The J2EE™ 1.4 Tutorial

For Sun Java System Application Server Platform Edition
8.2

Eric Armstrong
Jennifer Ball
Stephanie Bodoff
Debbie Bode Carson
lan Evans

Dale Green

Kim Haase

Eric Jendrock

December 7, 2005

Copyright © 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A.
All rights reserved.U.S. Government Rights - Commercia software. Government users are subject to the
Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supple-
ments.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, JavaBeans, JavaServer, JavaServer Pages, Enterprise
JavaBeans, Java Naming and Directory Interface, JavaMail, JDBC, EJB, JSP, J2EE, J2SE, “Write Once,
Run Anywhere”, and the Java Coffee Cup logo are trademarks or registered trademarks of Sun Microsys-
tems, Inc. in the U.S. and other countries.

Unless otherwise licensed, software code in all technical materials herein (including articles, FAQs, sam-
ples) is provided under this License.

Products covered by and information contained in this service manual are controlled by U.S. Export Con-
trol laws and may be subject to the export or import laws in other countries. Nuclear, missile, chemical
biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly pro-
hibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export
exclusion lists, including, but not limited to, the denied persons and specially designated nationals listsis
strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS'" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright © 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-
Unis. Tous droits réservés.

Droits du gouvernement américain, utlisateurs gouvernmentaux - logiciel commercial. Les utilisateurs
gouvernmentaux sont soumis au contrat de licence standard de Sun Microsystems, Inc., ainsi qu aux dis-
positions en vigueur de laFAR [(Federal Acquisition Regulations) et des suppléments a celles-ci.

Cette distribution peut comprendre des composants dével oppés pardes tierces parties.

Sun, Sun Microsystems, le logo Sun, Java, JavaBeans, JavaServer, JavaServer Pages, Enterprise
JavaBeans, Java Naming and Directory Interface, JavaMail, JDBC, EJB, JSP, J2EE, J2SE, “Write Once,
Run Anywhere”, et le logo Java Coffee Cup sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d autres pays.

A moins qu’ autrement autorisé, le code de logiciel en tous les matériaux techniques dans le présent (arti-
clesy compris, FAQs, échantillons) est fourni sous ce permis.

Les produits qui font I’ objet de ce manuel d'entretien et les informations qu'il contient sont régis par la
|égislation américaine en matiére de controle des exportations et peuvent étre soumis au droit d’ autres
pays dans |le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour
des armes nucléaires, des missiles, des armes biologiques et chimiques ou du nucléaire maritime, directe-
ment ou indirectement, sont strictement interdites. Les exportations ou réexportations vers des pays sous
embargo des Etats-Unis, ou vers des entités figurant sur les listes d’ exclusion d’ exportation américaines,
y compris, mais de maniére non exclusive, laliste de personnes qui font objet d’ un ordre de ne pas partic-
iper, d’une fagon directe ou indirecte, aux exportations des produits ou des services qui sont régi par la
|égislation américaine en matiere de contréle des exportations ("U .S. Commerce Department’s Table of
Denia Orders "et la liste de ressortissants spécifiquement désignés ("U.S. Treasury Department of Spe-
cialy Designated Nationals and Blocked Persons),, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L’'ETAT" ET TOUTES AUTRES CONDITIONS, DEC-
LARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES,
DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRISNOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE
UTILISATION PARTICULIERE OU A L' ABSENCE DE CONTREFACON.

http://developer.sun.com/berkeley_license.html
http://developer.sun.com/berkeley_license.html

Chapter 1:

Contents'

Foreword........................

About This Tutorial.

Who Should Use This Tutorial
Prerequisites

How to Read This Tutorial
About the Examples

Further Information

How to Buy This Tutorial
How to Print This Tutorial
Typographical Conventions
Acknowledgments

Feedback

OVerview.

Distributed Multitiered Applications
J2EE Components
J2EE Clients
Web Components
Business Components
Enterprise Information System Tier
J2EE Containers
Container Services
Container Types
Web Services Support
XML
SOAP Transport Protocol
WSDL Standard Format
UDDI and ebXML Standard Formats

XXXili
XXXiil
XXXiil
XXXiV
XXXVI
XXXIX

xl
xl
xli
xli
xlii

© 0000w Oo P~ WwWN

R
NNNBR O

Packaging Applications 13

Development Roles 15
J2EE Product Provider 15
Tool Provider 15
Application Component Provider 16
Application Assembler 16
Application Deployer and Administrator 17

J2EE 1.4 APIs 18
Enterprise JavaBeans Technology 18
Java Servlet Technology 19
JavaServer Pages Technology 19
Java Message Service AP 19
Java Transaction API 19
JavaMail API 20
JavaBeans Activation Framework 20
Java APl for XML Processing 20
Java APl for XML-Based RPC 20
SOAP with Attachments API for Java 21
Java APl for XML Registries 21
J2EE Connector Architecture 22
JDBC API 22
Java Naming and Directory Interface 22
Java Authentication and Authorization Service 23
Simplified Systems Integration 24

Sun Java System Application Server Platform Edition 8 24
Technologies 25
Tools 26
Starting and Stopping the Application Server 27
Starting the Admin Console 28
Starting the deploytool Utility 29
Starting and Stopping the Derby Database Server 29
Debugging J2EE Applications 30

Chapter2: Understanding XML. 33

Introduction to XML 33
What IsXML? 33
Why Is XML Important? 38
How Can You Use XML? 40

Generating XML Data 43

Writing aSimple XML File 43

Chapter 3:

Defining the Root Element
Writing Processing I nstructions
Introducing an Error
Substituting and Inserting Text
Creating a Document Type Definition
Documents and Data
Defining Attributes and Entitiesin the DTD
Referencing Binary Entities
Defining Parameter Entities and Conditional Sections
Resolving aNaming Conflict
Using Namespaces
Designing an XML Data Structure
Saving Y ourself Some Work
Attributes and Elements
Normalizing Data
Normalizing DTDs
Summary

Getting Started with Web Applications

Web Application Life Cycle
Web Modules
Packaging Web Modules
Deploying Web Modules
Listing Deployed Web Modules
Updating Web Modules
Undeploying Web Modules
Configuring Web Applications
Mapping URLs to Web Components
Declaring Welcome Files
Setting Initialization Parameters
Mapping Errorsto Error Screens
Declaring Resource References
Duke's Bookstore Examples
Accessing Databases from Web Applications
Populating the Example Database
Creating a Data Source in the Application Server
Specifying a Web Application’s Resource Reference
Mapping the Resource Reference to a Data Source
Further Information

&5& R

50

59
59
66
68
72
73
76
77
77
79
81
81

86
88
90
92
95
96
98
99
99
101
102
102
103
103
104
105
106
106
107
108

Chapter 4. Java APlfor XMLProcessing 109

TheJAXP APIs 109
An Overview of the Packages 110
The Simple API for XML APIs 111
The SAX Packages 114
The Document Object Model APIs 114
The DOM Packages 116
The Extensible Stylesheet L anguage Transformations APIs 117
The XSLT Packages 118
Using the JAXP Libraries 118
Where Do You Go from Here? 118
Chapter5: Simple APIfor XML 121
When to Use SAX 122
Echoingan XML Filewith the SAX Par ser 123
Creating the Skeleton 124
Importing Classes 124
Setting Up for 1/0 125
Implementing the ContentHandler Interface 125
Setting up the Parser 127
Writing the Output 128
Spacing the Output 128
Handling Content Events 129
Compiling and Running the Program 134
Checking the Output 135
Identifying the Events 136
Compressing the Output 138

I nspecting the Output 140
Documents and Data 141
Adding Additional Event Handlers 141
Identifying the Document’s Location 142
Handling Processing Instructions 144
Summary 145
Handling Errorswith the Nonvalidating Par ser 145
Displaying Special Charactersand CDATA 153
Handling Special Characters 153
Handling Text with XML-Style Syntax 154
Handling CDATA and Other Characters 155
Parsing withaDTD 156

DTD’s Effect on the Nonvalidating Parser 156

Chapter 6:

Tracking Ignorable Whitespace
Cleanup
Empty Elements, Revisited
Echoing Entity References
Echoing the External Entity
Summarizing Entities
Choosing Your Parser Implementation
Using the Validating Par ser
Configuring the Factory
Validating with XML Schema
Experimenting with Validation Errors
Error Handling in the Validating Parser
Parsing a Parameterized DTD
DTD Warnings
Handling Lexical Events
How the LexicalHandler Works
Working with a LexicalHandler
Using the DTDHandler and EntityResolver
The DTDHandler API
The EntityResolver API
Further Information

Document ObjectModel

When to Use DOM
Documents Versus Data
Mixed-Content Model
A Simpler Model
Increasing the Complexity
Choosing Y our Model

Reading XML Dataintoa DOM
Creating the Program
Additional Information
Looking Ahead

Displaying a DOM Hierarchy
Convert DomEcho to a GUI Application

Create Adaptersto Display the DOM in aJTree

Finishing Up

Examining the Structure of a DOM
Displaying a Simple Tree
Displaying aMore Complex Tree

157
159
159
160
160
161
161
162
162
163
166
168
168
170
170
171
172
177
178
179
179

182
182
183
184
185
187
188
188
192
194
195
195
201
211
211
211
214

vii

viii

Chapter 7:

Finishing Up
Constructing a User-Friendly JTree from a DOM
Compressing the Tree View
Acting on Tree Selections
Handling Modifications
Finishing Up
Creating and Manipulating a DOM
Obtaining a DOM from the Factory
Normalizing the DOM
Other Operations
Finishing Up
Validating with XML Schema
Overview of the Validation Process
Configuring the DocumentBuilder Factory
Validating with Multiple Namespaces
Further Information

220
221
221
227
237
237
237
237
241
243
246
246
247
247
249
252

Extensible Stylesheet Language Transformations 253

Introducing XSL, XSLT, and XPath
The JAXP Transformation Packages
How XPath Works
XPath Expressions
The XSLT/XPath Data Model
Templates and Contexts
Basic XPath Addressing
Basic XPath Expressions
Combining Index Addresses
Wildcards
Extended-Path Addressing
XPath Data Types and Operators
String-Vaue of an Element
XPath Functions
Summary
Writing Out a DOM asan XML File
Reading the XML
Creating a Transformer
Writing the XML
Writing Out a Subtree of the DOM
Summary

Generating XML from an Arbitrary Data Structure

254
254
255
255
256
257
257
258
259
259
260
261
261
262
265
265
266
267
270
271
272
272

Chapter 8:

Creating aSimple File 273
Creating a Simple Parser 275
Modifying the Parser to Generate SAX Events 277
Using the Parser as a SAX Source 284
Doing the Conversion 286
Transforming XML Datawith XSLT 287
Defining a Simple <article> Document Type 287
Creating a Test Document 289
Writing an XSLT Transform 290
Processing the Basic Structure Elements 291
Writing the Basic Program 295
Trimming the Whitespace 297
Processing the Remaining Structure Elements 300
Process Inline (Content) Elements 304
Printing the HTML 309
What Else Can XSLT Do? 309
Transforming from the Command Linewith Xalan 311
Concatenating Transformationswith a Filter Chain 311
Writing the Program 311
Understanding How the Filter Chain Works 315
Testing the Program 316
Further Information 318
Building Web Services with JAX-RPC 319
Setting the Port 320
Creating a Simple Web Service and Client with JAX-RPC 320
Coding the Service Endpoint Interface and Implementation Class 322
Building the Service 323
Packaging and Deploying the Service 324
Static Stub Client 327
Types Supported by JAX-RPC 330
J2SE SDK Classes 331
Primitives 331
Arrays 332
Vaue Types 332
JavaBeans Components 332
Web Service Clients 333
Dynamic Proxy Client 333
Dynamic Invocation Interface Client 336

Application Client 340

More JAX-RPC Clients 343

Web Services I nteroperability and JAX-RPC 344
Further Information 344
Chapter 9: SOAP with Attachments APl forJava 345
Overview of SAAJ 346
Messages 346
Connections 350
Tutorial 352
Creating and Sending a Simple Message 353
Adding Content to the Header 362
Adding Content to the SOAPPart Object 363
Adding a Document to the SOAP Body 364
Manipulating Message Content Using SAAJor DOM APIs 364
Adding Attachments 365
Adding Attributes 368
Using SOAP Faults 373
Code Examples 378
Request.java 378
MyUddiPing.java 380
HeaderExamplejava 387
DOM Example.java and DOM SrcExample.java 388
Attachments.java 392
SOAPFaultTest.java 394
Further Information 395
Chapter 10: Java APl for XML Registries 397
Overview of JAXR 397
What |s a Registry? 397
What Is JAXR? 398
JAXR Architecture 399
Implementing a JAXR Client 400
Establishing a Connection 401
Querying a Registry 408
Managing Registry Data 413
Using Taxonomiesin JAXR Clients 421
Running the Client Examples 426
Before Y ou Compile the Examples 427

Compiling the Examples 429

Chapter 11:

Running the Examples

Using JAXR Clientsin J2EE Applications
Coding the Application Client: MyAppClient.java
Coding the PubQuery Session Bean
Editing the Properties File
Compiling the Source Files
Starting the Application Server
Creating JAXR Resources
Creating and Packaging the Application
Deploying the Application
Running the Application Client

Further Information

Java Servlet Technology

What Isa Servlet?
The Example Servlets
Troubleshooting
Servlet Life Cycle
Handling Servlet Life-Cycle Events
Handling Errors
Sharing Information
Using Scope Objects
Controlling Concurrent Access to Shared Resources
Accessing Databases
Initializing a Servlet
Writing Service Methods
Getting Information from Requests
Constructing Responses
Filtering Requests and Responses
Programming Filters
Programming Customized Requests and Responses
Specifying Filter Mappings
Invoking Other Web Resour ces
Including Other Resources in the Response
Transferring Control to Another Web Component
Accessing the Web Context
Maintaining Client State
Accessing a Session
Associating Objects with a Session
Session Management

429
434
435
435
436
436
436
436
437
440
441
441

450
452
452
453
454
455
456
457
458
460
463
463
465
468
469
470
472
473
474
474
474
475

Xi

Xii

Chapter 12:

Session Tracking
Finalizing a Servlet
Tracking Service Requests
Notifying Methods to Shut Down
Creating Polite Long-Running Methods
Further Information

JavaServer Pages Technology

What Isa JSP Page?
Example
The Example JSP Pages
TheLife Cycle of a JSP Page
Trandation and Compilation
Execution
Creating Static Content
Response and Page Encoding
Creating Dynamic Content
Using Objects within JSP Pages
Expression L anguage
Deactivating Expression Evaluation
Using Expressions
Variables
Implicit Objects
Literas
Operators
Reserved Words
Examples
Functions
JavaBeans Components
JavaBeans Component Design Conventions
Creating and Using a JavaBeans Component
Setting JavaBeans Component Properties
Retrieving JavaBeans Component Properties
Using Custom Tags
Declaring Tag Libraries
Including the Tag Library Implementation
Reusing Content in JSP Pages
Transferring Control to Another Web Component
jsp:param Element
Including an Applet

476
477
478
478
479
480

481
482
486
493
493
494
496
497
497
498
499
500
500
501
502
503
504
504
505
506
507
507
509
510
512
513
513
516
517
518
518
519

Chapter 13:

Chapter 14:

Chapter 15:

Setting Propertiesfor Groups of JSP Pages
Further Information

JavaServer Pages Documents

The Example JSP Document
Creating a JSP Document
Declaring Tag Libraries
Including Directivesin a JSP Document
Creating Static and Dynamic Content
Using the jsp:root Element
Using the jsp:output Element
I dentifying the JSP Document to the Container

JavaServer Pages Standard Tag Library

The Example JSP Pages
Using JSTL
Tag Collaboration
CoreTagLibrary
Variable Support Tags
Flow Control Tags
URL Tags
Miscellaneous Tags
XML TagLibrary
CoreTags
Flow Control Tags
Transformation Tags
Internationalization Tag Library
Setting the Locale
Messaging Tags
Formatting Tags
SQL TagLibrary
query Tag Result Interface
Functions
Further Information

CustomTagsinJSPPages..............

What Isa Custom Tag?
The Example JSP Pages
Types of Tags

555
558
559
560
562
563
564
564
565
566
566
567
569
572
573

Xiii

Xiv

Chapter 16:

Tags with Attributes

Tags with Bodies

Tags That Define Variables

Communication between Tags
Encapsulating Reusable Content Using Tag Files

Tag File Location

Tag File Directives

Evaluating Fragments Passed to Tag Files

Examples
Tag Library Descriptors

Top-Level Tag Library Descriptor Elements

Declaring Tag Files

Declaring Tag Handlers

Declaring Tag Attributes for Tag Handlers

Declaring Tag Variables for Tag Handlers
Programming Simple Tag Handlers

Including Tag Handlersin Web Applications

How Isa Simple Tag Handler Invoked?

Tag Handlersfor Basic Tags

Tag Handlers for Tags with Attributes

Tag Handlers for Tags with Bodies

Tag Handlers for Tags That Define Variables

Cooperating Tags

Examples

ScriptinginJSPPages

The Example JSP Pages
Using Scripting
Disabling Scripting
Declarations
Initializing and Finalizing a JSP Page
Scriptlets
Expressions
Programming Tags That Accept Scripting Elements
TLD Elements
Tag Handlers
Tags with Bodies
Cooperating Tags
Tags That Define Variables

581
584
585
585
586
588
589
597
598
602
603
604
607
609
610
612
613
613
613
614
616
617
620
622

632
633
634
635
635
636
636
637
638
638
640
642

Chapter 17:

Chapter 18:
689

JavaServer Faces Technology 647
JavaServer Faces Technology Benefits 649
What Isa JavaServer Faces Application? 650
Framework Roles 651
A Simple JavaServer Faces Application 652
Steps in the Development Process 652
Creating the Pages 655
Defining Page Navigation 658
Developing the Beans 659
Adding Managed Bean Declarations 661
User Interface Component Model 662
User Interface Component Classes 663
Component Rendering Model 664
Conversion Model 669
Event and Listener Model 670
Validation Model 671
Navigation M odel 672
Backing Bean M anagement 674
How the Pieces Fit Together 677
The Life Cycle of a JavaServer Faces Page 680
Request Processing Life Cycle Scenarios 681
Standard Request Processing Life Cycle 682
Further Information 687

Using JavaServer Faces Technology in JSP Pages . .

The Example JavaServer Faces Application 690

Setting Up a Page
Using the Core Tags
Usingthe HTML Component Tags
Ul Component Tag Attributes
The UlForm Component
The UlColumn Component
The UlCommand Component
The UlData Component
The UIGraphic Component
The Ullnput and Ul Output Components
The UlPanel Component
The Ul SelectBoolean Component

694
697
699
700
703
703
704
706
709
710
714
717

XV

XVi

Chapter 19:

The Ul SelectMany Component 717
The UIMessage and UIMessages Components 718
The Ul SelectOne Component 719

The Ul Selectltem, Ul Selectitems, and Ul SelectitemGroup Components
720

Using L ocalized M essages 724
Referencing a ResourceBundle from a Page 724
Referencing a Localized Message 725

Using the Standard Converters 726
Using DateTimeConverter 727
Using NumberConverter 729

Registering Listenerson Components 731
Registering a VValue-Change Listener on a Component 731
Registering an Action Listener on a Component 732

Using the Standard Validators 732
Requiring aValue 734
Using the LongRangeV alidator 734

Binding Component Values and I nstances to External Data Sour ces
735

Binding a Component Value to a Property 736
Binding a Component Value to an Implicit Object 738
Binding a Component Instance to a Bean Property 739
Referencing a Backing Bean M ethod 741
Referencing a Method That Performs Navigation 741
Referencing a Method That Handles an Action Event 742
Referencing a Method That Performs Validation 743
Referencing a Method That Handles a VVaue-change Event 743
Using Custom Objects 744
Using a Custom Converter 745
Using a Custom Validator 746
Using a Custom Component 747

Developing with JavaServer Faces Technology .749

Writing Component Properties 750
Writing Properties Bound to Component Values 750
Writing Properties Bound to Component | nstances 759

Performing L ocalization 761
Creating a Resource Bundle 761
Localizing Dynamic Data 762

Localizing Messages 762

Chapter 20:

Creating a Custom Converter 764
Implementing an Event Listener 767
Implementing Vaue-Change Listeners 768
Implementing Action Listeners 769
Creating a Custom Validator 770
Implementing the Validator Interface 771
Creating a Custom Tag 775
Writing Backing Bean M ethods 777
Writing a Method to Handle Navigation 777
Writing a Method to Handle an Action Event 779
Writing a Method to Perform Validation 779
Writing a Method to Handle a VValue-Change Event 780
Creating Custom Ul Components 783

Determining Whether You Need a Custom Component or Renderer
784

When to Use a Custom Component 784
When to Use a Custom Renderer 785
Component, Renderer, and Tag Combinations 786
Understanding the Image M ap Example 787

Why Use JavaServer Faces Technology to Implement an Image Map?
788

Understanding the Rendered HTML 788
Understanding the JSP Page 789
Configuring Model Data 791
Summary of the Application Classes 793
Stepsfor Creating a Custom Component 794
Creating the Component Tag Handler 795
Defining the Custom Component Tag in a Tag Library Descriptor 800
Creating Custom Component Classes 801
Specifying the Component Family 804
Performing Encoding 804
Performing Decoding 806
Enabling Value-Binding of Component Properties 807
Saving and Restoring State 808
Delegating Rendering to a Renderer 810
Creating the Renderer Class 810
I dentifying the Renderer Type 812

Handling Eventsfor Custom Components 812

XVii

XViii

Chapter 21

Chapter 22:
845

Chapter 23:

Configuring JavaServer Faces Applications . . .

Application Configuration Resource File
Configuring Beans
Using the managed-bean Element
Initializing Properties using the managed-property Element
Initializing Maps and Lists
Registering M essages
Registering a Custom Validator
Registering a Custom Converter
Configuring Navigation Rules
Registering a Custom Renderer with a Render Kit
Registering a Custom Component
Basic Requirements of a JavaServer Faces Application
Configuring an Application Using deploytool
Including the Required JAR Files
Including the Classes, Pages, and Other Resources

.815

816
817
818
819
825
827
828
828
829
833
835
837
838
843
843

Internationalizing and Localizing Web Applications.

Java Platform L ocalization Classes
Providing L ocalized M essages and L abels
Establishing the Locale
Setting the Resource Bundle
Retrieving Localized Messages
Date and Number Formatting
Character Setsand Encodings
Character Sets
Character Encoding
Further Information

EnterpriseBeans

What Isan Enterprise Bean?
Benefits of Enterprise Beans
When to Use Enterprise Beans
Types of Enterprise Beans

What |sa Session Bean?

State Management Modes
When to Use Session Beans
What Isan Entity Bean?

845
846
847
847
848
849
849
849
850
853

855
855
856
857
857
857
858
859

Chapter 24:

What Makes Entity Beans Different from Session Beans?
Container-Managed Persistence
When to Use Entity Beans

What |sa Message-Driven Bean?

859
861
864
864

What Makes Message-Driven Beans Different from Session and Entity

Beans?

When to Use Message-Driven Beans
Defining Client Accesswith Interfaces

Remote Clients

Local Clients

Local Interfaces and Container-Managed Rel ationships

Deciding on Remote or Local Access

Web Service Clients

Method Parameters and Access
The Contents of an Enterprise Bean
Naming Conventions for Enterprise Beans
TheLife Cycles of Enterprise Beans

The Life Cycle of a Stateful Session Bean

The Life Cycle of a Stateless Session Bean

The Life Cycle of an Entity Bean

The Life Cycle of aMessage-Driven Bean
Further Information

Getting Started with Enterprise Beans

Creating the J2EE Application
Creating the Enterprise Bean

Coding the Enterprise Bean

Compiling the Source Files

Packaging the Enterprise Bean
Creating the Application Client

Coding the Application Client

Compiling the Application Client

Packaging the Application Client

Specifying the Application Client’ s Enterprise Bean Reference
Creating the Web Client

Coding the Web Client

Compiling the Web Client

Packaging the Web Client

Specifying the Web Client’ s Enterprise Bean Reference
Mapping the Enterprise Bean References

865
866
866
867
868
868
869
870
870
871
872
873
873
875
875
877
878

880
880
881
882
883
884
885
887
888
889
889
889
891
891
892
893

XiX

XX

Chapter 25:

Specifying the Web Client’s Context Root
Deploying the J2EE Application
Running the Application Client
Running the Web Client
Modifying the J2EE Application
Modifying aClass File
Adding aFile
Modifying a Deployment Setting

SessionBeanExamples

The CartBean Example
Session Bean Class
Home Interface
Remote Interface
Helper Classes
Building the CartBean Example
Creating the Application
Packaging the Enterprise Bean
Packaging the Application Client
A Web Service Example: HelloServiceBean
Web Service Endpoint Interface
Statel ess Session Bean Implementation Class
Building HelloServiceBean
Building the Web Service Client
Running the Web Service Client
Other Enterprise Bean Features
Accessing Environment Entries
Comparing Enterprise Beans
Passing an Enterprise Bean's Object Reference
Using the Timer Service
Creating Timers
Canceling and Saving Timers
Getting Timer Information
Transactions and Timers
The TimerSessionBean Example
Building TimerSessionBean
Handling Exceptions

894
895
895
896
897
897
898
898

899
900
904
906
906
906
907
907
908
911
911
911
912
915
916
916
916
917
918
919
919
920
921
921
921
923
928

Chapter 26:

Chapter 27:

Bean-Managed Persistence Examples 931
The SavingsAccountBean Example 931
Entity Bean Class 932
Home Interface 943
Remote Interface 945
Running the SavingsAccountBean Example 946
Mapping Table Relationships for Bean-M anaged Per sistence 947
One-to-One Relationships 948
One-to-Many Relationships 951
Many-to-Many Relationships 959
Primary Keysfor Bean-Managed Persistence 962
The Primary Key Class 963
Primary Keys in the Entity Bean Class 964
Getting the Primary Key 965

deploytool Tipsfor Entity Beanswith Bean-M anaged Persistence 965

Container-Managed Persistence Examples 967
Overview of the Roster App Application 967
The PlayerBean Code 969
Entity Bean Class 969
Local Home Interface 974
Local Interface 975
Method Invocationsin Roster App 975
Creating a Player 976
Adding aPlayer to aTeam 977
Removing a Player 978
Dropping a Player from a Team 979
Getting the Players of a Team 980
Getting a Copy of a Team'’s Players 982
Finding the Players by Position 984
Getting the Sports of a Player 985
Building and Running the Roster App Example 987
Creating the Database Tables 987
Creating the Data Source 988
Capturing the Table Schema 988
Building the Enterprise Beans 989
Creating the Enterprise Application 989
Packaging the Enterprise Beans 989
Packaging the Enterprise Application Client 998

Deploying the Enterprise Application 999

XXi

XXii

Chapter 28:

Running the Client Application

A Guided Tour of the Roster App Settings
RosterApp
RosterClient
RosterJAR
TeamJAR

Primary Keysfor Container-Managed Per sistence
The Primary Key Class

Advanced CMP Topics: The Order App Example
Structure of OrderApp
Bean Relationshipsin OrderApp
Primary Keysin OrderApp’s Entity Beans
Entity Bean Mapped to More Than One Database Table
Finder and Selector Methods
Using Home Methods
Cascade Deletesin OrderApp
BLOB and CLOB Database Typesin OrderApp
Building and Running the OrderApp Example

1000
1001
1001
1003
1003
1004
1010
1011
1013
1013
1014
1016
1019
1019
1020
1020
1020
1021

deploytool Tipsfor Entity Beanswith Container-Managed Per sistence

1030

Selecting the Persistent Fields and Abstract Schema Name
Defining EJB QL Queries for Finder and Select Methods

Defining Relationships

Creating the Database Tables at Deploy Time in deploytool

A Message-Driven Bean Example

Example Application Overview
The Application Client
The Message-Driven Bean Class
The onMessage Method
The gjbCreate and ejbRemove Methods
Deploying and Running SimpleM essageApp
Creating the Administered Objects
Deploying the Application
Running the Client
Removing the Administered Objects
deploytool Tipsfor Message-Driven Beans
Specifying the Bean’s Type
Setting the Message-Driven Bean's Characteristics
deploytool Tipsfor Components That Send M essages

1031
1031
1032
1032

Chapter 29:

Setting the Resource References
Setting the Message Destination References
Setting the Message Destinations

Enterprise JavaBeans

Query Languagel045

Chapter 30:

Terminology
Simplified Syntax
Example Queries
Simple Finder Queries
Finder Queries That Navigate to Related Beans
Finder Queries with Other Conditional Expressions
Select Queries
Full Syntax
BNF Symbols
BNF Grammar of EJB QL
FROM Clause
Path Expressions
WHERE Clause
SELECT Clause
ORDER BY Clause
EJB QL Restrictions

Transactions

What Isa Transaction?
Container-M anaged Transactions
Transaction Attributes
Rolling Back a Container-Managed Transaction
Synchronizing a Session Bean’s Instance Variables
Compiling the BankBean Example
Packaging the BankBean Example
Methods Not Allowed in Container-Managed Transactions
Bean-M anaged Transactions
JDBC Transactions
Deploying and Running the WarehouseBean Example
Compiling the WarehouseBean Example
Packaging the WarehouseBean Example
JTA Transactions
Deploying and Running the TellerBean Example

1042
1042
1043

1046
1046
1047
1047
1049
1050
1052
1052
1053
1053
1057
1060
1062
1071
1074
1075

XXiii

XXiv

Chapter 31:

Chapter 32:

Compiling the TellerBean Example

Packaging the TellerBean Example

Returning without Committing

Methods Not Allowed in Bean-Managed Transactions
Summary of Transaction Optionsfor Enterprise Beans
Transaction Timeouts
Isolation Levels
Updating Multiple Databases
Transactionsin Web Components

Resource Connections.

JNDI Naming
DataSour ce Objects and Connection Pools
Database Connections
Coding a Database Connection
Specifying a Resource Reference
Creating a Data Source
Mail Session Connections
Running the ConfirmerBean Example
URL Connections
Running the HTM L ReaderBean Example
Further Information

SeCurity

Overview
Realms, Users, Groups, and Roles

Managing Users

Setting Up Security Roles

Mapping Roles to Users and Groups
Web-Tier Security

Protecting Web Resources

Setting Security Requirements Using deploytool

Specifying a Secure Connection

Using Programmatic Security in the Web Tier
Under standing L ogin Authentication

Using HTTP Basic Authentication

Using Form-Based Authentication

Using Client-Certificate Authentication

Using Mutual Authentication

1097
1097
1100
1101
1101
1102
1103
1104
1105

Chapter 33:

Using Digest Authentication
Configuring Authentication
Example: Using Form-Based Authentication
Installing and Configuring SSL Support
What |s Secure Socket Layer Technology?
Understanding Digital Certificates
Using SSL
XML and Web Services Security
Transport-Level Security
Example: Basic Authentication with JAX-RPC

Example: Client-Certificate Authentication over HTTP/SSL with

JAX-RPC
EJB-Tier Security
Declaring Method Permissions
Configuring IOR Security
Using Programmatic Security in the EJB Tier
Unauthenticated User Name
Application Client-Tier Security
EISTier Security
Container-Managed Sign-On
Component-Managed Sign-On
Configuring Resource Adapter Security
Propagating Security ldentity
Configuring a Component’ s Propagated Security |dentity
Configuring Client Authentication
What |s Java Authorization Contract for Containers?
Further Information

The Java Message Service API.

Overview
What Is Messaging?
What Isthe IMS API?
When Can You Usethe IMS API?
How Doesthe IMS APl Work with the J2EE Platform?
Basic JIMS API Concepts
JMS API Architecture
Messaging Domains
Message Consumption
The JM S API Programming Model
Administered Objects

XXV

XXVi

Chapter 34:

Connections 1199
Sessions 1199
Message Producers 1200
Message Consumers 1201
Messages 1204
Exception Handling 1207
Writing Simple JM S Client Applications 1208
A Simple Example of Synchronous Message Receives 1208
A Simple Example of Asynchronous Message Consumption 1219
Running JM S Client Programs on Multiple Systems 1223
Creating Robust JM S Applications 1228
Using Basic Reliability Mechanisms 1229
Using Advanced Reliability Mechanisms 1236
Using the IMS API in a J2EE Application 1248
Using Session and Entity Beans to Produce and to Synchronously Re-
ceive Messages 1248
Using Message-Driven Beans 1250
Managing Distributed Transactions 1252
Using the IMS API with Application Clients and Web Components1255
Further Information 1255
J2EE Examples Using the IMS APl 1257
A J2EE Application That Usesthe IMS API with a Session Bean 1258
Writing the Application Components 1259
Creating and Packaging the Application 1261
Deploying the Application 1265
Running the Application Client 1266
A J2EE Application That Usesthe JM S API with an Entity Bean 1267
Overview of the Human Resources Application 1267
Writing the Application Components 1269
Creating and Packaging the Application 1271
Deploying the Application 1274
Running the Application Client 1274
An Application Example That Consumes M essages from a Remote
J2EE Server 1275
Overview of the Applications 1276
Writing the Application Components 1277
Creating and Packaging the Applications 1277
Deploying the Applications 1280

Running the Application Client 1281

Chapter 35:

An Application Example That Deploysa M essage-Driven Bean on Two

J2EE Servers 1282
Overview of the Applications 1282
Writing the Application Components 1284
Creating and Packaging the Applications 1285
Deploying the Applications 1288
Running the Application Client 1289

The Coffee Break Application. 1291

Common Code 1293

JAX-RPC Coffee Supplier Service 1293
Service Interface 1293
Service Implementation 1294
Publishing the Service in the Registry 1295
Deleting the Service From the Registry 1300

SAAJ Coffee Supplier Service 1302
SAAJClient 1303
SAAJ Service 1310

Coffee Break Server 1317
JSP Pages 1318
JavaBeans Components 1318
RetailPriceListServlet 1321

JavaServer Faces Version of Coffee Break Server 1321
JSP Pages 1322
JavaBeans Components 1324
Resource Configuration 1326

Building, Packaging, Deploying, and Running the Application = 1327
Setting the Port 1327
Setting the Registry Properties 1328
Using the Provided WARs 1329
Building the Common Classes 1329
Building, Packaging, and Deploying the JAX-RPC Service 1330
Building, Packaging, and Deploying the SAAJ Service 1332

Building, Packaging, and Deploying the Coffee Break Server 1333
Building, Packaging, and Deploying the JavaServer Faces Technology

Coffee Break Server 1335
Running the Coffee Break Client 1336
Removing the Coffee Break Application 1338

XXVil

XXViii

Chapter 36: The Duke’s Bank Application. 1339
Enterprise Beans 1340
Session Beans 1341
Entity Beans 1344
Helper Classes 1345
Database Tables 1346
Protecting the Enterprise Beans 1347
Application Client 1347
The Classes and Their Relationships 1349
BankAdmin Class 1350
EventHandle Class 1352
DataModel Class 1353
Web Client 1355
Design Strategies 1357
Client Components 1358
Request Processing 1361
Protecting the Web Client Resources 1363

I nternationalization 1365
Building, Packaging, Deploying, and Running the Application 1366
Setting Up the Servers 1367
Compiling the Duke’ s Bank Application Code 1369
Packaging and Deploying the Duke’ s Bank Application 1369
Reviewing JINDI Names 1379
Running the Clients 1380
Running the Application Client 1380
Running the Web Client 1381
Appendix A: Java EncodingSchemes................... 1383
Further Information 1384

Appendix B: XML and Related Specs: Digesting the Alphabet

Soup 1385
Basic Standards 1386
SAX 1386
StAX 1387
DOM 1387
JDOM and dom4j 1387
DTD 1388

Namespaces 1389

Appendix C:

Appendix D:

XSL

XSLT (+XPath)
Schema Standards

XML Schema

RELAX NG

SOX

Schematron

Linking and Presentation Standards

XML Linking
XHTML
Knowledge Standards
RDF
RDF Schema
XTM
Standards That Build on XML
Extended Document Standards
e-Commerce Standards
Summary

HTTP Overview

HTTP Requests
HTTP Responses

J2EE Connector Architecture

About Resource Adapters
Resource Adapter Contracts
Management Contracts
Outbound Contracts
Inbound Contracts
Common Client Interface
Further Information

Glossary.

Aboutthe Authors

Current Writers
Past Writers

1389
1389
1390
1391
1391
1391
1392
1392
1392
1393
1393
1393
1394
1394
1394
1395
1395
1396

XXIX

XXX

Foreword

When the first edition of The J2EE™ Tutorial was released, the Java™ 2 Plat-
form, Enterprise Edition (J2EE) was the new kid on the block. Modeled after its
forerunner, the Java 2 Platform, Standard Edition (J2SE™), the J2EE platform
brought the benefits of “Write Once, Run Anywhere™” API compatibility to
enterprise application servers. Now at version 1.4 and with widespread conform-
ance in the application server marketplace, the J2EE platform has firmly estab-
lished its position as the standard for enterprise application servers.

The J2EE™ Tutorial, Second Edition covers the J2EE 1.4 platform and more. If
you have used the first edition of The J2EE™ Tutorial you may notice that the
second edition is triple the size. This reflects amajor expansion in the J2EE plat-
form and the availability of two upcoming J2EE technologies in the Sun Java
System Application Server Platform Edition 8.2, the software on which the tuto-
rial is based.

One of the most important additions to the J2EE 1.4 platform is substantial sup-
port for web services with the JAX-RPC 1.1 API, which enables web service
endpoints based on servlets and enterprise beans. The platform also contains
web services support APIs for handling XML data streams directly (SAAJ) and
for accessing web services registries (JAXR). In addition, the J2EE 1.4 platform
requires WS-1 Basic Profile 1.0. This means that in addition to platform indepen-
dence and compl ete web services support, the J2EE 1.4 platform offers web ser-
vices interoperability.

The J2EE 1.4 platform contains major enhancements to the Java servlet and Jav-
aServer Pages (JSP) technologies that are the foundation of the web tier. The
tutorial aso showcases two exciting new technologies, not required by the J2EE
1.4 platform, that simplify the task of building J2EE application user interfaces:
JavaServer Pages Standard Tag Library (JSTL) and JavaServer Faces. These new

XXXi

XXXil

technologies are available in the Application Server. They will soon be featured
in new developer tools and are strong candidates for inclusion in the next version
of the J2EE platform.

Readers conversant with the core J2EE platform enterprise bean technology will
notice major upgrades with the addition of the previously mentioned web service
endpoints, aswell asatimer service, and enhancementsto EJB QL and message-
driven beans.

With al of these new features, | believe that you will find it well worth your time
and energy to take on the J2EE 1.4 platform. You can increase the scope of the
J2EE applications you develop, and your applications will run on the widest pos-
sible range of application server products.

To help you to learn all about the J2EE 1.4 platform, The J2EE™ Tutorial, Sec-
ond Edition follows the familiar Java Series tutorial model of concise descrip-
tions of the essentia features of each technology with code examples that you
can deploy and run on the Application Server. Read this tutorial and you will
become part of the next wave of J2EE application developers.

Jeff Jackson

Vice President, J2EE Platform and Application Servers
Sun Microsystems

Santa Clara, CA

December 7, 2005

About This Tutorial

T HE J2EE™ 1.4 Tutorial is a guide to developing enterprise applications for
the Java 2 Platform, Enterprise Edition (J2EE) version 1.4. Here we cover al the
things you need to know to make the best use of this tutorial.

Who Should Use This Tutorial

This tutorial is intended for programmers who are interested in developing and
deploying J2EE 1.4 applications on the Sun Java System Application Server
Platform Edition 8.2.

Prerequisites

Before proceeding with this tutorial you should have a good knowledge of the
Java programming language. A good way to get to that point is to work through
al the basic and some of the specialized trails in The Java™ Tutorial, Mary
Campione et a., (Addison-Wesley, 2000). In particular, you should be familiar
with relational database and security features described in the trails listed in
Table 1.

Table1l Prerequisite Trailsin The Java™ Tutorial

Trail URL
JDBC http://java.sun.com/docs/books/tutorial/jdbc
Security http://java.sun.com/docs/books/tutorial/securityl.2

XXXiii

http://java.sun.com/docs/books/tutorial/jdbc
http://java.sun.com/docs/books/tutorial/security1.2

XXXV

How to Read This Tutorial

The J2EE 1.4 platform is quite large, and thistutorial reflects this. However, you
don't have to digest everything in it at once.

This tutorial opens with three introductory chapters, which you should read
before proceeding to any specific technology area. Chapter 1 coversthe J2EE 1.4
platform architecture and APIs along with the Sun Java System Application
Server Platform Edition 8.2. Chapters 2 and 3 cover XML basics and getting
started with web applications.

When you have digested the basics, you can delve into one or more of the four
main technology areas listed next. Because there are dependencies between
some of the chapters, Figure 1 contains a roadmap for navigating through the
tutorial.

» TheJavaXML chapters cover the technol ogiesfor devel oping applications
that process XML documents and implement web services component.:
» TheJava APl for XML Processing (JAXP)
» TheJava APl for XML-based RPC (JAX-RPC)
» SOAP with Attachments API for Java (SAAJ)
» TheJava APl for XML Registries (JAXR)
» The web-tier technology chapters cover the components used in develop-
ing the presentation layer of a J2EE or stand-alone web application:
» Java Serviet
» JavaServer Pages (JSP)
» JavaServer Pages Standard Tag Library (JSTL)
» JavaServer Faces
» web application internationalization and localization
» The Enterprise JavaBeans (EJB) technology chapters cover the compo-
nents used in developing the business logic of a J2EE application:
* Session beans
» Entity beans
» Message-driven beans

» Enterprise JavaBeans Query Language

» The platform services chapters cover the system services used by al the

J2EE component technologies:
» Transactions

» Resource connections

e Security

» JavaMessage Service

Overview (1)

e

Eniarprlss Transactions (30)

Beans (23-29)

Getting Started with Understanding
Web Applications (3) XML (2)

Resource
Bullding Web Connections (31)
Services with JAXP (4-7)
JAX-RPC (8

P A—
Security (32)

Y
Servlets (11)

v ___
JSP (12-16)

G

JSF (17-21)

— Coffee Break
118n and Case Study (35)

L10n (22)

¥ _
Duke’s Bank
Case Study (36)

Figurel Roadmap to This Tutorial

SAAJ (9) ’ JAXR (10)' PR S—

XXXV

XXXVi

After you have become familiar with some of the technology areas, you are
ready to tackle the case studies, which tie together several of the technologies
discussed in the tutorial. The Coffee Break Application (Chapter 35) describes
an application that uses the web application and web services APIs. The Duke's
Bank Application (Chapter 36) describes an application that employs web appli-
cation technologies and enterprise beans.

Finally, the appendixes contain auxiliary information helpful to the J2EE appli-
cation developer aong with a brief summary of the J2EE Connector architec-
ture:

» Javaencoding schemes (Appendix A)
XML Standards (Appendix B)
HTTP overview (Appendix C)
J2EE Connector architecture (Appendix D)

About the Examples

This section tells you everything you need to know to install, build, and run the
examples.

Required Software

Tutorial Bundle

The tutorial example source is contained in the tutorial bundle. If you are view-
ing this online, you need to download tutorial bundle from:

http://java.sun.com/j2ee/1.4/download.html#tutorial

After you have installed the tutorial bundle, the example source code is in the
<INSTALL>/j2eetutoriall4/examples/ directory, with subdirectories for each
of the technol ogies discussed in the tutorial.

Application Server

The Sun Java System Application Server Platform Edition 8.2 is targeted as the
build and runtime environment for the tutorial examples. To build, deploy, and

http://java.sun.com/j2ee/1.4/download.html#tutorial

run the examples, you need a copy of the Application Server and the Java 2 Soft-
ware Development Kit, Standard Edition (J2SE SDK) 1.4.2_06 or higher. If you
aready have a copy of the J2SE SDK, you can download the Application Server
from:

http://java.sun.com/j2ee/1.4/downTload.html#sdk

You can also download the J2EE 1.4 SDK—which contains the Application
Server and the 2SE SDK—from the same site.

Application Server Installation Tips
In the Admin configuration pane of the Application Server installer,

« Select the Don't Prompt for Admin User Nameradio button. Thiswill save
the user name and password so that you won't need to provide them when
performing administrative operations with asadmin and deploytool. You
will till haveto providethe user name and passwordtologintothe Admin
Console.

* Notethe HTTP port at which the server isinstalled. Thistutorial assumes
that you are accepting the default port of 8080. If 8080 is in use during
installation and the installer chooses another port or if you decide to
change it yourself, you will need to update the common build properties
file (described in the next section) and the configuration files for some of
the tutorial examples to reflect the correct port.

In the Installation Options pane, check the Add Bin Directory to PATH checkbox
so that Application Server scripts (asadmin, asant, deploytool, and wscom-
pile) override other installations.

Registry Server

You need aregistry server to run the examples discussed in Chapters 10 and 35.
Directions for obtaining and setting up a registry server are provided in those
chapters.

Building the Examples

Most of the tutorial examples are distributed with a configuration file for asant,
a portable build tool contained in the Application Server. This tool is an exten-
sion of the Ant tool developed by the Apache Software Foundation

XXXVil

http://java.sun.com/j2ee/1.4/download.html#sdk

XXXViii

(http://ant.apache.org). The asant utility contains additional tasks that
invoke the Application Server administration utility asadmin. Directions for
building the examples are provided in each chapter.

Build properties and targets common to all the examples are specified in thefiles
<INSTALL>/j2eetutoriall4/examples/common/build.properties and
<INSTALL>/j2eetutoriall4/examples/common/targets.xml. Build proper-
ties and targets common to a particular technology are specified in the files
<INSTALL>/j2eetutoriall4/examples/tech/common/build.properties

and <INSTALL>/j2eetutoriall4/examples/tech/common/targets.xml.

To run the asant scripts, you must set common build properties in the file
<INSTALL>/j2eetutoriall4/examples/common/build.properties as fol-
lows:

» Set the j2ee.home property to the location of your Application Server
installation. The build process usesthe j2ee. home property to include the
librariesin <J2EE_HOME>/1ib/ in the classpath. All examplesthat run on
the Application Server include the J2EE library archive—
<J2EE_HOME>/11ib/j2ee.jar—inthebuild classpath. Some examples use
additional libraries in <J2EE_HOME>/1ib/ and
<J2EE_HOME>/1ib/endorsed/; the required libraries are enumerated in
the individual technology chapters. <J2EE_HOME> refers to the directory
where you have installed the Application Server or the J2EE 1.4 SDK.

Note: On Windows, you must escape any backslashes in the j2ee.home property
with another backslash or use forward slashes as a path separator. So, if your Appli-
cation Server installationisC:\Sun\AppServer, you must set j2ee . home asfollows:
j2ee.home = C:\\Sun\\AppServer

or

j2ee.home=C:/Sun/AppServer

* Setthej2ee.tutorial.home property tothelocation of your tutorial. This
property is used for asant deployment and undeployment.

For example on Unix:

j2ee.tutorial.home=/home/username/j2eetutoriall4

http://ant.apache.org

On Windows:
j2ee.tutorial.home=C:/j2eetutorialls

You should not install the tutorial to alocation with spacesin the path.

 If you did not use the default value (admin) for the admin user, set the
admin.user property to the value you specified when you installed the
Application Server.

 If you did not use port 8080, set the domain. resources.port property to
the value specified when you installed the Application Server.

o Set the admin user's password in
<INSTALL>/j2eetutoriall4d/examples/common/admin-password.txt
to the value you specified when you installed the Application Server. The
format of thisfile is AS_ADMIN_PASSWORD=password. For example:

AS_ADMIN_PASSWORD=mypassword

Tutorial Example Directory Structure

To facilitate iterative development and keep application source separate from
compiled files, the source code for the tutorial examplesis stored in the follow-
ing structure under each application directory:

* build.xml: asant build file

* src: Javasource of servlets and JavaBeans components; tag libraries

* web: JSP pages and HTML pages, tag files, and images

The asant build files (build.xm1) distributed with the examples contain targets
to create abui1d subdirectory and to copy and compile filesinto that directory.

Further Information

This tutorial includes the basic information that you need to deploy applications
on and administer the Application Server.

For reference information on the tools distributed with the Application Server,
seetheman pagesat http://docs.sun.com/db/doc/817-6092.

XXXiX

http://docs.sun.com/db/doc/817-6092

xl

See the Sun Java™ System Application Server Platform Edition 8 Developer’s
Guide a http://docs.sun.com/db/doc/817-6087 for information about
devel oper features of the Application Server.

See the Sun Java™ System Application Server Platform Edition 8 Administra-
tion Guide at http://docs.sun.com/db/doc/817-6088 for information about
administering the Application Server.

For information about the Derby database, which is included with Application
Server 8.2, and the Pointbase database, which is included with Application
Server 8.1, see the following web sites:

e http://db.apache.org/derby

* http://www.pointbase.com

How to Buy This Tutorial

This tutorial has been published in the Java Series by Addison-Wesley as The
Java Tutorial, Second Edition. For information on the book and links to online
booksellers, goto

http://java.sun.com/docs/books/j2eetutorial/index.html#second

How to Print This Tutorial

To print this tutorial, follow these steps:
1. Ensure that Adobe Acrobat Reader isinstalled on your system.

2. Open the PDF version of this book.
3. Click the printer icon in Adobe Acrobat Reader.

http://docs.sun.com/db/doc/817-6088
http://db.apache.org/derby
http://www.pointbase.com
http://java.sun.com/docs/books/j2eetutorial/index.html#second
http://docs.sun.com/db/doc/817-6087
J2EETutorial.pdf

xli

Typographical Conventions

Table 2 lists the typographical conventions used in this tutorial.

Table2 Typographical Conventions

Font Style Uses

italic Emphasis, titles, first occurrence of terms

URLSs, code examples, file names, path names, tool names,
monospace application names, programming language keywords, tag,
interface, class, method, and field names, properties

italic monospace Variablesin code, file paths, and URLs

<italic monospace> User-sel ected file path components

Menu selections indicated with the right-arrow character —, for example,
First » Second, should be interpreted as: select the First menu, then choose Sec-
ond from the First submenu.

Acknowledgments

The J2EE tutorial team would like to thank the J2EE specification leads: Bill
Shannon, Pierre Delide, Mark Rath, Yutaka Yoshida, Farrukh Najmi, Phil Good-
win, Joseph Fiali, Kate Stout, and Ron Monzillo and the J2EE 1.4 SDK team
members: Vivek Nagar, Tony Ng, Qingging Ouyang, Ken Saks, Jean-Francois
Arcand, Jan Luehe, Ryan Lubke, Kathy Walsh, Binod P G, Alegjandro Murillo,
and Manveen Kaur.

The chapters on custom tags and the Coffee Break and Duke's Bank applications
use a template tag library that first appeared in Designing Enterprise Applica-
tions with the J2EE™ Platform, Second Edition, Inderjeet Singh et a., (Addi-
son-Wesley, 2002).

The JavaServer Faces technology and JSP Documents chapters benefited greatly
from the invaluable documentation reviews and example code contributions of
these engineers. Ed Burns, Justyna Horwat, Roger Kitain, Jan Luehe, Craig
McClanahan, Rgj Premkumar, Mark Roth, and especialy Jayashri Visvanathan.

xlii

The OrderApp example application described in the Container-Managed Persis-
tence chapter was coded by Marina Vatkina with contributions from Markus
Fuchs, Rochelle Raccah, and Deepa Singh. Ms. Vatkina's JIDO/CMP team pro-
vided extensive feedback on the tutorial’s discussion of CMP.

The security chapter writers are indebted to Raja Perumal, who was a key con-
tributor both to the chapter and to the examples.

Monica Pawlan and Beth Stearns wrote the Overview and J2EE Connector chap-
tersin the first edition of The J2EE Tutorial and much of that content has been
carried forward to the current edition.

We are extremely grateful to the many internal and external reviewers who pro-
vided feedback on the tutorial. Their feedback helped improve the technical
accuracy and presentation of the chapters and eliminate bugs from the examples.

We would like to thank our manager, Alan Sommerer, for his support and
steadying influence.

We also thank Duarte Design, Inc., and Zana Vartanian for developing the illus-
trationsin record time. Thanks are also due to our copy editor, Betsy Hardinger,
for helping this multi-author project achieve acommon style.

Finally, we would like to express our profound appreciation to Ann Sellers, Eliz-
abeth Ryan, and the production team at Addison-Wesley for graciously seeing
our large, complicated manuscript to publication.

Feedback

To send comments, broken link reports, errors, suggestions, and questions about
this tutorial to the tutorial team, please use the feedback form at
http://java.sun.com/j2ee/1.4/docs/tutorial/information/sendus-
mail.html.

http://java.sun.com/j2ee/1.4/docs/tutorial/information/sendusmail.html
http://java.sun.com/j2ee/1.4/docs/tutorial/information/sendusmail.html

Overview

TODAY, more and more developers want to write distributed transactional
applications for the enterprise and thereby leverage the speed, security, and reli-
ability of server-side technology. If you are aready working in this area, you
know that in the fast-moving and demanding world of e-commerce and informa-
tion technology, enterprise applications must be designed, built, and produced
for less money, with greater speed, and with fewer resources than ever before.

To reduce costs and fast-track application design and development, the Java™ 2
Platform, Enterprise Edition (J2EE™) provides a component-based approach to
the design, development, assembly, and deployment of enterprise applications.
The J2EE platform offers a multitiered distributed application model, reusable
components, a unified security model, flexible transaction control, and web ser-
vices support through integrated data interchange on Extensible Markup Lan-
guage (XML)-based open standards and protocols.

Not only can you deliver innovative business solutions to market faster than ever,
but also your platform-independent J2EE component-based solutions are not tied
to the products and application programming interfaces (APIs) of any one ven-
dor. Vendors and customers enjoy the freedom to choose the products and com-
ponents that best meet their business and technological requirements.

This tutorial uses examples to describe the features and functionalities available
in the J2EE platform version 1.4 for devel oping enterprise applications. Whether
you are a new or an experienced developer, you should find the examples and
accompanying text a valuable and accessible knowledge base for creating your
own solutions.

If you are new to J2EE enterprise application development, this chapter isagood
place to start. Here you will review development basics, learn about the J2EE
architecture and APIs, become acquainted with important terms and concepts,
and find out how to approach J2EE application programming, assembly, and
deployment.

Distributed Multitiered Applications

The J2EE platform uses a distributed multitiered application model for enter-
prise applications. Application logic is divided into components according to
function, and the various application components that make up a J2EE applica-
tion are installed on different machines depending on the tier in the multitiered
J2EE environment to which the application component belongs. Figure 1-1
shows two multitiered J2EE applications divided into the tiers described in the
following list. The J2EE application parts shown in Figure 1-1 are presented in
J2EE Components (page 3).

 Client-tier components run on the client machine.

» Web-tier components run on the J2EE server.

» Business-tier components run on the J2EE server.

» Enterprise information system (EIS)-tier software runs on the EIS server.

Although a J2EE application can consist of the three or four tiers shown in Fig-
ure 1-1, J2EE multitiered applications are generally considered to be three-
tiered applications because they are distributed over three locations: client
machines, the J2EE server machine, and the database or legacy machines at the
back end. Three-tiered applications that run in this way extend the standard two-
tiered client and server model by placing a multithreaded application server
between the client application and back-end storage.

DISTRIBUTED MULTITIERED APPLICATIONS

J2EE J2EE
Application 1 Application 2
Application Dynamic
Client HTML Pages

Beans

/\

Database

=

JSP Pages

Beans

/\

Database

Figurel-1 Multitiered Applications

J2EE Components

J2EE applications are made up of components. A J2EE component is a self-con-
tained functional software unit that is assembled into a J2EE application with its
related classes and files and that communicates with other components. The

Client
Tier

Web
Tier

Business
Tier

EIS
Tier

Client
Machine

J2EE
Server
Machine

Database
Server
Machine

J2EE specification defines the following J2EE components:

» Application clients and applets are components that run on the client.
» Java Servlet and JavaServer Pages™ (JSP™) technology components are

web components that run on the server.

» Enterprise JavaBeans™ (EJB™) components (enterprise beans) are busi-

ness components that run on the server.

J2EE components are written in the Java programming language and are com-
piled in the same way as any program in the language. The difference between
J2EE components and “standard” Java classes is that J2EE components are
assembled into a J2EE application, are verified to be well formed and in compli-
ance with the J2EE specification, and are deployed to production, where they are
run and managed by the J2EE server.

J2EE Clients

A J2EE client can be aweb client or an application client.

Web Clients

A web client consists of two parts: (1) dynamic web pages containing various
types of markup language (HTML, XML, and so on), which are generated by
web components running in the web tier, and (2) a web browser, which renders
the pages received from the server.

A web client is sometimes called a thin client. Thin clients usually do not query
databases, execute complex business rules, or connect to legacy applications.
When you use athin client, such heavyweight operations are off-loaded to enter-
prise beans executing on the J2EE server, where they can leverage the security,
speed, services, and reliability of J2EE server-side technologies.

Applets

A web page received from the web tier can include an embedded applet. An
applet is a small client application written in the Java programming language
that executes in the Java virtual machine installed in the web browser. However,
client systemswill likely need the Java Plug-in and possibly a security policy file
in order for the applet to successfully execute in the web browser.

Web components are the preferred APl for creating a web client program
because no plug-ins or security policy files are needed on the client systems.
Also, web components enable cleaner and more modular application design
because they provide a way to separate applications programming from web
page design. Personnel involved in web page design thus do not need to under-
stand Java programming language syntax to do their jobs.

Application Clients

An application client runs on a client machine and provides a way for users to
handle tasks that require aricher user interface than can be provided by amarkup
language. It typically has a graphical user interface (GUI) created from the
Swing or the Abstract Window Toolkit (AWT) API, but a command-line inter-
faceis certainly possible.

DISTRIBUTED MULTITIERED APPLICATIONS

Application clients directly access enterprise beans running in the business tier.
However, if application requirements warrant it, an application client can open
an HTTP connection to establish communication with a servlet running in the
web tier.

The JavaBeans™ Component Architecture

The server and client tiers might also include components based on the Java-
Beans component architecture (JavaBeans components) to manage the data flow
between an application client or applet and components running on the J2EE
server, or between server components and a database. JavaBeans components are
not considered J2EE components by the J2EE specification.

JavaBeans components have properties and have get and set methods for
accessing the properties. JavaBeans components used in this way are typically
simple in design and implementation but should conform to the naming and
design conventions outlined in the JavaBeans component architecture.

J2EE Server Communications

Figure 1-2 shows the various elements that can make up the client tier. The cli-
ent communicates with the business tier running on the J2EE server either
directly or, asin the case of aclient running in a browser, by going through JSP
pages or servlets running in the web tier.

Your J2EE application uses a thin browser-based client or thick application cli-
ent. In deciding which one to use, you should be aware of the trade-offs between
keeping functionality on the client and close to the user (thick client) and off-
loading as much functionality as possible to the server (thin client). The more
functionality you off-load to the server, the easier it is to distribute, deploy, and
manage the application; however, keeping more functionality on the client can
make for a better perceived user experience.

Client Tier

Web Browser

Web Pages, ~

o Appllejs, agd
ptional JavaBeans i
Components Web Tier Business

Tier

Application Client
and Optional
JavaBeans
Components

J2EE Server

Figure1-2 Server Communications

Web Components

J2EE web components are either servlets or pages created using JSP technology
(JSP pages). Serviets are Java programming language classes that dynamically
process requests and construct responses. JSP pages are text-based documents
that execute as servlets but allow a more natural approach to creating static con-
tent.

Static HTML pages and applets are bundled with web components during appli-
cation assembly but are not considered web components by the J2EE specifica
tion. Server-side utility classes can also be bundled with web components and,
like HTML pages, are not considered web components.

As shown in Figure 1-3, the web tier, like the client tier, might include a Java-
Beans component to manage the user input and send that input to enterprise
beans running in the business tier for processing.

Business Components

Business code, which islogic that solves or meets the needs of a particular busi-
ness domain such as banking, retail, or finance, is handled by enterprise beans
running in the business tier. Figure 1-4 shows how an enterprise bean receives
data from client programs, processes it (if necessary), and sends it to the enter-

DISTRIBUTED MULTITIERED APPLICATIONS

prise information system tier for storage. An enterprise bean also retrieves data
from storage, processesit (if necessary), and sendsit back to the client program.

Web Tier

Web Browser /\ (é

Web Pages,
o Appllejs, agd /
ptional JavaBeans JSP Pages .
Components Servlets c";}";%ﬁaeﬂfs Business
(Optional) Tier

Application Client

and Optional
JavaBeans

Components

J2EE Server

Figure 1-3 Web Tier and J2EE Applications

Business
Tier EIS Tier
Web Browser
Web Pages,
Applets, and
Optional JavaBeans JSP Pages Entity Beans Database
Components Servle%s ddazuins Sessign Beans and

Components .

: Message-Driven Legacy
Optional

Application Client (Optional) Beans Systems

and Optional

JavaBeans

Components

/\

J2EE Server

Figure14 Businessand EIS Tiers

There are three kinds of enterprise beans. session beans, entity beans, and mes-
sage-driven beans. A session bean represents a transient conversation with acli-
ent. When the client finishes executing, the session bean and its dataare gone. In
contrast, an entity bean represents persistent data stored in one row of a database
table. If the client terminates or if the server shuts down, the underlying services
ensure that the entity bean datais saved. A message-driven bean combines fea-

tures of a session bean and a Java Message Service (JMS) message listener,
allowing a business component to receive JM S messages asynchronously.

Enterprise Information System Tier

The enterprise information system tier handles EIS software and includes enter-
prise infrastructure systems such as enterprise resource planning (ERP), main-
frame transaction processing, database systems, and other legacy information
systems. For example, J2EE application components might need access to enter-
prise information systems for database connectivity.

J2EE Containers

Normally, thin-client multitiered applications are hard to write because they
involve many lines of intricate code to handle transaction and state management,
multithreading, resource pooling, and other complex low-level details. The com-
ponent-based and platform-independent J2EE architecture makes J2EE applica-
tions easy to write because businesslogic is organized into reusable components.
In addition, the J2EE server provides underlying services in the form of a con-
tainer for every component type. Because you do not have to develop these ser-
vices yourself, you are free to concentrate on solving the business problem at
hand.

Container Services

Containers are the interface between a component and the low-level platform-
specific functionality that supports the component. Before a web component,
enterprise bean, or application client component can be executed, it must be
assembled into a J2EE module and deployed into its container.

The assembly process involves specifying container settings for each component
in the J2EE application and for the J2EE application itself. Container settings
customize the underlying support provided by the J2EE server, including ser-
vices such as security, transaction management, Java Naming and Directory

J2EE CONTAINERS

Interface™ (INDI) lookups, and remote connectivity. Here are some of the high-
lights:

» The J2EE security model |etsyou configure aweb component or enterprise
bean so that system resources are accessed only by authorized users.

» The J2EE transaction model lets you specify relationships among methods
that make up a single transaction so that all methods in one transaction are
treated as a single unit.

» JINDI lookup services provide a unified interface to multiple naming and
directory services in the enterprise so that application components can
access haming and directory services.

» The J2EE remote connectivity model manages low-level communications
between clients and enterprise beans. After an enterprise bean is created, a
client invokes methods on it asiif it were in the same virtual machine.

Because the J2EE architecture provides configurable services, application com-
ponents within the same J2EE application can behave differently based on where
they are deployed. For example, an enterprise bean can have security settings
that allow it a certain level of access to database datain one production environ-
ment and another level of database access in another production environment.

The container also manages nonconfigurable services such as enterprise bean
and servlet life cycles, database connection resource pooling, data persistence,
and access to the J2EE platform APIs described in section JREE 1.4
APIs (page 18). Although data persistence is a nonconfigurable service, the
J2EE architecture lets you override container-managed persistence by including
the appropriate code in your enterprise bean implementation when you want
more control than the default container-managed persistence provides. For
example, you might use bean-managed persistence to implement your own
finder (search) methods or to create a customized database cache.

Container Types

The deployment process installs J2EE application components in the J2EE con-
tainersillustrated in Figure 1-5.

10

J2EE Server

Browser /_\ /_\
’ Servlet JSP Page

Web Container

/\

Application
Client

Application /_\ /_\

Client Enterprise Enterprise
Container Bean Bean

Database

Client Machine EJB Container.

Figure 1-5 J2EE Server and Containers

J2EE server
The runtime portion of a J2EE product. A J2EE server provides EJB and
web containers.

Enterprise JavaBeans (EJB) container
Manages the execution of enterprise beans for J2EE applications. Enterprise
beans and their container run on the J2EE server.

Web container
Manages the execution of JSP page and servlet components for J2EE appli-
cations. Web components and their container run on the J2EE server.

Application client container
Manages the execution of application client components. Application clients
and their container run on the client.

Applet container
Manages the execution of applets. Consists of aweb browser and Java Plug-
in running on the client together.

Web Services Support

Web services are web-based enterprise applications that use open, XML-based
standards and transport protocolsto exchange datawith calling clients. The J2EE

WEB SERVICES SUPPORT

platform provides the XML APIs and tools you need to quickly design, develop,
test, and deploy web services and clients that fully interoperate with other web
services and clients running on Java-based or non-Java-based platforms.

To write web services and clients with the 2EE XML APIs, al you do is pass
parameter data to the method calls and process the data returned; or for docu-
ment-oriented web services, you send documents containing the service data
back and forth. No low-level programming is needed because the XML API
implementations do the work of tranglating the application data to and from an
XML-based data stream that is sent over the standardized XM L-based transport
protocols. These XML-based standards and protocols are introduced in the fol-
lowing sections.

The tranglation of data to a standardized XML -based data stream is what makes
web services and clients written with the 2EE XML APIs fully interoperable.
This does not necessarily mean that the data being transported includes XML
tags because the transported data can itself be plain text, XML data, or any kind
of binary data such as audio, video, maps, program files, computer-aided design
(CAD) documents and the like. The next section introduces XML and explains
how parties doing business can use XML tags and schemas to exchange datain a
meaningful way.

XML

XML is a cross-platform, extensible, text-based standard for representing data.
When XML datais exchanged between parties, the parties are free to create their
own tags to describe the data, set up schemas to specify which tags can be used
in a particular kind of XML document, and use XML stylesheets to manage the
display and handling of the data.

For example, a web service can use XML and a schema to produce price lists,
and companies that receive the price lists and schema can have their own
stylesheets to handle the datain away that best suitstheir needs. Here are exam-
ples:
* One company might put XML pricing information through a program to
translatethe XML to HTML so that it can post the priceliststo itsintranet.

* A partner company might put the XML pricing information through atool
to create a marketing presentation.

» Another company might read the XML pricing information into an appli-
cation for processing.

11

12

SOAP Transport Protocol

Client requests and web service responses are transmitted as Simple Object
Access Protocol (SOAP) messages over HTTP to enable a completely interoper-
able exchange between clients and web services, al running on different plat-
forms and at various locations on the Internet. HTTP is a familiar request-and
response standard for sending messages over the Internet, and SOAPisan XML-
based protocol that follows the HTTP request-and-response model.

The SOAP portion of atransported message handles the following:

» Defines an XML-based envelope to describe what is in the message and
how to process the message

* Includes XML-based encoding rules to express instances of application-
defined data types within the message

» Defines an XML-based convention for representing the request to the
remote service and the resulting response

WSDL Standard Format

The Web Services Description Language (WSDL) is a standardized XML format
for describing network services. The description includes the name of the ser-
vice, the location of the service, and ways to communicate with the service.
WSDL service descriptions can be stored in registries or published on the web
(or both). The Sun Java System Application Server Platform Edition 8 providesa
tool for generating the WSDL specification of a web service that uses remote
procedure calls to communicate with clients.

UDDI and ebXML Standard Formats

Other XML -based standards, such as Universal Description, Discovery and Inte-
gration (UDDI) and ebXML, make it possible for businesses to publish informa-
tion on the Internet about their products and web services, where the information
can be readily and globally accessed by clients who want to do business.

PACKAGING APPLICATIONS

Packaging Applications

A J2EE application is delivered in an Enterprise Archive (EAR) file, a standard
Java Archive (JAR) file with an .ear extension. Using EAR files and modules
makes it possible to assemble a number of different J2EE applications using
some of the same components. No extra coding is needed; it is only a matter of
assembling (or packaging) various J2EE modules into J2EE EAR files.

An EAR file (see Figure 1-6) contains J2EE modules and deployment descrip-
tors. A deployment descriptor isan XML document with an . xm1 extension that
describes the deployment settings of an application, a module, or a component.
Because deployment descriptor information is declarative, it can be changed
without the need to modify the source code. At runtime, the J2EE server reads
the deployment descriptor and acts upon the application, module, or component
accordingly.

There are two types of deployment descriptors: J2EE and runtime. A J2EE
deployment descriptor is defined by a J2EE specification and can be used to con-
figure deployment settings on any J2EE-compliant implementation. A runtime
deployment descriptor is used to configure J2EE implementation-specific
parameters. For example, the Sun Java System Application Server Platform Edi-
tion 8 runtime deployment descriptor contains information such as the context
root of a web application, the mapping of portable names of an application’s
resources to the server’'s resources, and Application Server implementati on-spe-
cific parameters, such as caching directives. The Application Server runtime
deployment descriptors are named sun-moduTeType.xm1 and are located in the
same directory as the J2EE deployment descriptor.

13

14

.
Assembly
Root

f— T — P

META-INF Web Module EJB Module

Pl E—
Application Resource
Client Module Adapter Module

application.xml
sun-application.xml

Figure1-6 EAR File Structure

A J2EE module consists of one or more J2EE components for the same container
type and one component deployment descriptor of that type. An enterprise bean
module deployment descriptor, for example, declares transaction attributes and
security authorizations for an enterprise bean. A J2EE module without an appli-
cation deployment descriptor can be deployed as a stand-alone module. The four
types of J2EE modules are as follows:

EJB modules, which contain class files for enterprise beans and an EJB
deployment descriptor. EJB modulesare packaged asJAR fileswitha. jar
extension.

Web modules, which contain servlet class files, JSP files, supporting class
files, GIF and HTML files, and a web application deployment descriptor.
Web modules are packaged as JAR fileswith a .war (web archive) exten-
sion.

Application client modules, which contain class files and an application
client deployment descriptor. Application client modules are packaged as
JAR fileswith a . jar extension.

Resource adapter modules, which contain all Java interfaces, classes,
native libraries, and other documentation, along with the resource adapter
deployment descriptor. Together, these implement the Connector architec-
ture (see J2EE Connector Architecture, page 22) for a particular EIS.
Resource adapter modules are packaged as JAR files with an .rar
(resource adapter archive) extension.

DEVELOPMENT ROLES

Development Roles

Reusable modules make it possible to divide the application development and
deployment process into distinct roles so that different people or companies can
perform different parts of the process.

The first two roles involve purchasing and installing the J2EE product and tools.
After softwareis purchased and installed, J2EE components can be devel oped by
application component providers, assembled by application assemblers, and
deployed by application deployers. In a large organization, each of these roles
might be executed by different individuals or teams. This division of labor works
because each of the earlier roles outputs a portable file that is the input for a sub-
sequent role. For example, in the application component development phase, an
enterprise bean software developer delivers EJB JAR files. In the application
assembly role, another developer combines these EJB JAR files into a J2EE
application and savesit in an EAR file. In the application deployment role, asys-
tem administrator at the customer site usesthe EAR fileto install the J2EE appli-
cation into a J2EE server.

The different roles are not always executed by different people. If you work for a
small company, for example, or if you are prototyping a sample application, you
might perform the tasks in every phase.

J2EE Product Provider

The J2EE product provider is the company that designs and makes available for
purchase the J2EE platform APIs, and other features defined in the J2EE specifi-
cation. Product providers are typically operating system, database system, appli-
cation server, or web server vendors who implement the J2EE platform
according to the Java 2 Platform, Enterprise Edition specification.

Tool Provider

The tool provider is the company or person who creates devel opment, assembly,
and packaging tools used by component providers, assemblers, and deployers.

15

16

Application Component Provider

The application component provider is the company or person who creates web
components, enterprise beans, applets, or application clients for use in J2EE
applications.

Enterprise Bean Developer

An enterprise bean developer performs the following tasksto deliver an EJB JAR
file that contains the enterprise bean(s):

» Writes and compiles the source code

 Specifies the deployment descriptor

» Packagesthe .class filesand deployment descriptor into the EJB JAR file

Web Component Developer

A web component developer performs the following tasks to deliver a WAR file
containing the web component(s):

» Writes and compiles servlet source code

* Writes JSP and HTML files

 Specifies the deployment descriptor

» Packagesthe .class, .jsp, and.htm1 filesand deployment descriptor into
the WAR file

Application Client Developer

An application client developer performs the following tasksto deliver aJJAR file
containing the application client:

» Writes and compiles the source code
» Specifies the deployment descriptor for the client
» Packagesthe .class files and deployment descriptor into the JAR file

Application Assembler

The application assembler is the company or person who receives application
modules from component providers and assembles them into a J2EE application

DEVELOPMENT ROLES

EAR file. The assembler or deployer can edit the deployment descriptor directly
or can use tools that correctly add XML tags according to interactive selections.
A software developer performs the following tasks to deliver an EAR file
containing the J2EE application:

« Assembles EJB JAR and WAR files created in the previous phases into a
J2EE application (EAR) file

» Specifies the deployment descriptor for the J2EE application

» Verifiesthat the contents of the EAR file are well formed and comply with
the J2EE specification

Application Deployer and Administrator

The application deployer and administrator is the company or person who con-
figures and deploys the J2EE application, administers the computing and net-
working infrastructure where J2EE applications run, and oversees the runtime
environment. Duties include such things as setting transaction controls and secu-
rity attributes and specifying connections to databases.

During configuration, the deployer follows instructions supplied by the applica-
tion component provider to resolve external dependencies, specify security set-
tings, and assign transaction attributes. During installation, the deployer moves
the application components to the server and generates the container-specific
classes and interfaces.

A deployer or system administrator performs the following tasks to install and
configure a J2EE application:

« Addsthe J2EE application (EAR) file created in the preceding phase to the
J2EE server

» Configures the J2EE application for the operational environment by mod-
ifying the deployment descriptor of the J2EE application

» Verifiesthat the contents of the EAR file are well formed and comply with
the J2EE specification

» Deploys (installs) the J2EE application EAR file into the J2EE server

17

18

J2EE 1.4 APIs

Figure 1-7 illustrates the availability of the J2EE 1.4 platform APIs in each
J2EE container type. The following sections give a brief summary of the tech-
nologies required by the J2EE platform and the J2SE enterprise APIs that would
be used in J2EE applications.

Applet EJB Container
Container

I
5
—
o
[}
[72]
-

: Application

Client Container
'{p;ﬁ;ation
Client

=
(=)
E

. %

Database

SIAIS GO

=
x

I New in J2EE 1.4
Figure1-7 J2EE Platform APIs

Enterprise JavaBeans Technology

An Enterprise JavaBeans™ (EJB™) component, or enterprise bean, is abody of
code having fields and methods to implement modules of business logic. You
can think of an enterprise bean as a building block that can be used alone or with
other enterprise beans to execute business logic on the J2EE server.

As mentioned earlier, there are three kinds of enterprise beans. session beans,
entity beans, and message-driven beans. Enterprise beans often interact with
databases. One of the benefits of entity beansisthat you do not have to write any
SQL code or use the IDBC™ API (see IDBC API, page 22) directly to perform

J2EE 1.4 APIs

database access operations; the EJB container handles this for you. However, if
you override the default container-managed persistence for any reason, you will
need to use the JIDBC API. Also, if you choose to have a session bean access the
database, you must use the JDBC API.

Java Serviet Technology

Java servlet technology lets you define HTTP-specific servlet classes. A serviet
class extends the capabilities of servers that host applications that are accessed
by way of a request-response programming model. Although servlets can
respond to any type of request, they are commonly used to extend the applica-
tions hosted by web servers.

JavaServer Pages Technology

JavaServer Pages™ (JSP™) technology lets you put snippets of serviet code
directly into a text-based document. A JSP page is a text-based document that
contains two types of text: static data (which can be expressed in any text-based
format such as HTML, WML, and XML) and JSP elements, which determine
how the page constructs dynamic content.

Java Message Service API

The Java Message Service (IMS) API is a messaging standard that allows J2EE
application components to create, send, receive, and read messages. It enables
distributed communication that is loosely coupled, reliable, and asynchronous.

Java Transaction API

The Java Transaction APl (JTA) provides a standard interface for demarcating
transactions. The J2EE architecture provides a default auto commit to handle
transaction commits and rollbacks. An auto commit means that any other appli-
cationsthat are viewing datawill see the updated data after each database read or
write operation. However, if your application performs two separate database
access operations that depend on each other, you will want to use the JTA API to
demarcate where the entire transaction, including both operations, begins, rolls
back, and commits.

19

20

JavaMail API

J2EE applications use the JavaMail™ API to send email notifications. The Java-
Mail API has two parts. an application-level interface used by the application
components to send mail, and a service provider interface. The J2EE platform
includes JavaMail with a service provider that allows application components to
send Internet mail.

JavaBeans Activation Framework

The JavaBeans Activation Framework (JAF) is included because JavaMail uses
it. JAF provides standard services to determine the type of an arbitrary piece of
data, encapsulate access to it, discover the operations available on it, and create
the appropriate JavaBeans component to perform those operations.

Java API for XML Processing

The Java API for XML Processing (JAXP) supports the processing of XML doc-
uments using Document Object Model (DOM), Simple API for XML (SAX),
and Extensible Stylesheet Language Transformations (XSLT). JAXP enables
applications to parse and transform XML documents independent of a particular
XML processing implementation.

JAXP also provides namespace support, which lets you work with schemas that
might otherwise have naming conflicts. Designed to be flexible, JAXP lets you
use any XML-compliant parser or XSL processor from within your application
and supports the W3C schema. You can find information on the W3C schema at
thisURL: http://www.w3.0rg/XML/Schema.

Java API for XML-Based RPC

The Java APl for XML-based RPC (JAX-RPC) uses the SOAP standard and
HTTP, so client programs can make XML -based remote procedure calls (RPCs)
over the Internet. JAX-RPC also supports WSDL, so you can import and export
WSDL documents. With JAX-RPC and a WSDL, you can easily interoperate
with clients and services running on Java-based or non-Java-based platforms
such as .NET. For example, based on the WSDL document, a Visual Basic .NET
client can be configured to use aweb service implemented in Java technology, or
aweb service can be configured to recognize a Visual Basic .NET client.

http://www.w3.org/XML/Schema

J2EE 1.4 APIs

JAX-RPC relies on the HTTP transport protocol. Taking that a step further, JAX-
RPC lets you create service applications that combine HTTP with a Java technol-
ogy version of the Secure Socket Layer (SSL) and Transport Layer Security
(TLS) protocolsto establish basic or mutual authentication. SSL and TLS ensure
message integrity by providing data encryption with client and server authentica-
tion capabilities.

Authentication is ameasured way to verify whether a party iseligible and able to
access certain information as away to protect against the fraudulent use of asys-
tem or the fraudulent transmission of information. Information transported
across the Internet is especially vulnerable to being intercepted and misused, so
it'svery important to configure a JAX-RPC web service to protect datain transit.

SOAP with Attachments API for Java

The SOAP with Attachments API for Java (SAAJ) is alow-level API on which
JAX-RPC depends. SAAJ enables the production and consumption of messages
that conform to the SOAP 1.1 specification and SOAP with Attachments note.
Most developers do not use the SAAJ AP, instead using the higher-level JAX-
RPC API.

Java API for XML Registries

The Java API for XML Registries (JAXR) lets you access business and general-
purpose registries over the web. JAXR supports the ebX ML Registry and Repos-
itory standards and the emerging UDDI specifications. By using JAXR, develop-
ers can learn a single APl and gain access to both of these important registry
technologies.

Additionally, businesses can submit material to be shared and search for material
that others have submitted. Standards groups have devel oped schemas for partic-
ular kinds of XML documents; two businesses might, for example, agree to use
the schema for their industry’s standard purchase order form. Because the
schema is stored in a standard business registry, both parties can use JAXR to
accessiit.

21

22

J2EE Connector Architecture

The J2EE Connector architecture is used by J2EE tools vendors and system inte-
grators to create resource adapters that support access to enterprise information
systemsthat can be plugged in to any J2EE product. A resource adapter is a soft-
ware component that allows J2EE application components to access and interact
with the underlying resource manager of the EIS. Because a resource adapter is
specific to its resource manager, typically there is adifferent resource adapter for
each type of database or enterprise information system.

The J2EE Connector architecture also provides a performance-oriented, secure,
scalable, and message-based transactional integration of J2EE-based web ser-
vices with existing EISs that can be either synchronous or asynchronous. Exist-
ing applications and EISs integrated through the J2EE Connector architecture
into the J2EE platform can be exposed as XML-based web services by using
JAX-RPC and J2EE component models. Thus JAX-RPC and the J2EE Connec-
tor architecture are complementary technologies for enterprise application inte-
gration (EAI) and end-to-end business integration.

JDBC API

The JDBC API lets you invoke SQL commands from Java programming lan-
guage methods. You use the JDBC API in an enterprise bean when you override
the default container-managed persistence or have a session bean access the
database. With container-managed persistence, database access operations are
handled by the container, and your enterprise bean implementation contains no
JDBC code or SQL commands. You can also use the JDBC API from aserviet or
a JSP page to access the database directly without going through an enterprise
bean.

The JDBC API has two parts. an application-level interface used by the applica-
tion components to access a database, and a service provider interface to attach a
JDBC driver to the J2EE platform.

Java Naming and Directory Interface

The Java Naming and Directory Interface™ (JNDI) provides naming and direc-
tory functionality. It provides applications with methods for performing standard
directory operations, such as associating attributes with objects and searching for

J2EE 1.4 APIs

objects using their attributes. Using JNDI, a J2EE application can store and
retrieve any type of named Java object.

J2EE naming services provide application clients, enterprise beans, and web
components with access to a JINDI naming environment. A naming environment
allows a component to be customized without the need to access or change the
component’s source code. A container implements the component’s environment
and provides it to the component as a INDI haming context.

A J2EE component locates its environment naming context using JNDI inter-
faces. A component creates a javax.naming.InitialContext object and looks
up the environment naming context in InitialContext under the name
java:comp/env. A component’s naming environment is stored directly in the
environment naming context or in any of its direct or indirect subcontexts.

A J2EE component can access hamed system-provided and user-defined objects.
The names of system-provided objects, such as JTA UserTransaction objects,
are stored in the environment naming context, java:comp/env. The J2EE plat-
form alows a component to name user-defined objects, such as enterprise beans,
environment entries, JDBC DataSource objects, and message connections. An
object should be named within a subcontext of the naming environment accord-
ing to the type of the object. For example, enterprise beans are named within the
subcontext java:comp/env/ejb, and JDBC DataSource references in the sub-
context java:comp/env/jdbc.

Because JNDI is independent of any specific implementation, applications can
use INDI to access multiple naming and directory services, including existing
naming and directory services such as LDAP, NDS, DNS, and NIS. This alows
J2EE applications to coexist with legacy applications and systems. For more
information on JNDI, see The JNDI Tutorial:

http://java.sun.com/products/jndi/tutorial/index.html

Java Authentication and Authorization

Service
The Java Authentication and Authorization Service (JAAS) provides away for a

J2EE application to authenticate and authorize a specific user or group of users
torunit.

23

http://java.sun.com/products/jndi/tutorial/index.html

JAAS s aJavaprograming language version of the standard Pluggable Authenti-
cation Module (PAM) framework, which extends the Java 2 Platform security
architecture to support user-based authorization.

Simplified Systems Integration

The J2EE platform is a platform-independent, full systems integration solution
that creates an open marketplace in which every vendor can sell to every cus-
tomer. Such a marketplace encourages vendors to compete, not by trying to lock
customers into their technologies but instead by trying to outdo each other in
providing products and services that benefit customers, such as better perfor-
mance, better tools, or better customer support.
The J2EE APIs enable systems and applications integration through the follow-
ing:

 Unified application model acrosstiers with enterprise beans

o Simplified request-and-response mechanism with JSP pages and servlets

* Reliable security model with JAAS

» XML-based datainterchange integration with JAXP, SAAJ, and JAX-RPC

» Simplified interoperability with the J2EE Connector architecture

» Easy database connectivity with the JIDBC API

» Enterprise application integration with message-driven beans and JMS,

JTA, and INDI

You can learn more about using the J2EE platform to build integrated business
systems by reading J2EE Technology in Practice, by Rick Cattell and Jm
Inscore (Addison-Wesley, 2001):

http://java.sun.com/j2ee/inpractice/aboutthebook.html

Sun Java System Application Server
Platform Edition 8

The Sun Java System Application Server Platform Edition 8 is afully compliant
implementation of the J2EE 1.4 platform. In addition to supporting all the APIs
described in the previous sections, the Application Server includes a number of

http://java.sun.com/j2ee/inpractice/aboutthebook.html

SUN JAVA SYSTEM APPLICATION SERVER PLATFORM EDITION 8

J2EE technologies and tools that are not part of the J2EE 1.4 platform but are
provided as a convenience to the devel oper.

This section briefly summarizes the technologies and tools that make up the
Application Server, and instructions for starting and stopping the Application
Server, starting the Admin Console, starting deploytool, and starting and stop-
ping the Derby database server. Other chapters explain how to use the remaining
tools.

Technologies

The Application Server includes two user interface technol ogies—JavaServer
Pages Standard Tag Library and JavaServer™ Faces—that are built on and used
in conjunction with the J2EE 1.4 platform technol ogies Java servlet and JavaSer-

ver Pages.

JavaServer Pages Standard Tag Library

The JavaServer Pages Standard Tag Library (JSTL) encapsulates core function-
ality common to many JSP applications. Instead of mixing tags from numerous
vendors in your JSP applications, you employ asingle, standard set of tags. This
standardization allows you to deploy your applications on any JSP container that
supports JSTL and makes it more likely that the implementation of the tags is
optimized.

JSTL has iterator and conditional tags for handling flow control, tags for manip-
ulating XML documents, internationalization tags, tags for accessing databases
using SQL, and commonly used functions.

JavaServer Faces

JavaServer Faces technology is a user interface framework for building web
applications. The main components of JavaServer Faces technology are as fol-
lows:

* A GUI component framework.

« A flexible model for rendering componentsin different kinds of HTML or
different markup languages and technologies. A Renderer object gener-
ates the markup to render the component and converts the data stored in a
model object to types that can be represented in aview.

25

26

» A standard RenderKit for generating HTML/4.01 markup.

The following features support the GUI components:

* Input validation
Event handling

» Data conversion between model objects and components
» Managed model object creation
» Page navigation configuration

All thisfunctionality is available via standard Java APIs and XML -based config-

uration files.

Tools

The Application Server contains the tools listed in Table 1-1. Basic usage infor-
mation for many of the tools appears throughout the tutorial. For detailed infor-
mation, see the online help in the GUI tools and the man pages at http://
docs.sun.com/db/doc/817-6092 for the command-line tools.

Table1-1 Application Server Tools

Component

Description

Admin Console

A web-based GUI Application Server administration utility. Used to
stop the Application Server and manage users, resources, and appli-
cations.

asadmin

A command-line Application Server administration utility. Used to
start and stop the Application Server and manage users, resources,
and applications.

asant

A portable command-line build tool that is an extension of the Ant
tool developed by the Apache Software Foundation (see http://
ant.apache.org/). asant contains additional tasks that interact
with the Application Server administration utility.

appclient

A command-line tool that launches the application client container
and invokes the client application packaged in the application client
JARfile.

http://docs.sun.com/db/doc/817-6092
http://docs.sun.com/db/doc/817-6092
http://ant.apache.org/
http://ant.apache.org/

SUN JAVA SYSTEM APPLICATION SERVER PLATFORM EDITION 8

Table1-1 Application Server Tools

Component Description

A command-linetool to extract schemainformation from a database,
capture-schema producing a schema file that the Application Server can use for con-
tainer-managed persistence.

A GUI tool to package applications, generate deployment descrip-

deploytoo] tors, and deploy applications on the Application Server.

A command-line tool to package the application client container

package-appclient |, oo d JAR files.

Derby database A copy of the open source Derby database server.

verifier A command-line tool to validate J2EE deployment descriptors.

A command-line tool to generate stubs, ties, serializers, and WSDL

wscompile files used in JAX-RPC clients and services.

A command-line tool to generate implementation-specific, ready-to-

wsdeploy deploy WAR files for web service applications that use JAX-RPC.

Starting and Stopping the Application
Server

To start and stop the Application Server, you use the asadmin utility. To start the
Application Server, open aterminal window or command prompt and execute

asadmin start-domain --verbose domainl
A domain is a set of one or more Application Server instances managed by one
administration server. Associated with adomain are the following:

» The Application Server’s port number. The default is 8080.
* The administration server's port number. The default is 4848.
« An administration user name and password.

You specify these values when you install the Application Server. The examples
in this tutorial assume that you choose the default ports.

With no arguments, the start-domain command initiates the default domain,
which isdomainl. The --verbose flag causes al logging and debugging output

27

28

to appear on the terminal window or command prompt (it will also go into the
server log, which is located in <J2EE_HOME>/domains/domainl/logs/
server.log).

Or, on Windows, you can choose
Programs— Sun Microsystems— J2EE 1.4 SDK - Start Default Server

After the server has completed its startup sequence, you will see the following
output:

Domain domainl started.

To stop the Application Server, open atermina window or command prompt and
execute

asadmin stop-domain domainl

Or, on Windows, choose
Programs— Sun Microsystems - J2EE 1.4 SDK -, Stop Default Server

When the server has stopped you will see the following output:

Domain domainl stopped.

Starting the Admin Console

To administer the Application Server and manage users, resources, and J2EE
applications, you use the Admin Console tool. The Application Server must be
running before you invoke the Admin Console. To start the Admin Console,
open a browser at the following URL.:

http://localhost:4848/asadmin/

On Windows, from the Start menu, choose
Programs— Sun Microsystems - J2EE 1.4 SDK - Admin Console

http://java.sun.com/j2ee/inpractice/aboutthebook.html

SUN JAVA SYSTEM APPLICATION SERVER PLATFORM EDITION 8 29

Starting the deploytool Utility

To package J2EE applications, specify deployment descriptor elements, and
deploy applications on the Application Server, you use the deploytool Utility.
To start deploytooT, open atermina window or command prompt and execute

deploytool

On Windows, from the Start menu, choose

Programs— Sun Microsystems— J2EE 1.4 SDK - Deploytool

Starting and Stopping the Derby
Database Server

Note: Application Server 8.2 includes a copy of the open source Derby data-
base server. Application Server 8.0/ 8.1 includes the PointBase database server. If
you are using Application Server 8.0/8.1, either follow the instructionsin the J2EE
Tutorial at http://java.sun.com/j2ee/1.4/docs/tutorial-update6/
doc/index.htm1 that workswith Application Server 8.0/8.1 or upgrade to Appli-
cation Server 82 (see http://java.sun.com/j2ee/1.4/down-
Toad.html#appserv to download).

To start the Derby database server, open aterminal window or command prompt
and execute

asadmin start-database

After the database server completesits startup sequence, you will see the follow-
ing output:
Starting database in the background. Log redirected to
<j2ee.home>\derby\db.log.

Command start-database executed successfully.

To stop the Derby database server, open atermina window or command prompt
and execute

asadmin stop-database

http://java.sun.com/j2ee/1.4/docs/tutorial-update6/doc/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial-update6/doc/index.html
http://java.sun.com/j2ee/1.4/download.html#appserv
http://java.sun.com/j2ee/1.4/download.html#appserv

30

When the database server has stopped you will see the following output:

Shutdown successful.
Command stop-database executed sucessfully.

For information about the Derby database included with Application Server 8.2,
seethe Derby web siteat http://db.apache.org/derby.

Debugging J2EE Applications

This section describes how to determine what is causing an error in your applica-
tion deployment or execution.

Using the Server Log

One way to debug applications is to look at the server log in <J2EE_HOME>/
domains/domainl/Togs/server.log. The log contains output from the Appli-
cation Server and your applications. You can log messages from any Javaclassin
your application with System.out.println and the Java Logging APIs (docu-
mented at http://java.sun.com/j2se/1.4.2/docs/guide/util/Togging/
index.htm1) and from web components with the ServletContext.10og method.

If you start the Application Server with the --verbose flag, al logging and
debugging output will appear on the terminal window or command prompt and
the server log. If you start the Application Server in the background, debugging
information is only available in the log. You can view the server log with a text
editor or with the Admin Console log viewer. To use the log viewer:

1. Select the Application Server node.

2. Select the Logging tab.

3. Click the Open Log Viewer button. The log viewer will open and display

the last 40 entries.

If you wish to display other entries:

1. Click the Modify Search button.
2. Specify any constraints on the entries you want to see.
3. Click the Search button at the bottom of the log viewer.

http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/index.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContext.html#log(java.lang.String,java.lang.Throwable)
http://db.apache.org/derby

SUN JAVA SYSTEM APPLICATION SERVER PLATFORM EDITION 8

Using a Debugger

The Application Server supports the Java Platform Debugger Architecture
(JPDA). With JPDA, you can configure the Application Server to communicate
debugging information via a socket. In order to debug an application using a
debugger:

1

g b~ WN

Enable debugging in the Application Server using the Admin Console as
follows:

a. Select the Application Server node.

b. Select the WM Settings tab. The default debug options are set to:

-Xdebug -Xrunjdwp:transport=dt_socket,server=y,
suspend=n,address=1044

Asyou can see, the default debugger socket port is 1044. You can change
it to aport not in use by the Application Server or another service.

c. Check the Enabled box of the Debug field.

d. Click the Save button.

. Stop the Application Server and then restart it.

. Compile your Java source with the -g flag.

. Package and deploy your application.

. Start a debugger and connect to the debugger socket at the port you set

when you enabled debugging.

31

32

2
Understanding XML

T HIS chapter describes Extensible Markup Language (XML) and its related
specifications. It also gives you practice in writing XML data so that you can
become comfortably familiar with XML syntax.

Note: The XML files mentioned in this chapter can be found in
<INSTALL>/j2eetutoriall4/examples/xml/samples/.

Introduction to XML

This section coversthe basics of XML. The goal isto give you just enough infor-
mation to get started so that you understand what XML isal about. (You'll learn
more about XML in later sections of the tutorial.) We then outline the major fea-
tures that make XML great for information storage and interchange, and give
you agenera idea of how XML can be used.

What Is XML?

XML isatext-based markup language that is fast becoming the standard for data
interchange on the web. Aswith HTML, you identify data using tags (identifiers
enclosed in angle brackets: <. . .>). Collectively, the tags are known as markup.

But unlike HTML, XML tags identify the data rather than specify how to display
it. Whereas an HTML tag says something like, “Display this datain bold font”

33

(...), an XML tag actslike afield namein your program. It puts a label
on apiece of datathat identifiesit (for example, <message>. . .</message>).

Note: Because identifying the data gives you some sense of what it means (how to
interpret it, what you should do with it), XML is sometimes described as a mecha-
nism for specifying the semantics (meaning) of the data.

In the same way that you define the field names for a data structure, you are free
to use any XML tags that make sense for a given application. Naturally, for mul-
tiple applications to use the same XML data, they must agree on the tag names
they intend to use.

Here is an example of some XML data you might use for a messaging applica-
tion:

<message>
<to>you@yourAddress.com</to>
<from>me@myAddress. com</from>
<subject>XML Is Really Cool</subject>
<text>
How many ways is XML cool? Let me count the ways...
</text>
</message>

Note: Throughout this tutorial, we use boldface text to highlight things we want to
bring to your attention. XML does not require anything to bein bold!

The tags in this example identify the message as a whole, the destination and
sender addresses, the subject, and the text of the message. Asin HTML, the <to>
tag has a matching end tag: </to>. The data between the tag and its matching
end tag defines an element of the XML data. Note, too, that the content of the
<to> tag is contained entirely within the scope of the <message>. .</message>
tag. It isthis ability for one tag to contain others that lets XML represent hierar-
chical data structures.

Again, aswith HTML, whitespace is essentially irrelevant, so you can format the
datafor readability and yet still processit easily with a program. Unlike HTML,
however, in XML you can easily search a data set for messages containing, say,
“cool” in the subject, because the XML tags identify the content of the data
rather than specify its representation.

INTRODUCTION TO XML

Tags and Attributes

Tags can also contain attributes—additional information included as part of the
tag itself, within the tag's angle brackets. The following example shows an email
message structure that uses attributes for the to, from, and subject fields:

<message to="you@yourAddress.com" from="me@myAddress.com"
subject="XML Is Really Cool">
<text>
How many ways is XML cool? Let me count the ways...
</text>
</message>

Asin HTML, the attribute name is followed by an equal sign and the attribute
value, and multiple attributes are separated by spaces. Unlike HTML, however,
in XML commas between attributes are not ignored; if present, they generate an
error.

Because you can design a data structure such as <message> equally well using
either attributes or tags, it can take a considerable amount of thought to figure
out which design is best for your purposes. Designing an XML Data
Structure (page 76), includes ideas to help you decide when to use attributes and
when to use tags.

Empty Tags

One big difference between XML and HTML is that an XML document is
always constrained to be well formed. There are several rules that determine
when a document iswell formed, but one of the most important is that every tag
has aclosing tag. So, in XML, the </to> tag is not optional. The <to> element is
never terminated by any tag other than </to>.

Note: Another important aspect of awell-formed document isthat all tags are com-
pletely nested. So you can have <message>. . <to>. . </to>. . </message>, but never
<message>. .<to>..</message>..</to>. A complete list of requirements is con-
tained in the list of XML frequently asked questions (FAQ) at
http://www.ucc.ie/xml/#FAQ-VALIDWF. (This FAQ is on the W3C “Recom-
mended Reading” list at http://www.w3.org/XML/.)

Sometimes, though, it makes sense to have a tag that stands by itself. For exam-
ple, you might want to add a tag that flags the message as important: <flag/>.

35

http://www.ucc.ie/xml/#FAQ-VALIDWF
http://www.w3.org/XML/

36

Thiskind of tag does not enclose any content, so it’'s known as an empty tag. You
create an empty tag by ending it with /> instead of >. For example, the following
message contains an empty flag tag:

<message to="you@yourAddress.com" from="me@myAddress.com"
subject="XML Is Really Cool">
<flag/>
<text>
How many ways is XML cool? Let me count the ways...
</text>
</message>

Note: Using the empty tag saves you from having to code <fl1ag></fl1ag> in order
to have a well-formed document. You can control which tags are alowed to be
empty by creating a schema or adocument type definition, or DTD (page 1388). If
thereisno DTD or schema associated with the document, then it can contain any
kinds of tags you want, as long as the document iswell formed.

Comments in XML Files

XML comments|ook just like HTML comments:

<message to="you@yourAddress.com" from="me@myAddress.com"
subject="XML Is Really Cool">

<!-- This is a comment -->
<text>
How many ways is XML cool? Let me count the ways...
</text>
</message>

The XML Prolog

To complete this basic introduction to XML, note that an XML file always starts
with a prolog. The minimal prolog contains a declaration that identifies the doc-
ument as an XML document:

<?xml version="1.0"7>
The declaration may also contain additional information:

<?xml version="1.0" encoding="IS0-8859-1" standalone="yes"?>

INTRODUCTION TO XML

The XML declaration is essentialy the same as the HTML header, <htm1>,
except that it uses <?. . 7> and it may contain the following attributes:

* version: ldentifies the version of the XML markup language used in the
data. This attribute is not optional.

* encoding: |dentifies the character set used to encode the data. 1S0-8859-
1is Latin-1, the Western European and English language character set.
(The default is 8-bit Unicode: UTF-8.)

* standalone: Tells whether or not this document references an external
entity or an externa data type specification. If there are no external refer-
ences, then “yes’ is appropriate.

The prolog can also contain definitions of entities (items that are inserted when
you reference them from within the document) and specifications that tell which
tags are valid in the document. Both declared in a document type definition
(DTD, page 1388) that can be defined directly within the prolog, as well as with
pointers to external specification files. But those are the subject of |ater tutorials.
For more information on these and many other aspects of XML, see the Recom-
mended Reading list on the W3C XML pageat http://www.w3.0org/XML/.

Note: The declaration is actually optional, but it's a good idea to include it when-
ever you create an XML file. The declaration should have the version number, at a
minimum, and ideally the encoding as well. That standard simplifies things if the
XML standard is extended in the future and if the data ever needsto belocalized for
different geographical regions.

Everything that comes after the XML prolog constitutes the document’s content.

Processing Instructions

An XML file can aso contain processing instructions that give commands or
information to an application that is processing the XML data. Processing
instructions have the following format:

<?target instructions?>

target isthe name of the application that is expected to do the processing, and
instructions IS a string of characters that embodies the information or com-
mands for the application to process.

37

http://www.w3.org/XML/

38

Because the instructions are application-specific, an XML file can have multiple
processing instructions that tell different applications to do similar things,
although in different ways. The XML file for a slide show, for example, might
have processing instructions that let the speaker specify a technical- or execu-
tive-level version of the presentation. If multiple presentation programs were
used, the program might need multiple versions of the processing instructions
(although it would be nicer if such applications recognized standard instruc-
tions).

Note: The target name “xml” (in any combination of upper- or lowercase |etters) is
reserved for XML standards. In one sense, the declaration is a processing instruc-
tion that fits that standard. (However, when you're working with the parser later,
you'll see that the method for handling processing instructions never sees the dec-
laration.)

Why Is XML Important?

There are anumber of reasons for XML's surging acceptance. This section listsa
few of the most prominent.

Plain Text

Because XML isnot abinary format, you can create and edit files using anything
from a standard text editor to a visual development environment. That makes it
easy to debug your programs, and it makes XML useful for storing small
amounts of data. At the other end of the spectrum, an XML front end to a data-
base makes it possible to efficiently store large amounts of XML dataaswell. So
XML provides scalahility for anything from small configuration files to a com-
pany wide data repository.

Data Identification

XML tells you what kind of data you have, not how to display it. Because the
markup tags identify the information and break the data into parts, an email pro-
gram can process it, a search program can look for messages sent to particular
people, and an address book can extract the address information from the rest of
the message. In short, because the different parts of the information have been
identified, they can be used in different ways by different applications.

INTRODUCTION TO XML

Stylability

When display is important, the stylesheet standard, XSL (page 1389), lets you
dictate how to portray the data. For example, consider this XML.:

<to>you@yourAddress.com</to>

The stylesheet for this data can say

1. Start anew line.
2. Display “To:” in bold, followed by a space
3. Display the destination data.

This set of instructions produces:
To: you@yourAddress

Of course, you could have done the same thing in HTML, but you wouldn't be
able to process the data with search programs and address-extraction programs
and the like. More importantly, because XML is inherently style-free, you can
use a completely different stylesheet to produce output in Postscript, TEX, PDF,
or some new format that hasn’'t even been invented. That flexibility amounts to
what one author described as “future proofing” your information. The XML doc-
uments you author today can be used in future document-delivery systems that
haven't even been imagined.

Inline Reusability

One of the nicer aspects of XML documents is that they can be composed from
Separate entities. You can do that with HTML, but only by linking to other docu-
ments. Unlike HTML, XML entities can beincluded “inline” in adocument. The
included sections look like a normal part of the document: you can search the
whole document at one time or download it in one piece. That lets you modular-
ize your documents without resorting to links. You can single-source a section so
that an edit to it is reflected everywhere the section is used, and yet a document
composed from such pieces looks for all the world like a one-piece document.

Linkability

Thanksto HTML, the ability to define links between documents is now regarded
as a necessity. Appendix B discusses the link-specification initiative. Thisinitia-

40

tive lets you define two-way links, multiple-target links, expanding links (where
clicking a link causes the targeted information to appear inline), and links
between two existing documents that are defined in athird.

Easily Processed

As mentioned earlier, regular and consistent notation makes it easier to build a
program to process XML data. For example, in HTML a <dt> tag can be delim-
ited by </dt>, another <dt>, <dd>, or </d1>. That makes for some difficult pro-
gramming. But in XML, the <dt> tag must aways have a </dt> terminator, or it
must be an empty tag such as <dt/>. That restriction is acritical part of the con-
straints that make an XML document well formed. (Otherwise, the XML parser
won't be able to read the data.) And because XML is a vendor-neutral standard,
you can choose among several XML parsers, any one of which takes the work
out of processing XML data.

Hierarchical

Finally, XML documents benefit from their hierarchical structure. Hierarchical
document structures are, in general, faster to access because you can drill down
to the part you need, as if you were stepping through a table of contents. They
are also easier to rearrange, because each piece is delimited. In a document, for
example, you could move a heading to a new location and drag everything under
it along with the heading, instead of having to page down to make a selection,
cut, and then paste the selection into a new location.

How Can You Use XML?

There are several basic waysto use XML:

» Traditiona dataprocessing, where XML encodesthe datafor a program to
process

» Document-driven programming, where XML documents are containers
that build interfaces and applications from existing components
» Archiving—the foundation for document-driven programming—where

the customized version of acomponent is saved (archived) so that it can be
used later

INTRODUCTION TO XML

» Binding, where the DTD or schemathat defines an XML data structure is
used to automatically generate a significant portion of the application that
will eventually process that data

Traditional Data Processing

XML isfast becoming the data representation of choice for the web. It’s terrific
when used in conjunction with network-centric Java platform programs that send
and retrieve information. So a client-server application, for example, could trans-
mit XM L-encoded data back and forth between the client and the server.

In the future, XML is potentially the answer for data interchange in all sorts of
transactions, as long as both sides agree on the markup to use. (For example,
should an email program expect to see tags named <FIRST> and <LAST>, or
<FIRSTNAME> and <LASTNAME>?) The need for common standards will generate a
lot of industry-specific standardization efforts in the years ahead. In the mean-
time, mechanisms that let you “trandate” the tags in an XML document will be
important. Such mechanisms include projects such as the Resource Description
Framework initiative (RDF, page 1393), which defines meta tags, and the Exten-
sible Stylesheet Language specification (XSL, page 1389), which lets you trans-
late XML tags into other XML tags.

Document-Driven Programming

The newest approach to using XML is to construct a document that describes
what an application page should look like. The document, rather than simply
being displayed, consists of references to user interface components and busi-
ness-logic components that are “hooked together” to create an application on-
the-fly.

Of course, it makes sense to use the Java platform for such components. To con-
struct such applications, you can use JavaBeans components for interfaces and
Enterprise JavaBeans components for the business logic. Although none of the
efforts undertaken so far is ready for commercial use, much preliminary work
has been done.

Note: The Java programming language is also excellent for writing XM L-process-
ing toolsthat are as portable as XML. Severa visual XML editors have been written
for the Java platform. For alisting of editors, see http://www.xm1.com/pub/pt/3.

4

http://www.xml.com/pub/pt/3

42

For processing tools and other XML resources, see Robin Cover's SGML/XML
web page at http://xml.coverpages.org/software.html.

Binding

After you have defined the structure of XML data using either aDTD or one of
the schema standards, a large part of the processing you need to do has aready
been defined. For example, if the schema says that the text datain a <date> ele-
ment must follow one of the recognized date formats, then one aspect of the val-
idation criteria for the data has been defined; it only remains to write the code.
Although a DTD specification cannot go the same level of detail, aDTD (like a
schema) provides a grammar that tells which data structures can occur and in
what sequences. That specification tells you how to write the high-level code that
processes the data elements.

But when the data structure (and possibly format) is fully specified, the code you
need to process it can just as easily be generated automatically. That process is
known as binding—creating classes that recognize and process different data
elements by processing the specification that defines those elements. As time
goes on, you should find that you are using the data specification to generate sig-
nificant chunks of code, and you can focus on the programming that is unigue to
your application.

Archiving

The Holy Grail of programming is the construction of reusable, modular compo-
nents. Ideally, you'd like to take them off the shelf, customize them, and plug
them together to construct an application, with a bare minimum of additional
coding and additional compilation.

The basic mechanism for saving information is called archiving. You archive a
component by writing it to an output stream in a form that you can reuse later.
You can then read it and instantiate it using its saved parameters. (For example, if
you saved a table component, its parameters might be the number of rows and
columns to display.) Archived components can also be shuffled around the web
and used in avariety of ways.

When components are archived in binary form, however, there are some limita-
tions on the kinds of changes you can make to the underlying classesif you want
to retain compatibility with previously saved versions. If you could modify the
archived version to reflect the change, that would solve the problem. But that's

http://xml.coverpages.org/software.html

GENERATING XML DATA

hard to do with a binary object. Such considerations have prompted a number of
investigations into using XML for archiving. But if an object's state were
archived in text form using XML, then anything and everything in it could be
changed as easily as you can say, “ Search and replace.”

XML’s text-based format could also make it easier to transfer objects between
applications written in different languages. For al these reasons, thereis alot of
interest in XML-based archiving.

Summary

XML is pretty simple and very flexible. It has many uses yet to be discovered,
and we are only beginning to scratch the surface of its potential. It is the founda-
tion for a great many standards yet to come, providing a common language that
different computer systems can use to exchange data with one another. As each
industry group comes up with standards for what it wants to say, computers will
begin to link to each other in ways previously unimaginable.

Generating XML Data

This section takes you step by step through the process of constructing an XML
document. Along the way, you'll gain experience with the XML components
you'll typically use to create your data structures.

Writing a Simple XML File

You'll start by writing the kind of XML datayou can use for aslide presentation.
To become comfortable with the basic format of an XML file, you'll use your
text editor to create the data. You'll use thisfile and extend it in later exercises.

Creating the File

Using a standard text editor, create afile called s1ideSample.xm1.

Note: Hereisaversion of it that already exists: s1ideSample0l.xm1. (The brows-
able version is s1ideSample@1-xm1.htm1.) You can use this version to compare
your work or just review it as you read this guide.

../examples/xml/samples/slideSample01-xml.html
../examples/xml/samples/slideSample01.xml

Writing the Declaration

Next, write the declaration, which identifies the file as an XML document. The
declaration starts with the characters <?, which is also the standard XML identi-
fier for a processing instruction. (You'll see processing instructions later in this
tutorial.)

<?xml version='1.0' encoding="utf-8'?>

This line identifies the document as an XML document that conforms to version
1.0 of the XML specification and says that it uses the 8-bit Unicode character-
encoding scheme. (For information on encoding schemes, see Appendix A.)

Because the document has not been specified as standalone, the parser assumes
that it may contain references to other documents. To see how to specify a docu-
ment as standalone, see The XML Prolog (page 36).

Adding a Comment

Comments are ignored by XML parsers. A program will never see them unless
you activate specia settingsin the parser. To put a comment into the file, add the
following highlighted text.

<?xml version='1.0' encoding="utf-8'?>

<!-- A SAMPLE set of slides -->

Defining the Root Element

After the declaration, every XML file defines exactly one element, known as the
root element. Any other elements in the file are contained within that element.
Enter the following highlighted text to define the root element for this file,
s1ideshow:

<?xml version='1.0' encoding="utf-8'?>
<!-- A SAMPLE set of slides -->
<s1ideshow>

</s1ideshow>

GENERATING XML DATA

Note: XML element names are case-sensitive. The end tag must exactly match the
start tag.

Adding Attributes to an Element

A dlide presentation has a number of associated data items, none of which
requires any structure. So it is natural to define these data items as attributes of
the sTideshow element. Add the following highlighted text to set up some
attributes:

<s1ideshow
title="Sample Slide Show"
date="Date of publication"
author="Yours Truly"
>

</s1ideshow>

When you create a name for a tag or an attribute, you can use hyphens (-),
underscores (_), colons (:), and periods (.) in addition to characters and num-
bers. Unlike HTML, values for XML attributes are always in quotation marks,
and multiple attributes are never separated by commas.

Note: Colons should be used with care or avoided, because they are used when
defining the namespace for an XML document.

Adding Nested Elements

XML allowsfor hierarchically structured data, which means that an element can
contain other elements. Add the following highlighted text to define a dide ele-
ment and atitle element contained within it:

<sTideshow

>

<!-- TITLE SLIDE -->
<slide type="all">

45

46

<title>Wake up to WonderWidgets!</title>
</slide>

</s1lideshow>

Here you have also added a type attribute to the dide. The idea of this attribute
is that you can earmark slides for a mostly technical or mostly executive audi-
ence using type="tech" or type="exec", or identify them as suitable for both
audiences using type="all".

More importantly, this example illustrates the difference between things that are
more usefully defined as elements (the title element) and things that are more
suitable as attributes (the type attribute). The visibility heuristic is primarily at
work here. The title is something the audience will see, so it is an element. The
type, on the other hand, is something that never gets presented, so it is an
attribute. Another way to think about that distinction is that an element is a con-
tainer, like a bottle. The type is a characteristic of the container (tall or short,
wide or narrow). Thettitle is a characteristic of the contents (water, milk, or teq).
These are not hard-and-fast rules, of course, but they can help when you design
your own XML structures.

Adding HTML-Style Text

Because XML lets you define any tags you want, it makes sense to define a set of
tagsthat look like HTML. In fact, the XHTML standard does exactly that. You'll
see more about that toward the end of the SAX tutorial. For now, type the follow-
ing highlighted text to define a slide with a couple of list item entries that use an
HTML-style tag for emphasis (usually rendered as italicized text):

<!-- TITLE SLIDE -->
<slide type="all">

<title>Wake up to WonderWidgets!</title>
</slide>

<!-- OVERVIEW -->
<slide type="all">
<title>Overview</title>
<item>Why WonderWidgets are great</item>
<item>Who buys WonderWidgets</item>
</slide>

</s1ideshow>

GENERATING XML DATA 47

Note that defining a title element conflicts with the XHTML element that uses
the same name. Later in this tutorial, we discuss the mechanism that produces
the conflict (the DTD), along with possible solutions.

Adding an Empty Element

One mgjor difference between HTML and XML is that all XML must be well
formed, which means that every tag must have an ending tag or be an empty tag.
By now, you're getting pretty comfortable with ending tags. Add the following
highlighted text to define an empty list item element with no contents:

<!-- OVERVIEW -->
<slide type="all">
<title>0Overview</title>
<item>Why WonderWidgets are great</item>
<item/>
<item>Who buys WonderWidgets</item>
</sTide>

</s1lideshow>

Note that any element can be an empty element. All it takes is ending the tag
with /> instead of >. You could do the same thing by entering <item></1tem>,
which is equivalent.

Note: Another factor that makes an XML file well formed is proper nesting. So
<i>some_text</i> is well formed, because the <i>...</i> seguence is
completely nested within the . . tag. This sequence, on the other hand, is
not well formed: <i>some_text</i>.

48

The Finished Product

Here is the completed version of the XML file:
<?xml version='1.0"' encoding="utf-8'?>
<!-- A SAMPLE set of slides -->

<s1lideshow
titTle="Sample STide Show"
date="Date of publication”
author="Yours Truly"
>

<!-- TITLE SLIDE -->
<slide type="all">

<title>Wake up to WonderWidgets!</title>
</sTlide>

<!-- OVERVIEW -->
<slide type="all">
<title>Overview</title>
<item>Why WonderWidgets are great</item>
<item/>
<item>Who buys WonderWidgets</item>
</slide
</s1ideshow>

Save a copy of thisfile as s1ideSamp1e01.xm1 so that you can use it as the ini-
tial data structure when experimenting with XML programming operations.

Writing Processing Instructions

It sometimes makes sense to code application-specific processing instructionsin
the XML data. In this exercise, you'll add a processing instruction to your
s1lideSample.xm1 file

Note: Thefileyou'll createin this section is s1ideSamp1e02.xm1. (The browsable
versionis s1ideSample@2-xm1.htm1.)

As you saw in Processing Instructions (page 37), the format for a processing
instruction is <?target data?>, where target is the application that is
expected to do the processing, and data is the instruction or information for it to

../examples/xml/samples/slideSample02.xml
../examples/xml/samples/slideSample02-xml.html

GENERATING XML DATA

process. Add the following highlighted text to add a processing instruction for a
mythical dlide presentation program that will query the user to find out which
slidesto display (technical, executive-level, or all):

<sTideshow
>

<!-- PROCESSING INSTRUCTION -->
<?my.presentation.Program QUERY="exec, tech, all1"?>

<!-- TITLE SLIDE -->

Notes:

« The data portion of the processing instruction can contain spaces or it can
even be null. But there cannot be any space between the initial <? and the
target identifier.

* The data begins after the first space.

* It makes sense to fully qualify the target with the complete web-unique
package prefix, to preclude any conflict with other programs that might
process the same data.

 For readability, it seems like a good idea to include a colon (:) after the
name of the application:

<?my.presentation.Program: QUERY="..."7>

The colon makes the target name into a kind of “label” that identifies the
intended recipient of the instruction. However, even though the W3C spec
allows a colon in a target name, some versions of Internet Explorer 5 (IE5)
consider it an error. For thistutorial, then, we avoid using a colon in the tar-
get name.

Save a copy of this file as s1ideSample02.xm1 so that you can use it when
experimenting with processing instructions.

Introducing an Error

The parser can generate three kinds of errors: afatal error, an error, and awarn-
ing. In this exercise, you' |l make a simple modification to the XML file to intro-
duce afatal error. Later, you'll see how it’s handled in the Echo application.

49

50

Note: The XML structureyou’ll createin thisexerciseisin sTideSampleBadl.xm1.
(The browsable version is s1ideSampleBadl-xm1.htm1.)

One easy way to introduce a fatal error is to remove the final / from the empty
item element to create a tag that does not have a corresponding end tag. That
constitutes afatal error, because all XML documents must, by definition, be well
formed. Do the following:

1. Copy slideSample@2.xm1 to s1ideSampleBadl.xml.
2. Edit s1ideSampleBadl.xm1 and remove the character shown here:

<!-- OVERVIEW -->
<slide type="all">
<title>Overview</title>
<item>Why WonderWidgets are great</item>
<item/t>
<item>Who buys WonderWidgets</item>
</slide>

This change produces the following:

<item>Why WonderWidgets are great</item>
<item>
<item>Who buys WonderWidgets</item>

Now you have afile that you can use to generate an error in any parser, any time.
(XML parsers are required to generate afatal error for thisfile, because the lack
of an end tag for the <item> element means that the XML structure is no longer
well formed.)

Substituting and Inserting Text

In this section, you'll learn about

» Handling special characters (<, &, and so on)
» Handling text with XML-style syntax

../examples/xml/samples/slideSampleBad1.xml
../examples/xml/samples/slideSampleBad1-xml.html

GENERATING XML DATA

Handling Special Characters

In XML, an entity isan XML structure (or plain text) that has a name. Referenc-
ing the entity by name causes it to be inserted into the document in place of the
entity reference. To create an entity reference, the entity name is surrounded by
an ampersand and a semicolon, like this:

&entityName;

Later, when you learn how to write a DTD, you'll see that you can define your
own entities so that &yourEntityName; expands to all the text you defined for
that entity. For now, though, we'll focus on the predefined entities and character
references that don’t require any special definitions.

Predefined Entities

An entity reference such as & contains a name (in this case, amp) between
the start and end delimiters. Thetext it refersto (&) is substituted for the name, as
with amacro in a programming language. Table 2—1 shows the predefined enti-
tiesfor specia characters.

Table2-1 Predefined Entities

Character Name Reference
& ampersand &
< lessthan &1t;
> greater than >
quote "
! apostrophe '

Character References

A character reference such as “ contains a hash mark (#) followed by a
number. The number is the Unicode value for a single character, such as 65 for
the letter A, 147 for the left curly quote, or 148 for the right curly quote. In this
case, the “name” of the entity is the hash mark followed by the digits that iden-
tify the character.

51

52

Note: XML expects values to be specified in decimal. However, the Unicode charts
at http://www.unicode.org/charts/ specify values in hexadecimal! So you'l
need to do a conversion to get the right value to insert into your XML data set.

Using an Entity Reference in an XML
Document

Suppose you want to insert aline like thisin your XML document:
Market Size < predicted

The problem with putting that line into an XML file directly is that when the
parser sees the left angle bracket (<), it starts looking for atag name, throws off
the parse. To get around that problem, you put &1t; in thefileinstead of <.

Note: The results of the next modifications are contained in s1ideSamp1e®3.xm1.

Add the following highlighted text to your s1ideSample.xm1 file, and save a
copy of it for future use as s1ideSample@3.xm1:

<!-- OVERVIEW -->
<slide type="all">
<title>Overview</title>

</slide>

<s1lide type="exec'">
<title>Financial Forecast</title>
<item>Market Size &l1t; predicted</item>
<item>Anticipated Penetration</item>
<item>Expected Revenues</item>
<item>Profit Margin</item>

</slide>

</s1ideshow>
When you use an XML parser to echo this data, you will see the desired output:

Market Size < predicted

http://www.unicode.org/charts/
../examples/xml/samples/slideSample03.xml

GENERATING XML DATA

You see an angle bracket (<) where you coded &1t ;, because the XML parser
converts the reference into the entity it represents and passes that entity to the
application.

Handling Text with XML-Style Syntax

When you are handling large blocks of XML or HTML that include many spe-
cia characters, it is inconvenient to replace each of them with the appropriate
entity reference. For those situations, you can use a CDATA section.

Note: The results of the next modifications are contained in s1ideSample@4.xm1.

A CDATA section works like <pre>...</pre> in HTML, only more so: al
whitespace in a CDATA section is significant, and characters in it are not inter-
preted as XML. A CDATA section starts with <! [CDATA[and endswith 17>.

Add the following highlighted text to your s1ideSample.xm1 file to define a
CDATA section for a fictitious technical dlide, and save a copy of the file as
sTideSamp1e04.xml:

<slide type="tech">
<title>How it Works</title>
<item>First we fozzle the frobmorten</item>
<item>Then we framboze the staten</item>
<item>Finally, we frenzle the fuznaten</item>
<item><![CDATA[Diagram:

frobmorten <---—-—————————- fuznaten
| <3> A
| <1> | <1> = fozzle
\" | <2> = framboze

staten---——-——— - + <3> = frenzle

<2>
11></item>
</slide>

</sTideshow>

53

../examples/xml/samples/slideSample04.xml

When you echo this file with an XML parser, you see the following outpuit:

Diagram:
frobmorten <----—-————————- fuznaten
| <3> A
| <1> | <1> = fozzle
Vv | <2> = framboze
staten--————————-— o~ + <3> = frenzle

The point here is that the text in the CDATA section arrives as it was written.
Because the parser doesn'’t treat the angle brackets as XML, they don’t generate
the fatal errors they would otherwise cause. (If the angle brackets weren’t in a
CDATA section, the document would not be well formed.)

Creating a Document Type Definition

After the XML declaration, the document prolog can include aDTD, which lets
you specify the kinds of tags that can be included in your XML document. In
addition to telling a validating parser which tags are valid and in what arrange-
ments, a DTD tells both validating and nonvalidating parsers where text is
expected, which lets the parser determine whether the whitespace it seesis sig-
nificant or ignorable.

Basic DTD Definitions

To begin learning about DTD definitions, let’s start by telling the parser where
text is expected and where any text (other than whitespace) would be an error.
(Whitespace in such locations isignorable.)

Note: The DTD defined in this section is contained in s1ideshowla.dtd. (The
browsable version is s1ideshowla-dtd.html.)

Start by creating a file named s1ideshow. dtd. Enter an XML declaration and a
comment to identify thefile:

<?xml version='1.0' encoding="utf-8'?>

<!--
DTD for a simple "slide show"
-—>

../examples/xml/samples/slideshow1a.dtd
../examples/xml/samples/slideshow1a-dtd.html

GENERATING XML DATA

Next, add the following highlighted text to specify that a s1ideshow element
contains s11ide elements and nothing el se:

<!-- DTD for a simple "slide show" -->
<!ELEMENT slideshow (slide+)>

Asyou can see, the DTD tag starts with <! followed by the tag name (ELEMENT).
After the tag name comes the name of the element that is being defined (s11ide-
show) and, in parentheses, one or more items that indicate the valid contents for
that element. In this case, the notation says that a s1ideshow consists of one or
more s11ide elements.

Without the plus sign, the definition would be saying that a s1ideshow consists
of asingle s1ide element. The qualifiers you can add to an element definition
arelisted in Table 2-2.

Table2-2 DTD Element Qualifiers

Qualifier Name Meaning

? Question mark Optional (zero or one)
* Asterisk Zero or more

+ Plussign One or more

You can include multiple elements inside the parentheses in a comma-separated
list and use a qualifier on each element to indicate how many instances of that
element can occur. The comma-separated list tells which elements are valid and
the order they can occur in.

You can also nest parentheses to group multiple items. For an example, after
defining an image element (discussed shortly), you can specify ((image,
title)+) to declare that every image element in a slide must be paired with a
title element. Here, the plus sign applies to the image/title pair to indicate
that one or more pairs of the specified items can occur.

55

56

Defining Text and Nested Elements

Now that you have told the parser something about where not to expect text, let’s
see how to tell it where text can occur. Add the following highlighted text to
definethe s1ide, title, item, and 1ist elements:

<!ELEMENT sTideshow (slide+)>
<!ELEMENT slide (title, item*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT -item (#PCDATA | item)* >

Thefirst line you added says that a dide consists of atitle followed by zero or
more item elements. Nothing new there. The next line says that a title consists
entirely of parsed character data (PCDATA). That's known as “text” in most parts
of the country, but in XML-speak it's called “ parsed character data.” (That distin-
guishes it from CDATA sections, which contain character data that is not parsed.)
The # that precedes PCDATA indicates that what follows is a special word rather
t