
Università degli Studi di Bologna
DEIS

Towards a DecSerFlow Declarative
Semantics based on Computational

Logic

Federico Chesani Paola Mello Marco Montali
Sergio Storari

March 14, 2007

DEIS Technical Report no. DEIS- LIA-07-001 LIA Series no. 79

Towards a DecSerFlow Declarative Semantics based on
Computational Logic

Federico Chesani 1 Paola Mello 1 Marco Montali 1

Sergio Storari 2

1 DEIS - Dip. di Elettronica, Informatica e Sistemistica
University of Bologna

Viale Risorgimento, 2 - 40136, Bologna
Italy

[fchesani | pmello | mmontali]@deis.unibo.it
2 ENDIF - Engeneering Dept. in Ferrara

University of Ferrara
Via Saragat, 1 - 44100, Ferrara

Italy
strsrg@unife.it

March 14, 2007

Abstract. In this paper we exploit a computational logic-based framework,
called SCIFF, for the formalization of DecSerFlow. DecSerFlow is a graphical,
extendible high-level language for the declarative specification of service flows,
and is grounded on LTL. SCIFF was originally developed in the context of the
SOCS european project , where we addressed the issue of providing a formal
language to define and verify interaction protocols in open environments.

More specifically, in this work we show that SCIFF is concretely able to
formalize the DecSerFlow core template formulae, tackling two complementary
issues: on one hand, it is possible to specify SCIFF rules by using an intu-
itive and user-friendly graphical language; on the other hand, a DecSerFlow
model may be grounded not only on LTL but also on an abductive framework,
acquiring some new advantages and features.

Finally, we propose to extend DecSerFlow by exploiting some useful features
of the SCIFF framework, like for example the explicit notion of time, which
could be used to specify temporal constraints and deadlines.

Contents

1 Introduction 4

2 The SCIFF framework 6
2.1 Events, Happened Events and Expected Events 6
2.2 Social Integrity Constraints . 8
2.3 The Social Organizational Knowledge Base 9
2.4 Declarative Semantics of the SCIFF framework 10
2.5 Detecting Fulfillment and Violation: the SCIFF proof procedure and

the SOCS-SI tool . 12

3 A brief description of DecSerFlow 14
3.1 A Declarative Service Flow language 14
3.2 Main concepts of DecSerFlow . 15

4 Formalizing DecSerFlow: our approach 15
4.1 DecSerFlow as an abductive logic program 16
4.2 Formalization of activities . 16
4.3 Fomalization of a DecSerFlow model 17
4.4 An intuition about how DecSerFlow templates are formalized 17
4.5 Equivalence between Integrity Constrains 18

5 Existence Formulae 19
5.1 Summary of the DecSerFlow Existence Formulae 19
5.2 Formalization of the Existence Formulae 20

5.2.1 Absence . 20
5.2.2 Existence N . 21
5.2.3 Absence N . 21
5.2.4 Exactly N . 22

6 Relation Formulae 22
6.1 Summary of the DecSerFlow Relation Formulae 22
6.2 Formalization of the Relation Formulae 22

6.2.1 Responded Existence . 24
6.2.2 Response . 25
6.2.3 Precedence . 25
6.2.4 Alternate Response . 25
6.2.5 Alternate Precedence . 28
6.2.6 Chain Response . 28
6.2.7 Chain Precedence . 29
6.2.8 Mutual Substitution . 29

2

7 Negation formulae 29
7.1 Summary of the DecSerFlow Negation Formulae 30
7.2 Formalization of the Negation Formulae 31

7.2.1 Responded Absence . 32
7.2.2 Equivalence w.r.t conformance between the Responded Ab-

sence and the Not Coexistence formulae 32
7.2.3 Negation Response . 32
7.2.4 Negation Precedence . 33
7.2.5 Equivalence w.r.t. conformance between the Negation Re-

sponse and the inverse Negation Precedence formulae 33
7.2.6 Negation Alternate Response 34
7.2.7 Negation Chain Response . 35
7.2.8 Negation Chain Precedence 35
7.2.9 Equivalence w.r.t. conformance between the Negation Chain

Response and the inverse Negation Chain Precedence formulae 36

8 Proposed extensions of DecSerFlow: a first step 37
8.1 Temporal constrained formulae . 37
8.2 Formulae with composition of activities 39

9 The Acme Travel Example 42
9.1 Formalization of the Acme Model . 42
9.2 Conformance evaluation on a simple execution trace 42

10 Conclusions and Future Works 47

11 Acknowledgements 48

A Abductive Event Calculus 49
A.1 Event Calculus . 49
A.2 Abductive Event Calculus in SCIFF 50
A.3 Abcutive Event Calculus in SCIFF: another proposal 51

DEIS Technical Report no. DEIS- LIA-07-001 LIA Series no. 79

1 Introduction

Service Oriented Architectures (SOA) have recently emerged as a new paradigm for
structuring inter-/intra- business information processes. While SOA is indeed a set
of principles, methodologies and architectural patterns, a more practical instance of
SOA can be identified in the Web Services technology, where the business function-
alities are encapsulated in software components, and can be invoked through a stack
of Internet Standards.

The standardization process of the Web Service technology is at a good matu-
ration point: in particular, the W3C Consortium has proposed standards for devel-
oping basic services and for interconnecting them on a point-to-point basis. These
standards have been widely accepted; vendors like Microsoft and IBM are supporting
the technology within their development tools; private firms are already developing
solutions for their business customer, based on the web services paradigm. However,
the needs for more sophisticated standards for service composition have not yet fully
satisfied. Several attempts have been made (WSFL, XLang, BPML, WSCL, WSCI),
leading to two dominant initiatives: WS-BPEL [6] and WS-CDL [35].

Both these initiatives however have missed to tackle some important issues. We
agree with the view [8, 32] that both WS-BPEL and WS-CDL languages lack of
declarativeness, and more dangerous, they both lack of an underlying formal model
and semantics. Hence, issues like conformance testing, interoperability checking [7]
and verification of properties are not fully addressed by the current proposals.

To overcome these limits, van der Aalst et al. have proposed DecSerFlow [33],
a declarative graphical language for the specification of service flows. DecSerFlow
adopts a more general and high-level view of services specification, by defining them
through a set of policies or business rules. Hence, it does not give a complete and
procedural specification of services, but concentrates on what are the (minimal) con-
straints to be fulfilled in order to successfully complete the interaction. Beyond its
appealing graphical representation, DecSerFlow has a mapping to Linear Temporal
Logic (LTL) [16, 23], and thus it may be used to verify or enforce conformance of
service flows, and also to directly enact their execution.

Taking inspiration by the many analogies between the Web Services research field
and the Multi Agent System (MAS) field [7], in this paper we exploit a computational
logic-based framework, called SCIFF, for the formalization of DecSerFlow. SCIFF
was originally developed in the context of the SOCS european project [31], where we
addressed the issue of providing a formal language to define and verify interaction
protocols in an open multi-agent setting. Hence, within the SCIFF framework, a
language suitable for specifying global interaction protocols is provided; a formal
semantics is provided too, based on abductive logic programming [18]. SCIFF con-
siders a set of interacting peer as an open society, formalizing interaction protocols
as a set of global rules which constrain the external and observable behaviour of

4

participants (for this reason, global rules are called Social Integrity Constraints).
The operational counterpart of SCIFF is an abductive proof procedure capable

to verify at run-time (or a-posteriori using an event log) if the peers behave in a
conformant manner w.r.t. the modeled interaction protocol. Moreover, on top of
the SCIFF proof procedure a tool (namely SOCS-SI [3]) has been developed for
automatically analyze and verify peers interactions w.r.t. a protocol expressed in
the language above.

Some initial applications of SCIFF in the field of web service choreographies
can be found in [2], where the problem of verifying if a set of interacting services
conform to a choreography specification is faced, and in [5], where a new proof
procedure is derived from SCIFF to perform the interoperability check between a
peer behavioural interface and a choreography specification.

More specifically, in this work we show that the Social Integrity Constraints
introduced in the SOCS social model are concretely able to formalize the DecSerFlow
template formulae; in this way, we tackle two complementary issues: on one hand,
it is possible to specify Social Integrity Constraints by using an intuitive, extendible
and user-friendly graphical language; on the other hand, a DecSerFlow model may
be grounded not only on LTL but also on our abductive framework, acquiring some
new advantages and features.

Through the mapping to our formalism, it is possible:

• to automatically translate a DecSerFlow model into the SCIFF framework

• to use SOCS-SI to check whether a set of existing services behave in a confor-
mant manner w.r.t. the defined model

• to propose DecSerFlow extensions by exploiting some useful features of the
SCIFF framework, like for example the explicit notion of time, which could
be used to specify temporal constraints and deadlines.

The paper is organized as follows: in Section 2 we introduce the SCIFF frame-
work, provide its declarative semantics and briefly show how the conformance veri-
fication issue can be addressed by using it. Then, in Section 3.1 a brief description
of DecSerFlow is given. In Section 4 we specify DecSerFlow as an abductive logic
program, giving an intuition about how the DecSerFlow template formulae could
be translated into the SCIFF language. The concrete mapping is then described in
Sections 5, 6 and 7, where respectively existence, relation and negation formulae are
tackled. Finally, Section 8 presents some preliminary proposal about extending the
basic DecSerFlow template formulae to deal also with conjunctions/disjunctions of
activities and explicit temporal constraints and deadlines. Conclusions and future
works follow in Section 10.

5

2 The SCIFF framework

In this section, we present the SCIFF framework, describing how the conversational
part of an interaction protocol as well as its static knowledge can be suitably ex-
pressed within the framework. Moreover, we provide the declarative semantics of
SCIFFand give a formal definition of conformance.

2.1 Events, Happened Events and Expected Events

The definition of Event greatly varies, depending on the application domain. For
example, in the Web Service domain, an event could be the fact that a certain
web method has been invoked; in a Semantic Web scenario instead, an event could
be the fact that some information available on a site has been updated. Moreover,
within the same application domain there could be several different notions of events,
depending on the assumed perspective, the granularity, etc.

The SCIFF language completely abstracts from the problem of deciding “what
is an event”, and rather lets the developers decide which are the important events
for modeling the domain, at the desired level. Each event that can be described by
a Term 1 , can be used in SCIFF. For example, in a peer-to-peer communication
system, an event could be the fact that someone communicates something to someone
else (i.e., a communicative action has been performed):

tell(alice, bob,msgContent)

Another event could be the fact that a web service has updated some information
stored into an external database, or that a bank clerk, upon the request of a cus-
tomer, has provided him/her some money. Of course, in order to perform some
reasoning about such events, accessibility to such information is a mandatory re-
quirement.

In the SCIFF framework, similarly to what has been done in [9], we distinguish
between the description of the event, and the fact that the event has happened.
Typically, an event happens at a certain time instant; it could also be the case that
the same event could happen many times 2 .

Happened events are represented as an atom

H(Event, T ime)

where Event is a Term, and T ime is an integer, representing the discrete time point
at which the event happened. The set of all the events that have happened during
a protocol execution constitutes its log (or execution trace).

1à la logic programming.
2In our approach the happening of identical events at the same time instant are considered as if

only one event happens; if the same event happens more than once, but at different time instants,
then they are indeed considered as different happenings.

6

One innovative contribution of the SCIFF framework is the introduction of ex-
pectations about events. Indeed, beside the explicit representation of “what” hap-
pened and “when”, it is possible to explicitly represent also “what” is expected, and
“when” it is expected. The notion of expectation plays a key role when defining
global interaction protocols, choreographies, and more in general any dynamically
evolving process: it is quite natural, in fact, to think of such processes in terms of
rules of the form “if A happened, then B should be expected to happen”.

In agreement with DecSerFlow, SCIFF pays particular attention to the openness
of interaction: interacting peers are not completely constrained, but they enjoy some
freedom. This means that the prohibition of a certain event should be explicitly
expressed in the model and this is the reason why SCIFF supports also the concept
of negative expectations (i.e. of what is expected not to happen).

Positive expectations about events come with form

E(Event, T ime)

where Event and T ime can be variables, or they could be grounded to a particular
term/value. Constraints, like T ime > 10, can be specified over the variables: in the
given example, the expectation is about an event to happen at a time greater than
10 (hence the event is expected to happen after the time instant 10).

Conversely, negative expectations about events come with form

EN(Event, T ime)

The complete syntax of events, happened events and expectations is given in table
2.1.

Table 2.1 Syntax of events and expectations

Event ::= H(GroundTerm[, Integer])
Expectation ::= PosExp | NegExp

PosExp ::= E(Term[,Variable | Integer])
NegExp ::= EN(Term[,Variable | Integer])

Literal ::= [not]Atom
AbducibleLiteral ::= [not]AbducibleAtom

Given the notions of happened event and of (positive or negative) expected event,
two fundamental issues arise. First, how it is possible to specify the link between
these two notions; second, how it is possible to verify if all the expectations have been
effectively satisfied. The first issue is fundamental in order to easy the definition

7

of an interaction model, and it will be addressed in the next section. The second
issue, instead, is inherently related to the problem of establishing if a participant
is indeed behaving in a conformant manner w.r.t. a given interaction model: the
solution proposed by the SCIFF framework is presented in Section 2.5.

2.2 Social Integrity Constraints

Social Integrity Constraints ICS are forward rules, of the form

Body → Head

whose Body can contain literals and (conjunctions of happened and expected) events,
and whose Head can contain (disjunctions of) conjunctions of expectations. In table
2.2 we report the formal definition of the grammar, where Atom and Term have
the usual meaning in Logic Programming [27] and Constraint is interpreted as in
Constraint Logic Programming [17].

Table 2.2 Syntax of Integrity Constraints (ICs)

ICS ::= [IC]!

IC ::= Body → Head
Body ::= (Event | Expectation | AbducibleLiteral) [∧ BodyLiteral]!

BodyLiteral ::= Event | ExtLiteral
Head ::= HeadDisjunct [∨ HeadDisjunct]! | false

HeadDisjunct ::= ExtLiteral [∧ ExtLiteral]!

ExtLiteral ::= Literal | AbducibleLiteral | Expectation | Constraint

CLP constraints [17] and Prolog predicates can be used to impose relations
or restrictions on any of the variables that occur in an expectation, like imposing
conditions on the role of the participants, or on the time instants the events are
expected to happen (or not to happen). For example, time conditions might define
orderings between messages, or enforce deadlines.

ICS allows the user to define how an interaction should evolve, given some pre-
vious situation, that can be represented in terms of happened events. Rules like:

“if a customer requests the withdrawal of X euros from the bank account,
the bank should give the requested money within 24 hours from the re-
quest, or should explicitly notify the user of the impossibility”

can be translated straightforward, e.g. in the corresponding rule:

H(request(User,Bank,withdraw(X)), Tr)
→E(give(Bank,User,money(X)), Ta) ∧ Ta < Tr + 24
∨E(tell(Bank,User, not possible, reason(. . .)), Tp) ∧ Tp > Tr.

(1)

8

2.3 The Social Organizational Knowledge Base

Integrity Constraints are a suitable tool for effectively define the desired behaviour
of the participants to an interaction, as well as the evolution of the interaction itself.
However, they mostly capture the “dynamic” aspects of the interactions, while more
static information is not so easily tackled by these rules. For example, a common
situation is the one where, before giving the requested money, the bank could check
if the customer’s deposit contains enough money to cover the withdrawal; or, if the
customer indeed has a bank account with that bank, and hence if he/she is entailed
to ask for a withdrawal.

Such type of knowledge is independent of the single instance of interaction, but
is often referred during the interaction. The SCIFF framework allows to define such
a knowledge in the Social Organizational Knowledge Base KB. The KB specifies
declaratively pieces of knowledge of the interaction model, such as roles descriptions,
list of participants, etc. KB is expressed in the form of clauses (a logic program); the
clauses may contain in their body expectations about the behaviour of participants,
defined literals, and constraints, while their heads are atoms. The syntax is reported
in table 2.3.

Table 2.3 Syntax of the Knowledge Base

KBDSF ::= [Clause]!
Clause ::= Head ← Body

Head ::= Atom
Body ::= ExtLiteral [∧ ExtLiteral]! | true

ExtLiteral ::= Literal | AbducibleLiteral | ExpLiteral | Constraint

In the following, we will also use the classical Prolog notation for representing a
clause (i.e. Head :- Body).

Furthermore, in our vision an interaction can be goal directed, i.e. a specific goal
G can be specified. E.g., a choreography used in an electronic auction system could
have the goal of selling all the goods in the store. Another goal could be instead
to sell at least n items at a price higher than a given threshold. Hence, the same
auction mechanism described by the same rules (i.e. by the same set of ICS), can
be used seamlessly for achieving different goals. Such goals can be defined like the
clauses of the KB. Typically, a goal is defined as expectations about the outcomes
of the interaction, e.g., in a web service environment, in terms of messages (and their
contents) that should be exchanged (or, more generally, in terms of activities that
should be executed). If no particular goal is required to be achieved, G is bound to
true.

9

2.4 Declarative Semantics of the SCIFF framework

In the SCIFF framework, an interaction model is interpreted in terms of an Abduc-
tive Logic Program (ALP). In general, an ALP [18] is a triple 〈P,A, IC〉, where P is
a logic program, A is a set of predicates named abducibles, and IC is a set of Integrity
Constraints. Roughly speaking, the role of P is to define predicates, the role of A
is to fill-in the parts of P which are unknown, and the role if IC is to control the
ways elements of A are hypothesised, or “abduced”. Reasoning in abductive logic
programming is usually goal-directed (being G a goal), and it accounts to finding a
set of abduced hypotheses ∆ built from predicates in A such that P ∪ ∆ |= G and
P ∪ ∆ |= IC. In the past, a number of proof-procedures have been proposed to
compute ∆ (see Kakas and Mancarella [19], Fung and Kowalski [14], Denecker and
De Schreye [11], etc.).

The idea we exploited in the SCIFF framework is to adopt abduction [4] to
dynamically generate the expectations and to perform the conformance checking
between expectations and happened event (to ensure that they are following the
interaction model). Expectations are defined as abducibles, and are hypothesised
by the abductive proof procedure, i.e. the proof procedure makes hypotheses about
the behaviour of the peers. A confirmation step, where these hypotheses must be
confirmed by happened events, is then performed: if no set of hypotheses can be
fulfilled, a violation is detected.

An interaction protocol specification S is defined by the triple:

S ≡ 〈KB, E ,ICS〉

where:

• KB is the Social Organizational Knowledge Base,

• E is the set of abducible predicates, namely

– positive expectations (functor E)
– negative expectations (functor EN)

and

• ICS is the set of Social Integrity Constraints.

The declarative semantics of an interaction specification is given for each specific
execution trace. We call a specification grounded on an execution trace an instance
of the specification.

Definition 2.1 (Instance) Given an abductive specification S and an execution
trace HAP, SHAP represents the pair 〈S,HAP〉 and is called the instance of the
specification.

10

We adopt an abductive semantics for an execution instance. The abductive
computation produces a set ∆ of hypotheses, which is partitioned into a set ∆′

of general hypotheses and a set EXP of expectations. The set of abduced literals
should entail the goal and satisfy the integrity constraints.

Definition 2.2 (Abductive Explanation) Given an abductive specification S ≡
〈KB, E ,ICS〉, an instance SHAP of S, and a goal G, ∆ is an abductive explanation
of SHAP if:

Comp(KBS ∪HAP ∪∆) ∪ CET ∪ TX |= ICS (2)

Comp(KBS ∪HAP ∪∆) ∪ CET ∪ TX |= G (3)

where Comp represents the completion of a theory, CET is Clark’s Equational The-
ory [10], TX is the theory of constraints [17] and the notion of entailment is grounded
on Kunen’s three valued semantics [25].

We also require consistency between positive and negative expectations (an event
cannot be expected to happen and not to happen at the same time).

Definition 2.3 (E-consistency) A set of expectations EXP is e-consistent if and
only if for each (ground) term p:

{E(p),EN(p)})⊆ EXP (4)

At this point it is possible to define the concepts of fulfillment and violation of
a set EXP of expectations. Fulfillment requires:

• all the E expectations to have a matching happened event

• all the EN expectations to have no matching happened event

Thus, the following definition establishes a link between happened events and ex-
pectations, by requiring positive expectations to be matched by events, and negative
expectations not to be matched by events.

Definition 2.4 (Fulfillment) Given an execution instance HAP, a set of expec-
tations EXP is fulfilled by HAP if and only if for all (ground) terms p:

∀E(p) ∈ EXP ⇒ H(p) ∈ HAP ∀EN(p) ∈ EXP ⇒ H(p))∈ HAP (5)

Otherwise, EXP is violated by HAP.
We can now give a formal definition of conformance.

11

Definition 2.5 (Conformance) Given an execution trace HAP, a specification
S and a goal G, HAP is conformant to S w.r.t G if and only if there exists an
abductive explanation ∆ of SHAP w.r.t. G such that definitions 2.3 and 2.4 hold. In
this case, we write SHAP |=∆ G.

In the following, we will simply state that a log is conformant to an interaction
specification if it is conformant to the specification w.r.t. the goal true.

The last two definitions are useful to identify if two different interaction specifi-
cations exhibit the same behaviour w.r.t. the conformance evaluation of an arbitrary
log.

Definition 2.6 (Implication w.r.t. conformance) An interaction specification
S1 implies w.r.t. conformance another specification S2 (S1 C→ S2) if and only if
each execution trace evaluated as conformant to S1 w.r.t. to a goal G is evaluated
as conformant to S2 w.r.t. G, too. More formally, S1 C→ S2 if and only if

∀HAP ∀G ∃∆1 S1
HAP |=∆1 G → ∃∆2 S2

HAP |=∆2 G (6)

Definition 2.7 (Equivalence w.r.t. conformance) Two specifications S1 and

S2 are equivalent w.r.t. conformance (S1 C≡ S2) iff S1 C→ S2 and S2 C→ S1. Two
equivalent w.r.t. conformance specifications accept and reject the same execution
traces.

The operational counterpart of this declarative semantics is the SCIFF proof
procedure, briefly described in Section 2.5. SCIFF has been proven sound and
complete in relevant cases [15].

2.5 Detecting Fulfillment and Violation: the SCIFF proof proce-
dure and the SOCS-SI tool

We developed the SCIFF proof procedure for the automatic verification of com-
pliance of interactions w.r.t. a given interaction model. Then, we developed a
Java-based application, SOCS-SI, that receives as input the specification of a chore-
ography and the happening events, and provides as output the answer about the
conformance issue. SOCS-SI uses the SCIFF proof procedure as inference engine,
and provides a Graphical User Interface for accessing the results of the conformance
task.

The SCIFF proof procedure considers the H events as predicates defined by a
set of incoming atoms, and is devoted to generate expectations corresponding to
a given set of happened events and to check that expectations indeed match with
those events. The proof procedure is based on a rewriting system transforming one

12

node to another (or to others) as specified by rewriting steps called transitions. A
node can be either the special node false, or defined by the following tuple

T ≡ 〈R,CS,PSIC,PEND,HAP,FULF,VIOL〉
where

• R is the resolvent (initially set to the goal G);

• CS is the constraint store (à la CLP [17]);

• PSIC is a set of implications, derived from the ICS ;

• PEND is the set of (pending) expectations, i.e. expectations have not been
fulfilled (yet), nor they have been violated;

• HAP is the log of happened events;

• FULF and VIOL are the sets of fulfilled and violated expectations, respec-
tively.

We do not report here all the transitions. As an example, the fulfillment tran-
sition is devoted to prove that an expectation E(X,Tx) has been fulfilled by an
event H(Y, Ty). Two nodes are generated: in the first, X and Y are unified, and
the expectation is fulfilled (i.e., it is moved to the set FULF); in the second the
new constraint X)= Y is added to the constraint store CS (it could be the case
that another event, different than X, will fulfill the expectation). At the end of the
computation, a closure transition is applied, and

• all the E expectations remaining in the set PEND are considered as violated;

• all the EN expectations remaining in the set PEND are considered as fulfilled.

The SCIFF proof procedure can be downloaded at http://lia.deis.unibo.it/
research/sciff/.

The SOCS-SI software tool is a Java-based application, that provides to the
user a GUI to access the outcomes of the SCIFF proof procedure. It has been
developed to accept events that happens dynamically, from various events source.
It accepts, as event source, also a log file containing the log of the relevant events.
In this way, it is possible to perform the conformance verification i) at run-time, by
checking immediately the incoming happened events (possibly raising violations as
soon as possible), and ii) a posteriori, analyzing log files. When performing run-
time verification, if time events (i.e., events that represent the current time instant)
are provided (possibly by an external source, e.g. a clock), SOCS-SI is able to use
such information to detect deadline expirations with a discrete approximation to
the nearest greater time instant. SOCS-SI can be downloaded at http://www.lia.
deis.unibo.it/research/socs_si/socs_si.shtml.

13

?

A

B

?

?

(a) Procedural style of modeling
for the considered example.

A

B

(b) Declarative style of modeling
for the considered example (Dec-
SerFlow notation).

Figure 1. Two different approaches for modeling the not coexistence bewteen two
activities.

3 A brief description of DecSerFlow

In this section we will briefly introduce the DecSerFlow language, just for the sake
of clarity. For a detailed description of the language and its mapping to Linear
Temporal Logic, see [33].

3.1 A Declarative Service Flow language

As suggested by its name, the main innovation of DecSerFlow is that it adopts a
declarative style of modeling: the authors point out that following a declarative
approach could give some relevant improvements to service specifications.

To illustrate the main difference between a declarative approach vs. a procedural
one, they illustrate the simple example shown in figure 1.

In order to specify that two different activities should not be executed together
(i.e. it is possible to execute the first or the latter activity multiple times, but the
two activities exclude each other), a procedural language must explicitly represent
all the possible executions, leading to some relevant problems:

• the process becomes over-specified;

• the modeler must introduce decision points to handle the possible executions,
but it is not clear how and when these decisions should be evaluated.

Instead, by using a declarative language s.t. LTL, forbidding the coexistence of two
activities A and B may be expressed in a simple and very compact way: ¬(/A∧/B).

However, the main problem of languages like LTL is that they are hard to use
and read by non-expert, hence the idea to develop a declarative graphical language
(with a one-to-one mapping to LTL) as a middle tier between the user and the formal

14

language. Beyond this important feature, the translation of a graphical model to
LTL enable the possibility to verify the conformance of an event log w.r.t. the
designed model and also to automatically enact its execution.

3.2 Main concepts of DecSerFlow

The basic intuitive concepts of DecSerFlow are:

• activities, to model atomic logical unit of works;

• constraints, to represent relationships (in the sense of policies or business rules)
between activities.

Constraints are given as templates, i.e. as relationships between two (or more)
whatsoever activities. Each constraint template is then expressed as an LTL formula,
hence the name “formulae” to indicate DecSerFlow relationships.

To extend DecSerFlow, it is sufficient to define a new graphical notation for the
new template formula and specify the corresponding formalization. DecSerFlow core
relationships are grouped into three families:

• existence formulae, unary relationships used to constrain the cardinality of
activities

• relation formulae, which define (positive) relationships and dependencies be-
tween two (or more) activities;

• negation formulae, the negated version of relation formulae.

To reflect the autonomous nature of services, DecSerFlow follows an open ap-
proach to service interaction, i.e. the model should explicit express not only what
has to be done (through existence and relation formulae), but also what is forbidden
(through negation formula).

For a description of the basic existence, relation and negation formulae, see
Sections 5, 6 and 7 respectively.

4 Formalizing DecSerFlow: our approach

We give a so called implicit formalization of DecSerFlow, in the sense that we would
formalize the different DecSerFlow template formulae by using general Integrity
Constraints (and with a general Knowledge Base), valid for all DecSerFlow models.

In order to formalize a particular DecSerFlow diagram, we have then just to
compile another Knowledge Base which maps the specific diagram structure, and
use it together with the general specification.

15

4.1 DecSerFlow as an abductive logic program

The DecSerFlow formalization SDSF is defined by means of an abductive logic
program[18] as the triple

SDSF ≡ 〈KBDSF , EDSF ,ICDSF 〉

where:

• KBDSF is the DecSerFlow Knowledge Base (which is used to specify knowl-
edge common to all DecSerFlow models);

• EDSF is the set of abducible predicates (i.e. positive and negative expectations);

• ICDSF is the set of DecSerFlow Integrity Constraints (i.e. the set of rules
which formalize DecSerFlow template formulae).

4.2 Formalization of activities

As pointed out in Section 2.1, SCIFF completely abstracts from what has to be
considered as an observable and relevant event inside the application domain.

To formalize DecSerFlow, we adopt an atomic model for activities, mapping a
whatsoever activity execution to an Event of the form performed(A), where A is
the performed activity. Thus, notation H(performed(buy item), 18) means that the
buy item activity has been executed at time 18.

In this preliminary work we do not focus on content data associated to activities.
Therefore, for each activity we will consider only:

• its description (with abuse of notation, we will use the terms activity and
activity description as synonyms)

• its execution time

abstracting away from all the content data taken in input and provided as output
by the activity execution. The introduction of content data associated to activities
will be matter of future research, but anyway it is seamlessly addressed by our
framework; as we have already pointed out, in fact, by CLP constraints and Prolog
predicates SCIFF is able to specify constraints about data and to formalize decisions
or, more generally, pieces of knowledge of the interaction model.

Finally, note that, in principle, the SCIFF language is capable to support a non
atomic model for activities, mapping their start and completion to events 3 .

3Through the integration of abductive event calculus within the framework, is then possible to
identify e.g. if an activity is in execution at a given time (see the appendix).

16

4.3 Fomalization of a DecSerFlow model

The formalization of a specific DecSerFlow model Pspec is defined by extending the
Knowledge Base of the DecSerFlow abductive program SDSF :

Pspec ≡ 〈KBDSF ∪ KBspec, EDSF ,ICDSF 〉

KBspec contains the specification of the model under study, i.e.:

• its activities

• its existence, relation and negation formulae

• content data associated to activities and conditions related to them (such as
temporal deadlines, which we will briefly tackle in Section 8)

The following fragment of a KBspec explain how a small part of the ACME
example introduced in [33] could be formalized within our framework:

1 existence_formula(credit_card, absence_N(1)).
2 existence_formula(notify_booked, absence_N(1)).
3 relation_formula(credit_card, notify_booked, succession).
4 negation_formula(credit_card, hotel, negation_response).
5 negation_formula(credit_card, airline, negation_response).

4.4 An intuition about how DecSerFlow templates are formalized

The specification of the DecSerFlow template formulae by using SCIFF conforms
to the following structure:

formula(Activity, type)
∧ body

→head.

(7)

for the existence formulae and

formula(Source, Target, type)
∧ body

→head.

(8)

for relation and negation formulae.
It is worth noting that in the first line of all Integrity Constraints of this kind,

activities are universally quantified variables. This ensures that each rule will be

17

replicated for each variable (or couple of variables) subject to the formula addressed
by the rule.

For example, let us consider the response relation, which is formalized by using
the following Integrity Constraint (see Section 6.2.2).

relation formula(A,B, response)
∧ H(performed(A), TA)

→E(performed(B), TB)
∧ TB > TA.

(9)

This rule may be read as follows: “for each A, for each B and for each TA, if
A and B are subject to a response formula and A is executed at time TA, then there
exists a TB after TA at which B is expected to be performed”.

Let us now consider the following KBspec fragment:

1 relation_formula(ask_for_payment, pay, response).
2 relation_formula(receive_spam, delete_spam, response).

During the execution, the SCIFF proof procedure rewrites the response Integrity
Constraint by considering the two response relations, obtaining:

H(performed(ask for payment), TA)
→E(performed(pay), TB) ∧ TB > TA.

H(performed(receive spam), TA)
→E(performed(delete spam), TB) ∧ TB > TA.

(10)

4.5 Equivalence between Integrity Constrains

When formalizing the different DecSerFlow template formulae, it becomes sometimes
important to know if two different specifications (in our case, two different Integrity
Constraints sets) are in some sense inter-changeable, i.e., roughly speaking, they
formalize the same concept. An emblematic example is the one in [33], where the
authors point out the equivalence of some negation formulae.

By using our framework, we can formally prove this concept of equivalence. In
particular, we will demonstrate that our proposed DecSerFlow templates formaliza-
tions verify the equivalences pointed out in [33].

It is important to note that the equivalence of two Integrity Constraints sets is a
particular case of the equivalence w.r.t. conformance of two interaction specifications
shown in Definition 2.7.

18

We briefly motivate this sentence by starting from the following so called “sep-
aration” hypotheses, which will be always exhibited by our rules: for each Integrity
Constraint of the proposed SDSF , the Integrity Constraint’s body cannot contain
any abducible (i.e. positive or negative expectation).

From this hypotheses follows that the goal does not affect the Integrity Con-
straints, and that the Integrity Constraints do not affect each other. The only way
to making them “interact” is, in fact, the goal or a rule’s head leads to the hypothe-
ses of an abducible and a matching abducible is contained in the body of another
rule 4 .

Let us suppose that S1 and S2 represent two (different) proposal for the for-
malization of some DecSerFlow template formulae, different by means of their In-
tegrity Constraints. The two specifications share both the set of abducible predicate
EDSF = {E,EN} and the knowledge base. If the specification satisfy the “separa-
tion” hypotheses, i.e. there is no rule’s body containing expectations (and hence

each rule triggers independently), then the proof of 〈KB, EDSF ,ICS1〉 ≡ S1 C≡ S2 ≡
〈KB, EDSF ,ICS2〉 reduces to prove the equivalence of the two Integrity Constraints
sets. Therefore, in the following we will say, with abuse of notation, that two In-
tegrity Constraints sets are equivalent w.r.t. conformance (ICS1

C≡ ICS2) to denote
equivalence of these kinds of specification.

Furthermore, under the “separation” hypotheses the Integrity Constraints enjoy
compositionality 5 w.r.t.

C≡, in the sense that

ICS1
C≡ ICS2 → ICS1 ∪ ICS3

C≡ ICS2 ∪ ICS3

As a consequence, if we want to prove whether two different rules could be inter-
changeably used within the DecSerFlow formalization SDSF , it is sufficient just to
consider them without taking into account the other Integrity Constraints.

5 Existence Formulae

In this section we will briefly describe DecSerFlow existence template formulae and
show how they may be translated into the SCIFF language.

5.1 Summary of the DecSerFlow Existence Formulae

DecSerFlow existence formulae are unary constraints over activities cardinality; a
brief description of them is given in table 1.

4For example, the rule H(a1, T1) → E(a2, T2)∧T2 > T1 affects the rule E(a2, T2) → EN(a3, T3)∧
T3 > T2.

5Roughly speaking, compositionality states that the semantics of a whole is given by the union
of the semantics of its parts.

19

Table 1. Existence Formulae in DecSerFlow
name description

A

0
absence A should not be performed.

A

N..*
existence N A should be performed at least N times.

A

0..N
absence N A should be performed at most N times.

A

N
exactly N A should be performed exactly N times.

5.2 Formalization of the Existence Formulae

Table 2 shows how the different DecSerFlow existence formulae could be formalized
by using the SCIFF language.

Table 2. Schema of the existence templates formalization

A

0
→ EN(performed(A), T)

A

N..*
→

∧N
i=1(E(performed(A), Ti) ∧ Ti > Ti−1)

A

0..N ∧N
i=1(H(performed(A), Ti) ∧ Ti > Ti−1) → EN(performed(A), T) ∧ T > TN

A

N
existence N(A) ∧ absence N(A)

We assume T0 = 0

As we have already pointed out, each policy of the model is mapped ino the
KBspec (by using a particular fact). The KBspec defines the structure of the model
under study, while KBDSF and ICDSF formalize the different template formulae.

Table 3 shows how the existence formulae of a DecSerFlow model could be rep-
resented in its corresponding KBspec.

5.2.1 Absence

The absence of an activity is simply modeled by imposing that its execution is
expected not to happen at all:

existence formula(A, absence)
→EN(performed(A), TA).

(11)

Thank to the universal quantification of the variable A, the Integrity Constraint

20

Table 3. Predicates to be used in the KBspec for specifying the existence formulae
of a DecSerFlow model

A

0
existence formula(A, absence) or existence formula(A, exactly N(0))

A

N..*
existence formula(A, existence N(N))

A

0..N
existence formula(A, absence N(N))

A

N
existence formula(A, exactly(N)) (with N > 0)

expresses that for each A, if A is subject to an absence formula, then A is expected
not to happen.

5.2.2 Existence N

The presence of the execution of A at least N times is imposed by generating N
different expectations about it. The difference between expectations is expressed as
a difference between their execution times.

In order to generate N different expectations about a certain event, with N not
known a priori, KBDSF provides the predicate expectN (X,N, Tfirst, Tlast), where
X is the event to be expected N times and Tfirst (Tlast respectively) is an optional
parameter representing the minimum (the maximum resp.) time at which one of
the expectations is fulfilled.

The Integrity Constraint is then simply:

existence formula(A, existence N(N))
→expect N(performed(A), N).

(12)

5.2.3 Absence N

The presence of at most N executions of A is modeled as an Integrity Constraint
whose body contains the happening of N different performed(A) and whose head
imposes that the N+1-th execution of A is forbidden (i.e. expected not to happen).

In a similar way than the expect N predicate, to express the happening of N dif-
ferent executions of A, KBDSF provides the predicate happenedN (X,N, Tfirst, Tlast),
where X is the event to be considered and Tfirst (Tlast respectively) the first hap-
pening time (the last resp.) of the series.

To forbid the N+1-th execution of A we have to consider the time at which the
last of the N considered events happens. This time is used to impose that further

21

performed(A) cannot happen after it:

existence formula(A, absence N(N))
∧ happened N(performed(A), N, Tfirst, Tlast)

→EN(performed(A), T)
∧ T > Tlast.

(13)

5.2.4 Exactly N

In order to express that A is expected to be executed exactly N times, it is possible
to combine together the absence N and the existence N formulae about A. The
existence N formula is satisfied when N executions of A happened. But these N
happened events trigger the absence N Integrity Constraint, generating the negative
expectation about further executions of A.

This mechanism is realized within the KBDSF by classifying the exactly N for-
mula both as an absence N and an existence N ones:

1 existence_formula(Activity, existence_N(N)) :-
2 existence_formula(Activity, exactly_N(N)),
3 N>0.
4
5 existence_formula(Activity, absence_N(N)) :-
6 existence_formula(Activity, exactly_N(N)),
7 N>0.

6 Relation Formulae

In this section we will briefly describe the DecSerFlow relation template formulae
and show how they may be translated into the SCIFF language.

6.1 Summary of the DecSerFlow Relation Formulae

For the sake of simplicity, for the moment we focus only on binary relation for-
mulae, which are positive relationships between two activities (see table 4 for their
brief description). In section 8 we will discuss how the formalization of these formu-
lae could be easily extended in order to deal with n-to-n relation formulae and to
consider deadlines.

6.2 Formalization of the Relation Formulae

Each relation formula of a DecSerFlow model is formalized inside the KBspec as a
fact of the type

relation formula(A,B, Type)

22

Table 4. Relation Formulae in DecSerFlow
name description

A B
responded
existence

if A is performed, then B has to be performed
either before or after A

A B coexistence if one of A or B are performed, the other one
has to be executed, too

A B response every time A is performed, B should be per-
formed after it

A B precedence if B is performed, A should have been per-
formed before it

A B succession
every execution of A should be followed by the
execution of B and each B should be preceded
by A

A B
alternate re-
sponse

A should be followed by B and, between the
execution of two activities A, there should be
at least one B

BA
alternate
precedence

B should be preceded by A and, between the
execution of two activities B, there should be
at least one A

A B
alternate
succession

It enforces both the alternate response and the
alternate precedence formulae, imposing that
the succession formula should hold between A
and B and that the execution of two activities
A (B respectively) has to be interleaved by the
execution of at least one B (A resp.)

A B
chain re-
sponse

The next activity after the execution of A
should be B

BA
chain prece-
dence

The first preceding activity before the execu-
tion of B should be A

A B
chain succes-
sion

Activities A and B should be always per-
formed next to each other

A B
mutual sub-
stitution

At least one of activities A and B should be
performed.

For example, relation formula(buy item, send receipt, chain succession) expresses
that a chain succession relation holds between the buy item and the send receipt ac-
tivities.

A first thing to note is that, as in the case of the exactly N existence formula,
some relation formulae are expressed by the combination of two other ones. In
particular, the coexistence formula is equivalent to two responded existence formulae,
inverse to each other, and each of the three “succession” formulae is expressed in
terms of its corresponding “response” and (inverse) “precedence” ones (e.g. the
chain succession formula between A and B is the combination of the chain response

23

between A and B and the chain precedence between B and A).
These equivalences are defined within the KBDSF :

1 relation_formula(A, B, responded_existence) :-
2 relation_formula(A, B, coexistence).
3
4 relation_formula(B, A, responded_existence) :-
5 relation_formula(A, B, coexistence).
6
7 relation_formula(A, B, response) :-
8 relation_formula(A, B, succession).
9

10 relation_formula(B, A, precedence) :-
11 relation_formula(A, B, succession).
12
13 relation_formula(A, B, alternate_response) :-
14 relation_formula(A, B, alternate_succession).
15
16 relation_formula(B, A, alternate_precedence) :-
17 relation_formula(A, B, alternate_succession).
18
19 relation_formula(A, B, chain_response) :-
20 relation_formula(A, B, chain_succession).
21
22 relation_formula(B, A, chain_precedence) :-
23 relation_formula(A, B, chain_succession).

Furthermore, we notice that each “response” formula has the same formaliza-
tion as the corresponding “precedence” one, except for the fact that the former
imposes forward temporal constraints (specifying what is expected after an event
occurrence), whereas the latter imposes backward temporal constraints (specifying
what is expected to have happened before an event occurrence).

6.2.1 Responded Existence

The responded existence formula states that when the source activity happens, then
the destination activity is expected, either before or after the source one (i.e. no
temporal constraint between the two activities execution times is imposed):

relation formula(A,B, responded presence)
∧ H(performed(A), TA)

→E(performed(B), TB).
(14)

24

6.2.2 Response

The response relation extends the responded existence one by imposing that when
the source activity happens, the destination has to happen after it. Therefore, it is
formalized by using a temporal constraint which states that the expected execution
time of the destination activity should be greater than the time at which the source
happens:

relation formula(A,B, response)
∧ H(performed(A), TA)

→E(performed(B), TB)
∧ TB > TA.

(15)

6.2.3 Precedence

As we have already pointed out, each of the precedence formula imposes the same
behaviour of the corresponding response one, but the temporal constraints are in-
verted. Thus, the precedence relation has the same formalization as the response
one, but the destination time must be lower than the source time:

relation formula(A,B, precedence)
∧ H(performed(A), TA)

→E(performed(B), TB)
∧ TB < TA.

(16)

6.2.4 Alternate Response

Following the description shown in table 4, we could formalize the alternate response
between two activities by imposing both:

• a response relation between them

• a second Integrity Constraint which preserves the interposition:

relation formula(A,B, alternate response)
∧ H(performed(A), TA)
∧ H(performed(A), TA2)
∧ TA2 > TA

→E(performed(B), TB)
∧ TB > TA ∧ TB < TA2.

(17)

25

time

A Alog
at least one B

at least one B
at least one B

response
response
interposition (1)

(a) Interposition by expecting b between two
a

time

A Blog
at least one B

A forbidden

response
(fullled)

interposition (2)

(b) Interposition by forbidding another a be-
tween an a and the (first) b after it

Figure 2. Two different perspectives about the representation of the alternate re-
sponse relation between two activities a and b.

Although correct, this formulation has a main problem: even if the relation is
a forward one (i.e. it constrains what has to be done after the happening of the
relation source), in (17) the expectation about the execution of B between two A is
backwards triggered only when the second A happens.

To face this issue, we give a different formalization of the alternate response
formula, using only one integrity contraint and, at the same time, overcoming the
above limit. The intuition is that the interposition of one activity (say, B) between
two other activities (say, A) could be expressed in two different ways: by directly
saying that between two A at least one B should be executed (Integrity Constraint
(17)), or by saying that the execution of a second A is forbidden between the first
A and the (first) execution of B after it (see also figure 2).

By adopting the second perspective, the formalization of the alternate response
relation is:

relation formula(A,B, alternate response)
∧ H(performed(A), TA)

→E(performed(B), TB)
∧ TB > TA

∧ EN(performed(A), TA2)
∧ TA2 > TA ∧ TA2 < TB .

(18)

Remark 6.1 The two formulations of the alternate response relation are equivalent
w.r.t. conformance.

Proof. Let us consider two activities a and b, with

relation formula(a, b, alternate response)

We have to prove that, for a and b,

(15) ∧ (17)
C≡ (18)

26

(15) ∧ (17) C← (18)
In order to disconfirm the implication, we have to find a counter-example, i.e. a log
which satisfies (18) but violates (15) or (17). The first thing to note is that, trivially,
(18) C→ (15). In fact, if (18) holds, we have two main possibilities:

• The log does not contain any execution of activity a; in this case, both the
Integrity Constraints are trivially satisfied (their bodies are false).

• The log contains one or more execution of activity a. In order to satisfy the
positive expectation about the execution of b after a in rule (18), for each a
the log must contain also a corresponding b after it. This event fullfills the
positive expectation of (18), but fullfills also (15).

As a consequence, the proof reduces to find a log which satisfies (18) and violates
(17).

To violate (17), the log must contain at least two executions of activity a (say,
H(performed(a), T1) and H(performed(a), T2), having T2 > T1), with no execution
of b between them. For both executions of a, the log must also satisfy the “response”
part of (18), i.e. it must contain at least one execution of b after T1 and one after
T2. Therefore, two different cases may arise:

• the log contains at least one performed(b) within the interval (T1, T2) and
at least one b after T2; however, this is impossible, since the execution of b
between the two a is forbidden by hypotheses.

• the log does not contain any performed(b) within the interval (T1, T2) and
contains at least one performed(b) after T2; in this case, the log satisfies the
following property: between all the eventual executions of b and the happening
of a (at time T1) there exists a second execution of a (the one at time T2).
However, this violates the negative expectation of (18), leading to contradic-
tion.

(15) ∧ (17) C→ (18)
Let us suppose, by absurdum, that there exists a log which satisfies (15) and (17)
but violates (18). To violate (18), the log must satisfy its body (i.e. must contain at
least one execution of activity a, say, at time T1) and violate its head. The head of
(18) is violated when the expectation about the execution of b after a or the negative
expectation about the execution of another a between a and b are violated.

The first possibility is clearly contradictory, because we are trying to violate the
same expectation to be fulfilled in (15), which constrains the log to contain also at
least one execution of activity b (say, at T2) after T1.

To verify the second possibility, the execution trace has to contain also a second
execution of a, say, at a time T3 between T1 and T2. However, the presence of this a

27

contradicts the hypotheses by violating (17), beacuse between T1 and T3 there does
not exist any execution of b. !

6.2.5 Alternate Precedence

The alternate precedence formula is treated in a similar way as the alternate re-
sponse. It could be formalized by imposing the precedence relation and the “inter-
position” rule (17), or by adopting the second approach, i.e. by using a variant of
(18):

relation formula(A,B, alternate precedence)
∧ H(performed(A), TA)

→E(performed(B), TB)
∧ TB < TA

∧ EN(performed(A), TA2)
∧ TA2 ∈ (TB , TA).

(19)

The equivalence between these two formulations can be proven in a very similar
way than the case of the alternate response.

6.2.6 Chain Response

An activity B is chain response of an activity A if the former belongs to the next
state of the latter.

In the SCIFF language, the notion of next state is not a first-class object (like
e.g. in linear temporal logic, by using the operator ©). However, SCIFF has an
explicit notion of time (or time stamp), which may be used in some sense to identify
execution states.

Let us consider two whatsoever activities, say, A and B. Basically, we consider
an happening of B at a time T2 to belong to the next state w.r.t. an happening of A
at a time T1 iff between these two times nothing happens (i.e. the interaction state
determined by the execution of A at T1 is not changed until T2).

Therefore, to express the chain response relation between A and B we say that
B is expected to happen after A and that, between the two activities, all events are

28

forbidden 6 .

relation formula(A,B, chain response)
∧ H(performed(A), TA)

→E(performed(B), TB)
∧ TB > TA

∧ EN(performed(X), T)
∧ T > TA ∧ T < TB .

(20)

6.2.7 Chain Precedence

An activity B is chain precedence of an activity A if it belongs to the previous state
of the latter (i.e. B is expected to happen before A and nothing can happen between
them):

relation formula(A,B, chain precedence)
∧ H(performed(A), TA)

→E(performed(B), TB)
∧ TB < TA

∧ EN(performed(X), T)
∧ T > TB ∧ T < TA.

(21)

6.2.8 Mutual Substitution

Considering two activities, the mutual substitution formula specifies that at least
one activity among them has to be performed. To formalize this condition, we make
use of an Integrity Constraint with a disjunction of expectation in the head:

relation formula(A,B,mutual substitution)
→E(performed(A), TA)
∨E(performed(B), TB).

(22)

7 Negation formulae

In this section we will briefly describe the DecSerFlow negation template formulae
and show how they may be translated into the SCIFF language.

6Note that variable X in (20) is universally quantified.

29

7.1 Summary of the DecSerFlow Negation Formulae

Negation formulae express the complementary behaviour w.r.t. relation ones. As
pointed out in [33], however, an important difference is that some negation formulae
are different ways to express the same policy, i.e. some negation formula are equiva-
lent w.r.t. conformance. Table 5 introduces the different types of negation formulae,
while figure 7.1 explicitly expresses the equivalences.

Table 5. Negation Formulae in DecSerFlow
name description

A B
responded
absence

if A is performed, then B cannot be per-
formed neither before or after A

A B not coexistence if one of A or B are performed, the other
one cannot be executed

A B
negation re-
sponse

when A is performed, B cannot be per-
formed after it

A B
negation prece-
dence

if B is performed, A should not have been
performed before it

A B
negation succes-
sion

the execution of A should not be followed
by the execution of B and each B should
not be preceded by A

A B
negation alter-
nate response

B cannot be performed between the execu-
tion of two activities A

BA
negation alter-
nate precedence

A cannot be performed between the execu-
tion of two activities B

A B
negation alter-
nate succession

It enforces both the negation alternate re-
sponse and the negation alternate prece-
dence formulae, imposing that two A can-
not be interleaved by the execution of B
and viceversa.

A B
negation chain
response

B cannot be performed directly after A
(i.e. A’s next activity should be different
than B)

BA
negation chain
precedence

A cannot be the first preceding activity be-
fore B

A B
negation chain
succession

Activities A and B cannot never be per-
formed next to each other

In the following, we will give the formalization of negation formulae and prove
the equivalence shown in figure 7.1. Note that, even if equivalent w.r.t. conformance,
some formulae are preferrable to others, because they explicitly abduces more infor-
mations about the log structure, i.e. they give more feedbeck about the interaction
to the user.

30

A B

A B

A B A B

A B

A B B

A B

A

Figure 3. Equivalences w.r.t. conformance between negation formulae.

7.2 Formalization of the Negation Formulae

Similarly to the case of relation formulae, each negation formula of a DecSerFlow
model is formalized inside the KBspec as a fact of the type

negation formula(A,B, Type)

Furthermore, also some negation formulae are a composition of other ones:

1 negation_formula(A, B, responded_absence):-
2 negation_formula(A, B, not_coexistence).
3
4 negation_formula(B, A, responded_absence):-
5 negation_formula(A, B, not_coexistence).
6
7 negation_formula(A, B, negation_response):-
8 negation_formula(A, B, negation_succession).
9

10 negation_formula(B, A, negation_precedence):-
11 negation_formula(A, B, negation_succession).
12
13 negation_formula(A, B, negation_alternate_response):-
14 negation_formula(A, B, negation_alternate_precedence).
15
16 negation_formula(A, B, negation_alternate_response):-
17 negation_formula(A, B, negation_alternate_succession).
18
19 negation_formula(B, A, negation_alternate_precedence):-
20 negation_formula(A, B, negation_alternate_succession).
21
22 negation_formula(A, B, negation_chain_response):-
23 negation_formula(A, B, negation_chain_succession).

31

24
25 negation_formula(B, A, negation_chain_precedence):-
26 negation_formula(A, B, negation_chain_succession).

The main difference w.r.t. relation formulae is that the negation alternate re-
sponse and the negation alternate precedence express exactly the same behaviour
(namely the absence of an activity between two executions of another one).

7.2.1 Responded Absence

The responded absence formula forbids the execution of a given activity when an-
other one is performed:

negation formula(A,B, responded absence)
∧ H(performed(A), TA)

→EN(performed(B), TB).
(23)

7.2.2 Equivalence w.r.t conformance between the Responded Absence
and the Not Coexistence formulae

Given two activities a and b, the proof of equivalence w.r.t. conformance between
the responded absence and the not coexistence formulae reduces to prove that

H(performed(a), Ta) → EN(performed(b), Tb) (24)
C≡

H(performed(b), Tb) → EN(performed(a), Ta) (25)

Proof. Since the two formulations are completely symmetrical, we skecth only
the proof of one side of the equivalence.
(24) C→(25)
Let us consider, by absurdum, that there exists a log which satisfies (24) and violates
(25). In order to violate (25), the log must contain the execution of both activities
b and a. The presence of a performed(a) in the log triggers (24), generating a
negative expectation about the execution of activity b, which is however part of the
execution trace, thus leading to contradiction. !

7.2.3 Negation Response

The negation response extends the responded absence one by saying that the desti-
nation is forbidden after the execution of the source:

32

negation formula(A,B, negation response)
∧ H(performed(A), TA)

→EN(performed(B), TB)
∧ TB > TA.

(26)

7.2.4 Negation Precedence

The negation precedence inverts the temporal constraint of the negation response
by specifying that the destination is forbidden before the execution of the source:

negation formula(A,B, negation response)
∧ H(performed(A), TA)

→EN(performed(B), TB)
∧ TB < TA.

(27)

7.2.5 Equivalence w.r.t. conformance between the Negation Response
and the inverse Negation Precedence formulae

Given two activities a and b, we have to prove that specifying that b is a negation
response of a is equivalent w.r.t. conformance to specifying that a is a negation
precedence of b, i.e.:

H(performed(a), Ta) → EN(performed(b), Tb) ∧ Tb > Ta (28)
C≡

H(performed(b), Tb) → EN(performed(a), Ta) ∧ Ta < Tb (29)

Proof.
(28) C→(29)
To violate (29), the log must contain the happening of performed(b), say, at a time
T1, and the execution of activity a at a previous time w.r.t. T1 (i.e. at a time
T2 < T1). The happening of a performed(a) at time T2 triggers the negation re-
sponse, and therefore a negative expectation about a consequent execution of b is
abduced. This expectation is violated by the happening of performed(b) at time
T1, and thus it is impossible to verify (28) by violating (29) at the same time.

(28) C←(29)
Trivially provable by applying the same procedure adopted above. !

33

7.2.6 Negation Alternate Response

Following the natural language description, an activity B is negation alternate re-
sponse of another activity A if between two different execution of A activity B is
not performed.

Therefore, a possible formalization of the negation alternate response could be,
in a straightforward way:

negation formula(A,B, negation alternate response)
∧ H(performed(A), TA)
∧ H(performed(A), TA2)
∧ TA2 > TA

→EN(performed(B), TB)
∧ TB ∈ (TA, TA2).

(30)

This rule formalizes the negative version of the interposition Integrity Constraint
(rule (17)). As in the case of alternate response, however, this formalization is not
fully “forward”, because it triggers only when a second execution of activity A
happens, generating a negative expectation backwards in time (namely before TA2).

Hence, we would express the negative interposition formula by adopting a dif-
ferent approach. Let us suppose that, in the log, an activity A has been performed.
If no B is executed after it, the negative interposition is preserved. If instead the
log contains also the execution of B after A, the interposition is fulfilled only if no
more A are performed after B.

Thus, a completely forward formulation of the negation alternate response is the
one which takes into account the case of an activity B performed after the execution
of A, forbidding the execution of further A:

negation formula(A,B, negation alternate response)
∧ H(performed(A), TA)
∧ H(performed(B), TB)
TB > TA

→EN(performed(A), TA2)
∧ TA2 > TB.

(31)

Remark 7.1 The two formulations of the negation alternate response are equivalent
w.r.t. conformance.

Proof. We have to prove that, considering an activity b negation alternate re-
sponse of another activity a, (30)

C≡(31) for them.

34

(30) C→(31)
As usual, we try to find a log which violates (31) and satisfies (30). (31) is violated
when the log contains the sequence performed(a), performed(b), performed(a)
(at, say, times T1, T2 and T3, with T3 > T2 > T1). The execution of two instances of
activity a triggers rule (30) therefore imposing that no b is executable inside the time
interval (T1, T3). However, the execution of b at time T2 contradicts this expectation.

(30) C←(31)
Trivially provable by following the same procedure: to violate (30) the log has to
contain the happening of the sequence performed(a), performed(b), performed(a),
which is evaluated as non conformant by (31). !

7.2.7 Negation Chain Response

To formalize the negation chain response formula between two activities A and B
we have to specify that the first following activity after A cannot be B. Basically,
we make use of the chain response formalization, by imposing that the next activity
w.r.t. A must be different than B. Moreover, we must taking into account also the
possibility of A being the last activity of the execution trace. The two alternative
cases are modeled by using a disjunction in the rule’s head:

negation formula(A,B, negation chain response)
∧ H(performed(A), TA)

→E(performed(X), TX)
∧ TX > TA

∧ EN(performed(Y), TY)
∧ TY ∈ (TA, TX)
∧ X)= B

∨EN(performed(X), TX)
∧ TX > TA.

(32)

7.2.8 Negation Chain Precedence

Similarly to the negation chain response, the negation chain precedence between two
activities A and B is formalized by specifying either that A has a first preceding
activity which cannot be B or that A is the first activity of the log (i.e. it does not
have a preceding activity at all).

35

negation formula(A,B, negation chain precedence)
∧ H(performed(A), TA)

→E(performed(X), TX)
∧ TX < TA

∧ EN(performed(Y), TY)
∧ TY ∈ (TX , TA)
∧ X)= B

∨EN(performed(X), TX)
∧ TX < TA.

(33)

7.2.9 Equivalence w.r.t. conformance between the Negation Chain Re-
sponse and the inverse Negation Chain Precedence formulae

Given two activities a and b, we have to prove that specifying that b is a negation
chain response of a is equivalent w.r.t. conformance to specifying that a is a negation
chain precedence of b, namely

H(performed(a), Ta) → E(performed(X), TX) ∧ TX > Ta (34)
∧EN(performed(Y), TY) ∧ TY ∈ (Ta, TY) ∧ X)= b

∨ EN(X,TX) ∧ TX > Ta

C≡
H(performed(b), Tb) → E(performed(X), TX) ∧ TX < Tb (35)

∧EN(performed(Y), TY) ∧ TY ∈ (TX , Tb) ∧ X)= a

∨ EN(X,TX) ∧ TX < Tb

Proof. As in the previous cases, we prove the two sides of the equivalence by
contradiction.

(35) C→(36)
Rule (36) is violated by an execution traces if:

• It contains the execution of activity b, but not as the first one.

• Being not the first activity, b has, in fact, a first preceding activity, and this
activity is just a.

36

Hence, the considered log contains the execution of activity a followed by b as its
next activity, and this means that the negation chain response rule (35) will evaluate
the log as non conformant.

(35) C←(36)
Similarly to the just considered case, (35) is violated by an execution traces if it
contains the execution of an activity a which cannot be the last one, but is imme-
diately followed by the execution of b. However, this behaviour violates rule (36),
which specifies that a should not be the immediately preceding activity of b. !

8 Proposed extensions of DecSerFlow: a first step

In this section we propose some extensions of the basic DecSerFlow formulae (i.e.
existence formulae and binary relation and negation formulae), namely:

• relation and negation formulae considering compositions (disjunctions and con-
junctions) of activities, following what has been proposed in [33];

• temporal constraints as a further formula parameter.

8.1 Temporal constrained formulae

Since the SCIFF framework treats explicitly time variables, supporting the speci-
fication of temporal constraints as CLP constraints, we could extend DecSerFlow
policies with this feature.

We have identified some temporal constraints templates which could be useful
for a DecSerFlow user (see figure 4):

• after(N) template (with N > 0), to specify that an activity has to be executed
after at least N time units w.r.t. another one;

• before(N) template (with N < 0), to specify that an activity has to be exe-
cuted at least before N time units w.r.t. another one;

• between(N1, N2) template, to specify that an activity has to be executed be-
tween N1 and N2 time units after (if N1 ≥ 0 and N2 > 0) or before (if N1 < 0
and N2 ≤ 0) another one;

• equals(N) template, to impose that an activity is executed exactly N time
units after (if N ≥ 0) or before (if N < 0) another one.

Figure 4 highlights also that the different DecSerFlow formulae are implicitly
associated to some of this temporal constraints templates. Basically, we could fac-
torize the different relation formulae (and, in a similar way, the different negation

37

after(0)

after(N) N>0

T+N

H(perform(some activity), T)

before(N) N<0

T+N

before(0)

between(N1,N2) N1>=0, N2>0

T+N1 T+N2

T+N1 T+N2
between(N1,N2) N1<0, N2<=0

always
-existence formulae
-responded existence formula
-responded absence formula

"response" formulae

"precedence" formulae

equals(N) N>=0

T+Nequals(N) N<0

T+N

Figure 4. Temporal constraints templates for atomic activities

formulae) in three families, and then express all the relations within a family by
using the same rule template but changing the temporal constraint used in it. See
table 6 for a sketch of this factorization.

Table 6. Factorization of the different relation formulae
family temporal constraint

responded existence simple always
response simple after(0)

precedence simple before(0)
alternate response alternate after(0)

alternate precedence alternate before(0)
alternate chain response chain after(0)

alternate chain precedence chain before(0)

By using this extended formalization, we could for example specify that after a
user price request, then the seller should answer within 5 time units by inserting in

38

the KBspec the following fact:

relation formula(price request, price answer, response, before(5))

will be rewritten by SCIFF as

relation(price request, price answer, simple, between(0, 5))

When the price request happens, say, at time T1, then SCIFF abduces an expectation
about the happening of the price answer at a time T2 such that T2 > T1 + 0 and
T2 < T1 + 5.

Temporal constraints could be used also in conjunction with existence formulae,
for example to specify that the check stock activity should be performed at least three
times within 500 time units w.r.t. the beginning of the execution (by using a fact of
the type existence formula(check stock, existence N(3), before(500)), where 500
is treated, in this case, as an absolute time).

8.2 Formulae with composition of activities

As described in [33], DecSerFlow relationships could be easily extended to deal
with more activities. The authors propose, for example, to support relationships
with multiple outgoing arcs. The intended meaning is, in this case, disjunction of
activities as target of the relationship.

Furthermore, it could be interesting to specify also conjunction of activities; this
feature could make possible to represent that the seller must send a receipt to the
client after having received both the payment and the warehouse acceptance.

Table 7 summarizes how disjunction and conjunction of activities could be used
to specify complex relationships and what interaction patterns 7 they realize. These
patterns could be implemented by applying minor changes to the Integrity Con-
straints proposed for binary formulae 8 .

Table 7. Meaning of relationships with composite activities
Symbol Relationship Source Relationship Target

conjunction ∧ Synchronization Parallel Split
disjunction ∨ Simple Merge Deferred Choice

Note that DecSerFlow indirectly already supports disjunction in the sources and
conjunction in the targets through relationships replication. For example, designing
a DecSerFlow model which contains a response relation between activities a and b

7We use the term “interaction pattern” to distinguish it from the workflow patterns [34]. In
fact, in this context we consider pattern between activities and not between flows.

8We do not report here how these extensions are actually being implemented within SDSF .

39

S1

Sn

T1

T2

Tm

S1

... ...

source composition tag:
∨ (disjunction)
∧ (conjunction)
nothing (1 source)

target composition tag:
∨ (disjunction)
∧ (conjunction)
nothing (1 target)

(a) Schema of an extended relationship

customer
price proposal refuse

accept
warehouse

item available

∧ ∨

(b) An example of extended response

Figure 5. A preliminary proposal for extended relationships with composite activities

and a response relation between a and c is the same as specify a unique formula
whose source is a and whose target is the conjunction between b and c. However,
having these features as first-class objects could be useful to the aim of specifying
DecSerFlow models in a simple and concise manner and to factorize similar policies.

In order to support the two different types of source and target compositions
of activities, however, we need to extend the DecSerFlow notation of relationships
to explicitly take into account them. Figure 5(a) shows a preliminary composition
representation proposal. When a relationships has two or more sources and/or
targets, then a circle in the middle is added. The circle contains a mark for the
relationship sources (targets respectively) to represent how sources (resp. targets)
are composed:

• ∧ for conjunction;

• ∨ for disjunction;

• nothing if the relationship has only one source (resp. target).

An example of extended response is shown in figure 5(b); it states that, after
having received both a price proposal from the customer about an item and an
acknowledgement from the warehouse about the availability of an item, then the
seller should choose to accept or refuse customer’s offer.

By allowing a composite conjunction of activities as a source, we have to extend
also the handling of temporal constraints. Let us consider for example the extended
response of figure 5(b): the execution of the refuse or acceptance activities should
happen after both the source activities have been performed, i.e. after the execution
time of the last activity of the source. An extended precedence relation with conjunct

40

after(0)

after(N) N>0

Tc+N

H(start(some activity), Ts)

before(N) N<0

Ts+N

before(0)

between(N1,N2) N1>=0, N2>0

Tc+N1 Tc+N2

Ts+N1 Ts+N2
between(N1,N2) N1<0, N2<=0

H(complete(some activity), Tc)

always

equals(N) N>=0

Tc+Nequals(N) N<0

Ts+N

Figure 6. Temporal constraints templates for non-atomic activities

source activities would exhibit the opposite behaviour (i.e. the target would be
expected to be performed before the time of the first source activity).

Note that this behaviour resembles the case of a non-atomic activity: we could
consider the conjunction of a set of source activities as a single non-atomic activity,
with the following features:

• its start time is the execution time of the first (atomic) activity in the series;

• its completion time is the execution time of the last (atomic) activity in the
series.

Figure 6 shows how the proposed temporal constraints templates are affected by
considering non-atomic activities (hence also conjunctions of atomic activities).

Finally, an example which mix composite activities and temporal constraints is
shown figure 7. The simple DecSerFlow model represents the invitation fragment of
a screening protocol. After having invited a patient, the screening center waits for a
positive or negative response (but not both) within 7 days; if no answer is received
within this deadline, on the 8th day a new invitation is sent.

41

patient
invitation

ack

before(8)

refusal

before(8)
equals(8)

∨

Figure 7. A simple DecSerFlow model with composite activities and temporal con-
straints

9 The Acme Travel Example

In this section we show how the example introduced in [33] could be represented in
our framework and how SCIFF is able to perform the conformance verification on
a simple execution trace.

9.1 Formalization of the Acme Model

The Acme travel example is shown in figure 8 (for its complete description, the
interested reader could refer to [33]).

Its mapping into the SCIFF framework is straightforward: we have just to com-
pile a knowledge base KBspec specifying the structure of the model. The entire
translation is listed in table 9.1; some relation and negation formulae use an extended
notation, to directly represent disjunction or conjunction of targets. Furthermore,
note that an equivalent formalization could be obtained by imposing negation suc-
cessions instead of negation responses (we have indeed seen that the two formulae
are equivalent w.r.t. conformance). It is worth noting also that the presence of a
disjunction within a succession formula (see line 2 of the specification 9.1) is cor-
rectly interpreted by SCIFF as a deferred choice following the response side, and as
a simple merge following the precedence one.

9.2 Conformance evaluation on a simple execution trace

We now briefly describe how SCIFF is able to prove conformance of an execution
trace w.r.t. the Acme Travel example. In the following, we will use a compact
notation to represent disjunction of expectations.

42

Figure 8. Example of a DecSerFlow model [33]

Initially, SCIFF abduces a set of expectations about the (existence side of the)
exactly N formula 9 and the mutual substitution formula of the Acme example,
stating that one receive message is expected and one among the credit card or the
notify failure messages is expected too:
PEND0 = { E(performed(receive), Tr), (by (12))

E(performed(credit card), Tcc)
∨ E(performed(notify failure), Tnf)} (by (22))

FULF0 = ∅
Let us now consider a simple log, to the aim of analyzing the evolution of the

SCIFF proof procedure when proving if it is conformant or not:

1. H(performed(receive), 1). The exchange of the receive message at time 1 sat-
isfies the corresponding expectation, triggering at the same time the (absence
side of the) corresponding exactly N formula (by forbidding further exchanges
of this message). It also leads, by applying the response side of its succession

9Remember indeed that some template formulae are defined in terms of two other ones.

43

Table 9.1 SCIFF representation of the Acme Travel example
1 existence_formula(receive, exactly_N(1)).
2 relation_formula(receive, or([hotel,airline]), succession).
3
4 relation_formula(hotel, or([failed_hotel,booked_hotel]), succession).
5
6 relation_formula(airline, or([failed_airline,booked_airline]), succession).
7
8 existence_formula(compensation, absence_N(1)).
9 negation_formula(compensation, and([airline,hotel]), negation_response).

10 relation_formula(compensation, or([failed_hotel,failed_airline]), precedence).
11
12 existence_formula(credit_card, absence_N(1)).
13 relation_formula(credit_card, or([booked_hotel,booked_airline]), precedence).
14 negation_formula(credit_card, notify_failure, not_coexistence).
15 negation_formula(credit_card, and([airline,hotel]), negation_response).
16 relation_formula(credit_card, notify_booked, succession).
17 relation_formula(credit_card, notify_failure, mutual_substitution).
18
19 existence_formula(notify_booked,absence_N(1)).
20
21 existence_formula(notify_failure, absence_N(1)).
22 relation_formula(notify_failure, compensation, precedence).

formula (line 2 in 9.1), to expecting the disjunction of hotel or airline booking
at a time greater than 1:
PEND1 = { EN(performed(receive), Tr) ∧ Tr > 1, (by (13))

E(performed(hotel), Th) ∧ Th > 1
∨ E(performed(airline), Ta) ∧ Ta > 1, (by (15))

E(performed(credit card), Tcc)
∨ E(performed(notify failure), Tnf)}

FULF1 = { E(performed(receive), 1)}

2. H(performed(airline), 4). This event fulfills the expectation about the book-
ing request, generating a backward (successfull) expectation to ensure that
a receive message has been exchanged before it (by applying the precedence
side of the booking succession formula, see line 2 in 9.1); moreover, it triggers
the succession formula (line 6) which states that the indication of a correct or
failed booking is expected:

44

PEND2 = { EN(performed(receive), Tr) ∧ Tr > 1,
E(performed(booked airline), Tb) ∧ Tb > 4

∨ E(performed(failed airline), Tf) ∧ Tf > 4, (by (15))
E(performed(credit card), Tcc)

∨ E(performed(notify failure), Tnf)}
FULF2 = { E(performed(receive), 1),

E(performed(airline), 4) ∧ 4 > 1,
E(performed(receive), 1) ∧ 1 < 4} (by (16))

3. H(performed(booked airline), 10). The happening of a positive feedback
about the booking satisfies the expectations generated at the previous step.
Furthermore, the precedence side of the booking indication formula (line 6) is
triggered and satisfied (a preceding corresponding request is actually contained
in the execution trace).

PEND3 = { EN(performed(receive), Tr) ∧ Tr > 1,
E(performed(credit card), Tcc)

∨ E(performed(notify failure), Tnf)}
FULF3 = { E(performed(receive), 1),

E(performed(airline), 4),
E(performed(booked airline), 10) ∧ 10 > 4,
E(performed(airline), 4) ∧ 4 < 10} (by (16))

4. H(performed(credit card), 12). The charging of the successful booking is
source of many formulae (lines 12-17). More specifically, its happening satisfies
the mutual substitution formula (line 17) and triggers:

• the absence N formula (line 12), forbidding further payments;

• a backward expectation about the presence of a positive answer w.r.t. the
booking of an airline or hotel before time 12 (line 13), actually fulfilled
by the execution trace;

• a negative expectation to impose the non existence of a failure notification
in the log (line 14);

• two forward negative expectations to impose that no more hotel and
airline bookings can be requested (line 15);

• an expectation about the last message of the execution, i.e. about the
presence of a booking notification back to the client after time 12 (re-
sponse side of the succession formula at line 16).

45

PEND4 = { EN(performed(receive), Tr) ∧ Tr > 1,
EN(performed(credit card), Tcc) ∧ Tcc > 12, (by (13))
EN(performed(notify failure), Tnf), (by (23))
EN(performed(hotel), Th) ∧ Th > 12, (by (26))
EN(performed(airline), Ta) ∧ Ta > 12, (by (26))
E(performed(notify booked), Tnb) ∧ Tnb > 12} (by (15))

FULF4 = { E(performed(receive), 1),
E(performed(airline), 4),
E(performed(booked airline), 10),
E(performed(credit card), 12),
E(performed(booked airline), 10) ∧ 10 < 12} (by (16))

5. H(performed(notify booked), 18). The booking notification satisfies the ex-
pectation generated at the previous step, generating a backward successful
expectation about the presence of a credit card payment before it.
PEND5 = { EN(performed(receive), Tr) ∧ Tr > 1,

EN(performed(credit card), Tcc) ∧ Tcc > 12, (by (13))
EN(performed(notify failure), Tnf),
EN(performed(hotel), Th) ∧ Th > 12, (by (26))
EN(performed(airline), Ta) ∧ Ta > 12, (by (26))

FULF5 = { E(performed(receive), 1),
E(performed(airline), 4),
E(performed(booked airline), 10),
E(performed(credit card), 12)}

Note that, at this point, there does not exists a pending positive expectation any
more. This means that, if the execution trace is completed, SCIFF evaluates it as
conformant:

• all the positive expectations have been fulfilled by a matching happened event;

• no more events will happen and, therefore, all the negative expectations are
fulfilled, too.

Let us now instead considering the case in which the log still contains an hap-
pened event, namely

H(performed(hotel), 20)

This event clearly violates the Acme DecSerFlow model, since no more booking
request could be made after having executed the credit card payment.

SCIFF correctly detects the non conformance; since the happening of an hotel
booking request at time 20 matches a negative expectation contained in the set
PEND5, i.e.

EN(performed(hotel), Th) ∧ Th > 12

46

the execution trace is evaluated as non conformant (see Definition 2.5).

10 Conclusions and Future Works

In this preliminary work we have exploited a computational logic-based framework,
called SCIFF, to the aim of giving an abductive formalization to DecSerFlow. We
have shown how the different DecSerFlow template formulae could be translated
into general SCIFF rules (valid for all models), making possible to formalize a
DecSerFlow model by simply compiling a corresponding knowledge base.

Furthermore, we have sketched how the different DecSerFlow formulae could
be extended in order to deal with composite activities (following what has been
proposed in [33]) and to explicitly express temporal constraints.

A first implementation of “basic” formulae (i.e. existence formulae and binary
relationships) has been developed; the implementation of the extended formulae has
partially been implemented and is yet under study.

As future works, after having completed our formalization and having extensively
tested and verified it, we foresee two main research directions:

• To exploit how the SCIFF formalization could be used not only for verification
purposes, but also to properly enact the execution of one or more services
following a DecSerFlow model. A preliminary study of using SCIFF to animate
interacting agents can be found in [1].

• To consider also content data of activities and content-based choices. Anyway,
note that the formalization of these aspects is seamlessly addressed by our
framework (through CLP constraints and the Prolog knowledge base).

Finally, we envisage a third research direction, whose aim is to learn a set of
SCIFF Integrity Constraints from a set of execution traces. Sometimes, the interac-
tion protocol to be modeled is not fully formalized; this may cause the corresponding
DecSerFlow model to be incomplete, thus leading to misclassifications (conformant
service interaction execution traces classified as non conformant and vice versa).

In order to support the definition of the DecSerFlow model in such situations,
we are working on a methodology for analyzing a set of execution logs, manually
labeled as conformant or not, and learning the minimal set of SCIFF rules capable
to correctly classify them. The learned constraints are very similar to the ones
proposed in this work for mapping the different DecSerFlow template formulae, so
the basic idea is to translate them back to a DecSerFlow format. The interested
reader is referred to [26] for a preliminary work on this topic.

47

11 Acknowledgements

This work has been partially supported by the MIUR PRIN 2005 project Specifica-
tion and verification of agent interaction protocols and by the MIUR FIRB project
TOCAI.IT, Tecnologie Orientate alla Conoscenza per Aggregazione di Imprese in
Internet. We would like to thank Prof. van der Aalst for the valuable discussion at
the BPM 2006 conference and for having inspired this work. Furthermore, a special
thank goes to Marco Alberti, Marco Gavanelli, Evelina Lamma and Paolo Torroni,
who have actively contributed to the work here presented.

48

A Abductive Event Calculus

AEC [13] is a classical application of abductive proof-procedures, and it can be used
for planning in agent systems [22, 28]. SCIFF easily accomodates AEC; we will
give two different formulations of it. The first one, developed by Marco Gavanelli,
is particularly suitable to treat planning problems, whereas the latter could be use-
ful when proving conformance of an execution trace (e.g. because a non-atomic
approach for activities is adopted).

In order to understand AEC we must give some background.

A.1 Event Calculus

The Event Calculus (EC) [24, 29] is a framework to reason about properties (called
fluents) that may hold in a system inside time intervals. The EC consists of four
ingredients:

1. A set of known causal relations, stating which events initiate or terminate the
validity of a fluent. For example, in the description of a robot in the block
world we can imagine the fluents ontable(X) (block X is on the table) and
holding(X) (the robot holds in its hand the block X). Rules could state that
if the robot is holding the block, then the action of putting a block on the
table initiates the fluent “block X is on the table”:

initiates(putdown(X), ontable(X), T) ← holdsat(holding(X), T).

On the contrary, the fluent “block X is on the table” is terminated by the
action of picking X up. Therefore the definition:

terminates(pickup(X), ontable(X)).

2. The initial situation provided by the initially predicate. For example, the
robot is initially holding block number 1:

initially(holding(1)).

3. A narrative of happened events; for example

happens(putdown(1), 3).
happens(pickup(1), 5).

4. The general theory of EC, defined as a set of domain-independent rules which
state that a fluent holds at a given time if it was either initially true, or if it

49

has become true after an event, and it has not ever since been clipped, i.e., its
truth has not been terminated in the meanwhile.

holdsat(F, T) ← initially(F), not clipped(0, F, T).
holdsat(F, T) ← happens(E,T1), initiates(E,F),

not clipped(T1, F, T).
clipped(T1, F, T2) ← happens(E,T), T1 < T < T2, terminates(E,F).

(36)

Based on this theory, by deduction one can infer for instance that the fluent
ontable(1) is true at time 4 and it is false at times 2 and 10.

A.2 Abductive Event Calculus in SCIFF

Building on this result, Eshghi [13] pointed out that planning problems can be solved
by interpreting the event calculus in abduction. The user states the initial situation
(through the initially predicate) and a goal, typically requiring the validity of some
fluents in the final situation. The narrative of events is no longer given, but is
considered as a set of actions that should be performed in order to obtain the goal;
i.e., happens atoms are abducible. In the example, if the goal was

holdsat(ontable(1), 10) (37)

the Abductive Event Calculus (AEC) would reply that in order to obtain the goal,
the putdown action should be performed before time 10.

Many other authors address planning through abduction. Some of them con-
sider the precedence relationship between events to be abducible [30]. Others use a
discrete representation of time and thus rely on efficient constraint solvers [21, 12].

The SCIFF framework easily accommodates the AEC. Additionally, it keeps
happened events separate from expected events, which we consider to be an im-
provement, in terms of representation: what is supposed to happen, not necessarily
coincides with what is actually happening. An agent could plan to perform an ac-
tion, but the action might fail. In the blocks world example, a block could slip,
thus making a pickup action unsuccessful. The robot expected to pickup the block,
but the actual action did not match. This unexpected event generates the need for
alternative possible course of events, such as a retrial, or a totally different plan.

Therefore, in this implementation of AEC via SCIFF, plans are defined through
E predicates rather than H events. If the agent wants to get to a goal state, it
should perform plan for and execute actions, which makes such actions expected : by
no means, the actions in the plan are already happened at planning time.

Positive E expectations state actions that should be taken in order for the plan
to be effective. Negative EN expectations (which do not exist in previous abductive
event calculus proposals) inform about those actions that should not be executed in
order for the plan to be successful.

50

Table A.1 Abductive Event Calculus theory in SCIFF.

ICS :
unclipped(T1, F, T2), terminates(A, F) → EN(A, T), T1 < T < T2.

KB :
holdsat(F, T) ← initially(F),unclipped(0, F, T).
holdsat(F, T) ← E(A, T1), 0 < T1 < T, initiates(A, F),unclipped(T1, F, T).

The SCIFF implementation of the AEC theory is shown in Tab. A.1.
The rules in the KB are direct translation of the first two in Eq. (36). We intro-

duce a new abducible predicate, unclipped, to represent the not(clipped) literals
found in the classical event calculus. In order for the plan to be successful, the fluent
should not be clipped in the given time interval. This is ensured by the application
of the integrity constraint in Tab. A.1, which imposes that every event that would
terminate the validity of the fluent is expected not to happen (in the given time
interval). This mechanism lets us exploit better the underlying constraint solver,
which is tailored to reason about positive and negative expectations. Moreover, the
planner will explicitly provide, in the form of negative (EN) expectations, which
actions should be avoided in order not to endanger the execution of the plan.

In the blocks world example SCIFF provides

E(putdown(1), T1),EN(pickup(1), T2), T1 < T2 < 10

i.e., in order to achieve the goal holdsat(ontable(1), 10), expressed in Eq. (37), the
robot should drop block 1, and avoid picking it up before time 10. The times
of these planned actions are given in terms of domains (intervals), thanks to the
underlying constraint solver. In order to obtain punctual times, one can anytime
resort to grounding. This very useful feature is present in SCIFF as well as in other
frameworks of literature, such as ACLP [20] and A-System [21].

A.3 Abcutive Event Calculus in SCIFF: another proposal

The AEC formalization shown in the previous section is suitable to deal with plan-
ning problems. However, we are also interested in finding a good formulation capable
to capture run-time aspects, i.e. to automatically infer the validity of fluents by an-
alyzing an execution trace.

To this aim, we make use of four different Integrity Constraints:

1. If a fluent initially holds, then it is unclipped from the initial time (i.e. 0)
till an unknown time Tf ;

51

2. When an event happens at a certain time (say, T), and this event initiates a
certain fluent, then the fluent becomes unclipped from T till a time Tf ;

3. If a fluent is unclipped from T1 to T2, then one of the events capable to
terminate the fluent is expected to happen at time T2;

4. If a fluent is unclipped from T1 to T2, then no event which terminates the
fluent can happen inside the time interval (T1, T2).

The SCIFF implementation that follows this point of view is described in table
A.2.

Table A.2 Another formulation of Abductive Event Calculus theory in SCIFF.

ICS :
initially(F) → unclipped(0, F, Tf) ∧ Tf > 0
H(Ev, T) ∧ initiates(Ev, F) → unclipped(T, F, Tf) ∧ Tf > T

unclipped(T1, F, T2) → initiates(Ev, F) ∧ E(Ev, T2).
unclipped(T1, F, T2) ∧ terminates(Ev, F) → EN(Ev, T) ∧ T > T1 ∧ T < T2.

KB :
holdsat(F, T) ← initially(F),unclipped(0, F, T2), T < T2.

holdsat(F, T) ← E(A, T1), 0 < T1 < T, initiates(A, F),unclipped(T1, F, T2), T < T2.

References

[1] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, and P. Mello. A verifi-
able logic-based agent architecture. In Floriana Esposito, Zbigniew W. Ras,
Donato Malerba, and Giovanni Semeraro, editors, Foundations of Intelligent
Systems, 16th International Symposium, ISMIS 2006, Bari, Italy, September
27-29, 2006, Proceedings, volume 4203 of Lecture Notes in Computer Science,
pages 188–197. Springer, 2006.

[2] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, M. Montali,
S. Storari, and P. Torroni. Computational logic for run-time verification of web
services choreographies: Exploiting the socs-si tool. In Mario Bravetti, Manuel
Núñez, and Gianluigi Zavattaro, editors, Web Services and Formal Methods,
Third International Workshop, WS-FM 2006 Vienna, Austria, September 8-9,
2006, Proceedings, volume 4184 of Lecture Notes in Computer Science, pages
58–72. Springer, 2006.

52

[3] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni.
Compliance verification of agent interaction: a logic-based software tool. Ap-
plied Artificial Intelligence, 20(2-4):133–157, February-April 2006.

[4] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni.
Verifiable agent interaction in abductive logic programming: the sciff proof-
procedure. Technical Report DEIS-LIA-06-001, DEIS, Bologna, Italy, 2006.

[5] M. Alberti, M. Gavanelli, E. Lamma, F. Chesani, P. Mello, and M. Montali.
An abductive framework for a-priori verification of web services. In Annalisa
Bossi and Michael J. Maher, editors, Proceedings of the 8th International ACM
SIGPLAN Conference on Principles and Practice of Declarative Programming,
July 10-12, 2006, Venice, Italy, pages 39–50. ACM, 2006.

[6] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business
Process Execution Language for Web Services version 1.1, 2003. Available at
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/.

[7] M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. A priori conformance
verification for guaranteeing interoperability in open environments. In Asit
Dan and Winfried Lamersdorf, editors, Service-Oriented Computing - ICSOC
2006, 4th International Conference, Chicago, IL, USA, December 4-7, 2006,
Proceedings, volume 4294 of Lecture Notes in Computer Science, pages 339–
351. Springer, 2006.

[8] A. Barros, M. Dumas, and P. Oaks. A critical overview of the web services
choreography description language (WS-CDL). BPTrends, 2005.

[9] F. Bry, M. Eckert, and P. Patranjan. Reactivity on the web: Paradigms and
applications of the language xchange. Journal of Web Engineering, 5(1):3–24,
2006.

[10] K. L. Clark. Negation as Failure. In H. Gallaire and J. Minker, editors, Logic
and Data Bases, pages 293–322. Plenum Press, 1978.

[11] M. Denecker and D. De Schreye. SLDNFA: an abductive procedure for abduc-
tive logic programs. Journal of Logic Programming, 34(2):111–167, 1998.

[12] U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. The ciff proof
procedure for abductive logic programming with constraints. In José Júlio
Alferes and João Alexandre Leite, editors, Logics in Artificial Intelligence, 9th
European Conference, JELIA 2004, Lisbon, Portugal, September 27-30, 2004,
Proceedings, volume 3229 of Lecture Notes in Computer Science, pages 31–43.
Springer, 2004.

53

[13] K. Eshghi. Abductive planning with the event calculus. In Logic Program-
ming, Proceedings of the Fifth International Conference and Symposium, Seat-
tle, Washington, Cambridge, MA, 1988. MIT Press.

[14] T. H. Fung and R. A. Kowalski. The IFF proof procedure for abductive logic
programming. Journal of Logic Programming, 33(2):151–165, November 1997.

[15] M. Gavanelli, E. Lamma, and P. Mello. Proof of properties of the SCIFF proof-
procedure. Technical Report CS-2005-01, Computer science group, Dept. of En-
gineering, Ferrara University, 2005. http://www.ing.unife.it/informatica/tr/.

[16] D. Giannakopoulou and K. Havelund. Automata-based verification of temporal
properties on running programs. In ASE ’01: Proceedings of the 16th IEEE
international conference on Automated software engineering, page 412, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

[17] J. Jaffar and M.J. Maher. Constraint logic programming: a survey. Journal of
Logic Programming, 19-20:503–582, 1994.

[18] A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive Logic Programming.
Journal of Logic and Computation, 2(6):719–770, 1993.

[19] A. C. Kakas and P. Mancarella. On the relation between Truth Maintenance
and Abduction. In T. Fukumura, editor, Proceedings of the 1st Pacific Rim
International Conference on Artificial Intelligence, PRICAI-90, Nagoya, Japan,
pages 438–443. Ohmsha Ltd., 1990.

[20] A. C. Kakas, A. Michael, and C. Mourlas. ACLP: Abductive Constraint Logic
Programming. Journal of Logic Programming, 44(1-3):129–177, July 2000.

[21] A. C. Kakas, B. van Nuffelen, and M. Denecker. A-System: Problem solving
through abduction. In B. Nebel, editor, Proceedings of the Seventeenth Inter-
national Joint Conference on Artificial Intelligence, Seattle, Washington, USA
(IJCAI-01), pages 591–596, Seattle, Washington, USA, August 2001. Morgan
Kaufmann Publishers.

[22] A.C. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. The KGP model
of agency. In R. Lopez de Mantaras and L. Saitta, editors, Proceedings of
the Sixteenth European Conference on Artificial Intelligence, Valencia, Spain
(ECAI 2004). IOS Press, August 2004.

[23] K.Havelund and G. Rosu. Synthesizing monitors for safety properties. In Joost-
Pieter Katoen and Perdita Stevens, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems, 8th International Conference, TACAS 2002,

54

Held as Part of the Joint European Conference on Theory and Practice of Soft-
ware, ETAPS 2002, Grenoble, France, April 8-12, 2002, Proceedings, volume
2280 of Lecture Notes in Computer Science, pages 342–356. Springer, 2002.

[24] R. A. Kowalski and M. Sergot. A logic-based calculus of events. New Generation
Computing, 4(1):67–95, 1986.

[25] K. Kunen. Negation in logic programming. Journal of Logic Programming,
4(4):289–308, 1987.

[26] E. Lamma, P. Mello, F. Riguzzi, and S. Storari. A methodology for learning so-
cial integrity constraints from labeled service interaction logs. Technical Report
DEIS-LIA-07-001, DEIS, Bologna, Italy, 2007.

[27] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd extended
edition, 1987.

[28] P. Mancarella, F. Sadri, G. Terreni, and F. Toni. Planning partially for situated
agents. In João Alexandre Leite and Paolo Torroni, editors, Computational
Logic in Multi-Agent Systems, 5th International Workshop, CLIMA V, Lisbon,
Portugal, September 29-30, 2004, Revised Selected and Invited Papers, volume
3487 of Lecture Notes in Computer Science, pages 230–248. Springer, 2005.

[29] M. Shanahan. The event calculus explained. In Michael Wooldridge and
Manuela M. Veloso, editors, Artificial Intelligence Today: Recent Trends and
Developments, volume 1600 of Lecture Notes in Computer Science, pages 409–
430. Springer Verlag, 1999.

[30] M. Shanahan. An abductive event calculus planner. Journal of Logic Program-
ming, 44(1-3):207–240, 2000.

[31] Societies Of ComputeeS (SOCS): a computational logic model for the descrip-
tion, analysis and verification of global and open societies of heterogeneous com-
putees. IST-2001-32530. Home Page: http://lia.deis.unibo.it/Research/
SOCS/.

[32] W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede, N. Russell, H. M. W.
Verbeek, and P. Wohed. Life after BPEL? In Mario Bravetti, Lëıla Kloul, and
Gianluigi Zavattaro, editors, EPEW/WS-FM, volume 3670 of Lecture Notes in
Computer Science, pages 35–50. Springer, 2005.

[33] W. M. P. van der Aalst and M. Pesic. Decserflow: Towards a truly declarative
service flow language. In Mario Bravetti, Manuel Núñez, and Gianluigi Za-
vattaro, editors, Web Services and Formal Methods, Third International Work-
shop, WS-FM 2006 Vienna, Austria, September 8-9, 2006, Proceedings, volume
4184 of Lecture Notes in Computer Science, pages 1–23. Springer, 2006.

55

[34] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P.
Barros. Workflow patterns. Distributed and Parallel Databases, 14(1):5–51,
2003.

[35] W3C. Web services choreography description language version 1.0. Home Page:
http://www.w3.org/TR/ws-cdl-10/.

56

