique, de-
cision trees, for selecting the best algorithm. The
training set has been built by extracting, for each in-
stance, a set of 25 features (as suggested by [10]) and
the corresponding best algorithm. The training set is
provided as input to a well known and widely used
machine learning algorithm that builds decision trees,
c4.5 [14].

For the case study considered we obtain very
promising results. By extracting only very few fea-
tures from the instance to be solved, we are able in

fact to select the best algorithm in the 90% of the test
set. We believe this approach could be extended for a
large variety of combinatorial optimization problems.

2 Case Study: Bid Evaluation in Com-
binatorial Auctions

We now describe the case study used to test our ap-
proach: combinatorial auctions. In combinatorial auc-
tions bidders can bid on combination of items. In this
context, we have two major combinatorial optimiza-
tion problems. The Bid Evaluation Problem (BEP)
and the Winner Determination Problem (WDP). In
the WDP the auctioneer has to find the set of win-
ning bids at a minimum cost or maximum revenue.
The winner determination problem is NP-hard. For
the WDP, Integer Programming approaches represent
the technique of choice.

In the BEP, beside a WDP, time windows and tem-
poral constraints are stated among bids. We mainly
consider an auction where the auctioneer buys a set
of tasks (services) which are sequenced by temporal
precedence constraints and are associated to tempo-
ral windows and durations. We consider BEP in the
context of the single unit reverse auction, a variant
of combinatorial auctions where the auctioneer wants
to buy a set of distinguishable items, minimising the
cost.

To solve combinatorial optimization problems, we
use two different approaches: one based on Integer
Linear Programming (IP), and one based on Con-
straint Programming (CP). These approaches differ
both in the modeling and solving side, have orthogonal
characteristics and strengths. For this reason IP and
CP have been recently integrated and combined (see
[12] for a survey). Briefly, IP models are composed by
integer variables, linked by linear constraints. The ob-
jective function is also linear. Often, as in this case,
variables can assume only values 0 and 1. The so-
lution strategy used in general for IP is branch and
bound, where a relaxation of the problem is solved
and sub-trees which do not provide optimal solutions
are pruned. In CP instead variables take their value in
a finite domain of values which can be integer and are
linked by mathematical and symbolic constraints (not
necessarily linear). The solution strategy adopted in
CP is propagation and search. Propagation is a set of
inference rules which remove provably infeasible do-
main values. Since propagation is incomplete, i.e.,
values left in the domains can be infeasible, search
is needed to explore the rest of the problem. In the
following, we describe the models used for the BEP:
an IP model and a CP model.

2.1 Bid Evaluation Problem: IP model

Each bidder j (j = 1...n) posts one bid.! A bid
is represented as B; = (S}, Est;, Lst;, D, p;) where
a set S; C M of services where M = {1...m} is
proposed to be sold at the price p;. Est; and Lst; are
lists of earliest and latest starting time of the services
in S; and D; their duration. A precedence constraint
between two tasks t, and ¢, is represented as t, < t.

The integer linear model of the WDP is the follow-
ing: we have decision variables x; that take the value
1 if the bid B; is winning, 0 otherwise.

n
mianjxj (1)
=1

=
subject to Z zj=11i=1.m (2)
jli€s;
z; €{0,1} (3)

The objective function (1) minimizes the total cost
which is computed as the sum of prices of winning
bids. Constraints (2) state that the number of winning
bids containing the same item should be equal to one.
This means that all items should be covered and each
item should be covered by exactly one bid. This model
is the formulation of a set partitioning problem that is
a structured, well known and widely studied problem
in the Operations Research community [2].

To model temporal constraints, we introduce vari-
ables Start;; associated to each item ¢ = 1...m taken
from bid j = 1...n. These variables range on the tem-
poral windows [Est;;, Lst;;] for item i taken from bid
j. For each pair of items ¢, and t, linked by a prece-
dence constraint, where t; must be executed after the
end of t,, we find all pairs of bids b, and b, containing
that items; if S, and Sp, have an empty intersection
we compute Esty p, + Dy, — Lsty,p,, where Dyp, is
the duration of ¢, in bid b,. In case the result is pos-
itive, i.e., domains of Start; , and Start;,, do not
contain any pair of values that satisfy the precedence
relation, we introduce the constraint xp, + zp, < 1,
which prevents both bids from appearing in the same
solution; otherwise, if the result is zero or negative,
we introduce the constraint

Starty,p, + Dy,p, — Starts,p, + M(xp, +xp,) < 2M

where M is a large number. The term M (zp, + xs,)
makes the constraint satisfied in the case where either
xp, =0 or xp, = 0.

Therefore, the complete IP model for the BEP is
the following:

IWithout loss of generality, if a bidder posts n bids we con-
sider the bidder as n different bidders

IS {0, l}
Startij € {EStij..LStij} s Vi € Sj

n
min E pj.”L'j
j=1

v i,i/,j,j,ﬁi < fi/,Sj N Sj/ = @,ti S Sj,t,'/ S Sj/

rj+axy <1 if Estyp, + Dy, — Lsty,p, >0
Starty,p; + Dyp, — Starty,p, + M (zy; + ij,) <
2M if Esttibj + Dtibj - LStti,b]_, S 0

The IP model for the example in Table 1 is the
following:

x1, 22, z3 € {0,1}
Starty; € {15..30}
Starts; € {225..250}
Startas € {140..160}
Startas € {110..135}

minimize (300x1 + 15022 + 290x3)

T1+a2 <1
Start;; + 110 — Starts; + M (z1 + x1) < 2M
Startas + 140 — Starts; + M (z1 + x3) < 2M
Startas + 120 — Starts; + M (z1 + x3) < 2M

2.2 Bid Evaluation Problem: CP model

Auctions can be easily modelled in Constraint Pro-
gramming. We have a set of m variables X1,..., X,
representing the items to be bought. Each variable
X; ranges on a domain containing the bids men-
tioning item 7. We use also a set of n variables
Costy,...,Cost, representing the cost of the bid in
the solution. Each variable Cost; can assume only
values 0, if bid j is a losing bid, and pj;, if it is a win-
ning one. Introducing these variables we can compute
the objective function simply as min Y "_, Cost;.

Constraints are the following: if an item is taken
from the bid By, all other items in S; should be taken
from the same bid and the cost of the bid in the solu-
tion should be p;.

Xi=j—Xp=j VkeS,
Xi =7 — Cost; =p;

Another important constraint that can trigger an
effective propagation is a variant of the global cardi-
nality constraint [13], whose propagation can be ex-
plained as follows: if the bid B; is chosen as win-
ning, the number of variables X; that take the value j
is exactly the cardinality of the set S;. Otherwise,
if the bid Bj; is not chosen as winning, that num-
ber is 0. We recall that the global cardinality con-
straint is the following: gec(Var,Val, LB,UB) where
Var is an array of variables, Val an array of values,
LB and UB are two arrays holding the minimum and
the maximum number of occurrences of each value
in Val assigned to Var. The constraint holds iff the
number of occurrences of each value in Val assigned
to Var is indeed within the respective LB and UB.
In our case, we need a specialized global cardinality
constraint, the so called Distribute. The constraint
Distribute(X, J,0,|S|) works on the following param-
eters: X is the array of variables representing items
to be sold, J is an array containing consecutive num-
bers from 1 to n, n is the number of bids, and |5 is
an array where each element |S;| is the cardinality of
the set of items contained in the bid j. This constraint
holds iff the number of occurrences of each value j € J
assigned to X is exactly either 0 or |.5;]|.

To model temporal constraints, we introduce do-
main variables Duration; and Start;, associated
to each item i, to deal with temporal constraints.
Duration; ranges on the union of all durations
D;; for item ¢ taken from all bids j mentioning i.
Start; ranges on the union of all temporal windows
[Esti;, Lst;;] for item ¢ taken from all bids j mention-
ing 4.

In addition, if two items ¢ and k are linked by a
precedence constraint, then the constraint

Start; + Duration; < Starty,

is introduced. Obviously, variables Start, Duration
and X are connected by constraints, in the sense
that, if a value j is assigned to a variable X;, the do-
main of Start; should be set to [Est;; ... Lst;;], and
Duration; should be set to D;;.

Therefore, the complete CP model for BEP is the
following:

X; = {jli € S;}
Cost; :: [0, p;]
StCLTti o {{Estij ce LStUHZ S SJ}

Duration; :: {Dij|i € Sj}

Xi=j—Xp=J VkeS;
X;=j— Costj =p;
X, = j — Start; :: [Est;;, Lstij]
X; = j — Duration; = Dy
Start; + Duration; < Starty Vi, i'|i <4’
Distribute(X, J,0,5])

n
min E Cost;
j=1

An additional redundant constraint which could be
imposed when precedence relations are part of the
problem is the Precedence Graph [8] that allows to
effectively represent and propagate temporal relations
between pairs of activities as well as to dynamically
compute the transitive closure of those relations. The
role of the precedence graph is to incrementally deduce
new edges given the ones already posted on the graph.
This constraint has not been used in this paper.

The CP model for the example in Table 1 is the
following:

Xy (1], Xo:

Costy ::[0,300] , Costy :: [0,150] , Costs :: [0,290]
Start; :: [15..30] , Duration; :: [110]

Starty :: [110..135,140..160] , Durations :: [120, 140]
Starts :: [225..250] , Durationg :: [95]

minimize (Costy + Costy + Costs)

Start; + Duration; < Starts
Starty + Durations < Starts
Distribute([X1, X2, X3],[1,2,3],[0,0,0], 2,1, 1])

2.3 Implemented algorithms
We implemented the following algorithms:

IP based algorithm 1: The first IP-based algo-
rithm is a traditional complete Branch and Bound
based on linear relaxation.

IP based algorithm 2: The second IP-based algo-
rithm is an incomplete approach based on shadow
prices?. The Linear Relaxation (LR) of the prob-
lem without temporal constraints is solved. Tem-
poral constraints have not been considered in

2Shadow prices are derived from the dual variables and rep-
resent a bound on the price of each single item.

LR for efficiency reasons. Once LR is optimally
solved, the algorithm ranks the variables accord-
ing to their shadow prices, and finally solves the
IP problem considering only the most convenient
p% variables, where p is a parameter to be ex-
perimentally tuned, and fixing the remaining to
Zero.

CP based algorithm: The CP-based algorithm
uses Limited Discrepancy Search (LDS) [4] with
a variable selection heuristic based on the First
Fail Principle. The value selection heuristic
first chooses the value representing the bid j
with the lowest p;/|S;| value, i.e., the minimum
price-for-task value.

Hybrid algorithm: The hybrid algorithm is based
on the CP model and is quite similar to the pre-
vious one. The only difference concerns the value
selection heuristic. The hybrid algorithm per-
forms an indeed quite loose but effective integra-
tion. The algorithm solves the LR of the IP prob-
lem without temporal constraints as described for
the IP-based algorithm 2; for each bid the mini-
mum between p;/|S;| and the shadow price of the
associated IP variable, both normalized w.r.t. the
respective maximum value, is used to rank the
values of the CP variables X.

To define the components of an algorithm portfo-
lio, we should select among these algorithms those
that obtain the best performance in at least one in-
stance. Some qualitative considerations follow: when
the CP-based approach outperforms the hybrid one,
both IP-based approaches outperform CP and hybrid
one. Therefore, we can remove the CP-based approach
from the set of strategies considered and maintain only
the hybrid one. Concerning the IP-based approaches,
they have similar behavior w.r.t. the other techniques
(either both are better or both worst than the other
two), therefore as far as the portfolio is concerned,
they are equivalent. Their selection depends on the
accuracy of the solution needed. Therefore, we con-
sider here a single IP approach representing both.

We can therefore build an algorithm portfolio [5]
where only the IP-based and the hybrid approach are
considered as candidates. The first is referred to as
IP while the second is referred to as HCP (indeed it
is strongly based on CP).

In general, in an algorithm portfolio all algorithms
run together until the fastest one finds the solution.
On the contrary, we analyze the instance in order to
decide a-priori which algorithm will probably be the
best, when applied to that particular instance of the
problem.

D | Bid | Con | Algo

L | 100 | 2500 | HCP e 2,

L | 200 | 2900 1P - s
|N_constra|nts>2000| |N_b|ds>100|

H 100 2000 IP TRUE, FALSE TRUE, FALSE

H [200 | 3000 [HCP [1¢]

M | 150 | 1000 | HCP

Figure 1: Example of training set and decision tree

3 Decision trees

The Decision Tree Learning method analyzes
attribute-value pairs of a training set of cases, that
is a set of well-classified instances, and deduces a tree
where each leaf is a class and each node specifies a test
to be carried out on an attribute, with a branch, and
consequently a subtree, for each possible outcome of
the test.

At each node, the method recursively selects an at-
tribute and divides the cases in subsets, one for each
branch of the test until all cases in each subset belong
to the same class. At each node, the attribute selected
for the test is the one that minimizes the entropy of the
subsets generated after the test. Intuitively, the en-
tropy of a collection of cases is the information about
the non-uniformity of the collection itself. The en-
tropy is minimum when all cases belong to the same
class, otherwise the entropy is maximum when cases
are uniformly classified in all possible classes.

Once created a learning base, the method can clas-
sify new instances, improving the learning base while
achieving new results.

Consider a simple and small example to help the
intuition of the proposed method. Suppose we want
to select the best approach among HCP and IP on a
given instance. We consider a training set composed
in the example by 5 instances and for each instance
we report values for three attributes. In Table 1 we
have

Density: a discrete attribute that can assume three
values: low, medium and high, representing the
density of constraints between bids, w.r.t. a com-
plete auction where all pairs of bids appear in one
or more constraints.

N_bid: a continuous® attribute representing the num-
ber of bids in the auction.

N_constraints: a continuous attribute representing
the number of temporal constraints in the model.

Each instance belongs to one of the classes HCP
and IP, representing the best approach to solve the
considered instance.

3Note that we consider as continuous those parameters that
are not enumerated.

In Figure 1 we depict the decision tree for the train-
ing set in the Table, using the heuristic based on the
above mentioned entropy definition. Note that in this
simple example, all features appear in the decision
tree. In general, however, only the most informative
features are selected and tested in the decision trees.
In fact, the learning algorithm stops as soon as all sets
are homogeneous even before all features have been
tested.

Once the decision tree has been computed, it is
important to test its accuracy in classifying new in-
stances. For this purpose, a test set is defined. A test
set has the same structure of the training set: a set
of feature-value pair and a class. The decision tree is
used to classify the instances of the test set. In this
way, we can establish which is the error rate and which
is the accuracy of the decision tree.

4 Instance generation

To generate instances for our experiments we used two
systems, the Multi-AGent NEgotiation Testbed sys-
tem (MAGNET [3]) and the Combinatorial Auction
Test Suite (CATS [9]).

MAGNET is a multi agent system designed to sup-
port the negotiation of coordinated tasks among self-
interested agents. MAGNET generates instances by
defining the bids, the tasks set, and the precedence
graph among them. In MAGNET the user can tune a
large set of parameters to modify some instance fea-
tures.

Beside the largely used parameters as the number
of tasks and bids, the user can define the types of
task he would like to consider and specify the features
for each type, as the average length or the probabil-
ity of inclusion in the bids. In addition, the user can
group some tasks into the same type, can tune the
precedence graph structure and the bidding strategy.
Concerning the bidding strategy, parameter tuning af-
fects the mean bid cost and its variability, but poorly
affects the bid size. The user can indeed specify the
bid size on average, but the auction instance genera-
tor does not take strictly into consideration this pa-
rameter. Typically, the mean bid size for MAGNET
generated instances is very low (it ranges between 1
and 2).

To overcome this limitation and generate instances
with an higher bid size value, we used CATS, a sys-
tem able to generate realistic combinatorial auction
instances. Unfortunately, CATS generates WDP in-
stances without temporal windows and constraints.
So we generated WDP instances using CATS. Then,
we generated instances with the same number of tasks
using MAGNET. Finally, we produce a BEP by simply
merging CATS bids and MAGNET temporal informa-
tion. This kind of instances are more differentiable

and we generated instances with a mean bid size up
to 8.

We generated a large variety of instances: the easi-
est have 5 tasks and 15 bids; the hardest have 30 tasks
and 1000 bids. Instances have different tasks-per-bid
values and precedence graph structure.

For the definition of the training set and the test
set, we used only hard instances, since in that case
the difference between the computational time of dif-
ferent algorithms becomes considerable (the best al-
gorithm runs at least twice or three times, but often
order of magnitude, faster than other algorithms). We
considered a data set containing 200 instances.

5 Experimental Results

Our aim is to classify the BEP instances in two classes:
IP, if the IP-based approach (either 1 or 2) described
in section 2.3 is the best algorithm, and HCP, if the
hybrid one is the best.

To perform our analysis we used c¢4.5 [14], a Decision
Tree Learning system.

5.1 Considered features

Our study is strongly based on a notable paper [10],
where the authors defined two graphs representing an
auction: the Bid Graph and the Bid-Good Graph.
The Bid Graph is a graph with a node for each bid
and an edge between each couple of bids appearing
together in one or more constraints. Therefore this
graph represents conflicts among bids. The Bid-Good
graph is a graph where each node represents either a
bid or a good (a task in our case) and an edge exists
between a bid node and a good node if the bid pro-
poses the good. Figure 2 depicts the Bid Graph (left
side) and the Bid-Good Graph (right side) for the ex-
ample in Table 1. In the Bid Graph, arcs labelled as
Precedence refers to couple of bids involved in prece-
dence constraints, that is one bid contains a task that
must be executed after the end of a task contained in
the other bid; arcs labelled Coverage refers to couple
of bids involved in coverage constraints, that is the
bids have one or more tasks in common.

Figure 2: Bid and Bid-Good Graphs for the example in Table 1

Starting from these graphs, as done in [10] we ex-

tract 25 features from each instance in the data set
and we used these values to create a set of tuples to
be provided as input to c4.5.

To perform experiments, we split our data set in two
parts: the training set and the test set. We build the
decision tree on the basis of the training set, and we
verify the quality of the resulting classification, using
instances of the test set. We check the percentage of
cases that are classified in the right class. We repeated
this analysis randomly splitting for 10 times the data
set in a training set with 130 cases, and a test set
with the remaining 70 cases. For each attempt the
constructed tree is the same: it has the same shape
and in each branch the same feature is used to par-
tition examples. All results presented in this paper
represent the mean over these analysis.

c4.5 generates decision trees using only those pa-
rameters that lead to a minimum of the entropy of the
training set, therefore, not all instance parameters are
in general used in the decision tree. In our case, not
all parameters contain useful information to select the
best algorithm. For example, the Standard Deviation
of the prices among all bids (the 23" parameter of the
list in [10]), is completely useless because it can not be
informative of the structure of the CP and IP models.

We explain here the meaning of the parameters
which are considered significant in the decision trees
generated by our analysis. These parameters are ex-
tracted from the Bid Graph.

Edge Density: The Edge Density (ED) is the ratio
between the number of edges in the graph and
the number of edges in a complete graph with
the same number of nodes. This value can range
from 0 to 1.

Standard Deviation of the Node Degree: The

node degree is the number of edges starting from
a node. Once collected in a vector this value
for all bids, the Standard Deviation of the Node
Degree (ND) is the standard deviation of the
vector. Given a set of numbers, their Standard
Deviation gives a valuation of how scattered
they are around their mean value. The Standard
Deviation of a vector can range from 0 to 1.

Clustering Coefficient: The Clustering Coefficient
(CC) is a measure of the local cliqueness of the
graph. For each node in the Bid Graph we com-
pute the number of edges connecting two neigh-
bours of the node, than we divide this number by
k(k —1)/2, where k is the number of neighbours.
We compute this value for every nodes in the Bid
Graph and we put them in a vector. CC is the av-
erage of the values in the vector. CC is therefore
the ratio between the number of edges connect-
ing nodes in a neighborhood and the number of

edges in a complete graph with the same number
of nodes. This parameter can range from 0 to 1.

A complete description of the 25 parameters can be
found in [10].

5.2 Results

As introduced in the previous subsection, all results
are the mean over the 10 analysis performed on the
data set.

We run c4.5 using all the 25 parameters and we
obtained a decision tree with a prediction error equal
to 6%, using only 4 out of the 25 parameters. This
result is very encouraging. However, the parameters
considered significant are very expensive to compute.
It means that given a new instance, we should extract
very informative but costly parameters before being
able to select the best algorithm.

Therefore, we tried to decrease the number or the
cost of the parameters: c4.5, after building the deci-
sion tree, translates it in production rules. Each rule
is then labelled with a number representing how many
times it is triggered to classify the test set. Therefore,
the importance of a rule is measured by this label.

The production rule involving the Clustering Coef-
ficient is decisive in the 93% of cases, suggesting the
right class in the 94% of these cases. Therefore, CC
is supposed to be the most informative feature. So
we run c4.5 using only CC. In this case the prediction
error rises to 9% (still very good).

Using CC we obtained a good result, but unfortu-
nately for large instances, even the extraction time
for CC only is too high. Figure 3 shows, for groups
of instances with similar tasks-per-bid values, the ra-
tio between the CC extraction time and the difference
between the search times of the best and the worst
algorithm; when the ratio is greater than 1 it is not
worth extracting CC since the time used in selecting
the best algorithm and solve the instance using it is
greater than the time used by the worst algorithm to
solve the instance. In Figure 3 we can see that, the
higher the tasks-per-bid value, the higher the CC ex-
traction time. This is obvious because, by increasing
the size of the task bundles proposed by bidders, a
higher number of precedence constraints between bids
(edges in the bid graph) is introduced. Each group of
instances with similar tasks-per-bid value contains 10
instances, and the x-axis value is the mean over these
instances.

We therefore need to find parameters whose extrac-
tion is fast, with a prediction rate almost equal to 91%,
that is the CC prediction rate. We considered only the
first 11 attributes described in [10], since their extrac-
tion time is very low. The decision tree prediction
error is 11%. The parameters considered significant
by c4.5 are only the edge and node density (ED and

w

ES

w

(]

[

Extraction time w.r.i. search times difference

=

T1.12 7 114 140 2.59 ' 429 4.58 4.68 4.69 7.57

Mean tasks-per-bid value

Figure 3: Extraction time for CC attribute

-

> e 2 2
[S T - R - |

= =
= tn

2 =2 2
- W

Exiraction time w.r.t. search times difference

=

112 1.14 1.40 2.59 429 4.58 4.68 4.69 7.587

Mean tasks-per-bid value

Figure 4: Extraction time for ED and ND attributes

ND). The production rule containing ED is used in the
43% of cases, with a prediction error of 1,5%. while
the production rule containing ND is used in the 57%
of cases, with a prediction error of 9%. ED and ND
extraction is very fast; in Figure 4 is depicted the ra-
tio between the extraction time, for both parameters,
and the search times difference.

False True

(ND <104]
True False

IP HCP

Figure 5: Decision tree for the BEP

Summarizing, to select the best algorithm from the
algorithm portfolio, if the tasks-per-bid value is low
we can use the CC parameter with a prediction rate of
91%, otherwise we can use the ED and ND parameters
with a prediction rate of 89%. Clearly, if we accept

a lower accuracy, we can always use ED and ND. We
experimentally found that the maximum tasks-per-bid
value for which CC extraction time is convenient is
about 2.

The whole decision tree for the BEP is depicted in
Figure 5. The values on which to perform the test at
the nodes are those values that minimize the total en-
tropy of the training set. Obviously, each decision tree
we obtained on a single analysis has different thresh-
old values, but we noticed that the difference between
these values over all trees is limited to non-significant
decimal places. Therefore, the decision tree depicted
in Figure 5 is equal to all other trees obtained in our
analysis.

6 Discussion and Conclusions

We believe this paper is a promising first step toward
the use of machine learning techniques in algorithm
portfolio selection. Many steps should still be done:

e we are interested in the most appropriate rep-
resentation that summarizes the structure of an
instance. For this reason, we are investigating an
approach based on Case Based Reasoning that
enables to take into account the instance repre-
sentation based both on features extracted from
the graph and on the graph itself.

e we will extend this approach to other problems.
In particular, we will consider problems with no
clear structure but that contain side constraints
that break the regularity of the structure itself.

e a long term aim is to use these results in the
design of global constraints. When more than
one filtering algorithm is defined, the user should
choose if to enable the filtering and which algo-
rithm to select. If the structure of the constraint
is analyzed, we could at design level define a port-
folio of filtering algorithms and select the most
appropriate one. In this case, the requirement
of efficient parameter extraction is even more im-
portant.

REFERENCES

[1] R. Béjar and A. Cabiscol and C. Fernandez,
F. Manya, C.P. Gomes, Capturing Structure with
Satisfiability, Proceedings CP2001.

[2] R. Borndorfer, Aspects of Set Packing, Partition-
ing, and Covering, Shaker Verlag, Aachen, Ger-
many, 1998.

[3] J. Collins and M. Gini, An integer programming
formulation of the bid evaluation problem for
coordinated tasks, Mathematics of E-Commerce,
Springer-Verlag, 2001.

[4] M. L. Ginsberg and W. D. Harvey. Limited Dis-
crepancy Search. In C. S. Mellish, editor, Proceed-
ings of the Fourteenth International Joint Con-
ference on Artificial Intelligence (IJCAI-95); Vol.
1, pages 607-615, 1995.

[5] C.P. Gomes and B. Selman, Algorithm portfo-
lio design: theory vs. practice, Proceedings of the
Workshop on Uncertainty in AL, UAI97, 1997.

[6] C.P. Gomes and B. Selman, Problem Structure
in the Presence of Perturbations, Proceedings of
AAAIIT.

[7] A. Guerri and M. Milano, CP-IP techniques for
the Bid Evaluation in Combinatorial Auctions,
Proc. CP2003, 2003.

[8] P. Laborie. Algorithms for propagating resource
constraints in A.I. planning and scheduling: Ex-
isting approaches and new results. Artificial In-
telligence, Vol 143(2):151-188, 2003.

[9] K. Leyton-Brown, M. Pearson and Y. Shoham,
Towards an Universal Test Suite for Combinato-
rial Auction Algorithms, Proc. EC00, 2000.

[10] K. Leyton-Brown, E. Nudelman and Y. Shoham,
Learning the Empirical Hardness of Optimization
Problems: The Case of Combinatorial Auctions,
Proc CP02, 2002.

[11] K. Leyton-Brown, E. Nudelman, G. Andrew, J.
McFadden, Y. Shoham, Boosting as a Metaphor
for Algorithm Design, Proc. CP2003, 2003.

[12] M. Milano, Constraint and Integer Programming
- Toward a closer integration, Kluwer Academic

Publisher, 2004.

[13] J. C. Regin, Generalized Arc Consistency for
Global Cardinality constraint, in Proc. AAAI96,
1996.

[14] J. Ross Quinlan, C4.5: programs for machine
learning, Margan Kaufmann, 1993.

[15] T. Walsh, Search in a Small World, Proceedings
of IJCAI99.

[16] T. Walsh, Search on High Degree Graphs, Pro-
ceedings of IJCAI2001.

[17] C. Williams and T. Hogg, Exploiting the deep
structure of constraint problems, Artificial Intel-
ligence, 70, pp. 72-117, 1994

