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Abstract

Several factors are forcing to address the issues of differentiated Quality of Service (QoS) and ubiquitous accessibility in Internet services,

from growing user requirements to the increasing heterogeneity of access devices, from the competition of service providers to the severe

constraints of resource availability in emerging wireless environments. The paper claims that the provision of services with negotiated and

controlled QoS over best-effort networks is achievable via distributed support infrastructures that activate some of the nodes along the

network path between clients and servers. The paper proposes mobile agents (MAs) as the activation technology to implement the needed

active infrastructure and the MA-based design and implementation of the ubiQoS middleware for Video on Demand. At the starting of the

service session, ubiQoS establishes an active path of intermediate nodes capable of tailoring multimedia flow QoS depending on profiles of

user preferences and of device characteristics; at provision time, ubiQoS monitors the offered quality and promptly react to changes in

resource availability by locally performing multimedia transcoding/downscaling and resource pre-emption. In particular, the paper focuses

on how it is possible to determine dynamically a QoS-aware active path between clients and servers, discusses alternative solutions, and

evaluates the performance results of the completely decentralized Peer-to-Peer implementation of the active path determination in ubiQoS.

q 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

A constantly increasing number of users tend to access

Internet services from ubiquitous points of attachment via a

widening range of heterogeneous devices. Users tend to

require differentiated and tailored Quality of Service (QoS),

based on personal preferences and classes of usage, by

considering also accounting aspects such as business/

economic/free-of-charge QoS. The diffusion of wireless

communications and of mobile access to the Web [1]

widens further the heterogeneity of Internet client devices.

Terminals span from traditional workstations and PCs, to

laptops, personal assistants and smart phones, with

continuous/intermittent ubiquitous connectivity.

Both service providers and network operators are calling

for technologies, mechanisms, and tools to support Internet

services with differentiated QoS, and to record, control and

grant the QoS level provided at runtime. Several research

efforts have recently investigated ad hoc protocols at the

network layer [2,3]. These solutions achieved interesting

results for limited networks, but tend to clash with the best-

effort Internet model. In addition, they require that routers

traversed by service flows implement specific ad hoc

protocols. This constraint is likely to produce a long process

of acceptance and diffusion. As a general consideration,

network-layer solutions work at a level where it is difficult

to embed some of the functions required in QoS-enabled

service provisioning, such as application-specific adap-

tation, secure billing and non-repudiable accounting [4].

Some recent work has pointed out the suitability of

distributed infrastructures where some intermediate nodes

play an active role along the network path between clients

and servers [5,6]. Service provision involves not only a

coordinated set of server hosts and not only clients capable

of proposing profile information (user preferences and

device properties) and of enhancing service interactivity by

offering local execution resources, as in the case of Java

applets. Internet services should also activate intermediate

nodes for QoS-enabled service provisioning by operating on
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traversing data flows and reserving intermediate network

resources. For instance, intermediate nodes should offer

their storage resources to realize distributed caches of

popular Video on Demand (VoD) contents for clients

and intermediate nodes within their locality, thus permitting

to decrease the generated network traffic and the client-

perceived latency. In addition, the participation of

intermediate nodes can achieve scalability and complete

decentralization, crucial requirements for service provision

and management in the open and global Internet environ-

ment [4]. Scalability imposes management decisions locally

to the involved resources and autonomous adaptation/

recovery operations on service components when and

where there are changes in the availability of involved

network resources.

Mobile agents (MAs) emerge as a middleware

technology suitable to develop and deploy active services

[6]. MAs can exploit code mobility to reallocate on the

nodes of the distribution paths, thus allowing the needed

dynamic deployment of middleware components. MAs

can monitor/control network resources locally and auton-

omously, and can perform prompt management operations

at the dynamically determined critical points of the

network infrastructure, e.g. where there is the need to

overcome discontinuities in bandwidth due to either

variations of connection technologies or congestion

situations.

The paper describes the design and implementation of an

MA-activated service infrastructure, called ubiQoS,1 for the

QoS tailoring, control and adaptation of VoD flows over

standard best-effort networks. The name ubiQoS refers to

the 2-fold ubiquity dimension of our middleware approach:

† Ubiquitous accessibility. ubiQoS allows the reception of

VoD flows anywhere, by tailoring multimedia content to

user preferences, client device characteristics and

available network bandwidth at negotiation time.

In addition, it can monitor the provided QoS levels at

provision time to perform corrective flow adaptation in

response to modifications in available resources.

† Ubiquitous middleware. ubiQoS tends to diffuse its

components in the system. At negotiation time, middle-

ware components autonomously distribute on the hosts

along the paths from VoD receivers to VoD sources.

When new path segments are needed at provision time,

e.g. in case of fault recovery, ubiQoS components can

migrate to the required locations without imposing any

service restart.

In particular, the paper details how it is possible to

determine dynamically a QoS-aware active path between

clients and servers, even in case of multicast distribution of

the same VoD flow with differentiated QoS levels, discusses

possible solutions, and finally evaluates the performance

results of the completely decentralized Peer-to-Peer (P2P)

implementation of the active path determination in ubiQoS.

2. Mobile Agents for QoS-aware active service

infrastructures

The development, deployment and management of

Internet services should face the challenging issues related

to the increased QoS requirements and to the wide

heterogeneity of access devices in the global provision

scenario. It is within this context that the traditional end-

to-end model of interaction shows its limits, thus

suggesting the proposal of alternative scenarios. The

network infrastructure should play an active execution

role: for instance, in programmable networks, intermediate

nodes operate on transmitted data and can be programmed

by dynamically injecting service/user-specific code [6].

Several research activities start to recognize the suitability

of MAs in this activated scenario where active services

exploit intermediate nodes typically programmed at the

application layer [5,7–9]. MAs are autonomous entities

with capacity of coordination, able to dynamically move

(together with their code and the reached execution state)

to where resources are located, and able to adapt to

current system conditions in a completely asynchronous

way with regard to their launching user. The MA adoption

simplifies the achievement of active service properties,

such as:

† Control decentralization. Cooperating MAs can

migrate during service provision and take autonomous

management decisions based on local resource state.

MAs can modify dynamically service distribution

paths, e.g. in case of link failures or by following

possible movements of users and client devices. In

addition, agent autonomy permits asynchronicity

between user actions and MA-performed tasks. For

instance, MAs can operate service negotiation and

establish the active path also when users/access devices

are temporarily disconnected.

† Tailoring. MAs provide an effective mechanism to

tailor services to user requirements and resource

availability at negotiation time. Dedicated agents can

retrieve profile information, can propagate this infor-

mation to current user access points and customize

service flows, depending on the current access devices

and the already admitted service sessions. For instance,

for accesses ranging from a laptop to a light PDA, an

active service can decide to include/discard attach-

ments in downloading e-mail messages.

† Adaptability. MAs simplify the adaptation of services

in response to modifications in the availability of

network resources at provision time [4]. For instance,

MAs can locally monitor network resources and

1 The SOMA-based ubiQoS middleware is available for download at

http://lia.deis.unibo.it/Research/ubiQoS/.
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dynamically migrate where needed to obtain a global

view of the system state. This awareness permits to

trigger management operations to correct the achieved

QoS (re-negotiation, additional communication chan-

nels, etc.) by exploiting locality to congested resources.

In addition, MA solutions tend to address novel

requirements and to provide infrastructure properties that

significantly enhance the effectiveness of active services,

thus facilitating their acceptance and diffusion. The most

relevant property in this context is location awareness.

MAs tend to maintain full visibility of the location of

underlying system resources and to propagate this

visibility to the service level. Location awareness is

crucial to optimize resource usage within a locality [10,

11]. For instance, MAs can decide to switch to another

VoD server if the current one is overloaded and another

one is currently available for a better service either in the

same locality or in a near one.

In addition, MA-based middleware solutions facilitate

the achievement of security and interoperability. On the

one hand, MA systems not only introduce specific

security mechanisms and policies to deal with untrusted

incoming code, but also easily integrate standard

solutions for secure services at the application level.

For instance, MA operations can be controlled depending

on permissions associated with authenticated principals

and their role; based on these security mechanisms, any

operation can be allowed, recorded and accounted to

responsible users [12]. On the other hand, many MA

systems achieve interoperability via compliance with

general specifications, such as CORBA, and more MA-

specific standards, such as the MA Systems Interoper-

ability Facility and the Foundation for Intelligent

Physical Agents specification [13,14].

Apart from the above properties that MAs can grant, one

may argue that active services ask only for code mobility

and that they do not require the full state migration typical

of MAs: active services usually can take advantage of

single-hop mobility patterns and not of multihop migrations.

This consideration applies only to very simple services and

commonly proposed case studies. The opportunity of state

migration emerges in more complex and connection-

oriented active services that require maintaining and

moving sessions. This is evident in mobile computing

scenarios where MA-based active nodes work as proxy of

possibly disconnected users/devices [10]. A reasonable

conclusion is “while none of the individual advantages of

MAs is overwhelmingly strong, we believe that the

aggregate advantages of MAs is overwhelmingly strong”,

as stated in Ref. [15].

Finally, since the beginning, MAs are considered a

suitable technology for network and system management

because of the possibility of moving management entities

locally to administered resources [16]. For this reason, not

so tied to the property of full mobility, many MA

platforms give agents the possibility to access network

and system properties, i.e. to have a certain degree of QoS

awareness. In particular, most MA-based prototypes can

interrogate network elements via standard management

protocols such as SNMP and RMON [17,18]. When used

for higher-level service management functions, MAs

should also have visibility of system/application-specific

indicators, such as the list of the current threads of an

application and, for each of them, the CPU effective time

and the allocated memory. This requirement is hard to

grant because most MA platforms are implemented in

Java and the Java Virtual Machine (JVM) tends to hide

kernel-level system properties. However, some work has

recently achieved interesting results in extending the

monitoring visibility of Java MAs, with/without modify-

ing the standard JVM [19,20].

2.1. MA-based QoS tailoring and adaptation of VoD flows

Two different phases for QoS management operations

can be distinguished, QoS tailoring at negotiation time, and

QoS adaptation at provision time.

The first phase precedes any real service flow and is

necessary to negotiate the initial suitable QoS level. Its

main goal is to determine the optimal engagement of

resources, on the basis of the user preferences, of the

characteristics of her current access device and of the

currently available network resources. Ad hoc MAs could

retrieve user/ terminal profiles and transport this infor-

mation where needed. Then, the active service middle-

ware could choose the VoD server capable of providing

the requested content best satisfying the QoS requirements

depending on the profiles. Once identified the server, the

middleware could establish an active server-to-client

network path. MAs can dynamically install along this

path, to negotiate from there the QoS level that any path

segment has to maintain and to decide for any required

multimedia scaling operation. The VoD flow distribution

is tailored also depending on already admitted service

flows and current resource availability: MAs are in charge

of application-level admission control and reservation of

local resources.

The second phase is necessary during service provi-

sioning and can impose strict constraints on middleware

reaction times (RTs). Any deviation from conformity

makes the service ineffective and should be avoided

because it clashes with the initially negotiated QoS level.

In fact, over best-effort networks, the quality of the

provided VoD flows can change depending on the state of

system/network resources along the distribution paths.

Therefore, QoS should be controlled dynamically and

possible modifications in available resources should

promptly trigger adaptation operations. Adaptation oper-

ations include transformations on served VoD flows (from

transcoding to frame resizing, from merging/splitting

multilayered tracks to reducing frame resolution and

P. Bellavista, A. Corradi / Microprocessors and Microsystems 27 (2003) 73–83 75



rate) and ultimately also the modification of the

established active path. In this case, it is necessary that

a new negotiation phase takes place for a possible

redistribution of MA-based active middleware com-

ponents. MAs represent a suitable technology in this

QoS management phase because they can operate locally

to congested resources, by significantly reducing the

needed RT. In addition, they can operate in a completely

decentralized and autonomous way, thus improving the

overall scalability of the QoS management solution.

To show more concretely how MAs can work on the

tailoring, control and adaptation of the QoS of VoD flows,

Fig. 1 presents a possible active service deployment

scenario. Clients, servers and networked resources are

organized in hierarchies of locality abstractions. Active

service MAs (and their hosts) can be grouped into domains

that usually correspond to (a set of) local area networks with

common administration and management policies. At

negotiation time, a suitable active path between the VoD

clients and the servers is determined. Middleware MAs

dynamically distribute on a subset of the hosts along this

path. The different QoS requirements of user1 and user2

(and of their access devices) produce the distribution of a

high-quality flow from the VoD server and the downscaling

of the flow at the MA in domain2. At provision time, in case

of degradation of link1 bandwidth, the MA in domain2 can

adapt the VoD transmission to user1 by reducing the frame

resolution according to the receiver preference profile.

If there are not enough resources to adapt QoS by respecting

negotiated requirements, a new active path segment is

established. The MA in domain3 tries to identify a suitable

VoD server in its near domains; then, it negotiates with new

MA-enabled hosts, and finally restarts the flow transmission

from its interruption point (if server4 can support random-

access to that VoD content). Apart from the time interval

needed to establish the new path, the server swap is

transparent to both receivers and intermediate nodes.

3. The ubiQoS active service middleware

The above solution guidelines have driven the design and

implementation of an MA-based active service middleware,

called ubiQoS, for the support of QoS tailoring, control and

adaptation of VoD flows over best-effort networks. ubiQoS

is built on top of an MA framework, called Secure and Open

MAs (SOMA).2 The choice of SOMA is motivated by its

middleware facilities for the rapid development and

deployment of MA-based Internet services. SOMA provides

facilities for QoS awareness and QoS management

(Monitoring and QoS facilities), for the definition of

suitable trade-offs between security level and performance

(Security facility), and for the interworking with other MA

platforms, legacy systems, resources and services (Inter-

operability facility) [10,14]. In addition, ubiQoS exploits

RTP for VoD flow transmission, due to the RTP diffusion in

application-level approaches to QoS.

The ubiQoS ultimate goal is to allow ubiquitous

accessibility of VoD services from any device and from

any Internet access point, with the proper QoS level. Any

client request is served after an initial negotiation phase that

establishes an active path connecting the requesting client to

a suitable VoD server, i.e. a server that could provide the

requested VoD content with a QoS level greater or equal to

the required one. In the current implementation, ubiQoS

handles MJPEG flows and expresses the VoD QoS level as a

tuple including frame rate, frame size, compression factor,

and jitter. The requested QoS tuple is obtained by

combining the requirements stored in the profiles of the

user and of her current access device. If the QoS offered by

the chosen VoD server is greater than needed, some ubiQoS

MAs on the active path can downscale the flow. In this

phase, MAs may migrate to intermediate nodes to install

where needed operations are not yet available. For instance,

Fig. 1. An example of deployment scenario for an MA-based active service middleware.

2 The SOMA platform is available for download at http://lia.deis.unibo.it/

Research/SOMA/.
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any node in the active path requires the local presence of an

admission control MA in charge of monitoring on-line local

resource availability and of performing application-level

reservation of local resources.

The provisioning of QoS-enabled VoD services over the

Internet requires also a dynamic control of resource

availability at provision time and the consequent handling

of adaptation operations. These control phases should be

enforced on any segment of the active path, and the MA

technology can help in performing QoS monitoring in any

locality traversed by VoD flows in order to decide locally

any corrective intervention. Any local QoS degradation

triggers adaptation operations on exchanged VoD flows

at the ubiQoS MA adjacent to the congested segment.

The middleware can locally decide how to work on the flow,

e.g. via format transcoding, by maintaining the path, or to

establish new path segments, either connecting to the same

VoD server or to a less loaded one.

To reduce overall traffic and latency and to increase

service scalability, ubiQoS organizes distributed caches of

frequently accessed VoD flows. In particular, intermediate

active nodes can maintain local caches depending on the

access patterns of the clients in their locality. The amount

of space that an active node should devote to its local

cache, the refreshing time and the replacement policy are

all choices that strongly depend on the characteristics of

the locality, of its available resources and of the local

usual clients. As a consequence, it is important that

administrators can control and modify cache parameters

during service provision by specifying a proper manage-

ment policy. At the moment, ubiQoS offers domain

administrators the possibility to choose which percentage

of disk free space has to be exploited for cache storage

and to adopt either a least-frequently used or least-

recently used replacement policy.

3.1. The ubiQoS middleware components

Four types of ubiQoS MAs distribute along the active

path between the VoD clients and servers for flow

provisioning:

(1) ubiQoS proxies are in charge of admission control/

reservation. They monitor system- and application-

level state of their local resources and are able to

trigger local adaptation operations. They coordinate

with previous and next proxies in the active path both

during the initial negotiation phase and at provision

time when resource availability changes. In particular,

as detailed in the following, they also collaborate to

determine the active path in response to client requests.

(2) ubiQoS processors are in charge of tailoring and

adaptation operations on VoD contents depending on

the QoS levels required in the currently provided

sessions. In addition, in response to new client requests,

new processors retrieve profile information and migrate

to the involved proxies in order to establish the needed

active path depending on client/server location.

(3) ubiQoS client stubs forward VoD client requests to

ubiQoS proxies and redirect RTP flows to their local

visualization tools in a transparent way, to integrate

ubiQoS with legacy VoD players. At the moment, we

have implemented ubiQoS client stubs for JMF [21] and

Mbone vic [22] players.

(4) ubiQoS server stubs answer to service requests from

ubiQoS components by encapsulating VoD flows from

legacy servers into RTP flows transparently. Up to now,

we have implemented server stubs for JMF data

sources.

All the above middleware components are implemented

as MAs to permit dynamic installation and updating of

existing functions even while ubiQoS is operating. Details

about the design and implementation of the ubiQoS

middleware components are presented in Ref. [23]. In the

following, the paper focuses on how, in response to a

specific service request, ubiQoS determines the proper

QoS-dependent active path where processors and proxies

dynamically and automatically install, if not already present.

3.2. Active path determination in ubiQoS

In ubiQoS, the determination of active paths is achieved

dynamically by ubiQoS proxies, which organize a network

of P2P mediators. ubiQoS proxies solve the QoS routing

problem by collaborating in building suitable QoS-aware

paths in response to client requests.

Any ubiQoS locality hosts at least one proxy. If multiple

proxies are available in the same locality, only one of them

has registered in the local discovery service (see Section 4

for additional details about the SOMA naming infrastruc-

ture) as the primary mediator. The other proxies register

themselves as secondary mediators, capable of replacing the

primary for fault-tolerance reasons, similarly to what occurs

for DNS fault tolerance. Anytime either a ubiQoS client stub

is likely to request a VoD flow or a ubiQoS server stub is

likely to update the lists of offered VoD contents, they

communicate their willingness to the primary proxy in their

locality. At their first interaction, stubs interrogate the local

discovery service to obtain the complete list of the proxies

available in the locality. Successively, they re-interrogate

discovery only in case of failure of both the primary proxy

and all already known possible secondary ones.

On the one hand, a server with a newly offered VoD

content sends an XML-based advertisement to its local

ubiQoS proxy by specifying a title for the VoD flow, its

textual description, a tuple indicating the maximum QoS

level offered (in the current implementation, expressed only

in terms of frame size and frame rate), and the associated

cost as a polynomial function of the QoS parameters

included in the tuple. ubiQoS proxies automatically

invalidate VoD content entries from servers at regular
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time intervals; server stubs are in charge of refreshing

registrations by renewing the lease if they are interested to

continue to offer the registered VoD flows.

On the other hand, a client requesting a VoD flow

interrogates the proxy with an XML-based query that can

include a search sub-string for the VoD title, a search sub-

string for the VoD description, a tuple with the minimum

acceptable values for QoS parameters, the maximum price

the client is ready to pay for the service, and an initially void

list of proxies already traversed by the query (the partially

determined candidate for the active path).

When a ubiQoS proxy receives a query from one client

stub, it first checks in its registration table to find a directly

known server stub that provides a compatible VoD content.

If several are found, the minimum cost server is chosen.

Otherwise, the proxy acts as a client in the P2P mediator

network and forwards the request to maximum N proxies

(N is configurable and usually put to 5) in close ubiQoS

localities. Close proxies are reached by exploiting the

SOMA naming system and the SOMA locality organization

[10,14]. Before any request forwarding, the proxy decre-

ments the maximum cost specified by the client by the cost

associated to the transmission of the VoD content with the

minimum acceptable QoS level over the link client-to-proxy.

In addition, it includes its GUID to the list of traversed

proxies in the query. A request is forwarded if and only if:

† the client request can be still satisfied, signaled by a still

positive cost value;

† the proxy examining the request is not already included in

the list of traversed ones, to avoid loops;

† the number of traversed proxies is less than a

configurable maximum number of hops.

Once reached a potentially suitable server, proxies start

exchanging a new sequence of coordination messages on the

way back of the determined path, this time going backwards

from the server to the client. Any proxy performs the needed

local resource reservation and possibly decides if a down-

scale tailoring operation should operate in its locality. The

enforced policy is to downscale the flow at the first possible

node in the server-to-client path, according to the QoS

requirements of all served clients in the distribution sub-tree.

In addition, any proxy determines the actual costs associated

with its active path segment. These costs could be different

from the ones determined in the client-to-server way, e.g.

because of the tailoring decisions made on the way back.

At the end, the client stub receives all service bids

together with their associated costs to let the user choose

among them. The user choice triggers the VoD flow starting

on the dynamically determined QoS-aware path. The client

stub ignores any other service bid received after the choice.

In addition, the intermediate nodes belonging to alternative

active paths, not chosen for final service provisioning,

invalidate their reservations after a configurable timeout and

release the corresponding local resources.

Let us finally observe that proxies cannot only behave as

clients when forwarding requests towards the VoD servers,

but also act as servers when a received request can be satisfied

by either a currently traversing VoD content or a locally

cached one. This produces the dynamic determination of

active multicast distribution trees. Details about ubiQoS

multicast and its decentralized caching infrastructure are out

of the scope of the paper and presented in Ref. [23].

4. Implementation insights

ubiQoS requires expressive naming solutions to retrieve

dynamically all the information needed to the active service

middleware, from the list of proxies and hubs in near

network localities to the user/device profiles to drive QoS

tailoring and adaptation. ubiQoS exploits the SOMA

naming support that integrates discovery and directory

servers. Ref. [10] reports a full description of the SOMA

naming implementation, while this present paper only

sketches some elements to permit to fully understand how

the ubiQoS components interoperate.

SOMA discovery and directory servers provide different

naming solutions suitable for different goals. They differ in

visibility scope (local versus global), flexibility (rigidly

predefined and simple structure vs. flexible content and

organization), and performance (limited low-level efficient

protocols vs. complete high-level searching/registering

operations). For instance, in ubiQoS LDAP-compliant

directory servers store the profiles of registered users and

of recognized access devices. Profile information about new

access devices may be described dynamically as an

extension of already included profiles that exploit the

CC/PP composition capabilities. In addition, Jini-based

discovery servers permit to access the active middleware

information visible in a single locality, i.e. the list of locally

known proxies and hubs (usually, the ones within or close to

that locality).

To determine the QoS of the VoD flow exchanged on any

active path segment, any ubiQoS processor autonomously

decides the QoS level to request to the following processor

towards the server. A whole interval of QoS parameters is

usually permitted; the processor chooses the QoS point to

enforce in the permitted QoS space interval depending on

the local resource consumption policy. In the current

ubiQoS implementation, system administrators can choose

two simple policies: Best QoS and Lower QoS. The Lower

QoS policy aims at reducing the resource consumption by

reserving only the set of resources that minimizes a

specified local cost function. On the contrary, the Best

QoS is a greedy policy that chooses the QoS point reserving

the maximum local resource usage. While enforcing Best

QoS, new VoD flow requests can also dynamically modify

QoS points of accepted flows by pre-empting previously

committed resources. In addition, ubiQoS provides admin-

istrators with GUIs to force the processor decision by
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directly specifying low-level QoS parameters, e.g. by

changing frame rate/size as shown in Fig. 2.

At provision time, the proxy can trigger the local

processor to modify provided QoS by causing the solution

to move in the QoS space according to the preferences

expressed in the client profile. We use relevance weights

associated with the different QoS parameters [23]. For

instance, the profile of a device with limited display

capabilities can specify a frame rate weight larger than

frame resolution to indicate a preference in degradation of

image quality instead of frequency decrease. In other words,

the weights determine the preferred directions of correction

actions in the QoS space when the proxy detects a

modification in local resource availability. Only when the

allowed correction region is null, the proxy triggers the P2P

determination of a new QoS-aware active (sub-) path.

5. Experimental results

To evaluate the feasibility and effectiveness of our

approach, we have deployed the ubiQoS infrastructure over

a set of geographically distributed networks, with hetero-

geneous bandwidth (10/100 Mb/s) and interconnected via

GARR, i.e. the Italian Academic and Research Network.

Any local network is modeled by one ubiQoS locality and

includes heterogeneous hosts (SUN Ultra5 400 MHz work-

stations with Solaris 7, 128 MB PentiumIII700 PCs with

Microsoft WindowsNT and 128 MB PentiumIII700 PCs

with SuSE Linux 7.1). In this deployment scenario, we

have measured several performance figures, listed in the

following, to estimate the overhead and the RT of the

ubiQoS middleware.

As described in Section 3.2, the initial phase of client-to-

server path determination in ubiQoS involves the client,

the dynamically retrieved server, and some active inter-

mediate nodes. The establishment of any path segment

requires the creation of an RTP connection, the migration of

one session-specific processor MA, the resource admission

control/reservation on the destination node, and the

negotiation of the suitable, possibly adapted, QoS level. In

addition, at regular time intervals, configurable according to

the degree of dynamicity of the deployment scenario,

ubiQoS clients/proxies interrogate the local SOMA dis-

covery to update the list of nearby ubiQoS proxy peers.

Fig. 3 reports the average value of the active path setup

time measured over a large set of deployment scenarios,

with 50 geographically and randomly distributed clients

with heterogeneous QoS requirements and a set of four

ubiQoS servers with partially replicated VoD contents. The

experimental results show an almost linear dependence of

the path setup time on the number of dynamically

determined intermediate active nodes. The path setup time

usually does not exceed 5 s, with an average number of

active nodes less than 5 and an average number of required

migrations less than 3. This interval is significantly larger

than the one necessary to establish a single RTP connection

between one client and one already known server, but is

widely acceptable in most categories of multimedia

services, i.e. non-interactive VoD ones, since it affects

only the starting delay at the client side.

Let us observe that the migration of ubiQoS components

is not required by any service request. In fact, ubiQoS

proxies are infrastructure components that dynamically

install where needed in response to a service request and

that can persist there to serve future requests for VoD flows.

Fig. 2. Some visualization and control GUIs: RTP sender/receiver reports and QoS monitoring information, profile-dependent QoS parameters and adaptation

weights, and a JMF-based player integrated with the ubiQoS client.
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ubiQoS processors are session-specific, migrate at the setup

of any new active path, but they are significantly lighter than

proxies and can exploit the local availability of suitable Java

classes on the hosting nodes. In fact, ubiQoS maintains

processor classes deriving from previous VoD sessions in a

local code repository, managed with a least-recently used

replacement strategy. For the above reasons, the figure also

reports how the number of needed ubiQoS proxy migrations

affects the path setup time: the delay significantly reduces in

the usual case of a service request that triggers the

installation of proxies only over a small set of new active

nodes.

In addition, even in the case of large-scale deployment

scenarios, such as the typical Internet-wide service distri-

bution, the number of active nodes along the server-to-

clients path tends to be very small. In fact, it is usually much

lower than the number of traversed routers/gateways.

ubiQoS proxies and processors need to operate only where

there are either strong bandwidth discontinuities or forking

of the VoD multicast tree. In any experimented scenario,

the dynamically determined ubiQoS active paths never

included more than four intermediate active nodes. We

needed to force the middleware decisions by adding ad hoc

bottlenecks to have longer active paths in order to measure

the setup times, shown in Fig. 3, for the cases with 5 and 6

active nodes.

Anyway, the path setup overhead is largely counter-

balanced by the possibility of performing prompt reactions at

provision time in response to dynamic changes in network

resources. ubiQoS proxies integrate standard RTP report

transmissions with event-triggered exchanges of QoS-related

information provided by SOMA monitoring [20]. This

permits to overcome the RTP limit related to the frequency

of reports, which is statically determined in RTP as a fixed

percentage of the maximum network bandwidth available at

the time of connection establishment [24]. Fig. 4 shows

the ubiQoS RT when the bandwidth reduction over an active

path segment triggers the downscaling of the transmitted VoD

flow. RT is measured as the time interval between the

congestion occurrence and the starting of the adapted flow

Fig. 3. ubiQoS path setup time.

Fig. 4. ubiQoS reaction time.
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transmission from the downscaling processor. The figure

reports the average results obtained by measuring RT for all

thedifferentpossiblepositionsof thecongestedsegment in the

path (from the server to the first active node, from the first

active node to the second, etc. and from the Nth node to the

client).TheRTaverage isaround148 msand,most important,

almost independently of the distance between the client/

server and the congested segment. This is made possible by

the fact that any proxy autonomously monitors, controls and

manages its localpathsegment.RTvaluesexhibit averysmall

variance and very limited random fluctuations around the

average value, exclusively due to runtime variations in the

non-ubiQoS network traffic over GARR.

6. Related work

Many research groups have recently claimed the

suitability of programmable networks for a wide spectrum

of Internet services. Programmable networks can help in

fast prototyping and deploying new network-layer proto-

cols, e.g. for congestion control, topology-aware reliable

multicast and virtual private networks [5,6]. Among the

active service approaches, network programmability is

exploited to deal with application-specific requirements,

as in distributed information filtering and Web caching [7,

25]. Most active service projects implement prototypes on

top of the Java programming environment to facilitate code

portability and mobility; some of them explicitly adopts the

MA technology [8,9].

In the specific application domain of QoS and

multimedia services, there are a few notable approaches

that exploit intermediate active nodes. Baldi et al.

designed a videoconference service by uploading Java

mobile code in active routers, thus adopting a network-

layer approach [26]. Amir et al. implemented a Media

Gateway (MeGa) for the adaptive transcoding of multi-

media flows [27]. Their work, however, is more focused

on algorithms for efficient downscaling and adaptive

bandwidth allocation than on dynamic reconfiguration

and code distribution.

The Reflector project has proposed the active infrastruc-

ture most similar to ubiQoS [28]. Reflector is an application-

level multimedia distribution system implemented in Cþþ .

It has been designed and deployed mainly to test and verify

the feasibility of distributing low and medium bandwidth

VoD flows to thousands of simultaneous users over the

Internet. The Reflector technology had a significant success

in the live broadcast of NASAs Pathfinder mission.

However, Reflector designers learned from wide-scale

deployment experiences that it is crucial to adopt technol-

ogies to facilitate the support to dynamic reconfiguration,

code distribution and adaptation to changes in network

resource availability. It is interesting that they are

addressing the observed limitations of Reflector by adopting

the MA technology to enhance the extensibility of their

system [29].

Several research efforts in the last years addressed the

issue of determining the QoS-optimal client/server path.

The problem is usually identified in the literature as QoS

routing. The achievement of the optimal decision imposes

the collection of the updated and complete state of the QoS

levels available on any involved network link/host. On this

basis, several algorithms have been proposed to rapidly

determine the path that optimizes either a QoS parameter

(queuing delay, propagation delay, tailoring delay, etc.) or

the resource utilization (number of hops, generated network

traffic, load balancing, etc.) [30,31]. In general, this

represents a NP-complete optimization problem and is

usually faced by imposing simplification constraints, e.g. by

reducing it to a Delay Constrained Least Cost path problem

or a Bandwidth Constrained Least Cost path problem [31].

However, also with these simplifications, the execution time

has been proved to be exponential in the worst case.

Therefore, several researches are investigating the

determination of non-optimal solutions via different kinds

of QoS-specific heuristics. A significant recent result is

described in Ref. [32] where the QoS routing optimization is

simplified and transformed into a Steiner Minimal Tree

problem. It is significant that, apart from the adopted

algorithm, the approach uses MAs to locally monitor the

state of the distributed resources and to consequently

determine the QoS-aware path by exploiting MA mobility.

We have experimented the approach and developed a

prototype version of it on top of SOMA. Even if effective

in the case of small-scale networks with quasi-static

topologies and rare congestion/hot spots, where the QoS

path determination can be performed also off-line with a

reasonable estimate, the solution does not scale well in large-

scale open environments where QoS-aware routing must be

solved dynamically in response to any service request, as in

the service provisioning scenario addressed by ubiQoS.

Some interesting hints for QoS routing solutions can be

borrowed by the recent P2P research, involved in investi-

gating the best way to organize content distribution

networks in a completely decentralized way [33,34]. In

fact, P2P proposes solutions for discovering information

resources at provision time via dynamically organizing

advertisement/query systems with no points of centraliza-

tion. P2P discovery include content-based and content-

agnostic solutions where, respectively, the organization of

the peer interaction depend or does not depend on the

indexed resources. However, P2P solutions currently focus

on the simple retrieval of resources and do not provide the

needed visibility of routing/system information, which is

crucial in multimedia QoS management. For instance,

JXTA search completely hides the network topology and

does not support the association of any routing hop with a

dynamically evaluated QoS-dependent cost [35]. To the best

of our knowledge, ubiQoS is the first MA-based middleware

adopting a P2P scheme of solution for the determination of
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QoS-aware active paths in the multimedia distribution

scenario.

7. Conclusions and on-going work

The work accomplished within the ubiQoS project has

shown the feasibility and the effectiveness of addressing the

QoS issues of VoD services via a middleware infrastructure

of active nodes. This choice is suitable to enable QoS

differentiation according to user/terminal profiles and to

perform domain-specific flow tailoring, control and

adaptation over a best-effort network. The effectiveness of

the ubiQoS implementation in terms of MAs depends on

operating close to controlled resources to take locality-

dependent management decisions and on dynamically

distributing middleware components at provision time.

First ubiQoS performance results are encouraging and

stimulate refinements and extensions of the implemented

middleware. In particular, we are extending the middleware

to include VoD client stubs based on the Java 2 Micro

Edition and VoD multimedia players such as the TealMovie

one [36], targeted to Palm portable devices with very

limited visualization capabilities.

With regard to the adopted solution for active path

determination, we are extending it to support the auton-

omous and dynamic organization of discovery servers in

hierarchies depending on the dynamically determined

network topology, on the history of previously established

active paths, and on the location/frequency patterns of client

requests. Even if not in the specific area of QoS-aware VoD

distribution, recent activities in the P2P research are

demonstrating that significant performance improvements

can be achieved in large-scale distribution networks by

organizing nodes in a very small number of hierarchical

layers (3/4), especially when combined with distributed

caching such as in ubiQoS [37]. Finally, we are starting to

investigate the possibility to drive the active path determi-

nation by exploiting hashing functions that depend on the

requested VoD content and by consequently pruning routing

sub-trees as in the FreeNet content-based search.
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