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Abstract. This paper describes an efficient, complete approach for solving a
complex allocation and scheduling problem for Multi-Processor System-on-Chip
(MPSoC). Given a throughput constraint for a target application characterized as
a task graph annotated with computation, communication and storage require-
ments, we compute an allocation and schedule which minimizes communication
cost first, and then the makespan given the minimal communication cost. Our ap-
proach is based on problem decomposition where the allocation is solved through
an Integer Programming solver, while the scheduling through a Constraint Pro-
gramming solver. The two solvers are interleaved and their interaction regulated
by no-good generation. Experimental results show speedups of orders of magni-
tude w.r.t. pure IP and CP solution strategies.

1 Introduction

This paper proposes a decomposition approach to the allocation and scheduling of a
multi-task application on a multi-processor system-on-chip (MPSoCs) [1]. This is cur-
rently one of the most critical problems in electronic design automation for Very-Large
Scale Integrated (VLSI) circuits. With the limits of chip integration reaching beyond
one billion of elementary devices, current advanced integrated hardware platforms for
high-end consumer application (e.g. multimedia-enabled phones) contain multiple pro-
cessors and memories, as well as complex on-chip interconnects. The hardware re-
sources in these MPSoCs need to be optimally allocated and scheduled under tight
throughput constraints when executing a target software workload (e.g. a video de-
coder).

In a typical embedded system design scenario, the platform always runs the same
application. Thus, extensive analysis and optimization can be performed at design time;
in particular, allocation and scheduling can be pre-computed statically. The target appli-
cation is pre-characterized and abstracted as a task graph. The task graph is annotated
with computation (e.g., execution time), communication (e.g., number of bits to be com-
municated between tasks), storage (e.g., size of data and instruction memory required
to execute the task) requirements. After solving the allocation and scheduling problem,
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the application can be loaded onto the target hardware platform, together with system
software which orchestrates its execution according to the pre-computed solution.

The problem of allocating and scheduling tasks and memories to MPSoCs is NP-
complete. We propose here an hybrid Constraint Programming (CP) and Integer Pro-
gramming (IP) approach. The solution scheme is based on problem decomposition
which interleaves (i) allocation of tasks to processors and required memory slot to
storage devices and (ii) scheduling tasks in time. Since the two sub-problems are not
independent, their interaction is regulated by no-good generation. Eventually the pro-
cess converges, producing the optimal solution. The method is inherited by Operations
Research and it is known with the name ofBenders Decomposition[2]. This method
partitions the problem variables in two setsx andy, assigns trial values tox by solving
the master problem (containing only variables inx) to optimality, so as to define a sub-
problem containing only the variables belonging toy. If the solution of the subproblem
reveals that the trial values are not acceptable, a no-good is generated and new trial
values are assigned according to the no-good. It is proved that this method converges,
hopefully after few steps, by providing the optimal solution [2].

Benders Decomposition has been successfully applied in conjunction with Con-
straint Programming as we will extensively describe in section 6. For example, [3] and
[4] face a similar problem using Benders Decomposition and found very promising
results. Our main purpose in this paper is to show how a hybrid Constraint and Inte-
ger Programming approach can be used to solve a very complex optimization prob-
lem which has been traditionally approached with heuristic techniques or (for small
instances) with complete Integer Programming approaches. We show that our method
outperforms on one hand Integer Programming approaches which can be considered the
state of the art complete approaches for this problem, and on the other hand Constraint
Programming approaches that have been exploited much less frequently in this context.

2 Problem description

Advances in very large scale integration (VLSI) of digital electronic circuits have made
it possible to develop multi-processor systems-on-chip (MPSoCs), which are finding
widespread application in embedded systems (such as cellular phones, automotive con-
trol engines, etc.). Once deployed in field, these devices always run the same applica-
tion, in a well-characterized context. It is therefore possible to spend a large amount
of time for finding an optimal allocation and scheduling off-line and then deploy it
on the field. For this reason, many researchers in digital design automation have ex-
plored complete approaches for allocating and scheduling pre-characterized workloads
on MPSoCs [1], instead of using on-line, dynamic (sub-optimal) schedulers [5, 6].

The multi-processor system we consider consists of a pre-defined number of dis-
tributed computation nodes, as depicted in Figure 1. All nodes are assumed to be ho-
mogeneous and made by a processing core and by a tightly coupled local memory. This
latter is a low-access-costscratchpad memory, which is commonly used both as hard-
ware extension to support message passing and as a storage means for computation data
and processor instructions which are frequently accessed. Data storage onto the scratch-
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Fig. 1. Single chip multi-processor architecture.

pad memory is directly managed by the application, and not automatically in hardware
as it is the case for processor caches.

Unfortunately, the scratchpad memory is of limited size, therefore data in excess
must be stored externally in a remote on-chip memory, accessible via the bus. The bus
for state-of-the-art MPSoCs is a shared communication resource, and serialization of
bus access requests of the processors (the bus masters) is carried out by a centralized
arbitration mechanism. The bus is re-arbitrated on a transaction basis (e.g., after single
read/write transfers, or bursts of accesses of pre-defined length), based on several poli-
cies (fixed priority, round-robin, latency-driven, etc.). Modelling bus allocation at such
a fine granularity would make the problem overly complex, therefore a more abstract
bus model was devised, thus also bridging the gap with our high-level task models,
which express communication requirements of the tasks in terms of their required bus
bandwidth for the duration of their execution. We will discuss this point in detail in
section 4.

Whenever predictable performance is needed for applications, it is important to
avoid high levels of congestion on the bus, since this makes completion time of bus
transactions much less predictable. Moreover, under a low congestion regime, perfor-
mance of state-of-the-art shared busses scales almost in the same way as that of ad-
vanced busses with topology and communication protocol enhancements. Finally, bus
modelling is simpler under these working conditions (e.g., additive models). Commu-
nication cost is therefore critical for determining overall system performance, and will
be minimized in our task allocation framework.

The target application to be executed on top of the hardware platform is input to
our methodology, and for this purpose it must be represented as a task graph. This latter
consists of a graph pointing out the parallel structure of the program. The application
workload is therefore partitioned into computation sub-units denoted as tasks, which
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are the nodes of the graph. Graph edges connecting any two nodes indicate task depen-
dencies. Computation, storage and communication requirements are annotated onto the
graph. In detail, the worst case execution time (WCET) is specified for each node/task
and plays a critical role whenever application real time constraints (expressed here in
terms of minimum required throughput) are to be met. The sum of the WCETs of the
tasks for one iteration of the time wheel must not exceed time periodRT (i.e., the min-
imum task scheduling period ensuring that throughput constraints are met), which is
the same for each processor since the minimum throughput is an application (not single
processor) requirement.

Each node/task also has 3 kinds of associated memory requirements:

– Program Data: storage locations are required for computation data and for proces-
sor instructions. They can be allocated either on the local scratchpad memory or on
the remote on-chip memory.

– Internal State: when needed, an internal state of the task can be stored either lo-
cally or remotely.

– Communication queues: the task needs queues to transmit and receive messages
to/from other tasks, eventually mapped on different processors. In the class of MP-
SoCs we are considering, such queues should be allocated only on local memories,
in order to implement an efficient inter-processor communication mechanism.

Finally, communication requirements of each task are automatically determined
once computation data and internal state are physically allocated to scratchpad or re-
mote memory, and obviously depend on the size of such data.

The methodology proposed in this paper has been applied to a task graph extracted
from a real video graphics application processing pixels of a digital image. Many real-
life signal processing applications are subject to tight throughput constraints, therefore
leverage a pipelined workload allocation policy. As a consequence, the input graph to
our methodology consists of a pipeline of processing tasks, and can be easily extended
to all pipelined applications.

3 Motivation for the approach

The problem described in the previous section has a very interesting structure. As a
whole, the problem is a scheduling problem with alternative resources. In fact, each
task should be allocated to one of the processors (Nodei in Figure 1). In addition, each
memory slot required for processing the task should be allocated to a memory device.
Clearly, tasks should be scheduled in time subject to real time constraints, precedence
constraints, and capacity constraints on all unary and cumulative resources. However,
from a different perspective, the problem decomposes into two problems:

– the allocation of tasks to processors and the memory slots required by each task to
the proper memory device;

– a scheduling problem with static resource allocation.

The objective function of the overall problem is the minimization of communication
cost. This function involves only variables of the first problem. In particular, we have a
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communication cost each time two communicating tasks are allocated on different pro-
cessors, and each time a memory slot is allocated on a remote memory device. Once we
have optimally allocated tasks to resources, we can minimize the schedule makespan.

The allocation problem is difficult to solve with Constraint Programming (CP). CP
has a naive method for solving optimization problems: each time a solution is found,
an additional constraint is added stating that each successive solution should be better
than the best one found so far. If the objective function is strongly linked to decision
variables, CP can be effective, otherwise it is hopeless to use CP to find the optimal
solution. In case the objective function is related to a single variable, like for makespan
in scheduling problems, CP works well. However, if the objective function is a sum of
cost variables, CP is able to prune only few values, deep in the search tree since the
connection between the objective function and the problem decision variables is weak.
If the objective function relates to pairs of assignments the situation is even worse. This
is the case of our application where the objective function relates alternative resources
to couples of tasks. In fact, data transfer on the bus (and thus the objective function
increase) occurs when two communicating tasks are allocated to different processors.
Integer Programming (IP), instead, is extremely good to cope with these problems.

On the contrary, IP is weaker than CP in coping with time. Scheduling problems
require to assign tasks to time slots, each slot being represented by an integer variable.
The number of variables increases enormously if the granularity of the timeline is fine.

Therefore, the first problem could be solved with IP effectively, while for the second
CP is the technique of choice. The question is now: how do these problems interact?

We solve them separately, the allocation problem first (called master problem), and
the scheduling problem (called subproblem) later. The master is solved to optimality
and its solution passed to the subproblem solver. If the solution is feasible, then the
overall problem is solved to optimality. If, instead, the master solution cannot be com-
pleted by the subproblem solver, a no-good is generated and added to the model of
the master problem, roughly stating that the solution passed should not be recomputed
again (it becomes infeasible), and a new optimal solution is found for the master prob-
lem respecting the (set of) no-good(s) generated so far. Being the allocation problem
solver an IP solver, the no-good has the form of a linear constraint.

Now let us note the following: the assignment problem allocates tasks to processors,
and memory requirements to storage devices minimizing communication costs. How-
ever, since real time constraints are not taken into account by the allocation module,
the solution obtained tends to pack all tasks into the minimal number of processors. In
other words, the only constraint that prevents to allocate all tasks to a single processors
is the limited capacity of the tightly coupled memory devices. However, these trivial
assignments do not consider throughput constraints which make them most probably
infeasible for the overall problem. To avoid the generation of these (trivial) assign-
ments, we should add to the master problem model a relaxation of the subproblem. In
particular, we should state in the master problem that the sum of the durations of tasks
allocated to a single processor does not exceed the realtime requirement. In this case,
the allocation is far more similar to the optimal one for the problem at hand. The use of
a relaxation in the master problem is well known and widely used in practice and helps
in producing better solutions.
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A similar method is known in Operations Research as Benders Decomposition [2],
where the overall problem can be decomposed in two parts connected by some vari-
ables. Indeed, in this method, the subproblem should be easy.

In [3], for example, Logic-Based Benders Decomposition is used to solve an allo-
cation and scheduling problem where precedence constraints among tasks assigned to
different resources are not considered; in this case we have a set of independent sub-
problems, for each facility. In our case, we can have precedence constraints between
tasks allocated to different facilities and the subproblem is therefore an NP-complete
problem, but CP is a very effective method to solve it.

4 Model definition

As described in section 3, the problem we are facing can be split into the resource
allocation master problem and the scheduling sub-problem.

4.1 Allocation problem model

We start from the task graph presented in section 2. Each task should be allocated to
a processor. In addition it needs a given amount of memory to store data. Data can be
allocated either in the local memory of the processor running the task or in the remote
one except for communication queues that are always mapped locally. The allocation
problem is the problem of allocatingn tasks tom processors, such that the total amount
of memory allocated to the tasks, for each processor, does not exceed the maximum
available.

We assume the remote on-chip memory to be of unlimited size since it is able to
meet the memory requirement of the application we are facing (small granularity pro-
gram data). The problem objective function is the minimization of the amount of data
transferred on the bus. We model the problem as an integer program and we consider
four decision variables in the model:

– Tij , taking value 1 if taski executes on processorj, 0 otherwise,
– Yij , taking value 1 if taski allocates the program data on the scratchpad memory

of processorj, 0 otherwise,
– Zij , taking value 1 if taski allocates the internal state on the scratchpad memory

of processorj, 0 otherwise,
– Xij , taking value 1 if taski executes on processorj and taski + 1 does not, 0

otherwise.

The constraints we introduced in the model are:
m∑

j=1

Tij = 1, ∀i ∈ 1 . . . n (1)

Xij = |(Tij − Ti+1j)|, ∀i ∈ 1 . . . n, ∀j ∈ 1 . . . m (2)

Constraints (1) state that each process can execute only on a processor, while constraints
(2) state thatXij can be equal to 1 iffTij 6= Ti+1j , that is, iff taski and taski + 1
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execute on different processors. Constraints (2) are not linear (Xij is theexor of Tij

andTi+1j), thus we cannot use them in a IP model. If we consider that the sumXij +
Tij + Ti+1j must always equal either to 0 or 2, constraints (2) can be rewritten as:

Tij + Ti+1j + Xij − 2Kij = 0 ,∀i , ∀j (3)

whereKij are integer binary variables that enforce the sumTij + Ti+1j + Xij to be
equal either to 0 or 2.

We add to the problem the constraints stating thatTij = 0 ⇒ Yij = 0, Zij = 0
meaning that if a processorj is not assigned to a taski neither its program data nor the
internal state can be stored in the local memory of processorj.

As explained in section 3, in order to prevent the master problem solver to produce
trivially infeasible solutions, we need to add to the master problem model a relaxation
of the subproblem. For this purpose, for each set of consecutive tasks whose execution
times sum exceeds the real time requirement (RT), we impose constraints preventing
the solver to allocate all the tasks in the group to the same processor.

To generate this constraints, we find out all groups of consecutive tasks sum of
whose execution times (Duri) exceeds RT. Constraints are the following:

∑

i∈S

Duri > RT ⇒
∑

i∈S

Tij ≤ |S| − 1 ∀j (4)

The objective function is the minimization of the total amount of data transferred
on the bus for each pipeline. This amount consists of three contributions: when a task
allocates its program data in the remote memory, it reads these data throughout the ex-
ecution time; when a task allocates the internal state in the remote memory, it reads
these data at the beginning of its execution and updates them at the end; if two con-
secutive tasks execute on different processors, their communication messages must be
transferred through the bus from the communication queue of one processor to the other.
Using the decision variables described above, we have a contribution respectively when:
Tij = 1, Yij = 0; Tij = 1, Zij = 0; Xij = 1. Therefore, the objective function is to
minimize:

n∑

i=1

m∑

j=1

(memi(Tij − Yij) + 2× statei(Tij − Zij) + (dataiXij)/2) (5)

wherememi, statei anddatai are coefficients representing the amount of data used by
taski to store respectively the program data, the internal state and the communication
queue.

4.2 Scheduling problem model

Once tasks have been allocated to the processors, we need to schedule process exe-
cution. Since we are considering a pipeline of tasks, we need to analyze the system
behavior at working rate, that is when all processes are running or ready to run. To do
that, we need to consider several instantiations of the same process; to achieve a work-
ing rate configuration, the number of repetitions of each task must be at least equal to
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the number of tasksn; in fact, aftern iterations, the pipeline is at working rate. So, to
solve the scheduling problem, we must consider at leastn2 tasks (n iterations for each
process), see Figure 2.

In the scheduling problem model, for each taskTaskij we considered an activity
Aij , (i = [0 . . . n − 1], j = [0 . . . n − 1]), representing the computation of the task.
Aij is the j-th iteration of the i-th process. Once the allocation problem is solved, we
statically know if a task needs to use the bus to communicate with another task, or to
read/write computation data and internal state in the remote memory. In particular, each
activity Aij must read the communication queue from the activityAi−1j , or from the
pipeline input ifi = 0. To schedule these phases, we consider the activitiesInij . If a
process requires an internal state, the state must be read before the execution and writ-
ten after the execution: we therefore consider the activitiesRSij andWSij for each
taski requiring an internal state. The duration of these activities depends on whether
the data are stored in the local or the remote memory (data transfer through the bus
needs more time than the transfer of the same amount of data using the local mem-
ory) but, after the allocation, these durations can be statically calculated. These activity
are introduced in the model using variablesStart Aij , Start Inij , Start RSij and
Start WSij , representing the starting time of the corresponding activity. We also use
the valuesDur Aij , Dur Inij , Dur RSij andDur WSij to represent the execution
times of the corresponding activities.

Fig. 2. Precedence constraints among the activities

Figure 2 depicts the precedence constraints among the tasks. Each taskTaskij rep-
resents the activityAij possibly preceded by the internal state reading activityRSij ,
and input data reading activityInij , and possibly followed by the internal state writing
activity WSij .

The precedence constraints among the activities introduced in the model are:

Ai,j−1 ≺ Inij , ∀ i, j (6)

Inij ≺ Aij , ∀ i, j (7)

Ai−1,j ≺ Inij , ∀ i, j (8)

RSij ¹ Aij , ∀ i, j (9)

Aij ¹ WSij , ∀ i, j (10)

Ini+1,j−1 ≺ Aij , ∀ i, j (11)

Ai,j−1 ≺ Aij , ∀ i, j (12)
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where the symbol≺ means that the activity on the left should precede the activity
on the right, and the symbol¹ means that the activity on the right must start as soon
as the execution of the activity on the left ends: i.e.,Inij ≺ Aij meansStart Inij +
Dur Inij ≤ Start Aij , andRSij ¹ Aij meansStart RSij+Dur RSij = Start Aij .

Constraints (6) state that each task iteration can start reading the communication
queue only after the end of its previous iteration. Constraints (7) state that each task can
start only when it has read the communication queue, while constraints (8) state that
each ask can read the data in the communication queue only when the previous task has
generated them. Constraints (9) and (10) state that each task must read the internal state
just before the execution and write it just after. Constraints (11) state that each task can
execute only if the previous iteration of the following task has read the input data; in
other words, it can start only when the memory allocated to the process for storing the
communication queue has been freed. Constraints (12) state that the iterations of each
task must execute in order.

Furthermore, we introduced the real time requirement constraints (13), whose re-
laxation is used in the allocation problem model. Each task must execute at most each
time periodRT .

Start(Aij)− Start(Ai,j−1) ≤ RT , ∀ i, j (13)

Each processor is modelled as a unary resource, that is a resource with capacity
one. As far as the bus is concerned, as explained in section 2, we make a simplification:
a real bus is a unary resource but, if we model a bus as a unary resource, we should
describe the problem at a finer grain with respect to the one we use, i.e., we have to
model task execution using the clock cycle as unit of time. The resulting scheduling
model would contain a huge number of variables. We therefore consider the bus as an
additive resource, in the sense that more activities can share the bus resource using only
a fraction of the total bandwidth available.

Figure 3 depicts this assumption. The leftmost figure represents the bus allocation in
a real processor, where the bus is assigned to different tasks at different times. Each task,
when owning the bus, uses its total bandwidth. The rightmost figure, instead, represents
how we model the bus. The bus arbitration mechanism will then transform the bus
allocation into the interleaving of fine granularity bus transactions on the real platform.

Fig. 3. Bus allocation in a real processor (left) and in our model (right)
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In particular, to define the communication requirements of each task (the amount of
computation data stored in the remote memory) we consider the amount of data they
have to communicate and we spread it over its WCET. In this way we consume only
a fraction of the overall bus bandwidth for the duration of the task. In the 2 graphs in
figure 3 light grey and dark grey areas are equal.

When an allocation is provided, the minimal makespan schedule is computed if it
exists. On the contrary, if no feasible schedule exists, we have to generate a no-good
and pass it to the allocation module. The no-good should prevent the allocation to be the
same of the previous iteration. Since the allocation module is an Integer Programming
solver, the no-good should have the form of a linear constraint. In particular, we select
all the resources that provoke a failure, e.g., either resources whose capacity is violated,
or resources that lead to a violation of real time constraints. We call themconflicting
resources, CR. Then, we impose that for each resource inR ∈ CR the set of tasksSTR

allocated toR should not be reassigned to the same resource in the next iteration. For
example if a conflicting resourceR is a processor andSTR the set of tasks previously
allocated to it, the resulting no-good is:

∑

i∈STR

TiR ≤ |STR| − 1

In the same way, we have constraints for preventing failures in storage device.
These are the simplest kind of no-goods that can be added to the master problem

since they state that the current solution must not be computed again. Even if they can be
improved, as shown in [7], we will show in the next section that they are very effective.

5 Experimental results

To validate the strength of our approach, we now compare the results obtained using
this model (Hybrid in the following) with results obtained using only a CP or IP model
to solve the overall problem. Actually, since the first experiments showed that both CP
and IP approaches are not able to find a solution, except for the easiest instances, within
15 minutes, we simplified these models removing some variables and constraints. In
CP, we fixed the activities execution time not considering the execution time variability
due to remote memory accesses, therefore we do not consider theInij , RSij andWSij

activities, including them statically in the activitiesAij . In IP, we do not consider all
the variables and constraints involving the bus: we do not model the bus resource and
we therefore suppose that each activity can access data whenever it is necessary.

We generated a large variety of problems, varying both the number of tasks and
processors. All the results presented are the mean over a set of 10 problems for each
task or processor number. All problems considered have a solution. Experiments were
performed on a 2GHz Pentium 4 with 512 Mb RAM. We used ILOG CPLEX 8.1 and
ILOG Solver 5.3 as solving tools.

In figures 4 and 5 we compare the algorithms search time for problems with a dif-
ferent number of tasks and processors respectively. Times are expressed in seconds and
the y-axis has a logarithmic scale.



11

0.1

1

10

100

1000

4 5 6 7 8 9 10

Number of Tasks

T
im

e 
in

 s
ec

. (
lo

g)

Hybrid

IP

CP

Fig. 4.Comparison between algorithms search
times for different task number

0.1

1

10

100

1000

1 2 3 4 5 6 7

Number Of Processors

T
im

e 
in

 s
ec

. (
lo

g)

Hybrid

IP

CP

Fig. 5.Comparison between algorithms search
times for different processor number

Although CP and IP deal with a simpler problem model, we can see that these algo-
rithms are not comparable with Hybrid, except when the number of tasks and processors
is low; this is due to the fact that the problem instance is very easy to be solved, and Hy-
brid loses time creating and solving two models, the allocation and the scheduling. As
soon as the number of tasks and/or processors grows, IP and CP performances worsen
and their search times become orders of magnitude higher w.r.t. Hybrid. Furthermore,
we considered in the figures only instances where the algorithms are able to find the
optimal solution within 15 minutes, and, for problems with 6 tasks or 3 processors and
more, IP and CP can find the solution only in the 50% or less of the cases. On the con-
trary, we can see that Hybrid search time scales up linearly (in the logarithmic scale)
for all the case.

We also measured the number of times the solver iterates between the master and
the sub-problem. We found that, due to the limited size of the local memories and to
the relaxation of the sub-problem added to the master, the solver iterates 1 or 2 times.
Removing the relaxation, it iterates up to 15 times. This result gives evidence that, in
a Benders decomposition based approach, it is very important to introduce a relaxation
of the sub-problem in the master, and that the relaxation we use is very effective.

6 Related work

The synthesis of distributed system architectures has been extensively studied in the
past. The mapping and scheduling problems on multi-processor systems have been tra-
ditionally modelled as integer linear programming problems. An early example is rep-
resented by the SOS system, which used mixed integer linear programming (MILP)
model [8]. SOS considers processor nodes with local memory, connected through di-
rect point-to-point channels. The algorithm does not consider real-time constraints. Par-
titioning under timing constraints has been addressed in [9]. A MILP model that allows
to determine a mapping optimizing a trade-off function between execution time, pro-
cessor and communication cost is reported in [10].

Extensions of the IP formulation have also been used to account for memory allo-
cation requirements, besides communication and computation ones. A hardware/soft-
ware co-synthesis algorithm of distributed real-time systems that optimizes the memory
hierarchy (caches) along with the rest of the architecture is reported in [11]. An integer
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linear programming model is used in [12] to obtain an optimal distributed shared mem-
ory architecture minimizing the global cost to access shared data in the application, and
the memory cost.

The above techniques lead to static allocations and schedules that are well suited
for applications whose behaviour can be accurately predicted at design time, with min-
imum run-time fluctuations. This is the case of signal processing and multimedia appli-
cations. Pipelining is one common workload allocation policy for increasing throughput
of such applications, and this explains why research efforts have been devoted to ex-
tending mapping and scheduling techniques to pipelined task graphs. An overview of
these techniques is presented in [13]. IP formulations as well as heuristic algorithms
have been traditionally employed. In [14] a retiming heuristic is used to implement
pipelined scheduling, that optimizes the initiation interval, the number of pipeline stages
and memory requirements of a particular design alternative. Pipelined execution of a
set of periodic activities is also addressed in [15], for the case where tasks have dead-
lines larger than their periods. Palazzari et al. [16], focus on scheduling to sustain the
throughput of a given periodic task set and to serve aperiodic requests associated with
hard real-time constraints. Mapping of tasks to processors, pipelining of system spec-
ification and scheduling of each pipeline stage have been addressed in [17], aiming at
satisfying throughput constraints at minimal hardware cost.

In general, even though IP is used as a convenient modelling formalism, there is
consensus on the fact that pure IP formulations are suitable only for small problem
instances (task graphs with a reduced number of nodes) because of their high computa-
tional cost. For this reason, heuristic approaches are widely used. A comparative study
of well-known heuristic search techniques (genetic algorithms, simulated annealing and
tabu search) is reported in [18]. Eles et al. [19] compare the use of simulated annealing
and tabu search for partitioning a graph into hardware and software parts while trying
to reduce communication and synchronization between parts. More scalable versions
of these algorithms for large real-time systems are introduced in [20]. Many heuristic
scheduling algorithms are variants and extensions of list scheduling [21].

Heuristic approaches provide no guarantees about the quality of the final solution.
On the other hand, complete approaches which compute the optimum solution (possi-
bly, with a high computational cost), can be attractive for statically scheduled systems,
where the solution is computed once and applied throughout the entire lifetime of the
system.

Constraint Programming (CP) is an alternative approach to Integer Programming
(IP) for solving combinatorial optimization problems. The work in [22] is based on
Constraint Logic Programming to represent system synthesis problem, and leverages a
set of finite domain variables and constraints imposed on these variables. Optimal so-
lutions can be obtained for small problems, while large problems require use of heuris-
tics. The proposed framework is able to create pipelined implementations in order to
increase the design throughput. In [23] the embedded system is represented by a set
of finite domain constraints defining different requirements on process timing, system
resources and interprocess communication. The assignment of processes to processors
and interprocess communications to buses as well as their scheduling are then defined
as an optimization problem tackled by means of constraint solving techniques.
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Both CP and IP techniques can claim individual successes but practical experience
indicates that neither approach dominates the other in terms of computational perfor-
mance. The development of a hybrid CP-IP solver that captures the best features of
both would appear to offer scope for improved overall performance [24]. However, the
issue of communication between different modelling paradigms arises. One method is
inherited from the Operations Research and is known as Benders Decomposition [2]:
it is proved to converge producing the optimal solution. Benders Decomposition (BD)
technique has been extensively used to solve a large variety of problems.

In [25] BD is applied to a numeric algorithm in order to solve the problem of verify-
ing logic circuits: results show that, for some kind of circuits, the technique is an order
of magnitude faster w.r.t. other state of the art algorithms. In [26], BD is embedded in
the CP environment ECLiPSe and is shown that it can be useful in practice. There are
a number of papers using Benders Decomposition in a CP setting. In [27] BD is ap-
plied to an allocation and scheduling problem; the master problem (allocation) is based
on CP and the sub-problem (scheduling) is solved using a real-time scheduler with
fixed task priority. In [28] the branch and check framework is proposed using Benders
Decomposition. This technique is applied to the problem of scheduling orders on dis-
similar parallel machines, where a set of tasks, linked by precedence constraints, must
be performed on a set of parallel machines minimizing the total cost of the process. The
machines are dissimilar, so the same task can be executed on a different machine with a
different cost and processing time. In [4], BD is applied to minimum cost planning and
scheduling problems in a scenario similar to the one described in this paper, considering
also release and due date constraints. Here costs depend only on the assignment of tasks
to machines, differently from our problem, where contributes to the objective function
depend on pairs of assignments. In [3] and [7], Logic-Based BD (a variant of BD intro-
duced in [29], where the sub-problem should not necessarily be an IP problem) is used
for Planning and Scheduling problems. Here different objective functions are consid-
ered: total cost minimization, makespan, tardiness, and number of late jobs. Precedence
constraints among tasks assigned to different resources are not considered1: after the
allocation phase, the scheduling can be done solving a separate scheduling problem for
each facility. Our work addresses therefore an harder problem, being the schedules on
different facilities all interconnected.

Although a lot of work has been done applying BD to allocation and scheduling
problems, we believe that our approach is not directly comparable with them, mainly
because we take in consideration a real application where data must be exchanged be-
tween tasks and each task must read/write data (and thus must use the bus resource)
during its execution.

7 Conclusion and future works

In this paper, we have faced a challenging problem arising in the field of multi-processor
systems-on-chip (MPSoCs). The structure of the problem suggests a decomposition ap-
proach based on the interaction of two problem solvers: one allocating tasks to alterna-
tive resources and memory requirement to storage devices; the second scheduling tasks

1 In [7] the author considers precedence constraints among tasks allocated to the same facility
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subject to temporal and resource constraints. The first problem solver exploits math-
ematical programming techniques, while the second is based on CP. The interaction
between these problem solvers is regulated by no-good generation.

We provide experimental evidence that our approach outperforms the one consid-
ering the problem as a whole and using a single technique (CP or IP) separately. The
work in progress is aimed at generalizing the problem for introducing message queues
on the shared memories so as to decouple the computation and communication through
non blocking synchronization.

Currently, we are investigating the executability of the solutions found using a MP-
SoCs platform simulator. We are also extending our tool to an allocation and scheduling
problem in a platform where processors can scale their voltage. An optimal solution
must therefore not only allocate tasks to processors and memory slot to storage devices,
but also associate a voltage and a clock frequency to each task execution, minimizing
the total power consumption.
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