Alma Mater Studiorum

Universita degli Studi di Bologna
DEIS

FasyGenetic: A Template
Metaprogramming Framework for
Genetic Master-Slave Algorithms

Stefano Benedettini Andrea Roli
Luca Di Gaspero

May 20, 2009

DEIS Technical Report no. DEIS-LIA-005-09 LIA Series no. 95

EasyGenetic: A Template Metaprogramming
Framework for Genetic Master-Slave Algorithms

Stefano Benedettini ! Andrea Roli ! Luca Di Gaspero ?

'DIEGM, Universita di Udine
via delle Scienze 208, 1-33100, Udine, Italy
l.digasperoQuniud. it
2DEIS, Campus of Cesena
Alma Mater Studiorum Universita di Bologna
via Venezia 52, 1-47023 Cesena, Italy

s.benedettint,andrea.roli@unibo. 1t

May 20, 2009

Abstract. In this work we present EasyGenetic, a genetic solver based on
template metaprogramming, that enables the user to configure the solver via
templates. The framework allows to combine flexibility with efficiency. The
framework is designed to be applied to problems for which a master-slave so-
lution strategy can be defined. In the realm of combinatorial optimization,
such problems can be those for which a parametrized constructive procedure
is available and the solver search the parameter space. We present two suc-
cessful applications of EasyGenetic to hard optimization problems, namely the
Haplotype Inference Problem and the Capacitated Vehicle Routing Problem.

Keywords: Genetic algorithms, metaheuristics, template metaprogramming

Contents

1

2

Introduction
The Prototypical Genetic Master-Slave Algorithm

The EasyGenetic Framework

3.1 Template Metaprogramming
3.1.1 Generic Programming and Concepts.
3.1.2 Policy Classes.

3.2 Architecture of the System
3.2.1 ProblemModel.
3.2.2 Individual.
3.2.3 SlaveProcedure.
3.2.4 ChromosomeGenerator.
3.2.5 UpdatePolicy.
3.2.6 SelectionPolicy.

3.3 CrossoverOperator and MutationOperator.

Case-Studies

4.1 Haplotype inference
4.1.1 The slave constructive procedure.
412 Results.o

4.2 Capacitated Symmetric Vehicle Routing Problem . . .
4.2.1 The slave constructive procedure.
422 Results.o

4.3 EasyGenetic solver instantiation

Conclusion and future work

DEIS Technical Report no. DEIS-LIA-005-09

........ 10

© © © © 1O O Ut Ut

LIA Series no. 95

1 Introduction

Genetic algorithms (GAs) are applied since several decades to problem solving and a
plethora of successful cases demonstrates the effectiveness of this paradigm as a tool
for building “automatic problem solvers”. One of the strengths of GAs is that their
machinery is general and it works independently of the problem under consideration.
As a consequence, once the user has defined the problem model, a fitness function
and he/she has set the algorithm parameters, a GA based solver is ready to be run.

Among other domains, GAs are particularly suitable for design problems, in
which the construction of an artifact depends on a set of design choices and parameter
values. The designer’s goal is to to choose among the set of options and the values of
parameters in such a way that the artifact produced has the required characteristics.
From an abstract point of view, this problem can be seen as a composite master-
slave task: a low-level (slave) task consists of building the artifact on the basis of
a parametrized constructive procedure which is instructed by the parameter setting
found by a high-level (master) task.

In this work we adopt this very perspective and present EasyGenetic, a tool
that enables the algorithms designer to implement a genetic solver by combining
basic components and to tackle combinatorial optimization problems for which a
parametric constructive procedure is available. EasyGenetic is a framework for
implementing genetic solvers based on the master-slave decomposition of the problem
which is developed employing template metaprogramming that allows to combine
flexibility with efficiency.

Available tools for implementing evolutionary computation solvers are numerous
and range from combinatorial optimization solvers (e.g., ParadisEO [7]), to generic
evolutionary algorithm tools (such as ECJ [10]). However, to the best of our knowl-
edge, none of them employs template metaprogramming!, nor they are based on the
master-slave metaphor.

The remainder of this paper is structured as follows. In Section 2 we illustrate
the architecture of the genetic master-slave solver, whose architecture and imple-
mentation is detailed in Section 3. In Section 4 we briefly present two case studies in
which EasyGenetic has been successfully applied and we conclude in Section 5 with
an outlook to future work.

2 The Prototypical Genetic Master-Slave Algorithm

The general idea of the genetic master-slave algorithm we propose is based on the
hypothesis that it will be possible to split solution construction in two phases: in the
first phase, the parameters of a constructive procedure are set by a master solver

!ParadisEO makes use of design patterns based on template instantiation, but it does not exploit
metaprogramming techniques.

and in the second phase the solution is actually built by a slave solver. For instance,
the constructive procedure can be based on a sequence of decisions whose order is
defined by the master solver. Many problems can be decomposed in this way, such
as planning or assignment problems.

Algorithm 1 Master-slave high-level framework

Procedure master
1: P « buildInitialPopulation(n)
2: evaluate(P)
while terminating conditions not met

do

Procedure slave
1: Input: population P
2: Output: evaluation of individu-

als of P

w

4: P' «— applyGeneticOperators(P) 3: for all p < P do.

/ 4: s < buildSolution(p)
5. evaluate(P’, slave)
) o s ol
7. end while 6: end for
8: return min(P)

In EasyGenetic, the master is a genetic algorithm (GA), while the slave algo-
rithm can be, in general, any deterministic constructive procedure that accepts an
initial set of parameters that completely define solution construction. For example,
for combinatorial problems there exist constructive procedures based on the follow-
ing parameters: the sequence of objects to be included in the solution and/or the
decisions to be taken, the set of preassigned variables or the set of hard constraints to
be fulfilled. In a sense, the master explores the search space of “parameter settings”,
employing the solution returned by the slave as the evaluation of those search space
points.

The master-slave scheme is detailed in Algorithm 1. It can be observed that the
structure is the typical one of a steady-state genetic algorithm, with the difference
that the evaluation of an individual is performed first by asking the slave to build a
solution, as a function of the information provided by the individual (line 4), and then
evaluating the corresponding solution (line 5). The main advantage of partitioning
the problem into master and slave is a clearer separation of concerns, which helps in
designing a more extensible solver and allows a simple and neat implementation.

3 The EasyGenetic Framework

As already mentioned, EasyGenetic is based on template metaprogramming and
generic programming techniques. In this section we give a brief description of these
techniques and we introduce the notions of Concept and Policy Classes, which are the
fundamental abstractions exploited in the design phase of EasyGenetic. Afterwards,

T
T x(y) // or equivalently Tz =y
x =y
x ==y

Figure 1: The required expressions for the ValueSemantics concept.

we provide an overview of the architecture of EasyGenetic along with the description
of the entities involved in the framework.

3.1 Template Metaprogramming

Template metaprogramming is a programming technique used to generate source
code at compile time. The main applications of this technique include compile time
generation of classes, compile time optimizations (such as implementation selection
and loop unrolling), and generic programming. In this sense, templates can be re-
garded as a Turing-complete purely functional sub-language embedded in the C++
language, which allows compile time computation on the space of types. Promi-
nent examples of applications of these techniques are the C++ Standard Template
Library [12] and the Boost Libraries [6].

3.1.1 Generic Programming and Concepts.

Generic programming is a programming style that focuses on building algorithms
applicable to the widest possible variety of types. To do so, the programmer has
to identify the minimal set of requirements on the types involved in an algorithm
and to ensure that any type conforming to those constraints can be used with the
algorithm.

Concepts play a central role in generic programming because they enable a pro-
grammer to express the required operations on a type in a concise and effective way?.
Specifically, in C++ a concept embodies a set of requirements on a template type
parameter coded in terms of valid expressions that involve that type. More precisely,
a concept is a structural interface in the sense that any type that syntactically match
the required expressions is a model of that concept. As an example, let us consider
the ValueSemantics concept illustrated in Figure 1. This is a concept on a generic
type T that requires the definition of the expressions depicted in the figure (x and y
are variable of type T).

Therefore, every type conforming to the ValueSemantics concept must be default
constructible, copy-constructible, assignable and equality-comparable. Conversely,

2A very similar language feature can be found in Haskell Type Classes.

every type that satisfies these constraints is automatically a model of the ValueSe-
mantics concept, with no need of an explicit account of this fact. As a consequence,
every type that models the ValueSemantics concept has the same behaviour as a
scalar type (e.g., like int) and it can be treated similarly also from a syntactic point
of view. Finally, the possibility of manipulating types by means of a uniform syntax
and the C-++ feature to overload language operators (e.g., arithmetic operators such
as + or -) help to increase the conciseness and expressiveness of programs that make
use of concepts.

It is worth to notice that, differently from those languages that implement nom-
inal subtyping by means of interfaces (e.g., Java), concepts give rise to a form of
design-by-contract that is more versatile and further promotes separation of concerns.
This is due mainly because of the nature of the subtype relation, which is structural
opposed to nominal, and, as in the case of C+-+, more efficient because it does not
involve virtual function call, allowing compilers to perform code optimization.

3.1.2 Policy Classes.

Concepts can be used to implement a programming idiom called policy-based design.
Policy classes are purely behavioral units of code (actually template classes). In
the design of a library, sometimes it is useful to allow library users to customize
some behavioral aspects of a component. In order to do this, a component can
be parametrized with a number of (template) parameters each corresponding to a
specific behavioral aspect. Moreover, each parameter is required to be a model of a
concept and the library user has to instantiate those parameters with an actual type
conforming to the specific concept. In this scenario, the parametrized component is
called a host-class while the actual type parameters are called policy classes. Refer
to [1] for a thorough explanation of Policy Classes and a set of real-world examples.

In EasyGenetic, the policy classes idiom is used to implement orthogonal aspects
such as: population update and initialization and the selection mechanism.

3.2 Architecture of the System

An overview of the architecture of EasyGenetic is depicted in Figure 2 in form of
an UML class diagram. Each component in the diagram represents either a con-
crete class or a concept; in particular, classes representing concepts are denoted
by the i'g%Concepti’g% stereotype. For clarity sake, actual types will be typeset in
monospaced text, while concepts and type variables will be typeset in italics.

Since a generic programming approach naturally encourages a design method-
ology that follows the separation of concerns principle, each entity in the system
architecture provides only a restricted non-overlapping set of features required by
the genetic algorithm. The main component in the architecture is the Solver class

<<Concept >>

Chromosome

ValueSemantics o__

<<Concept >>
ProblemModel

Individual

+val ue: fitness_val ue_type

+itness_val ue_type
+sol ution_type
+chronosone

+chr onsone_gener at or
+s| ave_procedure

these attributes

are C++ type names

<<Concept >>
MutationOperator

+nut at e(c: Chr onosone)

SelectionPolicy

<<Concept >>
CrossoverOperator

+crossover (c¢1: Chronosone,
¢2: Chromosone): (Chronpsone,
Chr onpsone)

+sel ect (popul ation: Sequence): | ndividual

<<Concept >>
Sequencefy fpopulation Solver
+solve(): Individual
<<Concept >>

<<Concept >>

SlaveProcedure

<<Concept >>
UpdatePolicy

+eval uate(I ndividual): fitness_value_type

+updat e(popul at i on: Sequence, of f spring: Sequence)
+best (popul ati on: Sequence, current Best: I ndi vi dual)

Figure 2: Architecture of EasyGenetic

that contains the actual skeleton of the generic master-slave genetic algorithm (Fig-
ure 3). Following the principles of generic programming, the Solver is a class tem-
plate whose type parameters are actual types conforming to the relative concepts.
One of the advantages of this approach is that we obtain a solver that is configurable
in every aspect at compile time by providing the desired type parameters. In this
way we avoid tedious boilerplate code and to change the components of the system

in an almost declarative

way.

3.2.1 ProblemModel.

The central entity of the architecture is the ProblemModel concept, whose specifica-

tion is given below.

T::fitness_value_type
T::solution_type

class Solver {
Individual solve() {

std::vector<Individual> pop(pop_size);

for (uint i = 0; i < pop_size; ++i) {
Chromosome ¢ = ChromosomeGenerator::generate (model);
fitness_value_type v = SlaveProcedure::evaluate(model, c);
poplil = Individual(c, v); // Individual is-a Chromosome

}

std: :sort (pop.begin(), pop.end());

Individual best = pop.back();

for (/* termination conditions not met */) {
std::vector<Individual> offspring(offspring_size);
while(/* offspring is not full */){

//select chromosome with SelectionPolicy::select(pop)
//apply crossover and mutation operators
for (uint i = 0; i < offspring size; ++i)
offspring[i].value = SlaveProcedure::evaluate(model, offspringli]);

UpdatePolicy: :update(pop, offspring);
UpdatePolicy: :best (pop, offspring, best);

}

return best;

}
}

Figure 3: Solver simplified main method.

T::chromosome
T::chromosome_generator
T::slave_procedure

The purpose of ProblemModel is to provide the Solver with the actual problem-
specific type information about various key entities of the system. Each member of
the ProblemModel concept represents an actual type (such as scalar C++ type like
int or double, or user-defined classes), and some of them must conform to specific
concepts.

Starting from the top, we have the following requirements: fitness wvalue type
is a scalar C++ type of the fitness value, while solution type is the actual type of
a solution to the problem. chromosome is the type of the Chromosome which com-
prises the genetic information of a single Individual. Chromosome type is obviously
problem-specific, therefore it has to be defined by the user. It represents the actual
input to the slave procedure and must be model of the ValueSemantics concept (see
Figure 1). chromosome_generator and slave procedure are the actual types that
model the ChromosomeGenerator and SlaveProcedure concepts.

3.2.2 Individual.

An Individual is an actual class that models a population individual and encap-
sulates its genetic material, i.e. the representation of a chromosome, and its fitness
function value, which is computed by the slave procedure.

3.2.3 SlaveProcedure.

The SlaveProcedure concept is another core concept of the architecture. It defines the
interface to which the slave component must comply. A model of this concept must
provide a static function which accepts an Individual as its argument and returns
the related fitness function value.

fitness_value_type T::evaluate(ProblemModel& model, Individual& individual)

3.2.4 ChromosomeGenerator.

The ChromosomeGenerator concept specifies how to generate a new chromosome.
The chromosomes generated by means of the procedure related to this concept are
used in the initialization step of the algorithm.

Chromosome T::generate(ProblemModel& model)

3.2.5 UpdatePolicy.

The UpdatePolicy concept specifies the interface for updating the population for the
next generation of the genetic algorithm.

T: :update (Sequence& population, Sequence& offspring)
T: :best (Sequence& pop, Sequence& offspring, Individual& incumbentSol)

The update procedure simply selects the individuals which constitute the popu-
lation of the next iteration according to a specific criterion. The framework provides
already two possible built-in implementations: a steady state update, which selects
the best individuals from either the current population and the current offspring,
and a replacement update, which simply discards the current population and car-
ries the whole offspring in the next iteration. This procedure does not operate on
a concrete population type, but rather it accepts a generic object which models a
C++ Sequence. That is, it provides a pair of iterators to the beginning and the end
of the sequence, whose elements are comparable by a less-than relation. The latter
requirement is naturally fulfilled by the Individual type since two individuals can
easily be ordered by considering their fitness values.

The best procedure selects the fittest individual among the current population
and the offspring and it possibly updates the incumbent solution. This function

belongs to this concept because logically only the actual type implementation of
UpdatePolicy is aware of the arrangement of the individuals in the sequences, so it
can find the best individual in the most efficient way.

3.2.6 SelectionPolicy.

The SelectionPolicy concept provides the interface for components that implement
a selection procedure.

Chromosome T::select(Sequence& population)

The select function is mainly invoked during the offspring construction phase in
which genetic operators are applied on the fittest individuals. As for UpdatePolicy
procedures, select accepts an object conforming to the Sequence concept. In the
current version of EasyGenetic, roulette-wheel and k-way tournament selections are
already provided as built-in selection rules.

3.3 CrossoverOperator and MutationOperator.

Finally, there are the CrossoverOperator and MutationOperator concepts.

std: :pair<Chromosome, Chromosome>
T::crossover (Chromosome& parentl, Chromosome& parent2) // crossover
T: :mutation(Chromosome& c) // in-place mutation

These interfaces are particularly difficult to define because of the great variety
of genetic operators that have been defined. While dealing with different chromo-
some types is not an issue and it is fully resolved by generic programming, the
different genetic operators feature also various calling conventions, making a generic
approach more problematic. As an example, the classical crossover operator produces
a new chromosome from two parents, but it is also possible to define a three-way
crossover that spawns two new descendants. If we model these two crossover oper-
ations through method calls, the first would map to a method with two arguments
that returns a single value, while the second would be a method with three arguments
that returns a pair of values. In this situation, generic programming hardly help be-
cause it only deals with types. In order to avoid over-generalization and to maintain
the principle of keeping things simple and efficient, during the design of EasyGenetic
we choose to take a radical approach, that is we allow only two-parents crossovers
returning a pair of descendants and only mutations on a single chromosome.

10

4 Case-Studies

4.1 Haplotype inference

Haplotype Inference is a challenging problem in bioinformatics that consists in in-
ferring the basic genetic constitution of diploid organisms on the basis of their geno-
types, thus labelling which genes are inherited along the maternal or paternal line.
This piece of information allows to perform association studies for the genetic vari-
ants involved in multifactorial diseases and the individual responses to therapeutic
agents. A notable approach to the problem is to encode it as a combinatorial prob-
lem (under certain hypotheses, such as the pure parsimony criterion) and to solve it
using combinatorial optimization techniques.

We employ EasyGenetic to rapidly implement an effective solver for the Haplo-
type Inference Problem based on a well-known constructive procedure. More details
on the problem and on different solution techniques can be found in [9, 5]; more-
over, in [4], an embryonal version of the principles of EasyGenetic has been first
presented.

In the Haplotype Inference Problem we deal with genotypes, i.e., strings of length
m that correspond to chromosomes with m sites. Each value in the string belongs to
the alphabet {0, 1,2}. A position in the genotype is associated with a site of interest
on the chromosome and it has value 0 (wild type) or 1 (mutant) if the corresponding
chromosome site is a homozygous site (i.e., it has that state on both copies) or the
value 2 if the chromosome site is heterozygous. A haplotype is a string of length
m that corresponds to only one copy of the chromosome (in diploid organisms) and
whose positions can assume the symbols 0 or 1. Given a chromosome ¢, we say that
the unordered pair (h, k) resolves g, and we write (h, k)1>g if the following conditions
hold (for j =1,...,m):

glil=0=" hlj] =0Ak[j] =0 (1)
glil =1= Rl =1Ak[j] =1 (2)
glil =2 = (h[jl = 0Nkl =1)V

(hl[j] = 1A K[j] = 0) (3)

Observe that, according to the definition, for a single genotype string the haplo-
type values at a given site are predetermined in the case of homozygous sites, whereas
there is a freedom to choose between two possibilities at heterozygous places. This
means that for a genotype string with ! heterozygous sites there are 2/~ possible
pairs of haplotypes that resolve it.

Given a population of n genotypes, the Haplotype Inference Problem is the
problem of finding a set of n pairs of (not necessarily distinct) haplotypes ¢ =
{(h1,k1),. .., {(hn,kn)}, so that (h;, k;) > g0 = 1,...,n. From the mathematical
point of view, there are many possibilities for building the set of haplotypes, since

11

there is an exponential number of possible haplotypes for each genotype. Therefore,
a criterion has to be added to the model for evaluating the solution quality. One
natural model of the Haplotype Inference Problem is the pure parsimony approach
that consists in searching for a solution that minimizes the total number of distinct
haplotypes (the problem is APX-hard [11]).

4.1.1 The slave constructive procedure.

The Haplotype Inference Problem definition makes constructive procedures very ap-
pealing. Indeed, a constructive procedure can incrementally build a set H of haplo-
types which, taken in pairs, resolve the genotypes. Such a procedure can start from
an empty set and add one or two haplotypes at a time, while it scans the set of
genotypes G. The objective is to build H as small as possible, i.e., to find a minimal
cardinality set of haplotypes that composes the phasing. To this aim, new haplotypes
should be added to H only when necessary, i.e., when no pair of haplotypes already
in H resolves the current genotype ¢g. In principle, an optimal solution could be
found if an oracle were to indicate the right order of visiting the genotypes and the
right starting pair of haplotypes, along with properly defined criteria for choosing
the values to assign. This is in general not possible, but an iterative and adaptive
search strategy could be very effective in exploring these possibilities.

In the context of this problem, the slave algorithm can be, in general, any con-
structive procedure that is fed with an initial set of resolving haplotypes and with
some criteria to complete the solution. The procedure we will describe is variations of
a constructive procedure known as Clark’s rule [8]. Clark’s inference rule exploits the
property of complementarity® between a genotype and a haplotype. The procedure
works as follows:

1. Let G’ C G be a subset of genotypes with zero or one ambiguous site only.
From G’, an initial set of haplotypes H explaining the genotypes in G’ can be
inferred by complementarity. Be G « G'.

2. Choose a pair (g,h) g € G,h € H|h resolves g. If such pair exists, set
H — H U{WI|W is the complement of h with respect to g} and G «— G \ {g}.

3. Iterate step 2 until:

e GG = (): in that case H is a solution to the problem;

e Cannot find a pair (g, h): in that case the algorithm fails.

Although the procedure is fast and simple, it has some drawbacks. First of all, it
needs an initial haplotype set to “bootstrap”, which might be impossible to obtain. In

3Tt is possible to show that given a genotype g and a haplotype h resolving g there exists a
unique complementary haplotype h’ such that (h,h') > g

12

fact, in non-trivial instances the presence of non-ambiguous genotypes or containing
one heterozygous site is quite unlikely.

Secondly, the algorithm must make an arbitrary choice in step 2 because here
there are two sources of non-determinism:

1. The set of genotypes that can be solved by a haplotype in the current set H
can have cardinality grater than one;

2. The genotype chosen could be solvable by more than one haplotype in H.

As a consequence, the quality of the solution returned is heavily dependent on
the order in which genotypes are explained and haplotypes selected at each step.
Nevertheless, the application of Clark’s rule to Haplotype Inference Problem is ap-
pealing because it naturally tries to re-use haplotypes in the current partial solution
to explain remaining genotypes. It is reasonable to think that some haplotypes in
an optimal solution resolve many genotypes. The main idea is thus to employ a
learning procedure, in the form of a population-based metaheuristic, to guide the
non-deterministic choices made in step 2; therefore, such a procedure has to learn an
optimal genotype resolution order and some criteria to choose the most promising
haplotype when asked to resolve a genotype.

We implemented a slightly modified Clark’s rule, since in its original form it
may not find a solution at all given a genotype ordering. Each time the algorithm
cannot find a compatible haplotype for the current genotype g, it randomly select
a haplotype pair for g and then continues. This way we ensure to find a complete
solution to the problem. The returned result is the best out of a set number of
independent runs.

4.1.2 Results.

We compared the modified Clark rule, 400 iterations, (labelled rule) against the
genetic master-slave (labelled ga) with the following parameters: population and
offspring size of 100 individuals, 500 maximum iterations, 100 idle iterations; every
new descendant has been mutated exactly once.

In Figure 4.1.2 we plot the results of the two algorithms. Each sub-figure refers to
a single instance set. We run each algorithm 10 times on each instance and report on
the y-axis the sum of the cardinalities found by the algorithm over all the instances
of a particular instance set. The results clearly show that the master-slave algorithm
outperforms the simple Clark rule.

4.2 Capacitated Symmetric Vehicle Routing Problem

As a second case study, we show the development of a solver for the Capacitated
Symmetric Vehicle Routing Problem (CVRP). This problem is highly relevant in

13

operations research and logistics and it is known to be a hard combinatorial op-
timization problem [3|. The VRP requires finding a set of routes, each of which
assigned to a vehicle, such that each customer is visited and a cost function min-
imized (e.g., the total travel length). In the capacitated version of the problem a
constraint on the maximum capacity of each vehicle is enforced. Usually, besides a
cost function, also the number of vehicles composing the fleet is minimized.

4.2.1 The slave constructive procedure.

Our master-slave algorithm is a generalization of the Clarke-Wright saving heuristic
proposed in [2]. The main components of a Clarke-Wright heuristic are a list of pairs
of customers, called saving list, and a deterministic constructive procedure which,
starting from an infeasible solution made of one route for each client node, iteratively
picks the first pair of customers from the list and merges two routes if the selected
client nodes are the endpoints of two different routes. The key idea is thus to order
the saving list according to a heuristic function, called saving function, on the pairs
of customers. The saving function is crucial because it determines the ordering of
the elements in the saving list. In [2] has been proposed a function which takes into
account three different components weighted by three coefficients in the cube [0, 2]3.
An optimal parameter configuration has been found through repeated evaluation of
the algorithm.

It is easy now to recognize the main ingredients for a master-slave algorithm.
From a this perspective, a saving list is but an input to a deterministic slave procedure
which returns a set of routes.

Our algorithm starts from a initial population generated in the following manner:
for each individual we sampled uniformly at random a point in the cube [0,2]?
and computed a saving list using those parameters. The slave procedure is the
same as in [2]. Results show that using a master-slave approach produces sizable
improvements over Altinel and Oncan’s heuristic.

4.2.2 Results.

We compare two instances of our algorithm against the heuristic proposed in [2] on
the same set of problem instances. The two instances differ only in the parameters
configuration and have been selected among a number of variations after a thorough
statistical analysis whose result we omit because lack of space.* Both instances use
a population and offspring size of 200, while mutation rate has been set to 20% for
CVRP-20 and 30% for CVRP-30.

“Complete results are available on authors’ website.

14

4.3 EasyGenetic solver instantiation

We now show the flexibility of EasyGenetic framework by showing how easily is to
write instantiation code.

First we instantiate, in a problem specific, way a class conforming to Problem-
Model concept. Params represents a type that hold genetic algorithm parameters,
such population size, and is typically initialized by parsing the command line argu-
ments.

typedef /*...*/ problem_model;
typedef /#...#%/ Params;
problem_model model(/*...*/);

Then we setup the actual solver by specifying its template parameters; we refer
to (3.1.2) for an explanation of the Policy Class idiom. Here we specify in order:
what is the problem model, the selection procedure, the termination condition, the
update procedure. Finally, we instantiate the solver supplying the model and the
parameters.

typedef Solver<problem_model,
roulette_wheel, // choose which selection scheme you prefer
either<max_iterations<2000>, // state your termination condition
max_idle_iterations<2000> >, // mazIterations < 2000 OR mazxIdlelterations < 2000
SteadyState // update procedure
> Solver;

Solver solver (model, Params(/*...x/));

To run the solver and produce the best Individual, we invoke the following
method.

Individual result = solver.solve();

And finally we transform the best individual in a solution using a problem-specific
way, in fact computeSolution method is not part of ProblemModel concept.

problem_model: :solution_type sol = model.computeSolution(result);

It is worth noting that, thanks to generic programming, the only changes to make in
order to switch to a different problem are confined in the definition of problem_model
type in the first typedef and the invocation of computeSolution that translate an
Individual in an actual solution.

5 Conclusion and future work

In this paper, we have presented EasyGenetic, a genetic master-slave framework
based on metaprogramming. The usage of templates makes it possible to combine
flexibility —as the user can easily configure the solver— and efficiency —as compiled

15

code is optimized. These properties have been showed in two case- studies, in which
EasyGenetic has been used to solve Haplotype Inference Problem and Capacitated
Vehicle Routing Problem respectively.

The framework is in its early development stage and more features can be added.
For example, the implementation of more genetic operators can be added. Further-
more, EasyGenetic can be extended with general features such as observers, which
can be used to trace and monitor the execution of the algorithm. Moreover, an in-
tegration with the pre-existing frameworks for developing and analyzing stochastic
local search algorithms, EASYLOCAL++ and EASYANALYZER, is planned.

Acknowledgements

We thank Maria Battarra for her help, support and collaboration on the application
of EasyGenetic to the CVRP.

References

[1] A. Alexandrescu. Modern C++ Design: Generic Programming and Design Pat-
terns Applied. Addison-Wesley Professional, February 2001.

[2] 1.K. Altinel and T. Oncan. A new enhancement of the Clarke and Wright savings
heuristic for the capacitated vehicle routing problem. Journal of the Operational
Research Society, 56:954-961(8), August 2005.

[3] M. Battarra, B. Golden, and D. Vigo. Tuning a parametric Clarke-Wright
heuristic via a genetic algorithm. Journal of the Operations Research Society,
59:1568-1572, 2008.

[4] S. Benedettini, L. Di Gaspero, and A. Roli. Genetic master-slave algorithm for
haplotype inference by parsimony. Technical Report DEIS-LIA-09-003, Univer-
sity of Bologna (Italy), January 2009. LIA Series no. 93.

[5] S. Benedettini, A. Roli, and L. Di Gaspero. Two-level ACO for haplotype
inference under pure parsimony. In Ant Colony Optimization and Swarm Intel-
ligence, 6th International Workshop, ANTS 2008, volume 5217 of Lecture Notes
in Computer Science. Springer—Verlag, 2008.

[6] Boost C++ libraries. http://www.boost.org/. Viewed: April 2009.

[7] S. Cahon, N. Melab, and E-G. Talbi. ParadisEO: A framework for the
reusable design of parallel and distributed metaheuristics. Journal of Heuristics,
10(3):357-380, 2004.

16

8]

19]

[10]

[11]

[12]

A.G. Clark. Inference of haplotypes from PCR-amplified samples of diploid
populations. Molecular Biology and FEvolution, 7:111-122, 1990.

L. Di Gaspero and A. Roli. Stochastic local search for large-scale instances
of the haplotype inference problem by pure parsimony. Journal of Algorithms:
Algorithms in Logic, Informatics and Cognition, 63(1-3), 2008.

EClab. http://cs.gmu.edu/~eclab/. Viewed: April 2009.

G. Lancia, M.C. Pinotti, and R. Rizzi. Haplotyping populations by pure parsi-
mony: Complexity of exact and approximation algorithms. INFORMS Journal
on Computing, 16(4):348-359, 2004.

Standard Template Library. http://www.sgi.com/tech/stl/. Viewed: April
2009.

17

harrower_hapmap

(e) Marchini SU3

harrower_uniform

. o
=
Nl N
()
]
) o
™ S |
[e¢]
4 N
N~
O - 4
(92
1]
8] _ ~ —_
™ : : N ; :
ga rule ga rule
(a) Harrower HapMap (b) Harrower Unfiorm
marchini_SU1 marchini_SU2
° i
N o
, iy)
N 2
— n
i i
2 ,
® g
— 2]
4 —
o ,
, o
& Q|
-)
T -
8 4
1 = o -
&) — N =
L . \ <t - . \
ga rule) ga rule
(c) Marchini SU1 (d) Marchini SU2
marchini_SU3 ° marchini_SU-100kb
< |
4 —
o -
I
0 o
< |
— —
4 i
S o
N A ‘C_?;]
A p
i o
= @ |
N~ o
< -
-
f 3
o . ,
S | = S| =
3 ga rule ga rule

(f) Marchini SU-100kb

Figure 4: Comparison between Clark’s rule solver (RULE) and its application into
EasyGenetic (the resulting algorithm is denoted by GA). Results are shown on
various HIP benchmarks.

Deviation (%)
S

B CVRP-20
ol i == CVRP-30 | |

0 10 20 30 40 50 60 70
Instance index

(a) Deviations against Altinel-Oncan

3.5

80

I CVRP-20
3 CVRP-30

2.5t n
2.0t i I

| I . .

Deviation (%)

0.5F

Ikl li

—0.5 . . .

0 10 20 30 40 50 60 70
Instance index

19

(b) Deviations against best known

Figure 5: Results our genetic master-slave solver on hard CVRP common benchmark
instances. In Figure (a), the percental deviation between our algorithm and Altinel-

Oncan’s one is plotted. In Figure (b), a comparison against the best known results
is shown.

