—

A Multi-Agent Reflective
Architecture for User Assistance

Antonella Di Stefano, Giuseppe Pappalardo,
Corrado Santoro, Emiliano Tramontana

University of Catania - Italy

Motivations

| _ <:
~ Supporting the evolution of applications by
enriching them with assistant agents:

— Extending existing applications without embedding
code implementing assistance tasks into their source
code

— Clearly separating applications and assistants,
making applications unaware of assistants and
assistants easily reusable for various applications

~ Providing an architecture that interfaces several
special purpose assistants to an application
iIndependently of specific access points

22 May 2003 - Bologna University of Catania 2




Computational Reflection
—————
-« A reflective system embeds some structures

that represent its own aspects, which allow it

to act on itself

— Actions are performed by means of two
mechanisms: introspection and interception,
together they provide reification to a system

- A reflective system is generally structured as
a two-level system
— baselevel (application)
— metalevel (assistance activity)

22 May 2003 - Bologna University of Catania

Computational Reflection
———
~ Characteristics of reflective systems

— Transparency: objects at the baselevel are not
aware of metalevel objects

— Separation of concerns: each level deals with a
different aspect
~ Connection between baselevel and metalevel

— Some objects at the metalevel (said metaobjects)
observe the behaviour of objects

— Metaobjects capture some operations of objects,
execute some computation and then hand control
to objects letting them perform their operations

22 May 2003 - Bologna University of Catania 4




Interfacing Assistants
= —_—— =
« The interface between an application and
assistants is realised by means of a reflective
system:
— Baselevel holds objects that implement an
application

— Metalevel holds two types of agents:

» Coordinator that captures control from application objects,
notifies proper assistants, pours results of assistants to the
application and allows exchanging data between assistants

* Assistants that implement specific tasks by using
Inference Engines and Knowledge Bases

22 May 2003 - Bologna University of Catania

Coordinator

|__ ——
~ Coordinator allows assistants to be plugged into
the application according to user needs

— It knows only that some assistants are interested on
application events and that some data are exchanged

— It does not need to know the number of assistants nor
their tasks

 assistants can be created even after the Coordinator

— It is able to intervene to modify the behaviour of the
application

— It enables independent assistants to work
cooperatively and share results

22 May 2003 - Bologna University of Catania 6




Coordinator

~ Coordinator consists of:

— SW t cher s detect application events and pour results
of assistants by interacting with application objects

» use the capability of metaobjects to trap control from
associated objects and to detect the context of events

— Mer ger receives all the application events and notifies
interested assistants

» works, as in the Observer design pattern, by handling a list of
event observers (i.e. assistant agents)

— Bl ackboar d is a repository that allows assistants to
exchange their outcomes
« It exploits the Blackboard architectural style

22 May 2003 - Bologna University of Catania 7

The Architecture

—

Assistant

‘ ACL messages

Coordinator
Merger Blackboard

Switcher Switcher Switcher

Metalevel

Reflective Mechanism |-

Baselevel
Application
(Web Browser)

22 May 2003 - Bologna University of Catania 8




Model of Assistant Agents
— —

-~ Assistant agents are composed of:

— Inference Engine
» provides assistant agents with reasoning ability

» works by processing rules that depend on the application and
the assistance task

— Knowledge Base
» stores facts that the Inference Engine generates

— User/Agent Interface
* interacts with users to provide results and accepts inputs

22 May 2003 - Bologna University of Catania 9

Constructing the Architecture

« Three hypotheses to employ the architecture:
— The application is implemented in an object oriented
language
* this enables the metaobject model to be used
— The source or the Java bytecode of the application is
available

« this allows necessary hooks to be inserted to capture events
of the application

— Some knowledge of the application is available

* this makes it possible to understand which objects and
methods implement the events of interest

22 May 2003 - Bologna University of Catania 10




Constructing the Architecture

<

% The programmer may take the following steps:

— ldentifying the set of events that should trigger the
work of assistant agents

— Understanding how the application handles the
selected events, by establishing which methods are
involved with them

— Connecting the application objects handling the
identified events with the Coordinator, thus
associating them with some metaobjects
(Swi t cher)

— Mapping the output of Assistants onto actions on
the application (Swi t cher)

22 May 2003 - Bologna University of Catania 1

Assistants for E-Commerce

-« Assistants are designed to help the users of a
web browser performing e-commerce, by
reacting to application events and working
autonomously

Data Extraction Cart Manager
Assistant Assistant

User Profiler
Assistant

Goods Finder
Assistant

Coordinator

Application (Web Browser) I

22 May 2003 - Bologna University of Catania 12




Assistants for E-Commerce

— User Profiler Assistant understands user
preferences from visited web pages
* itis informed by Coordinator when a new web page has
been visited
— aSwi t cher traps this application event and informs Mer ger
— Mer ger notifies the assistant

* it uses a set of page categories and a set of weighted
keywords for each category to classify pages [Mase98]
* as outcome, it provides to Coordinator a web profile of the
user that consists of a ranked list of keywords
— the Bl ackboar d stores the web profile

— aSwi t cher uses the web profile to modify the colour of
keywords on visited web pages

22 May 2003 - Bologna University of Catania 13

Assistants for E-Commerce

<

— Data Extraction Assistant stores data on goods by
extracting them from visited web page

« itis informed by Coordinator that a new page has been loaded

* it uses the web profile to select interesting goods

« it builds a structured version of the data of a web page (by
using an ontology)

* its outcome is a ranked list of goods where the most accessed
data come first

— Cart Manager Assistant handles a virtual cart that
compares potential user’s purchases
 stores sensitive and personal data on the client side
» provides a common repository of data from different web sites
» enables the user interact through a graphical representation

22 May 2003 - Bologna University of Catania 14




Assistants for E-Commerce
————e———

— Goods Finder Assistant searches on the web
offers for user selected goods
» accesses web pages where goods can be found
» analyses web pages looking for interesting goods
» asks Data Extraction Assistant to gather new data from
selected web pages
— Goods Monitor Assistant watches the trend of
prices of user selected goods
 periodically accesses known web pages
» asks Data Extraction Assistant to gather data for a good
 updates the price of the good

22 May 2003 - Bologna University of Catania 15

Implementation Issues
—

s An object oriented application whose source or
Java bytecode is available and whose design
and implementation are (partially) known can
be extended with assistant agents

— For Java applications, the agent framework JADE
can be used to implement assistants

— For C++ applications, CLIPS (C-Language
Integrated Production System) can be used to
implement assistants

22 May 2003 - Bologna University of Catania 16




Performance Issues

—————

~ The performance penalty introduced can be
tuned:

— The overhead due to the computation of Assistants
* is reduced by caching results into metaobjects, and giving
assistants the ability to work asynchronously from the
application
— The cost of jJumping to the metalevel
* is reduced by carefully choosing the intercepted operations
— The overhead due to the transformation of bytecode
of application classes

» can be paid just once, since the reflective abilities can be
added to bytecode permanently

22 May 2003 - Bologna University of Catania 17

Conclusions

| _ <:
~ The proposed architecture integrates several
assistants into applications by means of reflection:

— Is independent of hooks provided by applications or OS

— Lowers complexity

* Reduces difficulties when developing both assistants and
applications

» Makes applications not aware of assistance issues
 Allows both applications and assistants to be developed and
evolved independently, without affecting each other
— Enables assistants to be plugged in just when needed

— Allows assistants to be reused for several families of
applications

22 May 2003 - Bologna University of Catania 18




