
Making Choices Using Structure at the Instance
Level exploiting Case Based Reasoning?

C. Gebruers(1) and A. Guerri(2) and B. Hnich(1) and M. Milano(2)

(1) Cork Constraint Computation Centre,
University College Cork,

Cork, Ireland.
{c.gebruers,b.hnich}@4c.ucc.ie

(2) DEIS, University of Bologna, Viale Risorgimento 2,
40136 Bologna, Italy.

{aguerri,mmilano}@deis.unibo.it

1 Introduction

Constraint programming (CP) and Integer Linear Programming (IP) are both
highly successful technologies for solving a wide variety of combinatorial op-
timization problems. When modelling a combinatorial optimization problem,
there is often a choice about what technology to use to solve that problem. For
instance in the Bid Evaluation problem (BEP) –a combinatorial optimization
problem arising in combinatorial auctions– both CP and IP can successfully be
used [3]. While there exist domains where one can easily predict what technology
will excel, in many domains it is not clear which will be more effective. The BEP
falls into the latter case.

How do we choose among technologies when all instances share the same
problem structure? We are currently investigating machine learning methodolo-
gies to explore structure at the instance level as a means to distinguish whether
to use CP or IP to solve instances of the BEP.

In [4] a technique based on Decision Trees is explored and used to select
the best algorithm for a BEP instance. Here we investigate another approach
based on Case Based Reasoning (CBR), a technique arising within Artificial
Intelligence, as a framework within which to carry out this exploration. CBR
utilises similarity between problems to determine when to reuse past experiences
to solve new problems. An experience in this context is what technology to use to
solve an instance of the BEP. Using a representation that distinguishes problems
at the instance level, and a similarity function to compare problems expressed
in this representation, enables us to determine what technology to use on a new
problem instance.

? This work has received support from Science Foundation Ireland under Grant
00/PI.1/C075. This work was partially supported by the SOCS project, funded by
the CEC, contract IST-2001-32530.

2 Bid Evaluation Problem

Combinatorial auctions are an important e-commerce application where bidders
can bid on combination of items. The Winner Determination Problem WDP is
the task of choosing, from among M bids, the best bids that cover all items
at a minimum cost or maximum revenue. The winner determination problem is
NP-hard. The Bid Evaluation Problem BEP, is a time constrained version of the
WDP and consequently involves temporal and precedence constraints. Items in
a bid are associated with a time window (and hence duration) and are inter-
connected by precedence constraints. A solution to the BEP involves solving
the WDP and additionally satisfying the temporal and precedence constraints.
We consider BEPs in the context of the single unit reverse auction, a variant
of combinatorial auctions where the auctioneer wants to buy a set M of distin-
guishable items, minimising the cost. In [3], different approaches based on pure
CP, pure IP and hybrid approaches mixing the two have been developed and
tested. Furthermore, variants of these technologies are considered involving dif-
ferent parameter settings for each technology. In this work we concern ourselves
with a sub-problem of deciding whether to use CP or IP as a solution technol-
ogy for the BEP. Due to lack of space, we refer the reader to [3] for detailed
information about the CP and IP models developed for the BEP.

3 What Technology?

As a consequence of dominant structure apparent in a problem domain, there are
situations where clear predictions about whether to use CP or IP can be made.
For instance, when side constraints complicate the problem, CP can accommo-
date them gracefully and indeed take advantage of them. When the problem is
highly structured, polyhedral analysis can be highly effective. When the prob-
lem has a loose continuous relaxation, constraint propagation methods, and thus
CP, can overcome this weakness. If, instead, relaxations are tight and linear con-
straints tidily represent the problem, IP should most probably be used. However
deciding whether to use IP or CP to solve a particular combinatorial optimi-
sation problem is often an onerous task. Experimental results evaluating the
performance of the two strategies considered for the BEP, show that neither CP
nor IP is a clear winner [3]. These results further indicate that there isn’t any
simplistic structure or problem feature, that correlates with choice of suitable
technology. Hence we propose to explore whether structure at the instance level
can be used to discriminate between CP and IP for the BEP.

4 CBR Framework

CBR enables past problem solving experiences to be reused to solve new prob-
lems [5]. CBR has been successfully used in the context of e.g. diagnosis and
decision support [6], design and configuration [1], etc. Experiences are stored
along with the problems they solve as cases. A case is a representative example

CasebaseInstance’

Strategy

Strategy’

Evaluation

Execution &

Strategy’

Strategy’

Instance’

Instance

Strategy

RETRIEVE REUSE

RETAIN

New Case

Adapt

REVISE

Fig. 1. 3 Methodology Overview

of a cluster of instances (a cluster can contain from 1 to n instances) that are
similar to one another, but different from other clusters of instances. A particu-
lar technology (CP or IP in this work), is associated with one or more clusters
of instances i.e. cases.

A CBR system consists of a four step cycle; retrieve, reuse, revise, and retain.
To solve a new problem, we retrieve a case from the casebase, whose problem
part is most similar to the new problem. We then reuse the experience part
of the case to solve the new problem. The casebase may be revised in light of
what has been learned during this most recent problem solving episode and if
necessary the retrieved experience, and the new problem, may be retained as a
new case. Every time a new problem instance is presented to the system, this
cycle enables a CBR system to both learn new experiences and to maintain or
improve the quality of the cases.

We now describe a CBR system called Selector that enables us explore the
use of structure at the instance level to predict whether to use CP or IP for BEP
instances. Firstly, consider a case in Selector. For now we will simply refer to
the problem part of a case in abstract terms. We do this because the choice of how
to represent a problem instance is one aspect to be explored. The experience part
of a case corresponds to the appropriate technology for that instance (determined
by experimentation) i.e. CP or IP. A case is thus a tuple composed of an abstract
representation of an instance, and an appropriate technology (either CP or IP)
that efficiently solves that instance. The final element of the system is a function
fsim to compute the similarity between two problem instances. The choice of
fsim is inextricably linked to the problem representation and hence is the other
aspect we wish to explore in this work.

Selector has two modes of operation; a training mode and a testing mode.
A dataset is randomly divided into two sub-sets for training and testing purposes.
Initially, the casebase is seeded with a random instance. In training mode, a

casebase is assembled using the training problems. We expect that the instances
retained in the casebase constitute examples of when to use the appropriate
technology. The training mode consists of the following activities:

Retrieval: The current training instance is compared with every case in the
casebase and the most similar case (established using an fsim) is returned;

Reuse: The current training instance is solved using the technology identified
by the case retrieved during the retrieval step;

Training Evaluation: The current training instance is solved using the other
technologies that could have been chosen. The results of this step and the
reuse step are recorded in preparation for the next step.

Revise & Retain: If the retrieved case has predicted incorrectly, then a new
case is assembled consisting of the current training instance and the most
appropriate technology (rather than the retrieved technology). This case is
then saved to the casebase.

Once the casebase is non-empty, we can enter testing mode. For each testing
problem, test mode does the following:

Retrieval: As for training mode;
Reuse: As for training mode;
Testing Evaluation: if the system correctly predicts the appropriate technol-

ogy, we increment the good prediction score. Otherwise we increment the
failure score. No new cases are added to the casebase in testing mode.

The training and testing phases can be intertwined at an interval n of the
user’s choosing. The system continues in training mode until n new cases have
been added, then switches to testing mode. Once the testing set has been ex-
hausted, the system reverts to training mode until a further n cases have been
added... and so on until there are no instances left in the training set. This
approach of intertwining training and testing enables us to identify learning be-
havior as casebases grow, and to consider the impact of an individual or group
of cases on casebase performance. These factors are important for examining the
impact of structure at the instance level.

This methodology is based on the intuition that if two instances are similar,
then it follows that the same technology should be appropriate for both problems.
Whether this approach works or not depends on two critical factors; how to
represent problem instances and how we decide they are similar. In the next
section, we give an example of representations and similarity measures.

5 Case study

5.1 Problem representations and similarity measures

Feature based approaches. We consider representations based on four features of
the BEP that fully describe the problem; the number of bids (b), the number of
tasks (t), the number of includes constraints (i), and the number of precedence

constraints (p). All these features can be determined from the problem instance
in polynomial time.

We explore different similarity measures between two BEP instances p1 and
p2 with feature vectors p1 and p2, respectively:

Weighted Block City: If p1 = 〈b1, t1, i1, p1〉, p2 = 〈b2, t2, i2, p2〉, then we refer
to following family of block city similarity measures as weighted similarity
functions:

sim(p1, p2) = wb(
|b1 − b2|

bmax − bmin

) ./ wt(
|t1 − t2|

tmax − tmin

) ./ wi(
|i1 − i2|

imax − imin

) ./ wp(
|p1 − p2|

pmax − pmin

)

where ./∈ {+, ∗}, and fmin and fmax are the minimum and the maximum
values for feature f , respectively. Note that we use normalization to remove
the effects of different problem sizes.

Euclidean Distance: The similarity measure between two feature vectors is
defined as the Euclidean distance between these two vectors.

Structural approach. Should the feature based representations prove insufficient
to distinguish between IP and CP, we also propose to examine structural rep-
resentations such as graphs. The principle graph representation we adopt for
this purpose is a minor natural extension of the bid-good graph1, where we add
precedent edges between task vertices to represent the precedence constraints
that exist between tasks. We compute similarity between problem instances us-
ing a graph matching technology based on an incomplete branch and bound
approach. However, due to space limitations, the details of the algorithms are
not shown.

5.2 Preliminary results

We generated a large variety of instances, spacing from easiest with 5 tasks and
15 bids to hardest with 30 tasks and 1000 bids, and with variable tasks-per-bid
values and precedence graph structures. In this work, we applied CBR only to
harder instances, where the difference between search times of the algorithms
becomes considerable. This considered data set is composed of 90 instances, the
easiest of which has 15 tasks, about 400 bids and a mean tasks-per-bid value
little higher than 1.

The 90 problems were randomly divided 10 times into pairs of training and
testing sets. The ratio of training to testing problems was 2

3 training and 1
3

testing. Each experiment was repeated 10 times using the 10 pairs of training
and testing sets and results averaged over these 10 trials.

This work is at an early stage. The representations and similarity measures
considered thus far may appear quite basic, however it is informative to see
how effective relatively simple measures can be [2]. So far, all features weights
1 a common way to represent the BEP, where vertices represent bids and tasks, and

edges between bids and tasks represent the inclusion of tasks in bids. See [7]

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

P
re

di
ct

io
n

R
at

e

Cases in Casebase

Block City vs. Euclidean Distance for (b,i,t,p) (Average, 10 trials)

Block City
Euclidean Distance

Fig. 2. Block City vs. Euclidean Distance as Similarity Measure (b,i,t,p)

are equal. No significant difference in prediction ability was observed between
using a similarity measure based on Block-City or Euclidean Distance. Slight
differences arise from different cases occasionally being chosen, but the overall
effect is negligible as is apparent from Figure 2 which shows a typical result
from testing a representation using all 4 parameters (b,t,i,p) in both a Euclidean
Distance and Block City similarity measure. We observe it is possible to achieve
an average prediction rate across 10 trials of 80% by using these very simple
feature vectors and similarity measures. However, it is very misleading to draw
any further conclusions based on such elementary experiments.

6 Conclusion

In this paper, we propose an investigation of instance structure as a discriminat-
ing factor among solution technologies for the BEP within a CBR framework. In
our future work, we plan to perform extensive exploration of both feature based
and more complex structure based representations.

References

1. Susan Craw, Nirmalie Wiratunga, and Ray Rowe. Case-based design for tablet
formulation. In Proc. 4th European Workshop on CBR, pages 358–369, 1998.
Springer.

2. Very Simple Classification Rules Perform Well on Most Commonly Used Datasets.
Robert C. Holte (1993). Machine Learning, vol. 3, pp. 63-91.

3. A. Guerri and M. Milano, IP-CP techniques for the Bid Evaluation in Combina-
torial Auctions, in Proc. CP2003, 2003.

4. A. Guerri and M. Milano, Learning techniques for Automatic Algorithm Portfolio
Selection, Submitted.

5. J. Kolodner, Case-Based Reasoning, Morgan Kaufmann, 1993.
6. Mario Lenz, Hans-Dieter Burkhard, Petra Pirk, Eric Auriol, Michel Manago: CBR

for Diagnosis and Decision Support. AI Commun. 9(3): 138-146 (1996)
7. K. Leyton-Brown, E. Nudelman and Y. Shoham, Learning the Empirical Hardness

of Optimization Problems: The Case of Combinaorial Auctions, Proc CP02, 2002.

