
Vol. 43 No. 11 IPSJ Journal Nov. 2002

Regular Paper

A Mobile Agent-activated Middleware for Internet Video on Demand

Paolo Bellavista† and Antonio Corradi†

The widening of user requirements and the enlargement of terminal heterogeneity force
to address the issues of differentiated Quality-of-Service (QoS) and ubiquitous accessibility
in Internet services. The paper claims that the provision of services with negotiated and
controlled QoS over best-effort networks is achievable via distributed support infrastructures
that activate some of the nodes along the network path between clients and servers. The
paper proposes Mobile Agents (MAs) as the activation technology to implement the needed
active infrastructures and presents the MA-based design and implementation of the ubiQoS
middleware for Video on Demand. At the negotiation time, ubiQoS establishes an active
path of intermediate nodes capable of tailoring multimedia flow QoS depending on profiles
of user preferences and of device characteristics. At the provision time, ubiQoS monitors the
offered quality and promptly react to changes in resource availability by locally performing
management operations, such as flow transcoding/downscaling and resource preemption, when
and where needed.

1. Introduction

A constantly increasing number of users tend
to access Internet services from ubiquitous
points of attachment via a widening range
of heterogeneous devices. Users tend to re-
quire differentiated and tailored Quality of Ser-
vice (QoS), based on personal preferences and
classes of usage, by considering also account-
ing aspects such as business/economic/free-of-
charge QoS. The diffusion of wireless commu-
nications and of mobile access to the Web 1)

widens further the heterogeneity of Internet
client devices. Terminals span from tradi-
tional workstations and PCs, to laptops, per-
sonal assistants and smart phones, with contin-
uous/intermittent ubiquitous connectivity.

Both service providers and network operators
are calling for technologies, mechanisms, and
tools to support Internet services with differen-
tiated QoS, and to record, control and grant
the QoS level provided at runtime. Several
research efforts have recently investigated ad-
hoc protocols at the network layer 2),3). These
solutions achieved interesting results for lim-
ited networks, but tend to clash with the best-
effort Internet model. In addition, they require
that routers traversed by service flows imple-
ment specific ad-hoc protocols. This constraint
is likely to produce a long process of accep-
tance and diffusion. As a general consideration,
network-layer solutions work at a level where
it is difficult to embed some of the functions

† DEIS — University of Bologna

required in QoS-enabled service provisioning,
such as application-specific adaptation, secure
billing and non-repudiable accounting 4).

Some recent work has pointed out the suit-
ability of distributed infrastructures where
some intermediate nodes play an active role
along the network path between clients and
servers 5),6). Service provision involves not only
a coordinated set of server hosts and not only
clients capable of proposing profile information
(user preferences and device properties) and of
enhancing service interactivity by offering lo-
cal execution resources, as in the case of Java
applets. Internet services should also activate
intermediate nodes for QoS-enabled service pro-
visioning by operating on traversing data flows
and reserving intermediate network resources.
For instance, intermediate nodes should offer
their storage resources to realize distributed
caches of popular Video on Demand (VoD) con-
tents for clients and intermediate nodes within
their locality, thus permitting to decrease over-
all traffic and response time. In addition, the
participation of intermediate nodes can achieve
scalability and complete decentralization, cru-
cial requirements for service provision and man-
agement in the open and global Internet en-
vironment 4). Scalability imposes management
decisions locally to the involved resources and
autonomous adaptation/recovery operations on
service components when and where there are
changes in available resources.

Mobile Agents (MAs) emerge as a middle-
ware technology suitable to develop and deploy
active services 6). MAs can exploit code mobil-

3301

3302 IPSJ Journal Nov. 2002

ity to reallocate on the nodes of the distribu-
tion paths, thus allowing the needed dynamic
deployment of middleware components. MAs
can monitor/control network resources locally
and autonomously, and can perform prompt
management operations at the dynamically de-
termined critical points of the network infras-
tructure, e.g., where there is the need to over-
come discontinuities in bandwidth due to either
variations of connection technologies or conges-
tion situations. The paper describes the de-
sign and implementation of an MA-activated
service infrastructure, called ubiQoS ☆, for the
QoS tailoring, control and adaptation of VoD
flows over standard best-effort networks. The
name ubiQoS refers to the twofold ubiquity di-
mension of our middleware approach:
• ubiquitous accessibility. ubiQoS allows

the reception of VoD flows anywhere, by
tailoring multimedia content to user pref-
erences, client device characteristics and
available network bandwidth at negotiation
time. In addition, it can monitor the pro-
vided QoS levels at provision time to per-
form corrective flow adaptation in response
to modifications in available resources;

• ubiquitous middleware. ubiQoS tends to
diffuse its components in the system. At
negotiation time, middleware components
autonomously distribute on the hosts along
the paths from VoD receivers to VoD
sources. When new path segments are
needed at provision time, e.g., in case of
fault recovery, ubiQoS components can mi-
grate to the required locations without im-
posing any service restart.

The paper is organized as follows. Sec-
tion 2 briefly describes the state-of-the-art of
application-level technologies for Internet VoD
services. Section 3 supports the claim that MAs
are a feasible and effective technology to deploy
active services with controlled QoS over the In-
ternet. This gives the needed background to
fully understand the design choices of the pro-
posed ubiQoS middleware, presented in Section
4. Section 5 reports implementation insights
and experimental results about the ubiQoS per-
formance (path setup time, reaction delay, net-
work traffic) and shows how its Java-based im-
plementation can respect the typical time con-
straints of Internet VoD provisioning. Com-

☆ The SOMA-based ubiQoS middleware is for down-
load at http://lia.deis.unibo.it/Research/ubiQoS/.

parisons with related research activities, con-
clusions and directions of current work end the
paper.

2. Application-level Technologies for
Internet VoD Services

Middleware solutions for VoD services can
achieve a wide and rapid diffusion only by in-
tegrating with standard Internet mechanisms
and technologies. There are three emerging
and accepted application-level solutions that
can help the deployment of QoS-aware VoD
services over best-effort IP networks. We pro-
pose the ubiQoS middleware that exploits some
of these technologies: the Real-time Trans-
port Protocol (RTP) to transmit multimedia
packets, the Java Media Framework (JMF) to
process VoD flows, and the Composite Capa-
bilities/Preference Profile (CC/PP) to manage
user/terminal profiles.

2.1 Real-Time Transport Protocol
Recent research activities on QoS-enabled

protocols have explored two different directions.
At the network level, the research investigates
the definition and standardization of new pro-
tocols based on the reservation of the needed
amount of network resources 4). However, the
acceptance and deployment of new network-
level protocols is long and difficult, mainly
due to the large base of non-programmable
and already installed network equipment. An
application-level granted QoS is especially sig-
nificant in the areas of mobile communications
and multimedia distribution 6),7). Application-
level solutions try to meet QoS requirements
without modifying the underlying best-effort IP
network level: the guideline is to monitor the
currently available QoS and to notify service
components of quality modifications to trigger
suitable management operations.

RTP, developed by the Internet Engineer-
ing Task Force (IETF) Audio/Video Transport
working group, is the most widespread example
of the application-level approach 8). RTP sup-
ports communication with real-time constraints
by defining the basic packet format for au-
dio/video data transfer, e.g., sequence numbers
of packets to permit packet loss detection or to
determine the position of a video frame within
a flow. Different encoding schemes (Motion-
JPEG, H.261, ...) are supported.

RTP has its own control protocol, the Real
Time Control Protocol (RTCP), which does not
transfer data but handles only control informa-

Vol. 43 No. 11 A Mobile Agent-activated Middleware for Internet Video on Demand 3303

tion. The most relevant information elements
are sender reports, generated by the sources of
RTP-based multimedia flows, and receiver re-
ports, filled by the target VoD clients. Each
sender report includes sender information such
as RTP timestamps and the number of packets
and bytes already transmitted; each receiver re-
port contains receiver statistics about the flow
such as interarrival jitter and fraction of lost
packets since last report.

RTP is often integrated into application-level
service components rather than implemented as
a separate layer. Service components exploit
RTCP to take service-specific corrective man-
agement operations on the served flows. Ac-
cording to RTP terminology, these components
include mixers (when they generate a single new
data flow out of several incoming data flows)
and translators (when they operate audio/video
format transcoding or multicast-to-unicast con-
versions). Finally, RTCP permits also to define
service-specific control information elements.

RTP-based VoD service components can ex-
ploit sender and receiver reports to adapt the
QoS level to the current conditions. However,
the frequency of RTCP report transmission is
determined in a rather static way, i.e., a fixed
percentage of the maximum bandwidth avail-
able. This does not permit to exploit RTCP
reports in taking prompt corrective operations
in response to dynamic modifications in sys-
tem/network conditions. The VoD community
has identified this limitation and proposes the
sending of reports based on events triggered by
service-specific thresholds 9).

2.2 Java Media Framework
The Java technology plays a central role in

the design, implementation, and deployment of
Internet services. In addition to Java portabil-
ity, dynamic class loading, and easy integration
with the Web, the main motivation stems from
its Java Virtual Machine (JVM) that hides the
underlying platform by presenting a uniform vi-
sion of available computing resources.

In the VoD provision scenario, SUN proposes
JMF, an integrated framework for the acquisi-
tion, elaboration and visualization of multime-
dia flows 10). JMF considers crucial the concept
of filter components, called processors. A wide
set of processors permits to receive multime-
dia flows (acting as client receivers), to operate
transformations on them, and to forward pro-
cessed flows (acting as server sources).

Typical processor transformations include

compressions, e.g., reduction of frame size/rate,
and format transcoding, e.g., from MPEG-1 to
H.263. In addition, JMF provides service devel-
opers with APIs to encapsulate source devices,
such as heterogeneous acquisition hardware,
stored VoD files, and incoming network flows,
and to encapsulate receiver devices, such as en-
coding software for visualization, target VoD
files, or outgoing network flows. With regards
to the transport and control of flows, JMF pro-
vides APIs for interacting with RTP and RTCP,
and propagates visibility of RTCP transmission
reports to application components.

JMF proposes a layered architecture where
service components exploit its APIs for presen-
tation and processing. In their turn, these APIs
may invoke native modules via the JMF Plug-in
API layer. Plug-ins include:
• multiplexers combining multiple tracks of

input data into a single output flow;
• demultiplexers parsing multimedia flows to

extract separate tracks;
• codecs encoding/decoding the media infor-

mation of a track;
• renderers processing the media information

in a track and delivering it to a destination,
such as a screen or speaker;

• effects performing special effects on the me-
dia information of a track.

JMF components are portable on any plat-
form hosting the JVM. For the sake of per-
formance, however, JMF processors often ex-
ploit plug-ins locally available as native com-
ponents, e.g., Dynamic Link Libraries for Win-
dows platform and Shared Object libraries for
Solaris and Linux. JMF permits the integra-
tion with native plug-ins via the standard Java
Native Interface (JNI) technology that ensures
compatibility of native code invocations for all
JVM implementations. Native libraries con-
tain platform-dependent code and cannot be
directly ported to different targets. However,
JMF-based applications can exploit the JMF
APIs to retrieve dynamically the list of installed
plug-ins to try the binding only to available na-
tive components.

The performance of JMF-based VoD services
can suffer from the Java implementation. Nev-
ertheless, the integration with native plug-ins
makes the JMF performance acceptable for a
wide variety of VoD flow formats for differ-
ent QoS levels. The main limitation is the
rapid version evolution and prototypical state
of JMF. For instance, JMF still provides a very

3304 IPSJ Journal Nov. 2002

limited set of transcoders working properly over
the different JVM implementations for different
operating systems.

2.3 User and Terminal Profiling
The differentiation of user requirements and

the wide heterogeneity of client devices im-
pose to represent and maintain information on
user preferences and terminal characteristics,
i.e., user/terminal profiles. Service components
should have visibility of profiles to drive the
QoS tailoring and adaptation processes, both in
the negotiation phase and during service pro-
vision. User profiles include desktop interface
information, the default language, the required
security level, and the subscribed services with
the corresponding QoS requirements. Terminal
profiles include hardware capabilities of devices
and user-specified information on how to adapt
service provision to the currently used termi-
nal. For instance, if users are connected via
handheld devices with limited audio capabili-
ties, they are likely to receive only GSM-quality
audio flows and not MPEGIII ones. On the ba-
sis of the profile, service providers or network
operators can decide to discard MPEGIII pack-
ets addressed to these devices or to transcode
them into a supported format.

The Internet openness and heterogeneity im-
pose standard formats to represent, maintain
and retrieve user/terminal profiles. Recent
work proposes the adoption of extensible and
open description languages, such as the eXten-
sible Markup Language (XML). For instance,
the Resource Description Framework (RDF)
exploits XML to express metadata describing
Web-accessible resources in an interoperable
way 11). A variety of application areas can
take advantage of RDF: resource discovery to
provide better search engine capabilities, cat-
aloguing to describe the content and content
relationships among Web documents, security
to express the privacy policy of a Web site.
The World Wide Web Consortium promotes
CC/PP, a standard proposal based on RDF, to
represent the profile information and to express
the exchange protocol. Mobile phones that sup-
port the Wireless Application Protocol (WAP)
are adopting CC/PP to tailor the provision of
Internet services to their specific characteris-
tics 12). Other research areas start recognizing
the importance of user and terminal profiling.
For instance, the Foundation for Intelligent and
Physical Agents (FIPA) is defining an agent in-
teroperability framework for nomadic support

to deal with user profile management and mo-
bile device capabilities 13).

Let us finally note that several proposals in-
tegrate in the same user profile both user pref-
erences and current terminal capabilities, e.g.,
preferred language and screen resolution 12).
Even if service adaptation needs metadata
about both user and terminal, we claim that
the two dimensions should be cleanly separated.
User profiles should contain only user-related
information; devices should have their own pro-
files to inform the middleware of their charac-
teristics independently. Only this separation
achieves the flexibility and reusability requested
by real scenarios where, for example, the same
user can exploit a set of different terminals with
different characteristics.

3. Mobile Agents to Support QoS-
aware Active Services

The development, deployment and manage-
ment of Internet services should face the chal-
lenging issues related to the increased QoS
requirements and to the wide heterogeneity
of access devices in the global provision sce-
nario. It is within this context that the tra-
ditional end-to-end model of interaction shows
its limits, thus suggesting the proposal of al-
ternative scenarios. The network infrastruc-
ture should play an active execution role: for
instance, in programmable networks, interme-
diate nodes operate on transmitted data and
can be programmed by dynamically injecting
service/user-specific code 6). Several research
activities start to recognize the suitability of
MAs in this activated scenario where active ser-
vices exploit intermediate nodes typically pro-
grammed at the application layer 5),7),14),15).
MAs are autonomous entities with capacity of
coordination, able to dynamically move (to-
gether with their code and the reached execu-
tion state) to where resources are located, and
able to adapt to current system conditions in
a completely asynchronous way with regard to
their launching user. The MA adoption simpli-
fies the achievement of active service properties,
such as:
• control decentralization. Cooperat-

ing MAs can migrate during service provi-
sion and take autonomous management de-
cisions based on local resource state. MAs
can modify dynamically service distribu-
tion paths, e.g., in case of link failures or by
following possible movements of users and

Vol. 43 No. 11 A Mobile Agent-activated Middleware for Internet Video on Demand 3305

client devices. In addition, agent auton-
omy permits asynchronicity between user
actions and MA-performed tasks. For in-
stance, MAs can operate service negotia-
tion and establish the active path also when
users/access devices are temporarily dis-
connected;

• tailoring. MAs provide an effective
mechanism to tailor services to user re-
quirements and resource availability at ne-
gotiation time. Dedicated agents can re-
trieve profile information, can propagate
this information to current user access
points and customize service flows, depend-
ing on the current access devices and the
already admitted service sessions. For in-
stance, for accesses ranging from a laptop
to a light PDA, an active service can decide
to include/discard attachments in down-
loading e-mail messages;

• adaptability. MAs simplify the adap-
tation of services in response to modifi-
cations in the availability of network re-
sources at provision time 4). For instance,
MAs can locally monitor network resources
and dynamically migrate where needed to
obtain a global view of the system state.
This awareness permits to trigger manage-
ment operations to correct the achieved
QoS (re-negotiation, additional communi-
cation channels, ...) by exploiting locality
to congested resources.

In addition, MA solutions tend to address
novel requirements and to provide infrastruc-
ture properties that significantly enhance the
effectiveness of active services, thus facilitating
their acceptance and diffusion. The most rele-
vant property in this context is location aware-
ness. MAs tend to maintain full visibility of
the location of underlying system resources and
to propagate this visibility to the service level.
Location awareness is crucial to optimize re-
source usage within a locality 16),17). For in-
stance, MAs can decide to switch to another
VoD server if the current one is overloaded and
another one is currently available for a better
service either in the same locality or in a near
one.

In addition, MA-based middleware solutions
facilitate the achievement of security and in-
teroperability. On the one hand, MA sys-
tems not only introduce specific security mech-
anisms and policies to deal with untrusted in-
coming code, but also easily integrate stan-

dard solutions for secure services at the applica-
tion level. For instance, MA operations can be
controlled depending on permissions associated
with authenticated principals and their role;
based on these security mechanisms, any oper-
ation can be allowed, recorded and accounted
to responsible users 18). On the other hand,
many MA systems achieve interoperability via
compliance with general specifications, such as
CORBA, and more MA-specific standards, such
as the MA Systems Interoperability Facility and
the Foundation for Intelligent Physical Agents
specification 19),20).

Apart from the above properties that MAs
can grant, one may argue that active services
ask only for code mobility and that they do not
require the full state migration typical of MAs:
active services usually can take advantage of
single-hop mobility patterns and not of multi-
hop migrations. This consideration applies only
to very simple services and commonly proposed
case studies. The opportunity of state migra-
tion emerges in more complex and connection-
oriented active services that require maintain-
ing and moving sessions. This is evident in mo-
bile computing scenarios where MA-based ac-
tive nodes work as proxy of possibly discon-
nected users/devices 16). A reasonable conclu-
sion is “while none of the individual advantages
of MAs is overwhelmingly strong, we believe
that the aggregate advantages of MAs is over-
whelmingly strong”, as stated in Ref. 21).

Finally, since the beginning, MAs are con-
sidered a suitable technology for network and
system management because of the possibil-
ity of moving management entities locally to
administered resources 22). For this reason,
not so tied to the property of full mobility,
many MA platforms give agents the possibil-
ity to access network and system properties,
i.e., to have a certain degree of QoS aware-
ness. In particular, most MA-based proto-
types can interrogate network elements via
standard management protocols such as SNMP
and RMON 23),24). When used for higher-level
service management functions, MAs should also
have visibility of system/application-specific in-
dicators, such as the list of the current threads
of an application and, for each of them, the
CPU effective time and the allocated mem-
ory. This requirement is hard to grant because
most MA platforms are implemented in Java
and the Java Virtual Machine (JVM) tends to
hide kernel-level system properties. However,

3306 IPSJ Journal Nov. 2002

Fig. 1 A deployment scenario of the MA-based active infrastructure.

some work has recently achieved interesting re-
sults in extending the monitoring visibility of
Java MAs, with/without modifying the stan-
dard JVM 25),26).

3.1 MA-based QoS Management of
VoD Flows

QoS visibility is the property the active ser-
vice infrastructure should be built around, so
to negotiate and dynamically control QoS lev-
els over best-effort networks. Two phases can
be distinguished:
(1) QoS tailoring at negotiation time;
(2) QoS adaptation at provision time.

The first phase precedes any real service flow
and is necessary to negotiate the initial suit-
able QoS level. Its main goal is to determine
the optimal engagement of resources, on the
basis of the user preferences, of the character-
istics of her current access device and of the
currently available network resources. Ad-hoc
MAs could retrieve user/terminal profiles and
transport this information where needed. Then,
the active service infrastructure could choose
the VoD server capable of providing the re-
quested content best satisfying the QoS require-
ments depending on the profiles. Once iden-
tified the server, the infrastructure could es-
tablish an active server-to-client network path.
MAs can dynamically install along this path,
to negotiate from there the QoS level that any
path segment has to maintain and to decide for
any required multimedia scaling operation. The
VoD flow distribution is tailored also depend-
ing on already admitted service flows and cur-

rent resource availability: MAs are in charge of
application-level admission control and reserva-
tion of local resources.

The second phase is necessary during service
provision and requires prompt reaction times.
Any deviation from conformity makes the ser-
vice ineffective and should be avoided because it
clashes with the initially negotiated QoS level.
In fact, over best-effort networks, the QoS lev-
els of VoD flows can change depending on the
state of system/network resources along distri-
bution paths. Therefore, QoS could be con-
trolled dynamically and possible modifications
in available resources could promptly trigger
adaptation operations. Adaptation operations
include transformations on served VoD flows
(from transcoding to frame resizing, from merg-
ing/splitting multi-layered tracks to reducing
frame resolution and rate) and ultimately also
the modification of the established active path.
In this case, a new negotiation phase takes place
for a possible redistribution of active MA com-
ponents.

To show more concretely how MAs can oper-
ate to tailor, control and adapt the QoS of VoD
flows, Fig. 1 presents a possible active service
deployment scenario. Clients, servers and net-
worked resources are organized in hierarchies of
locality abstractions. Active service MAs (and
their hosts) can be grouped into domains that
usually correspond to (a set of) local area net-
works with common administration and man-
agement policies. At negotiation time, MAs
dynamically distribute on the hosts along the

Vol. 43 No. 11 A Mobile Agent-activated Middleware for Internet Video on Demand 3307

VoD path. The different QoS requirements of
user1 and user2 (and of their access devices)
produce the distribution of a high-quality flow
from the VoD server and the downscaling of the
flow at the MA in domain2. At provision time,
in case of degradation of link1 bandwidth, the
MA in domain2 can adapt the VoD transmis-
sion to user1 by reducing the frame resolution
according to the receiver preference profile. If
there are not enough resources to adapt QoS by
respecting negotiated requirements, a new ac-
tive path segment is established. The MA in
domain3 tries to identify a suitable VoD server
in its near domains; then, it negotiates with
new MA-enabled hosts, and finally restarts the
flow transmission from its interruption point (if
server4 can support random-access to that VoD
content). Apart from the time interval needed
to establish the new path, the server swap is
transparent to both receivers and intermediate
nodes.

4. The ubiQoS Active Service Infras-
tructure

The above solution guidelines have driven
the design and implementation of an MA-based
active service infrastructure, called ubiQoS,
for the support of QoS tailoring, control and
adaptation of VoD flows over best-effort net-
works. ubiQoS is built on top of an MA frame-
work, called Secure and Open Mobile Agents
(SOMA☆). The choice of SOMA is motivated
by its middleware facilities for the rapid de-
velopment and deployment of MA-based Inter-
net services. SOMA provides facilities for QoS
awareness and QoS management (Monitoring
and QoS facilities), for the definition of suit-
able trade-offs between security level and per-
formance (Security facility), and for the inter-
working with other MA platforms, legacy sys-
tems, resources and services (Interoperability
facility) 16),20). In addition, ubiQoS exploits
RTP for VoD flow transmission, due to the
RTP diffusion in application-level approaches
to QoS.

The ubiQoS ultimate goal is to allow ubiqui-
tous accessibility of VoD services from any de-
vice and from any Internet access point, with
the proper and negotiated QoS level. Any
client request is served after an initial negotia-
tion phase that establishes an active path con-

☆ The SOMA platform is available for download at
http://lia.deis.unibo.it/Research/SOMA/.

necting the requesting client to a suitable VoD
server, i.e., a server that could provide the re-
quested VoD content with a QoS level greater
or equal to the required one. At the moment,
the QoS level is expressed as a tuple includ-
ing frame rate, frame size, compression factor
(for MJPEG flows), and jitter. This tuple is
obtained by combining the requirements stored
in the profiles of the user and her current ac-
cess device. If the QoS offered by the chosen
VoD server is greater than needed, some ubiQoS
MAs on the active path can downscale the flow.
In this phase, MAs may migrate to interme-
diate nodes to install where needed operations
are not yet available. For instance, any node
in the active path requires the local presence
of an admission control MA in charge of moni-
toring on-line local resource availability and of
performing application-level reservation of local
resources.

The provisioning of QoS-enabled VoD ser-
vices over the Internet requires also a dynamic
control of resource availability at provision time
and the consequent handling of adaptation op-
erations. These control phases should be en-
forced on any segment of the active path, and
the MA technology can help in performing QoS
monitoring in any locality traversed by VoD
flows in order to decide locally any corrective
intervention. Any local QoS degradation trig-
gers adaptation operations on exchanged VoD
flows at the ubiQoS MA adjacent to the con-
gested segment. The middleware can locally
decide how to work on the flow, e.g., via format
transcoding, by maintaining the path, or to es-
tablish new path segments, either connecting to
the same VoD server or to a less loaded one.

To reduce overall traffic and latency and to
increase service scalability, ubiQoS organizes
distributed caches of frequently accessed VoD
flows. In particular, intermediate active nodes
can maintain local caches depending on the ac-
cess patterns of the clients in their locality. The
amount of space that an active node should
devote to its local cache, the refreshing time
and the replacement policy are all choices that
strongly depend on the characteristics of the lo-
cality, of its available resources and of the local
usual clients. As a consequence, it is impor-
tant that administrators can control and mod-
ify cache parameters during service provision
by specifying a proper management policy. At
the moment, ubiQoS offers domain administra-
tors the possibility to choose which percentage

3308 IPSJ Journal Nov. 2002

of disk free space has to be exploited for cache
storage and to adopt either a least-frequently-
used or least-recently-used replacement policy.

4.1 The ubiQoS Architecture
To better detail how the ubiQoS active in-

frastructure provides the above functions, this
section presents the main points of the ubiQoS
architecture. Four types of ubiQoS MAs dis-
tribute along the active path between the (pos-
sibly multiple) VoD clients and servers for flow
provisioning:
(1) ubiQoS proxies are in charge of ad-

mission control/reservation. They moni-
tor system- and application-level state of
their local resources and are able to trig-
ger local adaptation operations. They
coordinate with previous and next prox-
ies in the active path both during the ini-
tial negotiation phase and at provision
time when resource availability changes.

(2) ubiQoS processors are in charge of
tailoring and adaptation operations on
VoD contents depending on the QoS lev-
els required in the currently provided
sessions. In addition, in response to
new client requests, new processors re-
trieve profile information and migrate to
the involved proxies in order to estab-
lish the needed active path depending on
client/server location.

(3) ubiQoS client stubs forward VoD
client requests to ubiQoS proxies and
redirect RTP flows to their local visu-
alization tools in a transparent way, to
integrate ubiQoS with legacy VoD play-
ers. At the moment, we have imple-
mented ubiQoS client stubs for JMF 10)

and Mbone vic 27) players.
(4) ubiQoS server stubs answer to ser-

vice requests from ubiQoS components
by encapsulating VoD flows from legacy
servers into RTP flows transparently. Up
to now, we have implemented server
stubs for JMF data sources.

All above components are implemented as
MAs to permit dynamic installation and up-
dating of existing functions even while ubiQoS
is operating. Suitable server stubs migrate and
install when and where a new VoD server reg-
isters to the ubiQoS infrastructure. Suitable
player-specific client stubs move at the new con-
nection of an access device to permit its local
VoD player to receive ubiQoS flows. Proxies
install permanently on new hosts taking part

in active paths and their migration is typi-
cally single-hop. On the contrary, processors
are session/flow-dependent and transient com-
ponents that propagate from the client toward
the server by carrying the QoS requirements of
client user/device for that specific service flow.
Let us note that resource reservation, adapta-
tion operations and path decisions may depend
on previously established path segments, thus
making definitely relevant the multiple-hop po-
tential granted by MAs. While client and server
stubs mainly play a simple role of flow encapsu-
lation to integrate with legacy applications, the
complexity of proxies and processors deserves a
more detailed description, given in the follow-
ing.

4.2 ubiQoS Proxies and Processors at
Work

ubiQoS processors play the main role in the
initial admission phase working as carriers for
QoS requirements; during provisioning, they di-
rectly operate tailoring and adaptation trans-
formations on VoD flows. ubiQoS proxies, in-
stead, control the currently offered QoS levels
and trigger processor operations. In terms of
adopted protocol, proxies exploit RTCP reports
for control duties, while processors mainly em-
ploy RTP to receive/transmit VoD flows.

Any client VoD request is served by one initial
session-specific processor in charge of finding
and carrying the associated profile information.
In addition, the processor operates to establish
the active path, by involving all necessary prox-
ies: first, it interrogates all proxies known in
its current and close localities. If one of the
proxies has direct local access to the requested
VoD content and its local resource availability
is compatible with the requested QoS level, the
path is established. The processor migrates to
the proxy, which behaves as the final VoD server
in a simple client/server architecture.

Otherwise, the processor duplicates itself and
forwards its clones to the known proxies. For-
warded processors carry the whole knowledge of
previously established path segments and bring
the history of previous choices. This propaga-
tion goes on until a successful match occurs be-
tween requested QoS and locally offered VoD
contents. At this point, the whole active path
is completed, other processors working to path
establishment are notified and killed by exploit-
ing the SOMA facilities for communication and
coordination 16),20), and all intermediate nodes
host the needed ubiQoS components. Let us

Vol. 43 No. 11 A Mobile Agent-activated Middleware for Internet Video on Demand 3309

Fig. 2 The ubiQoS infrastructure providing different QoS levels to user1 and user2.

note that also proxies are MA-based and can
install dynamically where needed. Once the
active path is established, the involved proxies
coordinate to command the most suitable QoS
tailoring operations (see the following section)
to their local processors and the active service
flow starts, without any further proxy interven-
tion.

At provision time, processors furnish the nec-
essary transcoding operations. After the initial
admission control phase and if there are no vari-
ations in resource availability, all proxies are
only devoted to caching. Even if a flow has to
traverse a chain of processors before reaching its
destination, the introduced extra latency can be
computed initially and taken into account be-
fore the service takes place. In addition, this
latency (and the difference in latency of mul-
tiple receivers in case of multicast distribution)
is not critical in non-interactive multimedia ser-
vices such as VoD.

Location awareness and on-line local mon-
itoring drive the adaptation that may occur
when the agreed QoS level cannot be main-
tained. The processor-based distribution of
QoS requirements throughout the whole active
path permits optimal decisions avoiding further
negotiations. Proxies have the duty of moni-
toring currently offered QoS and of identifying
possible deviations. We claim that locality is
the key for prompt identification: as soon as a
proxy ascertains a problem, i.e., any QoS pa-
rameter can no longer be granted, it commands
a corrective action to the processor. The most

common situation is a network congestion of the
local path segment. The easiest corrective ac-
tion is to downscale the flow to continue the ser-
vice with reduced QoS. A more expensive coun-
termeasure is to establish a new different sub-
path to overcome the local congestion. Section
5 sketches how proxies decide the most suitable
service management operation by taking into
account system state and client profiles.

Figure 2 shows ubiQoS components while
cooperating in the provision scenario proposed
in Section 3. At negotiation time, the proxies
distribute on all the nodes of the active path
that do not have one yet installed. The de-
fault deployment choice is to have at least one
ubiQoS proxy for any participating network lo-
cality, but additional proxies can dynamically
install where network bottlenecks emerge dur-
ing service provisioning. Two different proces-
sors (for user1 and user2) establish two par-
tially overlapping active paths by migrating and
cloning on any involved active node. It is the
user1 processor that performs the VoD flow
downscaling as specified in user1 terminal pro-
file. At provision time, in case of degradation
of link1 bandwidth, the proxies in Domain1 and
Domain2 coordinate and command the user1
processor in Domain2 to further reduce frame
resolution of user1 flow according to the prefer-
ences specified in the receiver profile. In case
of failure of link2, a new VoD path segment
is established. The proxy in Domain3 tries to
identify a suitable server stub in close domains.
Then, it negotiates with the proxy of Domain4

3310 IPSJ Journal Nov. 2002

by cloning and migrating two new processors to
the new domain.

Let us finally note that in case of multi-
cast distribution of the same VoD content, the
ubiQoS infrastructure permits to decrease sig-
nificantly the network traffic. When ascertain-
ing the possibility of multiple neighbor tar-
gets within a sub-tree of localities, ubiQoS split
packets late, by preserving path sharing as long
as possible.

5. Implementation Insights

The ubiQoS active service infrastructure re-
quires mechanisms to retrieve dynamically all
system lists: the VoD contents available in the
global system, the proxies in near network local-
ities and the user/device profiles to drive QoS
tailoring and adaptation. The SOMA naming
permits to collect this information dynamically,
by integrating discovery and directory servers.
Reference 16) reports a full description of the
SOMA naming implementation, while here the
paper only sketches some elements to permit to
fully understand how the ubiQoS components
interwork.

SOMA discovery and directory servers pro-
vide different naming solutions suitable for dif-
ferent goals. They differ in visibility scope (lo-
cal vs. global), flexibility (rigidly predefined and
simple structure vs. flexible content and organi-
zation), and performance (limited low-level ef-
ficient protocols vs. complete high-level search-
ing/registering operations). LDAP-compliant
directory servers store the description of acces-
sible VoD contents (title, associated keywords,
multimedia format and QoS parameters), all
profiles of registered users, and all profiles of
recognized access devices. Profile information
about new access devices may be described dy-
namically as an extension of already included
profiles that exploit the CC/PP composition
capabilities. On the opposite, Jini-based dis-
covery servers permit to access the active infras-
tructure information visible in a single locality:
the subset of VoD contents provided by intra-
domain servers and the list of locally known
proxies (usually, the ones within or close to that
locality).

The adoption of the SOMA technology sim-
plifies the deployment of ubiQoS and the dy-
namic migration of its components wherever
bottlenecks and critical points emerge during
service provision. Bottlenecks can stem from
heterogeneity in network characteristics, e.g.,

going from a 622Mbps ATM-based network to
a 56Kbps modem link, and from heterogeneity
in terminal capabilities, e.g., locally to WAP
gateways that provide Web content to mobile
phones. The default deployment choice is one
ubiQoS proxy present (possibly newly installed
at negotiation time) at any domain traversed
by the VoD flow.

To focus on the process of determining the
QoS of the VoD flow exchanged on any ac-
tive path segment, any ubiQoS processor au-
tonomously decides the QoS level to request
to the following processor towards the server.
A whole interval for QoS parameters is usu-
ally permitted; the processor chooses the QoS
point to enforce in the permitted QoS space
interval depending on the local resource con-
sumption policy. In the current ubiQoS imple-
mentation, system administrators can choose
between two simple policies: Best QoS and
Lower QoS. The Lower QoS policy aims at
reducing the resource consumption by reserv-
ing only the set of resources that minimizes a
specified local cost function. On the contrary,
the Best QoS is a greedy policy that chooses
the QoS point reserving the maximum local re-
source usage. While enforcing Best QoS, new
VoD flow requests can also dynamically mod-
ify QoS points of accepted flows by preempting
previously committed resources. In addition,
ubiQoS provides administrators with GUIs to
force the processor decision by directly specify-
ing low-level QoS parameters, e.g., by changing
frame rate, size, and compression factor.

At provision time, the proxy can trigger the
local processor to modify the provided QoS
by moving in the currently permitted interval
of the QoS space according to the preferences
expressed in the client profile (via relevance
weights associated with the different QoS pa-
rameters 28)). For instance, the profile of a de-
vice with limited display capabilities can specify
a frame rate weight larger than frame resolution
to indicate a preference in degradation of image
quality instead of frequency decrease. In other
words, the weights determine the preferred di-
rections of correction actions in the QoS space
when the proxy detects a modification in local
resource availability. Only when the allowed
correction region is null, the proxy triggers the
search of a new active (sub-) path and starts a
new negotiation phase.

5.1 Experimental Results
To evaluate the feasibility and effectiveness

Vol. 43 No. 11 A Mobile Agent-activated Middleware for Internet Video on Demand 3311

Fig. 3 ubiQoS path setup time.

of our approach, we have deployed the ubiQoS
infrastructure over a set of geographically dis-
tributed networks, with heterogeneous band-
width (10/100Mb/s) and interconnected via
GARR, i.e., the Italian Academic and Re-
search Network. Any local network is mod-
eled by one ubiQoS locality and includes het-
erogeneous hosts (SUN Ultra5 400MHz work-
stations with Solaris 7, 128MB PentiumIII700
PCs with Microsoft WindowsNT and 128MB
PentiumIII700 PCs with SuSE Linux 7.1). In
this deployment scenario, we have measured
several performance figures, listed in the follow-
ing, to estimate the overhead and the reaction
time of the ubiQoS middleware.

The initial phase of path establishment and
negotiation in ubiQoS involves not only the
client and the dynamically retrieved server, but
also some active intermediate nodes. The es-
tablishment of any active path segment requires
the interrogation of the local discovery service,
the creation of an RTP connection, the mi-
gration of one processor MA, the resource ad-
mission control/reservation, the negotiation of
the tailored QoS, and, when needed, the mi-
gration of one ubiQoS proxy MA. Figure 3
shows an almost linear dependence of the path
setup time on the number of intermediate ac-
tive nodes. Let us specify that the migration
of ubiQoS components is not required by any
service request. In fact, ubiQoS proxies are in-

frastructure components that dynamically in-
stall where needed in response to a service re-
quest and that can persist there to serve future
requests for VoD flows. For this reason, the
figure also reports how the number of needed
proxy migrations affects the path setup time:
the delay significantly reduces in the usual case
of a service request that triggers the installa-
tion of ubiQoS proxies only over a small set of
new active nodes.

Let us additionally observe that, even in case
of large-scale networks involved in Internet-
wide service distribution, the number of active
nodes along the server-to-clients path tends to
be very small because it does not coincide with
the number of traversed routers/gateways. In
fact, ubiQoS proxies and processors need to op-
erate only where there are either strong band-
width discontinuities or forking of the VoD mul-
ticast tree. In any experimented usage scenario,
with some dozens of geographically and ran-
domly distributed clients, the dynamically de-
termined ubiQoS active paths never included
more than 4 intermediate active nodes; we
needed to force the infrastructure decisions by
adding ad-hoc bottlenecks to have longer ac-
tive paths in order to measure the setup times,
shown in Fig. 3, for the cases with 5 and 6 ac-
tive nodes. However, the strong dependence be-
tween setup time and number of active nodes
pointed out by the experimental results moti-

3312 IPSJ Journal Nov. 2002

Fig. 4 ubiQoS reaction time (a) and multicast network traffic (b).

vated a slight modification of the ubiQoS path
creation algorithm. In the current version, the
middleware does not terminate the research of
alternative paths by ubiQoS processors until a
path with less than 6 active nodes is found.
This obviously does not impact on path cre-
ation time but significantly reduces the follow-
ing proxy negotiation time, which has demon-
strated to be the slowest phase of the overall
setup process.

The path setup time usually does not ex-
ceed 5 s, with an average number of active
nodes less than 5 and an average number of
required migrations less than 3. This inter-
val is significantly larger than the one neces-
sary to establish a single RTP connection be-
tween one client and one server, but is accept-
able in most categories of multimedia services,
i.e., non-interactive VoD services, since it af-
fects only the delay with which the visualiza-
tion starts at the client side. The overhead in
path setup is largely counterbalanced by the
possibility of performing prompt reactions at
provision time in response to dynamic changes
in network resources. ubiQoS proxies integrate
standard RTP report transmissions with event-
triggered exchanges of monitoring information
provided by the QoS Monitoring module. This
permits to overcome the RTP limit related to
the frequency of reports, which is statically de-
termined in RTP as a fixed percentage of the
maximum network bandwidth available at the
time of connection establishment 9). Fig-
ure 4a reports the ubiQoS Reaction Time
(RT) when the bandwidth reduction over an
active path segment triggers the downscaling
of the transmitted VoD flow. RT is measured
as the time interval between the congestion oc-
currence and the starting of the adapted flow
transmission from the downscaling processor.

In the figure, we report the average results ob-
tained by measuring RT for all the different pos-
sible positions of the congested segment in the
path (from the server to the first active node,
from the first active node to the second, ..., and
from the Nth node to the client). The RT av-
erage value is 148ms, almost independently of
the distance between the client/server and the
congested segment. This is due to the fact that
any ubiQoS proxy autonomously monitors, con-
trols and manages its local path segment. RT
values exhibit a very small variance and very
limited random fluctuations around the aver-
age value, exclusively due to runtime variations
in the non-ubiQoS network traffic over GARR.

About local transcoding, we have experi-
mented that ubiQoS processors on 128MB Pen-
tiumIII700 hosts with Microsoft WindowsNT
can downscale up to 15 MJPEG flows with
frame size up to 320*240 and with frame rate
up to 20Hz 28) notwithstanding their portable
Java-based implementation.

In case of multicast distribution of the same
VoD flow to multiple clients, the ubiQoS mid-
dleware can significantly reduce the network
traffic by exploiting the location awareness typ-
ical of the MA programming paradigm. In tra-
ditional VoD systems over networks that do not
support IP multicast, the VoD server is forced
to generate N flows, one for each requesting
client. The ubiQoS processors can ascertain
whether there are several receivers interested
in the same VoD flow within their served lo-
calities, can split VoD flows only when neces-
sary and can downscale the VoD quality de-
pending on the maximum QoS requirements in
their distribution sub-tree. In a usage scenario
with clients that requested the same QoS level,
ubiQoS achieves the same traffic reduction of
network-layer multicast support, without re-

Vol. 43 No. 11 A Mobile Agent-activated Middleware for Internet Video on Demand 3313

quiring compliant hardware, e.g., IP-multicast
routers. In case of different QoS level requests,
ubiQoS can even generate less network traffic
than IP-multicast solutions. In fact, instead of
distributing one multicast flow for any differ-
ent QoS request, the ubiQoS infrastructure uses
one unified VoD flow and dynamically down-
scales it at the proper node in the active path,
by exploiting its awareness of the QoS levels
requested in any distribution sub-tree.

A significant estimate of the network traf-
fic generated by multicast distribution is the
overall traffic BT, defined as the total number
of bytes exchanged between any pair of adja-
cent nodes (client stubs-processors-server stubs
in ubiQoS, clients-routers-servers in traditional
provision scenarios) along the VoD distribution
tree. We measured BT for different values of
the number N of intermediate nodes and with
different locations of 9 multicast clients request-
ing the same VoD content. Our testbed as-
sumed that 3 clients requested the VoD flow
with gold QoS (original VoD format), 3 with
silver QoS (50% bandwidth saving via frame
rate reduction), 3 with bronze QoS (90% band-
width saving via reduction of both frame rate
and resolution). Figure 4 b shows the aver-
age results for BTnorm = BT / BTnoMulti
where BTnoMulti is the BT value for distribut-
ing the flow over a single path segment with
no multicast support. The figure reports the
experimental results in case of VoD distribu-
tion with/without IP-multicast and by exploit-
ing the ubiQoS infrastructure. On the aver-
age, for N greater than 3, ubiQoS reduces BT
more than three times if compared with non-
IP-multicast distribution.

6. Related Work

Many research groups have recently claimed
the suitability of programmable networks for
a wide spectrum of Internet services. Pro-
grammable networks can help in fast proto-
typing and deploying new network-layer pro-
tocols, e.g., for congestion control, topology-
aware reliable multicast and virtual private
networks 5),6). Among the active service ap-
proaches, network programmability is exploited
to deal with application-specific requirements,
as in distributed information filtering and Web
caching 7),29). Most active service projects im-
plement prototypes on top of the Java program-
ming environment to facilitate code portability
and mobility; some of them explicitly adopts

the MA technology 14),15).
In the specific application domain of QoS

and multimedia services, there are a few no-
table approaches that exploit intermediate ac-
tive nodes. Baldi et al. designed a videocon-
ference service by uploading Java mobile code
in active routers, thus adopting a network-layer
approach 30). Amir et al. implemented a Media
Gateway (MeGa) for the adaptive transcoding
of multimedia flows 31). Their work, however, is
more focused on algorithms for efficient down-
scaling and adaptive bandwidth allocation than
on dynamic reconfiguration and code distribu-
tion.

The Reflector project has proposed the ac-
tive infrastructure most similar to ubiQoS 32).
Reflector is an application-level multimedia dis-
tribution system implemented in C++. It has
been designed and deployed mainly to test and
verify the feasibility of distributing low and
medium bandwidth VoD flows to thousands of
simultaneous users over the Internet. The Re-
flector technology had a significant success in
the live broadcast of NASA’s Pathfinder mis-
sion. However, Reflector designers learned from
wide-scale deployment experiences that it is
crucial to adopt technologies to facilitate the
support to dynamic reconfiguration, code dis-
tribution and adaptation to changes in network
resource availability. It is interesting that they
are addressing the observed limitations of Re-
flector by adopting the MA technology to en-
hance the extensibility of their system 33).

7. Conclusions and On-going Work

The work accomplished within the ubiQoS
project has shown the feasibility and the effec-
tiveness of addressing the QoS issues of VoD
services via an infrastructure of active nodes
distributed along the path between VoD clients
and servers. This choice is suitable to enable
QoS differentiation according to user/terminal
profiles and to perform domain-specific flow tai-
loring, control and adaptation over a best-effort
network infrastructure. The effectiveness of the
ubiQoS implementation in terms of MAs de-
pends on operating close to controlled resources
to take locality-dependent management deci-
sions and on dynamically distributing middle-
ware components at provision time. The exper-
imental results indicate that the Java technol-
ogy is mature to provide the basis for the imple-
mentation and dynamic deployment of portable
middleware components for on-line QoS adap-

3314 IPSJ Journal Nov. 2002

tation of multimedia flows at usual transmission
rates.

First ubiQoS performance results are encour-
aging and stimulate refinements and extensions
of the implemented infrastructure. In particu-
lar, we are extending the middleware to include
VoD client stubs based on the Java 2 Micro Edi-
tion and VoD multimedia players such as the
TealMovie one 34), targeted to Palm portable
devices with very limited visualization capabil-
ities. In addition, we are focusing on how to
extend ubiQoS with accounting functions. The
SOMA monitoring facility already provides rich
and articulated data about resource consump-
tion for MA on-line control 26). We are working
on effectively processing this monitoring infor-
mation to maintain concise off-line consump-
tion logs at any ubiQoS locality and on develop-
ing an MA-based service to globally collect the
log data at fixed intervals or when requested by
ubiQoS administrators.

Acknowledgments Work supported by
the Italian Ministero dell’Istruzione, dell’Univer-
sita e della Ricerca in the Project “MUSIQUE:
Infrastructure for QoS in Web Multimedia Ser-
vices with Heterogeneous Access”.

References

1) Krikke, J.: Graphics Applications over the
Wireless Web: Japan Sets the Pace, IEEE
Computer Graphics and Applications, Vol.21,
No.3 (2001).

2) Xipeng, X. and Ni, L.M.: Internet QoS: a Big
Picture, IEEE Network, Vol.13, No.2 (1999).

3) Andersen, N.E., et al.: Applying QoS Con-
trol through Integration of IP and ATM, IEEE
Communications, Vol.38, No.7 (2000).

4) Bellavista, P., Corradi, A. and Stefanelli, C.:
An Integrated Management Environment for
Network Resources and Services, IEEE Journal
on Selected Areas in Communication, Vol.18,
No.5 (2000).

5) Psounis, K.: Active Networks: Applications,
Security, Safety, and Architectures, IEEE
Communications Surveys, Vol.2, No.1 (1999).

6) Yasuda, H. (Ed.): 2nd Int. Working Conf. Ac-
tive Networks (IWAN’00) Proceedings, Japan,
Springer-Verlag Lecture Note on Computer
Science (2000).

7) Ghosh, A., Fry, M. and MacLarty, G.: An
Infrastructure for Application Level Active
Networking, Computer Networks, Vol.36, No.1
(2001).

8) Braun, T.: Internet Protocols for Multime-
dia Communications—Part II: Resource Reser-

vation, Transport, and Application Protocols,
IEEE Multimedia, Vol.4, No.4 (1997).

9) Wenger, S.: RTCP-based Feedback: Con-
cepts and Message Timing Rules, IETF In-
ternet Draft, http://search.ietf.org/internet-
drafts/draft-wenger-avt-rtcp-feedback-01.txt
(2000).

10) Sun Microsystems, Inc.: Java Media Frame-
work (JMF) API, http://www.java.sun.com/
products/java-media/jmf.

11) Decker, S., Mitra, P. and Melnik, S.: Frame-
work for the Semantic Web: an RDF Tutorial,
IEEE Internet Computing, Vol.4, No.6 (2000).

12) W3 Consortium: Composite Capability/Pref-
erence Profiles (CC/PP) Working Group,
http://www.w3.org/Mobile/CCPP.

13) The Foundation for Intelligent Physical
Agents (FIPA), http://www.fipa.org.

14) Putzolu, D., Bakshi, S., Yadav, S. and Ya-
vatkar, R.: The Phoenix Framework: a Practi-
cal Architecture for Programmable Networks,
IEEE Communications, Vol.38, No.3 (2000).

15) Karnouskos, S., Busse, I. and Covaci, S.:
Agent Based Security for the Active Network
Infrastructure, 1st Int. Working Conf. Active
Networks (IWAN’99) Proceedings, Germany,
Springer-Verlag Lecture Notes on Computer
Science (1999).

16) Bellavista, P., Corradi, A. and Stefanelli, C.:
Mobile Agent Middleware for Mobile Comput-
ing, IEEE Computer, Vol.34, No.3 (2001).

17) Bolliger, J. and Gross, T.: A Framework-
Based Approach to the Development of
Network-Aware Applications, IEEE Trans.
Softw. Eng., Vol.24, No.5 (1998).

18) Bellavista, P., Corradi, A., Montanari, R. and
Stefanelli, C.: Security in Programmable Net-
work Infrastructures: the Integration of Net-
work and Application Solutions, in Ref. 6).

19) IKV++, Grasshopper 2: the Agent Platform,
http://www.grasshopper.de.

20) Bellavista, P., Corradi, A. and Stefanelli,
C.: Protection and Interoperability for Mobile
Agents: A Secure and Open Programming En-
vironment, IEICE Trans. Comm., Vol.E83-B,
No.5 (2000).

21) Glitho, R.H.: Emerging Alternatives to To-
day’s Advanced Service Architectures for In-
ternet Telephony: IN and Beyond, Computer
Networks, Vol.35, No.5 (2001).

22) Baldi, M. and Picco, G.P.: Evaluating the
Tradeoffs of Mobile Code Design Paradigms in
Network Management Applications, Int. Conf.
on Software Engineering (ICSE’98) Proceed-
ings, IEEE Computer Society (1998).

23) Pagurek, B., Wang, Y. and White, T.: Inte-
gration of Mobile Agents with SNMP: Why

Vol. 43 No. 11 A Mobile Agent-activated Middleware for Internet Video on Demand 3315

and How, IEEE/IFIP Network Operations and
Management Symposium (NOMS 2000) Pro-
ceedings, USA, IEEE Press (2000).

24) Gavalas, D., Ghanbari, M., O’Mahony, M. and
Greenwood, D.: Enabling Mobile Agent Tech-
nology for Intelligent Bulk Management Data
Filtering, IEEE/IFIP Network Operations and
Management Symposium (NOMS 2000) Pro-
ceedings, USA, IEEE Press (2000).

25) Czajkowski, G. and von Eicken, T.: JRes: a
Resource Accounting Interface for Java, ACM
Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOP-
SLA’98) Proceedings, USA, ACM Press (1998).

26) Bellavista, P., Corradi, A. and Stefanelli, C.:
Monitor and Control of Mobile Agent Appli-
cations, ACM OOPSLA Workshop on Expe-
riences with Autonomous Mobile Objects and
Agent Based Systems, USA, ACM Press (2000).

27) UCL Networked Multimedia: Mbone Confer-
encing Applications, http://www-mice.cs.ucl.
ac.uk/multimedia.

28) Baschieri, F., Bellavista, P. and Corradi, A.:
Mobile Agents for QoS Control, Tailoring and
Adaptation over the Internet: the ubiQoS
Video on Demand Service, 2nd Int. Symp.
on Applications and the Internet (SAINT’02)
Proceedings, Japan, IEEE Computer Society
Press (2002).

29) Marshall, W. and Roadknight, C.: Provision
of Quality of Service for Active Services, Com-
puter Networks, Vol.36, No.1 (2001).

30) Baldi, M., Picco, G.P. and Risso, F.: Design-
ing a Videoconference System for Active Net-
works, 2nd Int. Workshop on Mobile Agents
(MA’98) Proceedings (1998).

31) Amir, E., McCanne, S. and Katz, R.: An Ac-
tive Service Framework and its Application to
Real-time Multimedia Transcoding, ACM SIG-
COMM Conf. Proceedings, ACM Press (1998).

32) Kon, F., et al.: A Component-based Architec-

ture for Scalable Distributed Multimedia, 14th
Int. Conf. Advanced Science and Technology
(ICAST’98) Proceedings (1998).

33) Kon, F., Campbell, R.H. and Nahrstedt,
K.: Using Dynamic Configuration to Man-
age a Scalable Multimedia Distribution Sys-
tem, Computer Communications, Vol.24, No.1
(2001).

34) TealPoint Software: TealMovie, http://www.
tealpoint.com.

(Received September 2, 2002)
(Accepted September 5, 2002)

Paolo Bellavista is a re-
search associate of computer en-
gineering at the University of
Bologna. His research inter-
ests include mobile agents, mo-
bile computing, network and
systems management, location/

context-aware services, and adaptive multime-
dia systems. He received a Ph.D. in com-
puter science engineering from the University
of Bologna. He is a member of the IEEE, the
ACM, and the Italian Association for Comput-
ing. Contact him at pbellavista@deis.unibo.it.

Antonio Corradi is a full
professor of computer engineer-
ing at the University of Bologna.
His research interests include
distributed systems, object and
agent systems, network manage-
ment, and distributed and paral-

lel architectures. He received an M.S. in electri-
cal engineering from Cornell University. He is
a member of the IEEE, the ACM, and the Ital-
ian Association for Computing. Contact him at
acorradi@deis.unibo.it.

