
Expressing Interaction in Combinatorial

Auction through Social Integrity

Constraints ?

Marco Alberti1, Federico Chesani2, Marco Gavanelli1, Alessio
Guerri2, Evelina Lamma1, Paola Mello2, and Paolo Torroni2

1 Dip. di Ingegneria - Università di Ferrara - Via Saragat, 1 - 44100 Ferrara, Italy.
{malberti|m gavanelli|elamma}@ing.unife.it

2 DEIS - Università di Bologna - Viale Risorgimento, 2 - 40136 Bologna, Italy.
{fchesani|aguerri|pmello|ptorroni}@deis.unibo.it

Abstract. Combinatorial Auctions are an attractive application of intel-
ligent agents; their applications are countless and are shown to provide
good revenues. On the other hand, one of the issues they raise is the com-
putational complexity of the solving process (the Winner Determination
Problem, WDP), that delayed their practical use. Recently, efficient solvers
have been applied to the WDP, so the framework starts to be viable.
A second issue, common to many other agent systems, is trust: in order
for an agent system to be used, the users must trust both their represen-
tative and the other agents inhabiting the society: malicious agents must
be found, and their violations discovered. The SOCS project addresses
such issues, and provided a language, the social integrity constraints, for
defining the allowed interaction moves, together with a proof procedure
able to detect violations.
In this paper we show how to write a protocol for the combinatorial auc-
tions by using social integrity constraints. In the devised protocol, the
auctioneer interacts with an external solver for the winner determination
problem.

1 Introduction

The software agent technology seems an attractive paradigm to sup-
port auction applications [1]: agents acting on behalf of end-users
could reduce the effort required to complete auction activities. Agents
are intrinsically autonomous and can be easily personalised to em-
body end-user preferences. In addition, they are adaptive and capa-
ble of learning from both past experience and their environment, in

? The authors wish to thank Michela Milano for her precious help. This work is partially
funded by the Information Society Technologies programme of the European Com-
mission under the IST-2001-32530 project in the context of the Global Computing
initiative of the FET (Future Emerging Technology) initiative.

order to cope with changing operating conditions and evolving user
requirements [2].

In an auction we have two roles: the auctioneer and the bidders.
While in the past bidders were only humans, recent Internet auc-
tion servers [3] allow software agents to participate in the auction on
behalf of end-users, and some of them even have a built-in support
for mobile agents [4]. As the rise of the Internet and electronic com-
merce continues, dynamic automated markets will be an increasingly
important domain for agents.

Depending on the kind of auction, the auctioneer either sells a
set of goods trying to maximise the profit, or buys a set of goods
minimising the cost. Bidders have the goal to obtain (respectively,
sell) the goods under convenient price conditions.

Of course, one of the issues in e-commerce and, in particular, in
electronic auctions, is trust: in order for the system to be used at all,
each user must trust its representative agent in the auction. The agent
must be well specified, and a correspondence between specification
and implementation must be formally proven. Also, even if the agents
are compliant to their specifications, the compliance to the social rules
and protocols must be provable, in order to avoid, or, at least, detect
malicious behaviours.

A typical answer to such issues is to model-check the agents with
respect to both their specifications and requirements coming from
the society. However, this is not always possible in open environments:
agents could join the society at all times and their specifications could
be unavailable to the society. Thus, the correct behaviour of agents
can be checked only from the external in an open environment: by
monitoring the communicative actions of the agents.

The SOCS project [5] addresses these issues by providing for-
mal definitions both for the agents, that are based on Computational
Logics, and are thus called Computees, and for the society in an open
environment. Being logic-based, the computees are more trustable, as
their specification and implementation almost coincide.

In this paper, we focus on the societal aspects, and on the com-
pliance of the computees (or, in general, agents) to protocols and
social rules. These can be easily expressed in a logic language, the So-
cial Integrity Constraints (icS) that are an extension of the integrity
constraints widely used in Abductive Logic Programming, and, in
particular, extend those of the IFF proof procedure [6].

We implemented an abductive proof-procedure, called SCIFF (ex-
tending the IFF [6]), that is able to check the compliance to protocols
and social rules given a history of communicative actions. Besides a
posteriori check of compliance, SCIFF also accepts dynamically in-
coming events, so it can check compliance during the evolution of the
societal interaction, and raise violations as soon as possible. SCIFF
extends the IFF in a number of directions: it provides a richer syn-
tax, it caters for interactive event assimilation, it supports fulfillment
check and violation detection, and it embodies CLP-like constraints
[7] in the icS. SCIFF is sound [8] with respect to the declarative
semantics of the society model, in its abductive interpretation.

The SCIFF has been implemented and integrated into a Java-
Prolog-CHR based tool, named SOCS-SI (SOCS Social Infrastructure
[9]). This implementation can be used to verify that agents comply
to icS-based specifications. The intended use of SOCS-SI is in com-
bination with agent platforms, such as PROSOCS [10], for on-the-fly
verification of compliance to protocols.

2 SOCS social model

The society knowledge is specified declaratively, and is mainly com-
posed of two parts: a static part, defining the society organisational
and “normative” elements, and a dynamic part, describing the “so-
cially relevant” events, that have so far occurred.

The static knowledge in a society S is given by:

– a Social Organization Knowledge Base (SOKB): a logic program;

– a set ICS of Social Integrity Constraints (icS): implications that
can relate elements in the dynamic part, CLP constraints and
predicates defined in the SOKB.

We assume that the societal infrastructure is time by time aware of
social events that dynamically happen in the environment (happened
events). The “normative elements” are encoded in the icS. Based on
the available history of events, and on the icS-based specification, the
society can define what the “expected social events” are, i.e., what
events are expected (not) to happen. The expected events, called
social expectations, reflect the “ideal” behaviour of the agents.

The society knowledge evolves, as new events happen. The evolv-
ing part of the society knowledge is called Social Environment Knowl-
edge Base, (SEKB), and consists of:

– Happened events: ground atoms H(Event [,Time]);
– Expectations: events that should (but might not) happen (atoms

E(Event [,Time])), and events that should not (but might indeed)
happen (atoms indicated with functor EN(Event [,Time])). Ex-
plicit negation (¬) can be applied to expectations.

In our context, “happened” events are all the observable events which
are relevant to the society. The collection of such events is the history
HAP.

While H atoms are always ground, the arguments of expectations
can contain variables. Intuitively, if an E(X) atom is in the set of
generated expectations (E(X) ∈ EXP), “E” indicates a wish about
an event H(Y) ∈ HAP which unifies with it: X/Y . One such event
will be enough to fulfill the expectation: thus, variables in an E atom
are always existentially quantified.

For instance, in an auction context the atom:

E(tell(Auctioneer,Bidders, openauction(Item, Dialogue)), Topen)

stands for an expectation about a communicative act tell made by a
computee (Auctioneer), addressed to a (group of) computees (Bidders),
with subject openauction(Item, Dialogue), at a time Topen.

3 The Combinatorial Auctions scenario

There exist different kinds of auctions. In this paper, we consider
single unit reverse auctions.

In a single unit auction, the auctioneer wants to sell a set M of
goods/tasks maximizing the profit. Goods are distinguishable. Each
bidder j posts a bid Bj where a set Sj of goods/tasks S ⊆ M is
proposed to be bought at the price pj, i.e., Bj = (Sj, pj).

The single unit reverse auction is a single unit auction where the
auctioneer wants to buy and bidders are suppliers.

The Winner Determination Problem in combinatorial auctions is
NP-hard [11], so it cannot be addressed naively, but we need to exploit
smart solving techniques. We address the problem by exploiting a

commercial constraint solver, ILOG solver [12], for efficiently solving
a combinatorial optimization problem. We have implemented in ILOG
a module called Auction solver [13] embedding an algorithms portfolio
and an automatic algorithm selection strategy of constraint based
technologies, namely constraint and integer programming combined
[14].

So, one of the actors is the Auction Solver, that can be integrated
in a number of different ways. We first give the general auction proto-
col in terms of icS in Section 3.1, then we propose one such scenario,
and outline some alternative solutions that will be investigated in the
future.

3.1 Auction Protocol

To start with, we can use icS to check that the auction protocol is
indeed respected, without caring for the NP-hard aspects of the pro-
tocol. I.e., we will not check that the result provided by the auctioneer
is indeed the optimal solution of the WDP.

bids

open auction

close auction

deadline for

answers

comunicate

winners

auctioneer bidders

bids

open auction

close auction

deadline for

answers

comunicate

winners

auctioneer bidders

Fig. 1. Auction Protocol

At this level, the auction protocol is the one depicted in Figure 1.
Each time a bidding event happens, the auctioneer should have sent
an openauction event:

H(tell(B, A, bid(ItemList, P), Dialogue), Tbid) →
E(tell(A,B, openauction(Items, Tend, Tdeadline), Dialogue), Topen)∧
Topen < Tbid ∧ Tbid ≤ Tend

(1)
Incorrect bids always lose; e.g., a bid for items not for sale must

lose. Indeed, the answer lose refers also to not acceptable bids.

H(tell(A, Bidder, openauction(Items, Tend, Tdeadline), Dialogue), T1)∧
H(tell(Bidder, A, bid(ItemBids, P), Dialogue),)∧
not included(ItemBid, Items)
→ E(tell(A,Bidder, answer(lose, Bidder, ItemBids, P), Dialogue),)

included([],).
included([H|T], L) : −member(H, L), included(T, L).

(2)
The auction should also be closed at time Tend

H(tell(A,B, openauction(Items, Tend, Tdeadline), Dialogue), Topen)
→ E(tell(A,B, closeauction, Dialogue), Tend)

(3)
The auctioneer should answer to each bid. The answer should be

sent after the auction is closed within the deadline Tdeadline.

H(tell(S,A, bid(ItemList, P), Dialogue), Tbid)∧
H(tell(A, Bidders, openauction(Items, Tend, Tdeadline), Dialogue), Topen)
→ E(tell(A, S, answer(X, S, ItemList, P), Dialogue), Tanswer)∧

Tanswer > Tend ∧ Tanswer < Tdeadline ∧X :: [win, lose]
(4)

A bidder should not receive for the same auction on the same bid
two conflicting answers:

H(tell(R, S, answer(lose, S, ItemList, P), Dialogue),) →
EN(tell(R,S, answer(win, S, ItemList, P), Dialogue),)

(5)

H(tell(R,S, answer(win, S, ItemList, P), Dialogue),) →
EN(tell(R, S, answer(lose, S, ItemList, P), Dialogue),)

(6)

Two different winning bids cannot contain the same item:

H(tell(A, Bidder1, answer(win,Bidder1, ItemList, P), Dialogue),)
∧H(tell(Bidder2, A, bid(ItemList′, P), Dialogue), Tbid)
∧Bidder1 6= Bidder2

∧intersect(ItemList, ItemList′) →
EN(tell(A,Bidder2, answer(win, Bidder2, ItemList′, P ′), Dialogue),)

(7)

Example. Suppose that a bidder tries to force the auctioneer to buy
an item that was not requested in the openauction; e.g., the history
could be:

H(tell(auct, bidder1, openauction([pc, monitor,mouse], 10, 20), 1), 1)
H(tell(bidder1, auct, bid([keyboard], 10), 1), 3)

In this case, the protocol defines the correct behaviour of the auction-
eer: it raises the expectation

E(tell(auct, bidder1, answer(lose, bidder1, [keyboard], 10), 1,).

If the auctioneer does not give a matching reply, the proof procedure
will raise a violation.

3.2 Implementation with the Auction Solver

In this scenario, the Auction solver is conceived as a passive object
while the auctioneer is a computee. Their interaction is not monitored
by the society, therefore at society level they are indeed considered as
a unique entity as shown by the dashed circle in Figure 2.

The auctioneer provides the auction solver a WDP instance and
receives its optimal solution.

In this case the auctioneer should collect the data of the instance
and send them to the auction solver.

We have some preliminary results for this scenario, shown in Fig-
ure 3, where the computation times of the SCIFF proof procedure
and of the Auction Solver are shown.

...

Bidders

Auctioneer
Auction
 Solver

Interface

Fig. 2. Computees and object involved in a Combinatorial Auctions

Computing time vs. bidders

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40 45 50

Bids

T
im

e
(s

)

Computing time vs. bidders

0

0.2

0.4

0.6

0.8

1

1.2

15 30 100 400 500 800 1000

Bids

T
im

e
(s

)

(a) Time taken by the SCIFF proof
procedure to verify compliance

(b) Time taken by the Auction
Solver to solve the WDP

Fig. 3.

4 Other possible solutions

There are obviously other solutions for this problem, that will be
taken into account in future work. In particular, we can, at society
level, monitor the communications between the auctioneer and the
auction solver.

Since the auctioneer is autonomous, it might decide to take a sub-
optimal decision, for various reasons: e.g., the auctioneer might have
been bribed by some bidders to make them win. Since the WDP is
hard, we assume that only a specific solver can efficiently find the
optimum: it is unlikely that the auctioneer can find it within the
given deadlines without relying on the auction solver. It could be

Auction Solver Bidders Auctioneer

openauction

bids

close
optimize

bids

win/loose
win/loose

Fig. 4. Auction protocol when the society checks the communications
between the auctioneer and the auction solver

sensible to have, in the society, the auction solver as a trusted object:
its replies are supposed to be correct. If the society does not trust the
auctioneer but only the passive object auction solver, we have various
possibilities; we show two of them.

In the first, the auctioneer is separated from the auction solver,
and the society checks (besides the compliance to the protocol given
in Section 3.1), that the auctioneer sends indeed to the auction solver
the same bids it receives (not a fake problem in which, e.g., some bids
were excluded to make some bidder win) and that the replies of the
auctioneer are indeed the same computed by the solver (Figure 4):

H(tell(Bidder1, A, bid(ItemList′, P), Dialogue),) →
E(ask(A, ILOG , bid(ItemList′, P), Dialogue),)

(8)

H(say(ILOG , A, answer(X,S, ItemList, P), Dialogue),) →
E(tell(A, S, answer(X, S, ItemList, P), Dialogue),)

(9)

In the second solution, we do not want the society to force the
auctioneer to use a given object, or algorithm, to solve the WDP, but
we leave it free to choose autonomously how to solve the problem. It
might use our solver, or it might do it in other ways. In such a case,
however, the auctioneer must face an external check: a controller can
check that the provided solution is indeed correct. In order to check

Bidders Auctioneer Auction Solver
openauction

bids

close
verify

bids win/lose

yes/no

win/lose

Controller

Fig. 5. Auction protocol: the society controls the auctioneer via a
controller interacting with the auction solver

the validity of a solution, a computee takes the role of controller, and
uses the trusted object auction solver in order to prove to the society
the correctness of the solution (Figure 5).

5 Conclusions

Combinatorial auctions are recently starting to withdraw from the set
of practically unusable applications as more efficient solvers are being
produced for the winner determination problem. One of their natural
applications involve intelligent agents as both bidders and auctioneers,
but this raises the problem of humans trusting their representatives,
and the other agents in the society.

Through the tools provided by the SOCS project, we give means
for the user to specify the fair and trusty behaviour, and a proof pro-
cedure for detecting the unworthy and fallacious one. We defined the
combinatorial auctions protocol through social integrity constraints,
also exploiting an efficient solver for the winner determination prob-
lem.

References

1. Chavez, A., Maes, P., Kasbah: An agent marketplace for buying and selling goods.
In: Proceedings of the 1st International Conference on the Practical Application of
Intelligent Agents and Multi-Agent Technology. (1996)

2. Guttman, R., Moukas, A., Maes, P.: Agent-mediated electronic commerce: A survey.
Knowledge Engineering Review 13(2) (1998) 143–147

3. Wurman, P., Wellman, M., Walsh, W.: The michigan internet auctionbot: A config-
urable auction server for human and software agents. In: Proceedings of the Second
International Conference on Autonomous Agents (Agents-98). (1998)

4. Sandholm, T.: eMediator: a next generation electronic commerce server. In: Pro-
ceedings of the Fourth International Conference on Autonomous Agents (Agents-
2000). (2000)

5. : (Societies Of ComputeeS (SOCS): a computational logic model for the description,
analysis and verification of global and open societies of heterogeneous computees)
http://lia.deis.unibo.it/Research/SOCS/.

6. Fung, T.H., Kowalski, R.A.: The IFF proof procedure for abductive logic program-
ming. Journal of Logic Programming 33 (1997) 151–165

7. Jaffar, J., Maher, M.: Constraint logic programming: a survey. Journal of Logic
Programming 19-20 (1994) 503–582

8. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Specification and veri-
fication of interaction protocols: a computational logic approach based on abduction.
Technical Report CS-2003-03, Dipartimento di Ingegneria di Ferrara, Ferrara, Italy
(2003) Available at http://www.ing.unife.it/aree_ricerca/informazione/cs/

technical_reports.
9. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Com-

pliance verification of agent interaction: a logic-based tool. In Trappl, R., ed.: Pro-
ceedings of the 17th European Meeting on Cybernetics and Systems Research, Vol.
II, Symposium “From Agent Theory to Agent Implementation” (AT2AI-4), Vienna,
Austria, Austrian Society for Cybernetic Studies (2004) 570–575

10. Stathis, K., Kakas, A.C., Lu, W., Demetriou, N., Endriss, U., Bracciali, A.:
PROSOCS: a platform for programming software agents in computational logic.
In Trappl, R., ed.: Proceedings of the 17th European Meeting on Cybernetics and
Systems Research, Vol. II, Symposium “From Agent Theory to Agent Implementa-
tion” (AT2AI-4), Vienna, Austria, Austrian Society for Cybernetic Studies (2004)
523–528

11. Rothkopf, M., Pekec, A., R.M.Harstad: Computationally manageable combinatorial
auctions. Management Science 44 (1998) 1131–1147

12. ILOG S.A. France: ILOG Solver. 5.0 edn. (2003)
13. Guerri, A., Milano, M.: Exploring cp-ip based techniques for the bid evaluation

in combinatorial auctions. In: LNCS - Proceedings of the International Conference
on Principles and Practice of Constraint Programming, CP2003, Springer Verlag
(2003)

14. Guerri, A., Milano, M.: Learning techniques for automatic algorithm portfolio selec-
tion. In Lopez de Mantaras, R., Saitta, L., eds.: Proceedings of the 16th European
Conference on Artificial Intelligence, IOS Press (2004) to appear.

http://lia.deis.unibo.it/Research/SOCS/�
http://www.ing.unife.it/aree_ricerca/informazione/cs/technical_reports�
http://www.ing.unife.it/aree_ricerca/informazione/cs/technical_reports�

