
A Multi-Agent Reflective 
Architecture for User Assistance

Antonella Di Stefano, Giuseppe Pappalardo,

Corrado Santoro, Emiliano Tramontana

University of Catania - Italy

University of Catania 222 May 2003 - Bologna

Motivations
Supporting the evolution of applications by
enriching them with assistant agents:
– Extending existing applications without embedding

code implementing assistance tasks into their source
code

– Clearly separating applications and assistants,
making applications unaware of assistants and
assistants easily reusable for various applications

Providing an architecture that interfaces several
special purpose assistants to an application
independently of specific access points



University of Catania22 May 2003 - Bologna

Computational Reflection

A reflective system embeds some structures
that represent its own aspects, which allow it
to act on itself
– Actions are performed by means of two

mechanisms: introspection and interception,
together they provide reification to a system

A reflective system is generally structured as
a two-level system
– baselevel (application)
– metalevel (assistance activity)

University of Catania 422 May 2003 - Bologna

Computational Reflection

Characteristics of reflective systems
– Transparency: objects at the baselevel are not

aware of metalevel objects
– Separation of concerns: each level deals with a

different aspect

Connection between baselevel and metalevel
– Some objects at the metalevel (said metaobjects)

observe the behaviour of objects
– Metaobjects capture some operations of objects,

execute some computation and then hand control
to objects letting them perform their operations



University of Catania22 May 2003 - Bologna

Interfacing Assistants

The interface between an application and
assistants is realised by means of a reflective
system:
– Baselevel holds objects that implement an

application
– Metalevel holds two types of agents:

• Coordinator that captures control from application objects,
notifies proper assistants, pours results of assistants to the
application and allows exchanging data between assistants

• Assistants that implement specific tasks by using
Inference Engines and Knowledge Bases

University of Catania 622 May 2003 - Bologna

Coordinator
Coordinator allows assistants to be plugged into
the application according to user needs
– It knows only that some assistants are interested on

application events and that some data are exchanged
– It does not need to know the number of assistants nor

their tasks
• assistants can be created even after the Coordinator

– It is able to intervene to modify the behaviour of the
application

– It enables independent assistants to work
cooperatively and share results



University of Catania 722 May 2003 - Bologna

Coordinator

Coordinator consists of:
– Switchers detect application events and pour results

of assistants by interacting with application objects
• use the capability of metaobjects to trap control from

associated objects and to detect the context of events

– Merger receives all the application events and notifies
interested assistants

• works, as in the Observer design pattern, by handling a list of
event observers (i.e. assistant agents)

– Blackboard is a repository that allows assistants to
exchange their outcomes

• It exploits the Blackboard architectural style

University of Catania 822 May 2003 - Bologna

The Architecture

Application
(Web Browser)

Assistant

Baselevel

Metalevel
Reflective Mechanism

ACL messages

Coordinator

Switcher Switcher Switcher

Merger Blackboard



University of Catania 922 May 2003 - Bologna

Model of Assistant Agents

Assistant agents are composed of:
– Inference Engine

• provides assistant agents with reasoning ability
• works by processing rules that depend on the application and

the assistance task

– Knowledge Base
• stores facts that the Inference Engine generates

– User/Agent Interface
• interacts with users to provide results and accepts inputs

University of Catania 1022 May 2003 - Bologna

Constructing the Architecture

Three hypotheses to employ the architecture:
– The application is implemented in an object oriented

language
• this enables the metaobject model to be used

– The source or the Java bytecode of the application is
available

• this allows necessary hooks to be inserted to capture events
of the application

– Some knowledge of the application is available
• this makes it possible to understand which objects and

methods implement the events of interest



University of Catania 1122 May 2003 - Bologna

Constructing the Architecture

The programmer may take the following steps:
– Identifying the set of events that should trigger the

work of assistant agents
– Understanding how the application handles the

selected events, by establishing which methods are
involved with them

– Connecting the application objects handling the
identified events with the Coordinator, thus
associating them with some metaobjects
(Switcher)

– Mapping the output of Assistants onto actions on
the application (Switcher)

University of Catania 1222 May 2003 - Bologna

Goods Finder
Assistant

Cart Manager
Assistant

Data Extraction
Assistant

User Profiler
Assistant

Coordinator

Application (Web Browser)

Assistants for E-Commerce

Assistants are designed to help the users of a
web browser performing e-commerce, by
reacting to application events and working
autonomously



University of Catania 1322 May 2003 - Bologna

Assistants for E-Commerce

– User Profiler Assistant understands user
preferences from visited web pages

• it is informed by Coordinator when a new web page has
been visited

– a Switcher traps this application event and informs Merger
– Merger notifies the assistant

• it uses a set of page categories and a set of weighted
keywords for each category to classify pages [Mase98]

• as outcome, it provides to Coordinator a web profile of the
user that consists of a ranked list of keywords

– the Blackboard stores the web profile

– a Switcher uses the web profile to modify the colour of
keywords on visited web pages

University of Catania 1422 May 2003 - Bologna

Assistants for E-Commerce
– Data Extraction Assistant stores data on goods by

extracting them from visited web page
• it is informed by Coordinator that a new page has been loaded
• it uses the web profile to select interesting goods
• it builds a structured version of the data of a web page (by

using an ontology)
• its outcome is a ranked list of goods where the most accessed

data come first

– Cart Manager Assistant handles a virtual cart that
compares potential user’s purchases

• stores sensitive and personal data on the client side
• provides a common repository of data from different web sites
• enables the user interact through a graphical representation



University of Catania 1522 May 2003 - Bologna

Assistants for E-Commerce

– Goods Finder Assistant searches on the web
offers for user selected goods

• accesses web pages where goods can be found
• analyses web pages looking for interesting goods
• asks Data Extraction Assistant to gather new data from

selected web pages

– Goods Monitor Assistant watches the trend of
prices of user selected goods

• periodically accesses known web pages
• asks Data Extraction Assistant to gather data for a good
• updates the price of the good

University of Catania 1622 May 2003 - Bologna

Implementation Issues

An object oriented application whose source or
Java bytecode is available and whose design
and implementation are (partially) known can
be extended with assistant agents
– For Java applications, the agent framework JADE

can be used to implement assistants

– For C++ applications, CLIPS (C-Language
Integrated Production System) can be used to
implement assistants



University of Catania 1722 May 2003 - Bologna

Performance Issues

The performance penalty introduced can be
tuned:
– The overhead due to the computation of Assistants

• is reduced by caching results into metaobjects, and giving
assistants the ability to work asynchronously from the
application

– The cost of jumping to the metalevel
• is reduced by carefully choosing the intercepted operations

– The overhead due to the transformation of bytecode
of application classes

• can be paid just once, since the reflective abilities can be
added to bytecode permanently

University of Catania 1822 May 2003 - Bologna

Conclusions

The proposed architecture integrates several
assistants into applications by means of reflection:
– Is independent of hooks provided by applications or OS
– Lowers complexity

• Reduces difficulties when developing both assistants and
applications

• Makes applications not aware of assistance issues
• Allows both applications and assistants to be developed and

evolved independently, without affecting each other

– Enables assistants to be plugged in just when needed
– Allows assistants to be reused for several families of

applications


