
Paolo Bellavista,
Antonio Corradi, and
Rebecca Montanari
Università di Bologna

Cesare Stefanelli
Università di Ferrara

Dynamic Binding in
Mobile Applications
A Middleware Approach

By separating binding concerns from application logic,

the Colomba approach exploits metadata to let mobile

applications adapt to dynamic environments.

Service development and deploy-
ment face new challenges from the
wide availability of Internet points

of attachment, increasing deployment of
wireless networks, and growing portable-
device market. To provision traditional
Internet services to mobile clients, service
providers must address the possibility of
roaming during service sessions and the
heterogeneity of access-terminal hard-
ware and software. In addition, mobile
computing encourages the development
of location-dependent services.

Traditional middleware solutions are
not designed to handle mobile users, their
frequent temporary disconnection, or the
wide range of access devices they employ.
Novel middleware components should
extend the fixed Internet infrastructure at
service provisioning time when necessary
to accommodate user and device mobili-
ty.1 The middleware should also propa-
gate to the service-level system informa-
tion such as user location, preference
profiles, and device characteristics.

The mobility of users, terminals, and ser-
vice components requires novel middle-
ware solutions to handle the set of bindings
to needed resources. We have developed a
middleware approach for binding manage-
ment in mobile applications that addresses
several of these issues. The Context- and
Location-based Middleware for Binding
Adaptation (Colomba) automatically
updates mobile client references to needed
resources whenever a client moves and
dynamically selects and enforces the most
suitable binding strategy. Colomba oper-
ates according to dynamic environmental
conditions and various metadata, ranging
from administrator management require-
ments to user, terminal, resource profiles,
and resource co-locality constraints — forc-
ing two resources to reside close to each
other and eventually move together, for
instance. Our middleware lets service
providers express binding strategies at a
high level of abstraction in terms of declar-
ative directives that are cleanly separated
from the service code; changes in binding

34 MARCH • APRIL 2003 Published by the IEEE Computer Society 1089-7801/03/$17.00©2003 IEEE IEEE INTERNET COMPUTING

U
bi

qu
it

ou
s

M
ob

il
e

C
om

pu
ti

ng

strategies thus require no intervention in the appli-
cation logic. This separation of concerns is crucial
to leveraging mobile applications in statically
unknown usage scenarios.

Binding Management
in Mobile Applications
The bindings to needed resources must be proper-
ly rearranged to maintain resource accessibility
when users, terminals, and service components
migrate to new locations. To introduce the bind-
ing management problem, consider a news service
that lets mobile users download articles from
newspaper data resources that are available over
the fixed network from a station at an airport
boarding gate. After the plane lands, the users’
PDAs should reconnect automatically to another
station at the arrival gate to download updated
news as well as local information, such as weath-
er and traffic reports.

This scenario exemplifies some of the possible
resource-binding strategies that can be applied
when a mobile entity (ME) moves in the network.
In the following, an ME is a component — either a
user or a terminal — that can change its physical
location. In principle, four general strategies can
rule resource bindings2,3:

• Resource movement. This strategy transfers
bounded resources along with the ME when it
moves. This type of binding is possible only if
the resource transfer is technically and seman-
tically possible; a database could not move to a
different location, for instance, because it is
already in use for queries and there is no way
to move copies of it.

• Copy movement. This strategy copies bounded
resources and transfers them along with the
migrating ME. The resource copy must be tech-
nically and semantically possible, and conflicts
might arise from concurrent modifications to
multiple resource copies.

• Remote reference. Rather than moving
resources, this strategy modifies ME resource
bindings after migration to refer to the
resources remotely. This strategy requires net-
work communication with the remote execu-
tion environments hosting the resources.

• Rebinding. This strategy binds the ME to equiv-
alent resources available in the new locality. It
typically applies to bindings defined by type3

and is fundamental anytime an ME accesses
resource instances that provide service contents
based on the instance location.

The choice of the proper binding strategy depends
on several factors, from runtime conditions and
access-device properties to management require-
ments and user preferences. A mobile device with
no strict constraints on memory resources and
computing capabilities could move or copy the
needed resources and work on them locally, where-
as a resource-limited wireless device might want to
move resource copies to fixed hosts in the network
currently providing connectivity. However, the lan-
guage adopted for service design usually deter-
mines the binding strategy. Moreover, the strategy
is typically embedded within the service code, thus
limiting binding-management flexibility.3

Mobile applications require greater binding
flexibility than is provided by conventional
approaches, in which developers hard code strate-
gies into the service logic. Moreover, such
approaches can complicate service design and
deployment, requiring the programmer to gener-
ate multiple statically specified versions of a
mobile application, for example, to accommodate
different deployment scenarios.

Discovery Services
The wide variety of implementation mechanisms
available for resource retrieval, access, and usage
further complicates the service developers’ work.
Researchers in both industry and academia are
thus investigating mechanisms for dynamically
retrieving and binding to the service components
available in a locality for which the client has
incomplete knowledge. These solutions are usual-
ly identified as discovery services.

Among commercial proposals, the Bluetooth
service discovery protocol (www.bluetooth.com)
and the Universal Plug and Play simple service
discovery protocol (UPnP; www.upnp.org) are rep-
resentative of simple solutions that work at low
levels of abstraction. The IETF’s service location
protocol (SLP; RFC2608) and the Salutation suite
(www.salutation.org) are examples of more com-
plex and articulated middleware with APIs for
attribute-based resource queries. Jini, on the other
hand, lets servers advertise and clients discover
service components. It also lets interface proxy
objects dynamically migrate toward the clients to
distribute code and information about how to
access and use service components.4 However, Jini
requires clients to run a Java Virtual Machine or
to be associated with fixed hosts running a JVM
on their behalf. The Surrogate research project
(http://surrogate.jini.org) tries to fill the gap
between Jini and wireless devices that cannot run

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2003 35

Dynamic Binding

a JVM by specifying surrogate proxies that non-
Java-based portable devices can dynamically
retrieve via low-level Bluetooth discovery.

Service Description
Several heterogeneous implementation mecha-
nisms are also available for describing service
components and for local or remote interactions
with them. For instance, remote method invoca-
tion (RMI) assumes ubiquitous JVM support and
exploits the Java type system to expose the inter-
faces of available resources in a repository.
Because it imposes static heavy restrictions on
resource binding, RMI allows only the default copy
movement strategy and — when the bounded
resource implements a specific interface and
extends a specific base class — the remote refer-
ence strategy.

From the Web Services Description Language
(WSDL) and SOAP to more traditional and less
mobile-oriented architectures such as DCOM and
Corba, several other description formats exist for
resource advertising, as well as several mecha-
nisms for resource access. Each makes trade-offs
between flexibility and efficiency, and expressive
power and limited footprint. Typically, they are all
used as partial mechanisms for implementing a
remote reference strategy.

Dynamic Binding
These considerations all point out the potential for a
new middleware approach to designing mobile
applications with dynamic binding capabilities. Past
research in process migration, which faced similar
issues with processes rebinding to needed resources
after movement, provides a significant seminal basis
for our own work.5 Addressing the binding issues
specific to mobile applications requires significant
rethinking, however, to solve such challenges as
location-aware support infrastructures for provi-
sioning location-dependent services.

Few recent proposals in mobile code research
suggest initial solutions for dynamic binding man-
agement.6,7 They all demonstrate the emerging
interest in binding issues by following the princi-
ple of clean separation between application logic
and binding strategy, but they support binding
strategy decisions only at the start of the mobile
application execution.

The Colomba Framework
Colomba separates service logic from binding
management. This permits developers to code,
change, and reuse service components and bind-

ing strategies independently of each other. Admin-
istrators can express binding strategies at a high
level of abstraction in terms of declarative policies.
In particular, Colomba supports a dynamic bind-
ing management that requires:

• Context awareness is the knowledge of appli-
cation-specific attributes, such as user pref-
erences, level of trust, subscribed services,
and access device characteristics. Users can
refer to a set of resources determined by con-
text information.

• Location awareness is the knowledge of the
physical position of the user or device connec-
tion to the network infrastructure. Available
resources depend on location information.

In the mobile news service (MNS) scenario
described earlier, context and location awareness
are crucial for choosing the most suitable binding
strategy. The service should mainly offer news that
can be specific to the ME’s current locality. News
should be tailored to user interests and represent-
ed in a suitable format for a given device’s hard-
ware and software characteristics. Location aware-
ness enables rebinding anytime the ME changes
locality: after migration, the ME transparently
reconnects to the locally available news resources.
Context information drives the choice between dif-
ferent instances of news resources in the locality.
In fact, the binding strategy can identify local
resources on the basis not only of simple descrip-
tion attributes, such as type identifiers, but also of
complex application-specific information and
device characteristics.

Colomba recognizes two components in a
mobile-application deployment scenario:

• Users are the principals that request services and
access resources from heterogeneous and possi-
bly portable access devices; they might change
device or location during service provisioning.

• Resources identify both physical devices (print-
ers, disks, and so on) and logical information
(files, profiles, service-specific software com-
ponents, and such).

To support dynamic binding, Colomba exploits
metadata and provides middleware facilities. Meta-
data provide information about users, devices, and
resources and about the preferred binding strate-
gies; middleware facilities perform runtime bind-
ing management actions based on metadata and
context and location visibility.

36 MARCH • APRIL 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Ubiquitous Mobile Computing

Colomba Metadata
As Figure 1 illustrates, Colomba exploits multiple
types of metadata. Policies manage and control
choices in resource-binding strategies. Profiles
describe user requirements and resource proper-
ties. In particular, user profiles include informa-
tion related to a user’s context, such as personal
preferences, required security level, and subscribed
services. Device profiles report access devices’
hardware and software characteristics. Resource
profiles describe resource interfaces as well as the
properties that could be useful for binding deci-
sions, such as whether the resource can be copied
or migrated over the network.

We use XML-based standard formats for profile
representation. Colomba adopts the World Wide
Web Consortium’s Composite Capability/Preference
Profiles (www.w3.org/Mobile/CCPP) for specifying
user and device profiles, and the Resource Descrip-
tion Framework (RDF) for the interoperable descrip-

tion of resource components. (Figure 1 shows the
CC/PP-compliant profile for a PalmOS device host-
ing the Java Kernel Virtual Machine/Connected
Limited Device Configuration/Mobile Information
Device Profile software suite).8

Policies are high-level directives that define
choices in binding management by specifying
the management tasks to perform rather than
how to implement them.9 The policy adoption
helps in separating management strategies from
service implementation, thus increasing flexibil-
ity and adaptability.

Access control policies ensure secure resource
usage by specifying the actions a principal can
perform, depending on various conditions such as
the principal’s identity or the resource’s status.

Mobility handling policies guide binding-related
management operations after ME migration. They
include binding policies that define which binding
strategy to apply, and when, and co-locality poli-

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2003 37

Dynamic Binding

Metadata

Policies Profiles

Binding Co-locality

Access control User DeviceResourceMobility handling

inst oblig Bind1 {
on DomainArrival (ClientID,newNode);
subject s = ClientID;
target t = Binder;

when MonitoringSystem.getFreeDiskSpace(ClientID,
getLocation()) > ClientID.resourceSpaceSize();

}

do t.setAgentBindingType(ClientID,“resource movement")

<?xml version=”1.0”?>
<RDF xmlns=http://www.w3.org/1999/02/22-rdf-syntax-ns#xmlns:rdf=
http://www.w3.org/1999/02/22-rdf-syntax-ns#xmlns:ccpp=http://www.w3.org/
2000/07/04-ccpp#xmlns:ccpp-client=2000/07/04-ccpp-client#

<Description about=”ldap://lia.deis.unibo.it/MU/MyProfile”>
<ccpp:component>
<Description about=”ldap://lia.deis.unibo.it/MU/TerminalSoftware”>
<type resource=”ldap://lia.deis.unibo.it/Schema#Software-Platform”>
<ccpp-client: name>Palm OS</prf: OS>
<ccpp-client: version>4.1</prf: OS>
<ccpp-client: virtual machine>KVM</prf: Java>
<ccpp-client: configuration>CLDC</prf: Java>
<ccpp-client: profile>MIDP</prf: Java>
</ccpp:component>

</Description>
...

Figure 1. Colomba metadata taxonomy. The Bind1 binding policy commands a resource movement strategy only if there
is enough space in the device disk. The device profile refers to a PalmOS portable device.

cies that describe when it is convenient to allocate a
set of resources within a single node. Suppose, for
instance, that a mobile subscriber to the MNS wants
to compare political news in two opposing tabloids.
The moving of both copies of the tabloid data
resources in the user locality (as required by a co-
locality policy) might conveniently improve perfor-
mance and increase overall accessibility in the case
of network partitioning, which could compromise
the availability of master tabloid information.

Colomba adopts the Ponder language for poli-
cy specification.10 In particular, we use Ponder
obligation policy types for defining both binding
and co-locality policies and Ponder authorization
policy types for specifying access control. In this
article, we focus only on obligation policies, which
are essential for dynamic binding, but readers can
find further details about Ponder authorization
policies elsewhere.11

Administrators express obligation policies as
declarative event-action-condition rules that
define the binding management operations to per-
form when specific events occur. Figure 1 shows
an example of a Ponder-based binding policy that
selects a resource-movement strategy after the
ME’s migration. Bind1 states that when the Cli-
entID ME arrives at a new execution node (on
clause), ClientID (subject clause) should com-
mand a Colomba middleware facility called Binder
(target clause) to activate resource movement
(do clause) if the new node has enough free space
on disk to host the needed resource, as observed
by the underlying Colomba monitoring facility
(when clause) at runtime.

Colomba Middleware Facilities
Colomba supports mobile applications primarily via
distributed deployment of active middleware prox-
ies over the fixed network. The system provides any
portable device with a companion middleware
proxy — a shadow proxy — that autonomously acts
on its behalf. Shadow proxies are designed to be
able to negotiate services tailored to fit user and
device characteristics, to operate asynchronously if
the user or device gets disconnected, and to follow
user movements among network localities by main-
taining session state and ensuring binding updates.

Using mobile agents (MAs) to implement shad-
ow proxies lets us achieve the crucial properties of
mobility, autonomy, and asynchronicity. Because
MAs are typically location-aware, they can exploit
the current visibility of execution environments, for
example, the set of locally available resources, to
adapt their actions — primarily their migration — to

the position of needed resources.3 Colomba is built
on top of the Secure and Open Mobile Agent
(http://lia.deis.unibo.it/Research/SOMA) platform,
which provides proxies with execution environ-
ments, called places, that typically model nodes.1

Places can be grouped into domains that correspond
to network localities, such as Ethernet-based LANs
or IEEE 802.11b-based wireless LANs. Colomba
implements each shadow proxy via a SOMA agent
running on a place in the portable device’s current
domain.

Figure 2a shows Colomba’s layered architecture.
The upper-level facilities exploit lower-level func-
tions for identification, discovery, directory, mon-
itoring, and events. The binder manager dynami-
cally and transparently readjusts the bindings
between shadow proxies and needed resources,
and the policy manager triggers binding rearrange-
ment according to the specified metadata.

Binder manager. The binder manager (BM) medi-
ates the shadow proxies’ access to resources and
dynamically adjusts binding strategies according
to the specified policies. At startup, shadow proxies
can refer only to the BM because they have no
direct access to resources. In response to the first
resource request, the BM sends the proxy a resource
descriptor — an object with the same methods and
constructor interface as the requested resource.
Shadow proxies then operate on resources directly
via the resource descriptors received.

Figure 2b depicts the internal structure of the
proxy resource bindings. When a shadow proxy is
first instantiated at one place, the local BM asso-
ciates the proxy with a resource table that records
all active resource descriptors for it. Each table
entry includes the resource identifier (ResID), the
corresponding resource descriptor (ResDes), a
binding strategy identifier (BindStratID), and a
reference object. The BindStratID tag keeps
track of which binding strategy to apply when the
proxy migrates. Colomba supports all four of the
binding strategies we’ve described in this article.
The reference object encapsulates the specific
mechanism for implementing the binding strategy
indicated by BindStratID.

The BM plays a crucial role in the proxy bind-
ings’ initial arrangement and dynamic readjust-
ment after migration. When a proxy is created, the
BM sets the BindStratID for each resource
table entry according to the proxy-specific bind-
ing policies enabled. It then instantiates one refer-
ence object for each resource and puts it in the
proxy resource table.

38 MARCH • APRIL 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Ubiquitous Mobile Computing

When a proxy arrives at a
new place, the local BM checks
the BindStratIDs’ validity
and transparently updates them
as needed to reflect possible
changes in binding choices. We
assume that the proxy-specific
binding strategy cannot change
during proxy execution at one
place; this gives us an effective
implementation with limited
overhead. Similar considera-
tions guided the design of the
JDK 1.2 security architecture in
which permissions are general-
ly granted to classes before
they are defined in the Java
runtime environment.12

The first time a proxy access-
es a resource at a new place, the
BM checks the proxy reference
object’s conformity to the set
BindStratID. This avoids the
need to check and change the
binding strategy implementa-
tion mechanism for resources
the proxy does not use in the
new place. If the enabled bind-
ing strategy has changed, the
BM instantiates and adds a new
reference object to the resource
table entry. For a remote refer-
ence strategy, the BM triggers
the creation of the reference
object that uses Java RMI.

In the case of resource or copy movement strate-
gies, the BM forces the instantiation of a reference
object that exploits Java serialization mechanisms:
either the resource object or its copy are serialized,
transmitted to the new place, and there deserialized.
In choosing a rebinding strategy, the BM installs a
reference object that exploits Jini to obtain infor-
mation about resource availability and location. If
several instances of the same resource type are
locally available, the reference object for a rebind-
ing strategy selects and binds to one instance based
on retrieved user and device profiles.

Policy manager. The policy manager (PM) supports
policy specification, dynamic installation, and
enforcement. To enforce binding and co-locality
policies, the PM detects changes in the operating
environment that are relevant for binding man-
agement. It then notifies policy subjects about

event occurrence and interprets policy specifica-
tions to activate appropriate low-level manage-
ment actions. As shown in Figure 2a, the PM con-
sists of three modules:

• the specification module (SM)
• the obligation coordinator (OC)
• the obligation enforcer (OE)

The SM exploits the tools developed within the
Ponder project for editing, updating, removing, and
browsing binding and co-locality policies.10 There
are also tools for transforming high-level policy
specifications into low-level policy representations
that the Colomba middleware can interpret. In par-
ticular, the SM generates individual Java policy
objects for each Ponder obligation policy. After
creating a new Java policy object, the SM stores it
in the Colomba directory and distributes it to the

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2003 39

Dynamic Binding

Reference
object

DirectoryDiscovery Monitoring

Binder
manager

Event

Policy manager

Specification
module

Obligation
coordinator

Obligation
enforcer

Identification

U
pp

er
-le

ve
l

fa
ci

lit
ie

s
Lo

w
er

-le
ve

l
fa

ci
lit

ie
s

SOMA system

Java Virtual Machine

Heterogeneous distributed system

(a)

(b)

Colomba shadow proxy

Data

Code

...

Resource table

resID ResDes BindStratID

Figure 2. Colomba architecture. (a) Middleware facilities in two layers; the binder and
policy managers sit on top of low-level components. (b) The proxy resource table con-
tains the binding information to refer to resources.

interested policy subjects, the shadow proxies.
The OC module coordinates policy enforcement.

It retrieves newly instantiated Java policy objects
from the directory and parses them to retrieve rel-
evant information: events, subjects, targets, and
actions. It then registers the significant events with
the Colomba event service on behalf of the policy
subjects. At event occurrence, the system dispatch-
es the events to all interested policy subjects, even if
they have migrated to new localities. The event ser-
vice coordinates with the naming service that keeps
track of the policy subjects’ current locations.

The OE module enforces the policies. In particu-
lar, event service notifies a subject of policy event
occurrences, and the subject delegates the OE to
interpret the triggered policy specifications. Policy
interpretation comprises parsing policies, control-
ling the dynamic conditions for policy applicabili-
ty, extracting the policy actions, and commanding
the BM to activate the corresponding operations in
the system. Note that the OE enforces policies
sequentially — that is, only after completing the
actions triggered by preceding events.

Colomba-Based
Mobile News Service
To show Colomba at work during service provi-
sioning, we implemented a context- and location-
dependent MNS. When a user with a mobile ter-
minal (MT) requests to start an MNS session, the
system assigns a dedicated shadow proxy Proxy-
ID. The instantiated ProxyID runs on the MT if
it can host a full JVM and a SOMA place on top of
it. Otherwise, ProxyID executes on a neighbor
host on the fixed network in the locality to which
the MT is currently attached. In this case, Prox-
yID automatically follows the MT’s movements to
maintain co-locality with its mobile client.8

Figure 3a shows an excerpt from the simple,
reusable, and binding-transparent code of the
MNSProxy. Each shadow proxy executes the
init() method when it is created to initialize a
reference to the information resource called news-
paper. ColombaDataResource.get()
invokes the BM that adds a new entry in the
ProxyID resource table, sets the resource binding
type to the default value, remote reference,
and returns a resourceID descriptor to the shad-
ow proxy to access the resource. As long as the MT
stays connected to the fixed network (isCon-
nected set), ProxyID repeats a user-specified
query on resourceID at regular time intervals
to visualize the newly obtained results. Other
ProxyID threads (not shown in the code excerpt)

let the user browse the results and insert new
queries.

Without modifying the MNSProxy implemen-
tation, we can adapt MNS to work in different
operating scenarios. For instance, service providers
can enable the shadow proxy to access needed
resources, even when disconnected, by simply
specifying the Pol1 policy at service deployment
time (see Figure 3b). When the ProxyID needs to
disconnect from the current attachment point
(DisconnectRequest event), Pol1 commands
the BM (named Binder) to move needed
resources to the proxy device if the device has
enough disk space to host them.

In particular, ProxyID first opens a message
window asking the user to stay connected until the
resource management process is complete. The
MNS prototype requires the MT not to disconnect
before the completion of the resource movement
phase. Next, the BM sets isConnected to false
and the binding type to resource movement
for any referenced resource in the ProxyID
resource table. The BM updateReference-
Object() method checks the binding strategy
type for any entry in the ProxyID resource table
and updates the reference objects accordingly. If a
newspaper resource R1 moves, for example, the
event service notifies a ResourceMovement
event to the shadow proxy that triggers the evalu-
ation of the related Pol2 co-locality policy, shown
in Figure 3c. In Pol2 the shadow proxy commands
the BM to move a copy of the newspaper data
resource R2 in the same location where R1 (or one
of its copies) migrates. If the R2 profile specifies
that R2 can be copied and transferred, the BM adds
a new line for R2 in the ProxyID resource table
(setAgentBindingType() method) at Pol2
enforcement and forces the copy movement by
updating the corresponding reference object
(updateReferenceObject() method).

In the current implementation, the BM moves a
resource copy even if other shadow proxies refer
to it as well. Because the MNS is based on read-
only operations, no inconsistencies will arise
because of this. However, we must extend the BM
with functions for merging updates and resolving
conflicts in order to handle resource copies in more
general mobile applications. Only these enhance-
ments can allow concurrent modification of dis-
tributed copies; we are currently implementing a
BM version that supports the consistency restora-
tion schema presented elsewhere.13

Other dynamic conflicts could occur when two
roaming MTs request to move the same resource

40 MARCH • APRIL 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Ubiquitous Mobile Computing

to different localities (directly or as a result of an
enforced co-locality policy). Colomba solves this
conflict through the OE’s sequential policy
enforcement. Moreover, to avoid continuous
resource migrations with no useful work on it,
Colomba disables a resource’s ability to be moved
for a time after it migrates. The resource profile
specifies this time interval that is based on both
resource movement costs and expected mobility
patterns in the deployment scenario.

Colomba facilitates the deployment of the con-
text- and location-dependent version of the MNS
simply by specifying the Pol3 policy shown in
Figure 3d: When ProxyID enters a new locality
(DomainArrival event), Pol3 forces the BM to
set both the binding strategy type to rebinding
for any MNS resource in the ProxyID resource
table and isConnected to true. In the example,
Colomba performs the Pol3 actions only if the
Colomba discovery is working in the new MT
locality.

Unlike Pol1, Pol3 does not include any BM
action to adjust the reference objects in the
resource table. In fact, the BM automatically per-

forms the update at the first use of one ProxyID
resource reference in a new locality to avoid wast-
ing time with requalifying resource links that were
not used during the ProxyID’s execution.

To rebind MT to the most suitable MNS
resource instance in the new domain, the Jini-
based reference object considers the user and
device profiles when ProxyID first requests
resource usage. The reference object retrieves pro-
files from the globally available Colomba direc-
tory before interrogating the Colomba discovery
service for its current location to obtain a list of
compatible local resources. Our discovery solution
exploits an SLP-compliant protocol to register
and deregister resources that are typically visible
in one Colomba domain.1

If the list of suitable resources includes several
items, the reference object exploits the profile
metadata to choose which to rebind to. In the cur-
rent implementation, it performs simple parsing
and processing operations on the attribute-value
pairs in the profiles, and increments a score counter
for each resource profile attribute that is compati-
ble with the corresponding user or device profile.

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2003 41

Dynamic Binding

class MNSProxy extends ShadowProxy {
…
void init() {
… DataResource resourceID =

COLOMBA.DataResource.get (“newspaper”);
…)
void run() {
… for (;;) {

if (isConnected==true) results =
resourceID.query(search);

visualizer(results);
sleep(pollingInterval);

} … }
… }
(a)

inst oblig Po12 {
on ResourceMovement(ProxyID,R1);
subject s = ProxyID;
target t = Binder;
do t.setAgentBindingType(ProxyID,R2,”copy
movement”) ||

t.updateReferenceObject(ProxyID,R2);
}
(c)

inst oblig Po13 {
on domainArrival(ProxyID,newNode);
subject s = ProxyID;
target t = Binder;
do t.setAgentBindingType(ProxyID,”rebinding”) ||

t.setIsConnected(ProxyID,true);
when MonitoringSystem.isDiscoveryAlive() == true;
}
(d)

inst oblig Pol1 {
on DisconnectRequest (proxyID);
subject s = ProxyID;
target t1 = Binder, t2 = ProxyID;
do t2.showWaitingMessage() ||

t1.setIsConnected(ProxyID,false) ->
t1.setAgentbindingType(ProxyID,“resource

movement”) ->
t1.updateReferenceObject(ProxyID) ->
t2.removeWaitingMessage();

when MonitoringSystem.getFreeDiskSpace
(ProxyID.getLocation())
> ClientID.resourceSpaceSize();

}
(b)

Figure 3. Programming MNS on top of Colomba. (a) This code excerpt from MNSProxy allows the ProxyID to access
needed resources and browse requested news. (b) Pol1 facilitates disconnected operations. (c) Pol2 expresses the co-
locality constraints related to Pol1. (d) Pol3 allows the ProxyID to deploy the context- and location-dependent MNS.

The reference object then chooses the resource with
the maximum score and updates the dynamically
downloaded Jini-based client stub for that resource.

Ongoing Work
The complexity of developing and deploying
mobile applications over the Internet dictates a
separation of concerns between resource-binding
strategies and application logic implementations.
Only this clean isolation permits the necessary
flexibility and reusability of middleware and ser-
vice components. Novel and programmable mid-
dleware solutions, integrated with different types
of high-level metadata, can provide management
configurability while hiding low-level mechanisms
and implementation details from service develop-
ers and system administrators.

First experiences with Colomba have shown
that the middleware can simplify service design
and implementation in different deployment sce-
narios. We are currently extending the prototype
and developing other mobile applications on top
of it. In particular, we are designing a set of mid-
dleware components for dynamic QoS adaptation
(filtering, downscaling, transcoding, and so on) of
video-on-demand flows, based on user and device
profiles (www.lia.deis.unibo.it/Research/ubiQoS/).
We are also using Colomba to specify dynamic
binding strategies in non-mobile usage scenarios
for reducing network traffic and for balancing the
load of different resource copies.

Acknowledgments
This work is supported by the Italian Ministry, University

Research and Instruction (MIUR) in the framework of the FIRB

WEB-MINDS and the CNR IS-MANET projects.

References

1. P. Bellavista, A. Corradi, and C. Stefanelli, “Mobile Agent

Middleware for Mobile Computing,” Computer, vol. 34, no.

3, 2001, pp. 73–81.

2. L. Cardelli, “Mobile Computation,” Mobile Object Systems:

Towards the Programmable Internet, LNCS 1222, J. Vitek

and C. Tschudin, eds., Springer-Verlag, 1997, pp. 3–6.

3. A. Fuggetta, G.P. Picco, and G. Vigna, “Understanding Code

Mobility,” IEEE Trans. Software Eng., vol. 24, no. 5, 1998,

pp. 342–361.

4. G.G. Richard III, “Service Advertisement and Discovery:

Enabling Universal Device Cooperation,” IEEE Internet

Computing, vol. 4, no. 5, 2000, pp. 18–26.

5. D.S. Milojicic et al., “Process Migration,” ACM Computing

Surveys, vol. 32, no. 3, 2000, pp. 241–299.

6. E. Tanter and J. Piquer, “Managing References upon Object

Migration: Applying Separation of Concerns,” 21st Int’l

Conf. Chilean Computer Science Soc. (SCCC’01), IEEE Press,

2001, pp. 264–272.

7. O. Holder, I. Ben-Shaul, and H. Gazit, “Dynamic Layout of

Distributed Applications in FarGo,” 21st Int’l Conf. Soft-

ware Eng. (ICSE’99), ACM Press, 1999, pp. 163–173.

8. P. Bellavista, A. Corradi, and C. Stefanelli, “The Ubiquitous

Provisioning of Internet Services to Portable Devices,” IEEE

Pervasive Computing, vol. 1, no. 3, 2002, pp. 81–87.

9. S. Wright, R. Chadha, and G. Lapiotis, eds., Special Issue

on Policy Based Networking, IEEE Network, vol. 16, no. 2,

2002, pp. 8-56.

10. N. Damianou et al., “The Ponder Policy Specification Lan-

guage,” 2nd Int’l Workshop Policies for Distributed Sys-

tems and Networks (Policy’01), LNCS 1995, Springer-Ver-

lag, 2001, pp. 18–38.

11. A. Corradi et al., “A Flexible Access Control Service for

Java Mobile Code,” 16th Ann. Computer Security Appli-

cations Conf. (ACSAC’00), IEEE Press, 2000, pp. 356–365.

12. L. Gong, Inside Java 2 Platform Security, Addison-Wes-

ley, 1999.

13. E. Pitoura and B. Bhargava, “Data Consistency in Intermit-

tently Connected Distributed Systems,” IEEE Trans. Knowl-

edge and Data Eng., vol. 11, no. 6, 1999, pp. 896–915.

Paolo Bellavista is a research associate of computer engineering

at the University of Bologna. His interests include mobile

agents, pervasive computing, systems and service manage-

ment, location and context-aware services, and adaptive

multimedia. Bellavista received a PhD in computer science

engineering from the University of Bologna. Contact him

at pbellavista@deis.unibo.it.

Antonio Corradi is a professor of computer engineering at the

University of Bologna. His research interests include dis-

tributed systems, object and agent systems, network man-

agement, and distributed and parallel architectures. Corra-

di received an MS in electrical engineering from Cornell

University. Contact him at acorradi@deis.unibo.it.

Rebecca Montanari is a research associate of computer engi-

neering at the University of Bologna. Her research focus-

es on Internet architectures, policy-based systems and

service management, mobile agents, security in mobile

agent systems, public-key infrastructures, and access con-

trol models. Montanari received a PhD in computer sci-

ence from the University of Bologna. Contact her at

rmontanari@deis.unibo.it.

Cesare Stefanelli is an associate professor of computer engi-

neering at the University of Ferrara. His research interests

include distributed and mobile computing, network and

systems management, and network security. Stefanelli

received a PhD in computer science from the University of

Bologna. Contact him at cstefanelli@ing.unife.it.

42 MARCH • APRIL 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Ubiquitous Mobile Computing

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

