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Abstract. New challenging deployment scenarios are integrating mobile devices 
with limited and heterogeneous capabilities that roam among wireless access lo-
calities during service provisioning. This calls for novel middleware solutions not 
only to support different forms of mobility and connectivity in wired-wireless in-
tegrated networks, but also to perform personalized service reconfigura-
tion/adaptation depending on client characteristics and in response to changes of 
wireless access locality. The paper proposes the adoption of Mobile Agent (MA) 
proxies working at the wired-wireless network edges to support the personalized 
access of limited wireless clients to their needed resources on the fixed network. 
In particular, the paper focuses on how to predict device mobility between IEEE 
802.11 cells in a portable lightweight way, with no need of external global posi-
tioning systems. In fact, we claim that mobility prediction is crucial to maintain 
service continuity: MA-based proxies can migrate in advance to the wireless cells 
where mobile clients are going to reconnect to, in order to anticipate the local re-
arrangement of personalized sessions. The paper proposes and evaluates different 
mobility prediction solutions based on either client-side received signal strength 
or Ekahau positioning, all integrated in the SOMA platform. Both simulation and 
experimental results show that SOMA can predict the next visited cell with a very 
limited overhead and enough in advance to maintain service continuity for a large 
class of wireless Internet services.  

1 Introduction 

The increasing availability of public wireless access points to the Internet and the 
widespread popularity of wireless-enabled portable devices stimulate the provisioning 
of distributed services to a wide variety of mobile client terminals, with very hetero-
geneous and often limited resources. Even though devices and networking capabilities 
are increasing and increasing, the design of mobile applications will continue to be 
constrained by several factors, from limited display size to high connectivity costs, 
from bandwidth fluctuations to local resource availability, also abruptly changing due 
to client mobility among wireless cells during service provisioning.  

Let us focus on the common deployment scenario where wireless solutions extend 
accessibility to the traditional Internet via access points working as bridges between 
fixed hosts and wireless devices [1]. An exemplar case is the usage of IEEE 802.11 



access points to support connectivity of WiFi-equipped terminals to a wired local area 
network [2]. In the following, we will indicate these integrated networks with fixed 
Internet hosts, wireless terminals, and wireless access points in between, as the wire-
less Internet. 

Service provisioning over the wireless Internet must consider the specific charac-
teristics of client portable devices, primarily their limits on local resources and their 
high heterogeneity. Limited processing power, memory and file system make portable 
devices unsuitable for traditional services designed for fixed networks and require 
both assisting wireless terminals in the service access and downscaling contents to 
obey resource constraints. In addition, portable devices exhibit extreme heterogeneity 
of hardware capabilities, operating systems, installed software, and network technolo-
gies. This heterogeneity makes hard to provide all needed service versions with stati-
cally tailored contents and calls for on-the-fly adaptation of service provisioning.  

We claim the need of middleware solutions to dynamically adapt service results to 
the specific properties of client devices and to the runtime resource availability of the 
provisioning environment [3-6]. Middleware components should follow client roam-
ing in different wireless localities and assist them locally during their service sessions. 
Moreover, client limited memory suggests deploying middleware components over 
the fixed network, where and when needed, while portable devices should host only 
thin clients, loaded by need and automatically discarded after service. 

By following the above solution guidelines, we have recently designed and im-
plemented application-level middlewares, based on Secure and Open Mobile Agent 
(SOMA) proxies, to support the distribution of context-dependent news and video on 
demand to wireless devices with strict limits on on-board resources [5, 7, 8]. The pri-
mary design idea is to dynamically deploy SOMA proxies acting on the behalf of 
wireless clients over the fixed hosts in the network localities that currently offer client 
connectivity. In particular, this paper focuses on a crucial challenge for MA-based 
middlewares for the wireless Internet: how to predict the client movements among 
wireless cells, making unnecessary any external Global Positioning System (GPS). 
Mobility prediction permits to migrate personalized SOMA proxies in advance with 
regards to the client roaming. Thus, SOMA proxies have the time to proactively reor-
ganize user sessions in the newly visited network localities, by rebinding to needed 
resources and local middleware components for service adaptation, with the ultimate 
goal of supporting session maintenance and continuous service provisioning [5]. 

We propose three different mobility prediction solutions, all exploiting a first-
order Grey Model (GM) [9]. The first approach uses only the client-side monitoring 
data about Received Signal Strength Indication (RSSI) in a decentralized, lightweight, 
and portable way (we call it RSSI-GM for shortly). The other two solutions take ad-
vantage of the positioning data provided by the commercial Ekahau Positioning En-
gine (EPE) [10]. Ekahau Cell Probability (ECP) exploits the EPE-provided probabili-
ties of being located in a cell, both currently and in the recent past, as the input for 
GM-based mobility prediction. Ekahau Distance (ED)-GM bases its prediction on the 
current/recent distances of client nodes from the borders of IEEE 802.11 cells of base 
stations in their visibility. 

We have evaluated the performance of the three mobility prediction solutions both 
via a simulator, which can model nodes randomly roaming among IEEE 802.11 lo-
calities, and by exploiting a system prototype deployed over WiFi-enabled PDAs with 



MS Windows CE.NET. Both experimental results show that the simplest and com-
pletely decentralized RSSI-GM approach outperforms the others. In addition, not-
withstanding the portable and application-level approach, RSSI-GM has demonstrated 
to be capable of predicting the next cell location enough time in advance to permit 
SOMA middleware to rearrange personalized sessions before the client connects to 
the new wireless locality. This permits to provide adapted services to limited wireless 
devices without any interruption in the case of client roaming.  

2 Motivating Mobility Prediction in MA-based Middlewares  
Service provisioning in the wireless Internet usually calls for downscaling service 
contents to suit the specific limits of client devices. For instance, dynamic content 
negotiation and tailoring are crucial for multimodal services providing resource-
consuming multimedia in Web pages. In addition, device mobility requires other sup-
port operations that are too expensive to be performed by severely limited devices, 
e.g., context-aware local/global resource retrieval and binding. On the one hand, local 
discovery operations may consume non-negligible client resources to explore the exe-
cution environment and to negotiate with available services. On the other hand, the 
global identification and retrieval of user-related properties, such as user/terminal pro-
files and security certificates stored in directories, may require long continuous con-
nectivity, difficult to be handled directly by portable devices. 

We claim that wireless Internet service provisioning can significantly benefit from 
distributed and active infrastructures of mobile middleware proxies working in the 
fixed network on behalf of portable devices [6]. Proxies can decide the best adapta-
tion operations to perform on service results and can be in charge of any additional 
management operation, such as supporting connectivity and discovering the needed 
resources/service components. Moreover, proxies can act, locally to the client, as dis-
tributed cache repositories for successive service requests. In addition, if proxies are 
mobile, they can follow device movements during service provisioning by supporting 
session migration between the different network localities visited, and install auto-
matically only where and when needed [6].  

For all above reasons, the primary design choice in SOMA-based middlewares for 
the wireless Internet is to provide any wireless device with one SOMA-based com-
panion entity, called shadow proxy, which run in a wired node (place) in the same 
wireless network locality that currently provides connectivity to the device [5, 8]. 
Wired/wireless terminals in a locality can be grouped into logical domains, as de-
picted in Figure 1; domains are disjointed, even if they include wireless access points 
with coverage areas that partially overlap.  

Shadow proxies are in charge of determining the applicable context for their clients 
and of consequently retrieving and binding to the needed local/global resources. Prox-
ies solve the issues related to receiving, caching, and coordinating the tailoring of ser-
vice contents by taking context-dependent decisions based on profile metadata that 
describe device characteristics and user preferences [6].  

In the following, the paper concentrates on the crucial issue of how to predict the 
client movements between SOMA localities in order to migrate in advance the prox-
ies to the next domain of attachment of their associated clients. A detailed description 
of the implementation of the different SOMA middleware components that support 



the distribution of context-dependent news and video on demand to wireless devices 
is out of the scope of the paper, and can be found elsewhere [5, 8]. 
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Figure 1. Portable devices roaming among SOMA wireless access localities. 

To better understand the need for mobility prediction, let us describe the service man-
agement operations that the SOMA-based middleware performs in response to a cli-
ent change of locality. Let us suppose a user roams from DomainA to DomainB in 
Figure 1 while she is receiving her personalized location-aware service contents. Note 
that user movements also produce the user change of access point coverage area, 
since in location-aware services clients should typically associate with their closest 
base station. Depending on the (usually configurable) handoff strategy of the underly-
ing communication layer, the user device is transparently de-associated from the ori-
gin wireless cell and associated to the destination one i) when the client no more re-
ceives the origin signal, ii) when the destination RSSI overcomes the origin RSSI 
(handoff hysteresis = 0), iii) or, more generally, when the destination RSSI overcomes 
the origin RSSI of a specified threshold t (handoff hysteresis = t), also to reduce 
bouncing effects. 

Once notified of the communication handoff, the middleware should migrate the 
shadow proxy to the destination domain. There, the proxy should instantiate and con-
figure the needed local middleware components and reconnect to the server (or to an 
equivalent local replica of it) before being capable of serving its client again. This can 
cause a temporary suspension of the service typically experienced by the client as a 
provisioning block or delay [8]. The goal of mobility prediction is to effectively per-
form the migration of a shadow proxy clone before the client communication handoff, 
so to establish the cloned proxy in the new destination domain, ready for the service 
session of its incoming client.  

Let us notice that the addressed wireless Internet provisioning environment con-



siders medium/short-range wireless technologies (IEEE 802.11b or Bluetooth) in 
open and extremely dynamic scenarios where the user mobility behaviors change very 
frequently and irregularly. Thus, the relevant results of research activities about hand-
over prediction based on user movement patterns/history cannot apply [11]. 

3 The Proposed Mobility Prediction Solutions  

In this paper, we propose and compare three alternative solutions for mobility predic-
tion: RSSI-GM, ECP-GM, and ED-GM. The proposed solutions do not need any 
additional specific hardware; in particular, they do not require external GPSs, which 
are still rather expensive, battery-consuming, and therefore unsuitable for very re-
source-constrained wireless devices. Moreover, the mobility prediction solutions, 
which we have evaluated and implemented for IEEE 802.11 connectivity, are easily 
applicable also to wireless clients that exploit other forms of access point 
connectivity, e.g., Bluetooth clients towards Bluetooth infotainment points [12]. The 
only constraint is to have client-side awareness of RSSI, either directly exploited in 
RSSI-GM or indirectly used (via the EPE mediation) in both ECP-GM and ED-GM. 

3.1 Received Signal Strength Indication-Grey Model 

The RSSI-GM prediction solution requires a lightweight client stub running on any 
client device. It is the client stub that autonomously predicts the next cell visited by 
the hosting wireless device and that communicates the prediction to the shadow proxy 
place, thus triggering the clone migration. To this purpose, the client stub needs to 
access the monitoring data about the RSSI values of the IEEE 802.11 base stations in 
its visibility. The RSSI data is used as input for a simple Grey-based discrete model 
GM(1,1) for the prediction of future RSSI values [9]. Client stubs achieve platform- 
and vendor-independent visibility of RSSI data by integrating with portable and dy-
namically installable monitoring mechanisms, as extensively described in [13]. 

Given one reachable access point and the set of its actual RSSI values measured at 
the client side R0 = {r0(1), …, r0(n)}, where r0(i) is the RSSI value at the discrete time 
i, it is possible to calculate R1 = {r1(1), …, r1(n)}, where: 
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Then, from the GM(1,1) discrete differential equation of the first order: 
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the client stub determines a and u, which are exploited to obtain the predicted RSSI 
value pr(i) at discrete time i according to the GM(1,1) prediction function: 
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When the pr(i) for a base station x overcomes the pr(i) for the currently associated 
base station y, then the client stub communicates the mobility prediction to the 
shadow proxy place, thus triggering the proxy clone migration. 



The above solution for client mobility prediction is completely local and light-
weight; any client stub can estimate its future RSSI values simply by maintaining a 
finite series of previous RSSI data. In particular, the client stub catches the needed 
monitoring information and predicts the next cell in a completely autonomous way, 
with a very limited overhead. The client stub exploits the limited bandwidth wireless 
channel only occasionally to inform the shadow proxy place in the case of predicted 
change of logical domain. 

3.2 Ekahau Cell Probability-Grey Model and Ekahau Distance-Grey Model 

Similarly to RSSI-GM, both ECP-GM and ED-GM prediction solutions use GM(1,1) 
discrete models. However, they do not exploit RSSI data as the input values for the 
prediction models but, respectively, the estimated probability that a client device is 
located in a cell and the estimated device distances from the borders of IEEE 802.11 
cells of access points in visibility. In these two solutions, it is directly the SOMA 
place hosting the shadow proxy execution that performs mobility prediction by com-
municating with EPE to obtain the needed information about cell probabilities and 
distances. 

EPE is a widespread commercial solution for non-GPS-based positioning in IEEE 
802.11 infrastructure-mode networks [10]. For any target device, EPE provides the 
probabilities that the device is located in a set of pre-defined logical areas, i.e., con-
figurable disjointed portions of the wireless deployment scenario. Bayes-based prob-
ability estimation is performed by observing the current and recent RSSI values at the 
target device, by comparing them with a database of RSSI samples for the provision-
ing environment, and by considering a set of specified admitted mobility paths in that 
environment. This implies that system administrators must provide EPE with a map 
of the environment and the admitted paths of client movements in any specific de-
ployment scenario. In addition, an initial "learning" phase is necessary for EPE to ac-
quire the database of RSSI samples for the different points of the provisioning envi-
ronment. The EPE system consists of a centralized server responsible for the whole 
processing to obtain the position estimations, and of lightweight clients that run on 
wireless clients and regularly send the observed RSSI values to the EPE server. 

Given a target device, ECP-GM considers the finite set of probabilities provided 
by EPE and applies GM(1,1) to these probabilities. The proxy clone migration is trig-
gered when the predicted probability of the current shadow proxy cell becomes minor 
than the predicted probability of another logical area. ED-GM, instead, exploits the 
position estimation provided by EPE to calculate the distances between the target de-
vice and the cell borders of visible base stations, and applies GM(1,1) to these dis-
tances. In this case, the proxy clone migration is triggered when the predicted distance 
from the borders of the current cell exceeds the predicted distance from the borders of 
another logical area. 

Let us note that, differently from RSSI-GM, both ECP-GM and ED-GM are not 
completely decentralized prediction solutions. It is the Ekahau client running on the 
target device that monitors RSSI data and regularly sends them to EPE. In addition, 
the shadow proxy in charge of mobility prediction has to interwork with the central-
ized EPE, which feeds the proxy with current estimations about either cell probabili-



ties or distances from the cell borders of visible base stations. In addition, since the 
Ekahau client is available only for MS Windows, ECP-GM and ED-GM are not port-
able on different operating systems, differently from RSSI-GM.  

4 Simulation and In-the-Field Experimental Results  

To evaluate the effectiveness and performance of the proposed prediction solutions, 
we have developed three alternative implementations of the mobility prediction mod-
ule: all the solutions are integrated with the SOMA platform and present the same 
API. SOMA* is a Java-based mobile agent system intended to support service provi-
sioning in pervasive and ubiquitous environments [5, 7]. We have extended SOMA 
with the mobility prediction module by adding a shadow proxy which is a new MA 
subclass that exploits the usual one. The SOMA platform (by either the client stub in 
RSSI-GM or the SOMA place in ECP-GM and ED-GM) automatically notifies the 
shadow proxy in the case of handoff prediction for the associated client devices. The 
prediction notification triggers the transparent cloning of the shadow proxy and the 
clone migration to the predicted cell. The original proxy executes at its previous place 
until the associated device eventually exits its wireless access locality and completes 
its handoff. Application developers can concentrate only on the service-specific ap-
plication logic that implements this part of shadow proxy while SOMA automatically 
handles cloning, anticipated migration, and lifecycle management of shadow proxy 
instances.  

We have measured some performance indicators for all three mobility prediction 
solutions in both a simulated environment (with a large number of mobile clients 
roaming among a large number of wireless localities) and our campus deployment 
scenario. Considered performance indicators are: 
• effectiveness E1% =  100*1 ⎟
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where NFSP measures times the wireless devices do not find their shadow proxies 
already running at their destination domains at their arrivals, while NR is the total 
number of client handoffs; 
• efficiency E2% =  100*⎟
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where USP is the number of shadow proxies eventually used by the wireless clients 
and NM is the total number of migrated proxies; 
• advance time AT, i.e., the time interval between the shadow proxy arrival at the 

destination domain and the eventual client reconnection to that domain. 
Effectiveness and efficiency are both significant performance indicators. In general, 
high effectiveness may be tied to low efficiency: an excessive migration of proxy 
clones to visible localities generates useless network traffic (migrated clones are 
automatically discarded if the associated clients do not reach them within a timeout).  

We have measured the three indicators above in a challenging simulated environ-

                                                           
* Additional information about the SOMA platform and its downloadable code are available at: 
http://lia.deis.unibo.it/Research/SOMA/ 



ment where 16 access points are regularly placed in a 64m x 64m square. We have 
developed a simple lightweight simulator to analyze wireless device movement and to 
monitor RSSI. Already existing but more complex simulators cannot supply so easily 
and efficiently these feature. We have simulated two extreme trajectories: trajectory1, 
a straight path with constant random velocity between two random points, and trajec-
tory2, with random variable velocity and with random direction with a Gaussian com-
ponent of 30 degree standard deviation. In both trajectories the velocity is always be-
tween 0.2 and 2.5 m/s to mimic the behavior of walking mobile users. Typically, 
wireless device performs a cell roaming when the destination cell RSSI rises above 
actual cell RSSI of a fixed hysteresis threshold. In our simulated environment the hys-
teresis threshold value ranges from 0 to 2 db. On the average, each mobile client has 
the contemporaneous visibility of 6 access points, that represents a worst case sce-
nario significantly more complex than the actually deployed wireless networks (where 
usually no more than 3 access points are visible from any point). We have evaluated 
scenarios with fewer access points for each wireless client device; in all the scenarios 
E1%, E2%, and AT have proven to be better than in the simulation case. 

Table 1 shows the average performance for a set of about 600 experiments where 
wireless devices roam by following trajectory1. When handoffs are rarely predicted, 
that is when E1% is really low, AT is not shown because it does not present a signifi-
cant positive value, due to poor performance. RSSI-GM outperforms the other solu-
tions for all three performance indicators. EPE performs positioning quite well, but it 
is less prompt in ascertaining device movements that affects negatively ECP-GM and 
ED-GM performance. When the hysteresis threshold increases, roaming is delayed 
and there is more time to predict wireless device roaming: consequently both E1% and 
AT increase. In this case, RSSI-GM E2% lowers because delayed roaming triggers 
more predictions, most of them unnecessary. In summary, RSSI-GM E1% is good also 
with a null hysteresis, and a higher hysteresis does not make E1% much better. As a 
consequence, E2% decreases since NM increases and USP is almost constant. On the 
contrary ECP-GM and ECP-GM E2%  often rises, in particular when E1% increases, 
because the number of useful predictions significantly increases, proportionally more 
than total number of predictions. In fact, NM increases but USP increases further. 

Table 2 shows the average performance measured with client devices moving ac-
cording to trajectory2. As expected, the Gaussian trajectory component makes hand-
off prediction more difficult; however, the performance exhibits only a slight occa-
sional deterioration. Let us stress that simulated scenarios are worst case scenarios. In 
simulation we assume the visibility of several nearby access points and more unnec-
essary predictions occur than in a real scenario with fewer visible access points, 
where wireless devices rarely come close to several access points. Moreover, we have 
tested our system also with irregular access point dispositions, with negligible per-
formance deterioration. 

 
 E1% E2% AT (s) 

Threshold (db) 0 1 2 0 1 2 0 1 2 
RSSI-GM 79.01 91.69 94.67 80.53 74.27 74.19 2.99 4.34 5.30 
ECP-GM 9.67 14.89 19.61 30.07 33.24 37.32 --- --- --- 
ED-GM 21.93 34.99 43.01 40.63 43.79 47.21 --- 0.79 2.56 
Table 1. RSSI-GM, ED-GM, and ECP-GM performance results in the case of trajectory1. 



 E1% E2% AT (s) 
Threshold (db) 0 1 2 0 1 2 0 1 2 

RSSI-GM 75.35 91.00 93.01 78.61 76.31 72.86 2.88 4.12 4.80 
ECP-GM 10.37 13.50 20.18 34.10 34.62 38.97 --- --- --- 
ED-GM 22.12 33.00 37.94 40.34 44.15 43.78 --- 0.84 1.91 
Table 2. RSSI-GM, ED-GM, and ECP-GM performance results in the case of trajectory2. 

Apart from simulation, we have tested the three different mobility prediction modules 
over an actual deployment scenarios with 5 partially overlapping IEEE 802.11b wire-
less cells and 10 client devices (Compaq iPAQ h3850 with Windows CE.NET) ran-
domly roaming in the campus environment. The deployed CISCO Aironet 1100 ac-
cess points use a null signal strength hysteresis threshold for cell handoff triggering. 
The client-performed scan for visible access points requires only a very limited packet 
exchange, with negligible bandwidth occupation. The experimental results outperform 
the simulation-based, by also verifying the assumption that the simulated environment 
represents a worst case scenario. RSSI-GM shows better performance despite the 
strong signal fluctuations observed in the real environment because access points are 
not as close as in simulations. For the same reasons, also ECP-GM and ED-GM show 
better performance, even if still worse than RSSI-GM. 

In summary, the RSSI-GM mobility prediction solution has proven to offer the best 
performance, both in the simulated environment and the actual deployment, at least 
when the goal is handoff prediction and not fine-grained positioning prediction. In 
particular, RSSI-GM achieves AT values that permit SOMA to move and re-organize 
the middleware support in the next visited locality for a wide set of Internet services. 
In addition, if compared with ECP-GM and ED-GM, RSSI-GM has also significant 
advantages in terms of simplicity since it does not need additional components as 
EPE. For a more detailed presentation of the RSSI-GM, ECP-GM and ED-GM ex-
perimental results in different simulated environments, please refer to 
http://lia.deis.unibo.it/Research/SOMA/MobilityPrediction/ 

5 Related Work  

Several relevant research activities have recently investigated the issues involved in 
achieving full visibility of mobile device position, most of them with the goal of sup-
porting the provisioning of location-dependent services, some of them to provide the 
basis for mobility prediction solutions. 

A rough estimate of mobile device position can be obtained via different position-
ing techniques, which are based on RSSI, angle of arrival, time of arrival, or time dif-
ference of arrival [14]. It is possible to achieve higher accuracy in position estimation 
by exploiting either positioning-specific hardware or additional information about the 
deployment environment. On the one hand, Medusa and the widespread GPS require 
clients with additional receivers and typically impose larger energy consumption at 
the clients [15]. On the other hand, some positioning solutions exploit the knowledge 
of RSSI distribution and/or the movement history (and usual habits) of the target mo-
bile devices, such as in RADAR [16] and Ekahau [10]. 

By focusing on mobility prediction, most proposals in the literature require the 



knowledge of both the current position and the speed of target devices. [17] predicts 
future location/speed by exploiting a dynamic Gauss-Markov model applied to the 
current and historical movement data. [18] bases its trajectory prediction on the spa-
tial knowledge of the deployment environment, e.g., by considering road network da-
tabases, and on past trajectories followed. [19] focuses on mobile ad hoc networks 
and is aimed at predicting the dis/connection time of mobile devices by monitoring 
device position and speed; it exploits RSSI data only to identify when the devices are 
located in overlapping areas with multiple base stations in direct visibility. 

Few research activities have addressed mobility prediction with no need of moni-
toring the location and speed of mobile devices, similarly to what proposed in SOMA. 
[20] predicts future RSSI values by using a retroactive adaptive filter to mitigate RSSI 
fluctuations; the device handoff is commanded when the difference between current 
and predicted RSSI values is greater than a specified threshold. [21] exploits a Grey 
model to decide when actually forcing the communication handoff by comparing 
RSSI predictions with average and current RSSI values. However, both [20] and [21] 
apply RSSI prediction to improve the communication handoff process, e.g., to reduce 
unnecessary bouncing handoffs due to signal fluctuations, and not to predict the 
movements of wireless clients with the goal of anticipating the support re-
organization in the access locality to be visited. 

A very few proposals have recently started to investigate the possibility to inte-
grate mobility prediction with MA anticipated migration over the fixed Internet, with 
the goal of pre-setting up the next visited wireless access locality. Their main idea is 
to exploit the history of the past movements of target devices, by assuming a high 
probability of recurrent mobility patterns. In [22] the MA state is used to maintain the 
information about the cell paths covered by the MA-associated mobile devices; MAs 
entirely base their predictions on these historical data. [23] represents an evolution of 
this kind of approach, by exploiting a machine learning automaton applied to path 
historical data. To the best of our knowledge, SOMA (extended with RSSI-GM) is the 
first MA platform that integrates a lightweight and completely decentralized mobility 
prediction solution, which is exclusively based on the simple RSSI information and 
implemented in a completely portable way. 

6 Conclusions and Ongoing Work 

The wireless Internet deployment scenario strongly suggests dynamic middlewares to 
support the provisioning of personalized services that are reconfigured and tailored at 
the wireless access locality, to fit the specific characteristics of roaming client de-
vices. The design guideline of exploiting MA-based middleware proxies that work 
over the fixed network on behalf of their resource-constrained clients is showing its 
suitability and effectiveness, especially when associated with mobility prediction so-
lutions. These solutions can enable the proactive migration of middleware compo-
nents to the access localities that are going to be visited by the roaming users. 

Our work of design, implementation, and evaluation of different prediction solu-
tions has achieved two main objectives. On the one hand, it has shown that predicting 
the next visited cell is possible with a limited overhead and enough time advance to 
preserve service continuity in a large class of wireless Internet services. On the other 



hand, it has pointed out that simple lightweight solutions such as the completely de-
centralized RSSI-GM can even outperform more complex approaches such as ECP-
GM and ED-GM. As a consequence, we have decided to integrate the RSSI-GM pre-
diction module in the next release of the SOMA platform. 

The promising results obtained by the RSSI-GM integration in SOMA are stimu-
lating further related research activity. We are working on achieving service continu-
ity in our MA-based middleware for the dynamic tailoring of Video-on-Demand 
streams to mobile wireless devices [7, 8]. In particular, this requires combining mo-
bility prediction with the identification, design, and implementation of optimal strate-
gies to dimension client-side buffers for multimedia streams. Buffer size should de-
pend not only on the device profiles that describe the memory characteristics of ac-
cess terminals, but also on the estimation of service resume time after client handoff. 
A too small buffer endangers streaming continuity, thus thwarting the anticipated mi-
gration of MA-based proxies; otherwise, a too large buffer uselessly wastes the typi-
cally limited memory of client devices. 
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