
An Integrated Resource Management Architecture for Wireless Smart Environments – P. Bellavista, A. Corradi, S. Vecchi 1

An Integrated Resource Management
Architecture for Wireless Smart Environments

Paolo Bellavista, Antonio Corradi, Silvia Vecchi
Dip. Elettronica, Informatica e Sistemistica - University of Bologna

Viale Risorgimento, 2 - 40136 Bologna - ITALY
Phone: +39-051-2093001; Fax: +39-051-2093073

{pbellavista, acorradi, svecchi}@ deis.unibo.it

Abstract — Pervasive and ubiquitous computing is enabling

the implementation of “smart environments”, i.e., environments
where applications support and enhance the abilities of their
occupants in executing tasks. To provide the appropriate behav-
ior, these applications must be able to acquire and manage in-
formation about the resources populating the smart environ-
ment. We propose an integrated resource management solution
targeted to highly dynamic and heterogeneous smart environ-
ments. The proposed middleware is based on the Java Manage-
ment Extensions (JMX) and on the Mobile Agent (MA) technol-
ogy. JMX provides a unifying interface to different monitor-
ing/management mechanisms, thus simplifying the integration
with very heterogeneous distributed resources. MAs simplify the
processing and the aggregation of raw management data to dy-
namically consider and achieve application-specific management
goals, thus providing the flexibility and the level of abstraction
needed in the addressed scenario.

Index Terms — Smart Environments, Resource Management,

Java Management Extension, Mobile Agent

I. INTRODUCTION
The spreading of wireless portable devices, wireless net-

working solutions, and embedded computing devices makes
more and more feasible different kinds of “smart environ-
ments”, i.e., computing environments where mobile objects,
augmented with computing and communication capabilities,
are available for seamless utilization in their proximity, with-
out any static mutual knowledge and explicit configuration
operations [1, 2]. In order to support the activities of the envi-
ronment occupants these applications must be context-aware,
i.e. able to modify their behavior on the basis of many differ-
ent information about the resources available in the environ-
ment, and about the users populating the environment. For
instance, a context-aware tourist guide may use the knowledge
about user location and interests to select relevant information
to display, and may use the knowledge about available net-
work bandwidth and user device to decide the presentation
format of that information.

On the one hand, the design and implementation of smart
environments certainly requires dynamic support solutions for
spontaneous communications and interactions of heterogene-

ous and statically unknown resources, with very different
computing capabilities. Many research activities have recently
focused on these communication/binding aspects [3, 4].

On the other hand, we claim that smart environments need
very flexible support infrastructures capable of inspecting,
processing and aggregating potentially huge amounts of moni-
toring/management data from heterogeneous resources dis-
persed in the environment, to provide applications with an
updated concise view of the dynamic state of locally available
resources of interest. In other words, the enormous number of
objects dynamically available in smart environments forces
rethinking traditional solutions for network/systems/service
management to overcome the high heterogeneity of provided
management data.

The paper presents the design and implementation of an in-
tegrated Java-based management architecture targeted to sup-
port the provisioning of pervasive services in smart environ-
ments and capable of addressing the requirements of this sce-
nario, i.e., mainly to face the heterogeneity of resources,
monitoring tools, and monitoring data in highly dynamic envi-
ronments. The infrastructure acts as an intermediate layer be-
tween the distributed and dynamically available resources and
the service logic: it gets information about managed resources,
provides core management services, and composes core ser-
vices to provide more advanced management services to be
configured depending on application-specific requirements.

The proposed management architecture is integrated with
the Java Management Extensions (JMX) [5] and exploits the
Mobile Agent (MA) technology.

We adopt the JMX resource representation to model the re-
sources composing the target environment. Managed re-
sources can span from network/system hardware devices to
service software components and are modeled as Java objects;
in case of non Java-based resources, the modeling object is a
Java wrapper. Modeling objects provide homogeneous man-
agement interfaces by exposing the relevant management pa-
rameters. We extend the JMX service infrastructure to imple-
ment core management services, by monitoring resource pa-
rameters, by establishing relationship between resources, and
by enabling the communication with other environments
through protocol adapters. Finally, we exploit the MA tech-

An Integrated Resource Management Architecture for Wireless Smart Environments – P. Bellavista, A. Corradi, S. Vecchi 2

nology to realize advanced and application-specific manage-
ment services. The MA approach provides useful features
both in the implementation of management tasks and in the
realization of “smart services”. The MA-based management
can take advantage of their characteristics of mobility, to op-
erate locally and avoid micro-management problems due to
remote and centralized interrogations, and of autonomy, to go
on with management tasks even in presence of network parti-
tioning. The MA-based provisioning of “smart services” can
take advantage mainly of their characteristics of location-
awareness and personalization, to adapt services to access
locality and user profiles, and of dynamicity, to modify the
environment behavior at provisioning time by dynamically
installing/discarding service components.

The paper also shows the modularity and scalability of the
proposed architecture: managed resources, management ser-
vices and protocol adapters are components that can be added
dynamically, by registering to responsible registry compo-
nents and by exploiting discovery and class loading mecha-
nisms, to provide new and personalized management func-
tionality.

The paper is structured as follows. Section 2 presents a
smart environment scenario pointing out the main manage-
ment requirements. The features of the enabling technologies
used in our solution, JMX and MAs, are discussed in Section
3. Section 4 provides an overview of JMX, while Section 5
and 6, respectively, give the architecture of the proposed re-
source management solution and show the management com-
ponents at work in the previously sketched scenario. Related
work, conclusive remarks and directions of current research
end the paper.

II. SCENARIO AND MANAGEMENT REQUIREMENTS
Let us start by illustrating a possible practical scenario of

typical management requirements of smart environments.
Consider a campus area equipped with IEEE 802.11/Bluetooth
Service Access Points (SAP) and very different types of wire-
less devices carried by students while roaming in classrooms
and localities within the campus. Devices can span from Wi-
Fi PDAs and laptops to Bluetooth cell phones and digital cam-
eras. An example of service in the campus smart environment
could be the following. A student called Alice is in the study-
room B, waiting for the beginning of a class. Alice realizes
that she needs to download the software package x, licensed to
all the students in the campus, and to install it on her laptop to
better follow her next class. Any teaching room in the campus
provides wireless connectivity to allowed Internet sites and to
a set of local campus servers, in particular to one FTP-based
replicated repository with downloadable software. Alice starts
to download package x in room B, but the available
bandwidth is very limited because several students are surfing
the Web there. It is a monitoring/management support
distributed in the smart environment that estimates the time
required to terminate the download depending on local net-
work conditions and on the download server status.

Let us observe that it is generally impossible to assume that
clients directly take care of monitoring the smart environment
status and of understanding autonomously the best solution,
mainly because wireless client devices have strict constraints
on computing capabilities. The integrated management infra-
structure should monitor the available bandwidth in nearby
rooms (network-layer management data) and also the status of
available download servers, together with the list of software
packages available for download (application-layer manage-
ment data). A dialog box can pop up on Alice’s laptop display
to suggest her to move to study-room C, where the manage-
ment infrastructure estimates she can complete the software
download in less time than staying in study-room B.

The above scenario shows specific management aspects.
The first one is the need of getting and merging monitor-
ing/management data at different levels of abstraction from
heterogeneous resources. Monitored resources, in fact, spread
from low-level network/system resources to high-level service
ones. For instance in the previous scenario, , the Wi-Fi SAP
typically exposes network-layer monitoring data, e.g., the cur-
rently available bandwidth in the wireless locality, while the
FTP download server should provide application-level infor-
mation such as the current load status and the list of
downloadable software packages. Another point is the re-
quirement that the management infrastructure for smart envi-
ronments should collect monitoring/management data by ex-
ploiting different (often legacy) monitoring mechanisms and
by handling heterogeneous monitoring representation formats.
For instance, SNMP can be used to monitor network-layer
information from a network device [6], while language-
specific instrumentation or profiling strategies [7, 8] could get
information about a Java-based application-layer resource.
Monitoring data could present very different representation
formats and very different granularity. Resources equipped
with SNMP present monitoring information that depends on
the type of resource: for example, the 802.11 SAP MIB con-
tains information such as the station ID, the medium occu-
pancy limit, the desired service set ID, and so on. The moni-
toring data of a Java resource inspected via the Java Virtual
Machine Profiler Interface (JVMPI) [9, 10] may include the
number of invocations of specified methods, the number of
object allocations and deallocations, and so on. The heteroge-
neity of monitoring data in smart environments requires the
management support to merge information at very different
levels of abstraction by combining knowledge from very dif-
ferent layers in the system.

III. ENABLING TECHNOLOGIES: JMX AND MOBILE AGENTS
As shown in the above scenario, smart applications need to

know properties of both physical entities and available re-
sources such as: the location of users, the location and proper-
ties of servers, the amount of network bandwidth available,
the CPU load on various servers, etc. As discussed above, the
support in charge of acquiring and managing these data has to
face two main issues: resource heterogeneity and knowledge

An Integrated Resource Management Architecture for Wireless Smart Environments – P. Bellavista, A. Corradi, S. Vecchi 3

extraction/provision. The first goal is to overcome the hetero-
geneity of the resources composing the managed environment,
of the sensing mechanisms, and of the monitoring data repre-
sentation formats. The second goal is to compose and to ag-
gregate rough and low-level data translating it to an applica-
tion-understandable format, and to provide this knowledge to
interested applications when and where needed. We exploited
JMX to achieve the first goal, and the MA technology to
achieve the second one.

JMX provides a unifying interface to different monitor-
ing/management mechanisms, thus integrating very heteroge-
neous resources, both physical and logical, Java-based and
not, etc. This characteristic helps us to create a homogeneous
and manageable view of the resources in our target environ-
ment, which spread from network equipments to application-
level service components. Moreover, JMX provides a “man-
agement container” where resources and management services
can be registered and deregistered at any time; this flexibility
defines a dynamically extensible architecture of pluggable
components, which suits very well to environments character-
ized by a very high number of objects dynamically available
and by very variable management requirements.

MAs can represent a suitable effective technology to im-
plement high level management functionality and “smart ser-
vices”, requiring both dynamicity, mobility, location aware-
ness and personalization capabilities. The MA-based man-
agement can take advantage of their characteristics of mobil-
ity, to operate locally and avoid micro-management problems
due to remote and centralized interrogations, and of auton-
omy, to go on with management tasks even in presence of
network partitioning. The MA-based provisioning of “smart
services” can take advantage mainly of their characteristics of
location-awareness and personalization, to adapt services to
access locality and user profiles, and of dynamicity, to modify
the environment behavior at provisioning time by dynamically
installing/discarding service components. To take advantage
of the MA features our management solution operates on top
of the SOMA platform, which is a Java-based general-purpose
middleware for the design, development and deployment of
MA-based applications [11].

The recent literature in the field widely recognizes the ad-
vantages of the MA adoption in the management area, espe-
cially in mobility-enabled and pervasive environments
[12,13]. In the following, we focus on JMX, which is a spe-
cific and original choice of the proposed management archi-
tecture.

IV. THE JAVA MANAGEMENT EXTENSIONS
Several different management areas present a dominant

management technology: Common Management Information
Protocol (CMIP) and Telecommunication Management Net-
work (TMN) in the telecommunication area, Simple Network
Management Protocol (SNMP) in the device and network
management area, Web-Based Enterprise Management
(WBEM) in the management of enterprise computing envi-

ronments, etc. In the application management area, on the
contrary, there is no dominant technology. In case of applica-
tions or resources running on only one operating system, or on
one vendor’s system, the choice can be guided by the prefer-
ences of that vendor. Microsoft’s Windows, IBM’s AIX,
Sun’s Solaris, and Hewlett-Packard’s HP-UX have their own
management system. However, one of the main advantages of
Java-based applications is that they are portable on many dif-
ferent vendor platforms. This means that making manageable
Java-based software may need to support multiple manage-
ment technologies and systems, and may be consequently very
hard and expensive.

These considerations have suggested SUN researchers to
extend the Java platform with JMX to fulfill the manageability
requirements of Java-based applications, by following two
main guidelines: interoperability and dynamicity. JMX is in-
teroperable in the sense that integrates with different legacy
management systems, and is dynamic in the sense that man-
aged resources and management functionality can be added or
removed at any time.

JMX is an isolation layer between the managed resources
and the management systems. This layer provides general pur-
pose facilities to support the management of very different
resources, which can be applications (Java-based or not), de-
vices, or software implementations of services or policies, and
to make these resources manageable by very different man-
agement systems. JMX provides transparency and interopera-
bility through interface components from the Java environ-
ment towards other environments in two directions, as de-
picted in Figure 1. In one direction, from the JMX layer to-
wards the underlying managed system, provides access to the
manageability capabilities of non-Java resources via the Java
Native Interface (JNI) and wrappers [14]. In the other direc-
tion, from the JMX layer towards the above management ap-
plication, supports the interaction with non-Java management
applications via protocol adapters.

Java Management Extensions

Java-based
Management
Applications

Non-Java
Management Applications
(SNMP, WBEM, TMN, …)

Protocol Adaptors/Connectors

Managed System

Java Resources
Non-Java Resources

Wrappers

Fig. 1. The JMX isolation layer

A. JMX Architecture
Figure 2 shows the JMX architecture built according to a

three-level model: Instrumentation, Agent and Manager Level.
The Instrumentation Level gives manageability to managed

An Integrated Resource Management Architecture for Wireless Smart Environments – P. Bellavista, A. Corradi, S. Vecchi 4

resources. The Agent Level provides core management ser-
vices implemented as components contained in JMX agents.
The Manager Level provides management entities that can
operate as managers or as proxies between JMX and an exter-
nal manager for distribution of management services. In addi-
tion, JMX provides a number of Java APIs, called Additional
Management Protocol APIs, for existing management proto-
cols. These APIs are independent of the three-level model,
and are essential to enable Java-based JMX applications to
link with existing management technologies.

 Fig. 2: The JMX Architecture

B. JMX Components
The main JMX components are: JMX Manageable Re-

sources, JMX Agents, and JMX Managers.
A JMX Manageable Resource is a resource that has been

instrumented in accordance with the JMX Instrumentation
Level Specification and tested against the Instrumentation
Level Compatibility Test Suite. JMX introduces a JavaBeans
model called Management Bean (MBean), for representing
both the management interfaces of the managed resources and
the management services. A JMX manageable resource is in-
strumented with a MBean that expose attributes, operations,
and notifications used to manage it. Each MBean has metadata
in MBeanInfo, which defines the exposed attributes, opera-
tions, and notifications supported by the MBean.

JMX specifies four types of MBeans: standard, dynamic,
open and model. A Standard MBean can be any JavaBean or
JavaBean-style program that has been registered with the
MBeanServer. Standard MBeans can be useful if the applica-
tion already has management-oriented classes to support its
own manager. Dynamic MBeans allow the application or do-
main-specific manager to define or generate the management
interface for the resource at runtime. This provides a simple
way to wrap existing nonbean-style or even non-Java re-
sources. Open MBeans are dynamic MBeans that are restricted
to accepting and returning a set of standard data types. By
using open MBeans and these primitive data types it is possi-
ble to eliminate the need for class loading. A Model MBean is

a customizable, standardized, dynamic MBean implementa-
tion. An implementation class of a model MBean named Re-
quiredModel MBean must come with the JMX agent; this
class can be instantiated and customized by the application
with the proper management interface information reusing
existing implementation. Managed Resources communicate
data and events to management systems with their MBean
through the JMX Agent.

A JMX agent is a management entity implemented in ac-
cordance with the JMX Agent Specification and tested against
the Agent Level Compatibility Test Suite. A JMX Agent is
composed of an MBeanServer, a set of MBeans representing
managed resources, and at least one protocol adaptor or con-
nector. A JMX Agent may also contain management services,
also represented as MBeans. The service MBeans are at an
higher level of abstraction than the resource MBeans, so they
are represented at the Agent Level in the Architecture, as
shown in Figure 2.

The MBeanServer is a registry for MBeans in the agent.
The MBeanServer is the component which provides the ser-
vices allowing the manipulation of MBeans. All management
operations performed on the MBeans are done through Java
technology-based interfaces on the MBeanServer. The
MBeanServer runs on the JVM local to the managed re-
sources’ MBeans, provides a query service for the MBeans
and acts as a delegator to the MBeans, returning the results to
the requester. The MBeanServer also provides access to the
metadata about the MBeans in the MBeanInfo instance, and
notification registration and forwarding support to MBeans
representing adapters, services and resources.

The JMX agent includes a set of required services: the
monitoring service, the timer service, the relation service, and
the MBean class loader. Services are MBeans registered with
the MBeanServer that provide some generic functionality that
can be used by MBeanServers, MBeans, and adapters. Addi-
tional management services can be added dynamically as ser-
vice MBeans by applications or management systems, making
the JMX agent flexible and extensible. The monitoring service
runs monitoring MBeans on a scheduled basis. It must support
basic monitoring MBeans, including Gauge, Counter, String-
Match, and StateChange. Additional or specialized monitoring
MBeans can also be developed and used. The timer service
executes an operation on a timed basis; it is used by the moni-
toring service. The relation service supports relationships
MBeans, which contain the names of a set of MBeans that are
related in some way. Some kinds of possible relationships
include “contains” and “depends on”. The Mlet (Management
Applet) service is an MBean class-loading service that loads
an MBean across a network when an MLET tag in a HTML
page is encountered.

Protocol adaptors and connectors let management applica-
tions access a JMX agent and manipulate the MBeans it con-
tains. Protocol adaptors give a representation of the MBeans
directly in another protocol, such as HTML or SNMP. Con-
nectors include a remote component that provides end-to-end
communications with the agent over a variety of protocols (for

An Integrated Resource Management Architecture for Wireless Smart Environments – P. Bellavista, A. Corradi, S. Vecchi 5

example HTTP, HTTPS, IIOP). Adapters are also MBeans,
and they are registered with the MBeanServer. Common,
though nonstandard, adapters are RMI, HTTP, and SNMP.
CIM and IIOP adapters are in the process of standardization.
Protocol adaptors and connector are fundamental to allow
interoperability and integration between JMX applications and
other management/monitoring systems. This is a very impor-
tant characteristic when dealing with extremely heterogeneous
resources such as composing smart environments.

A JMX manager is a management entity implemented in
accordance with the JMX Manager Specification and tested
against the Manager Level Compatibility Test Suite. A JMX
manager provides an interface for management applications to
interact with the agent, distribute management information,
and provide security. JMX managers can control any number
of agents, thereby simplifying highly distributed and complex
management structures.

V. RESOURCE MANAGEMENT ARCHITECTURE AND
IMPLEMENTATION GUIDELINES

We propose a resource management architecture structured
in three levels: a Resource Description Level (RDL), a Re-
source Management Level (RML), and a Context Manage-
ment Level (CML), as shown in Figure 3.

The first level implements a set of managed resources, in
accordance with the specifications of the JMX Instrumentation
Level. The second level defines a set of basic management
services to facilitate the implementation of advanced man-
agement services by extending the required functions of the
JMX Agent Level. The third level exploits the services real-
ized by RML and the MA features to provide the applications
with a view of the environment at the proper level of abstrac-
tion.

Fig. 3: Resource Management Architecture

Before describing RDL, RML and CML, let us introduce the
adopted locality abstractions, to better understand where the
management functions are deployed and performed. In our
model the target environment is the whole equipped area, for

instance the campus area, while the localities composing the
environment are the wireless LANs covered by WiFi SAPs.

The RDL and the RML operate locally, i.e., within a single
locality. This implies that each managed locality presents a
RDL, which describes its resources, and a RML, which pro-
vides management core services operating on the local re-
sources. The CML provides distributed services involving
resources in different localities, by moving the management
entities it is composed of within the target environment.

A. The Resource Description Level
As described above, JMX represents the management inter-

faces of the managed resources by exploiting the mediation of
a MBean. The lower level of our architecture, the RDL,
adopts the JMX resource model to represent the resources
composing the localities of the managed environment. The set
of implemented MBeans covers very different kind of re-
sources, that can span from network/system hardware devices,
such as hosts, printers, WiFi and Bluetooth SAPs, to service
software components, such as HTTP and FTP servers. In case
of non Java-based resources, the modeling MBean is a Java
wrapper.

The wrappers could reside in a node different from the one
where the modeled resource is, and do not require limited de-
vices to host the JVM. This is a significant advantage because
we can integrate devices with very limited computing capa-
bilities in our management middleware by simply communi-
cating with their management entity wrapped by a modeling
object. For instance, an 802.11 SAP cannot run a JVM in-
stance but is able to communicate with a remote SNMP agent.
As shown in Figure 4, our architecture wrap this SNMP agent
with a modeling Java object, the SNMP peer, representing the
SAP resource.

SNMP
Agent

SNMP
Peer

JMX
Application

JVM

Remote
Non Java-enabled

device

ContextContext
Management Management

LevelLevel

Resource Resource
Management Management

LevelLevel

Resource Resource
Description Description

LevelLevel
FTP Server WiFi SAP Bluetooth

SAP
…

HTTP Adapter

Download
Service

Download
Service

Network
Service

Network
Service

Web
Monitoring
Service

Web
Monitoring
Service

Context Agents (SOMA MAs)

JMX MBeans

Resource
Manager

Agent
(JMX Agent)

Fig. 4: Remote SNMP wrapping mechanism

B. The Resource Management Level
Each locality is equipped with a RML that realizes the core

management services mainly by monitoring resource parame-
ters. The RML is composed of a Resource Manager Agent
implemented by following the JMX Agent Level specifica-
tions. The agent includes one MBeanServer and one protocol
adapter. The MBeanServer registers the local resources, de-
scribed by the resource MBeans in the underlying layer, and
the provided management services, implemented via service
MBeans defined at this level. The main protocol adapter used
is the HTTP adapter, implemented in the Java Dynamic Man-

An Integrated Resource Management Architecture for Wireless Smart Environments – P. Bellavista, A. Corradi, S. Vecchi 6

agement Kit (JDMK) [15]. It is used to communicate with
Web browsers and permits the implementation of the Web
Monitoring Service, defined in the CML.

RML provides two main basic management services: the
first one providing information about the local network avail-
ability (Network Service), and the second one providing in-
formation about the software available for download from the
local servers (Download Service). To implement these two
services we have defined two monitoring MBeans: the Net-
work MBean, and the Download MBean. They collect infor-
mation from the RDL on-demand, on the basis of the CML
requests. The Network MBean collect information about the
network bandwidth from the resource MBeans representing
network devices, such as the WiFi SAP and the Bluetooth
SAP. The Download MBean collects information about the
software available for download from the resource MBeans
representing the FTP servers.

C. The Context Management Level
The CML is composed by manager components that coor-

dinate services provided at the RML to realize more high-level
advanced-management services. The CML provides the Web
Monitoring Service, and some application-specific services.

The Web Monitoring Service allows to access the state of
resources in the target environment via a standard Web
browser: the user can select the locality, and the Web Moni-
toring Service, exploiting the HTTP adapter, asks the Re-
source Manager Agent in the requested locality about the re-
sources it manages. Then the Web Monitoring Service provide
the user with a description of that locality by showing the re-
ceived monitoring data. This allows the user to know, for in-
stance, if a certain room is suitable to host a meeting with spe-
cific equipment requirements.

The application-specific services are implemented in terms
of MAs, the Context Agents (CA). Different type of CAs im-
plements different advanced-services. Once instantiated, the
CA works as care-of entity of the user requesting the service
and follows the user movements during the service session by
carrying the user profile with itself. In our scenario, for in-
stance, the advanced service is the suggestion of the best FTP
downloading source, and is implemented with a specific CA
in charge of performing this task: the FTP Download Session
Agent.

VI. DEPLOYMENT SCENARIO
To clarify how the management components interoperate

and coordinate in an actual service scenario, we present them
at work in the campus scenario described in Section 2.

When Alice requests the software download from the
study-room B, the management support instantiates one CA,
the FTP Download Session Agent, to assist her in the
download operation. This CA asks the local RML for the
download rate and verifies that in this locality it is under a
pre-defined threshold. In order to suggest the best download
source, the CA asks the RMLs of all the campus localities
about the available bandwidth, by exploiting the service pro-

vided by the local Network MBeans, and about the software
available in the FTP servers, by exploiting the service pro-
vided by the local Download MBeans. By processing the
gathered information the CA ascertains that another campus
locality, corresponding to the study-room C, provides, at that
moment, the highest bandwidth, and that in the same locality
there is also one active FTP server providing the requested
software. Therefore, the CA pops up a dialog box on Alice’s
laptop display to suggest her to move to study-room C. When
Alice moves to the new locality, the CA migrates to go on
assisting her. From the Alice user profile and from the
class/software profile the CA infers that Alice could need also
another software to follow the class is waiting for. The CA
verify that this software is available in the locality where Al-
ice is and that with the current download rate she is able of
downloading it before the beginning of the class; therefore, it
pops up a new dialog box on Alice’s laptop display to suggest
her to download this software. Once Alice terminates the
downloads, she disconnects her laptop and the CA terminates
its execution.

VII. RELATED WORK
Several research activities in the pervasive computing area

have investigated applications for smart environments and
their supporting systems, by focusing in particular on the
management of context-awareness.

Some projects specifically address the flexibility and scal-
ability of context information aggregation and dissemination.
The Context Toolkit is a distributed architecture supporting
context information fusion and delivery [16]. It uses compo-
nents, called widgets, which are responsible for acquiring a
piece of information from the environment and for making it
available in a generic manner, regardless of how is actually
sensed. Pre-defined aggregators process data from widgets
and provide commonly used aggregated information, while
interpreters are responsible for deciding the meaning of this
aggregated information, i.e. what type of situation can be in-
ferred from a certain aggregated context information. The
separation of the interpretation from applications allows reuse
of interpreters by multiple applications, thus reducing applica-
tion development cost. The same objective is the main focus
of Solar [17]. The Solar platform allows dynamic injection of
context processing modules that can be shared across applica-
tions. The main idea is that many adaptive applications ask for
similar context information; it is then natural to re-use the
overlapping context aggregation functions among applica-
tions. The Solar approach is to decompose the context-
aggregation process into a series of modular and re-usable
operators, each of which is an object that subscribes to and
processes one or more input event streams, by publishing one
event stream. Since the inputs and outputs of an operator are
all event streams, the applications can use a tree of recursively
connected operators (operator graph) to collect and aggregate
the desired context.

Other projects focus on the interaction between context-

An Integrated Resource Management Architecture for Wireless Smart Environments – P. Bellavista, A. Corradi, S. Vecchi 7

aware applications and context information source. The con-
sideration that drives the Contextual Services in AURA [18],
for instance, is that context-aware applications may have very
different context information requests, and the system provid-
ing this information must be able to support all kind of re-
quests. In order to fulfill this requirement, Contextual Ser-
vices provide applications with an SQL-like query interface
that allows them to easily synthesize information from differ-
ent resources.

The above researches mainly investigate the management
aspects related to context view generation and on providing
context information to context-aware applications. However,
they do not take into account the issues related to the hetero-
geneity of the managed resources, and their integration with
other monitoring/management systems.

By considering the implementation technology, the port-
ability features and the wide diffusion of the Java technology
encourage the development of Java-based management solu-
tions [19], and JMX has been created specifically to this pur-
pose.

Even if not targeted to smart applications, there are some
research activities investigating the usage of JMX in the im-
plementation of management/monitoring tools. In [20], JMX
is adopted in the implementation of a Java API for advanced
fault management, the JFMX API, which aims at facilitating
the development of diagnostic tests and performance meas-
urements. The JFMX API is organized in three packages
mapped to the JMX layered architecture. The instrumentation
level package is composed of MBeans modeling resources
under test and/or monitoring. The agent level package imple-
ments a set of dynamic functionality to control test and moni-
toring activities, while the manager level package provides
Manager MBeans to coordinate and manage a set lower level
agents triggered by a user session request. The goal of the
MobiMon project [21], instead, is to allow the monitoring of
remote systems and applications using Java-enabled mobile
devices. It exploits a MIDlet-based user interface presenting
the user with a hierarchical view of monitored systems, attrib-
utes and actions which can be queried and/or invoked re-
motely. MobiMon MIDlets contact the MobiMon servlet via
HTTP. The MobiMon servlet is the communication endpoint
for MobiMon MIDlets, receives attribute queries and action
requests from the MIDlets, forwards them to appropriate Mo-
biMon agents, receives the results and sends them to the
MIDlets. The MobiMon agents run on managed nodes and act
as MBean servers according to the JMX agent specification. A
MobiMon agent running on a specific node hosts all MBeans
needed to manage resources of this node, which are deployed
according to the JMX instrumentation level.

The above proposals confirm the interest in evaluating the
feasibility and the potentialities of JMX-based management.
However, to the best of our knowledge, our integrated re-
source management architecture is the first work that adopt
JMX to support the gathering and management of context
information in highly dynamic and heterogeneous smart envi-
ronments.

VIII. CONCLUSION
We have designed and implemented an integrated resource

management architecture for supporting the development of
context-aware services in smart environments. The main ad-
vantages of our infrastructure are its capability of facing the
heterogeneity of the environment, its modularity and its dy-
namic extensibility. These features are a consequence of the
adopted enabling technologies: JMX and MAs. JMX provides
a unifying interface to very different resources, and a modular
architecture of pluggable components, by exploiting the
MBean model. The MA technologies facilitates the implemen-
tation of “smart services” mainly because of their characteris-
tics of location-awareness, personalization, and dynamicity, to
modify the environment behavior at provisioning time.

The first encouraging results achieved in using the pro-
posed middleware to support the realization of some simple
services are stimulating further research work to produce a
more usable and complete management solution. We intend to
extend both the set of resource MBeans, to manage new
physical and logical resources, and the set of service MBeans,
to enrich the low-level management functionality. We are also
evaluating the integration of a messaging service developed
by exploiting the Java Messaging Service [22], to facilitate the
communication between the smart environment and its users.

ACKNOWLEDGMENT
This work is supported by the Italian MIUR (FIRB WEB-

MINDS project) and CNR (IS-MANET project).

REFERENCES
[1] M. Satyanarayanan, “Pervasive Computing: Vision and Challenges”,

IEEE Personal Communication, Aug. 2001.

[2] B. Johanson, A. Fox, T. Winograd, “The Interactive Workspaces project:

experiences with ubiquitous computing rooms”, IEEE Pervasive Com-
puting, Apr.-Jun. 2002.

[3] S.S. Yau, F. Karim, Yu Wang, Bin Wang, S.K.S. Gupta, “ Reconfigur-

able context-sensitive middleware for pervasive computing”, IEEE Per-
vasive Computing, Jul.-Sept. 2002.

[4] A. Misra, S. Das, A. McAuley, “Autoconfiguration, Registration and

Mobility Management for Pervasive Computing”, IEEE Personal Com-
munications, Aug. 2001.

[5] Sun Microsystems - Java Management Extensions (JMX),

http://java.sun.com/products/JavaManagement/doc.html.

[6] J. D. Case, et al., “Simple Network Management Protocol (RFC 1157)”,

DDN Network Information Center, SRI International, May 1990.

[7] G. Czajkowski, T. von Eicken, “JRes: A Resource Accounting Interface

for Java”, ACM OOPSLA Conference, Vancouver, 1998.

[8] P. Bellavista, A. Corradi, C. Stefanelli, “Java for On-line Distributed

Monitoring of Heterogeneous Systems and Services”, The Computer
Journal, Vol. 45, No. 6, pages 595-607, Oxford University Press, Nov.
2002.

[9] Sun Microsystems - Java Virtual Machine Profiler Interface (JVMPI),

http://java.sun.com/ products/jdk/1.3/docs/guide/jvmpi/jvmpi.html.

An Integrated Resource Management Architecture for Wireless Smart Environments – P. Bellavista, A. Corradi, S. Vecchi 8

[10] Sun Microsystems - Java Native Interface (JNI), http://java.sun.com/
products/jdk/1.3/docs/guide/jni.html.

[11] P. Bellavista, A. Corradi, C. Stefanelli, “An Integrated Management

Environment for Network Resources and Services”, IEEE Journal on Se-
lected Areas in Communications, Vol. 18, No. 5, May 2000.

[12] D. Gavals, D. Greenwod, M. Ghanbari, M. O’Mahony, “Hyerarchical
network management: a scalable and dynamic mobile agent based ap-
proach”, Computer Networks, Elsevier Science, Apr. 2002.

[13] P. Bellavista, A. Corradi, R. Montanari, C. Stefanelli, “Dynamic binding

in mobile applications - A middleware approach”, IEEE Internet Com-
puting, Mar.-Apr. 2003.

[14] Sun Microsystems - Java Native Interface (JNI), http://java.sun.com/

products/jdk/1.3/docs/guide/jni.html.

[15] Sun Microsystems – Java Dynamic Management Kit (JDMK),

http://java.sun.com/products/jdmk/

[16] A.K. Dey, G.D. Abowd, D.A. Salber, “A Context-based Infrastructure

for Smart Environments”, 1st Int. Workshop on Managing Interactions
in Smart Environments (MANSE’99), Dec. 1999.

[17] G. Chen, D. Kotz, „Context Aggregation and Dissemination in Ubiqui-
tous Computing Systems“, 4th IEEE Int. Workshop on Mobile Comput-
ing Systems and Applications (WMCSA’02), 2002.

[18] G. Judd, P. Steenkiste, “Providing Contextual Information to Ubiquitous

Computing Applications”, Carnegie Mellon University Technical Re-
port, Jul. 2000.

[19] J. Lee, “Enabling Network Management Using Java Technologies”,

IEEE Communications Magazine, Jan. 2000.

[20] M.H. Guiagoussou, R. Boutaba, M. Kadoch, “A Java API for Advanced

Faults Management”, IFIP/IEEE International Symposium on Integrated
Network Management (IM’01), May 2001.

[21] The MobiMon Project – Mobile System Monitoring,

http://mobimon.sourceforge.net/

[22] Sun Microsystems – Java Messaging Service (JMS),

http://java.sun.com/products/jms/

