
Linguaggi Semantici per la
Rappresentazione e
Gestione di Politiche di
Controllo

DEIS – Università di Bologna

Firb – Web Minds: "Profili e Metadati"- Bologna, 11/12/2003

Outline
Policy-based management: Why?

Motivation and background
Emerging policy-based management

Policy-based management of multi-agent and distributed
system

A traditional approach: Ponder
Semantic Web Languages for policy specification:
KAoS and Rei
Comparison of KAoS, Rei and Ponder

Main benefits and drawbacks of Semantic Web Languages
for policy specification, reasoning and deployment

POEMA: Middleware for policy-controlled mobile
applications

Motivations and background

Policies for network management
Automation of complex management task:
configuration, security, recovery, QoS

New policy management fields:
Management of full range of behavior for multi-
agent and distributed systems

Policies are constraints that dynamically regulate the
behavior of a system without changing code nor requiring

the cooperation of the components being governed

Benefits: Reusability, efficiency,extensibility,
context-sensitivity,verifiability, reasoning over
component behavior...

Policy-based management of
multi-agent and distributed systems

Technical policy categories
Authentication
Access and protection
Communication
Resource control
Monitoring and response
Mobility

Social policy categories
Social organization
Notification
Conversation
Nonverbal expression
Collaboration and teamwork
Adjustable autonomy

Policy Representation

Some current approaches to rule agent behavior…
PONDER: an object oriented and declarative language
mainly adopted for Object-Oriented distributed systems
KAoS: a policy framework that uses DAML to represent
policies
REI: a policy framework that uses deontic concepts
together with RDF-S to represent policies

G. Tonti, J. Bradshaw, R. Jeffers, R. Montanari, N. Suri, and A. Uszok
“Semantic Web Languages for Policy Representation and Reasoning: A Comparison
between KAoS, Rei, and Ponder”
In proceedings of the 2nd International Semantic Web Conference (ISWC 2003)

How to represent a policy

Policy Specification: an example

Communication Policy example:

“professors are permitted to communicate the final
examination grade to their students using an

encrypted communication only after the approval of
the institute’s director”

Ponder Policy Language

Declarative and Object Oriented language
Ponder is not a Semantic Web language
Widely adopted in many object-oriented
applications
Pioneer of many policy management concept

Example of policy specification

inst auth- PolExample {
subject s = people/guest;
action print;
target t = printer/Lab2_printer;
when time.between(“21:00”, “08:00”);

}

Ponder – Policy Specification

domain prof = /SysEntities/Agents/ProfessorAgents;
domain stud = /SysEntities/Agents/StudentsAgents;

inst auth+ ExamGradeCommunication {
subject s= prof;
target t = /SysEntities/SysServices/CommunicationChannel;
action t.communication (“Encrypted”, data, destination) ;
when data.getType = “Grade”

&& destination == (stud -> select (st | st.professor == s))
&& s.receivedApproval(s.getInstituteDirector()) == ‘true’ ;

}

Communication Policy example:

Ponder - Policy Specification

Ponder can describe any rule to constrain the behavior of
components, in a simple and declarative way

…however…

The adoption of a semantic web language can overcome
this limitation

Ponder does not take care of the description of the content of
the policy (e.g. description of the specified components, the
system, etc.)

KAoS - Policy Specification
 <?xml version='1.0'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 xmlns:xsd ="http://www.w3.org/2000/10/XMLSchema#"
 xmlns:policy="http://ontology.coginst.uwf.edu/Policy.daml#"
 xmlns="http://ontology.coginst.uwf.edu/ExamplePolicies/PolicyExample.daml#">
<daml:Ontology rdf:about="">
 …..
<daml:Class rdf:ID="ExaminationGradePolicyAction">
 <daml:intersectionOf rdf:parseType="daml:collection">
 <daml:Class rdf:about="http://ontology.coginst.uwf.edu/Action.daml#EncryptedCommunicationAction"/>
 <daml:Restriction>
 <daml:onProperty rdf:resource="http://ontology.coginst.uwf.edu/Action.daml#performedBy"/>
 <daml:toClass rdf:resource="http://ontology.coginst.uwf.edu/ActorClasses.daml#AgentProfessors"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="http://ontology.coginst.uwf.edu/Action.daml#hasDestination"/>
 <daml:toClass rdf:resource="http://ontology.coginst.uwf.edu/ActorClasses.daml#AgentStudents"/>
 </daml:Restriction>
 <daml:Restriction>
 <daml:onProperty rdf:resource="http://ontology.coginst.uwf.edu/ Action.daml#hasApproval"/>
 <daml:toClass
 rdf:resource="http://ontology.coginst.uwf.edu/ActorClasses.daml#AgentInstituteDirector"/>
 </daml:Restriction>
 </daml:intersectionOf>
 </daml:Class>
 <policy:PosAuthorizationPolicy rdf:ID="ExaminationGradePolicy">
 <policy:controls rdf:resource="#ExaminationGradePolicyAction"/>
 <policy:hasSiteOfEnforcement rdf:resource="http://ontology.coginst.uwf.edu/Policy.daml#SubjectSite"/>
 <policy:hasPriority>10</policy:hasPriority>
 <policy:hasUpdateTimeStamp>446744445544</policy:hasUpdateTimeStamp>
 </policy:PosAuthorizationPolicy >

KAoS policy

Policies and domains represented in DAML (soon OWL) as ontologies
Classes and related properties to describe actions, actors, resources,
situations, groups, and policies

Collection of policy management services
Provides means to access the policy service from several agent and
distributed computing environments (Nomads, CoABS Grid, Cougaar,
Brahms, CORBA, OGSA-compliant grid computing, Web Services)

KAoS Ontology
KAoS Policy Ontology distinguish between authorization
and obligation policies

KAoS: KPAT Hides Complexity

Rei – Policy Specification

Action name (URI) Target Objects

Pre-conditions

Effects

Condition

action (gradesCommunication, [Stud, Prof], [],
communicated(‘grade', Stud, Prof))

has(Prof,
right(gradesCommunication,

(action(gradesCommunication, [Stud, Prof], X,Y),
professor(Prof), student(Stud, Prof),
commType('encrypted'), dataType('Grade'),
approval(Prof,instituteDirector)))

Subject Action

Policy
Object

Policy
rule

Prolog-like syntax for policy specification
A policy framework that supports policy specification
analysis and reasoning in pervasive computing
applications

Rei Ontology

Policies and domains represented in RDF-S as
ontologies

Domain-independent ontologies include description of ‘Policies’,
‘Rules’, ‘Conditions’, ‘Entities’ and ‘Actions’
Rei accepts also domain-dependent ontologies, in any language that
can be converted into the form of triple recognizable by the Rei
Policy Engine

Example: <rdfs:Class rdf:ID ="CommunicationAction">
<rdfs:subClassOf rdf:resource="DomainAction"/>

</rdfs:Class>

<rdf:Property rdf:ID="hasDestination">
<rdfs:domain rdf:resource="#CommunicationAction"/>

</rdf:Property>

<rdf:Property rdf:ID="carriesMessage">
<rdfs:domain rdf:resource="#CommunicationAction"/>

</rdf:Property>

Comparison

Graphical editor and
compiler

No**

** a GUI is being developed
for the next Rei version

KPAT – Graphical editor for
ontology and policy
management

Tools for
policy

specification

Event calculus
representation

Prolog engineJava Theorem ProverReasoning
support

Java interfaces for
enforcement agents are
provided

Action execution is outside
the Rei engine

Need to write the code of
appropriate enforcers and
to insert them in entities to
control **

** Policy automation being
explored for the next
version

Enforcement
mechanisms

Rei: (Prolog-like syntax +
RDF-S)

Yes

Rei

Ponder (declarative
specification)

DAML/OWL Specification
language

NoYesOntology-
based

PonderKAoS

Semantic Web Languages for policy
Specification: why?

Enforceability

Ease-of-use

Analyzability

Expressiveness

Ponder **
Semantic web languages

for policy specification

Multiple levels of abstraction

Capable of representing concepts and
behavior of any complex environment

Low level of abstraction: object level

Capable of controlling specific sorts of
behavior within object-oriented systems

Extensibility supported by object-
oriented inheritance at compile-time

Need of specialized tools to assist
unskilled users with policy specification
and interpretation

Easy to extend policy ontology at
runtime with new concepts

Language specifically designed for simple
policy specification and direct readability

Ontology representation simplifies and
directly supports policy reasoning, conflict
detection and harmonization

Simplified access to policy information by
querying the ontology

Policy sharing among heterogeneous
systems requires an agreement on a
common ontology

Conflict detection requires transforming
policy specification into an event calculus
representation

Access to single policy object by API –
Access to policy repository to be designed

Policy sharing among heterogeneous
systems requires agreement on interfaces

High-level specification requires skilled
programmers or sophisticated policy
automation mechanisms for enforcement

Detailed specifications can be directly
mapped into policy enforcement
mechanisms

** used as example of non-semantic web language

POEMA: Policy Enabled MObile
Applications

inst oblig MobPol2 {
on CPULoad(90);
subject s = System/Relocator;
target t = agents/Manager;
do s.relocate(t, G1.toString(), “run”);
when
MonitoringSystem.isReachable(G1);

}

inst oblig MobPol1 {
on CPULoad(90);
subject s = agents/Manager;
do s.go(G1.toString(), “run”);
when
MonitoringSystem.isReachable(G1);
}

Policies for governing the mobility behaviour of
mobile agents

Separation of Concerns

Mobility Policies specify: When, Where and Which
Unit of mobility must migrate

Directly implementable policies represented in Ponder

http://www.lia.deis.unibo.it/Research/POEMA/

POEMA Architecture

Host

Operating System

L
ow

er
-la

ye
r

Se
rv

ic
es

U
pp

er
- l

ay
er

Se
rv

ic
es

Event
Service

Monitoring
Service

Specification
Service

Policy
Enforcement

Service

Repository
Service

Policy
Distribution

Service

Po
lic

y
In

fr
as

tr
uc

tu
re

SOMA

PolicyPolicy

Mobile
Agent Ponder

Obligation
Policies

Data

Code

Mobile
Agent Ponder

Obligation
Policies

Data

Code

Linguaggi semantici per la
rappresentazione e
gestione di politiche di
controllo

DEIS – Università di Bologna

Firb – Web Minds: "Profili e Metadati"- Bologna, 11/12/2003

