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The control and management of Web-based service quality require the extension of the Internet
infrastructure with monitoring functions to ascertain dynamically the state of networked resources.
We describe the design and implementation of the Monitoring Application Programming Interface
(MAPI), a Java-based tool for the on-line monitoring of Internet heterogeneous resources, which
provides monitoring indicators at different levels of abstraction. At the application level, it
instruments the Java Virtual Machine (JVM) to notify several different types of events triggered
during the execution of Java applications, e.g. object allocation and method calls. At the kernel
level, MAPI inspects system-specific information generally hidden by the JVM, e.g. CPU usage and
incoming network packets, by integrating with Simple Network Management Protocol agents and
platform-dependent monitoring modules. MAPI is the core part of a portable tool for distributed
monitoring, control and management in the Internet environment. The tool is implemented in terms
of mobile agents that move close to the monitored resources to enforce distributed management

policies autonomously, with a significant reduction in both reaction time and traffic overhead.
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1. INTRODUCTION

The Internet is becoming an open and global distributed
system for service provision to an increasing number of
users, interconnected by very different and heterogeneous
devices, e.g. PCs, personal digital assistants and even
cellular phones [1]. In addition, the enlarging market
of multimedia Web services and the competition among
service providers stress some innovative service properties
that providers, network operators and final customers tend to
consider more and more important. One of these properties
is the quality of service (QoS), i.e. the ability to control,
manage and possibly guarantee negotiated service levels
independently of the dynamic conditions of resources in the
involved networks and systems [2]. The providers offering
services with differentiated QoS levels are interested in
accounting users for their real resource consumption and
in enforcing the desired billing policies effectively. In
the untrusted Internet environment, another crucial service
property is security, which permits one to identify and face
all forms of misuse and attack, such as denial-of-service
obtained by overloading resources to produce unavailability.

In the last few years, several research efforts have
introduced ad hoc protocols for QoS management at the
network layer [3]. These solutions achieved interesting
and effective results when applied to limited networks, but

their approach clashes with the best-effort model of the
Internet. They require any intermediate router traversed
by service packet flows to implement the specific protocol,
which is likely to pass through a long process of acceptance
and diffusion. As a general consideration, network-layer
solutions work at a level of abstraction that makes it
difficult to embed some functions which are recognized
as fundamental in the state-of-the-art of Internet service
provisioning, such as application-specific adaptation and
secure billing. Therefore, in order to integrate some forms
of QoS differentiation/control with the standard best-effort
Internet model, the service infrastructure should be informed
of the current usage of heterogeneous resources at runtime.
In other words, the service infrastructure should include an
on-line monitoring tool able to detect the current condition
of network, system and application components during
execution. This is necessary to enable dynamic service
management via runtime corrective operations.

The monitoring information needed in QoS management
covers different abstraction levels, from system conditions
at each node (the usage of CPU, memory, bandwidth, etc.),
called the kernel state in the following, to the state of
application-level service components (the state of a service-
specific daemon process, etc.), sometimes referred to as the
application state [4]. In addition, the on-line requirement
makes a short response time critical as well as the need to
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reduce the overhead in the observed target, thus forcing one
to collect only a restricted set of kernel and application state
indicators.

This paper presents the design of a Java-based Monitoring
Application Programming Interface (MAPI) for the on-line
monitoring of Web services. MAPI overcomes Internet
platform heterogeneity and permits one to observe the state
of systems/applications during execution. MAPI collects
monitoring data at the different levels of abstraction as
required. At the application level, it dynamically interacts
with the Java Virtual Machine (JVM) to gather detailed
information about the execution of Java-based services.
At the kernel level, it enables access to system indicators
at the monitored target (either Java-based or external to
the JVM), such as CPU and memory usage of all active
processes.

To overcome the transparency imposed by the JVM,
MAPI exploits some recent extensions of the Java
technology: the JVM Profiler Interface (JVMPI) [5] and the
Java Native Interface (JNI) [6]. In addition, MAPI integrates
with external standard monitoring entities, particularly those
diffused in the network management domain, i.e. Simple
Network Management Protocol (SNMP) agents [7]. JVMPI
makes it possible to instrument dynamically the JVM for
debugging and monitoring purposes, and MAPI exploits it to
collect, filter and analyze application-level events produced
by Java applications, e.g. object allocation and method
invocation. At the kernel level, MAPI collects system-
dependent monitoring data, e.g. CPU usage and incoming
network packets, by interrogating SNMP agents that export
local monitoring data via their standard management
information base (MIB). To also enable the monitoring of
hosts without any SNMP agent in execution, MAPI exploits
JNI to integrate with platform-dependent monitoring
mechanisms, which we have currently implemented for the
Windows NT, Solaris and Linux platforms.

We claim that on-line monitoring components play a
central role in any distributed infrastructure for QoS-enabled
service provision in the Internet environment, to achieve
dynamic service adaptation, to enhance global performance,
to charge subscribed users for accessed services and to detect
possible denial-of-service attacks. This is the reason why
we have included the MAPI tool as a core component of a
Java-based distributed middleware, called Secure and Open
Mobile Agent3 (SOMA), for the design, implementation and
deployment of Internet services. We have also implemented
a MAPI-based distributed monitoring tool in terms of
SOMA Mobile Agents that cooperate to enforce distributed
management policies. Monitoring agents can migrate close
to the networked resources to observe and manage them au-
tonomously on behalf of system administrators, with a sig-
nificant reduction in both reaction time and traffic overhead.

The paper also reports measurements of the overhead
introduced by the local MAPI component and the MAPI-
based distributed tool. The monitoring overhead depends

3SOMA, MAPI and the MAPI-based distributed monitoring tool are
available at http://lia.deis.unibo.it/Research/SOMA/.

mainly on the level of detail of monitored indicators and
on the time interval for their update. The overhead can be
tuned dynamically by service administrators in response to
service-/system-specific runtime conditions, and has been
shown to be acceptable for most classes of Web services,
with good scalability results if compared with traditional
SNMP-based centralized solutions.

2. JAVA TECHNOLOGIES FOR MONITORING

The Java technology plays a fundamental role in the design,
implementation and deployment of Web services over the
Internet infrastructure. Apart from Java portability, dynamic
class loading and easy integration with the Web, the main
motivation of Java diffusion is its virtual machine that hides
the local operating system and presents a uniform vision of
all available computing resources and middleware facilities.

However, the monitoring perspective requires a complete
and low-level visibility of both JVM internals and
underlying platforms. At the application level, the
MAPI monitoring component exploits JVMPI to acquire
visibility of the JVM internal events. At the kernel level,
MAPI employs modules external to the JVM, to gather
information about platform-dependent resources and non-
Java application components. In MAPI, these external
modules include both native monitoring mechanisms
integrated via JNI and standard monitoring components,
i.e. SNMP agents. In the following, the paper briefly
describes the JVMPI and JNI technologies, to provide the
needed background for the full understanding of the MAPI
design and implementation.

2.1. The JVMPI

JVMPI is an experimental API of the Java 2 platform,
mainly designed to help developers in monitoring Java-
based applications during debugging, without imposing
any modification in the application code. JVMPI is an
interface between the JVM and a dedicated profiler agent,
often implemented as a platform-dependent native library
for the sake of performance. In one direction, the JVM
notifies several VM-internal events to the profiler agent; in
the other direction, the profiler agent can enable/disable the
notification of specific types of events and can perform some
limited management actions on the JVM.

With a finer degree of detail, several JVM conditions
trigger JVMPI events: Java thread state change (start, end,
when blocking on a locked monitor); beginning/ending
of invoked methods; class loading operations; object
allocation/deallocation; beginning/ending of the JVM
garbage collection. In addition, the profiler agent can use
JVMPI to modify dynamically the behavior of monitored
applications. Apart from notification enabling/disabling, the
agent can intervene on the JVM by invoking a very small
set of JVMPI methods: management actions are limited to
suspend/resume Java threads and to enable/disable/force the
immediate execution of the JVM garbage collector.

The SUN distribution provides a simple implementation
of the profiler agent for both Solaris and Windows NT
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FIGURE 1. The architecture of the Java-based portable MAPI.

operating systems. This agent, called HPROF [5], collects
general-purpose events and allows simple static configura-
tions. It is not designed for on-line monitoring, but works
mainly as an off-line post-mortem tool for debugging and
performance analysis. In fact, it tends to collect a large
volume of monitoring data that requires heavy filtering and
processing to obtain significant and concise service indica-
tors. For this reason, some researchers have implemented
their ad hoc profiler processes to organize HPROF data in
immediately readable graphic interfaces [8, 9].

2.2. The JNI

JNI permits Java threads to invoke native methods,
i.e. platform-specific functions typically written in C/C++,
usually available as Dynamic Link Libraries (DLL) in the
Windows platform and shared object (SO) libraries under
Solaris and Linux.

JNI is a two-way interface. In one direction, a Java
program can invoke a native method, by declaring the
method with the keyword native and with no body, and by
binding to the native method library including the requested
function. JNI specifies the details of method invocation: for
instance, it rules the parameter marshalling/unmarshalling
between the Java invoking thread and the invoked native
method. In the other direction, from the native library
towards the JVM, JNI allows native methods to interact with
their invoking Java framework. JNI permits native code to
callback the Java environment and the invoking Java object,
to access and modify object values, to call methods and to
raise Java exceptions.

With regard to monitoring, MAPI exploits JNI to integrate
with native monitoring libraries, in order to obtain the

visibility of kernel and application indicators not accessible
via JVMPI. For instance, MAPI collects information about
process CPU usage by invoking the execution of C-based
native libraries that extract the monitoring information
differently depending on the monitored target, from either
the Windows NT registry or the Solaris /proc directory.

3. THE MAPI COMPONENT FOR ON-LINE
HETEROGENEOUS MONITORING

When dealing with the best-effort Internet, QoS control
and adaptation require the capacity to monitor the level of
quality offered by service components. Service components
operate in an open and global distributed system, which
is intrinsically heterogeneous, and often include legacy
elements that cannot be modified/instrumented for mon-
itoring purposes [2, 3, 10]. In addition, the adaptation
of Web-service quality requires monitoring information
to be available at runtime without imposing any service
suspension.

This section presents the MAPI architecture and interface.
MAPI permits the on-line monitoring of kernel/application
resources independently of possible heterogeneity in their
platform implementation. Figure 1 shows that the
MAPI interface is implemented by the ResourceManager
class, which integrates three different components: the
MAPI Profiler Agent, the MAPI SNMP Agent and the
MAPI*ResManager (MAPI NT ResManager for Windows,
MAPI SVR4 ResManager for Solaris, etc.). MAPI is the core
portable component of the distributed monitoring framework
described in Section 5.

The MAPI Profiler Agent is able to gather application-
level information about the Java environment of the
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FIGURE 2. The ResourceManager interface.

monitored target. It not only collects JVMPI events
but also filters and processes them on-line, to offer
concise monitoring indicators during service execution.
These JVMPI-based monitoring functions are immediately
portable on any host that runs the JVM version 2.

According to the SNMP terminology, the MAPI SNMP
Agent acts as an SNMP manager that interrogates the
standard SNMP agent available on its local target to obtain
kernel-level monitoring data. The MAPI SNMP Agent not
only provides a uniform Java interface by wrapping possibly
non-Java SNMP agents. It also implements several local
optimizations of the SNMP protocol, as described in the
following. In addition, it simplifies the configuration of the
security parameters needed in SNMPv3, by integrating with
the SOMA distributed security infrastructure [11].

To be portable even in the case when the monitored
targets do not host the execution of suitable SNMP agents,

ResourceManager exploits the MAPI*ResManager classes
to integrate with platform-dependent monitoring functions
via JNI. These functions are implemented as native libraries
with uniform interfaces for different platforms (MAPI
WindowsRM DLL on Microsoft Windows NT 4.0, MAPI
SolarisRM SO on SUN Solaris 7 and MAPI LinuxRM SO
on SuSE Linux 6.2). ResourceManager achieves portability
by sensing dynamically the implementation platform of the
current monitored target and by consequently loading at
runtime the specific native library.

Figure 2 shows the MAPI set of methods that pro-
vide concise monitoring parameters to summarize the
current state of the monitored target. MAPI has been
designed and implemented to enable service administrators
(or autonomous software-based service managers) to obtain
kernel/application resource state for on-line service manage-
ment and adaptation. In this scenario, the overhead is critical
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and monitoring results should be prompt and immediately
available to managers (see Section 7). For this reason, MAPI
can tune its intrusion to service-specific time constraints:
all MAPI methods have a msec invocation parameter that
indicates the time interval to update the statistics of collected
JVMPI events, to interrogate SNMP agents and to invoke
native monitoring libraries.

MAPI methods return either an object or an array of
objects of the three classes ProcessInfo, Network-
Info and FileSystemInfo described in Figure 2.
The ProcessInfo object maintains all the data related to
the current pid process. Monitored data include the CPU
usage (percentage and total time) for any specified process,
its allocated memory (physical and virtual) and miscella-
neous information on its composing threads. In addition,
in the case of JVM threads, MAPI maintains the reference
to the Java thread object, its lifetime and the number of
loaded classes, used monitors, allocated objects, invoked
methods and network and file system operations. For non-
Java threads, MAPI provides the thread identifier and the
percentage/effective time of CPU usage.

The NetworkInfo class reports aggregated monitoring
data about the usage of the communication infrastructure on
the target host. Monitored data include the total number
of sent/received UDP/IP packets, TCP connections and
sent/received segments, the percentage of UDP/IP packets
received with errors and the percentage of discarded UDP/IP
output packets. These parameters are sufficient to give
an overall evaluation of the host traffic conditions and to
identify congestion situations.

Finally, the FileSystemInfo class maintains general
information about the file system of the target (disk free
space and its percentage on total size) and detailed data
about currently opened files. In particular, for any active
process and for any file opened in the current session,
the class returns the opening time and its opening mode
(read/write/both/locked).

4. THE MAPI IMPLEMENTATION

We have implemented MAPI to be the portable core
component of an on-line distributed monitoring tool for
the open Internet infrastructure. On the one hand, this
imposes the need to achieve complete portability over the
most diffused heterogeneous platforms, with the definite
implementation constraint of not modifying the standard
JVM. On the other hand, Internet openness and dynamicity
call for the possibility of monitoring service components
without requiring any intervention in either their source
code or their executables. The respect of this further
implementation constraint makes MAPI a completely
original contribution in the Java-based monitoring arena, as
detailed further in Section 8.

MAPI has required the design and implementation of
several ad hoc modules: (1) the MAPI Profiler Agent for
dynamically configurable on-line monitoring of the JVM
state; (2) the MAPI SNMP Agent to obtain monitoring data
from SNMP agents in execution on the targets; (3) the

MAPI*ResManager and its native libraries (MAPI Win-
dows/Solaris/Linux RM DLL/SO) for uniform data acquisi-
tion via heterogeneous platform-dependent mechanisms.

4.1. The MAPI Profiler Agent

The SUN JVMPI components significantly constrain the
provision of monitoring information. Developers can only
specify whether the JVMPI supported events should be
notified to the profiler agent, and the specification is coarse-
grained, with no possibility of fine selection and dynamic
refinement. For instance, a profiler agent can only choose
to enable/disable all events related to all Java classes
(or objects/methods/monitors), but it can neither focus on
the events generated by a specific class nor define user-/
application-specific events.

The only way to obtain more fine-grained indicators
is to implement ad hoc profiler agents, as our MAPI
Profiler Agent, capable of filtering the events of interest
and suitable for composing them in higher level indicators.
In addition, the MAPI Profiler Agent gives the possibility
of changing the set of notifiable events with no suspension
of the monitoring execution, by implementing methods to
enable/disable dynamically the event notification related
to object allocation/deallocation, method invocation/exit
and lock/unlock of Java monitors. Our profiler agent
keeps and updates statistics of the monitored events, to
provide immediately readable indicators without the need to
maintain huge logs of monitoring data. For instance, it traces
only the size of the total memory allocated to a Java thread
and does not log the full data related to the execution of any
system call for memory allocation.

Figure 3 sketches a piece of the MAPI Profiler Agent
code. When a registered event occurs, JVMPI signals
an event ev to the profiler that performs event-specific
actions. In particular, the figure shows the initializations
made when the class SocketInputStream is loaded.
After initializing the internal socketread variable,
the profiler can trace any invocation of the method
socketRead() by incrementing the stat->tcp read
counter, which maintains the account for the TCP read
operations of any Java thread in a specified time interval.
These data represent a rough estimation of the incoming
network traffic produced by Java service components.
If there is the need for more precise information about the
traffic due to specific Java threads, ResourceManager can
command the profiler to examine dynamically the invocation
parameters of the socketRead()/socketWrite()
methods. This is possible via the JVMPI-based triggering
of JVMPI EVENT OBJECT DUMP of the required objects,
at the maximum level of detail (JVMPI DUMP LEVEL 2).
The MAPI Profiler Agent, of course, behaves differently
at default to avoid the excessive overhead of the dynamic
generation and processing of object dumps.

4.2. The MAPI SNMP Agent

The MAPI SNMP Agent refines and extends the SNMP com-
ponent included in our MA-based MESIS framework for
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JVMPI_Event *ev;            // JVMPI event reference 
jmethodID socketread = NULL;          // method reference 
 
switch(ev->event_type) 
{... 
case JVMPI_EVENT_CLASS_LOAD: 
  if(strcmp(ev->u.class_load.class_name,  
            "java/net/SocketInputStream")==0) 
    { 
    JVMPI_Method *meth;      
    for(meth=ev->u.class_load.methods; ...; meth++) 
      if(strcmp(meth->method_name,"socketRead")==0) 
        socketread=meth->method_id;  
    } 
  break; 
case JVMPI_EVENT_METHOD_ENTRY2: 
  stat = tab1.get(ev->env_id);  
  if(ev->u.method.method_id==socketread) 
    stat->tcp_read++;                     // update TCP statistics 
... }

FIGURE 3. Monitoring of the invocation of the socketRead() method in MAPI Profiler Agent.

network and service management [10]. It acts as an SNMP
manager that locally interrogates its co-located SNMP agent.
The MAPI SNMP Agent is programmed to request monitor-
ing information maintained not only in the standard MIB
(monitoring data about network elements and protocols), but
also, where supported, in some Host Resources Groups MIB
extensions, called Storage, Running Software and Running
Software Performance [12]. These groups provide the data
about resource usage of processes currently in execution to
obtain the MAPI ProcessInfo and FileSystemInfo,
while NetworkInfo exploits the standard SNMP MIB.

The MAPI SNMP Agent significantly improves the
efficiency of standard client/server SNMP operations,
especially when dealing with the network transfer of
large chunks of monitoring data. First, it transmits
only the changed MAPI indicators to ResourceManager,
which maintains old values for the non-received parameters.
Most importantly, it locally interrogates its SNMP agent
and pre-processes the obtained results to offer concise
indicators to possibly remote managers, thus significantly
reducing the generated network traffic. In fact, a single MIB
variable is usually at a lower level than the MAPI indicators,
and an aggregation of multiple variables is required.
These aggregations are known as health functions [13].
For instance, the percentage of discarded IP output packets
is obtained by combining five MIB variables:

ipPackOutErr = [(ipOutDiscards
+ ipOutNoRoutes

+ ipFragFails) ∗ 100]
[ipOutRequests
+ ipForwDatagrams]−1

where ipOutDiscards, ipOutNoRoutes and
ipFragFails are the number of output IP datagrams
discarded (for problems in buffer space, in routing and in
fragmentation, respectively), while ipOutRequests and
ipForwDatagrams are the total number of IP datagrams

transmitted (for locally generated packets and forwarded
ones, respectively) [7].

In addition, the MAPI SNMP Agent can perform all the
operations needed for the support of mutual authentication
in the case of interaction with SNMPv3 agents. It can
obtain dynamically the needed security information from
the public key infrastructure integrated with the SOMA
programming framework [11, 14]. Finally, it can locally
store configuration parameters specific for its SNMP agent
(e.g., the supported MIBs), in order to automate the possibly
complex phase of initialization of the MAPI tool.

4.3. The MAPI*ResManager

To monitor target hosts not supporting either the SNMP
agent or the Host Resources MIB extensions, MAPI also
integrates native monitoring mechanisms. MAPI native
modules extract uniform data by exploiting heterogeneous
monitoring mechanisms provided by the target operating
systems. The ResourceManager class employs JNI to
load the target-specific native library at runtime. We have
currently implemented the native monitoring components
for Windows NT (MAPI WindowsRM DLL), Solaris (MAPI
SolarisRM SO) and Linux (MAPI LinuxRM SO), as depicted
in Figure 1.

Figure 4 shows some lines of the MAPI WindowsRM
DLL, which accesses kernel and application state indicators
maintained in Microsoft system registry keys. In particular,
the figure reports the polling of the registry to obtain updated
information about the processes in execution. The system
call RegQueryValueEx(HKEY PERFORMANCE DATA)
returns a perfdata reference which is used as the base
to access the monitoring information about the process with
identifier PID.

For Solaris and Linux platforms, we have implemented
native monitoring modules as dynamic SO libraries that
mainly exploit the /proc feature. /proc is a virtual
directory that exports kernel/application state indicators
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RegQueryValueEx(HKEY_PERFORMANCE_DATA, “232”, NULL, NULL, perfdata, &size);
     // "232" for process-related data 
RegCloseKey(HKEY_PERFORMANCE_DATA); 
pointer = (PBYTE)perfdata + perfdata->HeaderLength; 
obj = (PPERF_OBJECT_TYPE)pointer; 
pointer = (PBYTE)obj + obj->HeaderLength; 
cnt = (PPERF_COUNTER_DEFINITION)pointer; 
while (cnt->CounterNameTitleIndex != PID) 
   { pointer = (PBYTE)cnt + cnt->ByteLength; 
     cnt = (PPERF_COUNTER_DEFINITION)pointer; 
   } 
pointer = (PBYTE)obj + obj->DefinitionLength; 
inst = (PPERF_INSTANCE_DEFINITION)pointer; 
pointer = (PBYTE)inst + inst->ByteLength + cnt->CounterOffset; 
value = *((jlong*)pointer); 

FIGURE 4. Monitoring process information in MAPI WindowsRM DLL.

as a specific sub-tree of the file system. The MAPI
SolarisRM/LinuxRM library polls monitoring information
about currently executing processes by reading the corre-
sponding files in the /proc directory. For instance, via the
ioctl()call it obtains prpsinfo and prusage infor-
mation, which maintain several data about the identity of a
specified process and its CPU usage, respectively. Similarly,
SolarisRM/LinuxRM native components extract the descrip-
tors of the open files from the /proc/PID/fd virtual di-
rectory, where PID is the identifier of the monitored process,
and combine them with the information from the system file
table, as in the implementation of the Unix fuser utility.
Aggregated information about network usage is obtained by
invoking the standard netstat system call [15].

5. MAPI-BASED DISTRIBUTED MONITORING

We have designed and implemented a distributed monitoring
(DM) tool consisting of mobile agents that use MAPI
to monitor each target node. We have adopted the
SOMA mobile agent technology to improve the performance
in collecting/processing distributed monitoring information
and to facilitate the coordination of autonomous monitoring
agents. SOMA provides a distributed infrastructure
for the design, implementation and support of Web
services. It includes middleware facilities for agent mobility,
communication, security and interoperability, built on top
of the standard portable JVM. Further details about SOMA
are presented in [11, 16] and are beyond the scope of this
paper, which focuses specifically on agents for MAPI-based
distributed monitoring.

DM combines two types of monitoring agents: Managers
and Explorers. Each Explorer agent is in charge of collecting
monitoring data from one set of targets (i.e. target domain),
usually belonging to the same network locality. Manager
agents command Explorers, combine their monitoring
results and are in charge of giving a global view of monitored
domains to system administrators. In addition, Managers
can delegate some management operations to Explorers that
can autonomously control and handle assigned resources
according to the enforced management policies, in order to
achieve decentralization and scalability [10, 17, 18, 19].

DM permits several organizations, with different hierar-
chical levels and numbers of Managers/Explorers per target
domain. The default choice is one single Manager that
autonomously interworks with its Explorers (one Explorer
for each administered target domain). In particular, the
Manager can either ask Explorers to gather specified mon-
itoring data, with specific alert thresholds and refresh time
intervals, or command management operations. In addition,
a Manager can create new monitoring Explorers at runtime
when in need of controlling new target domains.

Explorer agents migrate to their target hosts to access
locally MAPI functions and to collect both kernel and
application state indicators. Explorers eventually control
dynamic alert thresholds: when thresholds are exceeded,
the Explorer either notifies its Manager or autonomously
takes local corrective operations. Explorer local decisions
significantly reduce the network overhead of distributed
monitoring. On the one hand, Explorers can perform
autonomous monitoring/management operations locally to
the administered resources without the intervention of either
Managers or system administrators. On the other hand,
they can carry parts of state of their monitoring activities
while migrating from one host to another in the target
domain. That can permit monitoring/management global
decisions based on the state of already visited system parts.
SOMA facilitates multi-hop mobility patterns by defining
agent itineraries, i.e. sequences of hosts for an agent to
visit. Single-hop mobility behavior, suitable for monitoring
and controlling resources at one host, is implemented by
itineraries that include a single destination. In addition,
the SOMA platform supports the caching of agent code on
destination targets, thus significantly reducing the migration
overhead in the case of usual enforcement of the same
management policies [11].

For instance, one Manager agent can be in charge of con-
trolling the storage devices in administered domains. It can
delegate one Explorer for each domain to perform cache
cleanup of browser directories when the available space
becomes lower than a specified threshold. The threshold
can state a per-host local constraint or an overall per-domain
limit. In the latter case, the Explorer can keep partial results
of space availability for the already visited domain targets
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FIGURE 5. Manager GUIs with JavaThreadInfo for a target domain.

FIGURE 6. Manager GUIs with ProcessInfo and NetworkInfo of two Windows NT targets.

and can suspend migrations when the partial results already
satisfy the required threshold.

Explorers can invoke the MAPI Profiler Agent functions to
control and manage local Java threads. In particular, they can
modify the priority of running threads and can force thread
suspension/termination. These functions help in controlling
the execution of Java applications and to make possible
the limitation of their resource consumption at runtime, as
described in the following section. Let us observe that the
specification and implementation of the JVM itself limits
strictly the control actions feasible with the MAPI Profiler
Agent. Additional control functions are recognized as being

crucial, especially in the emerging market of Java-enabled
embedded devices, and have recently stimulated SUN
research work to provide separated execution environments
for different Java thread groups (task isolation), to permit
independent control [20].

The DM overhead can be tuned at runtime by modifying
different monitoring parameters. It is possible to change
dynamically both the Explorers visit time interval to target
domains and the refresh time interval for MAPI modules.
In addition, the Manager can command Explorers to
invoke the MAPI Profiler Agent methods to enable/disable
the notification of specific kinds of events, thus adapting

THE COMPUTER JOURNAL, Vol. 45, No. 6, 2002



ON-LINE DISTRIBUTED MONITORING IN JAVA 603

dynamically the collection of monitoring data to the
enforced management policy. Section 7 presents the
experimental evaluation of the MAPI overhead.

Figures 5 and 6 show some graphic user interfaces
(GUIs) that the Manager offers administrators to show
service/system conditions. In particular, Figure 5 reports
the monitoring data about four Java threads in execution
on three hosts of its target domain A. Apart from thread
names and execution hosts, the GUIs report monitoring
information about thread priority, allocated memory/objects,
loaded classes, contended monitors, invoked methods, in/out
TCP/UDP packets and lifetime.

Figure 6 visualizes some MAPI indicators about running
processes and network traffic on two Windows NT moni-
tored targets. For any process, the GUIs show the process
name and identifier, the current CPU usage percentage, the
physical/virtual allocated memory, the composing threads
and the detailed CPU usage. Network traffic information
includes the total number of sent/received TCP segments and
UDP/IP packets. Authorized system/service administrators
can choose between different forms of visualization of
monitoring data, such as the pie charts and histograms shown
in the figures.

6. MONITORING AND CONTROL OF MOBILE
AGENT RESOURCE CONSUMPTION

The SOMA platform itself uses MAPI to monitor and limit
mobile agent operations at runtime and, consequently, to
control the consumption of distributed resources in SOMA-
based Web services. The ultimate goal is to charge the
responsible principals for the actions of their mobile agents
and to prevent denial-of-service attacks by either malicious
or badly programmed agents.

SOMA administrators can define agent permissions and
duties, which DM controls and enforces dynamically. Agent
permissions specify the actions agents are authorized to
perform on a set of resources, even depending on runtime
conditions. Agent duties specify the actions agents must
perform on a set of target resources when a specified
condition takes place [19].

As an example of agent permission specification, one
administrator can control the disk resources consumed in
a target domain with a distributed authorization policy that
limits the total number of bytes that a specified SOMA
agent can write during one day over the target hosts in the
domain. This limit can also apply to groups of agents,
e.g. the whole set of agents of the same responsible principal.
At any request of file opening in writing mode by one of
the specified agents, the Manager commands one Explorer
to probe the target domain. This introduces delay in agent
authorizations but permits global policies that depend on
the current distributed state. Let us point out that, even in
this simple example, the Explorer significantly benefits from
the possibility of bringing its reached execution state with it
while migrating in the target domain.

As an example of agent duty specification, one adminis-
trator can request an Explorer agent to lower autonomously

the priority of a SOMA agent running on a host when
the total CPU usage percentage on that host is higher
than a specified threshold. Differently from the case
of permissions, the Manager commands the Explorer to
control the state of the CPU usage on the specified host
periodically, depending on the interval time indicated in
the duty specification. When the threshold is overcome,
the Explorer itself acts on the specified agent by exploiting
MAPI functions to modify dynamically the Java thread
priority.

The conditions for SOMA agent permissions/duties can
also be expressed as complex functions of MAPI monitoring
indicators. The above examples show that it is often
necessary not only to monitor the application state of SOMA
agents and of related Java threads, but also to combine these
data with kernel and application state of service components
even external to the JVM.

7. MAPI PERFORMANCE

On-line monitoring tools should limit introduced overhead
since they should operate during service provision. We have
carefully followed the guidelines of overhead limitation,
together with the feature of dynamic tuning, in the design
and implementation of DM. To validate MAPI applicability,
we have measured the overhead on different platforms,
e.g. Intel Pentium III 600 MHz PCs with either Microsoft
Windows NT 4.0 or SuSE Linux 6.2, and SUN Ultra 5
400 MHz workstations with Solaris 7. The hosts are
interconnected via 10 Mb Ethernet Local Area Networks
(LANs).

This section reports first the costs of local MAPI
Profiler Agent and MAPI*ResManager modules. For the
evaluation of their performance results, we have used a
Java benchmark application that stresses CPU and memory
usage by generating a fixed number of different threads
and objects. In particular, we report the measurements for
the case of 50 benchmark processes in execution, each one
with an average number of five threads. We have measured
the time delay due to the monitoring tool intrusion as the
overhead percentage (Overhead%), i.e. the difference of
TMon and TnoMon (normalized to TnoMon):

Overhead% =
(

TMon − TnoMon

TnoMon

)
× 100

where TMon is the average completion time of the Java
benchmark on unloaded targets with the MAPI tool in
execution and TnoMon is the analogous time measured for
the benchmark without MAPI. Let us note that unloaded
targets represent the worst possible case for the Overhead%
indicator. In fact, as soon as the load increases, TnoMon
grows faster than TMon, and, consequently, the ratio of
their difference tends to decrease. This consideration
has been validated by measurements of Overhead% with
several general-purpose benchmark tests running: the
measurements have shown an average decrease of about
1.0–1.5% of the Overhead% indicator for average load
conditions.
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FIGURE 7. Overhead% of MAPI*ResManagers for process monitoring.

Figure 7 depicts the Overhead% introduced by the
MAPI*ResManager to monitor the whole information
contained in ProcessInfo for the three platforms.
The graph reports Overhead% as a function of the refresh
time interval, i.e. the interval between two successive
invocations of the native monitoring modules via JNI.
Overhead% exhibits a linear dependence with the reciprocal
of the refresh time. We have obtained the same
trends in intrusion measurements for native monitoring of
NetworkInfo and FileSystemInfo.

In general, the whole set of tests shows that the
MAPI*ResManager Overhead% is always lower than 3%
when the refresh time interval is greater than 3 seconds.
This is largely acceptable because this refresh time is
enough for the time requirements of most Web-based
services. Let us recall that native modules keep on collecting
monitored events, and the refresh interval represents only
the polling period between successive requests for native
monitoring results.

We have also measured the overhead due to the MAPI
Profiler Agent. In this case, the JVM notifies events
continuously (and not only at specified polling intervals),
and the refresh time represents the interval to process the
collection of observed events to obtain the concise MAPI
indicators. Figure 8 splits the Overhead% into the parts due
to data access and to the JVMPI notification mechanisms,
i.e. monitor, method and object tracing. The results obtained
for the Solaris platform are very similar to those for
Windows NT and Linux, with deviations of the maximum
Overhead% of less than 3% from the maximum Overhead%.

Figure 8 also shows that the JVMPI notification is
scarcely intrusive under different load conditions and is
independent of refresh times. The refresh time seems to
affect only the overhead for processing collected events
and for reading MAPI indicators. Object tracing has been
shown to be the most relevant factor in the MAPI Profiler
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FIGURE 8. Overhead% of the MAPI Profiler Agent.

Agent intrusion because it requires the profiler to receive
and collect a large amount of data. In any case, the total
overhead is always below 2.0%, for refresh intervals greater
than 2 seconds and with object tracing disabled.
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FIGURE 9. MAPI Explorer versus SNMP client/server to monitor one target domain.

Finally, we have also validated the applicability of our
mobile-agent-based DM. The Explorer size varies from
about 8 kB (at their first migration, without carrying any
monitoring indicator) to 15 kB (at the end of exploration,
including all the monitoring state of the target domain).
Let us note that Explorers need to transfer their code only
at the first migration because the SOMA platform at the
destination host caches Java classes and triggers the code
migration only when it is not available locally [11]. Figure 9
reports the time an Explorer takes to collect monitoring
indicators by using MAPI SNMP Agents, depending on the
number of hosts in the target domain. The average time has
been measured over a large set of experiments, by assuming
a 30% probability of finding the needed agent classes already
cached at the destination targets.

The presence of MAPI SNMP Agent permits the collected
monitoring data to be filtered and pre-processed. For several
different management policies, we have experienced that the
MAPI SNMP Agent operations significantly reduce the size
of MAPI data collected by the Explorer with respect to the
size of corresponding raw MIB values by a factor of three.
This optimization is impossible in a traditional client/server
approach where a centralized manager should remotely in-
terrogate involved SNMP agents (SNMP client/server graph
in the figure). The same experiments confirm that the MA
technology is particularly suitable when the target domain
includes different LANs, interconnected by low bandwidth
links (in our measurements, two Ethernet LANs with n/2
hosts, connected via a 56 kb modem link). In this case,
Explorer uses the slow link only once to migrate from one
LAN to the other. The client/server solution, instead, should
operate over the link at least for n/2 SNMP requests and n/2
SNMP replies, wherever the centralized manager is located.

All these results show that, when data filtering is possible
and heterogeneity is present, the adoption of mobile agents

in DM reduces both time performance and generated traffic.
Our results confirm model estimations and first experimental
measurements of research work on SNMP distributed
monitoring based on mobile agents [13, 21]. In addition,
the results point out that the overhead of MAPI*ResManager
is significantly higher than that of MAPI SNMP Agent.
This has brought us to prefer the latter module when it is
available at the target host and supports the Host Resources
MIB extensions.

8. RELATED WORK

Recent research activities have worked on the definition
of methodologies, on the design of architectures and
on the implementation of supports for local and dis-
tributed monitoring by following very different approaches
[4, 7, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33].

Several distributed monitoring systems that are based
on code instrumentation have achieved interesting results,
especially in limiting local overhead and network traffic
[23, 26, 28]. However, they require instrumenting either the
source code or the binary of managed service components,
and force one to recompile or at least restart the monitored
services. In addition, the solutions that require source/binary
rewriting tend to be language- and platform-specific. This
is the main reason why instrumentation-based tools are
not a viable solution for monitoring legacy heterogeneous
systems and service components in the open and global
Internet.

Other research efforts have specifically addressed on-
line monitoring. They typically concentrate on tools that
minimize monitoring intrusion, by exploiting ad hoc mecha-
nisms available only for specific operating systems [30, 31].
These solutions also suffer from platform dependency and
lack of portability.
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In the area of network monitoring and management,
many researchers have focused on standard protocols
to exchange information about the state of network
equipment. The widespread protocol is still SNMP, mainly
because of its simplicity [25]. Other approaches start
to be widely employed: some provide network traffic
monitoring with the granularity of a whole network segment
(Remote MONitoring, RMON [7]); others exploit platform-
dependent libraries and commands (such as the UNIX
libpcap library) to capture, filter and analyze network
packets at general-purpose hosts [34, 35]. These tools,
however, aim at the dynamic observation of network traffic
and not at making available application-level monitoring
data on the state of distributed service components.

The wide adoption of Java in Internet applications
has changed the perspective in the monitoring area, by
calling for Java also in the implementation of monitor-
ing/management systems. The first activities simply ad-
dressed the enhancement of standard SNMP solutions with
Web accessibility. Some other proposals started to exploit
Java networking facilities and code mobility to provide
an integrated middleware for distributed monitoring [36].
The SUN research work in the Java Management API and
in the Java Dynamic Management Kit has recently produced
the specification and the reference implementation of the
Java Management Extensions (JMX) [32]. JMX represents
a standard and state-of-the-art solution to instrument mon-
itored resources and to develop management agents. JMX
provides an interesting and rich architecture for distributed
on-line monitoring, but imposes the instrumentation of the
source code of managed resources in accordance with the
JMX Instrumentation Level Specification. In addition,
monitoring targets should be designed in Java (or enclosed
by a Java wrapper). In one sentence, JMX suffers from
the same limitations pointed out for instrumentation-based
monitoring tools.

Due to the novelty of the technology, there are few
examples of Java monitoring tools based on JVMPI.
PerfAnal [9] exploits the SUN HPROF profiler agent to
perform an off-line analysis of collected monitoring data
and to obtain a user-level concise view for debugging Java
applications. JProf [8] implements its own profiler agent and
process. In addition, it provides a large set of functions to
present the off-line data in user-level interoperable formats,
such as tables and diagrams organized by using XML. None
of the two implements an ad hoc profiler agent for on-line
monitoring. In addition, to the best of our knowledge, there
are no implemented Java-based tools that currently exploit
JNI to integrate with native monitoring mechanisms.

The mobile agent technology has been considered
extremely suitable for monitoring and managing distributed
systems/services [37]. Several research experiences have
demonstrated the mobile agent flexibility and effectiveness
to decentralize and to automate the control of service
components [13, 18]. However, DM is the first mobile-
agent-based tool that provides distributed on-line monitoring
of both kernel and application states without imposing any
modification to the standard JVM and without requiring the

instrumentation of the target source/binary code. Both the
above requirements are crucial to the application of the tool
in legacy systems and service components [33, 38, 39].

9. CONCLUSIONS AND FUTURE WORK

The control and management of Web services at runtime
require the availability of portable on-line monitoring
tools to ascertain the current state of distributed systems
and services, without imposing any intervention on the
implementation of the monitored targets. These monitoring
tools should be core components of any integrated
infrastructure for the support of differentiated levels of
service quality over best-effort networks.

The MAPI solution addresses this scenario and its
performance demonstrates the applicability of Java-based
solutions for the on-line monitoring of most classes of Web
services. By using MAPI, service developers can tune
dynamically the level of detail of monitored events and
their refresh time, to adapt the collection of monitoring data
(and the corresponding monitoring overhead) to runtime
conditions and service-specific constraints. In addition, the
mobile agent technology has been shown to be extremely
suitable for reducing both monitoring traffic and control
latency, by permitting one to filter/process data and to
perform management operations directly at the monitored
targets.

Given the encouraging performance results achieved, we
are currently working on extending the functions and the
usability of MAPI-based distributed monitoring. We have
extended the MAPI local component to support monitoring-
based user accounting in a non-repudiable way, and we
have experimented with it in the context of user/terminal
mobility [40]. In addition, we are testing the first prototype
of an enhanced version of the MAPI-based distributed
tool that automatically organizes hierarchies of Managers
depending on the topology of the administered systems and
service components, thus improving the scalability of our
solution when applied to large-scale deployment scenarios.
Finally, we are working to increase the usability of the
MAPI-based solution by integrating it with user-friendly
GUIs for the definition of monitoring/management policies
and for their automatic translation in the Ponder Policy
Specification Language [19].
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