
 1

Abstract—Advances in device miniaturization and wireless

technologies are stimulating novel kinds of networks (Mobile Ad
hoc NETworks - MANET) capable of autonomous peer-to-peer
organization without the need of a statically deployed support
infrastructure. MANET are specifically characterized by high
mobility of network nodes and frequent changes of direct
visibility. High dynamicity affects the design and implementation
of distributed applications by significantly increasing their
complexity, to consider not only routing and node configuration
issues, but also the possible mobility of software components and
the loss of direct connectivity during service provisioning. The
paper proposes a highly dynamic and flexible middleware to
support service continuity over MANET, i.e., to enable the
continuous provisioning of a service, based on the client/server
model of interaction, even if clients/servers move at runtime. The
middleware is based on application-transparent proxies that act
as decoupling intermediaries between the moving clients and
servers. The proxy role is assigned dynamically in a completely
decentralized way. Proxies exploit code mobility to install only
when and where needed. The paper aims to show how the
middleware facilitates the development of applications with
service continuity, by describing the design and implementation
of a file transfer case study. First experimental results
demonstrate the feasibility and effectiveness of our approach at
the application level and point out the suitability of mobile code
programming paradigms in highly dynamic MANET
environments.

Index Terms—Middleware, Mobile Ad Hoc Networks, Mobile
Code, Proxy, Service Continuity.

I. INTRODUCTION
IRELESS systems have recently become more and

more popular, mainly because of their offered
capability of supporting continuous mobility while accessing
services. The spreading of wireless solutions is significantly
changing also the way to conceive and design distributed
services. On the one hand, the new features introduced by the

Manuscript received May 14, 2003.
P. Bellavista is with the Dipartimento di Elettronica, Informatica e

Sistemistica (DEIS), Bologna, IT (phone: 039-0512093866; fax: 039-
0512093073; e-mail: pbellavista@deis.unibo.it).

A. Corradi is with the Dipartimento di Elettronica, Informatica e
Sistemistica (DEIS), Bologna, IT (e-mail: acorradi@deis.unibo.it).

E. Magistretti collaborates with the Dipartimento di Elettronica,
Informatica e Sistemistica (DEIS), Bologna, IT (e-mail:
emagistretti@deis.unibo.it).

wireless network infrastructure suggest application developers
to create location-aware services [1]. On the other hand, the
necessity of rapid, flexible and temporary connections
between heterogeneous wireless devices is motivating the
research for Mobile Ad hoc Networks (MANET). Any node
in a MANET can move at any time; therefore, topological
variations force the continuous reorganization of the network,
which must occur in an autonomous, spontaneous and
transparent way [2]. MANET are capable of operating without
infrastructure support, because each node is autonomous and
can collaborate with the others to enable information delivery.

Designing and implementing distributed applications for
MANET is significantly more complex than for traditional
fixed network environments. In particular, MANET high
dynamicity forces service developers to face both issues
introduced by the novel network properties: infrastructure lack
and terminal mobility. Because of these two characteristics,
even the client/server model should be reexamined in the
MANET deployment scenario. In fact, the infrastructure lack
requires reconsidering issues such as routing, loss of
connectivity, and connection reliability, typically delegated
and (at least partially) solved by the network infrastructure. In
addition, frequent terminal mobility requires clients to
perform continuous discovery operations to update the list of
devices/services in network visibility, and to operate the
needed client-to-server rebinding accordingly. Let us note that
most available solutions for device/service discovery are
based on a quite static infrastructure, for instance of lookup
servers hosted in fixed network nodes, and are not designed to
deal with the usual movement of clients/servers during both
service discovery and provisioning.

Given above the motivations, we have designed and
implemented a highly dynamic and flexible middleware to
support service continuity over MANET. The middleware
should enable the same continuous service provisioning
provided by the traditional client/server model of interaction,
even for mobile clients/server. The middleware operates at the
application level, to achieve high flexibility and full
portability over different MANET implementation solutions,
from heterogeneous wireless connectivity technologies (IEEE
802.11, Bluetooth, …) to different multi-hop routing
protocols. The paper claims that the application level is the
most suitable one to provide flexible solutions to crucial
mobility issues, such as security and interoperability;
application-level middlewares can relevantly benefit from the
availability of standard mechanisms, solutions, and tools at

Proxy-based Middleware for Service Continuity
in Mobile Ad Hoc Networks

Paolo Bellavista, Antonio Corradi, Eugenio Magistretti

W

 2

this abstraction layer [3].
The proposed middleware is based on the idea of

application-transparent proxies that act as decoupling agents
between client and server endpoints in order to support their
binding/rebinding independently of mutual movements
during service delivery. However, due to the intrinsic lack of
infrastructure in MANET and to their high dynamicity, we
have decided to assign dynamically the role of proxy agents
among the peers in a completely decentralized way via an
election protocol. Only when a server exits a locality during a
service session, the middleware transparently reorganizes the
roles in the involved locality and triggers the proxy election, if
needed. The designated proxy is in charge of transparently
looking for a suitable server component, either local or
remote, and of forwarding to it the client requests, which are
automatically directed to the local proxy by the middleware.
The proxies exploit code mobility to install their behavior and
the needed routing protocols only when and where needed.

Finally, the paper presents the design and implementation
of a case study, the File Transfer in Mobile Ad hoc Networks
(FT-MAN) service prototype, that exemplifies how the
proposed middleware significantly eases the development of
applications with service continuity over MANET. The
reported experimental results show the feasibility and
effectiveness of our approach at the application level and
point out the suitability and flexibility of mobile code
programming paradigms in the addressed deployment
scenarios characterized by high dynamicity.

The remainder of the paper is structured as follows. Section
II provides a rapid overview of MANET, of the main issues in
developing client/server services over them, and of the state-
of-the-art of the literature in the field. Section III presents the
architecture and the design guidelines of our middleware to
support service continuity in MANET, while Section IV
describes how to build the FT-MAN application on top of the
proposed middleware. Section V is devoted to present the first
performance results obtained by deploying both the
middleware and FT-MAN over IEEE 802.11b devices that
exploit the ad hoc connectivity mode. Conclusions and on-
going research work end the paper.

II. MOBILE AD HOC NETWORKS: OVERVIEW AND OPEN ISSUES
MANET identify a specific type of wireless network

without requiring any kind of statically deployed support
infrastructure, but permitting any node autonomy and
cooperation to service delivery by forwarding messages along
multi-hop paths. MANET are based upon autonomy and fast
deployment, at the cost of continuous re-organizations due to
frequent and unpredictable node movements. MANET
applications can be profitably deployed in several different
environments, from hostile grounds/disaster-recovering
scenarios where a network infrastructure typically does not
exist or has been destroyed (military and search-and-rescue
operations), to contexts where the rapidity of the network

deployment process is paramount (during a conference in a
convention hall). It is possible to identify three different
classes of MANET, with different degrees of complexity, by
considering the physical dimensions and the number of
participating nodes: sensor networks are low power, low
range, and suit simple monitoring operations, e.g., on
buildings and transportation structures [4]; Bluetooth-based
MANET are small and quite static networks, also identified as
Personal Area Networks (PAN), designed mainly to let
printers and cell phones communicate when in direct and
mutual visibility range [5]; IEEE 802.11-based MANET can
consist of a large number of nodes, even geographically
distributed, and generally widen to support multi-hop path
routing [6].

MANET nodes are usually laptops, PDAs, or even smaller
devices characterized by low computational capabilities and
strict battery constraints. Their transmission technologies offer
low bandwidth, high latency, high error rates, recurrent
transmission collisions, and limited communication ranges
(normally up to a few hundred meters). In addition, frequent
node mobility causes weak link connectivity and possible
temporary disconnections, even leading to network
partitioning if some nodes leave their position of bridge
between two network segments. All the above aspects affect
significantly not only the crucial low-level issues of network
auto-configuration and routing, as extensively described in
Section II.A., but also the design and implementation of
distributed applications for MANET, which is the main focus
of the paper.

In fact, we claim that traditional solutions, at both the
support level and the service one, are not suitable for the
MANET environment, where peer-to-peer relationships are
the only ones allowed according to the intrinsic nature of the
network. Even if it were reasonable to assume the existence of
a middleware/service backbone infrastructure in any MANET,
the frequent mobility of the backbone nodes would make the
overhead to repair the backbone often unsustainable. For
instance, let us consider a support issue such as the setting of
some network parameters (IP address, netmask and default
gateway) at the MANET nodes. Obviously, no pre-
configuration of nodes can be assumed, so any device should
configure only when joining a network. In MANET it is
unreasonable to rely on the presence of a centralized DHCP
server because the server could become suddenly unreachable
(with any provided service). Therefore, it is necessary an auto-
configuration mechanism in charge of setting the parameters
dynamically, by using a completely distributed protocol.

Other complex challenging issues have to be investigated to
support service development and deployment in highly
dynamic MANET environments. In MANET, terminal
mobility is typically unconstrained, and hosts can freely move
out of mutual coverage areas at any time, thus becoming
suddenly unreachable, together with their possibly provided
services and shared resources. In this context, even well
established models, such as the traditional client-server one,
require a significant re-thinking. The connection maintenance

 3

becomes crucial because services could be unexpectedly
interrupted due to server leaving or, symmetrically, to client
movements. In addition, the frequent autonomous rebinding to
services requires to face additional issues like the choice of
the best server among a set of available ones, also depending
on low-level connectivity conditions, e.g., the currently
greater client/server signal strength. In such a scenario, the
paper considers central to propose a middleware solution for
guaranteeing service continuity independently of the mutual
movements of clients and servers, which may loose direct
single-hop connectivity at service provisioning time. In other
words, we focus on flexible and highly dynamic middlewares
capable of client/server rebinding and of continuing service
delivery within a session in a completely seamless way, by
minimizing the impact on the application logic and the
complexity of developing clients/servers for MANET
environments.

A. Related Work
MANET have recently stimulated several research

activities, which are exploring different aspects of the
challenging issues raised by this novel and highly dynamic
mobile scenario. In these first years, the research work has
mainly focused on investigating solutions, usually at the
network layer, for the lower-level crucial problems imposed
by MANET connectivity: mainly for the autonomous and
decentralized configuration of MANET nodes and for the
definition of highly dynamic multi-hop routing protocols. To
the best of our knowledge, there are not yet application-level
middleware solutions for MANET that address, as their main
issue, the support and simplification of the development of
client/server applications with service continuity, and our
approach provides an original perspective in the field.

From the point of view of auto-configuration in networks
without any infrastructure support, the main common goal of
all the examined solutions is to automatically manage a
temporary IP lease, i.e., to provide any terminal that joins a
network with a valid and unique IP address, and to register the
IPs returning free when the terminal exits the network locality,
without the need of explicit operations by network
administrators. Let us observe that well-established solutions
for IP dynamic assignment in fixed networks, such as DHCP,
require the availability of a deployed support infrastructure
and do not fit highly mobile peer-to-peer MANET
environments.

Four major projects have recently raised significant interest:
on the one hand, Zeroconf [7] and IPv6 Stateless Address
Auto-configuration [8] propose general solutions for
traditional wired networks; on the other hand, PMWRS [9]
and MANETconf [10] are designed specifically to work in
MANET environments. The four auto-configuration solutions
above address IP allocation problem in a quite similar way. In
fact, they conceptually undertake the same sequence of
actions: address generation, verification and final assignment.
Therefore, at first, a tentative address is generated for the
entering terminal. Two main classes of solutions are exploited:

the extraction of the tentative IP from a pool known to all
nodes participating in the network, or the construction of the
tentative IP so as to be probably unique. In any case, the
tentative IP may belong to another terminal and has to be
verified. This is usually done by sending, according to each
proposed solution, a packet with the tentative address to all
nodes belonging to the network, so that they can verify not to
own the same address (Duplicate Address Detection). If
another host already owns the tentative address, it sends a
negative reply to the sender, by forcing the generation of
another tentative value. Reply messages exploit either
broadcast communications (most common solution) or a direct
dispatch, e.g., if the sender is known via a MAC address in
local networks.

From the point of view of multi-hop routing protocols,
several recent proposals have presented original solutions. If
two MANET nodes, not in direct communication range, need
to exchange messages, they have to rely on the forwarding
ability of nodes located in the intermediate area. Several
aspects make this forwarding problem hard to solve
effectively in MANET: the dynamic topology makes most
traditional routing algorithms not applicable; assigning the
router role to any MANET node, although apparently natural
in this context, may put an intolerable computational burden
on unprepared devices; the wireless propagation implies
undefined coverage areas that dynamically change, and the
available bandwidth is limited, also because of possibly high
error rates due to interferences [11]. In [12], different possible
aspects to consider when providing taxonomy of MANET
routing protocols have been identified: which routing
information is exchanged, when and how this information is
exchanged, when and how routing paths are built. Here we
propose to combine principles suggested by different
researches ([12], [13], [14]), to classify routing solutions in
position-based ones, which exploit the knowledge about the
geographic localization of the receiver, and topology-based
ones, which consider the network as a link sequence. The
latter can be split up in table-driven, on-demand and hybrid
approaches.

Position-based protocols use a location service to determine
the receiver position and so do not require route building and
maintaining. Once achieved the visibility of MANET node
location, the delivery of messages considers the mutual
position of senders and receivers, and of the intermediate
nodes physically located in the between. Three different
forwarding strategies are generally employed: in greedy
forwarding, packets are sent to a selected node on the receiver
direction; in restricted directional flooding, to all nodes on the
receiver direction; hierarchical approaches employ greedy
forwarding for long ranges and topology-based algorithms for
local routing [13].

Among topology-based solutions, traditional table-driven
protocols (distance vector and link state families of
algorithms) have demonstrated to be inefficient due to the low
bandwidth and the frequent topology changes typical of
MANET. On-demand protocols create a route only when

 4

required by the source node. The communication requires a
first phase in which the sender has to find a route to the
destination; while topology conditions are considered
unchanged, the calculated route is maintained valid. Hybrid
protocols [15], instead, take advantage of traditional table-
driven routing schemes into local communication contexts,
and combine them with on-demand solutions for non-local
routing.

III. THE DESIGN AND IMPLEMENTATION OF A PROXY-BASED
MIDDLEWARE FOR SERVICE CONTINUITY IN MANET

Consider the usual scenario where a server, responsible for
service delivery inside a MANET locality, i.e., the local PAN
consisting of all the nodes in direct network visibility,
suddenly and transparently leaves the locality during the
service session. In this situation, the clients in the locality
have to reorganize to reach the server independently of its
movement, and to continue service session seamlessly.
Depending on service implementation, the clients could either
look for another equivalent server (if the provided service is
stateless or the session state is maintained at the client side
and exchanged at the server re-connection), or search for
exactly the same server instance that left the locality (if the
service is stateful and the state is exclusively stored at the
server side). We claim the need of a middleware solution to
support and facilitate the application development in this
context, by permitting programmers not to bother about
MANET node mobility and to focus only on the application-
specific service logic. To this purpose, we have designed and
implemented a middleware that takes care of location
visibility and rebinding operations, thus allowing a simple,
traditional and transparent client/server programming model.
The middleware is in charge of control operations due to the
established client/server relationships. It supports the
discovery phase, by guaranteeing that clients could efficiently
find the needed servers in the locality. When the servers
possibly move, the middleware exploits client/server location
visibility to reorganize the locality via the dynamic election of
a proxy agent. The proxy takes care of searching servers by
need, of forwarding client requests, and of performing multi-
hop routing; it permits to organize solutions for client/server
rebinding and service reestablishment that are scalable and
mobility-transparent. In the remainder of the section, the paper
presents how the middleware supports the different service
phases sketched above.

First of all, the proposed middleware supports clients and
servers during the setup phase of the service session. Clients
can exploit middleware functions to perform a simple
discovery operation, which consists in broadcasting a message
to a service-specific port number and waiting for a suitable
reply. Servers can invoke the middleware to exploit a simple
lookup service that responds to client requests by disclosing
the server identity, and to support the client/server connection
(re-)establishment transparently to the application
programmers.

When a server leaves a locality, the provided services
would become immediately unavailable for all currently
served clients. To enable service continuity, our middleware
realizes search and restore phases transparently to clients and
servers. First, it is necessary for the middleware to acquire
visibility of the server movement at the client side. Two
design choices are possible: the server (or a middleware
component at the server side) could explicitly notify all
interested clients of its mobility intention; or, clients could
autonomously become aware of the server movement,
transparently from the server-side point of view. The first
choice can bring an excessive computational burden on the
server: the server should maintain the list of the currently
active sessions and of the correspondingly served clients in
order to notify its movements to all interested entities; this
notification may also be a heavyweight process when clients
do not belong to the same locality of the server and require
multi-hop routing solutions. Therefore, we decide to adopt the
second design choice, by providing portable middleware
functions to achieve client-side visibility of MANET node
location. The middleware implements the location visibility
functionality on top of the Linux Wireless Extensions and of
the Microsoft Network Driver Interface Specification; an
extensive description of the solution is out of the scope of the
paper and can be found in [16].

However, if all interested clients try to locate a just moved
server, certainly the hotspot of contemporary search messages
can produce a local MANET congestion. In addition, not any
client can own the needed implementation mechanisms to
perform discovery operations, to choose among the set of
retrieved equivalent servers, and to route service requests over
multi-hop paths. To address all these issues, our middleware
chooses an architectural solution based on the dynamic
designation of a proxy for the locality. For instance, by
considering the discovery operations, the middleware proxy is
the only entity in charge of searching for the migrated server,
thus achieving a scalable solution because the discovery
traffic does not depend on the number of clients in the
MANET locality. In addition, the proxy is the only software
component that needs to know how to perform inter-locality
routing operations.

Once the proxy finds the server, the proxy starts forwarding
service requests/responses from/to interested clients. In other
words, all service messages are automatically and
transparently sent through the proxy, acting as a bridge
between the clients and the server. Let us note that our proxy-
based approach at the application-level permits also to enforce
local management policies by adequately programming the
support proxy, e.g., by restricting the number of contemporary
active service sessions to impede an excessive degradation of
the locally available bandwidth.

The introduction of a support proxy in a MANET locality,
where we cannot assume the availability of any static
infrastructure, is possible only if the proxy is conceived as a
totally dynamic role, assigned to one of the local clients in a
completely distributed and decentralized way. Our distributed

 5

middleware assigns the proxy role via an ad hoc lightweight
election protocol, described in the following. In addition, once
elected, if the client does not host the behavior necessary to
act as a proxy, it can download the needed code from
discoverable and disseminated code repositories, realized to
support the SOMA mobile agent platform [1], or from a local
client peer. This dynamic code download increases the
middleware dynamicity and enables the runtime deployment
of new implementations without imposing service
interruptions.

The leader election problem and the specification of
distributed election protocols have been extensively
investigated in wired networks with static topology. The
MANET mobility significantly changes the perspective and
makes most election protocols unsuitable. Frequent link/node
failures induce disconnections, which in turn could lead to
network partitioning, with the consequent issues stemming
from elections in disjointed segments and conflict resolution
protocols in case of locality merging. Other MANET-specific
issues are due to high error rates and possibly long delays in
message delivery. For these reasons, we decided to adopt a
novel and MANET-fitting election solution, with the main
goal of maintaining the protocol very simple and lightweight,
by considering the usual strict constraints on resource
availability over MANET devices. We implemented a variant
of the “bully algorithm”. During the discovery phase, the
server replies to clients not only disclosing its identity, but
also assigning to each client a unique identifier, based on
client characteristics sent within the service request message.
For instance, the faster is the wireless connectivity of the
client, the greater the assigned identifier. The election protocol
is then triggered when a client senses the server movement:
the client immediately broadcasts its identifier; when
receiving this message, any client compares its identifier with
the received one, and broadcasts a reply message with its own
identifier if and only if the latter is greater than the received
one. The only node that does not receive replies within a
timeout supposes to be the elected proxy. The implemented
election protocol also considers message losses, and provides
a series of countermeasures to guarantee the election
consistency in a wide set of temporary failure cases. Details of

the election protocol are out of the scope of the paper, which
in the following exemplifies how the proxy-based middleware
simplifies the development of MANET applications with
service continuity.

IV. THE FILE TRANSFER IN MOBILE AD-HOC NETWORKS (FT-
MAN) APPLICATION

Several different types of applications can be built on top of
the proposed general-purpose middleware for MANET. In
particular, we have implemented a prototype of remote file
transfer service over our MANET support to measure the
middleware performance in a practical usage scenario and to
show how the design and implementation of applications turns
out extremely simplified. FT-MAN provides file downloading
from a dynamically discovered service component available in
a MANET locality, even if the server moves during file
transfer. In the case of a server exiting from the locality of its
clients, the middleware achieves visibility of the server
movement and triggers the transparent client reorganization;
from the client point of view, file transfer operations that were
active at the moment of server migration and new file transfer
requests continue to go on seamlessly. As we detailed in the
previous section, the election of a proxy occurs in the old
server locality. After the election, the proxy substitutes the
server in the locality, and the clients can continue to query the
proxy exactly as it were the local server. Actually,
communications go from the clients to their local proxy, and
from the proxy to the retrieved server; file transfer replies run
along the reverse path, as depicted in Figure 1. In this way, the
proxy supports the multi-hop routing of service packets: the
proxy acquires routing information during the server
discovery phase and adds this routing data to the service
packet header. Routing algorithms could be also changed
during service provisioning, since the middleware can provide
the proxy with new implementation code dynamically
downloaded from distributed code repositories, which can be
discovered at runtime uniformly as the other services, e.g.,
FT-MAN servers.

In addition, at any transparent re-establishment of the
client/server connection via the intermediary proxy, FT-MAN

Fig. 1. Clients can download the file directly from a local server (a); in response to server movements, clients continue the file download
transparently via the locally elected proxy (b).

 6

clients and servers perform a state information exchange
protocol. Figure 2 shows that, at first, the client sends a
message to the server by indicating the name of the requested
file and how many bites have already been downloaded. In the
reply, the server states that either the file is unavailable, e.g.,
in the case of wrong filename, or the transmission can start. In
the last case, a server message with the file dimension is sent
to the client before starting the content delivery. It is the
middleware that triggers the clients to exchange the current
session state when needed; the client is only required to
implement a well-known method for state transmission.

In the FT-MAN prototype we have decided to maintain the
session state on the client side to avoid overloading the server,
which is usually in charge of generating most file transfer
traffic. In particular, the client maintains the number of bytes
correctly received (by saving this information every 10KB
transferred), in order to allow the download resuming when
the direct client/server connection stops. As stated in the
previous section, since the state is stored on the client side and
is exchanged at the beginning of the application protocol, the
proxy can also decide a re-connection with an equivalent
server, without the constraint of looking for only the server
instance originally present in the client locality.

The implementation of the FT-MAN client and server on
top of the proposed middleware is really simple. Only two
classes are needed: a module that carries on the server side of
the protocol, and a client component that reads the transferred
bytes from the input stream and stores them locally. The
implementation classes do not bother of mobility issues, but
concentrate only on the application logic, with minimal
differences with regards to the implementation of the same
service in wired and static deployment scenarios.

V. EXPERIMENTAL EVALUATIONS AND PERFORMANCE
RESULTS

To measure the middleware performance and to
quantitatively verify the feasibility of our approach, we have
deployed the middleware and FT-MAN on a little testbed
consisting of a couple of MANET localities with a few nodes
(IEEE 802.11b-compliant portable devices that exploit the
WiFi ad hoc connectivity mode). To better evaluate the
behavior of the system under actual operating conditions, we
have deployed it over two different types of devices, Acer
laptops and Compaq-HP iPAQ PDAs (with the PC CARD
Expansion Set), both outfitted with Cisco 350 Client
Adapters. The former run the Linux operating system (RedHat
8.0 with 2.4.20 custom kernel), the latter use the Familiar
Linux operating system, version 0.6. The multi-hop message
delivery was obtained by employing a routing protocol,
AODV-UU, implemented on the Linux kernel.

Our middleware is implemented by using the Java
programming language because the running environment
provided by the Java Virtual Machine (JVM) offers a
transparent interface with system level services and functions.
In the evaluation testbed we have installed the J2SE 1.4.0 on

the laptops and the Blackdown JVM 1.3.1 implementation on
the PDAs.

At first, we measured how long it takes for an FT-MAN
client to complete the transfer of a 10 MB file, directly from a
server that does not move during service provisioning (Table
1). In such a situation the middleware do not get involved,
since the entities remain in mutual direct visibility. Then, we
accomplished several tests by changing the value of two main
middleware configuration parameters: IAPTime, the waiting
time before accepting the result of proxy election (to simulate
networks of increasing dimensions) and SearchPeriod, the
interval between successive server searches (to vary the proxy
reaction promptness and to test in which conditions the
control messages flood the MANET locality). Finally, we
organized tests while changing the inactivity interval, defined
as the period of server unavailability due to its change of
locality; inactivity interval depends on server mobility
characteristics and on the time needed to restart the service
when entered in a new locality.

IAPTime and SearchPeriod significantly impact on the
overall middleware performance and should be tuned
carefully depending on the specific deployment scenario and
on application-specific requirements. IAPTime influences the
election protocol completion time: it should depend on the
average number of clients supposed in the locality because,
when IAPTime expires, all participant clients should have had
the chance to broadcast their identifiers. A low value of
SearchPeriod, instead, lets the proxy determine promptly the
new server location, but increases the control message
overhead if the server remains disconnected/unreachable for a
long time and no equivalent service components are
discovered. To obtain a flexible tuning and to avoid code
recompilations, we decided to take out the principal
middleware configuration parameters from the code and to put
them in XML files examined at the application launch. The
configuration files used in FT-MAN are structured as in the
example in Figure 3.

We have measured the average values of download time,
service unavailability at client, and search period at proxy
over a large set of experiments. Table 2 presents the results
when a server component leaves the MANET locality by

Fig. 2. The client/server exchange protocol..

 7

remaining active, and reconnects via the proxy when entered
in a new locality. An inactivity interval of 400ms has been
fictitiously introduced to model the time needed to the
interested clients to poll the information about the server
leaving. IAPTime and SearchPeriod were fixed to a low value
of 200ms: this IAPTime interval has emerged as the minimum
necessary in our testbed to avoid election problems, i.e.,
clients that erroneously believe to be the proxy not having
received control messages in time.

A correct tuning of IAPTime and SearchPeriod permits to
minimize the time required to reconnect the server. On the one
hand, if inactivity interval is low, it could be worth to tune
also IAPTime and SearchPeriod to low values, by paying a
greater overhead but obtaining a more reactive system. On the
other hand, in several application deployment scenarios there
are no strict promptness requirements, especially in highly
dynamic and mobile environments: inactivity interval is high
and, therefore, both IAPTime and SearchPeriod can be tuned
to high values. We have designed the middleware to be self-
adaptive: IAPTime and SearchPeriod start with common
intermediate values and then are modified depending on
monitoring data about the service unavailability history and
the average number of local clients. Table 3 reports the
performance results when the server inactivity interval is 5s.
By taking into account the previous considerations, in this
case IAPTime and SearchPeriod automatically set to values in
the same range of inactivity interval (1s in the table).

The reported results show that the overhead due to control
message transmission (including election and server search
phases) can be always quantified in about 200ms. It is
encouraging that most of the delay can be ascribed to the
setting of the different configuration parameters.

VI. CONCLUSIONS AND ON-GOING WORK

The development and deployment of distributed

applications in MANET require flexible and mobile
middleware solutions capable of properly handling the
frequent changes in local device/service visibility during
service provisioning. In addition, the complexity imposed by
the MANET scenario motivates a clear separation of concerns
between the client/server application logic and the support
solutions to discover, rebind, and route requests to mobile
service components. Novel middleware solutions based on
code mobility can effectively provide this separation of
concerns and achieve the level of dynamicity, flexibility and
reusability requested in highly dynamic network

environments.
First experiences coming from the prototype deployment

and testing have shown that the proposed middleware can
significantly facilitate the design and implementation of
MANET applications with feasible performance results, thus
potentially leveraging the promising market of PAN services.
These encouraging results are stimulating further research to
extend the framework in two main directions to offer a
widespread support for mobility in MANET. First, we are
working on an exhaustive integration of our middleware
prototype with all the multi-hop routing protocols available in
the literature, and on the definition of election protocols
capable of clustering clients depending on specified metrics,
e.g., based on received signal strength. In addition, we are
exploring solutions to dynamically establish proxy-to-proxy
inter-locality chains; this can speed up and facilitate the search
of non-local suitable servers and can significantly improve the
scalability of the proposed middleware.

REFERENCES

[1] P. Bellavista, A. Corradi, R. Montanari, C. Stefanelli, “Dynamic binding

in mobile applications: a middleware approach”, IEEE Internet
Computing, Vol. 7, No. 2, pages 34-42, Mar.-Apr. 2003.

[2] J. Macker, S. Corson, “Mobile Ad-hoc Networks (MANET)”,
http://www.ietf.org/ html.charters/manet-charter.html, 1997.

[3] J. Bolliger, T. Gross, “A framework-based approach to the development
of network-aware applications”, IEEE Transactions on Software
Engineering, Vol. 24, No. 5, May 1998, pp. 376-90.

[4] L. Clare, G. Pottie, J. Agre, "Self-organizing distributed sensor
networks", SPIE Conf. Unattended Ground Sensor Technologies and
Applications, pp.229-237, 1999.

Fig. 3. The XML configuration file format.

Parameter Average Value
(ms) Std. Dev. (ms)

Download Time 28154.4 428.04
Table 1. Download of a 10 MB file directly from server.

Parameter Average Value
(ms) Std. Dev. (ms)

Service
Unavailability on

Client
658.6 11.01

Search Time on
Proxy 448.4 9.18

Download Time 35502.7 441.01
Table 2. Test conditions: server inactivity interval = 400ms; IAPTime =

200ms; SearchPeriod = 200ms.

Parameters Average Value
(ms) Std. Dev. (ms)

Service
Unavailability on

Client
5223.4 23.10

Search Time on
Proxy 5052.6 33.68

Download Time 40232.6 450.12
Table 3. Test conditions: server inactivity interval = 5s; IAPTime = 1s;

SearchPeriod = 1s.

 8

[5] Bluetooth SIG Inc. - Bluetooth, http://www.bluetooth.com
[6] IEEE 802.11b Working Group, “Wireless LAN medium access control

(MAC) and physical layer (PHY) specifications: higher speed physical
layer (PHY) extension in the 2.4 GHz band”,
http://grouper.ieee.org/groups/802/11/, 1999.

[7] S. Cheshire, B. Aboda, E. Guttman, “Dynamic configuration of IPv4
link-local addresses”, IETF Memo, http://files.zeroconf.org/draft-ietf-
zeroconf-ipv4-linklocal.txt, Aug. 2002.

[8] S. Thomson, T. Narten, “IPv6 stateless address autoconfiguration”, IETF
RFC 2462, http://www.ietf.org/rfc/rfc2462.txt. Dec. 1998.

[9] C. Perkins, J. T. Malinen, R. Wakikawa, E. Royer, Y. Sun, “IP address
autoconfiguration for Ad Hoc networks”, IETF MANET Working
Group Internet Draft, http://www.ietf.org/ID.html, Nov. 2001.

[10] S. Nesargi, R. Prakash, “MANETconf: configuration of hosts in a
mobile Ad Hoc network”, IEEE INFOCOM, pages. 1059-1068, 2002.

[11] D. B. Johnson, “Routing in Ad Hoc networks of mobile hosts”, IEEE
Workshop on Mobile Computing Systems and Applications, Dec. 1994.

[12] X. Zou, B. Ramamurthy, S. Magliveras, “Routing techniques in wireless
Ad Hoc networks”, 6th World Multiconference on Systemics,
Cybernetics, and Informatics, July 2000.

[13] M. Mauve, J. Widmer, H. Hartenstein, “A survey on position-based
routing in mobile Ad Hoc networks”, IEEE Network, Nov./Dec. 2001.

[14] E. M. Royer, C.-K. Toh, “A review of current routing protocols for Ad
Hoc mobile wireless networks”, IEEE Personal Communications, Apr.
1999.

[15] J. C. Requena, N. Beijar, R. Kantola, “Replication of routing tables for
mobility management in Ad Hoc networks”, ACM Wireless Networks
(WINET) Journal, 2003.

[16] P. Bellavista, A. Corradi, “Mobile middleware solutions for the adaptive
management of multimedia QoS to wireless portable devices”, to be
presented at IEEE Int. Workshop on Object-oriented Real-time
Dependable Systems (WORDS), Naples, Oct. 2003.

