SOCS

A COMPUTATIONAL LOGIC MODEL FOR THE DESCRIPTION, ANALYSIS AND VERIFICATION

OF GLOBAL AND OPEN SOCIETIES OF HETEROGENEOUS COMPUTEES

IST-2001-32530

Coherence Properties of the KGP Model

Project number:

Project acronym:
Document type:

Document distribution:
CEC Document number:
File name:

Editor:

Contributing partners:
Contributing workpackages:
Estimated person months:
Date of completion:

Date of delivery to the EC:
Number of pages:

IST-2001-32530

SOCS

IN (information note)

I (internal to SOCS and PO)
IST32530/ICSTM/74/IN/1/b1
174-b1[coherence].pdf

F. Sadri

ICSTM

WP5

N/A

8 March 2005

18 March 2005

9

ABSTRACT

In this document we introduce, formalise and prove a number of Coherence Properties. These
properties are aimed at demonstrating some beneficial consequences of some of the design

decisions made in the declarative and computational models of computees.

Copyright © 2005 by the SOCS Consortium.

The SOCS Consortium consists of the following partners: Imperial College of Science, Technology and Medicine,
University of Pisa, City University, University of Cyprus, University of Bologna, University of Ferrara.

Coherence Properties of the KGP Model

F. Sadri and F. Toni

Department of Computing, Imperial College London
Email: {fs,ft}@doc.ic.ac.uk

ABSTRACT

In this document we introduce, formalise and prove a number of Coherence Properties. These
properties are aimed at demonstrating some beneficial consequences of some of the design
decisions made in the declarative and computational models of computees.

Contents
1 Introduction

2 Background
2.1 Action Selection Function
2.2 Goal Selection Function
2.3 Cycletheories e

3 Coherence Properties

4 Conclusion

1 Introduction

The computee declarative model consists of several knowledge base modules, used within a
number of capabilities, which, in turn, are used to define transitions. The transitions are inte-
grated within cycle theories and enabled by a collection of four core selection functions. These
are Action Selection Function, cag, Goal Selection Function, cgg, Fluent Selection Function,
crg, and Precondition Selection Function, cpg. For example a cycle step that may result in
the Action Execution being chosen as the next transition to be performed relies on the Action
Selection Function to select a set of actions from the state of the computee to be executed at
that given time and in that given state. Similarly a cycle step that may result in the Plan
Introduction transition being chosen as the next transition to be performed relies on the Goal
Selection Function to select a set of goals from the state of the computee to be planned for at
that given time and in that given state.

In this document we explore some of the consequences of the design details of the computee
model, including the definitions of its Action and Goal Selection Functions. This study, as
well as showing some of the benefits of the design, also highlighted some errors in the original
definition of Action Selection as reported in deliverable D8 [3]. The errors have now been
addressed and two alternative approaches to correcting them have been explored. These are
reported in the body of Deliverable D13.

The rest of this document is structured as follows. In Section 2 we first recall the definitions
of (corrected) Action Selection Function and Goal Selection Function and then briefly review
the aspects of cycle theories that are needed in this paper. Then in Section 3 we formalise a
number of Coherence properties and prove them and in Section 4 we conclude.

2 Background

The propositions in Section 3 refer to the Goal and Action Selection Functions and cycle
theories. Here we briefly recall these.

2.1 Action Selection Function

The Action Selection Function selects actions from the computee state for execution.

Informally, the set of conditions for the (core) Action Selection Function, cag, is as follows.
Given a state S = (KB, Goals, Plan, TCS) and a time-point 7, the set of all actions selected
by cag is defined as follows. Let X'(S,7) be the set of all actions A in Plan such that:

1. A is executable at 7, i.e. it is not timed out,

2. no ancestor or sibling of A in Goals and Plan is timed out at T,
3. no ancestor of A in Goals is already satisfied at 7, given S,

4. no precondition of A is known to be false at 7, given S,

5. A has not already been executed.

Then cas(S,7) C X (S, 7) such that all actions in c45(S, T) are executable concurrently at 7.

The above is formalised as follows:

Formally, given a state S = (K B, Goals, Plan, TC'S), and a time-point 7, the set of all actions
selected by cag is defined as follows. Each action A in Plan is represented as (a[t],G,C)
where a is the action operator, ¢ is the time associated with the action, G is the immediate
goal for which the action has been planned (G is the parent of A), and C is the set of all the
preconditions of A. Let X (S, 7) be the set of all actions

A = (a[t],G,C) € Plan

such that:

1.

5.

there exists a total valuation o for the variables in T'C'S such that o = t = 7 ATCS A
%(5),

. there exists no action (a’[t'], G*,C") € Plan and there exists no goal (I[t'], G*) € Goals

such that

o G* =G or G* € ancestors(G, Goals), and

e there exists no total valuation o for the variables in T'C'S such that o Egx ¢
TATCS ANX(S),

Y

there exists no (I[t'], G*) € Goals such that

e G* =G or G* € ancestors(G, Goals), and

e there exists a total valuation o for the variables in TC'S such that o =g t/
TATCS ANX(S) and KB =rg l[t]|o,

IN

et C =LA ... AL[t]; if n > 0, then it is not the case that for some i = 1,...,n there

exists a total valuation o for the variables in T'C'S such that o = TCS At = 7 A 3(S)
and KB ':TR li[t]U,

executed(alt],t') & KBy.

Then, cas(S,7) C X(S,7), and cas(S,7) = {{a1[t1],-), -+, {@m[tm], -)} (where m > 0),
such that there exists a total valuation o for the variables in T'C'S such that

2.2

ocER TCS Aty =T ANty =7 AN X(S).

Goal Selection Function

The Goal Selection Function selects goals to be planned for from the computee state.

Informally, the set of conditions for the (core) Goal Selection Function, cgg, is as follows. Given
a state S = (KB, Goals, Plan, TCS) and a time-point 7, the set of all goals selected by cgg is
the set of all goals G in Goals such that at time 7:

1.

G is not timed out at T,

2. no ancestor or sibling of G in Goals or Plan is timed out at 7,
3. no ancestor of G in Goals is satisfied in S at T,
4. @ is not satisfied in S at 7.

Formally, given a state S = (KB, Goals, Plan, TCS) and a time-point 7, the set of all goals
selected by cgg is the set of all goals

G = (l[t],G") € Goals
such that:

1. there exists a total valuation o for the variables in T'C'S such that o Ex ¢t > 7 ATCS,

2. there exists no (a[t'],G’,C) € Plan, and there exists no (I'[t'], G*) € Goals such that

o G* =G or G* € ancestors(G', Goals), and

e there exists no total valuation o for the variables in TC'S such that o |=x t' >
TANTCS,

3. there exists no G* = (I'[t],-) € Goals such that

o G* € ancestors(G, Goals), and

e there exists a total valuation o for the variables in TC'S such that o Ex ¢ < 7TATCS
and KB ’:TR l/[t,]O',

4. there exists no total valuation o for the variables in TCS such that o Ep t' < 7 ATCS
and KB |:TR l[t]a.

2.3 Cycle theories

In the computee model the control component of computees is specified by cycle theories.
These have been discussed in deliverable D12 [1] and in another annex to D13 [2]. For the
purposes of the results in the next section it is sufficient to recall the cycle step rules in
the normal cycle theory that enable the Plan Introduction (PI) and Action Execution (AE)
Transitions. These are the rules that make use of the Action Selection and Goal Selection
functions.

ragipr(S’,Gs) : PI(S',Gs) «— AE(S, As,S'),Gs = cgs(S',7),Gs # {}
rap|ap(S’, As") : AE(S', As") « AE(S, As,S"), As' = cas(S',7), As’ # {}
rpriap(S’, As) : AE(S', As) « PI(S,Gs,S"), As = cas(S',7), As # {}
rarpr(S',Gs) : PI(S',Gs) « GI(S,S'),Gs = cgs(5',7),Gs # {}
rre|ap(S', As) t AE(S', As) « RE(S,S'), As = cas(5',7), As # {}
rsiiap(S’, As) : AE(S', As) — SI(S, Ps,S"), As = cas(S',7), As # {}
raorap(S’', As) : AE(S', As) <+ AOI(S, F's,S"), As = cas(5', 1), As # {}

Note that for the AE transition it is always the case that Action Selection is part of one of the
enabling conditions. Similarly, for the PI transition Goal Selection is always part of one of the
enabling conditions. These are also the case in all the behaviour profiles that we have defined

(see [2]), i.e. all the cycle step rules that enable AE have amongst their conditions a condition
of the form As" = cs5(S’,7), and all the cycle step rules that enable PI have amongst their
conditions a condition of the form Gs = cgs(S’, 7).

3 Coherence Properties

In the following propositions we explore some of the consequences of the design of computees.
The first proposition shows that computees do not attempt to execute actions that they believe
are infeasible or unnecessary, and computees do not attempt to plan for goals if a plan is not
needed or if it is too late to plan for them. These properties show the suitability of the design
of the KGP model in that computees are prevented from spending time on the activities of
planning and acting if these activities are not appropriate or useful.

Proposition 3.1 (Coherence of Plan Introduction and Action Execution)
1. Computees never attempt to execute actions that

e are timed out, or

e belong to a plan for a goal that is timed out or that they believe is already achieved.
2. Computees never attempt to plan for a goal that

e is timed out or that they believe is already achieved, or

e belongs to a plan for a goal that is timed out or that they believe is already achieved.

Here, given a state, by plan for a goal we mean the set of all actions and goals that are descen-
dants of that goal within the tree in that state.

Sketch of the Proof. Any cycle step rule showing that a transition may be followed by
Action Execution uses the Action Selection Function in an enabling condition, and any cycle
step rule showing that a transition may be followed by Plan Introduction uses the Goal Selection
Function in an enabling condition. The required properties above follow from the definition of
these two selection functions, as follows.

The first part of the proposition follows directly from the first three conditions of the def-
inition of the Action Selection Function (Section 2.1). The second part of proposition follows
directly from the four conditions of the Goal Selection Function (Section 2.2). i

The second proposition, below, shows that computees will avoid concurrent execution of actions
that they believe cannot be successfully executed together, because of the temporal constraints
imposed upon them.

Proposition 3.2 (Coherence of Action Execution with Temporal Incompatibility)
If for some time T and actions in a state S with operators ay[t1],...,an[tn] there exists no
total valuation of the variables ty,...,t, satisfying the temporal constraints in S, all equalities
derived from KBy in S (X(S)) and t1 = 7,...,t, = 7, then all of a1[t1], ..., an[tn] will never
be selected together for execution at T.

Proof. This property follows directly from the last requirement specified in the definition of the
Action Selection Function which, in effect, states that actions that are temporally incompatible,
given the constraint on their times, will not be selected for execution at the same time. O

Note that it was while considering this proposition a mistake in the definition of the Action
Selection Function was identified and corrected.

The third proposition below show that computees will never try to execute two actions
at the same time if the actions have incompatible preconditions. This result uses both the
declarative and computational models of computees and shows that their design is such that
computees will avoid concurrent execution of actions that they believe cannot be successfully
executed together.

Proposition 3.3 (Coherence of Action Execution with Incompatible Preconditions)
Given the declarative and computational models of computees [3] if

e the Plan™ part of the computee state contains two actions Al and A2 (i.e. Al and A2
are non-reactive actions), and

e Al has a precondition pl and A2 has a precondition p2 such that the computee’s
K Bpignincludes an integrity constraint
ic

assume_holds_at(pl,T) and assume_holds_at(p2,T) implies false

then the computee will never attempt to execute actions Al and A2 at the same time.

Proof. Actions Al and A2 are non-reactive actions. So they must have been generated
in the computee state by a PI transition. The declarative and computational models of the
computee ensure that the same PI transition which generates actions Al and A2 will also
generate a constraint 71 #T2 in the TCS part of the computee state where T'1 and T2 are the
proposed execution times of actions A1 and A2, respectively. The temporal constraint T'1 £T2
is generated because the Planning Capability first generates subgoals assume_holds_at(p1,7'1)
and assume_holds_at(p2,72) which then together with the IC, above, generate the temporal
constraint.

Then the proposition follows from Proposition 2. O

4 Conclusion

In this document we have explored some useful consequences of a number of the detailed
design decisions made in the declarative and computational models of computees. The three
propositions discussed show that the design ensures that, no matter which profile of behaviour
is chosen, computees will not spend time pursuing timed-out goals and actions, or generating
unnecessary plans, or attempting to execute actions concurrently when the concurrent execution
will not succeed according to the computee’s own beliefs.

This study has also helped identify some shortcomings in the design which we have ad-
dressed. An example has been the definition of the Action Selection Function which was iden-
tified as incorrect. We report a correction in the body of D13.

To the best of our knowledge no similar properties have been proven or identified in the
literature.

Our investigation of Coherence Properties can be extended in at least two directions. One
is to identify and prove other properties. For example one property that is very likely to hold
is that computees will never generate a plan for a goal if they believe that the plan will not
succeed, for example because of some foreknowledge about the expected behaviour of other
computees or the environment. Another property worth exploring is the extent to which the
Reactivity Transition lends itself to plan repair [4]. Reactivity allows computees to adapt to
the changes in their environment by setting themselves additional goals to achieve and extra
actions to execute, and, as such, part of the functionality of Reactivity can be seen as adapting
the computees’ plans to the changing environment.

Another very interesting direction is to explore useful properties that do not hold in the
current design and to identify how the model can be modified to ensure such properties. One
such example concerns the Planning Capability. It would be interesting to see how it can be
modified to ensure that the plans it generates are ”minimal”, possibly in the sense of requiring
as few actions as possible, or in the sense of minimising any dependence on other computees
to execute actions. Another useful topic could be to see how the Goal Introduction Capability
can be modified so that it does not completely over-write the state but exploits as much of the
state as possible, for example by re-using as much of the partial plans already generated.

References

[1] M. Alberti, A. Bracciali, F. Chesani, U. Endriss, M. Gavanelli, A. Guerri, A. Kakas,
E. Lamma, P. Mancarella, P. Mello, M. Milano, F. Riguzzi, F. Sadri, K. Stathis, G. Terreni,
F. Toni, and P. Torroni. Update report on WP1-WP6. Technical report, SOCS Consortium,
2004. Deliverable D12.

[2] F. Athienitou, A. Bracciali, U. Endriss, A. Kakas, W. Lu, P. Mancarella, F. Sadri, K. Stathis,
and F. Toni. Profile-related properties. Technical report, SOCS Consortium, 2005. Annex
to deliverable D13.

[3] M. Gavanelli, E. Lamma, P. Torroni, P. Mello, K. Stathis, P. Moraitis, A. C. Kakas,
N. Demetriou, G. Terreni, P. Mancarella, A. Bracciali, F. Toni, F. Sadri, and U. Endriss.
Computational model for computees and societies of computees. Technical report, SOCS
Consortium, 2003. Deliverable D8.

[4] B. Nebel and J. Koehler. Plan reuse versus plan generation: A theoretical and empirical
analysis. Artrificial Intelligence, 76(1-2):427-454, 1995.

