
The importance of Relaxations and Benders
Cuts in Decomposition Techniques: Two Case

Studies

Alessio Guerri (student) and Michela Milano (supervisor)

DEIS, University of Bologna
V.le Risorgimento 2, 40136, Bologna, Italy

{aguerri, mmilano}@deis.unibo.it

When solving combinatorial optimization problems it can happen that using
a single technique is not efficient enough. In this case, simplifying assumptions
can transform a huge and hard to solve problem in a manageable one, but they
can widen the gap between the real world and the model. Heuristic approaches
can quickly lead to solutions that can be far from optimality. For some problems,
that show a particular structure, it is possible to use decomposition techniques
that produce manageable subproblems and solve them with different approaches.
Benders Decomposition [1] is one of such approaches applicable to Integer Linear
Programming. The subproblem should be a Linear Problem. This restriction has
been relaxed in [4] where the technique has been extended to solvers of any kind
and called Logic-Based Benders Decomposition (LBBD). The general technique
is to find a solution to the first problem (called Master Problem (MP)) and than
search for a solution to the second problem (Sub-problem (SP)) constraining it
to comply with the solution found by the MP. The two solvers are interleaved
and they converge to the optimal solution (if any) for the problem overall. When
solving problems with a Benders Decomposition based technique, a number of
project choices arises:

– At design level, the objective function (OF) depends either on MP or SP
variables, or both. This choice affects the way the two solvers interact.

– Generation of Benders Cuts; Benders Cuts are constraints, added to the MP
model once a SP as been solved, that remove some solutions.

– Relaxation of the SP; to avoid the generation of trivially infeasible MP so-
lutions, some relaxations of the SP should be added to the MP model.

We focus on two particular problems, (1) the allocation and scheduling prob-
lem on Multi-Processor System-on-Chip (MPSoC) platforms (ASP), we inves-
tigated in [2], and (2) the dynamic voltage scaling problem on energy-aware
MPSoC (DVSP), we investigated in [3]. These are very hard problems and they
have never been solved to optimality by the system design community. We used
LBBD to solve the problems.

The aim of this paper is to show the importance of the relaxations and
Benders Cuts in terms of their impact on the search time and on the number of
times the two solvers iterate. In addition, we claim that, in general, a tradeoff
between the complexity of the cuts and relaxations introduced and their impact
on the number of iterations must be found.

1 Benders Decomposition

The Benders Decomposition (BD) technique works on problems where two loosely
constrained sub-problems can be recognized. Let us consider a problem modelled
using two sets of variables x and y. The Benders Decomposition technique solves
to optimality the master problem (MP) involving only variables x, producing the
optimal solution x̄, then it solves the original problem where the variables x val-
ues are fixed to x̄, namely the sub-problem (SP). Depending on the objective
function (OF), two cases can appear: (i) if the OF depends only on variables x,
the SP is simply a feasibility problem; if x̄ is a feasible solution for the SP, it is
the optimal solution for the original problem, otherwise the SP must communi-
cate a no-good saying that x̄ is not feasible and another one must be found; (ii)
if the OF depends on both x and y variables (or only on y variables), the MP
finds an optimal solution w.r.t. its OF (or feasible if the OF depends only on y),
x̄, then passes the solution to the SP and, when the SP finds an optimal solution
w.r.t. its OF, the SP must tell the MP that the solution found is the optimal
one unless a better one can be found with a different assignment to variables x.
In both cases, the two solvers are interleaved and they converge to the optimal
solution (if any) for the problem overall.

To avoid the inefficient generate and test behaviour of the MP and the SP
interaction it is useful to add to the MP a relaxation of the SP. The relaxation
provides a lower bound (or an upper bound if it is a maximization problem) on
the SP optimal solution.

The original BD technique models both the MP and the SP using Integer
Linear Programming (IP), while LBBD [4] extends BD to cope with any solver.
In [5] LBBD is applied to planning and scheduling problems. A set of activities
must be assigned and scheduled on a given set of homogeneous facilities. The al-
location master problem is modelled using an IP approach, while the scheduling
sub-problem is modelled using Constraint Programming (CP). Once the allo-
cation problem is solved, the scheduling part becomes easier since the schedul-
ing problem does not contain alternative resources. Precedence constraints are
posted only among activities allocated to the same facility, so the scheduling SP
can be decomposed in a number of simpler one machine scheduling problems,
one for each facility. In both our problems the scheduling does not decompose
since precedence constraints link tasks that possibly run on different processors.

2 Problem Description

We describe here the two problems we faced in [2] and [3].
Problem 1: Allocation and scheduling problem on a MPSoC (ASP)

• Given a set of tasks t1 . . . tn, with duration d1 . . . dn and memory require-
ments s1 . . . sn for the internal state, pd1 . . . pdn for the program data and
c1 . . . cn for communication,

• given precedences and communications among tasks, and realtime constraints
imposing deadlines on tasks and processors,

• given an MPSoC platform [7], where a set of homogeneous processors p1 . . . pm

each with a local memory slot, a system bus and a remote memory are inte-
grated on the same chip,

¦ find an allocation of tasks to processors and of memory requirements to
storage devices such that the total communication on the system bus is min-
imized. We have a contribution to the OF each time a memory requirement
is allocated on the remote memory and each time two communicating tasks
execute on different processors.

Problem 2: Allocation, scheduling and voltage selection problem on
an energy-aware MPSoC (DVSP)

• given an energy-aware MPSoC platform [6], where a set of homogeneous
processors able to change their frequency and a system bus are integrated
on the same chip,

• Given a set of tasks t1 . . . tn, each annotated with a tuple of durations
{d11 . . . d1f} . . . {dn1 . . . dnf} (one for each processor speed) and a communi-
cation requirement c1 . . . cn,

• given precedences and communications among tasks, and realtime constraints
imposing deadlines on tasks and processors,

• given time and energy overhead for a processor to switch from a frequency
to another,

¦ find an allocation of tasks to processors and of frequency to task executions
such that the total power consumption is minimized. We have a contribution
to the objective function each time an activity (task or communication)
is performed and each time two activities running at different speeds are
scheduled one just after the other on the same processor.

In both problems, we model and solve the allocation using an Integer Pro-
gramming approach, while we use Constraint Programming to solve the schedul-
ing SP. We can immediately see that the main difference between the ASP and
the DVSP concerns the objective function. In the ASP, when the allocation is
done, we know all the contributions to the objective function and thus the SP is
simply a feasibility problem. In the DVSP instead the OF depends on both the
MP and the SP.

3 Improving the models

3.1 Generation of Logic-based Benders cut

In the following we describe the Benders Cuts used.
ASP: A no-good is generated when the optimal solution of the MP is not feasible
for the SP. We investigated two no-goods.

– We have variables Xij that assume the value 1 if task i is allocated to
processor j, 0 otherwise. The no-goods impose that for each set of tasks Sp

allocated to a processor p, they should not be all reassigned to the same
processor in the next iteration. The resulting no-good is

∑m
p=1

∑
i∈Sp

Xip <
n.

– The cuts described above remove only complete solutions. It is possible to
refine the analysis and to find tighter cuts that remove only the allocation of
tasks to bottleneck resources. So, when a SP failure occurs, we solve a one
machine scheduling for each processor p considering constraints involving
only tasks running on p. For each processor p where the problem is infeasible,
we generate the cut

∑
i∈Sp

Xip < |Sp|. Finding this cut is a NP-hard problem,
but we will show experimentally when it pays off.

DVSP: Here the OF depends on both MP and SP. If there is no feasible schedule
given an allocation, the cuts are the same computed for the ASP. If the schedule
exists we have to produce a cut stating that the one just computed is the optimal
solution unless a better one exists with a different allocation. These cuts produce
a lower bound on the setup of single processors. The cuts can therefore be of
two types:

– We have variables Xtpf , taking value 1 if task t executes on processor p at
frequency f . Let us consider Jp the set of couples (Task, Frequency) allocated
to processor p. No-goods are the following:

∑
(t,f)∈Jp

Xtpf < |Jp|,∀p.
– Suppose a SP solution has an optimal setup cost Setup∗. It is formed by

independent setups, one for each processor Setup∗ =
∑m

p=1 Setup∗p. We
have a bound on the setup LBSetupp on each processor and therefore a
bound on the overall setup LBSetup =

∑m
p=1 LBSetupp . The constraints in-

troduced in the master problem are: Setupp ≥ LBSetupp , and LBSetupp =
Setup∗p−Setup∗p

∑
(t,f)∈Jp

(1−Xtpf), where Jp has the same meaning intro-
duced above.

The cuts described remove only one allocation. Indeed, we have also produced
cuts that remove some symmetric solutions.

3.2 Relaxation of the subproblem

In the MP models, deadlines are not taken into account, so the simplest kind of
relaxation is based on the tasks execution times. The sum of the execution times
of all the activities (tasks and communications) allocated to the same processor
must not exceed the deadline. The deadline constraint can still be violated during
the scheduling, but a huge number of infeasible solutions is surely cut.

In the DVSP this procedure can be improved by adding other relaxations
expressing bounds on the setup cost and setup time in the master problem
based only on information derived from the allocation. Let us consider, for each
processor, the set of frequencies appearing at least once. A bound on the sum of
the energy spent during the frequency switches can be computed as follows: let us
introduce in the model variables Zpf taking value 1 if the frequency f is allocated
at least once on the processor p, 0 otherwise. Let us call Ef the minimum energy
for switching to frequency f , i.e. Ef = mini,i 6=f{Eif}. Setupp ≥

∑M
f=1(ZpfEf −

maxf{Ef |Zpf = 1}). This bound helps in reducing the number of iterations
between the master and the subproblem. Similarly, we can compute a bound on
the setup time to tighten the constraints involving deadlines described above.

4 Experimental Results

We have generated 500 DVSP and 400 ASP realistic instances, with the number
of tasks varying from 7 to 19 and the number of processors from 3 to 10. We
consider applications with a pipeline workload. We assume for the DVSP that
each processor can run at three different frequencies. All the considered instances
are solvable and we found the proved optimal solution for each of them. Exper-
iments were performed on a 2.4GHz Pentium 4 with 512 Mb RAM. We used
ILOG CPLEX 8.1, ILOG Solver 5.3 and ILOG Scheduler 5.3 as solving tools.

4.1 Algorithm performances

In [2] and [3] we compared the hybrid approaches with pure approaches modelling
the problem as a whole using only IP or CP. For the ASP we found that the pure
approaches search times are order of magnitude higher w.r.t. the hybrid, while
for the DVSP the pure approaches are not able to find even a feasible solution
within the time limit. In this section we will show the effectiveness of the cuts
used. We consider ASP and DVSP instances with task graphs representing a
pipeline workflow. Note that here, since we are considering applications with
pipeline workload, if n is the number of tasks to be allocated, the number of
scheduled tasks is n2, corresponding to n iterations of the pipeline. Results are
summarized in Table 1 for the ASP and in Table 2 for the DVSP. The first three
rows contain respectively the number of tasks allocated and scheduled and the
number of processors considered in the instances. The last two rows represent
respectively the search time and the number of iterations. Each value is the mean
over all the instances with the same number of tasks and processors. We can see
that for all the DVSP instances the optimal solution can be found within four
minutes and the number of iterations is typically low. For the ASP instances
the optimal solution can be found within one minute and the mean number of
iterations is very close to 1.

To show the effectiveness of the relaxations used for the DVSP we solved the
instances considering either both or only one of the two relaxations described in
3.2. Table 3 shows the percentage of occurrence of a given number of iterations
when solving the DSVP with different relaxations. Using both of them (row All)
we can see that the optimal solution can be found at the first step in one half of
the cases and the number of iterations is at most 5 in almost the 90% of cases.
We tried to solve the problems using only one relaxation; rows Time and Bound
show the results when considering only the relaxation on the deadlines and on
the SP OF lower bound respectively. We can see that, for most of the cases, the
number of iterations is higher than 10. In addiction, the search time on average
rises up to 1 order of magnitude and, in the worst cases, the solution cannot be
found within two hours.

To show the effectiveness of the cuts used for the ASP, we selected a hard
ASP instance with 34 activities and we solved it with different deadline values,
starting from a very weak one to the tightest one. Table 4 shows the number of
iterations when solving these instances respectively without (row Base) and with

(row Advanced) the second kind of cuts described in 3.1 for descending deadline
values (row Deadline). We can see that, when the number of iterations is high,
the cuts reduce them notably. These cuts are extremely tight, but the time to
generate them is one order of magnitude greater w.r.t. the time to generate the
Base cuts, therefore they are helpful only on hard instances.

We tried to introduce tighter cuts and relaxations, but we experimentally see
that the computation time increases. This is because the cuts and the relaxations
complicate the model too much. In general, a tradeoff between the complexity
of the cuts and the reduction in terms of iterations must be found.

Alloc 7 7 9 9 11 11 11 13 13 15 15 15 17 17 19 19 19
Sched 49 49 81 81 121 121 121 169 169 225 225 225 289 289 361 361 361
Procs 3 4 4 5 4 5 6 5 6 5 6 7 6 7 4 7 9

Time(s) 0,42 0,41 0,50 0,57 0,60 0,85 1,26 2,84 6,14 0,98 9,53 14,37 7,71 9,25 3,85 27,85 46,69
Iters 1,01 1,05 1,01 1,07 1,06 1,09 1,10 1,08 1,09 1,03 1,07 1,12 1,11 1,02 1,03 1,06 1,11

Table 1. Search time and number of iterations for ASP instances

Alloc 7 7 9 9 11 11 11 13 13 15 15 15 17 17 19 19 19
Sched 49 49 81 81 121 121 121 169 169 225 225 225 289 289 361 361 361
Procs 3 4 4 5 4 5 6 3 7 4 5 7 5 6 3 6 10

Time(s) 1,43 2,24 5,65 6,69 15,25 2,17 2,14 5,90 34,53 12,34 22,65 51,07 60,07 70,40 3,07 120,1 209,4
Iters 2,91 3,47 4,80 3,41 4,66 4,50 3,66 1,90 6,34 4,45 10,53 6,98 7,15 9,20 1,96 6,23 10,65

Table 2. Search time and number of iterations for DVSP instances

Iter 1 2 3 4 5 6 7 8 9 10 11+
All 50,27 18,51 7,11 4,52 4,81 2,88 2,46 2,05 1,64 1,64 4,11

Time 35,23 10,32 3,47 4,76 3,12 2,84 2,13 2,06 1,04 1,11 33,92
Bound 28,6 10,12 5,64 3,78 4,35 2,91 1,29 1,48 1,12 0,84 39,87

Table 3. Number of iterations distribution ratio with different relaxations

Deadline 1000000 647824 602457 487524 459334 405725 357491 345882 340218 315840 307465
Base 3 1 1 18 185 192 79 6 4 2 2

Advanced 3 1 1 6 16 23 17 4 3 3 2

Table 4. Number of iterations varying the deadline and with different Benders Cuts

References

1. J. F. Benders. Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4:238–252, 1962.

2. L. Benini, D. Bertozzi, A. Guerri, and M. Milano. Allocation and scheduling for
mpsocs via decomposition and no-good generation. In Proceedings of CP 2005,
pages 107–121, 2005.

3. L. Benini, D. Bertozzi, A. Guerri, and M. Milano. Allocation, scheduling and voltage
scaling on energy aware mpsocs. In Proceedings of CPAIOR2006, 2006.

4. J. N. Hooker. A hybrid method for planning and scheduling. In Procs. of the 10th
Intern. Conference on Principles and Practice of Constraint Programming - CP
2004, pages 305–316, Toronto, Canada, Sept. 2004. Springer.

5. J. N. Hooker. Planning and scheduling to minimize tardiness. In Procs. of the
11th Intern. Conference on Principles and Practice of Constraint Programming -
CP 2005, pages 314–327, Sites, Spain, Sept. 2005. Springer.

6. M. Ruggiero, A. Acquaviva, D. Bertozzi, and L. Benini. Application-specific power-
aware workload allocation for voltage scalable mpsoc platforms. In 2005 Interna-
tional Conference on Computer Design, pages 87–93, 2005.

7. W. Wolf. The future of multiprocessor systems-on-chips. In In Procs. of the 41st
Design and Automation Conference - DAC 2004, pages 681–685, San Diego, CA,
USA, June 2004. ACM.

