
Paolo Bellavista
and Antonio Corradi
Università di Bologna, Italy

Cesare Stefanelli
Università di Ferrara, Italy

Application-Level
QoS Control for
Video-on-Demand

Using mobile agent technology, the ubiQoS middleware

supports QoS tailoring and adaptation of video-on-demand

flows in response to user preferences and terminal properties.

As users continue to access the
Internet from a growing set of het-
erogeneous access devices, they

demand Web services tailored to their
personal preferences and usage type
(business or personal, for example). Client
Internet access devices range from tradi-
tional workstations and PCs to laptops,
personal digital assistants, and smart
phones, and connectivity can be wired or
wireless and continuous or intermittent.
User requirements and device hetero-
geneity call for Web services with differ-
entiated quality of service (QoS). In par-
ticular, services with response-time
constraints, such as video-on-demand
(VoD), require the differentiation, control,
and dynamic adaptation of QoS.

Service providers and network opera-
tors need methodologies and mechanisms
for managing runtime QoS. Although sev-
eral recently proposed ad hoc protocols at
the network layer have proven effective in
limited networks,1 they are incompatible
with the Internet’s best-effort model. Their

implementation requires intermediate
routers traversed by service packet flows,
which will likely incur a long process of
acceptance and diffusion. In addition, the
protocols work at an abstraction level that
complicates the embedding of functions
such as application-specific adaptation
and secure billing.2

The design, implementation, and
deployment of QoS-aware Internet ser-
vices can significantly benefit from a mid-
dleware approach at the application
level.3,4 (See the “Related Work on QoS for
Internet Video-on-Demand” sidebar.) In
VoD services, the middleware should
exhibit several enabling properties:

• QoS awareness, to manage service
components according to agreed-on
QoS levels;

• Location awareness, to enable runtime
decisions based on network topology
and the current positions of involved
resources;

• Domain-specific adaptation, to

16 NOVEMBER • DECEMBER 2003 Published by the IEEE Computer Society 1089-7801/03/$17.00©2003 IEEE IEEE INTERNET COMPUTING

Q
ua

li
ty

 o
f

Se
rv

ic
e

match service distribution to dynamic
changes in the provisioning environment
(through format transcoding and media
resynchronization, for example).

These guidelines, discussed in greater detail in
the “Middleware Design Guidelines” sidebar,
next page, drove the design and implementation
of ubiQoS, our application-level middleware for
QoS tailoring and adaptation of VoD flows over
standard IP networks. Unlike commercially
available multimedia distribution systems,
ubiQoS automatically installs its middleware
components where and when needed and
dynamically migrates them to rearrange the VoD
flow paths at provision time. UbiQoS compo-
nents autonomously and locally control network
resources, and promptly perform adaptation

operations near dynamically determined critical
points in the infrastructure. Autonomy and
locality of resource- and service-management
operations are crucial to achieving scalability in
the open and global Internet environment. To the
best of our knowledge, ubiQoS is the first such
middleware implemented using Java-based
mobile agents to exploit the mobility of both
code and state intrinsic to the mobile-agent pro-
gramming paradigm. This article presents the
main design choices behind ubiQoS. Other
implementation details are available at the
ubiQoS Web site (http://lia.deis.unibo.it/
Research/ubiQoS) and elsewhere.5

UbiQoS Basics
Users expect middleware to provide ubiquitous
access to Internet-based VoD services. UbiQoS

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2003 17

Video-on-Demand

Related Work on QoS for Internet Video-on-Demand

The emergence of commercial software
systems, such as Akamai (www.aka-

mai.com) and Inktomi (www.inktomi.com),
that support the delivery of high-quality
multimedia content to a large community
of clients demonstrates the growing inter-
est in Internet VoD distribution. Such sys-
tems exploit networks of statically installed
servers and transparently load-balance
requests among suitable servers near the
client. In addition, several researchers have
successfully designed and implemented dis-
tributed middleware for QoS provisioning
(TAO1 and MidART,2 for example).These
systems focus mainly on providing APIs for
end-to-end QoS management and propos-
ing mechanisms for QoS-aware resource
allocation, scheduling, and control, especial-
ly in real-time systems.However, they don’t
deal with the support infrastructure’s
autonomous evolution in response to
dynamic variations of request locations or
with the automatic profile-based tailoring
and adaptation of the provided QoS.

In the QoS-enabled VoD domain, several
research projects propose interposing a
proxy (also called a gateway or portal)
between the client and server to provide dis-
tributed caching and adaptive transcoding of
multimedia flows.3-4These projects focus on
algorithms for efficient downscaling,adaptive
bandwidth allocation, and content-based

naming resolution, and do not consider
dynamic proxy allocation or movement.

Of these projects, Reflector’s active
infrastructure for QoS tailoring and adap-
tation most resembles ubiQoS.5 Reflector
dynamically determines paths of multiple
intermediate nodes between clients and
servers. It aims to test the feasibility of dis-
tributing low-to-medium-bandwidth flows
to thousands of Internet users simultane-
ously, and had significant success in broad-
casting the NASA Pathfinder mission live.To
use Reflector, however, you must preinstall
its server infrastructure in proper points on
the distribution network, and you cannot
move middleware components or extend
them with new functionality at runtime.

As in ubiQoS, recent research in active
networks and services concentrates on
forms of code mobility for implementing
dynamic support infrastructures in VoD.6

However, most current proposals do not
let the execution state migrate with the
code, which facilitates autonomous QoS
negotiation and adaptation and active path
rearrangement. In fact, after wide-scale
deployment experiences, the Reflector
developers noted that a major weakness of
their system was its insufficient support for
dynamic component distribution, reconfig-
uration, and extension.They indicated that
code mobility is the most promising tech-

nology for a Reflector reimplementation.5

References
1. I. Pyarali, D.C. Schmidt, and R.K. Cytron,

“Achieving End-to-end Predictability in

the TAO Real-time Corba ORB,” Proc. 8th

IEEE Int’l Symp. Real-Time and Embedded

Technology and Applications, IEEE CS

Press, 2002, pp. 13-22.

2. O. Gonzalez et al., “Implementation and

Performance of MidART,” Proc. IEEE

Workshop on Middleware for Distributed

Real-Time Systems and Services, IEEE CS

Press, 1997.

3. A. Fox et al., “Adapting to Network and

Client Variation Using Infrastructural

Proxies: Lessons and Perspectives,” IEEE

Personal Comm., vol. 5, no. 4, Aug. 1998,

pp. 10-19.

4. C.D. Cranor et al., “Enhanced Streaming

Services in a Content Distribution Net-

work,” IEEE Internet Computing, vol. 5,

no. 4, July 2001, pp. 66-75.

5. F. Kon, R.H. Campbell, and K. Nahrstedt,

“Using Dynamic Configuration to Manage

a Scalable Multimedia Distribution Sys-

tem,” Computer Comm., vol. 24, no. 1, Jan.

2001, pp. 105-123.

6. B. Krupczak, K.L. Calvert, and M.H.

Ammar, “Implementing Communication

Protocols in Java,” IEEE Comm., vol. 36,

no. 10, Oct. 1998, pp. 93-99.

offers two dimensions of ubiquity:

• Accessibility. UbiQoS automatically tailors
and adapts VoD flows’ QoS levels to fit user
preferences, access devices, and available net-
work resources, letting users receive VoD
flows anywhere.

• Middleware. UbiQoS components autonomous-
ly scatter among network hosts along the paths
from VoD servers and clients, depending on the
emergence of congestion points.

UbiQoS supports VoD service tailoring at negoti-
ation time and VoD service adaptation at provi-
sion time.

When a user requests VoD content, ubiQoS
retrieves user preferences and current device
capabilities, expressed as profiles stored in light-
weight directory access protocol (LDAP) servers.
Using its discovery service, ubiQoS searches for
a server that has the requested VoD content with
a QoS level greater than or equal to that
expressed in the profiles. After identifying a suit-
able server, ubiQoS establishes a server-to-client
network path for the VoD flow. A set of dynami-
cally installed ubiQoS components negotiates the
QoS on any segment along this path and decides

which downscaling operations to perform at
which nodes. UbiQoS components also perform
application-level admission control and reserve
local resources. They accept requests for new VoD
flows (or for enhancing the QoS level of estab-
lished flows) only if enough local resources are
available at request time.

The state of system and network resources
along the distribution paths determines how
ubiQoS will adapt the QoS of VoD flows. An ad
hoc monitoring component controls resources’
state during service provision and triggers adap-
tation operations to adjust the QoS level if
resources change. Adaptation can affect the trans-
mitted VoD data (from transcoding to frame resiz-
ing and from merging or splitting multilayered
tracks to reducing frame resolution and rate),
eventually modifying the established VoD path.
When this occurs, ubiQoS triggers a new negoti-
ation phase and distributes new middleware com-
ponents where needed. The type of corrective
operation depends on the client’s user and termi-
nal profiles, which assign priorities to available
adaptation modes. For instance, if the network is
congested, one user might prefer to receive frames
with a lower color depth whereas another might
prefer a lower frame rate.

18 NOVEMBER • DECEMBER 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Quality of Service

Middleware Design Guidelines

Diffusing VoD services over the Internet
largely depends on the middleware’s

ability to support the tailoring and adapta-
tion of QoS levels.

• Service tailoring is the initial configuration
phase in negotiating the proper QoS
level for the service session, and
accounts for differentiated user
requirements, heterogeneous access
devices and points of attachment, and
available network resources. For
example, portable devices generally
require downscaled services that fit
their limited hardware resources.

• Service adaptation involves tuning QoS
in response to changes in resource
availability at provision time and
requires monitoring support to detect
network and system conditions. If client
devices include wireless terminals,
runtime changes in resource availability
are common.

Tailoring and adapting Internet VoD can
significantly benefit from open, portable,
and extensible middleware with full visi-
bility of network, system, and service
properties.

Application-level middleware solutions
are suitable for best-effort Internet ser-
vice. In fact, tailoring and adaptation oper-
ations require the infrastructure to close-
ly interact with application-layer service
components. For example, standardized
solutions and protocols for directory and
discovery at the application level can
improve the dynamic retrieval of user-
preference and terminal-capability infor-
mation. Domain-specific adaptation
requires operations (such as format
transcoding) and flow characteristic mod-
ifications (such as frame rate, image reso-
lution, and image size), again suited to the
application level.1,2 Security management
also benefits from working at the applica-
tion level. For example, service admission

control should depend on system
resource state, requested QoS level, and
user location; accounting should associate
users with provided services in a nonre-
pudiable way and should bill them for their
resource consumption.

In addition, any middleware for the
global Internet should address scalability
and openness issues.Thus, we need decen-
tralized solutions with middleware com-
ponents autonomously performing cor-
rective control and adaptation operations
overcoming the limitations of traditional
client-server QoS management.3 Novel
middleware components should have full
visibility of involved network resources
and should operate on them locally to
ensure prompt reactions. Emerging pro-
gramming paradigms based on code mobil-
ity let middleware implement mobile com-
ponents that migrate along the VoD
distribution path at negotiation time and

continued on p. 19

Adopted Technologies
UbiQoS exploits emerging and accepted applica-
tion-level technologies to facilitate its use over the
Internet. In particular, it adopts the real-time
transport protocol (RTP)6 to transmit multimedia
packets; the Java media framework (JMF,
http://java.sun.com/products/java-media/jmf) to
process VoD flows; and the W3C’s composite capa-
bilities/preference profile (CC/PP, www.w3.org/
Mobile/CCPP), an emerging standard based on the
Resource Description Framework (RDF), to repre-
sent user and terminal profiles.

RTP is the most widely used application-level
protocol for QoS control over best-effort networks.
In addition to transmitting data, RTP requires
communication end points to exchange QoS-relat-
ed monitoring information contained in sender
and receiver reports. Sender reports include mon-
itoring information such as RTP time stamps and
the number of transmitted packets or bytes.
Receiver reports contain statistics about the
received flows, such as interarrival jitter and frac-
tion of lost packets since the last report.

JMF is Sun’s portable framework for acquiring,
elaborating, and visualizing multimedia flows. It
provides components for encapsulating VoD
sources and receivers — for example, acquisition

hardware, visualization and encoding software,
and incoming and outgoing network flows — and
operating transformations such as compressions
and format transcoding. With regard to multime-
dia flow transport and control, JMF exploits RTP
and propagates the visibility of sender and receiv-
er reports to application-level service components.

The differentiation of user requirements and the
wide heterogeneity of client devices require well-
represented and maintained user and terminal pro-
files. These should include user preference infor-
mation (desktop interface information, required
security level, and subscribed services and corre-
sponding QoS requirements, for example) and ter-
minal characteristics (display size, available mem-
ory, operating system, and so on).

Middleware Components
The ubiQoS infrastructure consists of several com-
ponents that dynamically migrate to hosts along the
VoD distribution path to tailor and adapt QoS levels.

• Proxies migrate where needed according to
client location at provision time. They move
throughout the network, composing a dynam-
ically determined active path between client
and server, and then remain in place to serve

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2003 19

Video-on-Demand

Middleware Design Guidelines (continued)

rearrange themselves in response to mod-
ifications in network and system condi-
tions at provision time.

At negotiation time, dynamic middle-
ware-distribution components simplify and
enhance QoS tailoring via two strategies:

• Resource admission control and
reservation. A service request’s
admission should depend on the
current resource state — for example,
the list of accepted VoD flows with the
corresponding resource reservation —
and user authorizations. Reservation
and authorization operations benefit
from collocation with the admission-
controlled resource.

• Rapid protocol prototyping and deploy-
ment. Mobile middleware components
permit the dynamic installation of new
application-level protocols whenever
the protocols are unsupported or their
applicability is too limited to motivate

their introduction at the network level.

At provision time, mobile code-based
middleware components facilitate the sup-
port of QoS adaptation via both mecha-
nisms and strategies:

• Local monitoring of current QoS.
Centralized management solutions
create bottlenecks in critical situations
and overload network resources near
congestion points — a
micromanagement problem.Delegated
management, on the contrary, lets
middleware distribute components
operating autonomously and locally to
the bottlenecks, even if the network is
temporarily disconnected.3

• VoD path rearrangement. Mobile
middleware components can change
the provision path in response to
congestions and failures in service
providers, intermediate hosts, or

network links. In case of unacceptable
QoS degradation, they can determine
an alternative path,migrate to the new
intermediate hosts, and resume the
VoD session.

The combination of these mechanisms and
strategies lets middleware effectively pro-
vision VoD services to any heterogeneous
access device with the desired QoS level.

References
1. A.T.Campbell,“QoS-Aware Middleware for Mobile

Multimedia Communications,” Multimedia Tools and

Applications, vol. 7, no. 1–2, 1998, pp. 67–82.

2. E.Amir, S. McCanne, and R. Katz,“An Active Ser-

vice Framework and Its Application to Real-time

Multimedia Transcoding,” Computer Comm.Rev., vol.

28, no. 4, Oct. 1998, pp. 178–189.

3. P. Bellavista,A. Corradi, and C. Stefanelli,“An Inte-

grated Management Environment for Network

Resources and Services,” IEEE J. Selected Areas in

Comm., vol. 18, no. 5, May 2000, pp. 676–685.

continued from p. 18

successive requests. Proxies perform admission
control and reservation for incoming and out-
going flows. They also monitor system- and
application-level resources and trigger local
QoS adaptation operations. They coordinate
with adjacent ubiQoS components both in the
initial negotiation phase and at provision time
when variations in resource availability occur.

• Gateways extend ubiQoS proxies with addi-
tional naming and coordination functions. In
fact, ubiQoS organizes clients, servers, and net-
worked resources in hierarchies of locality
abstractions, or domains, and exploits an artic-
ulated locality-aware naming service. A
ubiQoS domain typically corresponds to a set
of local area networks with common adminis-
tration and management policies. Domains
contain one ubiQoS gateway, possibly replicat-
ed with a master-slave solution. The gateway
is the only component that can completely
view neighbor domains and the ubiQoS com-
ponents within them, which helps ubiQoS pro-
vide scalable naming solutions and make struc-
ture-management decisions.2

• Stubs integrate the ubiQoS infrastructure with
legacy VoD servers and players. Client stubs
transparently forward VoD requests to ubiQoS
components and RTP flows to local visualiza-
tion tools. Server stubs answer service requests

from ubiQoS components by transparently
encapsulating server VoD flows into RTP flows.
Thus far, we have implemented client stubs for
JMF and Mbone videoconferencing tools and
server stubs for JMF data sources. (See www-
mice.cs.ucl.ac.uk/multimedia.)

Figure 1 depicts a deployment scenario in which
user1 and user2 (and their access devices) require
a high-quality flow from the VoD server that must
be downscaled at the ubiQoS proxy in domain2.
If link1’s bandwidth degrades at provision time,
the proxy (after coordinating ubiQoS components
in domain1 and domain2) will adapt the VoD
transmission for the user by reducing the frame
resolution or rate according to the receiver pref-
erence profile.

If available resources cannot meet the negotiat-
ed QoS — for example, if link2 fails — the gateway
eventually establishes a new path segment. The
gateway in domain3 launches a discovery for a
suitable VoD server in nearby domains, then nego-
tiates with new ubiQoS-enabled hosts, and finally
restarts the flow transmission from the point at
which it was interrupted (if server4 supports ran-
dom access to the VoD content). Apart from the
time interval to establish the new path, the server
swap is transparent to receivers and other inter-
mediate ubiQoS components.

20 NOVEMBER • DECEMBER 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Quality of Service

User1

Domain1

Link1

VoD
server4

SS VoD
server1

PSS VoD
server3

User2
CS

Domain2

Domain3

Link2

Domain4

CS
ubiQoS
client stub

SS
ubiQoS
serverstub

P
ubiQoS
proxy

G
ubiQoS
gateway

Negotiated path

Provision-time
modified path

CS G G P SS VoD
server2

G

G

SS

Figure 1. UbiQoS tailoring and adaptation operations. The proxy adapts the VoD transmission to provide the same VoD
content to user1 and user2 with different QoS levels.

Gateway Architecture
All ubiQoS middleware components have similar
modular architectures, as Figure 2 shows. The
gateway is the most complete component and
includes all basic modules. Other components
have more limited duties and include only a sub-
set of the gateway functions. Proxies do not need
LDAP or discovery servers, for example, and stubs
provide functionality only for gateway discovery
and RTP reception and transmission.

The QoS Manager module coordinates the other
local modules and decides the QoS level to offer
the next ubiQoS component in the VoD path. At
negotiation time, it combines QoS requirements
from user and terminal profiles and reservation
data from the Admission Control module. Any
VoD service usually allows a space of possible val-
ues for QoS parameters, such as frame rate, size,
and resolution. The QoS Manager enforces a spe-
cific point in the admissible space by using QoS
information and the local host resource consump-
tion policy. UbiQoS currently provides two simple
alternative policies:

• A thrifty policy enforces the QoS point that
minimizes local resource consumption accord-
ing to a specified function cost.

• A greedy policy chooses the best allowed QoS
point by reserving the maximum amount of
local resources.

At provision time, the QoS Manager can also
move the chosen QoS point in the admissible
range to maximize a cost function with weighted
QoS parameters, depending on user and terminal
profiles.5 If bandwidth degrades, for example, a
videoconference user could opt for a high-quality
audio stream over video frame rate.

The QoS Manager commands the QoS Adaptation
module, which works to maintain the negotiated
QoS point. Adaptation exploits JMF multiplexers
and demultiplexers, codecs, and renderers, together
with Java-based transcoding components developed
within the project. For instance, we’ve implement-
ed a family of ad hoc codecs to convert several VoD
input formats into MPEG flows with quality para-
meters specified at runtime (see the ubiQoS site for
details). The Adaptation module also maintains local
caches of served flows so it can respond promptly
to incoming client requests with compatible service
requirements using a least recently used-based
replacement strategy. For any VoD flow, the adap-
tation module stores the version received with the
best QoS according to its cost function.

The underlying modules provide the QoS Man-
ager’s basic functions. The QoS Monitoring mod-
ule, for example, observes the system- and appli-
cation-level states of resources and service
components local to the ubiQoS proxies and gate-
ways. The Admission Control module registers any
currently served VoD flow traversing the local
ubiQoS component and, depending on both the
information from QoS Monitoring and the set of
currently accepted flows, accepts or rejects the
new service request. The Accounting module
authenticates users and, using QoS Monitoring
data, logs the QoS levels provided to subsequent
ubiQoS proxies and gateways in the active paths.
Accounting data is stored locally to the consumed
resources and can be processed offline for billing
or other purposes.

UbiQoS also exploits a flexible and scalable
naming support system that integrates discovery
and directory servers.7 UbiQoS uses LDAP-com-
pliant directory servers to store globally accessi-
ble information such as CC/PP profiles. Jini-based
discovery lookup servers make the available VoD
content and ubiQoS components accessible in any
domain locality. UbiQoS gateways implement both
directory and discovery server-side operations.
Profiles are only partially replicated on gateways,
and requests for nonlocal profiles are forwarded
to neighbor gateways. Other ubiQoS components
only implement lightweight client functionality
and interrogate the modules for discovery or direc-
tory of the gateway in their locality.

Implementation
We built the ubiQoS middleware on top of the
Java-based Secure and Open Mobile Agent plat-
form for developing and deploying Internet ser-

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2003 21

Video-on-Demand

ubiQoS gateway

QoS Manager
ubiQoS proxy

UbiQoS
C/S stub

CC/PP
LDAP
client

Discovery
client

Admission
Control

Accounting

QoS Adaptation
RTP flow
receiver

QoS Monitoring

CC/PP
LDAP
server

Discovery
server

RTP flow
sender

Figure 2. UbiQoS components’ modular architecture. The most
complete component, the gateway, comprises all basic modules.
Proxies and stubs contain subsets of gateway functions.

vices. SOMA provides APIs for mobility, commu-
nication, naming, monitoring, security, and inter-
operability.2 In addition, SOMA models Internet
localities with hierarchies of abstractions that fit
the ubiQoS locality organization.7

Adopting a mobile-agent-based implementation
technology for ubiQoS proxies and gateways offers
two advantages:

• Code mobility lets ubiQoS components move
where needed at provision time and dynami-
cally update or extend their functionality with-
out suspending service provisioning. For
instance, the QoS Adaptation module can load
new adaptation functions and caching strate-
gies by exploiting code mobility and SOMA’s
distributed code repository.2

• UbiQoS’s mobile-agent-specific state-migration
property — its ability to move mobile agents
together with their current execution state —
lets ubiQoS proxies and gateways maintain
both the user-specific QoS requirements and
the QoS characteristics of previous segments in
the active path. For example, if a link fails and
a gateway dynamically establishes a new path
segment, as Figure 1 shows, the ubiQoS gate-
way migrating to domain4 carries information
about the QoS level in the domain2-to-
domain3 segment as well as user2’s QoS adap-
tation requirements, such as the user-specific
cost function for the QoS Manager.

The ubiQoS Web site has additional details about
the mobile-agent-based ubiQoS active path deter-
mination.

Our default deployment strategy is to install
one gateway at each domain along the dynami-
cally determined active paths. Other ubiQoS com-
ponents move at runtime, depending on both the
distribution tree of the served VoD flows and the
resource availability along the paths. UbiQoS
proxies move to where resource bottlenecks
emerge dynamically, performing locally effective
and prompt tailoring and adaptation operations
on congested resources. Bottlenecks usually occur
near network discontinuities, such as a move from
a 622-Mbps ATM-based network to a 56-Kbps
modem link, and in host capabilities, for example,
locally to WAP gateways providing Web content
to mobile phones.

Java in Internet VoD
Java plays a key role in Internet service provi-
sioning because of its portability, object-orienta-

tion, dynamic class loading, and language-level
security support.8 The use of Java in Internet VoD
has two drawbacks, however.

The Java virtual machine (JVM) hides system
properties requested by the QoS Monitoring mod-
ule. This module not only extracts the monitoring
information available in real-time control proto-
col (RTCP) sender and receiver reports, but also
provides the visibility of both system-level indica-
tors (for example, CPU load and packet collision
rate) and application-level indicators (such as
method invocation and memory allocation for any
Java active thread). To achieve this kind of visibil-
ity, ubiQoS Monitoring integrates with platform-
dependent monitoring mechanisms using the JVM
Profiler Interface and Java Native Interface (JNI)
(additional details are at http://lia.deis.unibo.it/
Research/MAPI).

Moreover, because it is based on an interpreter
approach, Java is often unsuitable for time-con-
strained operations such as on-the-fly multime-
dia format transcoding. Our experience with
ubiQoS has shown that Java succeeds in online
QoS adaptation of multimedia flows at typical
Internet transmission rates. Java-based ubiQoS
components are portable on any platform host-
ing the JVM; for improved performance, howev-
er, the QoS Adaptation module integrates with
native plug-in codecs, such as JMF and the com-
mercial Design MediaPalette (www.cinax.com/
Products/mp.html), by exploiting standard JNI
libraries containing platform-dependent code
that is typically tied to specific targets. QoS
Adaptation dynamically retrieves the list of
installed plug-ins to bind only to locally avail-
able native components.

Experimental Results
To evaluate our approach’s feasibility and effec-
tiveness, we’ve deployed the ubiQoS infrastruc-
ture over several geographically distributed net-
works interconnected via GARR (the Italian
Academic and Research Network), and using very
different bandwidths. Each network locality is
modeled by one SOMA domain and includes het-
erogeneous nodes (Sun Solaris workstations, Intel
Pentium PCs with Microsoft Windows NT, and
SuSE Linux).

In ubiQoS, the initial active path-establishment
and negotiation phase involves the client, the
dynamically retrieved server, and possibly some
active intermediate nodes. Establishing an active
path segment requires querying the domain dis-
covery service, creating an RTP connection, reserv-

22 NOVEMBER • DECEMBER 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Quality of Service

ing and controlling resources, negotiating the tai-
lored QoS, and, when needed, migrating ubiQoS
proxies and gateways.

Figure 3 shows the near-linear dependence of
path setup time on the number of intermediate
active nodes. The figure also shows the effect of
the number of migrations on path setup time:
when a service request triggers the installation
of ubiQoS proxies and gateways over just a small
set of new active nodes, the delay is significant-
ly smaller.

In addition, the number of active nodes tends
to be smaller than the number of traversed net-
works, even when they are distributed across the
Internet. In fact, ubiQoS proxies and gateways
need operate only where network bandwidth dis-
continuities or forking of the VoD distribution tree
exist. In general, the path setup time is signifi-
cantly longer than the time necessary to establish
a single RTP connection between one client and
one server, but it is acceptable for noninteractive
VoD services because it affects only the initial
delay before beginning visualization at the client
side. Prompt adaptation reactions at provision
time and significant network traffic reductions in
multicast distribution counterbalance the initial
path-setup overhead.

Because ubiQoS components autonomously
monitor, control, and manage their local path
segments, reaction time — measured as the time
interval between congestion occurrence and the
start of adaptation operations in the closest proxy
or gateway — is almost independent of the dis-
tance between the client or server and the con-
gested segment, at generally about 150 millisec-
onds. In addition, ubiQoS proxies and gateways
integrate standard RTP report transmissions with
event-triggered exchanges of monitoring infor-
mation provided by QoS Monitoring, thus over-
coming the RTP limit on the statically determined
report frequency (see the IETF Internet draft
“RTCP-based Feedback: Concepts and Message
Timing Rules”).

When a server multicasts the same VoD flow,
ubiQoS proxies and gateways ascertain whether
several receivers are available within their served
localities; they split VoD flows only when and
where necessary and downscale the VoD quality
depending on their distribution subtree’s maxi-
mum QoS requirements. We measured the overall
traffic, defined as the total number of bytes
exchanged between all pairs of adjacent nodes
along the distribution tree, by considering a large
set of client distributions. On average, this

approach reduces the overall traffic more than
three times than traditional solutions that do not
support IP-multicast.

Conclusive Remarks
Our experimental results show the feasibility of
application-level middleware solutions based on
code mobility for Internet VoD services with dif-
ferentiated QoS, and are stimulating additional
work. For example, we are extending ubiQoS to
include VoD client stubs based on the Java 2 Micro
Edition and VoD multimedia players such as Teal-
Movie (www.tealpoint.com), targeted to wireless
Palm devices with very limited visualization capa-
bilities. In addition, we are considering the
research area of peer-to-peer multimedia
exchange, for instance, to use UbiQoS for interac-
tive videoconference applications.

Acknowledgments
The Italian Ministry for Instruction, University, and Research

(MIUR) and the Italian National Research Council (CNR) sup-

ported this work in the framework of the FIRB Web-Minds and

IS-Manet projects.

References

1. X. Xipeng and L.M. Ni, “Internet QoS: a Big Picture,” IEEE

Network, vol. 13, no. 2, Mar. 1999, pp. 8-18.

2. P. Bellavista, A. Corradi, and C. Stefanelli, “An Integrated

Management Environment for Network Resources and Ser-

vices,” IEEE J. Selected Areas in Comm., vol. 18, no. 5,

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2003 23

Video-on-Demand

Number of active nodes
1 2 3 4 5 6

Se
tu

p
tim

e
(m

s)

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

One proxy migration
One gateway migration
Two proxy migrations
Two gateway migrations
No proxies (gateways already deployed)

Figure 3. UbiQoS active path setup time. Path setup time varies with
the number of intermediate active nodes.

May 2000, pp. 676-685.

3. R. Koster and T. Kramp, “Structuring QoS-Supporting Ser-

vices with Smart Proxies,” Proc. IFIP/ACM Int’l Conf. Dis-

tributed Systems Platforms (Middleware 2000), LNCS 1795,

Springer-Verlag, Apr. 2000, pp. 273-288.

4. D. Chalmers and M. Sloman, “A Survey of Quality of Ser-

vice in Mobile Computing Environments,” IEEE Comm.

Surveys & Tutorials, vol. 2, no. 2, 1999, pp. 2-10.

5. F. Baschieri, P. Bellavista, and A. Corradi, “Mobile Agents

for QoS Tailoring, Control, and Adaptation over the Inter-

net: The ubiQoS Video on Demand Service,” Proc. Int’l

Symp. Applications and the Internet (SAINT’02), IEEE Com-

puter Soc. Press, 2002, pp. 109-118.

6. H. Schulzrinne et al., “RTP: A Transport Protocol for Real-

Time Applications,” Internet Eng. Task Force RFC 1889,

Jan. 1996; www.ietf.org/rfc/rfc1889.txt.

7. P. Bellavista, A. Corradi, and C. Stefanelli, “Mobile Agent

Middleware for Mobile Computing,” Computer, vol. 34, no.

3, Mar. 2001, pp. 73-81.

8. B. Krupczak, K.L. Calvert, and M.H. Ammar, “Implement-

ing Communication Protocols in Java,” IEEE Comm., vol.

36, no. 10, Oct. 1998, pp. 93-99.

Paolo Bellavista is a research associate of computer engineering

at the University of Bologna. His interests include mobile

agents, pervasive computing, systems/service management,

location/context-aware services, and adaptive multimedia.

He received a PhD in computer science engineering from

the University of Bologna. He is a member of the IEEE, the

ACM, and the Italian Association for Computing. Contact

him at pbellavista@deis.unibo.it.

Antonio Corradi is a full professor of computer engineering at

the University of Bologna. His research interests include

distributed systems, object and agent systems, systems/ser-

vice managements, and pervasive computing. He received

an MS in electrical engineering from Cornell University.

He is a member of the IEEE, the ACM, and the Italian

Association for Computing. Contact him at acorradi@

deis.unibo.it.

Cesare Stefanelli is an associate professor of computer engineer-

ing at the University of Ferrara. His research interests include

distributed and mobile computing, mobile code, network and

systems management, and network security. He received a

PhD in computer science from the University of Bologna. He

is a member of the IEEE and the Italian Association for Com-

puting. Contact him at cstefanelli@ing.unife.it.

24 NOVEMBER • DECEMBER 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Quality of Service

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL
BIOLOGY AND BIOINFORMATICS

Stay on top of the exploding fields of computational biology and
bioinformatics with the latest peer-reviewed research.

This new journal will emphasize the algorithmic, mathematical,
statistical and computational methods that are central in bioinformatics
and computational
biology including…

• Computer programs in bioinformatics
• Biological databases
• Proteomics
• Functional genomics
• Computational problems in geneticsLearn more about this new

publication and become a
charter subscriber today.

http://computer.org/tcbb

NEW for 2004!

Publishing quarterly in 2004
Member rate:

$35 print issues
$28 online access
$46 print and online

Institutional rate: $345

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

