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Abstract. Combinatorial auctions are an important e-commerce appli-
cation where bidders can bid on combinations of items. The problem of
selecting the best bids that cover all items, i.e., the Winner Determina-
tion Problem (WDP), is NP-hard. In this paper we consider the time
constrained variant of this problem, that is the Bid Evaluation Problem
(BEP) where temporal windows and precedence constraints are associ-
ated to each task in the bid. We propose different algorithms based on
CP, IP and a hybrid approach based on both of them. We show that
even the simplest pure CP based approach outperforms the only existing
approach. We selected a set of algorithms which do not dominate each
other. We identified a set of instance-dependent structural features that
enable to select the best class of algorithms to apply. This is the first
step toward an automatic algorithm selection in algorithm portfolios.

1 Introduction

Business to business e-commerce applications are becoming more and more pop-
ular. Among them, auctions are a way of allocating items among autonomous
and self-interested agents. Items are not limited to goods, but can represent also
resources and services.

In this paper we consider combinatorial auctions, see [4]. Among M items,
bidders can bid on combinations of items, and associate a price for each combi-
nation. The auctioneer should solve the Winner Determination Problem (WDP),
i.e., he should choose the best bids that cover all items at a minimum cost or
maximum revenue. This problem is NP-hard.

A variant of this problem is the so called Bid Evaluation Problem (BEP)
for coordinated tasks. When the auctioneer should, for example, buy a set of
services, he should also consider temporal constraints. Therefore, items in the
bid are associated to a temporal window, a duration, and are linked by prece-
dence constraints. In this case, beside the WDP, the auctioneer should maintain
feasibility of the temporal constraints. To our knowledge, the only system that
tackles this problem is MAGNET (Multi-Agent Negotiation testbed) [1] and it
is based on Integer Programming and Simulated Annealing.
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Surprisingly, Constraint Programming (CP) has been very rarely used to
solve either the WDP or the BEP, while we think CP can be successfully used
as an effective tool for modelling and solving problems related to combinato-
rial auctions. In particular, CP can be effective when additional constraints are
introduced.

In this paper, we propose different algorithms for the BEP: two variants of
a pure CP algorithm, one based on Limited Discrepancy Search (LDS) and one
on Depth First Search (DFS); two approaches based on pure IP and two hybrid
approaches merging CP and IP, one based on LDS and one on DFS. We show that
even the simplest approach we developed, based on pure CP, outperforms the
one presented in MAGNET1. We evaluated all algorithms and discovered that
those based on DFS are always dominated by the others. Among the remaining
algorithms none of the them dominates all the others, so we tried to select among
the set of instance-dependent structural features proposed in [3] the ones that
allow to select the best algorithm. An interesting result achieved is that the
standard deviation of the Clustering Coefficient provides a clear indication if to
use an IP or a CP based algorithm.

2 Bid Evaluation Problem: Model and Algorithms

We have different variants of combinatorial auctions. In this paper, we consider
single unit reverse auctions, where the auctioneer wants to buy a set M of
distinguishable items (services) minimizing the cost.

Each bidder j (j = 1..n) posts one or more bids. A bid is represented as
Bj = (Sj , Estj , Lstj , Dj , pj) where a set Sj ⊆ M of services is proposed to be
sold at the price pj . Estj and Lstj are lists of earliest and latest starting time
of the services in Sj and Dj their duration.

The BEP can be seen as a variant of the WDP where a set of temporal
constraints define the feasibility of the assignments computed by the WDP.

We implemented four algorithms, plus two variants based on DFS and LDS,
to solve the BEP. Two algorithms are based on the IP model: the first (referred in
tables to as IP) is a traditional complete solver implementing Branch and Bound
based on linear relaxation, while the second (referred in tables to as LR+IP) is
an incomplete approach that solves the linear relaxation of the problem, then
ranks the variables according to their shadow price, and finally solves the IP
problem considering only the first p% variables, where p is a parameter to be
experimentally tuned.

One algorithm is based on a pure CP model (referred in tables to as CP).
Starting from the same model, one variant explores the search tree with DFS
and one with LDS. In both cases, the heuristic used to select the variable value
is the bid-price divided by bid-size, that is pi/|Si|. The last approach, referred
to as LR+CP in tables, performs an indeed quite loose but effective integration.
Starting from a CP model, we solve a linear relaxation at the root node and we

1 This software has been kindly provided by the authors J. Collins and M. Gini.
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order values based on shadow prices. Again we have two variants, one based on
DFS and one on LDS.

3 Comparing CP and MAGNET

We first compared the pure CP algorithms we developed and MAGNET [1] on
instances generated using MAGNET itself. We ran our experiments on a 2.4Ghz
Intel Pentium 4 with 512Mb RAM. We considered four kinds of MAGNET in-
stances with a number of tasks between 5 and 20 and bids between 15 and 400.

For each instance set we used our CP algorithms, MAGNET implementing
Simulated Annealing (referred to as SA in figures) and, when possible, MAGNET
using Integer Programming (M-IP).

In the first two sets of experiments (5 tasks and 15 bids and 10 tasks and 35
bids), the M-IP approach always finds the optimal solution, while in the third (10
tasks and 100 bids) it does not provide the optimal solution within 15 minutes.
In the first set also SA provides the optimal solution, while, in the second set,
it provides the optimal solution only in the 60% of the cases. In the third set of
experiments it never provides the optimal solution. Our CP approaches always
finds the optimal solution in all instance sets. Mean search time for the first
three sets are depicted in Figure 1, where for each group values are normalized
w.r.t. mean value over all algorithms.

As concern the fourth instance set (20 tasks and 400 bids) none of the ap-
proaches find the optimal solution within 15 minutes, but solutions found found
by the CP based approaches are, on average, 30% better than those produced by
MAGNET. Moreover, the time to produce the best solution is in general consid-
erably lower than 15 minutes and our algorithms always outperform MAGNET.
The relative quality of SA with respect to LDS and DFS is also depicted in
Figure 2 where we show the trend of the solution quality for hard instances with
SA, DFS and LDS. M-IP approach did not find any solution.

Fig. 1. Comparison between
algorithms

Fig. 2. Comparison between algorithms on instances
with 20 tasks and 400 bids
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4 Experimental Results of CP, IP
and Hybrid Approaches

In this section, we provide results on instances generated using both MAGNET
and CATS, a suite for generating realistic auction instances [2]. CATS instances
are more realistic, enabling to set an higher bid-size and bid-size variability. We
generated problems with 10, 15, 20 and 30 tasks, with a number of bids growing
from 40 up to 1000 and with a variable tasks-per-bid values.

In Figure 3 we present results for all algorithms described in section 2 except
for those using DFS since they are always outperformed by those using LDS.
Each group in the histogram represents a different instance set, having the mean
tasks-per-bid value expressed in x-axis. Y-axis values represent, for each group,
mean search time normalized w.r.t. mean over all algorithms. Some instances
are best solved by CP-based approaches (namely CP and LR+CP), while others
by IP approaches (namely IP and LR+IP), depending on the number of tasks-
per-bid (see Section 5 for a deeper analysis).

Finally, we ran experiments on hardest problems, with 30 tasks, 1000 bids
and a growing tasks-per-bid value. We found that only the IP-based approach
provided results. In Table 1 we show the mean search time for both complete
and incomplete IP solver (i.e., IP and LR+IP). For the incomplete approach,
the percentage of variables considered is reported in the last column. Only in
the first 3 instance sets it was possible to prove optimality over all instances.

5 Problem Structure Analysis

In this section, we are interested in identifying a set of instance-dependent pa-
rameters that help in determining the best algorithm to solve the instance itself.
From tables in previous section, we noticed that tasks-per-bid parameter roughly
influences algorithms’ quality. Here we are interested in more precise parameter.

Starting from the notable classification in [3], we extracted from each instance
the 25 features described in the paper. We refer to the bid graph, where each
node represents a bid and each edge stands between two bids if there is one or
more constraints containing that bids. An interesting result achieved is that there

Fig. 3. Comparison between algorithms

Table 1. Comparison between IP algo-
rithms on instances with 30 tasks and 1000
bids

Tasks for BidSearch time (ms)CR%
IP LR+IP

1.40 36328 1235 70
2.49 242281 3500 45
3.34 9̃00000 6975 25
4.62 - 19681 25
6.52 - 25969 30
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is a correspondence between the standard deviation of the Clustering Coefficient
(SDCC) in the bid graph and the experimental results. SDCC is a measure of
the local cliqueness. Typically, in our instances this value ranges from 0.02 e
0.2, and each time it is greater than 0.09, the IP-based approach is preferable
to the CP-based one. It is worth noting the fact that, if SDCC is close to 0.09
both approaches have satisfactory behaviors. For the instances considered it is a
systematic result, but, unfortunately, for larger instances this feature extraction
takes too much time. Therefore, we looked for a similar but easier-to-compute
parameter. We observed that there is a correspondence between SDCC and the
Edge Density (ED) in the bid graph. ED can range from 0 to 1, and we observed
that it is in inverse proportion with SDCC.

We have identified three significant ranges for the ED: if ED < 0.5, SDCC is
always greater than 0.09 (thus the IP-based approach is preferable); if ED>0.75,
SDCC is always lower than 0.09 (thus the CP-based approach is preferable); if
0.5 < ED < 0.75, we do not have a clear indication of SDCC and therefore on
the preferable approach. In this case, we recompute ED allowing multiple edges
between the nodes (when more than one constraint is present among them). If
new ED is significantly greater than the previous one, the CP-based approach is
to be preferred; otherwise, if it remains quite unchanged, the best approach is IP.

If the IP approach is the technique of choice, we can use either the complete
approach or the incomplete one named LR+IP. So we have to tune the percent-
age of variables to be considered. We did not find a systematic correspondence
between those choices and any feature we calculated, but from the L1 and L∞
norms of the integer slack vector we can often find out a good superior bound-
ary to the percentage of variables to be considered using IP approach. These
norms are in a way a measure of how fractional is the linear relaxation solution;
we noticed that, in general, the higher the norms, the higher the percentage of
variables to include to obtain the best solution.
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