Learning techniques for Automatic Algorithm
Portfolio Selection

Alessio Guerri

Abstract. The purpose of this paper is to show that a well
known machine learning technique based on Decision Trees
can be effectively used to select the best approach (in terms
of efficiency) in an algorithm portfolio for a particular case
study: the Bid Evaluation Problem (BEP) in Combinatorial
Auctions. In particular, we are interested in deciding when
to use a Constraint Programming (CP) approach and when
an Integer Programming (IP) approach, on the basis of the
structure of the instance considered. Different instances of
the same problem present a different structure, and one as-
pect (e.g. feasibility or optimality) can prevail on the other.
We have extracted from a set of BEP instances, a number of
parameters representing the instance structure. Some of them
(few indeed) precisely identify the best strategy and its cor-
responding tuning to be used to face that instance. We will
show that this approach is very promising, since it identifies
the most efficient algorithm in the 90% of the cases.

1 Introduction

Large scale combinatorial optimization problems do not have
a clear structure, may present many side constraints, and may
include subproblems. Different instances of the same problem
can have different characteristics and structure. In these cases,
it is unlikely that a single algorithm can deal with them ade-
quately. Thus, we can build an algorithm portfolio and try to
select the best strategy given the instance to be solved. Our
conjecture is that the selection of the best strategy
should be based on the instance structure.

The structure of an instance has been recently widely stud-
ied (see for example [1], [5], [12], [13], [14]) since it is con-
sidered an important aspect for explaining the algorithm be-
havior. The instance structure can be represented in different
ways: (i) through the constraint graph where nodes are vari-
ables and arcs are constraints; (i¢) through a set of features
(pairs attribute-value) extracted from the constraint graph;
(#47) through some geometrical properties, e.g., the polyhe-
dral structure.

In this paper, we consider the instance structure based on
a set of pairs attribute-value derived by the constraint graph.
This representation is indeed more concise (and therefore less
expressive) than the one based on the whole graph, but as we
will show it is representative of the instance structure.

To test our conjecture we used a combinatorial optimization
problem as a case study, the Bid Evaluation Problem (BEP),

1 DEIS, University of Bologna, Viale Risorgimento 2, 40136
Bologna, Italy. email:{aguerri,mmilano}@deis.unibo.it

and Michela Milano !

where a set of tasks (say services) should be bought by an
auctioneer from a set of self interested agents performing bids
containing more than one item. The auctioneer should cover
all tasks at a minimum cost. Each task has an associated
time window and temporal constraints with other tasks. This
problem has an interesting structure: it contains as subprob-
lem the well known Winner Determination Problem (WDP),
where no temporal windows and constraints are considered.
The WDP is a set partitioning problem, a well known and
structured problem which is successfully faced by Mathemati-
cal Programming techniques and not by Constraint Program-
ming techniques (see for example [6]). However, as soon as
temporal constraints are introduced, the structure is lost and
there is not a single technique that best solves all instances,
but depending on the instance structure one approach domi-
nates the other.

For the BEP in fact, both Constraint Programming (CP)
and Integer Programming (IP) can successfully be used. Fur-
thermore, once the basic strategy has been chosen, that strat-
egy can often be fine-tuned through parameter setting as in
IP, or through different search heuristics as in CP for ex-
ample. The difference in performance between strategies and
their variants can be significant from one problem instance to
another.

The aim of this paper is to use machine learning techniques
to identify a connection between the instance structure and
the algorithm performance. For this purpose, we have built
a training set by extracting, for each instance, a set of 25
features (as suggested by [8]) and the corresponding best al-
gorithm. The training set is provided as input to a well known
and widely used machine learning algorithm that builds deci-
sion trees, c4.5 [11].

For the case study considered we obtain very promising re-
sults. By considering only very few features from an instance,
we are able in fact to select the best algorithm in the 90% of
the test set. We believe this approach could be extended for
a large variety of combinatorial optimization problems.

Two related work with the current one are [8] and [9]. The
authors are interested in determining the intrinsic complexity
of a problem with respect to a given algorithm (CPLEX in
the paper). The authors use regression to predict the empirical
hardness of an instance and apply the method to the Winner
Determination Problems in combinatorial auctions (which is
a sub-problem of the BEP where temporal constraints are re-
laxed). In [9], again using regression, the authors propose how
to build an algorithm portfolio in an effective way exploiting
an hardness model and perform experimental results on three

well known algorithms for the winner determination problem.

The rest of the paper is organized as follows. In Section 2
we briefly outline the BEP models and the strategies, based
on CP and IP, and their variants, that we consider for solving
the BEP. In Section 3 we describe decision trees and how they
are built and tested. In Section 4 we describe the generation
of problem instances. We present experimental results in Sec-
tion 5. Finally, we conclude and highlight our future plans in
Section 6.

2 Case Study the Bid Evaluation in
Combinatorial Auctions: models and
algorithms

We now describe the case study used to test our approach:
combinatorial auctions. In combinatorial auctions bidders can
bid on combination of items. In this context, we have two
major combinatorial optimization problems. The Bid Evalua-
tion Problem (BEP) and the Winner Determination Problem
(WDP). In the WDP the auctioneer has to find the set of win-
ning bids at a minimum cost or maximum revenue. The win-
ner determination problem is NP-hard. For the WDP, Integer
Programming approaches represent the technique of choice.

In the BEP, beside a winner determination problem, time
windows and temporal constraints are stated among bids. We
mainly consider an auction where the auctioneer buys a set of
items (in our case tasks or services) which are sequenced by
temporal precedence constraints and are associated to tempo-
ral windows and durations. We consider BEP in the context
of the single unit reverse auction, a variant of combinatorial
auctions where the auctioneer wants to buy a set of distin-
guishable items, minimizing the cost.

In the following, we describe the models used for the BEP:
an [P model and a CP model.

2.1 Bid Evaluation Problem: IP model

Each bidder j (j = 1...n) posts one or more bids. A bid
is represented as B; = (S;, Est;, Lstj, D;j,p;) where a set
S; € M of services ¢ (i = 1...m) is proposed to be sold
at the price p;. E'st; and Lst; are lists of earliest and latest
starting time of the services in S; and D; their duration. A
precedence constraint between two tasks ¢, and ¢s is repre-
sented as t, < ts.

We introduce a decision variable x; for each bid j, that
takes the value 1 if the bid B; is a winning one, 0 otherwise.
We also introduce a variable Start;; for each item i taken
from bid j. These variables range on the temporal windows
[E'stij, Lst;;] for item 7 taken from bid j.

The objective function is min }>"_, pjz;, that minimizes
the total cost.

In the BEP we have two kinds of constraints: covering con-
straints and precedence constraints. Covering constraints have
the form Zjuesj x; = 1, and state all items should be covered
and each item should be covered by exactly one bid.

To represent precedence constraints we consider each pair
of items ¢, and ts such that ¢, < ts, and we find all pairs
of bids b, and bs containing that items; if Sy, and Sp, have
an empty intersection we compute Estbptp + Dbptp — Lsty ¢,
where Dy,1, is the duration of ¢, in bid b,. In case the result
is positive, that is, domains of Starttpbp and Start;,,, do not

contain any pair of values that could satisfy the precedence
relation, we introduce the constraint Ty, + Tp, < 1, which
prevents both bids from appearing in the same solution; oth-
erwise, if the result is zero or negative, we introduce the con-
straint Start:,u, + Diyb, — Start; v, + M(xp, + xp,) < 2M,
where M is a large number. The term M (xp, + zp,) makes
the constraint satisfied in the case where either Zp, = 0 or
Th, = 0.

2.2 Bid Evaluation Problem: CP model

Auctions can be easily modelled in Constraint Programming.
We recall that Bj = (Sj, EStj,LStj, Dj,pj).

We introduce four sets of domain variables: X, that is an
array of m variables representing the items to be bought. Each
variable X; ranges on a domain containing the bids mention-
ing item . Cost, that is an array of n variables representing
the cost of the bid in the solution. Each variable C'ost; can
assume only values 0, if bid j is a losing bid, and pj, if it
is a winning one. Duration and Start, that are arrays of m
variables. Duration; ranges on the union of all duration D;;
for item ¢ taken from all bids j mentioning i. Start; ranges
on the union of all temporal windows [E'st;;, Lst;;] for item ¢
taken from all bids j mentioning 3.

The objective function is min Z;‘Zl Cost;.

Each time a variable X; is assigned to a value j, that is
item 7 is assigned to bid j, we propagate the fact that all
other items in S; should be assigned to the same bid, setting
to j variables X, Vk € S;. Similarly, we set variables Starty
and Durationy, Yk € S; to values proposed by bid B;. We
also set to p; the variable Cost;.

To consider precedence among tasks, we introduce the con-
straint Start, + Duration, < Starts for each couple of tasks
tp and ts such that ¢, < ts.

Finally, we use Distribute(X, J,0,|S|), that can trigger an
effective propagation. It is a variant of the global cardinality
constraint [10], whose semantics can be explained as follows:
if the bid Bj; is chosen as winning, the number of variables
X, that take the value j is exactly the cardinality of the set
Sj. Otherwise, if the bid B; is not chosen as winning, that
number is 0. Parameters in Distribute(X, J,0,|S|) have the
following meaning: X is the array of variables representing
items to be sold, J is an array containing numbers tidily from
1 to n, where n is the number of bids, and |S]| is an array
where each element |S;| is the cardinality of the set of items
contained in the bid j. This constraint holds iff the number
of occurrences of each value j € J assigned to X is exactly
either 0 or |Sj|.

2.3 Implemented algorithms

We implemented the following algorithms:

IP based algorithm 1: The first IP-based algorithm is a
traditional complete Branch and Bound based on linear
relaxation.

IP based algorithm 2: The second IP-based algorithm is
an incomplete approach based on shadow prices. A Lin-
ear Relaxation (LR) of the problem without temporal con-
straints is solved. Temporal constraints have not been con-
sidered in LR for efficiency reasons. Once LR is optimally

solved, the algorithm ranks the variables according to their
shadow prices, and finally solves the IP problem considering
only the most convenient p% variables, where p is a param-
eter to be experimentally tuned, and fixing the remaining
to zero.

CP based algorithm: The CP-based algorithm uses Lim-
ited Discrepancy Search (LDS) [3] with a variable selection
heuristic based on the First Fail Principle. The value selec-
tion heuristic first chooses the value representing the bid j
with the lowest p;/|S;| value, i.e., the minimum price-for-
task value.

Hybrid algorithm: The hybrid algorithm is based on the
CP model and is quite similar to the previous one. The
only difference concerns the value selection heuristic. The
hybrid algorithm performs an indeed quite loose but ef-
fective integration. The algorithm solves the LR of the IP
problem without temporal constraints as described for the
IP-based algorithm 2; for each bid the minimum between
p;/|S;| and the shadow price of the associated IP variable
is used to rank the values of the CP variables X.

To define the components of an algorithm portfolio, we
should select among these algorithms those that obtain the
best performance in at least one instance. Some qualitative
considerations follow: when the CP-based approach outper-
forms the hybrid one, both IP-based approaches outperform
both CP-based and hybrid approaches. Therefore, we can re-
move the CP-based approach from the set of strategies con-
sidered and maintain only the hybrid one. Concerning the
IP-based approaches, they have similar behavior w.r.t. the
other techniques (either both are better or both worst than
the other two), therefore as far as the portfolio is concerned,
they are equivalent. Their selection depends on the accuracy
of the solution needed. Therefore, we consider here a single
IP approach representing both.

We can therefore build an algorithm portfolio [4] where
only the IP-based and the hybrid approach are considered as
candidates. The first is referred to as IP while the second is
referred to as HCP (indeed it is strongly based on CP).

In general, in an algorithm portfolio all algorithms run to-
gether until the fastest one finds the solution. On the contrary,
we analyze the instance in order to decide a-priori which al-
gorithm will probably be the best, when applied to that par-
ticular instance of the problem.

3 Decision trees

The Decision Tree Learning method analyzes attribute-value
tuples of a training set of cases, i.e., well-classified instances,
and deduces a tree, called decision tree, where each leaf is a
class and each node specifies a test to be carried out on an
attribute value, with a branch, and consequently a subtree,
for each possible outcome of the test.

At each node, the method recursively selects an attribute
and divides the cases in subsets, one for each branch of the
test until all cases in each subset belong to the same class. At
each node, the attribute selected for the test is the one that
minimizes the entropy of the subsets generated after the test.
Intuitively, the entropy of a collection of cases is the infor-
mation about the non-uniformity of the collection itself. The
entropy is minimum when all cases belong to the same class,

otherwise the entropy is maximum when cases are uniformly
classified in all possible classes.

Once created a learning base, the method can classify new
instances, improving the learning base while achieving new
results.

Once the decision tree has been computed, it is important
to test its accuracy in classifying new instances. For this pur-
pose, a test set is defined. A test set has the same structure
of the training set. In this way, we can establish which is the
error rate and which is the accuracy of the decision tree.

One important aspect of decision trees is their ability to
generalize the results. Therefore, not all attributes should be
used in the decision tree but only those that enable to parti-
tion instances in homogeneous groups as done in this paper.

4 Instance generation

To generate instances for our experiments we used two sys-
tems, the Multi-AGent NEgotiation Testbed (MAGNET [2])
and the Combinatorial Auction Test Suite (CATS [7]).

MAGNET is a multi agent system designed to support the
negotiation of coordinated tasks among self-interested agents.
MAGNET generates instances by defining the bids, the tasks
set, and the precedence graph among them. In MAGNET
the user can tune a large set of parameters to modify some
instance features.

Beside the largely used parameters as the number of tasks
and bids, the user can define the types of task he would like to
consider and specify the features for each type, as the average
length or the probability of inclusion in the bids. In addi-
tion, the user can group some tasks into the same type, can
tune the precedence graph structure and the bidding strategy.
Concerning the bidding strategy, parameter tuning affects the
mean bid cost and its variability, but poorly affects the bid
size. The user can indeed specify the bid size on average, but
the auction instance generator does not take strictly into con-
sideration this parameter. Typically, the mean bid size for
MAGNET generated instances is very low (between 1 and 2).

To overcome this limitation and generate instances with an
higher bid size value, we used CATS, a system able to gener-
ate realistic combinatorial auction instances. Unfortunately,
CATS generates WDP instances without temporal windows
and constraints. So we generated WDP instances using CATS.
Then, we generated instances with the same number of tasks
using MAGNET. Finally, we produce a BEP by simply merg-
ing CATS bids and MAGNET temporal information. This
kind of instances are more differentiable and we generated
instances with a mean bid size up to 8.

We generated a large variety of instances: the easiest have
5 tasks and 15 bids; the hardest have 30 tasks and 1000 bids.
Instances have different tasks-per-bid values and precedence
graph structure. For the definition of the training set and the
test set, we used only hard instances, since in that case the
difference between the computational time of different algo-
rithms becomes considerable (the best algorithm runs at least
twice or three times faster than other algorithms). We consid-
ered a data set containing 200 instances. They are classified in
the 2 classes HCP and IP described in Section 2.3. 53% of in-
stances belongs to the HCP class, that is they are best solved
by the Hybrid approach, while the remaining 47% belongs to
the IP class.

5 Experimental Results

Our aim is to classify the BEP instances in two classes: IP, if
the IP-based approach (either 1 or 2) described in section 2.3
is the best algorithm, and HCP, if the hybrid one is the best.

To perform our analysis we used c¢4.5 [11], a Decision Tree
Learning system.

To perform experiments, we split our data set in two parts:
the training set and the test set. We build the decision tree
on the basis of the training set, and we verify the quality
of the resulting classification, using instances of the test set.
We check the percentage of cases that are classified in the
right class. We repeated this analysis randomly splitting 10
times the data set in a training set with 130 cases, and a test
set with the remaining 70 cases. All results presented in this
paper represent the mean over these analysis. c¢4.5 produces
decision trees that perform test only on those parameters that
minimize the entropy and ends the analysis as soon as all cases
belong to the same class (or a looser termination condition
is achieved). In our paper, c4.5 is able to detect only a small
subset of the input parameters in the decision trees to produce
homogeneous classes.

5.1 Considered features

Our study is strongly based on a notable paper [8], where
the authors defined two graphs representing an auction: the
Bid Graph and the Bid-Good Graph. The Bid Graph is a
graph with a node for each bid and an edge between each
couple of bids appearing together in one or more covering or
temporal constraints. Therefore this graph represents conflicts
among bids. The Bid-Good graph is a graph where each node
represents either a bid or a good (a task in our case) and an
edge exists between a bid node and a good node if the bid
proposes the good.

Starting from these graphs, the authors extracted 25 fea-
tures representing the instance structure. We computed all 25
parameters for each instance in the data set and we used these
values to create a set of attribute value tuples to be provided
as input to c4.5.

Fortunately, once the tree is built, we can observe that not
all parameters are significant to determine the most efficient
algorithm. We explain here the meaning of those which are
considered significant for our analysis. They are all extracted
from the Bid Graph.

Edge Density: The Edge Density (ED) is the ratio between
the number of edges in the graph and the number of edges
in a complete graph with the same number of nodes. This
parameter can range from 0 to 1.

Standard Deviation of the Node Degree: The node de-
gree is the number of edges starting from a node. Once col-
lected in a vector this value for all bids, the Standard De-
viation of the Node Degree (ND) is the standard deviation
of the vector. Given a set of numbers, their Standard De-
viation gives a valuation of how scattered they are around
their mean value.

Clustering Coeflicient: The Clustering Coefficient (CC) is
a measure of the local cliqueness of the graph. For each node
in the graph we compute the number of edges connecting
two neighbors of the node, than we divide this number by
k(k—1)/2, where k is the number of neighbors. We compute

this value for every nodes in the graph and we put them
in a vector. CC is the average of the values in the vector.
CC is therefore the ratio between the number of edges con-
necting nodes in a neighborhood and the number of edges
in a complete graph with the same number of nodes. This
parameter can range from 0 to 1.

5.2 Results

We run c4.5 using all the 25 parameters and we obtained a
decision tree with a prediction error equal to 6%, using only
4 out of the 25 parameters. This result is very encouraging.
However, the parameters considered significant are very ex-
pensive to compute. It means that given a new instance, we
should extract very informative but costly parameters before
being able to select the best algorithm.

Therefore, we tried to decrease the number or the cost of the
parameters: c4.5, after building the decision tree, translates it
in production rules. Each rule is then labelled with a number
representing how many times it is triggered to classify the test
set. Hence, the importance of a rule is measured by this label.

The production rule involving the Clustering Coefficient
(CCQ) is decisive in the 93% of cases, suggesting the right class
in the 94% of these cases. Therefore, CC is supposed to be
the most informative feature. So we run c4.5 using only CC.
In this case the prediction error rises to 9% (still very good).

Using CC we obtained a good result, but for large instances
even the extraction time for CC only is too high.

We therefore need to find parameters whose extraction is
fast, with a prediction rate almost equal to 91%, that is the
CC prediction rate. We considered only the first 11 attributes
described in [8], since their extraction time is very low. The
decision tree prediction error is 11%. The parameters consid-
ered significant by c4.5 are only the edge and node density
(ED and ND). The production rule containing ED is used in
the 43% of cases, with a prediction error of 1,5%. while the
production rule containing ND is used in the 57% of cases,
with a prediction error of 9%. We whole decision tree has a

prediction rate of 89%.
v
iR
?

Tis

& &
% cc ? v

5] | XL

(&)

-

A R
A ..

=
tn

R

A .

AN

i /.//r | /. d

112 1.14 140 2.59 429 4.58 4.68 4.69 7.57
Mean tasks-per-bid value

Exiraction time w.r.t. search times difference
=]

Figure 1: Extraction time for the attributes considered

Furthermore, we decided to see if we could have an indica-
tion of the cost of computing the three relevant feature values
by using the tasks-per-bid (TxB) as an indicator. Figure 1

plots, for groups of instances with similar TxB values, the
ratio between the feature values extraction times and the dif-
ference between the search times of the best and the worst
algorithm. When the ratio is greater than 1 it is not worth
extracting the feature since the time used in selecting the
best algorithm plus the time to solve the instance using it is
greater than the time used by the worst algorithm to solve
the instance. In Figure 1 we notice that the higher the TxB
value, the higher the CC extraction time. This is obvious be-
cause, by increasing the size of the task bundles proposed by
bidders, a higher number of precedence constraints between
bids (edges in the Bid Graph) is introduced. Each group of
instances with similar TxB value contains 10 instances, and
the x-axis value is the mean over these instances. Figure 1
shows that the maximum TxB value for which CC extraction
time is convenient is about 2.

Summarizing, to select the best algorithm from the algo-
rithm portfolio, if the tasks-per-bid value is lower than 2 we
can use the CC parameter with a prediction rate of 91%,
otherwise we can use the ED and ND parameters with a pre-
diction rate of 89%. Clearly, if we accept a lower accuracy, we
can always used ED and ND.

The decision trees for the BEP are depicted in Figure 2.
The values on which to perform the test at the nodes are
those values that minimize the total entropy of the training
set.

CC < 0.87 ED < 0.82

Figure 2: Decision trees for the BEP

In Section 1 we stated that the WDP is best solved by In-
teger Programming, but when side constraints as temporal
constraints are added to the problem the CP approach be-
comes competitive. Therefore, we can conclude that temporal
information is the only knowledge we need to select the best
algorithm. We computed all parameters starting from a Bid
Graph where only temporal constraints are considered (an
edge between two nodes is added only if a precedence con-
straint exists between the bids associated to the nodes). We
obtained almost the same decision trees, with different test
threshold values, but a slightly lower (85%) prediction rate.

We can conclude that, even if temporal constraints are
quite effective for selecting the best algorithm, the informa-
tion gained by the WDP sub-problem structure can improve
the accuracy of the classification. In fact, the density of the
WDP Bid-Graph gives an information on the dimension, and
hence the hardness, of the IP model.

6 Discussion and Conclusions
We believe this paper is a promising first step toward the use

of machine learning techniques in algorithm portfolio selec-
tion. Many steps should still be done:

e we are interested in the most appropriate representation
that summarizes the structure of an instance. For this rea-
son, we are investigating an approach based on Case Based
Reasoning that enables to take into account the instance
representation based both on features extracted from the
graph and on the graph itself.

e we will extend this approach to other problems. In partic-
ular, we will consider problems with no clear structure but
that contain side constraints that break the regularity of
the structure itself.

e we will use a machine learning method where attributed
are weighted so as to take into account in the definition of
the tree not only the entropy decrease, but also the com-
putational effort to extract it.

ACKNOWLEDGEMENTS

This work was supported by the SOCS project, funded by the
CEC, contract IST-2001-32530. The information provided is
the sole responsibility of the authors and does not reflect the
Community’s opinion. The Community is not responsible for
any use that might be made of data appearing in this work.

We would like to thank Andrea Lodi and Andrea Roli for
useful discussions. In addition, we warmly thank Maria Gini
and John Collins for providing the MAGNET software and
for their assistance in using it.

REFERENCES

[1] R. Béjar, A. Cabiscol, C. Fernandez, C.P. Gomes
and F. Manya, Capturing Structure with Satisfiability,
Proc. CP-2001, pp. 137-152, 2001.

[2] J. Collins and M. Gini, An integer programming for-
mulation of the bid evaluation problem for coordi-
nated tasks, Mathematics of the Internet: E-Auction
and Markets; Vol.127, pp. 59-74, 2001.

[3] M.L. Ginsberg and W. D. Harvey. Limited Discrepancy
Search. Proc. IJCAI-95; Vol. 1, pp. 607-615, 1995.

[4] C.P. Gomes and B. Selman, Algorithm portfolio design:
theory vs. practice, Proc. UAI-97, pp. 190-197, 1997.

[6] C.P. Gomes and B. Selman, Problem Structure in the
Presence of Perturbations, Proc. AAAI-97, pp. 221-226,
1997.

[6] A. Guerri and M. Milano, CP-IP techniques for the Bid
Evaluation in Combinatorial Auctions, Proc. CP-2003,
pp. 863-867, 2003.

[7] K. Leyton-Brown, M. Pearson and Y. Shoham, Towards
an Universal Test Suite for Combinatorial Auction Al-
gorithms, Proc. EC-00, pp. 66-76, 2000.

[8] K. Leyton-Brown, E. Nudelman and Y. Shoham, Learn-
ing the Empirical Hardness of Optimization Problems:
The Case of Combinaorial Auctions, Proc CP-2002, pp.
556-572, 2002.

[9] K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFad-
den, Y. Shoham, Boosting as a Metaphor for Algorithm
Design, Proc. CP-2003, pp. 899-903, 2003.

[10] J. C. Regin, Generalized Arc Consistency for Global
Cardinality constraint, in Proc. AAAI-96; Vol. 1, pp.
209-215, 1996.

[11] J. Ross Quinlan, C4.5: programs for machine learning,
Margan Kaufmann, 1993.

[12] T. Walsh, Search in a Small World, Proc. IJCAI-99,
pp. 1172-1177, 1999.

[13] T. Walsh, Search on High Degree Graphs, Proc. IJCAI-
2001, pp. 226-274, 2001.

[14] C. Williams and T. Hogg, Exploiting the deep structure
of constraint problems, Artificial Intelligence, Vol. 70,
pp. 72-117, 1994

