
The J2EE™ 1.4 Tutorial

For Sun Java System Application Server Platform Edition
8.2

Eric Armstrong
Jennifer Ball

Stephanie Bodoff
Debbie Bode Carson

Ian Evans
Dale Green
Kim Haase

Eric Jendrock

December 7, 2005

Copyright © 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A.
All rights reserved.U.S. Government Rights - Commercial software. Government users are subject to the
Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supple-
ments.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, JavaBeans, JavaServer, JavaServer Pages, Enterprise
JavaBeans, Java Naming and Directory Interface, JavaMail, JDBC, EJB, JSP, J2EE, J2SE, “Write Once,
Run Anywhere”, and the Java Coffee Cup logo are trademarks or registered trademarks of Sun Microsys-
tems, Inc. in the U.S. and other countries.

Unless otherwise licensed, software code in all technical materials herein (including articles, FAQs, sam-
ples) is provided under this License.

Products covered by and information contained in this service manual are controlled by U.S. Export Con-
trol laws and may be subject to the export or import laws in other countries. Nuclear, missile, chemical
biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly pro-
hibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export
exclusion lists, including, but not limited to, the denied persons and specially designated nationals lists is
strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright © 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, États-
Unis. Tous droits réservés.

Droits du gouvernement américain, utlisateurs gouvernmentaux - logiciel commercial. Les utilisateurs
gouvernmentaux sont soumis au contrat de licence standard de Sun Microsystems, Inc., ainsi qu aux dis-
positions en vigueur de la FAR [(Federal Acquisition Regulations) et des suppléments à celles-ci.

Cette distribution peut comprendre des composants développés pardes tierces parties.

Sun, Sun Microsystems, le logo Sun, Java, JavaBeans, JavaServer, JavaServer Pages, Enterprise
JavaBeans, Java Naming and Directory Interface, JavaMail, JDBC, EJB, JSP, J2EE, J2SE, “Write Once,
Run Anywhere”, et le logo Java Coffee Cup sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux États-Unis et dans d’autres pays.

A moins qu’autrement autorisé, le code de logiciel en tous les matériaux techniques dans le présent (arti-
cles y compris, FAQs, échantillons) est fourni sous ce permis.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont régis par la
législation américaine en matière de contrôle des exportations et peuvent être soumis au droit d’autres
pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour
des armes nucléaires, des missiles, des armes biologiques et chimiques ou du nucléaire maritime, directe-
ment ou indirectement, sont strictement interdites. Les exportations ou réexportations vers des pays sous
embargo des États-Unis, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines,
y compris, mais de manière non exclusive, la liste de personnes qui font objet d’un ordre de ne pas partic-
iper, d’une façon directe ou indirecte, aux exportations des produits ou des services qui sont régi par la
législation américaine en matière de contrôle des exportations ("U .S. Commerce Department’s Table of
Denial Orders "et la liste de ressortissants spécifiquement désignés ("U.S. Treasury Department of Spe-
cially Designated Nationals and Blocked Persons "),, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DEC-
LARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES,
DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE
UTILISATION PARTICULIERE OU A L’ABSENCE DE CONTREFAÇON.

http://developer.sun.com/berkeley_license.html
http://developer.sun.com/berkeley_license.html

iii

Contents

Foreword .xxxi

About This Tutorial. xxxiii

Who Should Use This Tutorial xxxiii
Prerequisites xxxiii
How to Read This Tutorial xxxiv
About the Examples xxxvi
Further Information xxxix
How to Buy This Tutorial xl
How to Print This Tutorial xl
Typographical Conventions xli
Acknowledgments xli
Feedback xlii

Chapter 1: Overview. 1

Distributed Multitiered Applications 2
J2EE Components 3
J2EE Clients 4
Web Components 6
Business Components 6
Enterprise Information System Tier 8

J2EE Containers 8
Container Services 8
Container Types 9

Web Services Support 10
XML 11
SOAP Transport Protocol 12
WSDL Standard Format 12
UDDI and ebXML Standard Formats 12

iv
Packaging Applications 13
Development Roles 15

J2EE Product Provider 15
Tool Provider 15
Application Component Provider 16
Application Assembler 16
Application Deployer and Administrator 17

J2EE 1.4 APIs 18
Enterprise JavaBeans Technology 18
Java Servlet Technology 19
JavaServer Pages Technology 19
Java Message Service API 19
Java Transaction API 19
JavaMail API 20
JavaBeans Activation Framework 20
Java API for XML Processing 20
Java API for XML-Based RPC 20
SOAP with Attachments API for Java 21
Java API for XML Registries 21
J2EE Connector Architecture 22
JDBC API 22
Java Naming and Directory Interface 22
Java Authentication and Authorization Service 23
Simplified Systems Integration 24

Sun Java System Application Server Platform Edition 8 24
Technologies 25
Tools 26
Starting and Stopping the Application Server 27
Starting the Admin Console 28
Starting the deploytool Utility 29
Starting and Stopping the Derby Database Server 29
Debugging J2EE Applications 30

Chapter 2: Understanding XML. .33

Introduction to XML 33
What Is XML? 33
Why Is XML Important? 38
How Can You Use XML? 40

Generating XML Data 43
Writing a Simple XML File 43

v

Defining the Root Element 44
Writing Processing Instructions 48
Introducing an Error 49
Substituting and Inserting Text 50
Creating a Document Type Definition 54
Documents and Data 59
Defining Attributes and Entities in the DTD 59
Referencing Binary Entities 66
Defining Parameter Entities and Conditional Sections 68
Resolving a Naming Conflict 72
Using Namespaces 73

Designing an XML Data Structure 76
Saving Yourself Some Work 77
Attributes and Elements 77
Normalizing Data 79
Normalizing DTDs 81

Summary 81

Chapter 3: Getting Started with Web Applications 83

Web Application Life Cycle 86
Web Modules 88

Packaging Web Modules 90
Deploying Web Modules 92
Listing Deployed Web Modules 95
Updating Web Modules 96
Undeploying Web Modules 98

Configuring Web Applications 99
Mapping URLs to Web Components 99
Declaring Welcome Files 101
Setting Initialization Parameters 102
Mapping Errors to Error Screens 102
Declaring Resource References 103

Duke’s Bookstore Examples 103
Accessing Databases from Web Applications 104

Populating the Example Database 105
Creating a Data Source in the Application Server 106
Specifying a Web Application’s Resource Reference 106
Mapping the Resource Reference to a Data Source 107

Further Information 108

vi
Chapter 4: Java API for XML Processing109

The JAXP APIs 109
An Overview of the Packages 110
The Simple API for XML APIs 111

The SAX Packages 114
The Document Object Model APIs 114

The DOM Packages 116
The Extensible Stylesheet Language Transformations APIs 117

The XSLT Packages 118
Using the JAXP Libraries 118
Where Do You Go from Here? 118

Chapter 5: Simple API for XML .121

When to Use SAX 122
Echoing an XML File with the SAX Parser 123

Creating the Skeleton 124
Importing Classes 124
Setting Up for I/O 125
Implementing the ContentHandler Interface 125
Setting up the Parser 127
Writing the Output 128
Spacing the Output 128
Handling Content Events 129
Compiling and Running the Program 134
Checking the Output 135
Identifying the Events 136
Compressing the Output 138
Inspecting the Output 140
Documents and Data 141

Adding Additional Event Handlers 141
Identifying the Document’s Location 142
Handling Processing Instructions 144
Summary 145

Handling Errors with the Nonvalidating Parser 145
Displaying Special Characters and CDATA 153

Handling Special Characters 153
Handling Text with XML-Style Syntax 154
Handling CDATA and Other Characters 155

Parsing with a DTD 156
DTD’s Effect on the Nonvalidating Parser 156

vii
Tracking Ignorable Whitespace 157
Cleanup 159
Empty Elements, Revisited 159
Echoing Entity References 160
Echoing the External Entity 160
Summarizing Entities 161

Choosing Your Parser Implementation 161
Using the Validating Parser 162

Configuring the Factory 162
Validating with XML Schema 163
Experimenting with Validation Errors 166
Error Handling in the Validating Parser 168

Parsing a Parameterized DTD 168
DTD Warnings 170

Handling Lexical Events 170
How the LexicalHandler Works 171
Working with a LexicalHandler 172

Using the DTDHandler and EntityResolver 177
The DTDHandler API 178
The EntityResolver API 179

Further Information 179

Chapter 6: Document Object Model 181

When to Use DOM 182
Documents Versus Data 182
Mixed-Content Model 183
A Simpler Model 184
Increasing the Complexity 185
Choosing Your Model 187

Reading XML Data into a DOM 188
Creating the Program 188
Additional Information 192
Looking Ahead 194

Displaying a DOM Hierarchy 195
Convert DomEcho to a GUI Application 195
Create Adapters to Display the DOM in a JTree 201
Finishing Up 211

Examining the Structure of a DOM 211
Displaying a Simple Tree 211
Displaying a More Complex Tree 214

viii
Finishing Up 220
Constructing a User-Friendly JTree from a DOM 221

Compressing the Tree View 221
Acting on Tree Selections 227
Handling Modifications 237
Finishing Up 237

Creating and Manipulating a DOM 237
Obtaining a DOM from the Factory 237
Normalizing the DOM 241
Other Operations 243
Finishing Up 246

Validating with XML Schema 246
Overview of the Validation Process 247
Configuring the DocumentBuilder Factory 247
Validating with Multiple Namespaces 249

Further Information 252

Chapter 7: Extensible Stylesheet Language Transformations 253

Introducing XSL, XSLT, and XPath 254
The JAXP Transformation Packages 254

How XPath Works 255
XPath Expressions 255
The XSLT/XPath Data Model 256
Templates and Contexts 257
Basic XPath Addressing 257
Basic XPath Expressions 258
Combining Index Addresses 259
Wildcards 259
Extended-Path Addressing 260
XPath Data Types and Operators 261
String-Value of an Element 261
XPath Functions 262
Summary 265

Writing Out a DOM as an XML File 265
Reading the XML 266
Creating a Transformer 267
Writing the XML 270
Writing Out a Subtree of the DOM 271
Summary 272

Generating XML from an Arbitrary Data Structure 272

ix
Creating a Simple File 273
Creating a Simple Parser 275
Modifying the Parser to Generate SAX Events 277
Using the Parser as a SAXSource 284
Doing the Conversion 286

Transforming XML Data with XSLT 287
Defining a Simple <article> Document Type 287
Creating a Test Document 289
Writing an XSLT Transform 290
Processing the Basic Structure Elements 291
Writing the Basic Program 295
Trimming the Whitespace 297
Processing the Remaining Structure Elements 300
Process Inline (Content) Elements 304
Printing the HTML 309
What Else Can XSLT Do? 309

Transforming from the Command Line with Xalan 311
Concatenating Transformations with a Filter Chain 311

Writing the Program 311
Understanding How the Filter Chain Works 315
Testing the Program 316

Further Information 318

Chapter 8: Building Web Services with JAX-RPC 319

Setting the Port 320
Creating a Simple Web Service and Client with JAX-RPC 320

Coding the Service Endpoint Interface and Implementation Class 322
Building the Service 323
Packaging and Deploying the Service 324
Static Stub Client 327

Types Supported by JAX-RPC 330
J2SE SDK Classes 331
Primitives 331
Arrays 332
Value Types 332
JavaBeans Components 332

Web Service Clients 333
Dynamic Proxy Client 333
Dynamic Invocation Interface Client 336
Application Client 340

x

More JAX-RPC Clients 343
Web Services Interoperability and JAX-RPC 344
Further Information 344

Chapter 9: SOAP with Attachments API for Java 345

Overview of SAAJ 346
Messages 346
Connections 350

Tutorial 352
Creating and Sending a Simple Message 353
Adding Content to the Header 362
Adding Content to the SOAPPart Object 363
Adding a Document to the SOAP Body 364
Manipulating Message Content Using SAAJ or DOM APIs 364
Adding Attachments 365
Adding Attributes 368
Using SOAP Faults 373

Code Examples 378
Request.java 378
MyUddiPing.java 380
HeaderExample.java 387
DOMExample.java and DOMSrcExample.java 388
Attachments.java 392
SOAPFaultTest.java 394

Further Information 395

Chapter 10: Java API for XML Registries 397

Overview of JAXR 397
What Is a Registry? 397
What Is JAXR? 398
JAXR Architecture 399

Implementing a JAXR Client 400
Establishing a Connection 401
Querying a Registry 408
Managing Registry Data 413
Using Taxonomies in JAXR Clients 421

Running the Client Examples 426
Before You Compile the Examples 427
Compiling the Examples 429

xi
Running the Examples 429
Using JAXR Clients in J2EE Applications 434

Coding the Application Client: MyAppClient.java 435
Coding the PubQuery Session Bean 435
Editing the Properties File 436
Compiling the Source Files 436
Starting the Application Server 436
Creating JAXR Resources 436
Creating and Packaging the Application 437
Deploying the Application 440
Running the Application Client 441

Further Information 441

Chapter 11: Java Servlet Technology . 443

What Is a Servlet? 443
The Example Servlets 444

Troubleshooting 448
Servlet Life Cycle 449

Handling Servlet Life-Cycle Events 450
Handling Errors 452

Sharing Information 452
Using Scope Objects 453
Controlling Concurrent Access to Shared Resources 454
Accessing Databases 455

Initializing a Servlet 456
Writing Service Methods 457

Getting Information from Requests 458
Constructing Responses 460

Filtering Requests and Responses 463
Programming Filters 463
Programming Customized Requests and Responses 465
Specifying Filter Mappings 468

Invoking Other Web Resources 469
Including Other Resources in the Response 470
Transferring Control to Another Web Component 472

Accessing the Web Context 473
Maintaining Client State 474

Accessing a Session 474
Associating Objects with a Session 474
Session Management 475

xii
Session Tracking 476
Finalizing a Servlet 477

Tracking Service Requests 478
Notifying Methods to Shut Down 478
Creating Polite Long-Running Methods 479

Further Information 480

Chapter 12: JavaServer Pages Technology 481

What Is a JSP Page? 481
Example 482

The Example JSP Pages 486
The Life Cycle of a JSP Page 493

Translation and Compilation 493
Execution 494

Creating Static Content 496
Response and Page Encoding 497

Creating Dynamic Content 497
Using Objects within JSP Pages 498

Expression Language 499
Deactivating Expression Evaluation 500
Using Expressions 500
Variables 501
Implicit Objects 502
Literals 503
Operators 504
Reserved Words 504
Examples 505
Functions 506

JavaBeans Components 507
JavaBeans Component Design Conventions 507
Creating and Using a JavaBeans Component 509
Setting JavaBeans Component Properties 510
Retrieving JavaBeans Component Properties 512

Using Custom Tags 513
Declaring Tag Libraries 513
Including the Tag Library Implementation 516

Reusing Content in JSP Pages 517
Transferring Control to Another Web Component 518

jsp:param Element 518
Including an Applet 519

xiii
Setting Properties for Groups of JSP Pages 521
Further Information 524

Chapter 13: JavaServer Pages Documents 525

The Example JSP Document 526
Creating a JSP Document 531

Declaring Tag Libraries 534
Including Directives in a JSP Document 536
Creating Static and Dynamic Content 537
Using the jsp:root Element 541
Using the jsp:output Element 542

Identifying the JSP Document to the Container 546

Chapter 14: JavaServer Pages Standard Tag Library 547

The Example JSP Pages 548
Using JSTL 551

Tag Collaboration 553
Core Tag Library 554

Variable Support Tags 554
Flow Control Tags 555
URL Tags 558
Miscellaneous Tags 559

XML Tag Library 560
Core Tags 562
Flow Control Tags 563
Transformation Tags 564

Internationalization Tag Library 564
Setting the Locale 565
Messaging Tags 566
Formatting Tags 566

SQL Tag Library 567
query Tag Result Interface 569

Functions 572
Further Information 573

Chapter 15: Custom Tags in JSP Pages 575

What Is a Custom Tag? 576
The Example JSP Pages 576
Types of Tags 581

xiv
Tags with Attributes 581
Tags with Bodies 584
Tags That Define Variables 585
Communication between Tags 585

Encapsulating Reusable Content Using Tag Files 586
Tag File Location 588
Tag File Directives 589
Evaluating Fragments Passed to Tag Files 597
Examples 598

Tag Library Descriptors 602
Top-Level Tag Library Descriptor Elements 603
Declaring Tag Files 604
Declaring Tag Handlers 607
Declaring Tag Attributes for Tag Handlers 609
Declaring Tag Variables for Tag Handlers 610

Programming Simple Tag Handlers 612
Including Tag Handlers in Web Applications 613
How Is a Simple Tag Handler Invoked? 613
Tag Handlers for Basic Tags 613
Tag Handlers for Tags with Attributes 614
Tag Handlers for Tags with Bodies 616
Tag Handlers for Tags That Define Variables 617
Cooperating Tags 620
Examples 622

Chapter 16: Scripting in JSP Pages .631

The Example JSP Pages 632
Using Scripting 633
Disabling Scripting 634
Declarations 635

Initializing and Finalizing a JSP Page 635
Scriptlets 636
Expressions 636
Programming Tags That Accept Scripting Elements 637

TLD Elements 638
Tag Handlers 638
Tags with Bodies 640
Cooperating Tags 642
Tags That Define Variables 644

xv
Chapter 17: JavaServer Faces Technology 647

JavaServer Faces Technology Benefits 649
What Is a JavaServer Faces Application? 650
Framework Roles 651
A Simple JavaServer Faces Application 652

Steps in the Development Process 652
Creating the Pages 655
Defining Page Navigation 658
Developing the Beans 659
Adding Managed Bean Declarations 661

User Interface Component Model 662
User Interface Component Classes 663
Component Rendering Model 664
Conversion Model 669
Event and Listener Model 670
Validation Model 671

Navigation Model 672
Backing Bean Management 674
How the Pieces Fit Together 677
The Life Cycle of a JavaServer Faces Page 680

Request Processing Life Cycle Scenarios 681
Standard Request Processing Life Cycle 682

Further Information 687

Chapter 18: Using JavaServer Faces Technology in JSP Pages . .
689

The Example JavaServer Faces Application 690
Setting Up a Page 694
Using the Core Tags 697
Using the HTML Component Tags 699

UI Component Tag Attributes 700
The UIForm Component 703
The UIColumn Component 703
The UICommand Component 704
The UIData Component 706
The UIGraphic Component 709
The UIInput and UIOutput Components 710
The UIPanel Component 714
The UISelectBoolean Component 717

xvi
The UISelectMany Component 717
The UIMessage and UIMessages Components 718
The UISelectOne Component 719
The UISelectItem, UISelectItems, and UISelectItemGroup Components
720

Using Localized Messages 724
Referencing a ResourceBundle from a Page 724
Referencing a Localized Message 725

Using the Standard Converters 726
Using DateTimeConverter 727
Using NumberConverter 729

Registering Listeners on Components 731
Registering a Value-Change Listener on a Component 731
Registering an Action Listener on a Component 732

Using the Standard Validators 732
Requiring a Value 734
Using the LongRangeValidator 734

Binding Component Values and Instances to External Data Sources
735

Binding a Component Value to a Property 736
Binding a Component Value to an Implicit Object 738
Binding a Component Instance to a Bean Property 739

Referencing a Backing Bean Method 741
Referencing a Method That Performs Navigation 741
Referencing a Method That Handles an Action Event 742
Referencing a Method That Performs Validation 743
Referencing a Method That Handles a Value-change Event 743

Using Custom Objects 744
Using a Custom Converter 745
Using a Custom Validator 746
Using a Custom Component 747

Chapter 19: Developing with JavaServer Faces Technology .749

Writing Component Properties 750
Writing Properties Bound to Component Values 750
Writing Properties Bound to Component Instances 759

Performing Localization 761
Creating a Resource Bundle 761
Localizing Dynamic Data 762
Localizing Messages 762

xvii
Creating a Custom Converter 764
Implementing an Event Listener 767

Implementing Value-Change Listeners 768
Implementing Action Listeners 769

Creating a Custom Validator 770
Implementing the Validator Interface 771
Creating a Custom Tag 775

Writing Backing Bean Methods 777
Writing a Method to Handle Navigation 777
Writing a Method to Handle an Action Event 779
Writing a Method to Perform Validation 779
Writing a Method to Handle a Value-Change Event 780

Chapter 20: Creating Custom UI Components 783

Determining Whether You Need a Custom Component or Renderer
784

When to Use a Custom Component 784
When to Use a Custom Renderer 785
Component, Renderer, and Tag Combinations 786

Understanding the Image Map Example 787
Why Use JavaServer Faces Technology to Implement an Image Map?
788
Understanding the Rendered HTML 788
Understanding the JSP Page 789
Configuring Model Data 791
Summary of the Application Classes 793

Steps for Creating a Custom Component 794
Creating the Component Tag Handler 795
Defining the Custom Component Tag in a Tag Library Descriptor 800
Creating Custom Component Classes 801

Specifying the Component Family 804
Performing Encoding 804
Performing Decoding 806
Enabling Value-Binding of Component Properties 807
Saving and Restoring State 808

Delegating Rendering to a Renderer 810
Creating the Renderer Class 810
Identifying the Renderer Type 812

Handling Events for Custom Components 812

xviii
Chapter 21: Configuring JavaServer Faces Applications 815

Application Configuration Resource File 816
Configuring Beans 817

Using the managed-bean Element 818
Initializing Properties using the managed-property Element 819
Initializing Maps and Lists 825

Registering Messages 827
Registering a Custom Validator 828
Registering a Custom Converter 828
Configuring Navigation Rules 829
Registering a Custom Renderer with a Render Kit 833
Registering a Custom Component 835
Basic Requirements of a JavaServer Faces Application 837

Configuring an Application Using deploytool 838
Including the Required JAR Files 843
Including the Classes, Pages, and Other Resources 843

Chapter 22: Internationalizing and Localizing Web Applications .
845

Java Platform Localization Classes 845
Providing Localized Messages and Labels 846

Establishing the Locale 847
Setting the Resource Bundle 847
Retrieving Localized Messages 848

Date and Number Formatting 849
Character Sets and Encodings 849

Character Sets 849
Character Encoding 850

Further Information 853

Chapter 23: Enterprise Beans .855

What Is an Enterprise Bean? 855
Benefits of Enterprise Beans 855
When to Use Enterprise Beans 856
Types of Enterprise Beans 857

What Is a Session Bean? 857
State Management Modes 857
When to Use Session Beans 858

What Is an Entity Bean? 859

xix
What Makes Entity Beans Different from Session Beans? 859
Container-Managed Persistence 861
When to Use Entity Beans 864

What Is a Message-Driven Bean? 864
What Makes Message-Driven Beans Different from Session and Entity
Beans? 865
When to Use Message-Driven Beans 866

Defining Client Access with Interfaces 866
Remote Clients 867
Local Clients 868
Local Interfaces and Container-Managed Relationships 868
Deciding on Remote or Local Access 869
Web Service Clients 870
Method Parameters and Access 870

The Contents of an Enterprise Bean 871
Naming Conventions for Enterprise Beans 872
The Life Cycles of Enterprise Beans 873

The Life Cycle of a Stateful Session Bean 873
The Life Cycle of a Stateless Session Bean 875
The Life Cycle of an Entity Bean 875
The Life Cycle of a Message-Driven Bean 877

Further Information 878

Chapter 24: Getting Started with Enterprise Beans 879

Creating the J2EE Application 880
Creating the Enterprise Bean 880

Coding the Enterprise Bean 881
Compiling the Source Files 882
Packaging the Enterprise Bean 883

Creating the Application Client 884
Coding the Application Client 885
Compiling the Application Client 887
Packaging the Application Client 888
Specifying the Application Client’s Enterprise Bean Reference 889

Creating the Web Client 889
Coding the Web Client 889
Compiling the Web Client 891
Packaging the Web Client 891
Specifying the Web Client’s Enterprise Bean Reference 892

Mapping the Enterprise Bean References 893

xx
Specifying the Web Client’s Context Root 894
Deploying the J2EE Application 895
Running the Application Client 895
Running the Web Client 896
Modifying the J2EE Application 897

Modifying a Class File 897
Adding a File 898
Modifying a Deployment Setting 898

Chapter 25: Session Bean Examples .899

The CartBean Example 899
Session Bean Class 900
Home Interface 904
Remote Interface 906
Helper Classes 906
Building the CartBean Example 906
Creating the Application 907
Packaging the Enterprise Bean 907
Packaging the Application Client 908

A Web Service Example: HelloServiceBean 911
Web Service Endpoint Interface 911
Stateless Session Bean Implementation Class 911
Building HelloServiceBean 912
Building the Web Service Client 915
Running the Web Service Client 916

Other Enterprise Bean Features 916
Accessing Environment Entries 916
Comparing Enterprise Beans 917
Passing an Enterprise Bean’s Object Reference 918

Using the Timer Service 919
Creating Timers 919
Canceling and Saving Timers 920
Getting Timer Information 921
Transactions and Timers 921
The TimerSessionBean Example 921
Building TimerSessionBean 923

Handling Exceptions 928

xxi
Chapter 26: Bean-Managed Persistence Examples 931

The SavingsAccountBean Example 931
Entity Bean Class 932
Home Interface 943
Remote Interface 945
Running the SavingsAccountBean Example 946

Mapping Table Relationships for Bean-Managed Persistence 947
One-to-One Relationships 948
One-to-Many Relationships 951
Many-to-Many Relationships 959

Primary Keys for Bean-Managed Persistence 962
The Primary Key Class 963
Primary Keys in the Entity Bean Class 964
Getting the Primary Key 965

deploytool Tips for Entity Beans with Bean-Managed Persistence 965

Chapter 27: Container-Managed Persistence Examples 967

Overview of the RosterApp Application 967
The PlayerBean Code 969

Entity Bean Class 969
Local Home Interface 974
Local Interface 975

Method Invocations in RosterApp 975
Creating a Player 976
Adding a Player to a Team 977
Removing a Player 978
Dropping a Player from a Team 979
Getting the Players of a Team 980
Getting a Copy of a Team’s Players 982
Finding the Players by Position 984
Getting the Sports of a Player 985

Building and Running the RosterApp Example 987
Creating the Database Tables 987
Creating the Data Source 988
Capturing the Table Schema 988
Building the Enterprise Beans 989
Creating the Enterprise Application 989
Packaging the Enterprise Beans 989
Packaging the Enterprise Application Client 998
Deploying the Enterprise Application 999

xxii
Running the Client Application 1000
A Guided Tour of the RosterApp Settings 1001

RosterApp 1001
RosterClient 1003
RosterJAR 1003
TeamJAR 1004

Primary Keys for Container-Managed Persistence 1010
The Primary Key Class 1011

Advanced CMP Topics: The OrderApp Example 1013
Structure of OrderApp 1013
Bean Relationships in OrderApp 1014
Primary Keys in OrderApp’s Entity Beans 1016
Entity Bean Mapped to More Than One Database Table 1019
Finder and Selector Methods 1019
Using Home Methods 1020
Cascade Deletes in OrderApp 1020
BLOB and CLOB Database Types in OrderApp 1020
Building and Running the OrderApp Example 1021

deploytool Tips for Entity Beans with Container-Managed Persistence
1030

Selecting the Persistent Fields and Abstract Schema Name 1031
Defining EJB QL Queries for Finder and Select Methods 1031
Defining Relationships 1032
Creating the Database Tables at Deploy Time in deploytool 1032

Chapter 28: A Message-Driven Bean Example 1033

Example Application Overview 1033
The Application Client 1034
The Message-Driven Bean Class 1035

The onMessage Method 1035
The ejbCreate and ejbRemove Methods 1037

Deploying and Running SimpleMessageApp 1037
Creating the Administered Objects 1037
Deploying the Application 1038
Running the Client 1039
Removing the Administered Objects 1039

deploytool Tips for Message-Driven Beans 1040
Specifying the Bean’s Type 1040
Setting the Message-Driven Bean’s Characteristics 1040

deploytool Tips for Components That Send Messages 1041

xxiii
Setting the Resource References 1042
Setting the Message Destination References 1042
Setting the Message Destinations 1043

Chapter 29: Enterprise JavaBeans
Query Language1045

Terminology 1046
Simplified Syntax 1046
Example Queries 1047

Simple Finder Queries 1047
Finder Queries That Navigate to Related Beans 1049
Finder Queries with Other Conditional Expressions 1050
Select Queries 1052

Full Syntax 1052
BNF Symbols 1053
BNF Grammar of EJB QL 1053
FROM Clause 1057
Path Expressions 1060
WHERE Clause 1062
SELECT Clause 1071
ORDER BY Clause 1074

EJB QL Restrictions 1075

Chapter 30: Transactions . 1077

What Is a Transaction? 1077
Container-Managed Transactions 1078

Transaction Attributes 1078
Rolling Back a Container-Managed Transaction 1082
Synchronizing a Session Bean’s Instance Variables 1084
Compiling the BankBean Example 1085
Packaging the BankBean Example 1086
Methods Not Allowed in Container-Managed Transactions 1089

Bean-Managed Transactions 1089
JDBC Transactions 1090
Deploying and Running the WarehouseBean Example 1091
Compiling the WarehouseBean Example 1091
Packaging the WarehouseBean Example 1092
JTA Transactions 1095
Deploying and Running the TellerBean Example 1096

xxiv
Compiling the TellerBean Example 1097
Packaging the TellerBean Example 1097
Returning without Committing 1100
Methods Not Allowed in Bean-Managed Transactions 1101

Summary of Transaction Options for Enterprise Beans 1101
Transaction Timeouts 1102
Isolation Levels 1103
Updating Multiple Databases 1104
Transactions in Web Components 1105

Chapter 31: Resource Connections .1107

JNDI Naming 1107
DataSource Objects and Connection Pools 1109
Database Connections 1110

Coding a Database Connection 1110
Specifying a Resource Reference 1111
Creating a Data Source 1112

Mail Session Connections 1113
Running the ConfirmerBean Example 1114

URL Connections 1116
Running the HTMLReaderBean Example 1117

Further Information 1118

Chapter 32: Security .1119

Overview 1119
Realms, Users, Groups, and Roles 1120

Managing Users 1121
Setting Up Security Roles 1122
Mapping Roles to Users and Groups 1123

Web-Tier Security 1125
Protecting Web Resources 1127
Setting Security Requirements Using deploytool 1128
Specifying a Secure Connection 1130
Using Programmatic Security in the Web Tier 1131

Understanding Login Authentication 1133
Using HTTP Basic Authentication 1133
Using Form-Based Authentication 1134
Using Client-Certificate Authentication 1135
Using Mutual Authentication 1136

xxv
Using Digest Authentication 1138
Configuring Authentication 1139
Example: Using Form-Based Authentication 1139

Installing and Configuring SSL Support 1148
What Is Secure Socket Layer Technology? 1148
Understanding Digital Certificates 1149
Using SSL 1156

XML and Web Services Security 1159
Transport-Level Security 1160
Example: Basic Authentication with JAX-RPC 1161
Example: Client-Certificate Authentication over HTTP/SSL with
JAX-RPC 1167

EJB-Tier Security 1175
Declaring Method Permissions 1175
Configuring IOR Security 1176
Using Programmatic Security in the EJB Tier 1178
Unauthenticated User Name 1178

Application Client-Tier Security 1178
EIS-Tier Security 1179

Container-Managed Sign-On 1180
Component-Managed Sign-On 1180
Configuring Resource Adapter Security 1181

Propagating Security Identity 1182
Configuring a Component’s Propagated Security Identity 1183
Configuring Client Authentication 1184

What Is Java Authorization Contract for Containers? 1184
Further Information 1185

Chapter 33: The Java Message Service API 1187

Overview 1188
What Is Messaging? 1188
What Is the JMS API? 1188
When Can You Use the JMS API? 1189
How Does the JMS API Work with the J2EE Platform? 1191

Basic JMS API Concepts 1192
JMS API Architecture 1192
Messaging Domains 1193
Message Consumption 1195

The JMS API Programming Model 1196
Administered Objects 1197

xxvi
Connections 1199
Sessions 1199
Message Producers 1200
Message Consumers 1201
Messages 1204
Exception Handling 1207

Writing Simple JMS Client Applications 1208
A Simple Example of Synchronous Message Receives 1208
A Simple Example of Asynchronous Message Consumption 1219
Running JMS Client Programs on Multiple Systems 1223

Creating Robust JMS Applications 1228
Using Basic Reliability Mechanisms 1229
Using Advanced Reliability Mechanisms 1236

Using the JMS API in a J2EE Application 1248
Using Session and Entity Beans to Produce and to Synchronously Re-
ceive Messages 1248
Using Message-Driven Beans 1250
Managing Distributed Transactions 1252
Using the JMS API with Application Clients and Web Components1255

Further Information 1255

Chapter 34: J2EE Examples Using the JMS API1257

A J2EE Application That Uses the JMS API with a Session Bean 1258
Writing the Application Components 1259
Creating and Packaging the Application 1261
Deploying the Application 1265
Running the Application Client 1266

A J2EE Application That Uses the JMS API with an Entity Bean 1267
Overview of the Human Resources Application 1267
Writing the Application Components 1269
Creating and Packaging the Application 1271
Deploying the Application 1274
Running the Application Client 1274

An Application Example That Consumes Messages from a Remote
J2EE Server 1275

Overview of the Applications 1276
Writing the Application Components 1277
Creating and Packaging the Applications 1277
Deploying the Applications 1280
Running the Application Client 1281

xxvii
An Application Example That Deploys a Message-Driven Bean on Two
J2EE Servers 1282

Overview of the Applications 1282
Writing the Application Components 1284
Creating and Packaging the Applications 1285
Deploying the Applications 1288
Running the Application Client 1289

Chapter 35: The Coffee Break Application. 1291

Common Code 1293
JAX-RPC Coffee Supplier Service 1293

Service Interface 1293
Service Implementation 1294
Publishing the Service in the Registry 1295
Deleting the Service From the Registry 1300

SAAJ Coffee Supplier Service 1302
SAAJ Client 1303
SAAJ Service 1310

Coffee Break Server 1317
JSP Pages 1318
JavaBeans Components 1318
RetailPriceListServlet 1321

JavaServer Faces Version of Coffee Break Server 1321
JSP Pages 1322
JavaBeans Components 1324
Resource Configuration 1326

Building, Packaging, Deploying, and Running the Application 1327
Setting the Port 1327
Setting the Registry Properties 1328
Using the Provided WARs 1329
Building the Common Classes 1329
Building, Packaging, and Deploying the JAX-RPC Service 1330
Building, Packaging, and Deploying the SAAJ Service 1332
Building, Packaging, and Deploying the Coffee Break Server 1333
Building, Packaging, and Deploying the JavaServer Faces Technology
Coffee Break Server 1335
Running the Coffee Break Client 1336
Removing the Coffee Break Application 1338

xxviii
Chapter 36: The Duke’s Bank Application.1339

Enterprise Beans 1340
Session Beans 1341
Entity Beans 1344
Helper Classes 1345
Database Tables 1346
Protecting the Enterprise Beans 1347

Application Client 1347
The Classes and Their Relationships 1349
BankAdmin Class 1350
EventHandle Class 1352
DataModel Class 1353

Web Client 1355
Design Strategies 1357
Client Components 1358
Request Processing 1361
Protecting the Web Client Resources 1363

Internationalization 1365
Building, Packaging, Deploying, and Running the Application 1366

Setting Up the Servers 1367
Compiling the Duke’s Bank Application Code 1369
Packaging and Deploying the Duke’s Bank Application 1369
Reviewing JNDI Names 1379

Running the Clients 1380
Running the Application Client 1380
Running the Web Client 1381

Appendix A: Java Encoding Schemes1383

Further Information 1384

Appendix B: XML and Related Specs: Digesting the Alphabet
Soup 1385

Basic Standards 1386
SAX 1386
StAX 1387
DOM 1387
JDOM and dom4j 1387
DTD 1388
Namespaces 1389

xxix
XSL 1389
XSLT (+XPath) 1389

Schema Standards 1390
XML Schema 1391
RELAX NG 1391
SOX 1391
Schematron 1392

Linking and Presentation Standards 1392
XML Linking 1392
XHTML 1393

Knowledge Standards 1393
RDF 1393
RDF Schema 1394
XTM 1394

Standards That Build on XML 1394
Extended Document Standards 1395
e-Commerce Standards 1395

Summary 1396

Appendix C: HTTP Overview . 1397

HTTP Requests 1398
HTTP Responses 1398

Appendix D: J2EE Connector Architecture 1399

About Resource Adapters 1399
Resource Adapter Contracts 1401

Management Contracts 1402
Outbound Contracts 1403
Inbound Contracts 1404

Common Client Interface 1405
Further Information 1406

Glossary. 1407

About the Authors . 1445

Current Writers 1445
Past Writers 1446

xxx
Index .1447

xxxi
Foreword

When the first edition of The J2EE™ Tutorial was released, the Java™ 2 Plat-
form, Enterprise Edition (J2EE) was the new kid on the block. Modeled after its
forerunner, the Java 2 Platform, Standard Edition (J2SE™), the J2EE platform
brought the benefits of “Write Once, Run Anywhere™” API compatibility to
enterprise application servers. Now at version 1.4 and with widespread conform-
ance in the application server marketplace, the J2EE platform has firmly estab-
lished its position as the standard for enterprise application servers.

The J2EE™ Tutorial, Second Edition covers the J2EE 1.4 platform and more. If
you have used the first edition of The J2EE™ Tutorial you may notice that the
second edition is triple the size. This reflects a major expansion in the J2EE plat-
form and the availability of two upcoming J2EE technologies in the Sun Java
System Application Server Platform Edition 8.2, the software on which the tuto-
rial is based.

One of the most important additions to the J2EE 1.4 platform is substantial sup-
port for web services with the JAX-RPC 1.1 API, which enables web service
endpoints based on servlets and enterprise beans. The platform also contains
web services support APIs for handling XML data streams directly (SAAJ) and
for accessing web services registries (JAXR). In addition, the J2EE 1.4 platform
requires WS-I Basic Profile 1.0. This means that in addition to platform indepen-
dence and complete web services support, the J2EE 1.4 platform offers web ser-
vices interoperability.

The J2EE 1.4 platform contains major enhancements to the Java servlet and Jav-
aServer Pages (JSP) technologies that are the foundation of the web tier. The
tutorial also showcases two exciting new technologies, not required by the J2EE
1.4 platform, that simplify the task of building J2EE application user interfaces:
JavaServer Pages Standard Tag Library (JSTL) and JavaServer Faces. These new

xxxii
technologies are available in the Application Server. They will soon be featured
in new developer tools and are strong candidates for inclusion in the next version
of the J2EE platform.

Readers conversant with the core J2EE platform enterprise bean technology will
notice major upgrades with the addition of the previously mentioned web service
endpoints, as well as a timer service, and enhancements to EJB QL and message-
driven beans.

With all of these new features, I believe that you will find it well worth your time
and energy to take on the J2EE 1.4 platform. You can increase the scope of the
J2EE applications you develop, and your applications will run on the widest pos-
sible range of application server products.

To help you to learn all about the J2EE 1.4 platform, The J2EE™ Tutorial, Sec-
ond Edition follows the familiar Java Series tutorial model of concise descrip-
tions of the essential features of each technology with code examples that you
can deploy and run on the Application Server. Read this tutorial and you will
become part of the next wave of J2EE application developers.

Jeff Jackson
Vice President, J2EE Platform and Application Servers
Sun Microsystems
Santa Clara, CA
December 7, 2005

About This Tutorial

THE J2EE™ 1.4 Tutorial is a guide to developing enterprise applications for
the Java 2 Platform, Enterprise Edition (J2EE) version 1.4. Here we cover all the
things you need to know to make the best use of this tutorial.

Who Should Use This Tutorial
This tutorial is intended for programmers who are interested in developing and
deploying J2EE 1.4 applications on the Sun Java System Application Server
Platform Edition 8.2.

Prerequisites
Before proceeding with this tutorial you should have a good knowledge of the
Java programming language. A good way to get to that point is to work through
all the basic and some of the specialized trails in The Java™ Tutorial, Mary
Campione et al., (Addison-Wesley, 2000). In particular, you should be familiar
with relational database and security features described in the trails listed in
Table 1.

Table 1 Prerequisite Trails in The Java™ Tutorial

Trail URL

JDBC http://java.sun.com/docs/books/tutorial/jdbc

Security http://java.sun.com/docs/books/tutorial/security1.2
xxxiii

http://java.sun.com/docs/books/tutorial/jdbc
http://java.sun.com/docs/books/tutorial/security1.2

xxxiv
How to Read This Tutorial
The J2EE 1.4 platform is quite large, and this tutorial reflects this. However, you
don’t have to digest everything in it at once.

This tutorial opens with three introductory chapters, which you should read
before proceeding to any specific technology area. Chapter 1 covers the J2EE 1.4
platform architecture and APIs along with the Sun Java System Application
Server Platform Edition 8.2. Chapters 2 and 3 cover XML basics and getting
started with web applications.

When you have digested the basics, you can delve into one or more of the four
main technology areas listed next. Because there are dependencies between
some of the chapters, Figure 1 contains a roadmap for navigating through the
tutorial.

• The Java XML chapters cover the technologies for developing applications
that process XML documents and implement web services components:

• The Java API for XML Processing (JAXP)

• The Java API for XML-based RPC (JAX-RPC)

• SOAP with Attachments API for Java (SAAJ)

• The Java API for XML Registries (JAXR)

• The web-tier technology chapters cover the components used in develop-
ing the presentation layer of a J2EE or stand-alone web application:

• Java Servlet

• JavaServer Pages (JSP)

• JavaServer Pages Standard Tag Library (JSTL)

• JavaServer Faces

• web application internationalization and localization

• The Enterprise JavaBeans (EJB) technology chapters cover the compo-
nents used in developing the business logic of a J2EE application:

• Session beans

• Entity beans

• Message-driven beans

xxxv
• Enterprise JavaBeans Query Language

• The platform services chapters cover the system services used by all the
J2EE component technologies:

• Transactions

• Resource connections

• Security

• Java Message Service

Figure 1 Roadmap to This Tutorial

xxxvi
After you have become familiar with some of the technology areas, you are
ready to tackle the case studies, which tie together several of the technologies
discussed in the tutorial. The Coffee Break Application (Chapter 35) describes
an application that uses the web application and web services APIs. The Duke’s
Bank Application (Chapter 36) describes an application that employs web appli-
cation technologies and enterprise beans.

Finally, the appendixes contain auxiliary information helpful to the J2EE appli-
cation developer along with a brief summary of the J2EE Connector architec-
ture:

• Java encoding schemes (Appendix A)

• XML Standards (Appendix B)

• HTTP overview (Appendix C)

• J2EE Connector architecture (Appendix D)

About the Examples
This section tells you everything you need to know to install, build, and run the
examples.

Required Software

Tutorial Bundle
The tutorial example source is contained in the tutorial bundle. If you are view-
ing this online, you need to download tutorial bundle from:

http://java.sun.com/j2ee/1.4/download.html#tutorial

After you have installed the tutorial bundle, the example source code is in the
<INSTALL>/j2eetutorial14/examples/ directory, with subdirectories for each
of the technologies discussed in the tutorial.

Application Server
The Sun Java System Application Server Platform Edition 8.2 is targeted as the
build and runtime environment for the tutorial examples. To build, deploy, and

http://java.sun.com/j2ee/1.4/download.html#tutorial

xxxvii
run the examples, you need a copy of the Application Server and the Java 2 Soft-
ware Development Kit, Standard Edition (J2SE SDK) 1.4.2_06 or higher. If you
already have a copy of the J2SE SDK, you can download the Application Server
from:

http://java.sun.com/j2ee/1.4/download.html#sdk

You can also download the J2EE 1.4 SDK—which contains the Application
Server and the J2SE SDK—from the same site.

Application Server Installation Tips
In the Admin configuration pane of the Application Server installer,

• Select the Don’t Prompt for Admin User Name radio button. This will save
the user name and password so that you won’t need to provide them when
performing administrative operations with asadmin and deploytool. You
will still have to provide the user name and password to log in to the Admin
Console.

• Note the HTTP port at which the server is installed. This tutorial assumes
that you are accepting the default port of 8080. If 8080 is in use during
installation and the installer chooses another port or if you decide to
change it yourself, you will need to update the common build properties
file (described in the next section) and the configuration files for some of
the tutorial examples to reflect the correct port.

In the Installation Options pane, check the Add Bin Directory to PATH checkbox
so that Application Server scripts (asadmin, asant, deploytool, and wscom-

pile) override other installations.

Registry Server
You need a registry server to run the examples discussed in Chapters 10 and 35.
Directions for obtaining and setting up a registry server are provided in those
chapters.

Building the Examples
Most of the tutorial examples are distributed with a configuration file for asant,
a portable build tool contained in the Application Server. This tool is an exten-
sion of the Ant tool developed by the Apache Software Foundation

http://java.sun.com/j2ee/1.4/download.html#sdk

xxxviii
(http://ant.apache.org). The asant utility contains additional tasks that
invoke the Application Server administration utility asadmin. Directions for
building the examples are provided in each chapter.

Build properties and targets common to all the examples are specified in the files
<INSTALL>/j2eetutorial14/examples/common/build.properties and
<INSTALL>/j2eetutorial14/examples/common/targets.xml. Build proper-
ties and targets common to a particular technology are specified in the files
<INSTALL>/j2eetutorial14/examples/tech/common/build.properties

and <INSTALL>/j2eetutorial14/examples/tech/common/targets.xml.

To run the asant scripts, you must set common build properties in the file
<INSTALL>/j2eetutorial14/examples/common/build.properties as fol-
lows:

• Set the j2ee.home property to the location of your Application Server
installation. The build process uses the j2ee.home property to include the
libraries in <J2EE_HOME>/lib/ in the classpath. All examples that run on
the Application Server include the J2EE library archive—
<J2EE_HOME>/lib/j2ee.jar—in the build classpath. Some examples use
additional libraries in <J2EE_HOME>/lib/ and
<J2EE_HOME>/lib/endorsed/; the required libraries are enumerated in
the individual technology chapters. <J2EE_HOME> refers to the directory
where you have installed the Application Server or the J2EE 1.4 SDK.

Note: On Windows, you must escape any backslashes in the j2ee.home property
with another backslash or use forward slashes as a path separator. So, if your Appli-
cation Server installation is C:\Sun\AppServer, you must set j2ee.home as follows:

j2ee.home = C:\\Sun\\AppServer

or

j2ee.home=C:/Sun/AppServer

• Set the j2ee.tutorial.home property to the location of your tutorial. This
property is used for asant deployment and undeployment.

For example on Unix:

j2ee.tutorial.home=/home/username/j2eetutorial14

http://ant.apache.org

xxxix
On Windows:

j2ee.tutorial.home=C:/j2eetutorial14

You should not install the tutorial to a location with spaces in the path.

• If you did not use the default value (admin) for the admin user, set the
admin.user property to the value you specified when you installed the
Application Server.

• If you did not use port 8080, set the domain.resources.port property to
the value specified when you installed the Application Server.

• Set the admin user’s password in
<INSTALL>/j2eetutorial14/examples/common/admin-password.txt

to the value you specified when you installed the Application Server. The
format of this file is AS_ADMIN_PASSWORD=password. For example:

AS_ADMIN_PASSWORD=mypassword

Tutorial Example Directory Structure
To facilitate iterative development and keep application source separate from
compiled files, the source code for the tutorial examples is stored in the follow-
ing structure under each application directory:

• build.xml: asant build file

• src: Java source of servlets and JavaBeans components; tag libraries

• web: JSP pages and HTML pages, tag files, and images

The asant build files (build.xml) distributed with the examples contain targets
to create a build subdirectory and to copy and compile files into that directory.

Further Information
This tutorial includes the basic information that you need to deploy applications
on and administer the Application Server.

For reference information on the tools distributed with the Application Server,
see the man pages at http://docs.sun.com/db/doc/817-6092.

http://docs.sun.com/db/doc/817-6092

xl
See the Sun Java™ System Application Server Platform Edition 8 Developer’s
Guide at http://docs.sun.com/db/doc/817-6087 for information about
developer features of the Application Server.

See the Sun Java™ System Application Server Platform Edition 8 Administra-
tion Guide at http://docs.sun.com/db/doc/817-6088 for information about
administering the Application Server.

For information about the Derby database, which is included with Application
Server 8.2, and the Pointbase database, which is included with Application
Server 8.1, see the following web sites:

• http://db.apache.org/derby

• http://www.pointbase.com

How to Buy This Tutorial
This tutorial has been published in the Java Series by Addison-Wesley as The
Java Tutorial, Second Edition. For information on the book and links to online
booksellers, go to

http://java.sun.com/docs/books/j2eetutorial/index.html#second

How to Print This Tutorial
To print this tutorial, follow these steps:

1. Ensure that Adobe Acrobat Reader is installed on your system.

2. Open the PDF version of this book.

3. Click the printer icon in Adobe Acrobat Reader.

http://docs.sun.com/db/doc/817-6088
http://db.apache.org/derby
http://www.pointbase.com
http://java.sun.com/docs/books/j2eetutorial/index.html#second
http://docs.sun.com/db/doc/817-6087
J2EETutorial.pdf

xli
Typographical Conventions
Table 2 lists the typographical conventions used in this tutorial.

Menu selections indicated with the right-arrow character →, for example,
First→Second, should be interpreted as: select the First menu, then choose Sec-
ond from the First submenu.

Acknowledgments
The J2EE tutorial team would like to thank the J2EE specification leads: Bill
Shannon, Pierre Delisle, Mark Roth, Yutaka Yoshida, Farrukh Najmi, Phil Good-
win, Joseph Fialli, Kate Stout, and Ron Monzillo and the J2EE 1.4 SDK team
members: Vivek Nagar, Tony Ng, Qingqing Ouyang, Ken Saks, Jean-Francois
Arcand, Jan Luehe, Ryan Lubke, Kathy Walsh, Binod P G, Alejandro Murillo,
and Manveen Kaur.

The chapters on custom tags and the Coffee Break and Duke’s Bank applications
use a template tag library that first appeared in Designing Enterprise Applica-
tions with the J2EE™ Platform, Second Edition, Inderjeet Singh et al., (Addi-
son-Wesley, 2002).

The JavaServer Faces technology and JSP Documents chapters benefited greatly
from the invaluable documentation reviews and example code contributions of
these engineers: Ed Burns, Justyna Horwat, Roger Kitain, Jan Luehe, Craig
McClanahan, Raj Premkumar, Mark Roth, and especially Jayashri Visvanathan.

Table 2 Typographical Conventions

Font Style Uses

italic Emphasis, titles, first occurrence of terms

monospace
URLs, code examples, file names, path names, tool names,
application names, programming language keywords, tag,
interface, class, method, and field names, properties

italic monospace Variables in code, file paths, and URLs

<italic monospace> User-selected file path components

xlii
The OrderApp example application described in the Container-Managed Persis-
tence chapter was coded by Marina Vatkina with contributions from Markus
Fuchs, Rochelle Raccah, and Deepa Singh. Ms. Vatkina’s JDO/CMP team pro-
vided extensive feedback on the tutorial’s discussion of CMP.

The security chapter writers are indebted to Raja Perumal, who was a key con-
tributor both to the chapter and to the examples.

Monica Pawlan and Beth Stearns wrote the Overview and J2EE Connector chap-
ters in the first edition of The J2EE Tutorial and much of that content has been
carried forward to the current edition.

We are extremely grateful to the many internal and external reviewers who pro-
vided feedback on the tutorial. Their feedback helped improve the technical
accuracy and presentation of the chapters and eliminate bugs from the examples.

We would like to thank our manager, Alan Sommerer, for his support and
steadying influence.

We also thank Duarte Design, Inc., and Zana Vartanian for developing the illus-
trations in record time. Thanks are also due to our copy editor, Betsy Hardinger,
for helping this multi-author project achieve a common style.

Finally, we would like to express our profound appreciation to Ann Sellers, Eliz-
abeth Ryan, and the production team at Addison-Wesley for graciously seeing
our large, complicated manuscript to publication.

Feedback
To send comments, broken link reports, errors, suggestions, and questions about
this tutorial to the tutorial team, please use the feedback form at
http://java.sun.com/j2ee/1.4/docs/tutorial/information/sendus-

mail.html.

http://java.sun.com/j2ee/1.4/docs/tutorial/information/sendusmail.html
http://java.sun.com/j2ee/1.4/docs/tutorial/information/sendusmail.html

1

1

Overview

TODAY, more and more developers want to write distributed transactional
applications for the enterprise and thereby leverage the speed, security, and reli-
ability of server-side technology. If you are already working in this area, you
know that in the fast-moving and demanding world of e-commerce and informa-
tion technology, enterprise applications must be designed, built, and produced
for less money, with greater speed, and with fewer resources than ever before.

To reduce costs and fast-track application design and development, the Java™ 2
Platform, Enterprise Edition (J2EE™) provides a component-based approach to
the design, development, assembly, and deployment of enterprise applications.
The J2EE platform offers a multitiered distributed application model, reusable
components, a unified security model, flexible transaction control, and web ser-
vices support through integrated data interchange on Extensible Markup Lan-
guage (XML)-based open standards and protocols.

Not only can you deliver innovative business solutions to market faster than ever,
but also your platform-independent J2EE component-based solutions are not tied
to the products and application programming interfaces (APIs) of any one ven-
dor. Vendors and customers enjoy the freedom to choose the products and com-
ponents that best meet their business and technological requirements.

This tutorial uses examples to describe the features and functionalities available
in the J2EE platform version 1.4 for developing enterprise applications. Whether
you are a new or an experienced developer, you should find the examples and
accompanying text a valuable and accessible knowledge base for creating your
own solutions.

2

If you are new to J2EE enterprise application development, this chapter is a good
place to start. Here you will review development basics, learn about the J2EE
architecture and APIs, become acquainted with important terms and concepts,
and find out how to approach J2EE application programming, assembly, and
deployment.

Distributed Multitiered Applications
The J2EE platform uses a distributed multitiered application model for enter-
prise applications. Application logic is divided into components according to
function, and the various application components that make up a J2EE applica-
tion are installed on different machines depending on the tier in the multitiered
J2EE environment to which the application component belongs. Figure 1–1
shows two multitiered J2EE applications divided into the tiers described in the
following list. The J2EE application parts shown in Figure 1–1 are presented in
J2EE Components (page 3).

• Client-tier components run on the client machine.

• Web-tier components run on the J2EE server.

• Business-tier components run on the J2EE server.

• Enterprise information system (EIS)-tier software runs on the EIS server.

Although a J2EE application can consist of the three or four tiers shown in Fig-
ure 1–1, J2EE multitiered applications are generally considered to be three-
tiered applications because they are distributed over three locations: client
machines, the J2EE server machine, and the database or legacy machines at the
back end. Three-tiered applications that run in this way extend the standard two-
tiered client and server model by placing a multithreaded application server
between the client application and back-end storage.

DISTRIBUTED MULTITIERED APPLICATIONS 3
Figure 1–1 Multitiered Applications

J2EE Components
J2EE applications are made up of components. A J2EE component is a self-con-
tained functional software unit that is assembled into a J2EE application with its
related classes and files and that communicates with other components. The
J2EE specification defines the following J2EE components:

• Application clients and applets are components that run on the client.

• Java Servlet and JavaServer Pages™ (JSP™) technology components are
web components that run on the server.

• Enterprise JavaBeans™ (EJB™) components (enterprise beans) are busi-
ness components that run on the server.

J2EE components are written in the Java programming language and are com-
piled in the same way as any program in the language. The difference between
J2EE components and “standard” Java classes is that J2EE components are
assembled into a J2EE application, are verified to be well formed and in compli-
ance with the J2EE specification, and are deployed to production, where they are
run and managed by the J2EE server.

4

J2EE Clients
A J2EE client can be a web client or an application client.

Web Clients
A web client consists of two parts: (1) dynamic web pages containing various
types of markup language (HTML, XML, and so on), which are generated by
web components running in the web tier, and (2) a web browser, which renders
the pages received from the server.

A web client is sometimes called a thin client. Thin clients usually do not query
databases, execute complex business rules, or connect to legacy applications.
When you use a thin client, such heavyweight operations are off-loaded to enter-
prise beans executing on the J2EE server, where they can leverage the security,
speed, services, and reliability of J2EE server-side technologies.

Applets
A web page received from the web tier can include an embedded applet. An
applet is a small client application written in the Java programming language
that executes in the Java virtual machine installed in the web browser. However,
client systems will likely need the Java Plug-in and possibly a security policy file
in order for the applet to successfully execute in the web browser.

Web components are the preferred API for creating a web client program
because no plug-ins or security policy files are needed on the client systems.
Also, web components enable cleaner and more modular application design
because they provide a way to separate applications programming from web
page design. Personnel involved in web page design thus do not need to under-
stand Java programming language syntax to do their jobs.

Application Clients
An application client runs on a client machine and provides a way for users to
handle tasks that require a richer user interface than can be provided by a markup
language. It typically has a graphical user interface (GUI) created from the
Swing or the Abstract Window Toolkit (AWT) API, but a command-line inter-
face is certainly possible.

DISTRIBUTED MULTITIERED APPLICATIONS 5
Application clients directly access enterprise beans running in the business tier.
However, if application requirements warrant it, an application client can open
an HTTP connection to establish communication with a servlet running in the
web tier.

The JavaBeans™ Component Architecture
The server and client tiers might also include components based on the Java-
Beans component architecture (JavaBeans components) to manage the data flow
between an application client or applet and components running on the J2EE
server, or between server components and a database. JavaBeans components are
not considered J2EE components by the J2EE specification.

JavaBeans components have properties and have get and set methods for
accessing the properties. JavaBeans components used in this way are typically
simple in design and implementation but should conform to the naming and
design conventions outlined in the JavaBeans component architecture.

J2EE Server Communications
Figure 1–2 shows the various elements that can make up the client tier. The cli-
ent communicates with the business tier running on the J2EE server either
directly or, as in the case of a client running in a browser, by going through JSP
pages or servlets running in the web tier.

Your J2EE application uses a thin browser-based client or thick application cli-
ent. In deciding which one to use, you should be aware of the trade-offs between
keeping functionality on the client and close to the user (thick client) and off-
loading as much functionality as possible to the server (thin client). The more
functionality you off-load to the server, the easier it is to distribute, deploy, and
manage the application; however, keeping more functionality on the client can
make for a better perceived user experience.

6

Figure 1–2 Server Communications

Web Components
J2EE web components are either servlets or pages created using JSP technology
(JSP pages). Servlets are Java programming language classes that dynamically
process requests and construct responses. JSP pages are text-based documents
that execute as servlets but allow a more natural approach to creating static con-
tent.

Static HTML pages and applets are bundled with web components during appli-
cation assembly but are not considered web components by the J2EE specifica-
tion. Server-side utility classes can also be bundled with web components and,
like HTML pages, are not considered web components.

As shown in Figure 1–3, the web tier, like the client tier, might include a Java-
Beans component to manage the user input and send that input to enterprise
beans running in the business tier for processing.

Business Components
Business code, which is logic that solves or meets the needs of a particular busi-
ness domain such as banking, retail, or finance, is handled by enterprise beans
running in the business tier. Figure 1–4 shows how an enterprise bean receives
data from client programs, processes it (if necessary), and sends it to the enter-

DISTRIBUTED MULTITIERED APPLICATIONS 7
prise information system tier for storage. An enterprise bean also retrieves data
from storage, processes it (if necessary), and sends it back to the client program.

Figure 1–3 Web Tier and J2EE Applications

Figure 1–4 Business and EIS Tiers

There are three kinds of enterprise beans: session beans, entity beans, and mes-
sage-driven beans. A session bean represents a transient conversation with a cli-
ent. When the client finishes executing, the session bean and its data are gone. In
contrast, an entity bean represents persistent data stored in one row of a database
table. If the client terminates or if the server shuts down, the underlying services
ensure that the entity bean data is saved. A message-driven bean combines fea-

8

tures of a session bean and a Java Message Service (JMS) message listener,
allowing a business component to receive JMS messages asynchronously.

Enterprise Information System Tier
The enterprise information system tier handles EIS software and includes enter-
prise infrastructure systems such as enterprise resource planning (ERP), main-
frame transaction processing, database systems, and other legacy information
systems. For example, J2EE application components might need access to enter-
prise information systems for database connectivity.

J2EE Containers
Normally, thin-client multitiered applications are hard to write because they
involve many lines of intricate code to handle transaction and state management,
multithreading, resource pooling, and other complex low-level details. The com-
ponent-based and platform-independent J2EE architecture makes J2EE applica-
tions easy to write because business logic is organized into reusable components.
In addition, the J2EE server provides underlying services in the form of a con-
tainer for every component type. Because you do not have to develop these ser-
vices yourself, you are free to concentrate on solving the business problem at
hand.

Container Services
Containers are the interface between a component and the low-level platform-
specific functionality that supports the component. Before a web component,
enterprise bean, or application client component can be executed, it must be
assembled into a J2EE module and deployed into its container.

The assembly process involves specifying container settings for each component
in the J2EE application and for the J2EE application itself. Container settings
customize the underlying support provided by the J2EE server, including ser-
vices such as security, transaction management, Java Naming and Directory

J2EE CONTAINERS 9
Interface™ (JNDI) lookups, and remote connectivity. Here are some of the high-
lights:

• The J2EE security model lets you configure a web component or enterprise
bean so that system resources are accessed only by authorized users.

• The J2EE transaction model lets you specify relationships among methods
that make up a single transaction so that all methods in one transaction are
treated as a single unit.

• JNDI lookup services provide a unified interface to multiple naming and
directory services in the enterprise so that application components can
access naming and directory services.

• The J2EE remote connectivity model manages low-level communications
between clients and enterprise beans. After an enterprise bean is created, a
client invokes methods on it as if it were in the same virtual machine.

Because the J2EE architecture provides configurable services, application com-
ponents within the same J2EE application can behave differently based on where
they are deployed. For example, an enterprise bean can have security settings
that allow it a certain level of access to database data in one production environ-
ment and another level of database access in another production environment.

The container also manages nonconfigurable services such as enterprise bean
and servlet life cycles, database connection resource pooling, data persistence,
and access to the J2EE platform APIs described in section J2EE 1.4
APIs (page 18). Although data persistence is a nonconfigurable service, the
J2EE architecture lets you override container-managed persistence by including
the appropriate code in your enterprise bean implementation when you want
more control than the default container-managed persistence provides. For
example, you might use bean-managed persistence to implement your own
finder (search) methods or to create a customized database cache.

Container Types
The deployment process installs J2EE application components in the J2EE con-
tainers illustrated in Figure 1–5.

10
Figure 1–5 J2EE Server and Containers

J2EE server
The runtime portion of a J2EE product. A J2EE server provides EJB and
web containers.

Enterprise JavaBeans (EJB) container
Manages the execution of enterprise beans for J2EE applications. Enterprise
beans and their container run on the J2EE server.

Web container
Manages the execution of JSP page and servlet components for J2EE appli-
cations. Web components and their container run on the J2EE server.

Application client container
Manages the execution of application client components. Application clients
and their container run on the client.

Applet container
Manages the execution of applets. Consists of a web browser and Java Plug-
in running on the client together.

Web Services Support
Web services are web-based enterprise applications that use open, XML-based
standards and transport protocols to exchange data with calling clients. The J2EE

WEB SERVICES SUPPORT 11
platform provides the XML APIs and tools you need to quickly design, develop,
test, and deploy web services and clients that fully interoperate with other web
services and clients running on Java-based or non-Java-based platforms.

To write web services and clients with the J2EE XML APIs, all you do is pass
parameter data to the method calls and process the data returned; or for docu-
ment-oriented web services, you send documents containing the service data
back and forth. No low-level programming is needed because the XML API
implementations do the work of translating the application data to and from an
XML-based data stream that is sent over the standardized XML-based transport
protocols. These XML-based standards and protocols are introduced in the fol-
lowing sections.

The translation of data to a standardized XML-based data stream is what makes
web services and clients written with the J2EE XML APIs fully interoperable.
This does not necessarily mean that the data being transported includes XML
tags because the transported data can itself be plain text, XML data, or any kind
of binary data such as audio, video, maps, program files, computer-aided design
(CAD) documents and the like. The next section introduces XML and explains
how parties doing business can use XML tags and schemas to exchange data in a
meaningful way.

XML
XML is a cross-platform, extensible, text-based standard for representing data.
When XML data is exchanged between parties, the parties are free to create their
own tags to describe the data, set up schemas to specify which tags can be used
in a particular kind of XML document, and use XML stylesheets to manage the
display and handling of the data.

For example, a web service can use XML and a schema to produce price lists,
and companies that receive the price lists and schema can have their own
stylesheets to handle the data in a way that best suits their needs. Here are exam-
ples:

• One company might put XML pricing information through a program to
translate the XML to HTML so that it can post the price lists to its intranet.

• A partner company might put the XML pricing information through a tool
to create a marketing presentation.

• Another company might read the XML pricing information into an appli-
cation for processing.

12
SOAP Transport Protocol
Client requests and web service responses are transmitted as Simple Object
Access Protocol (SOAP) messages over HTTP to enable a completely interoper-
able exchange between clients and web services, all running on different plat-
forms and at various locations on the Internet. HTTP is a familiar request-and
response standard for sending messages over the Internet, and SOAP is an XML-
based protocol that follows the HTTP request-and-response model.

The SOAP portion of a transported message handles the following:

• Defines an XML-based envelope to describe what is in the message and
how to process the message

• Includes XML-based encoding rules to express instances of application-
defined data types within the message

• Defines an XML-based convention for representing the request to the
remote service and the resulting response

WSDL Standard Format
The Web Services Description Language (WSDL) is a standardized XML format
for describing network services. The description includes the name of the ser-
vice, the location of the service, and ways to communicate with the service.
WSDL service descriptions can be stored in registries or published on the web
(or both). The Sun Java System Application Server Platform Edition 8 provides a
tool for generating the WSDL specification of a web service that uses remote
procedure calls to communicate with clients.

UDDI and ebXML Standard Formats
Other XML-based standards, such as Universal Description, Discovery and Inte-
gration (UDDI) and ebXML, make it possible for businesses to publish informa-
tion on the Internet about their products and web services, where the information
can be readily and globally accessed by clients who want to do business.

PACKAGING APPLICATIONS 13
Packaging Applications
A J2EE application is delivered in an Enterprise Archive (EAR) file, a standard
Java Archive (JAR) file with an .ear extension. Using EAR files and modules
makes it possible to assemble a number of different J2EE applications using
some of the same components. No extra coding is needed; it is only a matter of
assembling (or packaging) various J2EE modules into J2EE EAR files.

An EAR file (see Figure 1–6) contains J2EE modules and deployment descrip-
tors. A deployment descriptor is an XML document with an .xml extension that
describes the deployment settings of an application, a module, or a component.
Because deployment descriptor information is declarative, it can be changed
without the need to modify the source code. At runtime, the J2EE server reads
the deployment descriptor and acts upon the application, module, or component
accordingly.

There are two types of deployment descriptors: J2EE and runtime. A J2EE
deployment descriptor is defined by a J2EE specification and can be used to con-
figure deployment settings on any J2EE-compliant implementation. A runtime
deployment descriptor is used to configure J2EE implementation-specific
parameters. For example, the Sun Java System Application Server Platform Edi-
tion 8 runtime deployment descriptor contains information such as the context
root of a web application, the mapping of portable names of an application’s
resources to the server’s resources, and Application Server implementation-spe-
cific parameters, such as caching directives. The Application Server runtime
deployment descriptors are named sun-moduleType.xml and are located in the
same directory as the J2EE deployment descriptor.

14
Figure 1–6 EAR File Structure

A J2EE module consists of one or more J2EE components for the same container
type and one component deployment descriptor of that type. An enterprise bean
module deployment descriptor, for example, declares transaction attributes and
security authorizations for an enterprise bean. A J2EE module without an appli-
cation deployment descriptor can be deployed as a stand-alone module. The four
types of J2EE modules are as follows:

• EJB modules, which contain class files for enterprise beans and an EJB
deployment descriptor. EJB modules are packaged as JAR files with a .jar
extension.

• Web modules, which contain servlet class files, JSP files, supporting class
files, GIF and HTML files, and a web application deployment descriptor.
Web modules are packaged as JAR files with a .war (web archive) exten-
sion.

• Application client modules, which contain class files and an application
client deployment descriptor. Application client modules are packaged as
JAR files with a .jar extension.

• Resource adapter modules, which contain all Java interfaces, classes,
native libraries, and other documentation, along with the resource adapter
deployment descriptor. Together, these implement the Connector architec-
ture (see J2EE Connector Architecture, page 22) for a particular EIS.
Resource adapter modules are packaged as JAR files with an .rar

(resource adapter archive) extension.

DEVELOPMENT ROLES 15
Development Roles
Reusable modules make it possible to divide the application development and
deployment process into distinct roles so that different people or companies can
perform different parts of the process.

The first two roles involve purchasing and installing the J2EE product and tools.
After software is purchased and installed, J2EE components can be developed by
application component providers, assembled by application assemblers, and
deployed by application deployers. In a large organization, each of these roles
might be executed by different individuals or teams. This division of labor works
because each of the earlier roles outputs a portable file that is the input for a sub-
sequent role. For example, in the application component development phase, an
enterprise bean software developer delivers EJB JAR files. In the application
assembly role, another developer combines these EJB JAR files into a J2EE
application and saves it in an EAR file. In the application deployment role, a sys-
tem administrator at the customer site uses the EAR file to install the J2EE appli-
cation into a J2EE server.

The different roles are not always executed by different people. If you work for a
small company, for example, or if you are prototyping a sample application, you
might perform the tasks in every phase.

J2EE Product Provider
The J2EE product provider is the company that designs and makes available for
purchase the J2EE platform APIs, and other features defined in the J2EE specifi-
cation. Product providers are typically operating system, database system, appli-
cation server, or web server vendors who implement the J2EE platform
according to the Java 2 Platform, Enterprise Edition specification.

Tool Provider
The tool provider is the company or person who creates development, assembly,
and packaging tools used by component providers, assemblers, and deployers.

16
Application Component Provider
The application component provider is the company or person who creates web
components, enterprise beans, applets, or application clients for use in J2EE
applications.

Enterprise Bean Developer
An enterprise bean developer performs the following tasks to deliver an EJB JAR
file that contains the enterprise bean(s):

• Writes and compiles the source code

• Specifies the deployment descriptor

• Packages the .class files and deployment descriptor into the EJB JAR file

Web Component Developer
A web component developer performs the following tasks to deliver a WAR file
containing the web component(s):

• Writes and compiles servlet source code

• Writes JSP and HTML files

• Specifies the deployment descriptor

• Packages the .class, .jsp, and.html files and deployment descriptor into
the WAR file

Application Client Developer
An application client developer performs the following tasks to deliver a JAR file
containing the application client:

• Writes and compiles the source code

• Specifies the deployment descriptor for the client

• Packages the .class files and deployment descriptor into the JAR file

Application Assembler
The application assembler is the company or person who receives application
modules from component providers and assembles them into a J2EE application

DEVELOPMENT ROLES 17
EAR file. The assembler or deployer can edit the deployment descriptor directly
or can use tools that correctly add XML tags according to interactive selections.
A software developer performs the following tasks to deliver an EAR file
containing the J2EE application:

• Assembles EJB JAR and WAR files created in the previous phases into a
J2EE application (EAR) file

• Specifies the deployment descriptor for the J2EE application

• Verifies that the contents of the EAR file are well formed and comply with
the J2EE specification

Application Deployer and Administrator
The application deployer and administrator is the company or person who con-
figures and deploys the J2EE application, administers the computing and net-
working infrastructure where J2EE applications run, and oversees the runtime
environment. Duties include such things as setting transaction controls and secu-
rity attributes and specifying connections to databases.

During configuration, the deployer follows instructions supplied by the applica-
tion component provider to resolve external dependencies, specify security set-
tings, and assign transaction attributes. During installation, the deployer moves
the application components to the server and generates the container-specific
classes and interfaces.

A deployer or system administrator performs the following tasks to install and
configure a J2EE application:

• Adds the J2EE application (EAR) file created in the preceding phase to the
J2EE server

• Configures the J2EE application for the operational environment by mod-
ifying the deployment descriptor of the J2EE application

• Verifies that the contents of the EAR file are well formed and comply with
the J2EE specification

• Deploys (installs) the J2EE application EAR file into the J2EE server

18
J2EE 1.4 APIs
Figure 1–7 illustrates the availability of the J2EE 1.4 platform APIs in each
J2EE container type. The following sections give a brief summary of the tech-
nologies required by the J2EE platform and the J2SE enterprise APIs that would
be used in J2EE applications.

Figure 1–7 J2EE Platform APIs

Enterprise JavaBeans Technology
An Enterprise JavaBeans™ (EJB™) component, or enterprise bean, is a body of
code having fields and methods to implement modules of business logic. You
can think of an enterprise bean as a building block that can be used alone or with
other enterprise beans to execute business logic on the J2EE server.

As mentioned earlier, there are three kinds of enterprise beans: session beans,
entity beans, and message-driven beans. Enterprise beans often interact with
databases. One of the benefits of entity beans is that you do not have to write any
SQL code or use the JDBC™ API (see JDBC API, page 22) directly to perform

J2EE 1.4 APIS 19
database access operations; the EJB container handles this for you. However, if
you override the default container-managed persistence for any reason, you will
need to use the JDBC API. Also, if you choose to have a session bean access the
database, you must use the JDBC API.

Java Servlet Technology
Java servlet technology lets you define HTTP-specific servlet classes. A servlet
class extends the capabilities of servers that host applications that are accessed
by way of a request-response programming model. Although servlets can
respond to any type of request, they are commonly used to extend the applica-
tions hosted by web servers.

JavaServer Pages Technology
JavaServer Pages™ (JSP™) technology lets you put snippets of servlet code
directly into a text-based document. A JSP page is a text-based document that
contains two types of text: static data (which can be expressed in any text-based
format such as HTML, WML, and XML) and JSP elements, which determine
how the page constructs dynamic content.

Java Message Service API
The Java Message Service (JMS) API is a messaging standard that allows J2EE
application components to create, send, receive, and read messages. It enables
distributed communication that is loosely coupled, reliable, and asynchronous.

Java Transaction API
The Java Transaction API (JTA) provides a standard interface for demarcating
transactions. The J2EE architecture provides a default auto commit to handle
transaction commits and rollbacks. An auto commit means that any other appli-
cations that are viewing data will see the updated data after each database read or
write operation. However, if your application performs two separate database
access operations that depend on each other, you will want to use the JTA API to
demarcate where the entire transaction, including both operations, begins, rolls
back, and commits.

20
JavaMail API
J2EE applications use the JavaMail™ API to send email notifications. The Java-
Mail API has two parts: an application-level interface used by the application
components to send mail, and a service provider interface. The J2EE platform
includes JavaMail with a service provider that allows application components to
send Internet mail.

JavaBeans Activation Framework
The JavaBeans Activation Framework (JAF) is included because JavaMail uses
it. JAF provides standard services to determine the type of an arbitrary piece of
data, encapsulate access to it, discover the operations available on it, and create
the appropriate JavaBeans component to perform those operations.

Java API for XML Processing
The Java API for XML Processing (JAXP) supports the processing of XML doc-
uments using Document Object Model (DOM), Simple API for XML (SAX),
and Extensible Stylesheet Language Transformations (XSLT). JAXP enables
applications to parse and transform XML documents independent of a particular
XML processing implementation.

JAXP also provides namespace support, which lets you work with schemas that
might otherwise have naming conflicts. Designed to be flexible, JAXP lets you
use any XML-compliant parser or XSL processor from within your application
and supports the W3C schema. You can find information on the W3C schema at
this URL: http://www.w3.org/XML/Schema.

Java API for XML-Based RPC
The Java API for XML-based RPC (JAX-RPC) uses the SOAP standard and
HTTP, so client programs can make XML-based remote procedure calls (RPCs)
over the Internet. JAX-RPC also supports WSDL, so you can import and export
WSDL documents. With JAX-RPC and a WSDL, you can easily interoperate
with clients and services running on Java-based or non-Java-based platforms
such as .NET. For example, based on the WSDL document, a Visual Basic .NET
client can be configured to use a web service implemented in Java technology, or
a web service can be configured to recognize a Visual Basic .NET client.

http://www.w3.org/XML/Schema

J2EE 1.4 APIS 21
JAX-RPC relies on the HTTP transport protocol. Taking that a step further, JAX-
RPC lets you create service applications that combine HTTP with a Java technol-
ogy version of the Secure Socket Layer (SSL) and Transport Layer Security
(TLS) protocols to establish basic or mutual authentication. SSL and TLS ensure
message integrity by providing data encryption with client and server authentica-
tion capabilities.

Authentication is a measured way to verify whether a party is eligible and able to
access certain information as a way to protect against the fraudulent use of a sys-
tem or the fraudulent transmission of information. Information transported
across the Internet is especially vulnerable to being intercepted and misused, so
it’s very important to configure a JAX-RPC web service to protect data in transit.

SOAP with Attachments API for Java
The SOAP with Attachments API for Java (SAAJ) is a low-level API on which
JAX-RPC depends. SAAJ enables the production and consumption of messages
that conform to the SOAP 1.1 specification and SOAP with Attachments note.
Most developers do not use the SAAJ API, instead using the higher-level JAX-
RPC API.

Java API for XML Registries
The Java API for XML Registries (JAXR) lets you access business and general-
purpose registries over the web. JAXR supports the ebXML Registry and Repos-
itory standards and the emerging UDDI specifications. By using JAXR, develop-
ers can learn a single API and gain access to both of these important registry
technologies.

Additionally, businesses can submit material to be shared and search for material
that others have submitted. Standards groups have developed schemas for partic-
ular kinds of XML documents; two businesses might, for example, agree to use
the schema for their industry’s standard purchase order form. Because the
schema is stored in a standard business registry, both parties can use JAXR to
access it.

22
J2EE Connector Architecture
The J2EE Connector architecture is used by J2EE tools vendors and system inte-
grators to create resource adapters that support access to enterprise information
systems that can be plugged in to any J2EE product. A resource adapter is a soft-
ware component that allows J2EE application components to access and interact
with the underlying resource manager of the EIS. Because a resource adapter is
specific to its resource manager, typically there is a different resource adapter for
each type of database or enterprise information system.

The J2EE Connector architecture also provides a performance-oriented, secure,
scalable, and message-based transactional integration of J2EE-based web ser-
vices with existing EISs that can be either synchronous or asynchronous. Exist-
ing applications and EISs integrated through the J2EE Connector architecture
into the J2EE platform can be exposed as XML-based web services by using
JAX-RPC and J2EE component models. Thus JAX-RPC and the J2EE Connec-
tor architecture are complementary technologies for enterprise application inte-
gration (EAI) and end-to-end business integration.

JDBC API
The JDBC API lets you invoke SQL commands from Java programming lan-
guage methods. You use the JDBC API in an enterprise bean when you override
the default container-managed persistence or have a session bean access the
database. With container-managed persistence, database access operations are
handled by the container, and your enterprise bean implementation contains no
JDBC code or SQL commands. You can also use the JDBC API from a servlet or
a JSP page to access the database directly without going through an enterprise
bean.

The JDBC API has two parts: an application-level interface used by the applica-
tion components to access a database, and a service provider interface to attach a
JDBC driver to the J2EE platform.

Java Naming and Directory Interface
The Java Naming and Directory Interface™ (JNDI) provides naming and direc-
tory functionality. It provides applications with methods for performing standard
directory operations, such as associating attributes with objects and searching for

J2EE 1.4 APIS 23
objects using their attributes. Using JNDI, a J2EE application can store and
retrieve any type of named Java object.

J2EE naming services provide application clients, enterprise beans, and web
components with access to a JNDI naming environment. A naming environment
allows a component to be customized without the need to access or change the
component’s source code. A container implements the component’s environment
and provides it to the component as a JNDI naming context.

A J2EE component locates its environment naming context using JNDI inter-
faces. A component creates a javax.naming.InitialContext object and looks
up the environment naming context in InitialContext under the name
java:comp/env. A component’s naming environment is stored directly in the
environment naming context or in any of its direct or indirect subcontexts.

A J2EE component can access named system-provided and user-defined objects.
The names of system-provided objects, such as JTA UserTransaction objects,
are stored in the environment naming context, java:comp/env. The J2EE plat-
form allows a component to name user-defined objects, such as enterprise beans,
environment entries, JDBC DataSource objects, and message connections. An
object should be named within a subcontext of the naming environment accord-
ing to the type of the object. For example, enterprise beans are named within the
subcontext java:comp/env/ejb, and JDBC DataSource references in the sub-
context java:comp/env/jdbc.

Because JNDI is independent of any specific implementation, applications can
use JNDI to access multiple naming and directory services, including existing
naming and directory services such as LDAP, NDS, DNS, and NIS. This allows
J2EE applications to coexist with legacy applications and systems. For more
information on JNDI, see The JNDI Tutorial:

http://java.sun.com/products/jndi/tutorial/index.html

Java Authentication and Authorization
Service
The Java Authentication and Authorization Service (JAAS) provides a way for a
J2EE application to authenticate and authorize a specific user or group of users
to run it.

http://java.sun.com/products/jndi/tutorial/index.html

24
JAAS is a Java programing language version of the standard Pluggable Authenti-
cation Module (PAM) framework, which extends the Java 2 Platform security
architecture to support user-based authorization.

Simplified Systems Integration
The J2EE platform is a platform-independent, full systems integration solution
that creates an open marketplace in which every vendor can sell to every cus-
tomer. Such a marketplace encourages vendors to compete, not by trying to lock
customers into their technologies but instead by trying to outdo each other in
providing products and services that benefit customers, such as better perfor-
mance, better tools, or better customer support.

The J2EE APIs enable systems and applications integration through the follow-
ing:

• Unified application model across tiers with enterprise beans

• Simplified request-and-response mechanism with JSP pages and servlets

• Reliable security model with JAAS

• XML-based data interchange integration with JAXP, SAAJ, and JAX-RPC

• Simplified interoperability with the J2EE Connector architecture

• Easy database connectivity with the JDBC API

• Enterprise application integration with message-driven beans and JMS,
JTA, and JNDI

You can learn more about using the J2EE platform to build integrated business
systems by reading J2EE Technology in Practice, by Rick Cattell and Jim
Inscore (Addison-Wesley, 2001):

http://java.sun.com/j2ee/inpractice/aboutthebook.html

Sun Java System Application Server
Platform Edition 8

The Sun Java System Application Server Platform Edition 8 is a fully compliant
implementation of the J2EE 1.4 platform. In addition to supporting all the APIs
described in the previous sections, the Application Server includes a number of

http://java.sun.com/j2ee/inpractice/aboutthebook.html

SUN JAVA SYSTEM APPLICATION SERVER PLATFORM EDITION 8 25
J2EE technologies and tools that are not part of the J2EE 1.4 platform but are
provided as a convenience to the developer.

This section briefly summarizes the technologies and tools that make up the
Application Server, and instructions for starting and stopping the Application
Server, starting the Admin Console, starting deploytool, and starting and stop-
ping the Derby database server. Other chapters explain how to use the remaining
tools.

Technologies
The Application Server includes two user interface technologies—JavaServer
Pages Standard Tag Library and JavaServer™ Faces—that are built on and used
in conjunction with the J2EE 1.4 platform technologies Java servlet and JavaSer-
ver Pages.

JavaServer Pages Standard Tag Library
The JavaServer Pages Standard Tag Library (JSTL) encapsulates core function-
ality common to many JSP applications. Instead of mixing tags from numerous
vendors in your JSP applications, you employ a single, standard set of tags. This
standardization allows you to deploy your applications on any JSP container that
supports JSTL and makes it more likely that the implementation of the tags is
optimized.

JSTL has iterator and conditional tags for handling flow control, tags for manip-
ulating XML documents, internationalization tags, tags for accessing databases
using SQL, and commonly used functions.

JavaServer Faces
JavaServer Faces technology is a user interface framework for building web
applications. The main components of JavaServer Faces technology are as fol-
lows:

• A GUI component framework.

• A flexible model for rendering components in different kinds of HTML or
different markup languages and technologies. A Renderer object gener-
ates the markup to render the component and converts the data stored in a
model object to types that can be represented in a view.

26
• A standard RenderKit for generating HTML/4.01 markup.

The following features support the GUI components:

• Input validation

• Event handling

• Data conversion between model objects and components

• Managed model object creation

• Page navigation configuration

All this functionality is available via standard Java APIs and XML-based config-
uration files.

Tools
The Application Server contains the tools listed in Table 1–1. Basic usage infor-
mation for many of the tools appears throughout the tutorial. For detailed infor-
mation, see the online help in the GUI tools and the man pages at http://

docs.sun.com/db/doc/817-6092 for the command-line tools.

Table 1–1 Application Server Tools

Component Description

Admin Console
A web-based GUI Application Server administration utility. Used to
stop the Application Server and manage users, resources, and appli-
cations.

asadmin
A command-line Application Server administration utility. Used to
start and stop the Application Server and manage users, resources,
and applications.

asant

A portable command-line build tool that is an extension of the Ant
tool developed by the Apache Software Foundation (see http://
ant.apache.org/). asant contains additional tasks that interact
with the Application Server administration utility.

appclient
A command-line tool that launches the application client container
and invokes the client application packaged in the application client
JAR file.

http://docs.sun.com/db/doc/817-6092
http://docs.sun.com/db/doc/817-6092
http://ant.apache.org/
http://ant.apache.org/

SUN JAVA SYSTEM APPLICATION SERVER PLATFORM EDITION 8 27
Starting and Stopping the Application
Server
To start and stop the Application Server, you use the asadmin utility. To start the
Application Server, open a terminal window or command prompt and execute

asadmin start-domain --verbose domain1

A domain is a set of one or more Application Server instances managed by one
administration server. Associated with a domain are the following:

• The Application Server’s port number. The default is 8080.

• The administration server’s port number. The default is 4848.

• An administration user name and password.

You specify these values when you install the Application Server. The examples
in this tutorial assume that you choose the default ports.

With no arguments, the start-domain command initiates the default domain,
which is domain1. The --verbose flag causes all logging and debugging output

capture-schema
A command-line tool to extract schema information from a database,
producing a schema file that the Application Server can use for con-
tainer-managed persistence.

deploytool
A GUI tool to package applications, generate deployment descrip-
tors, and deploy applications on the Application Server.

package-appclient
A command-line tool to package the application client container
libraries and JAR files.

Derby database A copy of the open source Derby database server.

verifier A command-line tool to validate J2EE deployment descriptors.

wscompile
A command-line tool to generate stubs, ties, serializers, and WSDL
files used in JAX-RPC clients and services.

wsdeploy
A command-line tool to generate implementation-specific, ready-to-
deploy WAR files for web service applications that use JAX-RPC.

Table 1–1 Application Server Tools

Component Description

28
to appear on the terminal window or command prompt (it will also go into the
server log, which is located in <J2EE_HOME>/domains/domain1/logs/

server.log).

Or, on Windows, you can choose

Programs→Sun Microsystems→J2EE 1.4 SDK→Start Default Server

After the server has completed its startup sequence, you will see the following
output:

Domain domain1 started.

To stop the Application Server, open a terminal window or command prompt and
execute

asadmin stop-domain domain1

Or, on Windows, choose

Programs→Sun Microsystems→J2EE 1.4 SDK→Stop Default Server

When the server has stopped you will see the following output:

Domain domain1 stopped.

Starting the Admin Console
To administer the Application Server and manage users, resources, and J2EE
applications, you use the Admin Console tool. The Application Server must be
running before you invoke the Admin Console. To start the Admin Console,
open a browser at the following URL:

http://localhost:4848/asadmin/

On Windows, from the Start menu, choose

Programs→Sun Microsystems→J2EE 1.4 SDK→Admin Console

http://java.sun.com/j2ee/inpractice/aboutthebook.html

SUN JAVA SYSTEM APPLICATION SERVER PLATFORM EDITION 8 29
Starting the deploytool Utility
To package J2EE applications, specify deployment descriptor elements, and
deploy applications on the Application Server, you use the deploytool utility.
To start deploytool, open a terminal window or command prompt and execute

deploytool

On Windows, from the Start menu, choose

Programs→Sun Microsystems→J2EE 1.4 SDK→Deploytool

Starting and Stopping the Derby
Database Server

Note: Application Server 8.2 includes a copy of the open source Derby data-
base server. Application Server 8.0/ 8.1 includes the PointBase database server. If
you are using Application Server 8.0/8.1, either follow the instructions in the J2EE
Tutorial at http://java.sun.com/j2ee/1.4/docs/tutorial-update6/
doc/index.html that works with Application Server 8.0/8.1 or upgrade to Appli-
cation Server 8.2 (see http://java.sun.com/j2ee/1.4/down-
load.html#appserv to download).

To start the Derby database server, open a terminal window or command prompt
and execute

asadmin start-database

After the database server completes its startup sequence, you will see the follow-
ing output:

Starting database in the background. Log redirected to
<j2ee.home>\derby\db.log.
Command start-database executed successfully.

To stop the Derby database server, open a terminal window or command prompt
and execute

asadmin stop-database

http://java.sun.com/j2ee/1.4/docs/tutorial-update6/doc/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial-update6/doc/index.html
http://java.sun.com/j2ee/1.4/download.html#appserv
http://java.sun.com/j2ee/1.4/download.html#appserv

30
When the database server has stopped you will see the following output:

Shutdown successful.
Command stop-database executed sucessfully.

For information about the Derby database included with Application Server 8.2,
see the Derby web site at http://db.apache.org/derby.

Debugging J2EE Applications
This section describes how to determine what is causing an error in your applica-
tion deployment or execution.

Using the Server Log
One way to debug applications is to look at the server log in <J2EE_HOME>/

domains/domain1/logs/server.log. The log contains output from the Appli-
cation Server and your applications. You can log messages from any Java class in
your application with System.out.println and the Java Logging APIs (docu-
mented at http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/

index.html) and from web components with the ServletContext.log method.

If you start the Application Server with the --verbose flag, all logging and
debugging output will appear on the terminal window or command prompt and
the server log. If you start the Application Server in the background, debugging
information is only available in the log. You can view the server log with a text
editor or with the Admin Console log viewer. To use the log viewer:

1. Select the Application Server node.

2. Select the Logging tab.

3. Click the Open Log Viewer button. The log viewer will open and display
the last 40 entries.

If you wish to display other entries:

1. Click the Modify Search button.

2. Specify any constraints on the entries you want to see.

3. Click the Search button at the bottom of the log viewer.

http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/index.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContext.html#log(java.lang.String,java.lang.Throwable)
http://db.apache.org/derby

SUN JAVA SYSTEM APPLICATION SERVER PLATFORM EDITION 8 31
Using a Debugger
The Application Server supports the Java Platform Debugger Architecture
(JPDA). With JPDA, you can configure the Application Server to communicate
debugging information via a socket. In order to debug an application using a
debugger:

1. Enable debugging in the Application Server using the Admin Console as
follows:

a. Select the Application Server node.

b. Select the JVM Settings tab. The default debug options are set to:
-Xdebug -Xrunjdwp:transport=dt_socket,server=y,

suspend=n,address=1044

As you can see, the default debugger socket port is 1044. You can change
it to a port not in use by the Application Server or another service.

c. Check the Enabled box of the Debug field.

d. Click the Save button.

2. Stop the Application Server and then restart it.

3. Compile your Java source with the -g flag.

4. Package and deploy your application.

5. Start a debugger and connect to the debugger socket at the port you set
when you enabled debugging.

32

2

33
Understanding XML

THIS chapter describes Extensible Markup Language (XML) and its related
specifications. It also gives you practice in writing XML data so that you can
become comfortably familiar with XML syntax.

Note: The XML files mentioned in this chapter can be found in
<INSTALL>/j2eetutorial14/examples/xml/samples/.

Introduction to XML
This section covers the basics of XML. The goal is to give you just enough infor-
mation to get started so that you understand what XML is all about. (You’ll learn
more about XML in later sections of the tutorial.) We then outline the major fea-
tures that make XML great for information storage and interchange, and give
you a general idea of how XML can be used.

What Is XML?
XML is a text-based markup language that is fast becoming the standard for data
interchange on the web. As with HTML, you identify data using tags (identifiers
enclosed in angle brackets: <...>). Collectively, the tags are known as markup.

But unlike HTML, XML tags identify the data rather than specify how to display
it. Whereas an HTML tag says something like, “Display this data in bold font”

34
(...), an XML tag acts like a field name in your program. It puts a label
on a piece of data that identifies it (for example, <message>...</message>).

Note: Because identifying the data gives you some sense of what it means (how to
interpret it, what you should do with it), XML is sometimes described as a mecha-
nism for specifying the semantics (meaning) of the data.

In the same way that you define the field names for a data structure, you are free
to use any XML tags that make sense for a given application. Naturally, for mul-
tiple applications to use the same XML data, they must agree on the tag names
they intend to use.

Here is an example of some XML data you might use for a messaging applica-
tion:

<message>
<to>you@yourAddress.com</to>
<from>me@myAddress.com</from>
<subject>XML Is Really Cool</subject>
<text>

How many ways is XML cool? Let me count the ways...
</text>

</message>

Note: Throughout this tutorial, we use boldface text to highlight things we want to
bring to your attention. XML does not require anything to be in bold!

The tags in this example identify the message as a whole, the destination and
sender addresses, the subject, and the text of the message. As in HTML, the <to>
tag has a matching end tag: </to>. The data between the tag and its matching
end tag defines an element of the XML data. Note, too, that the content of the
<to> tag is contained entirely within the scope of the <message>..</message>

tag. It is this ability for one tag to contain others that lets XML represent hierar-
chical data structures.

Again, as with HTML, whitespace is essentially irrelevant, so you can format the
data for readability and yet still process it easily with a program. Unlike HTML,
however, in XML you can easily search a data set for messages containing, say,
“cool” in the subject, because the XML tags identify the content of the data
rather than specify its representation.

INTRODUCTION TO XML 35
Tags and Attributes
Tags can also contain attributes—additional information included as part of the
tag itself, within the tag’s angle brackets. The following example shows an email
message structure that uses attributes for the to, from, and subject fields:

<message to="you@yourAddress.com" from="me@myAddress.com"
subject="XML Is Really Cool">

<text>
How many ways is XML cool? Let me count the ways...

</text>
</message>

As in HTML, the attribute name is followed by an equal sign and the attribute
value, and multiple attributes are separated by spaces. Unlike HTML, however,
in XML commas between attributes are not ignored; if present, they generate an
error.

Because you can design a data structure such as <message> equally well using
either attributes or tags, it can take a considerable amount of thought to figure
out which design is best for your purposes. Designing an XML Data
Structure (page 76), includes ideas to help you decide when to use attributes and
when to use tags.

Empty Tags
One big difference between XML and HTML is that an XML document is
always constrained to be well formed. There are several rules that determine
when a document is well formed, but one of the most important is that every tag
has a closing tag. So, in XML, the </to> tag is not optional. The <to> element is
never terminated by any tag other than </to>.

Note: Another important aspect of a well-formed document is that all tags are com-
pletely nested. So you can have <message>..<to>..</to>..</message>, but never
<message>..<to>..</message>..</to>. A complete list of requirements is con-
tained in the list of XML frequently asked questions (FAQ) at
http://www.ucc.ie/xml/#FAQ-VALIDWF. (This FAQ is on the W3C “Recom-
mended Reading” list at http://www.w3.org/XML/.)

Sometimes, though, it makes sense to have a tag that stands by itself. For exam-
ple, you might want to add a tag that flags the message as important: <flag/>.

http://www.ucc.ie/xml/#FAQ-VALIDWF
http://www.w3.org/XML/

36
This kind of tag does not enclose any content, so it’s known as an empty tag. You
create an empty tag by ending it with /> instead of >. For example, the following
message contains an empty flag tag:

<message to="you@yourAddress.com" from="me@myAddress.com"
subject="XML Is Really Cool">

<flag/>
<text>

How many ways is XML cool? Let me count the ways...
</text>

</message>

Note: Using the empty tag saves you from having to code <flag></flag> in order
to have a well-formed document. You can control which tags are allowed to be
empty by creating a schema or a document type definition, or DTD (page 1388). If
there is no DTD or schema associated with the document, then it can contain any
kinds of tags you want, as long as the document is well formed.

Comments in XML Files
XML comments look just like HTML comments:

<message to="you@yourAddress.com" from="me@myAddress.com"
subject="XML Is Really Cool">

<!-- This is a comment -->
<text>

How many ways is XML cool? Let me count the ways...
</text>

</message>

The XML Prolog
To complete this basic introduction to XML, note that an XML file always starts
with a prolog. The minimal prolog contains a declaration that identifies the doc-
ument as an XML document:

<?xml version="1.0"?>

The declaration may also contain additional information:

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

INTRODUCTION TO XML 37
The XML declaration is essentially the same as the HTML header, <html>,
except that it uses <?..?> and it may contain the following attributes:

• version: Identifies the version of the XML markup language used in the
data. This attribute is not optional.

• encoding: Identifies the character set used to encode the data. ISO-8859-
1 is Latin-1, the Western European and English language character set.
(The default is 8-bit Unicode: UTF-8.)

• standalone: Tells whether or not this document references an external
entity or an external data type specification. If there are no external refer-
ences, then “yes” is appropriate.

The prolog can also contain definitions of entities (items that are inserted when
you reference them from within the document) and specifications that tell which
tags are valid in the document. Both declared in a document type definition
(DTD, page 1388) that can be defined directly within the prolog, as well as with
pointers to external specification files. But those are the subject of later tutorials.
For more information on these and many other aspects of XML, see the Recom-
mended Reading list on the W3C XML page at http://www.w3.org/XML/.

Note: The declaration is actually optional, but it’s a good idea to include it when-
ever you create an XML file. The declaration should have the version number, at a
minimum, and ideally the encoding as well. That standard simplifies things if the
XML standard is extended in the future and if the data ever needs to be localized for
different geographical regions.

Everything that comes after the XML prolog constitutes the document’s content.

Processing Instructions
An XML file can also contain processing instructions that give commands or
information to an application that is processing the XML data. Processing
instructions have the following format:

 <?target instructions?>

target is the name of the application that is expected to do the processing, and
instructions is a string of characters that embodies the information or com-
mands for the application to process.

http://www.w3.org/XML/

38
Because the instructions are application-specific, an XML file can have multiple
processing instructions that tell different applications to do similar things,
although in different ways. The XML file for a slide show, for example, might
have processing instructions that let the speaker specify a technical- or execu-
tive-level version of the presentation. If multiple presentation programs were
used, the program might need multiple versions of the processing instructions
(although it would be nicer if such applications recognized standard instruc-
tions).

Note: The target name “xml” (in any combination of upper- or lowercase letters) is
reserved for XML standards. In one sense, the declaration is a processing instruc-
tion that fits that standard. (However, when you’re working with the parser later,
you’ll see that the method for handling processing instructions never sees the dec-
laration.)

Why Is XML Important?
There are a number of reasons for XML’s surging acceptance. This section lists a
few of the most prominent.

Plain Text
Because XML is not a binary format, you can create and edit files using anything
from a standard text editor to a visual development environment. That makes it
easy to debug your programs, and it makes XML useful for storing small
amounts of data. At the other end of the spectrum, an XML front end to a data-
base makes it possible to efficiently store large amounts of XML data as well. So
XML provides scalability for anything from small configuration files to a com-
pany wide data repository.

Data Identification
XML tells you what kind of data you have, not how to display it. Because the
markup tags identify the information and break the data into parts, an email pro-
gram can process it, a search program can look for messages sent to particular
people, and an address book can extract the address information from the rest of
the message. In short, because the different parts of the information have been
identified, they can be used in different ways by different applications.

INTRODUCTION TO XML 39
Stylability
When display is important, the stylesheet standard, XSL (page 1389), lets you
dictate how to portray the data. For example, consider this XML:

<to>you@yourAddress.com</to>

The stylesheet for this data can say

1. Start a new line.

2. Display “To:” in bold, followed by a space

3. Display the destination data.

This set of instructions produces:

To: you@yourAddress

Of course, you could have done the same thing in HTML, but you wouldn’t be
able to process the data with search programs and address-extraction programs
and the like. More importantly, because XML is inherently style-free, you can
use a completely different stylesheet to produce output in Postscript, TEX, PDF,
or some new format that hasn’t even been invented. That flexibility amounts to
what one author described as “future proofing” your information. The XML doc-
uments you author today can be used in future document-delivery systems that
haven’t even been imagined.

Inline Reusability
One of the nicer aspects of XML documents is that they can be composed from
separate entities. You can do that with HTML, but only by linking to other docu-
ments. Unlike HTML, XML entities can be included “inline” in a document. The
included sections look like a normal part of the document: you can search the
whole document at one time or download it in one piece. That lets you modular-
ize your documents without resorting to links. You can single-source a section so
that an edit to it is reflected everywhere the section is used, and yet a document
composed from such pieces looks for all the world like a one-piece document.

Linkability
Thanks to HTML, the ability to define links between documents is now regarded
as a necessity. Appendix B discusses the link-specification initiative. This initia-

40
tive lets you define two-way links, multiple-target links, expanding links (where
clicking a link causes the targeted information to appear inline), and links
between two existing documents that are defined in a third.

Easily Processed
As mentioned earlier, regular and consistent notation makes it easier to build a
program to process XML data. For example, in HTML a <dt> tag can be delim-
ited by </dt>, another <dt>, <dd>, or </dl>. That makes for some difficult pro-
gramming. But in XML, the <dt> tag must always have a </dt> terminator, or it
must be an empty tag such as <dt/>. That restriction is a critical part of the con-
straints that make an XML document well formed. (Otherwise, the XML parser
won’t be able to read the data.) And because XML is a vendor-neutral standard,
you can choose among several XML parsers, any one of which takes the work
out of processing XML data.

Hierarchical
Finally, XML documents benefit from their hierarchical structure. Hierarchical
document structures are, in general, faster to access because you can drill down
to the part you need, as if you were stepping through a table of contents. They
are also easier to rearrange, because each piece is delimited. In a document, for
example, you could move a heading to a new location and drag everything under
it along with the heading, instead of having to page down to make a selection,
cut, and then paste the selection into a new location.

How Can You Use XML?
 There are several basic ways to use XML:

• Traditional data processing, where XML encodes the data for a program to
process

• Document-driven programming, where XML documents are containers
that build interfaces and applications from existing components

• Archiving—the foundation for document-driven programming—where
the customized version of a component is saved (archived) so that it can be
used later

INTRODUCTION TO XML 41
• Binding, where the DTD or schema that defines an XML data structure is
used to automatically generate a significant portion of the application that
will eventually process that data

Traditional Data Processing
XML is fast becoming the data representation of choice for the web. It’s terrific
when used in conjunction with network-centric Java platform programs that send
and retrieve information. So a client-server application, for example, could trans-
mit XML-encoded data back and forth between the client and the server.

In the future, XML is potentially the answer for data interchange in all sorts of
transactions, as long as both sides agree on the markup to use. (For example,
should an email program expect to see tags named <FIRST> and <LAST>, or
<FIRSTNAME> and <LASTNAME>?) The need for common standards will generate a
lot of industry-specific standardization efforts in the years ahead. In the mean-
time, mechanisms that let you “translate” the tags in an XML document will be
important. Such mechanisms include projects such as the Resource Description
Framework initiative (RDF, page 1393), which defines meta tags, and the Exten-
sible Stylesheet Language specification (XSL, page 1389), which lets you trans-
late XML tags into other XML tags.

Document-Driven Programming
The newest approach to using XML is to construct a document that describes
what an application page should look like. The document, rather than simply
being displayed, consists of references to user interface components and busi-
ness-logic components that are “hooked together” to create an application on-
the-fly.

Of course, it makes sense to use the Java platform for such components. To con-
struct such applications, you can use JavaBeans components for interfaces and
Enterprise JavaBeans components for the business logic. Although none of the
efforts undertaken so far is ready for commercial use, much preliminary work
has been done.

Note: The Java programming language is also excellent for writing XML-process-
ing tools that are as portable as XML. Several visual XML editors have been written
for the Java platform. For a listing of editors, see http://www.xml.com/pub/pt/3.

http://www.xml.com/pub/pt/3

42
For processing tools and other XML resources, see Robin Cover’s SGML/XML
web page at http://xml.coverpages.org/software.html.

Binding
After you have defined the structure of XML data using either a DTD or one of
the schema standards, a large part of the processing you need to do has already
been defined. For example, if the schema says that the text data in a <date> ele-
ment must follow one of the recognized date formats, then one aspect of the val-
idation criteria for the data has been defined; it only remains to write the code.
Although a DTD specification cannot go the same level of detail, a DTD (like a
schema) provides a grammar that tells which data structures can occur and in
what sequences. That specification tells you how to write the high-level code that
processes the data elements.

But when the data structure (and possibly format) is fully specified, the code you
need to process it can just as easily be generated automatically. That process is
known as binding—creating classes that recognize and process different data
elements by processing the specification that defines those elements. As time
goes on, you should find that you are using the data specification to generate sig-
nificant chunks of code, and you can focus on the programming that is unique to
your application.

Archiving
The Holy Grail of programming is the construction of reusable, modular compo-
nents. Ideally, you’d like to take them off the shelf, customize them, and plug
them together to construct an application, with a bare minimum of additional
coding and additional compilation.

The basic mechanism for saving information is called archiving. You archive a
component by writing it to an output stream in a form that you can reuse later.
You can then read it and instantiate it using its saved parameters. (For example, if
you saved a table component, its parameters might be the number of rows and
columns to display.) Archived components can also be shuffled around the web
and used in a variety of ways.

When components are archived in binary form, however, there are some limita-
tions on the kinds of changes you can make to the underlying classes if you want
to retain compatibility with previously saved versions. If you could modify the
archived version to reflect the change, that would solve the problem. But that’s

http://xml.coverpages.org/software.html

GENERATING XML DATA 43
hard to do with a binary object. Such considerations have prompted a number of
investigations into using XML for archiving. But if an object’s state were
archived in text form using XML, then anything and everything in it could be
changed as easily as you can say, “Search and replace.”

XML’s text-based format could also make it easier to transfer objects between
applications written in different languages. For all these reasons, there is a lot of
interest in XML-based archiving.

Summary
XML is pretty simple and very flexible. It has many uses yet to be discovered,
and we are only beginning to scratch the surface of its potential. It is the founda-
tion for a great many standards yet to come, providing a common language that
different computer systems can use to exchange data with one another. As each
industry group comes up with standards for what it wants to say, computers will
begin to link to each other in ways previously unimaginable.

Generating XML Data
This section takes you step by step through the process of constructing an XML
document. Along the way, you’ll gain experience with the XML components
you’ll typically use to create your data structures.

Writing a Simple XML File
You’ll start by writing the kind of XML data you can use for a slide presentation.
To become comfortable with the basic format of an XML file, you’ll use your
text editor to create the data. You’ll use this file and extend it in later exercises.

Creating the File
Using a standard text editor, create a file called slideSample.xml.

Note: Here is a version of it that already exists: slideSample01.xml. (The brows-
able version is slideSample01-xml.html.) You can use this version to compare
your work or just review it as you read this guide.

../examples/xml/samples/slideSample01-xml.html
../examples/xml/samples/slideSample01.xml

44
Writing the Declaration
Next, write the declaration, which identifies the file as an XML document. The
declaration starts with the characters <?, which is also the standard XML identi-
fier for a processing instruction. (You’ll see processing instructions later in this
tutorial.)

 <?xml version='1.0' encoding='utf-8'?>

This line identifies the document as an XML document that conforms to version
1.0 of the XML specification and says that it uses the 8-bit Unicode character-
encoding scheme. (For information on encoding schemes, see Appendix A.)

Because the document has not been specified as standalone, the parser assumes
that it may contain references to other documents. To see how to specify a docu-
ment as standalone, see The XML Prolog (page 36).

Adding a Comment
Comments are ignored by XML parsers. A program will never see them unless
you activate special settings in the parser. To put a comment into the file, add the
following highlighted text.

<?xml version='1.0' encoding='utf-8'?>

<!-- A SAMPLE set of slides -->

Defining the Root Element
After the declaration, every XML file defines exactly one element, known as the
root element. Any other elements in the file are contained within that element.
Enter the following highlighted text to define the root element for this file,
slideshow:

<?xml version='1.0' encoding='utf-8'?>

<!-- A SAMPLE set of slides -->

<slideshow>

</slideshow>

GENERATING XML DATA 45
Note: XML element names are case-sensitive. The end tag must exactly match the
start tag.

Adding Attributes to an Element
A slide presentation has a number of associated data items, none of which
requires any structure. So it is natural to define these data items as attributes of
the slideshow element. Add the following highlighted text to set up some
attributes:

...
<slideshow

title="Sample Slide Show"
date="Date of publication"
author="Yours Truly"
>

</slideshow>

When you create a name for a tag or an attribute, you can use hyphens (-),
underscores (_), colons (:), and periods (.) in addition to characters and num-
bers. Unlike HTML, values for XML attributes are always in quotation marks,
and multiple attributes are never separated by commas.

Note: Colons should be used with care or avoided, because they are used when
defining the namespace for an XML document.

Adding Nested Elements
XML allows for hierarchically structured data, which means that an element can
contain other elements. Add the following highlighted text to define a slide ele-
ment and a title element contained within it:

<slideshow
...
>

 <!-- TITLE SLIDE -->
<slide type="all">

46
<title>Wake up to WonderWidgets!</title>
</slide>

</slideshow>

Here you have also added a type attribute to the slide. The idea of this attribute
is that you can earmark slides for a mostly technical or mostly executive audi-
ence using type="tech" or type="exec", or identify them as suitable for both
audiences using type="all".

More importantly, this example illustrates the difference between things that are
more usefully defined as elements (the title element) and things that are more
suitable as attributes (the type attribute). The visibility heuristic is primarily at
work here. The title is something the audience will see, so it is an element. The
type, on the other hand, is something that never gets presented, so it is an
attribute. Another way to think about that distinction is that an element is a con-
tainer, like a bottle. The type is a characteristic of the container (tall or short,
wide or narrow). The title is a characteristic of the contents (water, milk, or tea).
These are not hard-and-fast rules, of course, but they can help when you design
your own XML structures.

Adding HTML-Style Text
Because XML lets you define any tags you want, it makes sense to define a set of
tags that look like HTML. In fact, the XHTML standard does exactly that. You’ll
see more about that toward the end of the SAX tutorial. For now, type the follow-
ing highlighted text to define a slide with a couple of list item entries that use an
HTML-style tag for emphasis (usually rendered as italicized text):

...
<!-- TITLE SLIDE -->
<slide type="all">

<title>Wake up to WonderWidgets!</title>
</slide>

<!-- OVERVIEW -->
<slide type="all">

<title>Overview</title>
<item>Why WonderWidgets are great</item>
<item>Who buys WonderWidgets</item>

</slide>

</slideshow>

GENERATING XML DATA 47
Note that defining a title element conflicts with the XHTML element that uses
the same name. Later in this tutorial, we discuss the mechanism that produces
the conflict (the DTD), along with possible solutions.

Adding an Empty Element
One major difference between HTML and XML is that all XML must be well
formed, which means that every tag must have an ending tag or be an empty tag.
By now, you’re getting pretty comfortable with ending tags. Add the following
highlighted text to define an empty list item element with no contents:

...
<!-- OVERVIEW -->
<slide type="all">

<title>Overview</title>
<item>Why WonderWidgets are great</item>
<item/>
<item>Who buys WonderWidgets</item>

</slide>

</slideshow>

Note that any element can be an empty element. All it takes is ending the tag
with /> instead of >. You could do the same thing by entering <item></item>,
which is equivalent.

Note: Another factor that makes an XML file well formed is proper nesting. So
<i>some_text</i> is well formed, because the <i>...</i> sequence is
completely nested within the .. tag. This sequence, on the other hand, is
not well formed: <i>some_text</i>.

48
The Finished Product
Here is the completed version of the XML file:

<?xml version='1.0' encoding='utf-8'?>

<!-- A SAMPLE set of slides -->

<slideshow
title="Sample Slide Show"
date="Date of publication"
author="Yours Truly"
>

<!-- TITLE SLIDE -->
<slide type="all">

<title>Wake up to WonderWidgets!</title>
</slide>

<!-- OVERVIEW -->
<slide type="all">

<title>Overview</title>
<item>Why WonderWidgets are great</item>
<item/>
<item>Who buys WonderWidgets</item>

</slide
</slideshow>

Save a copy of this file as slideSample01.xml so that you can use it as the ini-
tial data structure when experimenting with XML programming operations.

Writing Processing Instructions
It sometimes makes sense to code application-specific processing instructions in
the XML data. In this exercise, you’ll add a processing instruction to your
slideSample.xml file.

Note: The file you’ll create in this section is slideSample02.xml. (The browsable
version is slideSample02-xml.html.)

As you saw in Processing Instructions (page 37), the format for a processing
instruction is <?target data?>, where target is the application that is
expected to do the processing, and data is the instruction or information for it to

../examples/xml/samples/slideSample02.xml
../examples/xml/samples/slideSample02-xml.html

GENERATING XML DATA 49
process. Add the following highlighted text to add a processing instruction for a
mythical slide presentation program that will query the user to find out which
slides to display (technical, executive-level, or all):

<slideshow
...
>

<!-- PROCESSING INSTRUCTION -->
<?my.presentation.Program QUERY="exec, tech, all"?>

<!-- TITLE SLIDE -->

Notes:

• The data portion of the processing instruction can contain spaces or it can
even be null. But there cannot be any space between the initial <? and the
target identifier.

• The data begins after the first space.

• It makes sense to fully qualify the target with the complete web-unique
package prefix, to preclude any conflict with other programs that might
process the same data.

• For readability, it seems like a good idea to include a colon (:) after the
name of the application:

<?my.presentation.Program: QUERY="..."?>

The colon makes the target name into a kind of “label” that identifies the
intended recipient of the instruction. However, even though the W3C spec
allows a colon in a target name, some versions of Internet Explorer 5 (IE5)
consider it an error. For this tutorial, then, we avoid using a colon in the tar-
get name.

Save a copy of this file as slideSample02.xml so that you can use it when
experimenting with processing instructions.

Introducing an Error
The parser can generate three kinds of errors: a fatal error, an error, and a warn-
ing. In this exercise, you’ll make a simple modification to the XML file to intro-
duce a fatal error. Later, you’ll see how it’s handled in the Echo application.

50
Note: The XML structure you’ll create in this exercise is in slideSampleBad1.xml.
(The browsable version is slideSampleBad1-xml.html.)

One easy way to introduce a fatal error is to remove the final / from the empty
item element to create a tag that does not have a corresponding end tag. That
constitutes a fatal error, because all XML documents must, by definition, be well
formed. Do the following:

1. Copy slideSample02.xml to slideSampleBad1.xml.

2. Edit slideSampleBad1.xml and remove the character shown here:

...
<!-- OVERVIEW -->

<slide type="all">
<title>Overview</title>
<item>Why WonderWidgets are great</item>
<item/>
<item>Who buys WonderWidgets</item>

</slide>
...

This change produces the following:

...
<item>Why WonderWidgets are great</item>
<item>
<item>Who buys WonderWidgets</item>
...

Now you have a file that you can use to generate an error in any parser, any time.
(XML parsers are required to generate a fatal error for this file, because the lack
of an end tag for the <item> element means that the XML structure is no longer
well formed.)

Substituting and Inserting Text
In this section, you’ll learn about

• Handling special characters (<, &, and so on)

• Handling text with XML-style syntax

../examples/xml/samples/slideSampleBad1.xml
../examples/xml/samples/slideSampleBad1-xml.html

GENERATING XML DATA 51
Handling Special Characters
In XML, an entity is an XML structure (or plain text) that has a name. Referenc-
ing the entity by name causes it to be inserted into the document in place of the
entity reference. To create an entity reference, the entity name is surrounded by
an ampersand and a semicolon, like this:

 &entityName;

Later, when you learn how to write a DTD, you’ll see that you can define your
own entities so that &yourEntityName; expands to all the text you defined for
that entity. For now, though, we’ll focus on the predefined entities and character
references that don’t require any special definitions.

Predefined Entities
An entity reference such as & contains a name (in this case, amp) between
the start and end delimiters. The text it refers to (&) is substituted for the name, as
with a macro in a programming language. Table 2–1 shows the predefined enti-
ties for special characters.

Character References
A character reference such as “ contains a hash mark (#) followed by a
number. The number is the Unicode value for a single character, such as 65 for
the letter A, 147 for the left curly quote, or 148 for the right curly quote. In this
case, the “name” of the entity is the hash mark followed by the digits that iden-
tify the character.

Table 2–1 Predefined Entities

 Character Name Reference

 & ampersand &

 < less than <

 > greater than >

 " quote "

 ' apostrophe '

52
Note: XML expects values to be specified in decimal. However, the Unicode charts
at http://www.unicode.org/charts/ specify values in hexadecimal! So you’ll
need to do a conversion to get the right value to insert into your XML data set.

Using an Entity Reference in an XML
Document
Suppose you want to insert a line like this in your XML document:

 Market Size < predicted

The problem with putting that line into an XML file directly is that when the
parser sees the left angle bracket (<), it starts looking for a tag name, throws off
the parse. To get around that problem, you put < in the file instead of <.

Note: The results of the next modifications are contained in slideSample03.xml.

Add the following highlighted text to your slideSample.xml file, and save a
copy of it for future use as slideSample03.xml:

<!-- OVERVIEW -->
<slide type="all">

<title>Overview</title>
...

</slide>

<slide type="exec">
<title>Financial Forecast</title>
<item>Market Size < predicted</item>
<item>Anticipated Penetration</item>
<item>Expected Revenues</item>
<item>Profit Margin</item>

</slide>

</slideshow>

When you use an XML parser to echo this data, you will see the desired output:

Market Size < predicted

http://www.unicode.org/charts/
../examples/xml/samples/slideSample03.xml

GENERATING XML DATA 53
You see an angle bracket (<) where you coded <, because the XML parser
converts the reference into the entity it represents and passes that entity to the
application.

Handling Text with XML-Style Syntax
When you are handling large blocks of XML or HTML that include many spe-
cial characters, it is inconvenient to replace each of them with the appropriate
entity reference. For those situations, you can use a CDATA section.

Note: The results of the next modifications are contained in slideSample04.xml.

A CDATA section works like <pre>...</pre> in HTML, only more so: all
whitespace in a CDATA section is significant, and characters in it are not inter-
preted as XML. A CDATA section starts with <![CDATA[and ends with]]>.

Add the following highlighted text to your slideSample.xml file to define a
CDATA section for a fictitious technical slide, and save a copy of the file as
slideSample04.xml:

 ...
<slide type="tech">

<title>How it Works</title>
<item>First we fozzle the frobmorten</item>
<item>Then we framboze the staten</item>
<item>Finally, we frenzle the fuznaten</item>
<item><![CDATA[Diagram:

frobmorten <--------------- fuznaten
| <3> ^
| <1> | <1> = fozzle
V | <2> = framboze

staten-------------------------+ <3> = frenzle
<2>

]]></item>
</slide>

</slideshow>

../examples/xml/samples/slideSample04.xml

54
When you echo this file with an XML parser, you see the following output:

Diagram:
frobmorten <--------------- fuznaten

| <3> ^
| <1> | <1> = fozzle
V | <2> = framboze

staten-------------------------+ <3> = frenzle
<2>

The point here is that the text in the CDATA section arrives as it was written.
Because the parser doesn’t treat the angle brackets as XML, they don’t generate
the fatal errors they would otherwise cause. (If the angle brackets weren’t in a
CDATA section, the document would not be well formed.)

Creating a Document Type Definition
After the XML declaration, the document prolog can include a DTD, which lets
you specify the kinds of tags that can be included in your XML document. In
addition to telling a validating parser which tags are valid and in what arrange-
ments, a DTD tells both validating and nonvalidating parsers where text is
expected, which lets the parser determine whether the whitespace it sees is sig-
nificant or ignorable.

Basic DTD Definitions
To begin learning about DTD definitions, let’s start by telling the parser where
text is expected and where any text (other than whitespace) would be an error.
(Whitespace in such locations is ignorable.)

Note: The DTD defined in this section is contained in slideshow1a.dtd. (The
browsable version is slideshow1a-dtd.html.)

Start by creating a file named slideshow.dtd. Enter an XML declaration and a
comment to identify the file:

<?xml version='1.0' encoding='utf-8'?>

<!--
DTD for a simple "slide show"

-->

../examples/xml/samples/slideshow1a.dtd
../examples/xml/samples/slideshow1a-dtd.html

GENERATING XML DATA 55
Next, add the following highlighted text to specify that a slideshow element
contains slide elements and nothing else:

<!-- DTD for a simple "slide show" -->

<!ELEMENT slideshow (slide+)>

As you can see, the DTD tag starts with <! followed by the tag name (ELEMENT).
After the tag name comes the name of the element that is being defined (slide-
show) and, in parentheses, one or more items that indicate the valid contents for
that element. In this case, the notation says that a slideshow consists of one or
more slide elements.

Without the plus sign, the definition would be saying that a slideshow consists
of a single slide element. The qualifiers you can add to an element definition
are listed in Table 2–2.

You can include multiple elements inside the parentheses in a comma-separated
list and use a qualifier on each element to indicate how many instances of that
element can occur. The comma-separated list tells which elements are valid and
the order they can occur in.

You can also nest parentheses to group multiple items. For an example, after
defining an image element (discussed shortly), you can specify ((image,

title)+) to declare that every image element in a slide must be paired with a
title element. Here, the plus sign applies to the image/title pair to indicate
that one or more pairs of the specified items can occur.

Table 2–2 DTD Element Qualifiers

 Qualifier Name Meaning

? Question mark Optional (zero or one)

* Asterisk Zero or more

+ Plus sign One or more

56
Defining Text and Nested Elements
Now that you have told the parser something about where not to expect text, let’s
see how to tell it where text can occur. Add the following highlighted text to
define the slide, title, item, and list elements:

<!ELEMENT slideshow (slide+)>
<!ELEMENT slide (title, item*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT item (#PCDATA | item)* >

The first line you added says that a slide consists of a title followed by zero or
more item elements. Nothing new there. The next line says that a title consists
entirely of parsed character data (PCDATA). That’s known as “text” in most parts
of the country, but in XML-speak it’s called “parsed character data.” (That distin-
guishes it from CDATA sections, which contain character data that is not parsed.)
The # that precedes PCDATA indicates that what follows is a special word rather
than an element name.

The last line introduces the vertical bar (|), which indicates an or condition. In
this case, either PCDATA or an item can occur. The asterisk at the end says that
either element can occur zero or more times in succession. The result of this
specification is known as a mixed-content model, because any number of item
elements can be interspersed with the text. Such models must always be defined
with #PCDATA specified first, followed by some number of alternate items
divided by vertical bars (|), and an asterisk (*) at the end.

Save a copy of this DTD as slideSample1a.dtd for use when you experiment with
basic DTD processing.

Limitations of DTDs
It would be nice if we could specify that an item contains either text, or text fol-
lowed by one or more list items. But that kind of specification turns out to be
hard to achieve in a DTD. For example, you might be tempted to define an item

this way:

<!ELEMENT item (#PCDATA | (#PCDATA, item+)) >

That would certainly be accurate, but as soon as the parser sees #PCDATA and the
vertical bar, it requires the remaining definition to conform to the mixed-content
model. This specification doesn’t, so you get can error that says Illegal mixed

GENERATING XML DATA 57
content model for 'item'. Found (..., where the hex character 28
is the angle bracket that ends the definition.

Trying to double-define the item element doesn’t work either. Suppose you try a
specification like this:

<!ELEMENT item (#PCDATA) >
<!ELEMENT item (#PCDATA, item+) >

This sequence produces a “duplicate definition” warning when the validating
parser runs. The second definition is, in fact, ignored. So it seems that defining a
mixed-content model (which allows item elements to be interspersed in text) is
the best we can do.

In addition to the limitations of the mixed-content model we’ve mentioned, there
is no way to further qualify the kind of text that can occur where PCDATA has
been specified. Should it contain only numbers? Should it be in a date format, or
possibly a monetary format? There is no way to specify such things in a DTD.

Finally, note that the DTD offers no sense of hierarchy. The definition of the
title element applies equally to a slide title and to an item title. When we
expand the DTD to allow HTML-style markup in addition to plain text, it would
make sense to, for example, restrict the size of an item title compared with that
of a slide title. But the only way to do that would be to give one of them a dif-
ferent name, such as item-title. The bottom line is that the lack of hierarchy in
the DTD forces you to introduce a “hyphenation hierarchy” (or its equivalent) in
your namespace. All these limitations are fundamental motivations behind the
development of schema-specification standards.

Special Element Values in the DTD
Rather than specify a parenthesized list of elements, the element definition can
use one of two special values: ANY or EMPTY. The ANY specification says that the
element can contain any other defined element, or PCDATA. Such a specification
is usually used for the root element of a general-purpose XML document such as
you might create with a word processor. Textual elements can occur in any order
in such a document, so specifying ANY makes sense.

The EMPTY specification says that the element contains no contents. So the DTD
for email messages that let you flag the message with <flag/> might have a line
like this in the DTD:

<!ELEMENT flag EMPTY>

58
Referencing the DTD
In this case, the DTD definition is in a separate file from the XML document.
With this arrangement, you reference the DTD from the XML document, and
that makes the DTD file part of the external subset of the full document type def-
inition for the XML file. As you’ll see later on, you can also include parts of the
DTD within the document. Such definitions constitute the local subset of the
DTD.

Note: The XML written in this section is contained in slideSample05.xml. (The
browsable version is slideSample05-xml.html.)

To reference the DTD file you just created, add the following highlighted line to
your slideSample.xml file, and save a copy of the file as slideSample05.xml:

<!-- A SAMPLE set of slides -->

<!DOCTYPE slideshow SYSTEM "slideshow.dtd">

<slideshow

Again, the DTD tag starts with <!. In this case, the tag name, DOCTYPE, says that
the document is a slideshow, which means that the document consists of the
slideshow element and everything within it:

<slideshow>
...
</slideshow>

This tag defines the slideshow element as the root element for the document.
An XML document must have exactly one root element. This is where that ele-
ment is specified. In other words, this tag identifies the document content as a
slideshow.

The DOCTYPE tag occurs after the XML declaration and before the root element.
The SYSTEM identifier specifies the location of the DTD file. Because it does not
start with a prefix such as http:/ or file:/, the path is relative to the location
of the XML document. Remember the setDocumentLocator method? The
parser is using that information to find the DTD file, just as your application
would use it to find a file relative to the XML document. A PUBLIC identifier can
also be used to specify the DTD file using a unique name, but the parser would
have to be able to resolve it.

../examples/xml/samples/slideSample05.xml
../examples/xml/samples/slideSample05-xml.html

GENERATING XML DATA 59
The DOCTYPE specification can also contain DTD definitions within the XML
document, rather than refer to an external DTD file. Such definitions are con-
tained in square brackets:

<!DOCTYPE slideshow SYSTEM "slideshow1.dtd" [
...local subset definitions here...

]>

You’ll take advantage of that facility in a moment to define some entities that can
be used in the document.

Documents and Data
Earlier, you learned that one reason you hear about XML documents, on the one
hand, and XML data, on the other, is that XML handles both comfortably,
depending on whether text is or is not allowed between elements in the structure.

In the sample file you have been working with, the slideshow element is an
example of a data element: it contains only subelements with no intervening text.
The item element, on the other hand, might be termed a document element,
because it is defined to include both text and subelements.

As you work through this tutorial, you will see how to expand the definition of
the title element to include HTML-style markup, which will turn it into a docu-
ment element as well.

Defining Attributes and Entities in the DTD
The DTD you’ve defined so far is fine for use with a nonvalidating parser. It tells
where text is expected and where it isn’t, and that is all the nonvalidating parser
pays attention to. But for use with the validating parser, the DTD must specify
the valid attributes for the different elements. You’ll do that in this section, and
then you’ll define one internal entity and one external entity that you can refer-
ence in your XML file.

Defining Attributes in the DTD
Let’s start by defining the attributes for the elements in the slide presentation.

60
Note: The XML written in this section is contained in slideshow1b.dtd. (The
browsable version is slideshow1b-dtd.html.)

Add the following highlighted text to define the attributes for the slideshow ele-
ment:

<!ELEMENT slideshow (slide+)>
<!ATTLIST slideshow

title CDATA #REQUIRED
date CDATA #IMPLIED
author CDATA "unknown"

>
<!ELEMENT slide (title, item*)>

The DTD tag ATTLIST begins the series of attribute definitions. The name that
follows ATTLIST specifies the element for which the attributes are being defined.
In this case, the element is the slideshow element. (Note again the lack of hier-
archy in DTD specifications.)

Each attribute is defined by a series of three space-separated values. Commas
and other separators are not allowed, so formatting the definitions as shown here
is helpful for readability. The first element in each line is the name of the
attribute: title, date, or author, in this case. The second element indicates the
type of the data: CDATA is character data—unparsed data, again, in which a left
angle bracket (<) will never be construed as part of an XML tag. Table 2–3 pre-
sents the valid choices for the attribute type.

Table 2–3 Attribute Types

 Attribute Type Specifies...

(value1 | value2 | ...) A list of values separated by vertical bars

CDATA Unparsed character data (a text string)

ID A name that no other ID attribute shares

IDREF A reference to an ID defined elsewhere in the document

IDREFS A space-separated list containing one or more ID references

ENTITY The name of an entity defined in the DTD

../examples/xml/samples/slideshow1b.dtd
../examples/xml/samples/slideshow1b-dtd.html

GENERATING XML DATA 61
When the attribute type consists of a parenthesized list of choices separated by
vertical bars, the attribute must use one of the specified values. For an example,
add the following highlighted text to the DTD:

<!ELEMENT slide (title, item*)>
<!ATTLIST slide

type (tech | exec | all) #IMPLIED
>
<!ELEMENT title (#PCDATA)>
<!ELEMENT item (#PCDATA | item)* >

This specification says that the slide element’s type attribute must be given as
type="tech", type="exec", or type="all". No other values are acceptable.
(DTD-aware XML editors can use such specifications to present a pop-up list of
choices.)

The last entry in the attribute specification determines the attribute’s default
value, if any, and tells whether or not the attribute is required. Table 2–4 shows
the possible choices.

ENTITIES A space-separated list of entities

NMTOKEN
A valid XML name composed of letters, numbers, hyphens,
underscores, and colons

NMTOKENS A space-separated list of names

NOTATION

The name of a DTD-specified notation, which describes a
non-XML data format, such as those used for image files.
(This is a rapidly obsolescing specification which will be dis-
cussed in greater length towards the end of this section.)

Table 2–4 Attribute-Specification Parameters

 Specification Specifies...

 #REQUIRED The attribute value must be specified in the document.

Table 2–3 Attribute Types

 Attribute Type Specifies...

62
Finally, save a copy of the DTD as slideshow1b.dtd for use when you experi-
ment with attribute definitions.

Defining Entities in the DTD
So far, you’ve seen predefined entities such as & and you’ve seen that an
attribute can reference an entity. It’s time now for you to learn how to define enti-
ties of your own.

Note: The XML you’ll create here is contained in slideSample06.xml. (The
browsable version is slideSample06-xml.html.)

Add the following highlighted text to the DOCTYPE tag in your XML file:

<!DOCTYPE slideshow SYSTEM "slideshow.dtd" [
<!ENTITY product "WonderWidget">
<!ENTITY products "WonderWidgets">

]>

The ENTITY tag name says that you are defining an entity. Next comes the name
of the entity and its definition. In this case, you are defining an entity named
product that will take the place of the product name. Later when the product
name changes (as it most certainly will), you need only change the name in one
place, and all your slides will reflect the new value.

The last part is the substitution string that replaces the entity name whenever it is
referenced in the XML document. The substitution string is defined in quotes,
which are not included when the text is inserted into the document.

 #IMPLIED
The value need not be specified in the document. If it isn’t, the
application will have a default value it uses.

 “defaultValue”
The default value to use if a value is not specified in the docu-
ment.

 #FIXED “fixedValue”
The value to use. If the document specifies any value at all, it
must be the same.

Table 2–4 Attribute-Specification Parameters

 Specification Specifies...

../examples/xml/samples/slideSample06.xml
../examples/xml/samples/slideSample06-xml.html

GENERATING XML DATA 63
Just for good measure, we defined two versions—one singular and one plural—
so that when the marketing mavens come up with “Wally” for a product name,
you will be prepared to enter the plural as “Wallies” and have it substituted cor-
rectly.

Note: Truth be told, this is the kind of thing that really belongs in an external DTD
so that all your documents can reference the new name when it changes. But, hey,
this is only an example.

Now that you have the entities defined, the next step is to reference them in the
slide show. Make the following highlighted changes:

<slideshow
title="WonderWidget&product; Slide Show"
...

<!-- TITLE SLIDE -->
<slide type="all">

<title>Wake up to WonderWidgets&products;!</title>
</slide>

 <!-- OVERVIEW -->
<slide type="all">

<title>Overview</title>
<item>Why WonderWidgets&products; are

great</item>
<item/>
<item>Who buys WonderWidgets&products;</item>

</slide>

Notice two points. Entities you define are referenced with the same syntax
(&entityName;) that you use for predefined entities, and the entity can be refer-
enced in an attribute value as well as in an element’s contents.

When you echo this version of the file with an XML parser, here is the kind of
thing you’ll see:

Wake up to WonderWidgets!

Note that the product name has been substituted for the entity reference.

To finish, save a copy of the file as slideSample06.xml.

64
Additional Useful Entities
Here are several other examples for entity definitions that you might find useful
when you write an XML document:

<!ENTITY ldquo "“"> <!-- Left Double Quote -->
<!ENTITY rdquo "”"> <!-- Right Double Quote -->
<!ENTITY trade "™"> <!-- Trademark Symbol (TM) -->
<!ENTITY rtrade "®"> <!-- Registered Trademark (R) -->
<!ENTITY copyr "©"> <!-- Copyright Symbol -->

Referencing External Entities
You can also use the SYSTEM or PUBLIC identifier to name an entity that is
defined in an external file. You’ll do that now.

Note: The XML defined here is contained in slideSample07.xml and in copy-

right.xml. (The browsable versions are slideSample07-xml.html and copy-

right-xml.html.)

To reference an external entity, add the following highlighted text to the DOCTYPE
statement in your XML file:

<!DOCTYPE slideshow SYSTEM "slideshow.dtd" [
<!ENTITY product "WonderWidget">
<!ENTITY products "WonderWidgets">
<!ENTITY copyright SYSTEM "copyright.xml">

]>

This definition references a copyright message contained in a file named copy-

right.xml. Create that file and put some interesting text in it, perhaps something
like this:

 <!-- A SAMPLE copyright -->

This is the standard copyright message that our lawyers
make us put everywhere so we don't have to shell out a
million bucks every time someone spills hot coffee in their
lap...

../examples/xml/samples/slideSample07.xml
../examples/xml/samples/copyright.xml
../examples/xml/samples/copyright.xml
../examples/xml/samples/slideSample07-xml.html
../examples/xml/samples/copyright-xml.html
../examples/xml/samples/copyright-xml.html

GENERATING XML DATA 65
Finally, add the following highlighted text to your slideSample.xml file to ref-
erence the external entity, and save a copy of the file as slideSample07.html:

<!-- TITLE SLIDE -->
...

</slide>

<!-- COPYRIGHT SLIDE -->
<slide type="all">

<item>©right;</item>
</slide>

You could also use an external entity declaration to access a servlet that produces
the current date using a definition something like this:

<!ENTITY currentDate SYSTEM
"http://www.example.com/servlet/Today?fmt=dd-MMM-yyyy">

You would then reference that entity the same as any other entity:

 Today's date is ¤tDate;.

When you echo the latest version of the slide presentation with an XML parser,
here is what you’ll see:

...
<slide type="all">

<item>
This is the standard copyright message that our lawyers
make us put everywhere so we don't have to shell out a
million bucks every time someone spills hot coffee in their
lap...

</item>
</slide>
...

You’ll notice that the newline that follows the comment in the file is echoed as a
character, but that the comment itself is ignored. This newline is the reason that
the copyright message appears to start on the next line after the <item> element
instead of on the same line: the first character echoed is actually the newline that
follows the comment.

66
Summarizing Entities
An entity that is referenced in the document content, whether internal or exter-
nal, is termed a general entity. An entity that contains DTD specifications that
are referenced from within the DTD is termed a parameter entity. (More on that
later.)

An entity that contains XML (text and markup), and is therefore parsed, is
known as a parsed entity. An entity that contains binary data (such as images) is
known as an unparsed entity. (By its nature, it must be external.) In the next sec-
tion, we discuss references to unparsed entities.

Referencing Binary Entities
This section discusses the options for referencing binary files such as image files
and multimedia data files.

Using a MIME Data Type
There are two ways to reference an unparsed entity such as a binary image file.
One is to use the DTD’s NOTATION specification mechanism. However, that
mechanism is a complex, unintuitive holdover that exists mostly for compatibil-
ity with SGML documents.

Note: SGML stands for Standard Generalized Markup Language. It was extremely
powerful but so general that a program had to read the beginning of a document just
to find out how to parse the remainder of it. Some very large document-management
systems were built using it, but it was so large and complex that only the largest
organizations managed to deal with it. XML, on the other hand, chose to remain
small and simple—more like HTML than SGML—and, as a result, it has enjoyed
rapid, widespread deployment. This story may well hold a moral for schema stan-
dards as well. Time will tell.

We will have occasion to discuss the subject in a bit more depth when we look at
the DTDHandler API, but suffice it for now to say that the XML namespaces
standard, in conjunction with the MIME data types defined for electronic mes-
saging attachments, together provide a much more useful, understandable, and
extensible mechanism for referencing unparsed external entities.

GENERATING XML DATA 67
Note: The XML described here is in slideshow1b.dtd. (The browsable version is
slideshow1b-dtd.html.) It shows how binary references can be made, assuming
that the application that will process the XML data knows how to handle such ref-
erences.

To set up the slide show to use image files, add the following highlighted text to
your slideshow1b.dtd file:

<!ELEMENT slide (image?, title, item*)>
<!ATTLIST slide

type (tech | exec | all) #IMPLIED
>
<!ELEMENT title (#PCDATA)>
<!ELEMENT item (#PCDATA | item)* >
<!ELEMENT image EMPTY>
<!ATTLIST image

alt CDATA #IMPLIED
src CDATA #REQUIRED
type CDATA "image/gif"

>

These modifications declare image as an optional element in a slide, define it as
empty element, and define the attributes it requires. The image tag is patterned
after the HTML 4.0 img tag, with the addition of an image type specifier, type.
(The img tag is defined in the HTML 4.0 specification.)

The image tag’s attributes are defined by the ATTLIST entry. The alt attribute,
which defines alternative text to display in case the image can’t be found, accepts
character data (CDATA). It has an implied value, which means that it is optional
and that the program processing the data knows enough to substitute something
such as “Image not found.” On the other hand, the src attribute, which names the
image to display, is required.

The type attribute is intended for the specification of a MIME data type, as
defined at http://www.iana.org/assignments/media-types/. It has a default
value: image/gif.

Note: It is understood here that the character data (CDATA) used for the type attribute
will be one of the MIME data types. The two most common formats are image/gif

and image/jpeg. Given that fact, it might be nice to specify an attribute list here,
using something like

type ("image/gif", "image/jpeg")

../examples/xml/samples/slideshow1b-dtd.html
http://www.iana.org/assignments/media-types
../examples/xml/samples/slideshow1b.dtd

68
That won’t work, however, because attribute lists are restricted to name tokens. The
forward slash isn’t part of the valid set of name-token characters, so this declaration
fails. Also, creating an attribute list in the DTD would limit the valid MIME types
to those defined today. Leaving it as CDATA leaves things more open-ended so that
the declaration will continue to be valid as additional types are defined.

In the document, a reference to an image named “intro-pic” might look some-
thing like this:

<image src="image/intro-pic.gif", alt="Intro Pic",
type="image/gif" />

The Alternative: Using Entity References
Using a MIME data type as an attribute of an element is a flexible and expand-
able mechanism. To create an external ENTITY reference using the notation
mechanism, you need DTD NOTATION elements for JPEG and GIF data. Those
can, of course, be obtained from a central repository. But then you need to define
a different ENTITY element for each image you intend to reference! In other
words, adding a new image to your document always requires both a new entity
definition in the DTD and a reference to it in the document. Given the antici-
pated ubiquity of the HTML 4.0 specification, the newer standard is to use the
MIME data types and a declaration such as image, which assumes that the appli-
cation knows how to process such elements.

Defining Parameter Entities and
Conditional Sections
Just as a general entity lets you reuse XML data in multiple places, a parameter
entity lets you reuse parts of a DTD in multiple places. In this section you’ll see
how to define and use parameter entities. You’ll also see how to use parameter
entities with conditional sections in a DTD.

Creating and Referencing a Parameter Entity
Recall that the existing version of the slide presentation can not be validated
because the document uses tags, and they are not part of the DTD. In gen-
eral, we’d like to use a variety of HTML-style tags in the text of a slide, and not

GENERATING XML DATA 69
just one or two, so using an existing DTD for XHTML makes more sense than
defining such tags ourselves. A parameter entity is intended for exactly that kind
of purpose.

Note: The DTD specifications shown here are contained in slideshow2.dtd and
xhtml.dtd. The XML file that references it is slideSample08.xml. (The browsable
versions are slideshow2-dtd.html, xhtml-dtd.html, and slideSample08-

xml.html.)

Open your DTD file for the slide presentation and add the following highlighted
text to define a parameter entity that references an external DTD file:

<!ELEMENT slide (image?, title?, item*)>
<!ATTLIST slide

...
>

<!ENTITY % xhtml SYSTEM "xhtml.dtd">
%xhtml;

<!ELEMENT title ...

Here, you use an <!ENTITY> tag to define a parameter entity, just as for a general
entity, but you use a somewhat different syntax. You include a percent sign (%)
before the entity name when you define the entity, and you use the percent sign
instead of an ampersand when you reference it.

Also, note that there are always two steps to using a parameter entity. The first is
to define the entity name. The second is to reference the entity name, which actu-
ally does the work of including the external definitions in the current DTD.
Because the uniform resource identifier (URI) for an external entity could con-
tain slashes (/) or other characters that are not valid in an XML name, the defini-
tion step allows a valid XML name to be associated with an actual document.
(This same technique is used in the definition of namespaces and anywhere else
that XML constructs need to reference external documents.)

Notes:

• The DTD file referenced by this definition is xhtml.dtd. (The browsable
version is xhtml-dtd.html.) You can either copy that file to your system or
modify the SYSTEM identifier in the <!ENTITY> tag to point to the correct
URL.

../examples/xml/samples/slideshow2.dtd
../examples/xml/samples/xhtml-dtd.html
../examples/xml/samples/xhtml-dtd.html
../examples/xml/samples/xhtml.dtd
../examples/xml/samples/slideSample08.xml
../examples/xml/samples/slideshow2-dtd.html
../examples/xml/samples/slideSample08-xml.html
../examples/xml/samples/slideSample08-xml.html
../examples/xml/samples/xhtml.dtd

70
• This file is a small subset of the XHTML specification, loosely modeled
after the Modularized XHTML draft, which aims at breaking up the DTD
for XHTML into bite-sized chunks, which can then be combined to create
different XHTML subsets for different purposes. When work on the mod-
ularized XHTML draft has been completed, this version of the DTD
should be replaced with something better. For now, this version will suffice
for our purposes.

The point of using an XHTML-based DTD is to gain access to an entity it
defines that covers HTML-style tags like and . Looking through
xhtml.dtd reveals the following entity, which does exactly what we want:

 <!ENTITY % inline "#PCDATA|em|b|a|img|br">

This entity is a simpler version of those defined in the Modularized XHTML
draft. It defines the HTML-style tags we are most likely to want to use—empha-
sis, bold, and break—plus a couple of others for images and anchors that we may
or may not use in a slide presentation. To use the inline entity, make the follow-
ing highlighted changes in your DTD file:

<!ELEMENT title (#PCDATA %inline;)*>
<!ELEMENT item (#PCDATA %inline; | item)* >

These changes replace the simple #PCDATA item with the inline entity. It is
important to notice that #PCDATA is first in the inline entity and that inline is
first wherever we use it. That sequence is required by XML’s definition of a
mixed-content model. To be in accord with that model, you also must add an
asterisk at the end of the title definition.

Save the DTD as slideshow2.dtd for use when you experiment with parameter
entities.

Note: The Modularized XHTML DTD defines both inline and Inline entities,
and does so somewhat differently. Rather than specify #PCDATA|em|b|a|img|br,
the definitions are more like (#PCDATA|em|b|a|img|br)*. Using one of those def-
initions, therefore, looks more like this:

<!ELEMENT title %Inline; >

GENERATING XML DATA 71
Conditional Sections
Before we proceed with the next programming exercise, it is worth mentioning
the use of parameter entities to control conditional sections. Although you can-
not conditionalize the content of an XML document, you can define conditional
sections in a DTD that become part of the DTD only if you specify include. If
you specify ignore, on the other hand, then the conditional section is not
included.

Suppose, for example, that you wanted to use slightly different versions of a
DTD, depending on whether you were treating the document as an XML docu-
ment or as a SGML document. You can do that with DTD definitions such as the
following:

someExternal.dtd:
<![INCLUDE [

... XML-only definitions
]]>
<![IGNORE [

... SGML-only definitions
]]>
... common definitions

The conditional sections are introduced by <![, followed by the INCLUDE or
IGNORE keyword and another [. After that comes the contents of the conditional
section, followed by the terminator:]]>. In this case, the XML definitions are
included, and the SGML definitions are excluded. That’s fine for XML docu-
ments, but you can’t use the DTD for SGML documents. You could change the
keywords, of course, but that only reverses the problem.

The solution is to use references to parameter entities in place of the INCLUDE

and IGNORE keywords:

someExternal.dtd:
<![%XML; [

... XML-only definitions
]]>
<![%SGML; [

... SGML-only definitions
]]>
... common definitions

72
Then each document that uses the DTD can set up the appropriate entity defini-
tions:

<!DOCTYPE foo SYSTEM "someExternal.dtd" [
<!ENTITY % XML "INCLUDE" >
<!ENTITY % SGML "IGNORE" >

]>
<foo>

...
</foo>

This procedure puts each document in control of the DTD. It also replaces the
INCLUDE and IGNORE keywords with variable names that more accurately reflect
the purpose of the conditional section, producing a more readable, self-docu-
menting version of the DTD.

Resolving a Naming Conflict
The XML structures you have created thus far have actually encountered a small
naming conflict. It seems that xhtml.dtd defines a title element that is entirely
different from the title element defined in the slide-show DTD. Because there
is no hierarchy in the DTD, these two definitions conflict.

Note: The Modularized XHTML DTD also defines a title element that is intended
to be the document title, so we can’t avoid the conflict by changing xhtml.dtd. The
problem would only come back to haunt us later.

You can use XML namespaces to resolve the conflict. You’ll take a look at that
approach in the next section. Alternatively, you can use one of the more hierar-
chical schema proposals described in Schema Standards (page 1390). The sim-
plest way to solve the problem for now is to rename the title element in
slideshow.dtd.

Note: The XML shown here is contained in slideshow3.dtd and
slideSample09.xml, which references copyright.xml and xhtml.dtd. (The
browsable versions are slideshow3-dtd.html, slideSample09-xml.html, copy-

right-xml.html, and xhtml-dtd.html.)

../examples/xml/samples/copyright-xml.html
../examples/xml/samples/copyright-xml.html
../examples/xml/samples/slideshow3.dtd
../examples/xml/samples/slidesample09.xml
../examples/xml/samples/copyright.xml
../examples/xml/samples/xhtml.dtd
../examples/xml/samples/slideshow3-dtd.html
../examples/xml/samples/slideSample09-xml.html
../examples/xml/samples/xhtml-dtd.html

GENERATING XML DATA 73
To keep the two title elements separate, you’ll create a hyphenation hierarchy.
Make the following highlighted changes to change the name of the title ele-
ment in slideshow.dtd to slide-title:

<!ELEMENT slide (image?, slide-title?, item*)>
<!ATTLIST slide

type (tech | exec | all) #IMPLIED
>

<!-- Defines the %inline; declaration -->
<!ENTITY % xhtml SYSTEM "xhtml.dtd">
%xhtml;

<!ELEMENT slide-title (%inline;)*>

Save this DTD as slideshow3.dtd.

The next step is to modify the XML file to use the new element name. To do that,
make the following highlighted changes:

...
<slide type="all">
<slide-title>Wake up to ... </slide-title>
</slide>

...

<!-- OVERVIEW -->
<slide type="all">
<slide-title>Overview</slide-title>
<item>...

Save a copy of this file as slideSample09.xml.

Using Namespaces
As you saw earlier, one way or another it is necessary to resolve the conflict
between the title element defined in slideshow.dtd and the one defined in
xhtml.dtd when the same name is used for different purposes. In the preceding
exercise, you hyphenated the name in order to put it into a different namespace.
In this section, you’ll see how to use the XML namespace standard to do the
same thing without renaming the element.

74
The primary goal of the namespace specification is to let the document author
tell the parser which DTD or schema to use when parsing a given element. The
parser can then consult the appropriate DTD or schema for an element definition.
Of course, it is also important to keep the parser from aborting when a “dupli-
cate” definition is found and yet still generate an error if the document references
an element such as title without qualifying it (identifying the DTD or schema
to use for the definition).

Note: Namespaces apply to attributes as well as to elements. In this section, we con-
sider only elements. For more information on attributes, consult the namespace
specification at http://www.w3.org/TR/REC-xml-names/.

Defining a Namespace in a DTD
In a DTD, you define a namespace that an element belongs to by adding an
attribute to the element’s definition, where the attribute name is xmlns (“xml
namespace”). For example, you can do that in slideshow.dtd by adding an
entry such as the following in the title element’s attribute-list definition:

<!ELEMENT title (%inline;)*>
<!ATTLIST title

xmlns CDATA #FIXED "http://www.example.com/slideshow"
>

Declaring the attribute as FIXED has several important features:

• It prevents the document from specifying any nonmatching value for the
xmlns attribute.

• The element defined in this DTD is made unique (because the parser
understands the xmlns attribute), so it does not conflict with an element
that has the same name in another DTD. That allows multiple DTDs to use
the same element name without generating a parser error.

• When a document specifies the xmlns attribute for a tag, the document
selects the element definition that has a matching attribute.

To be thorough, every element name in your DTD would get exactly the same
attribute, with the same value. (Here, though, we’re concerned only about the
title element.) Note, too, that you are using a CDATA string to supply the URI.
In this case, we’ve specified a URL. But you could also specify a universal
resource name (URN), possibly by specifying a prefix such as urn: instead of

http://www.w3.org/TR/REC-xml/names/

GENERATING XML DATA 75
http:. (URNs are currently being researched. They’re not seeing a lot of action
at the moment, but that could change in the future.)

Referencing a Namespace
When a document uses an element name that exists in only one of the DTDs or
schemas it references, the name does not need to be qualified. But when an ele-
ment name that has multiple definitions is used, some sort of qualification is a
necessity.

Note: In fact, an element name is always qualified by its default namespace, as
defined by the name of the DTD file it resides in. As long as there is only one defi-
nition for the name, the qualification is implicit.

You qualify a reference to an element name by specifying the xmlns attribute, as
shown here:

<title xmlns="http://www.example.com/slideshow">
Overview

</title>

The specified namespace applies to that element and to any elements contained
within it.

Defining a Namespace Prefix
When you need only one namespace reference, it’s not a big deal. But when you
need to make the same reference several times, adding xmlns attributes becomes
unwieldy. It also makes it harder to change the name of the namespace later.

The alternative is to define a namespace prefix, which is as simple as specifying
xmlns, a colon (:), and the prefix name before the attribute value:

<SL:slideshow xmlns:SL='http:/www.example.com/slideshow'
...>

...
</SL:slideshow>

This definition sets up SL as a prefix that can be used to qualify the current ele-
ment name and any element within it. Because the prefix can be used on any of

76
the contained elements, it makes the most sense to define it on the XML docu-
ment’s root element, as shown here.

Note: The namespace URI can contain characters that are not valid in an XML
name, so it cannot be used directly as a prefix. The prefix definition associates an
XML name with the URI, and that allows the prefix name to be used instead. It also
makes it easier to change references to the URI in the future.

When the prefix is used to qualify an element name, the end tag also includes the
prefix, as highlighted here:

<SL:slideshow xmlns:SL='http:/www.example.com/slideshow'
...>

...
<slide>
<SL:title>Overview</SL:title>

</slide>
...

</SL:slideshow>

Finally, note that multiple prefixes can be defined in the same element:

<SL:slideshow xmlns:SL='http:/www.example.com/slideshow'
xmlns:xhtml='urn:...'>

...
</SL:slideshow>

With this kind of arrangement, all the prefix definitions are together in one place,
and you can use them anywhere they are needed in the document. This example
also suggests the use of a URN instead of a URL to define the xhtml prefix. That
definition would conceivably allow the application to reference a local copy of
the XHTML DTD or some mirrored version, with a potentially beneficial impact
on performance.

Designing an XML Data Structure
This section covers some heuristics you can use when making XML design deci-
sions.

DESIGNING AN XML DATA STRUCTURE 77
Saving Yourself Some Work
Whenever possible, use an existing schema definition. It’s usually a lot easier to
ignore the things you don’t need than to design your own from scratch. In addi-
tion, using a standard DTD makes data interchange possible, and may make it
possible to use data-aware tools developed by others.

So if an industry standard exists, consider referencing that DTD by using an
external parameter entity. One place to look for industry-standard DTDs is at the
web site created by the Organization for the Advancement of Structured Infor-
mation Standards (OASIS). You can find a list of technical committees at
http://www.oasis-open.org/ or check its repository of XML standards at
http://www.XML.org.

Note: Many more good thoughts on the design of XML structures are at the OASIS
page http://www.oasis-open.org/cover/elementsAndAttrs.html.

Attributes and Elements
One of the issues you will encounter frequently when designing an XML struc-
ture is whether to model a given data item as a subelement or as an attribute of an
existing element. For example, you can model the title of a slide this way:

<slide>
<title>This is the title</title>

</slide>

Or you can do it this way:

<slide title="This is the title">...</slide>

In some cases, the different characteristics of attributes and elements make it
easy to choose. Let’s consider those cases first and then move on to the cases
where the choice is more ambiguous.

http://www.oasis-open.org/
http://www.XML.org
http://www.oasis-open.org/cover/elementsAndAttrs.html

78
Forced Choices
Sometimes, the choice between an attribute and an element is forced on you by
the nature of attributes and elements. Let’s look at a few of those considerations:

• The data contains substructures: In this case, the data item must be mod-
eled as an element. It can’t be modeled as an attribute, because attributes
take only simple strings. So if the title can contain emphasized text (The
Best Choice) then the title must be an element.

• The data contains multiple lines: Here, it also makes sense to use an ele-
ment. Attributes need to be simple, short strings or else they become
unreadable, if not unusable.

• Multiple occurrences are possible: Whenever an item can occur multiple
times, such as paragraphs in an article, it must be modeled as an element.
The element that contains it can have only one attribute of a particular kind,
but it can have many subelements of the same type.

• The data changes frequently: When the data will be frequently modified
with an editor, it may make sense to model it as an element. Many XML-
aware editors make it easy to modify element data, whereas attributes can
be somewhat harder to get to.

• The data is a small, simple string that rarely if ever changes: This is
data that can be modeled as an attribute. However, just because you can
does not mean that you should. Check the Stylistic Choices section next,
to be sure.

• The data is confined to a small number of fixed choices: If you are using
a DTD, it really makes sense to use an attribute. A DTD can prevent an
attribute from taking on any value that is not in the preapproved list, but it
cannot similarly restrict an element. (With a schema, on the other hand,
both attributes and elements can be restricted, so you could use either ele-
ment or an attribute.)

Stylistic Choices
As often as not, the choices are not as cut-and-dried as those just shown. When
the choice is not forced, you need a sense of “style” to guide your thinking. The
question to answer, then, is what makes good XML style, and why.

Defining a sense of style for XML is, unfortunately, as nebulous a business as
defining style when it comes to art or music. There are, however, a few ways to

DESIGNING AN XML DATA STRUCTURE 79
approach it. The goal of this section is to give you some useful thoughts on the
subject of XML style.

One heuristic for thinking about XML elements and attributes uses the concept
of visibility. If the data is intended to be shown—to be displayed to an end user—
then it should be modeled as an element. On the other hand, if the information
guides XML processing but is never seen by a user, then it may be better to
model it as an attribute. For example, in order-entry data for shoes, shoe size
would definitely be an element. On the other hand, a manufacturer’s code num-
ber would be reasonably modeled as an attribute.

Another way of thinking about the visibility heuristic is to ask, who is the con-
sumer and the provider of the information? The shoe size is entered by a human
sales clerk, so it’s an element. The manufacturer’s code number for a given shoe
model, on the other hand, may be wired into the application or stored in a data-
base, so that would be an attribute. (If it were entered by the clerk, though, it
should perhaps be an element.)

Perhaps the best way of thinking about elements and attributes is to think of an
element as a container. To reason by analogy, the contents of the container
(water or milk) correspond to XML data modeled as elements. Such data is
essentially variable. On the other hand, the characteristics of the container
(whether a blue or a white pitcher) can be modeled as attributes. That kind of
information tends to be more immutable. Good XML style separates each con-
tainer’s contents from its characteristics in a consistent way.

To show these heuristics at work, in our slide-show example the type of the slide
(executive or technical) is best modeled as an attribute. It is a characteristic of the
slide that lets it be selected or rejected for a particular audience. The title of the
slide, on the other hand, is part of its contents. The visibility heuristic is also sat-
isfied here. When the slide is displayed, the title is shown but the type of the
slide isn’t. Finally, in this example, the consumer of the title information is the
presentation audience, whereas the consumer of the type information is the pre-
sentation program.

Normalizing Data
In Saving Yourself Some Work (page 77), you saw that it is a good idea to define
an external entity that you can reference in an XML document. Such an entity
has all the advantages of a modularized routine: changing that one copy affects
every document that references it. The process of eliminating redundancies is

80
known as normalizing, and defining entities is one good way to normalize your
data.

In an HTML file, the only way to achieve that kind of modularity is to use
HTML links, but then the document is fragmented rather than whole. XML enti-
ties, on the other hand, suffer no such fragmentation. The entity reference acts
like a macro: the entity’s contents are expanded in place, producing a whole doc-
ument rather than a fragmented one. And when the entity is defined in an exter-
nal file, multiple documents can reference it.

The considerations for defining an entity reference, then, are pretty much the
same as those you would apply to modularized program code:

• Whenever you find yourself writing the same thing more than once, think
entity. That lets you write it in one place and reference it in multiple places.

• If the information is likely to change, especially if it is used in more than
one place, definitely think in terms of defining an entity. An example is
defining productName as an entity so that you can easily change the docu-
ments when the product name changes.

• If the entity will never be referenced anywhere except in the current file,
define it in the local subset of the document’s DTD, much as you would
define a method or inner class in a program.

• If the entity will be referenced from multiple documents, define it as an
external entity, in the same way that you would define any generally usable
class as an external class.

External entities produce modular XML that is smaller, easier to update, and eas-
ier to maintain. They can also make the resulting document somewhat more dif-
ficult to visualize, much as a good object-oriented design can be easy to change,
after you understand it, but harder to wrap your head around at first.

You can also go overboard with entities. At an extreme, you could make an entity
reference for the word the. It wouldn’t buy you much, but you could do it.

Note: The larger an entity is, the more likely it is that changing it will have the
expected effect. For example, when you define an external entity that covers a whole
section of a document, such as installation instructions, then any changes you make
will likely work out fine wherever that section is used. But small inline substitutions
can be more problematic. For example, if productName is defined as an entity and
if the name changes to a different part of speech, the results can be unfortunate. Sup-
pose the product name is something like HtmlEdit. That’s a verb. So you write a
sentence like, “You can HtmlEdit your file...”, using the productName entity. That
sentence works, because a verb fits in that context. But if the name is eventually

SUMMARY 81
changed to “HtmlEditor”, the sentence becomes “You can HtmlEditor your file...”,
which clearly doesn’t work. Still, even if such simple substitutions can sometimes
get you into trouble, they also have the potential to save a lot of time. (One way to
avoid the problem would be to set up entities named productNoun, productVerb,
productAdj, and productAdverb.)

Normalizing DTDs
Just as you can normalize your XML document, you can also normalize your
DTD declarations by factoring out common pieces and referencing them with a
parameter entity. Factoring out the DTDs (also known as modularizing) gives the
same advantages and disadvantages as normalized XML—easier to change,
somewhat more difficult to follow.

You can also set up conditionalized DTDs. If the number and size of the condi-
tional sections are small relative to the size of the DTD as a whole, conditionaliz-
ing can let you single-source the same DTD for multiple purposes. If the number
of conditional sections gets large, though, the result can be a complex document
that is difficult to edit.

Summary
Congratulations! You have now created a number of XML files that you can use
for testing purposes. Table 2–5 describes the files you have constructed.

Table 2–5 Listing of Sample XML Files

 File Contents

 slideSample01.xml A basic file containing a few elements and attributes as well as
comments.

 slideSample02.xml Includes a processing instruction.

 SlideSampleBad1.xml A file that is not well formed.

 slideSample03.xml Includes a simple entity reference (<).

 slideSample04.xml Contains a CDATA section.

82
 slideSample05.xml References either a simple external DTD for elements
(slideshow1a.dtd) for use with a nonvalidating parser, or
else a DTD that defines attributes (slideshow1b.dtd) for
use with a validating parser.

 slideSample06.xml Defines two entities locally (product and products) and
references slideshow1b.dtd.

 slideSample07.xml References an external entity defined locally (copy-
right.xml) and references slideshow1b.dtd.

 slideSample08.xml References xhtml.dtd using a parameter entity in
slideshow2.dtd, producing a naming conflict because
title is declared in both.

slideSample09.xml Changes the title element to slide-title so that it can
reference xhtml.dtd using a parameter entity in
slideshow3.dtd without conflict.

Table 2–5 Listing of Sample XML Files

 File Contents

3

83
Getting Started with
Web Applications

A web application is a dynamic extension of a web or application server. There
are two types of web applications:

• Presentation-oriented: A presentation-oriented web application generates
interactive web pages containing various types of markup language
(HTML, XML, and so on) and dynamic content in response to requests.
Chapters 11 through 22 cover how to develop presentation-oriented web
applications.

• Service-oriented: A service-oriented web application implements the end-
point of a web service. Presentation-oriented applications are often clients
of service-oriented web applications. Chapters 8 and 9 cover how to
develop service-oriented web applications.

In the Java 2 platform, web components provide the dynamic extension capabili-
ties for a web server. Web components are either Java servlets, JSP pages, or web
service endpoints. The interaction between a web client and a web application is
illustrated in Figure 3–1. The client sends an HTTP request to the web server. A
web server that implements Java Servlet and JavaServer Pages technology con-
verts the request into an HTTPServletRequest object. This object is delivered to
a web component, which can interact with JavaBeans components or a database
to generate dynamic content. The web component can then generate an HTTPS-

ervletResponse or it can pass the request to another web component. Eventu-

84
ally a web component generates a HTTPServletResponse object. The web
server converts this object to an HTTP response and returns it to the client.

Figure 3–1 Java Web Application Request Handling

Servlets are Java programming language classes that dynamically process
requests and construct responses. JSP pages are text-based documents that exe-
cute as servlets but allow a more natural approach to creating static content.
Although servlets and JSP pages can be used interchangeably, each has its own
strengths. Servlets are best suited for service-oriented applications (web service
endpoints are implemented as servlets) and the control functions of a presenta-
tion-oriented application, such as dispatching requests and handling nontextual
data. JSP pages are more appropriate for generating text-based markup such as
HTML, Scalable Vector Graphics (SVG), Wireless Markup Language (WML),
and XML.

Since the introduction of Java Servlet and JSP technology, additional Java tech-
nologies and frameworks for building interactive web applications have been

85
developed. These technologies and their relationships are illustrated in Figure 3–
2.

Figure 3–2 Java Web Application Technologies

Notice that Java Servlet technology is the foundation of all the web application
technologies, so you should familiarize yourself with the material in Chapter 11
even if you do not intend to write servlets. Each technology adds a level of
abstraction that makes web application prototyping and development faster and
the web applications themselves more maintainable, scalable, and robust.

Web components are supported by the services of a runtime platform called a
web container. A web container provides services such as request dispatching,
security, concurrency, and life-cycle management. It also gives web components
access to APIs such as naming, transactions, and email.

Certain aspects of web application behavior can be configured when the applica-
tion is installed, or deployed, to the web container. The configuration informa-
tion is maintained in a text file in XML format called a web application
deployment descriptor (DD). A DD must conform to the schema described in the
Java Servlet Specification.

Most web applications use the HTTP protocol, and support for HTTP is a major
aspect of web components. For a brief summary of HTTP protocol features see
Appendix C.

This chapter gives a brief overview of the activities involved in developing web
applications. First we summarize the web application life cycle. Then we
describe how to package and deploy very simple web applications on the Appli-
cation Server. We move on to configuring web applications and discuss how to
specify the most commonly used configuration parameters. We then introduce an
example—Duke’s Bookstore—that we use to illustrate all the J2EE web-tier

http://java.sun.com/products/servlet/download.html#specs

86
technologies and we describe how to set up the shared components of this exam-
ple. Finally we discuss how to access databases from web applications and set up
the database resources needed to run Duke’s Bookstore.

Web Application Life Cycle
A web application consists of web components, static resource files such as
images, and helper classes and libraries. The web container provides many sup-
porting services that enhance the capabilities of web components and make them
easier to develop. However, because a web application must take these services
into account, the process for creating and running a web application is different
from that of traditional stand-alone Java classes. The process for creating,
deploying, and executing a web application can be summarized as follows:

1. Develop the web component code.

2. Develop the web application deployment descriptor.

3. Compile the web application components and helper classes referenced by
the components.

4. Optionally package the application into a deployable unit.

5. Deploy the application into a web container.

6. Access a URL that references the web application.

Developing web component code is covered in the later chapters. Steps 2
through 4 are expanded on in the following sections and illustrated with a Hello,
World-style presentation-oriented application. This application allows a user to

WEB APPLICATION LIFE CYCLE 87
enter a name into an HTML form (Figure 3–3) and then displays a greeting after
the name is submitted (Figure 3–4).

Figure 3–3 Greeting Form

Figure 3–4 Response

88
The Hello application contains two web components that generate the greeting
and the response. This chapter discusses two versions of the application: a JSP
version called hello1, in which the components are implemented by two JSP
pages (index.jsp and response.jsp) and a servlet version called hello2, in
which the components are implemented by two servlet classes (GreetingServ-
let.java and ResponseServlet.java). The two versions are used to illustrate
tasks involved in packaging, deploying, configuring, and running an application
that contains web components. The section About the Examples (page xxxvi)
explains how to get the code for these examples. After you install the tutorial
bundle, the source code for the examples is in <INSTALL>/j2eetutorial14/

examples/web/hello1/ and <INSTALL>/j2eetutorial14/examples/web/

hello2/.

Web Modules
In the J2EE architecture, web components and static web content files such as
images are called web resources. A web module is the smallest deployable and
usable unit of web resources. A J2EE web module corresponds to a web applica-
tion as defined in the Java Servlet specification.

In addition to web components and web resources, a web module can contain
other files:

• Server-side utility classes (database beans, shopping carts, and so on).
Often these classes conform to the JavaBeans component architecture.

• Client-side classes (applets and utility classes).

A web module has a specific structure. The top-level directory of a web module
is the document root of the application. The document root is where JSP pages,
client-side classes and archives, and static web resources, such as images, are
stored.

The document root contains a subdirectory named /WEB-INF/, which contains
the following files and directories:

• web.xml: The web application deployment descriptor

• Tag library descriptor files (see Tag Library Descriptors, page 602)

• classes: A directory that contains server-side classes: servlets, utility
classes, and JavaBeans components

• tags: A directory that contains tag files, which are implementations of tag
libraries (see Tag File Location, page 588)

../examples/web/hello1/web/index.txt
../examples/web/hello1/web/response.txt
../examples/web/hello2/src/servlets/GreetingServlet.java
../examples/web/hello2/src/servlets/GreetingServlet.java
../examples/web/hello2/src/servlets/ResponseServlet.java

WEB MODULES 89
• lib: A directory that contains JAR archives of libraries called by server-
side classes

You can also create application-specific subdirectories (that is, package directo-
ries) in either the document root or the /WEB-INF/classes/ directory.

A web module can be deployed as an unpacked file structure or can be packaged
in a JAR file known as a web archive (WAR) file. Because the contents and use
of WAR files differ from those of JAR files, WAR file names use a .war exten-
sion. The web module just described is portable; you can deploy it into any web
container that conforms to the Java Servlet Specification.

To deploy a WAR on the Application Server, the file must also contain a runtime
deployment descriptor. The runtime deployment descriptor is an XML file that
contains information such as the context root of the web application and the
mapping of the portable names of an application’s resources to the Application
Server’s resources. The Application Server web application runtime DD is
named sun-web.xml and is located in /WEB-INF/ along with the web application
DD. The structure of a web module that can be deployed on the Application
Server is shown in Figure 3–5.

90
Figure 3–5 Web Module Structure

Packaging Web Modules
A web module must be packaged into a WAR in certain deployment scenarios
and whenever you want to distribute the web module. You package a web mod-
ule into a WAR using the Application Server deploytool utility, by executing
the jar command in a directory laid out in the format of a web module, or by
using the asant utility. This tutorial allows you to use use either the first or the
third approach. To build the hello1 application, follow these steps:

1. In a terminal window, go to <INSTALL>/j2eetutorial14/examples/

web/hello1/.

2. Run asant build. This target will spawn any necessary compilations and
will copy files to the <INSTALL>/j2eetutorial14/examples/web/

hello1/build/ directory.

WEB MODULES 91
To package the application into a WAR named hello1.war using asant, use the
following command:

asant create-war

This command uses web.xml and sun-web.xml files in the <INSTALL>/

j2eetutorial14/examples/web/hello1 directory.

To learn how to configure this web application, package the application using
deploytool by following these steps:

1. Start deploytool.

2. Create a web application called hello1 by running the New Web Compo-
nent wizard. Select File→New→Web Component.

3. In the New Web Component wizard:

a. Select the Create New Stand-Alone WAR Module radio button.

b. In the WAR File field, enter <INSTALL>/j2eetutorial14/examples/
web/hello1/hello1.war. The WAR Display Name field will show
hello1.

c. In the Context Root field, enter /hello1.

d. Click Edit Contents to add the content files.

e. In the Edit Contents dialog box, navigate to <INSTALL>/

j2eetutorial14/examples/web/hello1/build/. Select duke.wav-

ing.gif, index.jsp, and response.jsp and click Add. Click OK.

f. Click Next.

g. Select the No Component radio button and click Next.

h. Click Finish.

4. Select File→Save.

A sample hello1.war is provided in <INSTALL>/j2eetutorial14/examples/

web/provided-wars/. To open this WAR with deploytool, follow these steps:

1. Select File→Open.

2. Navigate to the provided-wars directory.

3. Select the WAR.

4. Click Open Module.

92
Deploying Web Modules
You can deploy a web module to the Application Server in several ways:

• By pointing the Application Server at an unpackaged web module direc-
tory structure using asadmin or the Admin Console.

• By packaging the web module and

• Copying the WAR into the <J2EE_HOME>/domains/domain1/autode-

ploy/ directory.

• Using the Admin Console, asadmin, asant, or deploytool to deploy
the WAR.

All these methods are described briefly in this chapter; however, throughout the
tutorial, we use deploytool or asant for packaging and deploying.

Setting the Context Root
A context root identifies a web application in a J2EE server. You specify the con-
text root when you deploy a web module. A context root must start with a for-
ward slash (/) and end with a string.

In a packaged web module for deployment on the Application Server, the context
root is stored in sun-web.xml. If you package the web application with deploy-

tool, then sun-web.xml is created automatically.

Deploying an Unpackaged Web Module
It is possible to deploy a web module without packaging it into a WAR. The
advantage of this approach is that you do not need to rebuild the package every
time you update a file contained in the web module. In addition, the Application
Server automatically detects updates to JSP pages, so you don’t even have to
redeploy the web module when they change.

However, to deploy an unpackaged web module, you must create the web mod-
ule directory structure and provide the web application deployment descriptor
web.xml. Because this tutorial uses deploytool for generating deployment

WEB MODULES 93
descriptors, it does not document how to develop descriptors from scratch. You
can view the structure of deployment descriptors in three ways:

• In deploytool, select Tools→Descriptor Viewer→Descriptor Viewer to
view web.xml and Tools→Descriptor Viewer→Application Server
Descriptor to view sun-web.xml.

• Use a text editor to view the web.xml and sun-web.xml files in the exam-
ple directories.

• Unpackage one of the WARs in <INSTALL>/j2eetutorial14/examples/

web/provided-wars/ and extract the descriptors.

Since you explicitly specify the context root when you deploy an unpackaged
web module, usually it is not necessary to provide sun-web.xml.

Deploying with the Admin Console
1. Expand the Applications node.

2. Select the Web Applications node.

3. Click the Deploy button.

4. Select the No radio button next to Upload File.

5. Type the full path to the web module directory in the File or Directory
field. Although the GUI gives you the choice to browse to the directory,
this option applies only to deploying a packaged WAR.

6. Click Next.

7. Type the application name.

8. Type the context root.

9. Select the Enabled box.

10.Click the OK button.

Deploying with asadmin
To deploy an unpackaged web module with asadmin, open a terminal window or
command prompt and execute

asadmin deploydir full-path-to-web-module-directory

94
The build task for the hello1 application creates a build directory (including
web.xml) in the structure of a web module. To deploy hello1 using asadmin

deploydir, execute:

asadmin deploydir --contextroot /hello1
<INSTALL>/j2eetutorial14/examples/web/hello1/build

After you deploy the hello1 application, you can run the web application by
pointing a browser at

http://localhost:8080/hello1

You should see the greeting form depicted earlier in Figure 3–3.

A web module is executed when a web browser references a URL that contains
the web module’s context root. Because no web component appears in http://

localhost:8080/hello1/, the web container executes the default component,
index.jsp. The section Mapping URLs to Web Components (page 99)
describes how to specify web components in a URL.

Deploying a Packaged Web Module
If you have deployed the hello1 application, before proceeding with this sec-
tion, undeploy the application by following one of the procedures described in
Undeploying Web Modules (page 98).

Deploying with deploytool
To deploy the hello1 web module with deploytool:

1. Select the hello1 WAR you created in Packaging Web Modules (page 90).

2. Select Tools→Deploy.

3. Click OK.

You can use one of the following methods to deploy the WAR you packaged with
deploytool, or one of the WARs contained in <INSTALL>/j2eetutorial14/

examples/web/provided-wars/.

Deploying with the Admin Console
1. Expand the Applications node.

2. Select the Web Applications node.

WEB MODULES 95
3. Click the Deploy button.

4. Select the No radio button next to Upload File.

5. Type the full path to the WAR file (or click on Browse to find it), and then
click the OK button.

6. Click Next.

7. Type the application name.

8. Type the context root.

9. Select the Enabled box.

10.Click the OK button.

Deploying with asadmin
To deploy a WAR with asadmin, open a terminal window or command prompt
and execute

asadmin deploy full-path-to-war-file

Deploying with asant
To deploy a WAR with asant, open a terminal window or command prompt in
the directory where you built and packaged the WAR, and execute

asant deploy-war

Listing Deployed Web Modules
The Application Server provides three ways to view the deployed web modules:

• deploytool

a. Select localhost:4848 from the Servers list.

b. View the Deployed Objects list in the General tab.

• Admin Console

a. Open the URL http://localhost:4848/asadmin in a browser.

b. Expand the nodes Applications→Web Applications.

• asadmin

a. Execute

asadmin list-components

96
Updating Web Modules
A typical iterative development cycle involves deploying a web module and then
making changes to the application components. To update a deployed web mod-
ule, you must do the following:

1. Recompile any modified classes.

2. If you have deployed a packaged web module, update any modified com-
ponents in the WAR.

3. Redeploy the module.

4. Reload the URL in the client.

Updating an Unpackaged Web Module
To update an unpackaged web module using either of the methods discussed in
Deploying an Unpackaged Web Module (page 92), reexecute the deploydir

operation. If you have changed only JSP pages in the web module directory, you
do not have to redeploy; simply reload the URL in the client.

Updating a Packaged Web Module
This section describes how to update the hello1 web module that you packaged
with deploytool.

First, change the greeting in the file <INSTALL>/j2eetutorial14/examples/

web/hello1/web/index.jsp to

<h2>Hi, my name is Duke. What's yours?</h2>

Run asant build to copy the modified JSP page into the build directory. To
update the web module using deploytool follow these steps:

1. Select the hello1 WAR.

2. Select Tools→Update Module Files. A popup dialog box will display the
modified file. Click OK.

3. Select Tools→Deploy. A popup dialog box will query whether you want to
redeploy. Click Yes.

4. Click OK.

To view the modified module, reload the URL in the browser.

WEB MODULES 97
You should see the screen in Figure 3–6 in the browser.

Figure 3–6 New Greeting

Dynamic Reloading
If dynamic reloading is enabled, you do not have to redeploy an application or
module when you change its code or deployment descriptors. All you have to do
is copy the changed JSP or class files into the deployment directory for the appli-
cation or module. The deployment directory for a web module named
context_root is <J2EE_HOME>/domains/domain1/applications/j2ee-mod-

ules/context_root. The server checks for changes periodically and redeploys
the application, automatically and dynamically, with the changes.

This capability is useful in a development environment, because it allows code
changes to be tested quickly. Dynamic reloading is not recommended for a pro-
duction environment, however, because it may degrade performance. In addition,
whenever a reload is done, the sessions at that time become invalid and the client
must restart the session.

To enable dynamic reloading, use the Admin Console:

1. Select the Applications Server node.

2. Select the Advanced tab.

98
3. Check the Reload Enabled box to enable dynamic reloading.

4. Enter a number of seconds in the Reload Poll Interval field to set the inter-
val at which applications and modules are checked for code changes and
dynamically reloaded.

5. Click the Save button.

In addition, to load new servlet files or reload deployment descriptor changes,
you must do the following:

1. Create an empty file named .reload at the root of the module:
<J2EE_HOME>/domains/domain1/applications/j2ee-modules/
context_root/.reload

2. Explicitly update the .reload file’s time stamp each time you make these
changes. On UNIX, execute

touch .reload

For JSP pages, changes are reloaded automatically at a frequency set in the
Reload Pool Interval. To disable dynamic reloading of JSP pages, set the reload-
interval property to -1.

Undeploying Web Modules
You can undeploy web modules in four ways:

• deploytool

a. Select localhost:4848 from the Servers list.

b. Select the web module in the Deployed Objects list of the General tab.

c. Click the Undeploy button.

• Admin Console

a. Open the URL http://localhost:4848/asadmin in a browser.

b. Expand the Applications node.

c. Select Web Applications.

d. Click the checkbox next to the module you wish to undeploy.

e. Click the Undeploy button.

• asadmin

a. Execute
asadmin undeploy context_root

CONFIGURING WEB APPLICATIONS 99
• asant

a. In the directory where you built and packaged the WAR, execute
asant undeploy-war

Configuring Web Applications
Web applications are configured via elements contained in the web application
deployment descriptor. The deploytool utility generates the descriptor when
you create a WAR and adds elements when you create web components and
associated classes. You can modify the elements via the inspectors associated
with the WAR.

The following sections give a brief introduction to the web application features
you will usually want to configure. A number of security parameters can be
specified; these are covered in Web-Tier Security (page 1125).

In the following sections, examples demonstrate procedures for configuring the
Hello, World application. If Hello, World does not use a specific configuration
feature, the section gives references to other examples that illustrate how to spec-
ify the deployment descriptor element and describes generic procedures for
specifying the feature using deploytool. Extended examples that demonstrate
how to use deploytool appear in later tutorial chapters.

Mapping URLs to Web Components
When a request is received by the web container it must determine which web
component should handle the request. It does so by mapping the URL path con-
tained in the request to a web application and a web component. A URL path
contains the context root and an alias:

http://host:port/context_root/alias

Setting the Component Alias
The alias identifies the web component that should handle a request. The alias
path must start with a forward slash (/) and end with a string or a wildcard
expression with an extension (for example, *.jsp). Since web containers auto-
matically map an alias that ends with *.jsp, you do not have to specify an alias
for a JSP page unless you wish to refer to the page by a name other than its file

100
name. To set up the mappings for the servlet version of the hello application
with deploytool, first package it, as described in the following steps.

1. In a terminal window, go to <INSTALL>/j2eetutorial14/examples/

web/hello2/.

2. Run asant build. This target will compile the servlets to the <INSTALL>/

j2eetutorial14/examples/web/hello2/build/ directory.

To package and deploy the example using asant, follow these steps:

1. Run asant create-bookstore-war.

2. Run asant deploy-war.

To learn how to configure the example, use deploytool to package and deploy
it:

1. Start deploytool.

2. Create a web application called hello2 by running the New Web Compo-
nent wizard. Select File→New→Web Component.

3. In the New Web Component wizard:

a. Select the Create New Stand-Alone WAR Module radio button.

b. In the WAR File field, enter <INSTALL>/j2eetutorial14/examples/
web/hello2/hello2.war. The WAR Display Name field will show
hello2.

c. In the Context Root field, enter /hello2.

d. Click Edit Contents to add the content files.

e. In the Edit Contents dialog box, navigate to <INSTALL>/

j2eetutorial14/examples/web/hello2/build/. Select duke.wav-

ing.gif and the servlets package and click Add. Click OK.

f. Click Next.

g. Select the Servlet radio button and click Next.

h. Select GreetingServlet from the Servlet Class combo box.

i. Click Finish.

4. Select File→New→Web Component.

a. Click the Add to Existing WAR Module radio button and select hello2
from the combo box. Because the WAR contains all the servlet classes,
you do not have to add any more content.

b. Click Next.

c. Select the Servlet radio button and click Next.

CONFIGURING WEB APPLICATIONS 101
d. Select ResponseServlet from the Servlet Class combo box and click
Finish.

Then, to set the aliases, follow these steps:

1. Select the GreetingServlet web component.

2. Select the Aliases tab.

3. Click Add to add a new mapping.

4. Type /greeting in the aliases list.

5. Select the ResponseServlet web component.

6. Click Add.

7. Type /response in the aliases list.

8. Select File→Save.

To run the application, first deploy the web module, and then open the URL
http://localhost:8080/hello2/greeting in a browser.

Declaring Welcome Files
The welcome files mechanism allows you to specify a list of files that the web
container will use for appending to a request for a URL (called a valid partial
request) that is not mapped to a web component.

For example, suppose you define a welcome file welcome.html. When a client
requests a URL such as host:port/webapp/directory, where directory is not
mapped to a servlet or JSP page, the file host:port/webapp/directory/wel-

come.html is returned to the client.

If a web container receives a valid partial request, the web container examines
the welcome file list and appends to the partial request each welcome file in the
order specified and checks whether a static resource or servlet in the WAR is
mapped to that request URL. The web container then sends the request to the
first resource in the WAR that matches.

If no welcome file is specified, the Application Server will use a file named
index.XXX, where XXX can be html or jsp, as the default welcome file. If there is
no welcome file and no file named index.XXX, the Application Server returns a
directory listing.

To specify welcome files with deploytool, follow these steps:

1. Select the WAR.

102
2. Select the File Ref’s tab in the WAR inspector.

3. Click Add File in the Welcome Files pane.

4. Select the welcome file from the drop-down list.

The example discussed in Encapsulating Reusable Content Using Tag
Files (page 586) has a welcome file.

Setting Initialization Parameters
The web components in a web module share an object that represents their appli-
cation context (see Accessing the Web Context, page 473). You can pass initial-
ization parameters to the context or to a web component.

To add a context parameter with deploytool, follow these steps:

1. Select the WAR.

2. Select the Context tab in the WAR inspector.

3. Click Add.

For a sample context parameter, see the example discussed in The Example JSP
Pages (page 486).

To add a web component initialization parameter with deploytool, follow these
steps:

1. Select the web component.

2. Select the Init. Parameters tab in the web component inspector.

3. Click Add.

Mapping Errors to Error Screens
When an error occurs during execution of a web application, you can have the
application display a specific error screen according to the type of error. In par-
ticular, you can specify a mapping between the status code returned in an HTTP
response or a Java programming language exception returned by any web com-
ponent (see Handling Errors, page 452) and any type of error screen. To set up
error mappings with deploytool:

1. Select the WAR.

2. Select the File Ref’s tab in the WAR inspector.

3. Click Add Error in the Error Mapping pane.

DUKE’S BOOKSTORE EXAMPLES 103
4. Enter the HTTP status code (see HTTP Responses, page 1398) or the fully
qualified class name of an exception in the Error/Exception field.

5. Enter the name of a web resource to be invoked when the status code or
exception is returned. The name should have a leading forward slash (/).

Note: You can also define error screens for a JSP page contained in a WAR. If error
screens are defined for both the WAR and a JSP page, the JSP page’s error page
takes precedence. See Handling Errors (page 495).

For a sample error page mapping, see the example discussed in The Example
Servlets (page 444).

Declaring Resource References
If your web component uses objects such as databases and enterprise beans, you
must declare the references in the web application deployment descriptor. For a
sample resource reference, see Specifying a Web Application’s Resource
Reference (page 106). For a sample enterprise bean reference, see Specifying the
Web Client’s Enterprise Bean Reference (page 892).

Duke’s Bookstore Examples
In Chapters 11 through 22 a common example—Duke’s Bookstore—is used to
illustrate the elements of Java Servlet technology, JavaServer Pages technology,
the JSP Standard Tag Library, and JavaServer Faces technology. The example
emulates a simple online shopping application. It provides a book catalog from
which users can select books and add them to a shopping cart. Users can view
and modify the shopping cart. When users are finished shopping, they can pur-
chase the books in the cart.

The Duke’s Bookstore examples share common classes and a database schema.
These files are located in the directory <INSTALL>/j2eetutorial14/examples/

web/bookstore/. The common classes are packaged into a JAR. To create the
bookstore library JAR, follow these steps:

1. Make sure you have set up your environment properly, as described in
About the Examples (page xxxvi).

104
2. In a terminal window, go to <INSTALL>/j2eetutorial14/examples/

web/bookstore/.

3. Run asant build to compile the bookstore files.

4. Run asant package-bookstore to create a library named bookstore.jar

in <INSTALL>/j2eetutorial14/examples/bookstore/dist/.

The next section describes how to create the bookstore database tables and
resources required to run the examples.

Accessing Databases from Web
Applications

Data that is shared between web components and is persistent between invoca-
tions of a web application is usually maintained in a database. Web applications
use the JDBC API to access relational databases. For information on this API,
see

http://java.sun.com/docs/books/tutorial/jdbc

In the JDBC API, databases are accessed via DataSource objects. A Data-

Source has a set of properties that identify and describe the real world data
source that it represents. These properties include information such as the loca-
tion of the database server, the name of the database, the network protocol to use
to communicate with the server, and so on.

Web applications access a data source using a connection, and a DataSource

object can be thought of as a factory for connections to the particular data source
that the DataSource instance represents. In a basic DataSource implementation,
a call to the getConnection method returns a connection object that is a physical
connection to the data source. In the Application Server, a data source is referred
to as a JDBC resource. See DataSource Objects and Connection
Pools (page 1109) for further information about data sources in the Application
Server.

If a DataSource object is registered with a JNDI naming service, an application
can use the JNDI API to access that DataSource object, which can then be used
to connect to the data source it represents.

To maintain the catalog of books, the Duke’s Bookstore examples described in
Chapters 11 through 22 use the Derby open source database included with the
Application Server.

http://java.sun.com/docs/books/tutorial/jdbc

ACCESSING DATABASES FROM WEB APPLICATIONS 105
This section describes how to

• Populate the database with bookstore data

• Create a data source in the Application Server

• Specify a web application’s resource reference

• Map the resource reference to the data source defined in the Application
Server

Populating the Example Database

Note: Application Server 8.2 includes a copy of the open source Derby data-
base server. Application Server 8.0/ 8.1 includes the PointBase database server. If
you are using Application Server 8.0/8.1, either follow the instructions in the J2EE
Tutorial at http://java.sun.com/j2ee/1.4/docs/tutorial-update6/
doc/index.html that works with Application Server 8.0/8.1 or upgrade to Appli-
cation Server 8.2 (see http://java.sun.com/j2ee/1.4/down-
load.html#appserv to download).

To populate the database for the Duke’s Bookstore examples, follow these steps:

1. Start the Application Server, if it has not been started.

2. In a terminal window, go to <INSTALL>/j2eetutorial14/examples/

web/bookstore/.

3. Run asant create-db_common. This task starts the database, if it has not
been started, and executes the SQL commands contained in the books.sql
file.

4. At the end of the processing, you should see the following output:

...
[sql] Executing file:
 <j2eetutorial.home>\examples\web\bookstore\books.sql
[sql] 8 of 8 SQL statements executed successfully

http://java.sun.com/j2ee/1.4/docs/tutorial-update6/doc/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial-update6/doc/index.html
http://java.sun.com/j2ee/1.4/download.html#appserv
http://java.sun.com/j2ee/1.4/download.html#appserv

106
Creating a Data Source in the
Application Server
Data sources in the Application Server implement connection pooling. To define
the Duke’s Bookstore data source, you use the installed Derby connection pool
named DerbyPool.

You create the data source using the Application Server Admin Console, follow-
ing this procedure:

1. Expand the JDBC node.

2. Select the JDBC Resources node.

3. Click the New... button.

4. Type jdbc/BookDB in the JNDI Name field.

5. Choose DerbyPool for the Pool Name.

6. Click OK.

Specifying a Web Application’s
Resource Reference
To access a database from a web application, you must declare a resource refer-
ence in the application’s web application deployment descriptor (see Declaring
Resource References, page 103). The resource reference specifies a JNDI name,
the type of the data resource, and the kind of authentication used when the
resource is accessed. To specify a resource reference for a Duke’s Bookstore
example using deploytool, follow these steps:

1. Select the WAR (created in Chapters 11 through 22).

2. Select the Resource Ref’s tab.

3. Click Add.

4. Type jdbc/BookDB in the Coded Name field.

5. Accept the default type javax.sql.DataSource.

6. Accept the default authorization Container.

7. Accept the default Sharable selected.

ACCESSING DATABASES FROM WEB APPLICATIONS 107
To create the connection to the database, the data access object data-

base.BookDBAO looks up the JNDI name of the bookstore data source object:

public BookDBAO () throws Exception {
try {

Context initCtx = new InitialContext();
Context envCtx = (Context)

initCtx.lookup("java:comp/env");
DataSource ds = (DataSource) envCtx.lookup("jdbc/BookDB");
con = ds.getConnection();
System.out.println("Created connection to database.");

} catch (Exception ex) {
System.out.println("Couldn't create connection." +

ex.getMessage());
throw new

Exception("Couldn't open connection to database: "
+ ex.getMessage());

}

Mapping the Resource Reference to a
Data Source
Both the web application resource reference and the data source defined in the
Application Server have JNDI names. See JNDI Naming (page 1107) for a dis-
cussion of the benefits of using JNDI naming for resources.

To connect the resource reference to the data source, you must map the JNDI
name of the former to the latter. This mapping is stored in the web application
runtime deployment descriptor. To create this mapping using deploytool, fol-
low these steps:

1. Select localhost:4848 in the Servers list to retrieve the data sources defined
in the Application Server.

2. Select the WAR in the Web WARs list.

3. Select the Resource Ref’s tab.

4. Select the Resource Reference Name, jdbc/BookDB, defined in the previ-
ous section.

5. In the Sun-specific Settings frame, select jdbc/BookDB from the JNDI
Name drop-down list.

108
Further Information
For more information about web applications, refer to the following:

• Java Servlet specification:
http://java.sun.com/products/servlet/download.html#specs

• The Java Servlet web site:
http://java.sun.com/products/servlet

http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/servlet

4

109
Java API for XML
Processing

THE Java API for XML Processing (JAXP) is for processing XML data using
applications written in the Java programming language. JAXP leverages the
parser standards Simple API for XML Parsing (SAX) and Document Object
Model (DOM) so that you can choose to parse your data as a stream of events or
to build an object representation of it. JAXP also supports the Extensible
Stylesheet Language Transformations (XSLT) standard, giving you control over
the presentation of the data and enabling you to convert the data to other XML
documents or to other formats, such as HTML. JAXP also provides namespace
support, allowing you to work with DTDs that might otherwise have naming
conflicts.

Designed to be flexible, JAXP allows you to use any XML-compliant parser
from within your application. It does this with what is called a pluggability layer,
which lets you plug in an implementation of the SAX or DOM API. The plugga-
bility layer also allows you to plug in an XSL processor, letting you control how
your XML data is displayed.

The JAXP APIs
The main JAXP APIs are defined in the javax.xml.parsers package. That
package contains vendor-neutral factory classes—SAXParserFactory, Docu-

110
mentBuilderFactory, and TransformerFactory—which give you a SAX-

Parser, a DocumentBuilder, and an XSLT transformer, respectively.
DocumentBuilder, in turn, creates a DOM-compliant Document object.

The factory APIs let you plug in an XML implementation offered by another
vendor without changing your source code. The implementation you get depends
on the setting of the javax.xml.parsers.SAXParserFactory,
javax.xml.parsers.DocumentBuilderFactory, and javax.xml.trans-

form.TransformerFactory system properties, using System.setProper-

ties() in the code, <sysproperty key="..." value="..."/> in an Ant build
script, or -DpropertyName="..." on the command line. The default values
(unless overridden at runtime on the command line or in the code) point to Sun’s
implementation.

Note: When you’re using J2SE platform version 1.4, it is also necessary to use the
endorsed standards mechanism, rather than the classpath, to make the implementa-
tion classes available to the application. This procedure is described in detail in
Compiling and Running the Program (page 134).

Now let’s look at how the various JAXP APIs work when you write an applica-
tion.

An Overview of the Packages
The SAX and DOM APIs are defined by the XML-DEV group and by the W3C,
respectively. The libraries that define those APIs are as follows:

• javax.xml.parsers: The JAXP APIs, which provide a common interface
for different vendors’ SAX and DOM parsers

• org.w3c.dom: Defines the Document class (a DOM) as well as classes for
all the components of a DOM

• org.xml.sax: Defines the basic SAX APIs

• javax.xml.transform: Defines the XSLT APIs that let you transform
XML into other forms

The Simple API for XML (SAX) is the event-driven, serial-access mechanism
that does element-by-element processing. The API for this level reads and writes
XML to a data repository or the web. For server-side and high-performance
applications, you will want to fully understand this level. But for many applica-
tions, a minimal understanding will suffice.

THE SIMPLE API FOR XML APIS 111
The DOM API is generally an easier API to use. It provides a familiar tree struc-
ture of objects. You can use the DOM API to manipulate the hierarchy of appli-
cation objects it encapsulates. The DOM API is ideal for interactive applications
because the entire object model is present in memory, where it can be accessed
and manipulated by the user.

On the other hand, constructing the DOM requires reading the entire XML struc-
ture and holding the object tree in memory, so it is much more CPU- and mem-
ory-intensive. For that reason, the SAX API tends to be preferred for server-side
applications and data filters that do not require an in-memory representation of
the data.

Finally, the XSLT APIs defined in javax.xml.transform let you write XML
data to a file or convert it into other forms. And, as you’ll see in the XSLT sec-
tion of this tutorial, you can even use it in conjunction with the SAX APIs to
convert legacy data to XML.

The Simple API for XML APIs
The basic outline of the SAX parsing APIs are shown in Figure 4–1. To start the
process, an instance of the SAXParserFactory class is used to generate an
instance of the parser.

112
Figure 4–1 SAX APIs

The parser wraps a SAXReader object. When the parser’s parse() method is
invoked, the reader invokes one of several callback methods implemented in the
application. Those methods are defined by the interfaces ContentHandler,
ErrorHandler, DTDHandler, and EntityResolver.

Here is a summary of the key SAX APIs:

SAXParserFactory

A SAXParserFactory object creates an instance of the parser determined by
the system property, javax.xml.parsers.SAXParserFactory.

SAXParser
The SAXParser interface defines several kinds of parse() methods. In gen-
eral, you pass an XML data source and a DefaultHandler object to the
parser, which processes the XML and invokes the appropriate methods in the
handler object.

SAXReader
The SAXParser wraps a SAXReader. Typically, you don’t care about that, but
every once in a while you need to get hold of it using SAXParser’s getXML-
Reader() so that you can configure it. It is the SAXReader that carries on the
conversation with the SAX event handlers you define.

THE SIMPLE API FOR XML APIS 113
DefaultHandler
Not shown in the diagram, a DefaultHandler implements the Con-

tentHandler, ErrorHandler, DTDHandler, and EntityResolver interfaces
(with null methods), so you can override only the ones you’re interested in.

ContentHandler
Methods such as startDocument, endDocument, startElement, and
endElement are invoked when an XML tag is recognized. This interface also
defines the methods characters and processingInstruction, which are
invoked when the parser encounters the text in an XML element or an inline
processing instruction, respectively.

ErrorHandler
Methods error, fatalError, and warning are invoked in response to vari-
ous parsing errors. The default error handler throws an exception for fatal
errors and ignores other errors (including validation errors). That’s one rea-
son you need to know something about the SAX parser, even if you are using
the DOM. Sometimes, the application may be able to recover from a valida-
tion error. Other times, it may need to generate an exception. To ensure the
correct handling, you’ll need to supply your own error handler to the parser.

DTDHandler
Defines methods you will generally never be called upon to use. Used when
processing a DTD to recognize and act on declarations for an unparsed
entity.

EntityResolver
The resolveEntity method is invoked when the parser must identify data
identified by a URI. In most cases, a URI is simply a URL, which specifies
the location of a document, but in some cases the document may be identi-
fied by a URN—a public identifier, or name, that is unique in the web space.
The public identifier may be specified in addition to the URL. The Entity-

Resolver can then use the public identifier instead of the URL to find the
document—for example, to access a local copy of the document if one
exists.

A typical application implements most of the ContentHandler methods, at a
minimum. Because the default implementations of the interfaces ignore all
inputs except for fatal errors, a robust implementation may also want to imple-
ment the ErrorHandler methods.

114
The SAX Packages
The SAX parser is defined in the packages listed in Table 4–1.

The Document Object Model APIs
Figure 4–2 shows the DOM APIs in action.

Table 4–1 SAX Packages

Package Description

 org.xml.sax
Defines the SAX interfaces. The name org.xml is the pack-
age prefix that was settled on by the group that defined the
SAX API.

 org.xml.sax.ext
Defines SAX extensions that are used for doing more sophisti-
cated SAX processing—for example, to process a document
type definition (DTD) or to see the detailed syntax for a file.

 org.xml.sax.helpers

Contains helper classes that make it easier to use SAX—for
example, by defining a default handler that has null methods
for all the interfaces, so that you only need to override the
ones you actually want to implement.

 javax.xml.parsers
Defines the SAXParserFactory class, which returns the
SAXParser. Also defines exception classes for reporting
errors.

THE DOCUMENT OBJECT MODEL APIS 115
Figure 4–2 DOM APIs

You use the javax.xml.parsers.DocumentBuilderFactory class to get a Doc-

umentBuilder instance, and you use that instance to produce a Document object
that conforms to the DOM specification. The builder you get, in fact, is deter-
mined by the system property javax.xml.parsers.DocumentBuilderFactory,
which selects the factory implementation that is used to produce the builder.
(The platform’s default value can be overridden from the command line.)

You can also use the DocumentBuilder newDocument() method to create an
empty Document that implements the org.w3c.dom.Document interface. Alter-
natively, you can use one of the builder’s parse methods to create a Document

from existing XML data. The result is a DOM tree like that shown in Figure 4–2.

Note: Although they are called objects, the entries in the DOM tree are actually
fairly low-level data structures. For example, consider this structure:
<color>blue</color>. There is an element node for the color tag, and under that
there is a text node that contains the data, blue! This issue will be explored at length
in the DOM section of the tutorial, but developers who are expecting objects are
usually surprised to find that invoking getNodeValue() on the element node returns
nothing! For a truly object-oriented tree, see the JDOM API at
http://www.jdom.org.

http://www.jdom.org

116
The DOM Packages
The Document Object Model implementation is defined in the packages listed in
Table 4–2.

Table 4–2 DOM Packages

Package Description

 org.w3c.dom
Defines the DOM programming interfaces for XML (and, option-
ally, HTML) documents, as specified by the W3C.

javax.xml.parsers

Defines the DocumentBuilderFactory class and the Docu-
mentBuilder class, which returns an object that implements the
W3C Document interface. The factory that is used to create the
builder is determined by the javax.xml.parsers system prop-
erty, which can be set from the command line or overridden when
invoking the new Instance method. This package also defines
the ParserConfigurationException class for reporting
errors.

THE EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATIONS APIS 117
The Extensible Stylesheet Language
Transformations APIs

Figure 4–3 shows the XSLT APIs in action.

Figure 4–3 XSLT APIs

A TransformerFactory object is instantiated and used to create a Transformer.
The source object is the input to the transformation process. A source object can
be created from a SAX reader, from a DOM, or from an input stream.

Similarly, the result object is the result of the transformation process. That object
can be a SAX event handler, a DOM, or an output stream.

When the transformer is created, it can be created from a set of transformation
instructions, in which case the specified transformations are carried out. If it is
created without any specific instructions, then the transformer object simply cop-
ies the source to the result.

118
The XSLT Packages
The XSLT APIs are defined in the packages shown in Table 4–3.

Using the JAXP Libraries
In the Application Server, the JAXP libraries are distributed in the directory
<J2EE_HOME>/lib/endorsed. To run the sample programs, you use the Java 2
platform’s endorsed standards mechanism to access those libraries. For details,
see Compiling and Running the Program (page 134).

Where Do You Go from Here?
At this point, you have enough information to begin picking your own way
through the JAXP libraries. Your next step depends on what you want to accom-
plish. You might want to go to any of these chapters:

Table 4–3 XSLT Packages

Package Description

javax.xml.transform

Defines the TransformerFactory and
Transformer classes, which you use to get
an object capable of doing transformations.
After creating a transformer object, you
invoke its transform() method, providing it
with an input (source) and output (result).

javax.xml.transform.dom
Classes to create input (source) and output
(result) objects from a DOM.

javax.xml.transform.sax
Classes to create input (source) objects from a
SAX parser and output (result) objects from a
SAX event handler.

javax.xml.transform.stream
Classes to create input (source) objects and
output (result) objects from an I/O stream.

WHERE DO YOU GO FROM HERE? 119
Chapter 5
If the data structures have already been determined, and you are writing a
server application or an XML filter that needs to do fast processing.

Chapter 6
If you need to build an object tree from XML data so you can manipulate it
in an application, or convert an in-memory tree of objects to XML.

Chapter 7
If you need to transform XML tags into some other form, if you want to gen-
erate XML output, or (in combination with the SAX API) if you want to
convert legacy data structures to XML.

120

5

121
Simple API for XML

IN this chapter we focus on the Simple API for XML (SAX), an event-driven,
serial-access mechanism for accessing XML documents. This protocol is fre-
quently used by servlets and network-oriented programs that need to transmit
and receive XML documents, because it’s the fastest and least memory-intensive
mechanism that is currently available for dealing with XML documents, other
than StAX.

Note: In a nutshell, SAX is oriented towards state independent processing, where
the handling of an element does not depend on the elements that came before. StAX,
on the other hand, is oriented towards state dependent processing. For a more
detailed comparison, see SAX and StAX in Basic Standards (page 1386) and When
to Use SAX (page 122).

Setting up a program to use SAX requires a bit more work than setting up to use
the Document Object Model (DOM). SAX is an event-driven model (you pro-
vide the callback methods, and the parser invokes them as it reads the XML
data), and that makes it harder to visualize. Finally, you can’t “back up” to an
earlier part of the document, or rearrange it, any more than you can back up a
serial data stream or rearrange characters you have read from that stream.

For those reasons, developers who are writing a user-oriented application that
displays an XML document and possibly modifies it will want to use the DOM
mechanism described in Chapter 6.

122
However, even if you plan to build DOM applications exclusively, there are sev-
eral important reasons for familiarizing yourself with the SAX model:

• Same Error Handling: The same kinds of exceptions are generated by the
SAX and DOM APIs, so the error handling code is virtually identical.

• Handling Validation Errors: By default, the specifications require that
validation errors (which you’ll learn more about in this part of the tutorial)
are ignored. If you want to throw an exception in the event of a validation
error (and you probably do), then you need to understand how SAX error
handling works.

• Converting Existing Data: As you’ll see in Chapter 6, there is a mecha-
nism you can use to convert an existing data set to XML. However, taking
advantage of that mechanism requires an understanding of the SAX model.

Note: The XML files used in this chapter can be found in
<INSTALL>/j2eetutorial14/examples/xml/samples/.
The programs and output listings can be found in
<INSTALL>/j2eetutorial14/examples/jaxp/sax/samples/.

When to Use SAX
It is helpful to understand the SAX event model when you want to convert exist-
ing data to XML. As you’ll see in Generating XML from an Arbitrary Data
Structure (page 272), the key to the conversion process is to modify an existing
application to deliver SAX events as it reads the data.

SAX is fast and efficient, but its event model makes it most useful for such state-
independent filtering. For example, a SAX parser calls one method in your appli-
cation when an element tag is encountered and calls a different method when text
is found. If the processing you’re doing is state-independent (meaning that it
does not depend on the elements have come before), then SAX works fine.

On the other hand, for state-dependent processing, where the program needs to
do one thing with the data under element A but something different with the data
under element B, then a pull parser such as the Streaming API for XML (StAX)
would be a better choice. With a pull parser, you get the next node, whatever it
happens to be, at any point in the code that you ask for it. So it’s easy to vary the
way you process text (for example), because you can process it multiple places
in the program. (For more detail, see Further Information, page 179.)

ECHOING AN XML FILE WITH THE SAX PARSER 123
SAX requires much less memory than DOM, because SAX does not construct an
internal representation (tree structure) of the XML data, as a DOM does. Instead,
SAX simply sends data to the application as it is read; your application can then
do whatever it wants to do with the data it sees.

Pull parsers and the SAX API both act like a serial I/O stream. You see the data
as it streams in, but you can’t go back to an earlier position or leap ahead to a dif-
ferent position. In general, such parsers work well when you simply want to read
data and have the application act on it.

But when you need to modify an XML structure—especially when you need to
modify it interactively—an in-memory structure makes more sense. DOM is one
such model. However, although DOM provides many powerful capabilities for
large-scale documents (like books and articles), it also requires a lot of complex
coding. The details of that process are highlighted in When to Use
DOM (page 182).

For simpler applications, that complexity may well be unnecessary. For faster
development and simpler applications, one of the object-oriented XML-pro-
gramming standards, such as JDOM and dom4j (page 1387), may make more
sense.

Echoing an XML File with the SAX
Parser

In real life, you will have little need to echo an XML file with a SAX parser.
Usually, you’ll want to process the data in some way in order to do something
useful with it. (If you want to echo it, it’s easier to build a DOM tree and use that
for output.) But echoing an XML structure is a great way to see the SAX parser
in action, and it can be useful for debugging.

In this exercise, you’ll echo SAX parser events to System.out. Consider it the
“Hello World” version of an XML-processing program. It shows you how to use
the SAX parser to get at the data and then echoes it to show you what you have.

Note: The code discussed in this section is in Echo01.java. The file it operates on
is slideSample01.xml, as described in Writing a Simple XML File (page 43). (The
browsable version is slideSample01-xml.html.)

../examples/jaxp/sax/samples/Echo01.java
../examples/xml/samples/slideSample01.xml
../examples/xml/samples/slideSample01-xml.html

124
Creating the Skeleton
Start by creating a file named Echo.java and enter the skeleton for the applica-
tion:

public class Echo
{

public static void main(String argv[])
{

}

}

Because you’ll run it standalone, you need a main method. And you need com-
mand-line arguments so that you can tell the application which file to echo.

Importing Classes
Next, add the import statements for the classes the application will use:

import java.io.*;
import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;
import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;

public class Echo
{

...

The classes in java.io, of course, are needed to do output. The org.xml.sax

package defines all the interfaces we use for the SAX parser. The SAX-

ParserFactory class creates the instance we use. It throws a ParserConfigu-

rationException if it cannot produce a parser that matches the specified
configuration of options. (Later, you’ll see more about the configuration
options.) The SAXParser is what the factory returns for parsing, and the
DefaultHandler defines the class that will handle the SAX events that the
parser generates.

ECHOING AN XML FILE WITH THE SAX PARSER 125
Setting Up for I/O
The first order of business is to process the command-line argument, get the
name of the file to echo, and set up the output stream. Add the following high-
lighted text to take care of those tasks and do a bit of additional housekeeping:

public static void main(String argv[])

{
if (argv.length != 1) {

System.err.println("Usage: cmd filename");
System.exit(1);

}
try {

// Set up output stream
out = new OutputStreamWriter(System.out, "UTF8");

}
catch (Throwable t) {

t.printStackTrace();
}
System.exit(0);

}

static private Writer out;

When we create the output stream writer, we are selecting the UTF-8 character
encoding. We could also have chosen US-ASCII or UTF-16, which the Java plat-
form also supports. For more information on these character sets, see Java
Encoding Schemes (page 1383).

Implementing the ContentHandler
Interface
The most important interface for our current purposes is ContentHandler. This
interface requires a number of methods that the SAX parser invokes in response
to various parsing events. The major event-handling methods are: startDocu-
ment, endDocument, startElement, endElement, and characters.

The easiest way to implement this interface is to extend the DefaultHandler

class, defined in the org.xml.sax.helpers package. That class provides do-

126
nothing methods for all the ContentHandler events. Enter the following high-
lighted code to extend that class:

public class Echo extends DefaultHandler
{

...
}

Note: DefaultHandler also defines do-nothing methods for the other major events,
defined in the DTDHandler, EntityResolver, and ErrorHandler interfaces. You’ll
learn more about those methods as we go along.

Each of these methods is required by the interface to throw a SAXException. An
exception thrown here is sent back to the parser, which sends it on to the code
that invoked the parser. In the current program, this sequence means that it winds
up back at the Throwable exception handler at the bottom of the main method.

When a start tag or end tag is encountered, the name of the tag is passed as a
String to the startElement or the endElement method, as appropriate. When a
start tag is encountered, any attributes it defines are also passed in an
Attributes list. Characters found within the element are passed as an array of
characters, along with the number of characters (length) and an offset into the
array that points to the first character.

ECHOING AN XML FILE WITH THE SAX PARSER 127
Setting up the Parser
Now (at last) you’re ready to set up the parser. Add the following highlighted
code to set it up and get it started:

public static void main(String argv[])
{

if (argv.length != 1) {
System.err.println("Usage: cmd filename");
System.exit(1);

}

// Use an instance of ourselves as the SAX event handler
DefaultHandler handler = new Echo();

// Use the default (non-validating) parser
SAXParserFactory factory = SAXParserFactory.newInstance();
try {

// Set up output stream
out = new OutputStreamWriter(System.out, "UTF8");

// Parse the input
SAXParser saxParser = factory.newSAXParser();
saxParser.parse(new File(argv[0]), handler);

} catch (Throwable t) {
t.printStackTrace();

}
System.exit(0);

}

With these lines of code, you create a SAXParserFactory instance, as deter-
mined by the setting of the javax.xml.parsers.SAXParserFactory system
property. You then get a parser from the factory and give the parser an instance
of this class to handle the parsing events, telling it which input file to process.

Note: The javax.xml.parsers.SAXParser class is a wrapper that defines a number
of convenience methods. It wraps the (somewhat less friendly)
org.xml.sax.Parser object. If needed, you can obtain that parser using the SAX-

Parser’s getParser() method.

For now, you are simply catching any exception that the parser might throw.
You’ll learn more about error processing in a later section of this chapter, Han-
dling Errors with the Nonvalidating Parser (page 145).

128
Writing the Output
The ContentHandler methods throw SAXExceptions but not IOExceptions,
which can occur while writing. The SAXException can wrap another exception,
though, so it makes sense to do the output in a method that takes care of the
exception-handling details. Add the following highlighted code to define an
emit method that does that:

static private Writer out;

private void emit(String s)
throws SAXException
{

try {
out.write(s);
out.flush();

} catch (IOException e) {
throw new SAXException("I/O error", e);

}
}
...

When emit is called, any I/O error is wrapped in SAXException along with a
message that identifies it. That exception is then thrown back to the SAX parser.
You’ll learn more about SAX exceptions later. For now, keep in mind that emit
is a small method that handles the string output. (You’ll see it called often in later
code.)

Spacing the Output
Here is another bit of infrastructure we need before doing some real processing.
Add the following highlighted code to define an nl() method that writes the
kind of line-ending character used by the current system:

private void emit(String s)
...

}

private void nl()
throws SAXException
{

String lineEnd = System.getProperty("line.separator");
try {

ECHOING AN XML FILE WITH THE SAX PARSER 129
out.write(lineEnd);
} catch (IOException e) {

throw new SAXException("I/O error", e);
}

}

Note: Although it seems like a bit of a nuisance, you will be invoking nl() many
times in later code. Defining it now will simplify the code later on. It also provides
a place to indent the output when we get to that section of the tutorial.

Handling Content Events
Finally, let’s write some code that actually processes the ContentHandler

events.

Document Events
Add the following highlighted code to handle the start-document and end-docu-
ment events:

static private Writer out;

public void startDocument()
throws SAXException
{

emit("<?xml version='1.0' encoding='UTF-8'?>");
nl();

}

public void endDocument()
throws SAXException
{

try {
nl();
out.flush();

} catch (IOException e) {
throw new SAXException("I/O error", e);

}
}

private void echoText()
...

130
Here, you are echoing an XML declaration when the parser encounters the start
of the document. Because you set up OutputStreamWriter using UTF-8 encod-
ing, you include that specification as part of the declaration.

Note: However, the IO classes don’t understand the hyphenated encoding names,
so you specified UTF8 for the OutputStreamWriter rather than UTF-8.

At the end of the document, you simply put out a final newline and flush the out-
put stream. Not much going on there.

Element Events
Now for the interesting stuff. Add the following highlighted code to process the
start-element and end-element events:

public void startElement(String namespaceURI,
String sName, // simple name
String qName, // qualified name
Attributes attrs)

throws SAXException
{

String eName = sName; // element name
if ("".equals(eName)) eName = qName; // not namespace-aware
emit("<"+eName);
if (attrs != null) {

for (int i = 0; i < attrs.getLength(); i++) {
String aName = attrs.getLocalName(i); // Attr name
if ("".equals(aName)) aName = attrs.getQName(i);
emit(" ");
emit(aName+"=\""+attrs.getValue(i)+"\"");

}
}
emit(">");

}

public void endElement(String namespaceURI,
String sName, // simple name
String qName // qualified name
)

throws SAXException
{

ECHOING AN XML FILE WITH THE SAX PARSER 131
String eName = sName; // element name
if ("".equals(eName)) eName = qName; // not namespace-aware
emit("</"+eName+">");

}

private void emit(String s)
...

With this code, you echo the element tags, including any attributes defined in the
start tag. Note that when the startElement() method is invoked, if namespace
processing is not enabled, then the simple name (local name) for elements and
attributes could turn out to be the empty string. The code handles that case by
using the qualified name whenever the simple name is the empty string.

Character Events
To finish handling the content events, you need to handle the characters that the
parser delivers to your application.

Parsers are not required to return any particular number of characters at one time.
A parser can return anything from a single character at a time up to several thou-
sand and still be a standard-conforming implementation. So if your application
needs to process the characters it sees, it is wise to accumulate the characters in a
buffer and operate on them only when you are sure that all of them have been
found.

Add the following highlighted line to define the text buffer:

public class Echo01 extends DefaultHandler
{

StringBuffer textBuffer;

public static void main(String argv[])
{

...

132
Then add the following highlighted code to accumulate the characters the parser
delivers in the buffer:

public void endElement(...)
throws SAXException
{

...
}

public void characters(char buf[], int offset, int len)
throws SAXException
{

String s = new String(buf, offset, len);
if (textBuffer == null) {

textBuffer = new StringBuffer(s);
} else {

textBuffer.append(s);
}

}

private void emit(String s)
...

Next, add the following highlighted method to send the contents of the buffer to
the output stream.

public void characters(char buf[], int offset, int len)
throws SAXException
{

...
}

private void echoText()
throws SAXException
{

if (textBuffer == null) return;
String s = ""+textBuffer;
emit(s);
textBuffer = null;

}

private void emit(String s)
...

ECHOING AN XML FILE WITH THE SAX PARSER 133
When this method is called twice in a row (which will happen at times, as you’ll
see next), the buffer will be null. In that case, the method simply returns. When
the buffer is not null, however, its contents are sent to the output stream.

Finally, add the following highlighted code to echo the contents of the buffer
whenever an element starts or ends:

public void startElement(...)
throws SAXException
{

echoText();
String eName = sName; // element name
...

}

public void endElement(...)
throws SAXException
{

echoText();
String eName = sName; // element name
...

}

You’re finished accumulating text when an element ends, of course. So you echo
it at that point, and that action clears the buffer before the next element starts.

But you also want to echo the accumulated text when an element starts! That’s
necessary for document-style data, which can contain XML elements that are
intermixed with text. For example, consider this document fragment:

<para>This paragraph contains <bold>important</bold>
ideas.</para>

The initial text, This paragraph contains, is terminated by the start of the
<bold> element. The text important is terminated by the end tag, </bold>, and
the final text, ideas., is terminated by the end tag, </para>.

Note: Most of the time, though, the accumulated text will be echoed when an
endElement() event occurs. When a startElement() event occurs after that, the
buffer will be empty. The first line in the echoText() method checks for that case,
and simply returns.

Congratulations! At this point you have written a complete SAX parser applica-
tion. The next step is to compile and run it.

134
Note: To be strictly accurate, the character handler should scan the buffer for
ampersand characters (&);and left-angle bracket characters (<) and replace them
with the strings & or <, as appropriate. You’ll find out more about that kind
of processing when we discuss entity references in Displaying Special Characters
and CDATA (page 153).

Compiling and Running the Program
In the Application Server, the JAXP libraries are in the directory
<J2EE_HOME>/lib/endorsed. These are newer versions of the standard JAXP
libraries than those that are part of the Java 2 platform, Standard Edition versions
1.4.x.

The Application Server automatically uses the newer libraries when a program
runs. So you don’t have to be concerned with where they reside when you deploy
an application. And because the JAXP APIs are identical in both versions, you
don’t need to be concerned at compile time either. So compiling the program you
created is as simple as issuing this command:

javac Echo.java

But to run the program outside the server container, you must be sure that the
java runtime finds the newer versions of the JAXP libraries. That situation can
occur, for example, when you’re unit-testing parts of your application outside of
server, as well as here, when you’re running the XML tutorial examples.

There are two ways to make sure that the program uses the latest version of the
JAXP libraries:

• Copy the <J2EE_HOME>/lib/endorsed directory to
<J2EE_HOME>/jdk/jre/lib/endorsed (if you are using the Java 2 SDK
that comes with the Application Server) or
<JAVA_HOME>/jre/lib/endorsed (if you are using a version of the Java 2
SDK that you have installed separately) You can then run the program with
this command:

<J2SE SDK installation>/bin/java Echo slideSample.xml

The libraries will then be found in the endorsed standards directory.

• Use the endorsed directories system property to specify the location of the
libraries, by specifying this option on the java command line:

ECHOING AN XML FILE WITH THE SAX PARSER 135
-D"java.endorsed.dirs=<J2EE_HOME>/lib/endorsed"

or
-D"java.endorsed.dirs=<JAVA_HOME>/jre/lib/endorsed

Note: Because the JAXP APIs are already built into the Java 2 platform, Standard
Edition, they don’t need to be specified at compile time. However, when the JAXP
factories instantiate an implementation, the endorsed directories mechanism is
employed to make sure that the desired implementation is instantiated.

Checking the Output
Here is part of the program’s output, showing some of its weird spacing:

...
<slideshow title="Sample Slide Show" date="Date of publication"
author="Yours Truly">

<slide type="all">
<title>Wake up to WonderWidgets!</title>

</slide>
...

Note: The program’s output is contained in Echo01-01.txt. (The browsable ver-
sion is Echo01-01.html.)

When we look at this output, a number of questions arise. Where is the excess
vertical whitespace coming from? And why are the elements indented properly,
when the code isn’t doing it? We’ll answer those questions in a moment. First,
though, there are a few points to note about the output:

• The comment defined at the top of the file
 <!-- A SAMPLE set of slides -->

does not appear in the listing. Comments are ignored unless you imple-
ment a LexicalHandler. You’ll see more on that subject later in this tuto-
rial.

• Element attributes are listed all together on a single line. If your window
isn’t really wide, you won’t see them all.

../examples/jaxp/sax/samples/Echo01-01.txt
../examples/jaxp/sax/samples/Echo01-01.html

136
• The single-tag empty element you defined (<item/>) is treated exactly the
same as a two-tag empty element (<item></item>). It is, for all intents and
purposes, identical. (It’s just easier to type and consumes less space.)

Identifying the Events
This version of the echo program might be useful for displaying an XML file,
but it doesn’t tell you much about what’s going on in the parser. The next step is
to modify the program so that you see where the spaces and vertical lines are
coming from.

Note: The code discussed in this section is in Echo02.java. The output it produces
is shown in Echo02-01.txt. (The browsable version is Echo02-01.html.)

 Make the following highlighted changes to identify the events as they occur:

public void startDocument()
throws SAXException
{

nl();
nl();
emit("START DOCUMENT");
nl();
emit("<?xml version='1.0' encoding='UTF-8'?>");
nl();

}

public void endDocument()
throws SAXException
{

nl();
emit("END DOCUMENT");
try {
...

}

public void startElement(...)
throws SAXException
{

echoText();
nl();
emit("ELEMENT: ");
String eName = sName; // element name

../examples/jaxp/sax/samples/Echo02.java
../examples/jaxp/sax/samples/Echo02-01.txt
../examples/jaxp/sax/samples/Echo02-01.html

ECHOING AN XML FILE WITH THE SAX PARSER 137
if ("".equals(eName)) eName = qName; // not namespac-aware
emit("<"+eName);
if (attrs != null) {

for (int i = 0; i < attrs.getLength(); i++) {
String aName = attrs.getLocalName(i); // Attr name
if ("".equals(aName)) aName = attrs.getQName(i);
emit(" ");
emit(aName+"=\""+attrs.getValue(i)+"\"");
nl();
emit(" ATTR: ");
emit(aName);
emit("\t\"");
emit(attrs.getValue(i));
emit("\"");

}
}
if (attrs.getLength() > 0) nl();
emit(">");

}

public void endElement(...)
throws SAXException
{

echoText();
nl();
emit("END_ELM: ");
String eName = sName; // element name
if ("".equals(eName)) eName = qName; // not namespace-aware
emit("<"+eName+">");

}

...

private void echoText()
throws SAXException
{

if (textBuffer == null) return;
nl();
emit("CHARS: |");
String s = ""+textBuffer;
emit(s);
emit("|");
textBuffer = null;

}

Compile and run this version of the program to produce a more informative out-
put listing. The attributes are now shown one per line, and that is nice. But, more

138
importantly, output lines such as the following show that both the indentation
space and the newlines that separate the attributes come from the data that the
parser passes to the characters() method.

 CHARS: |

|

Note: The XML specification requires all input line separators to be normalized to
a single newline. The newline character is specified as in Java, C, and UNIX sys-
tems, but goes by the alias “linefeed” in Windows systems.

Compressing the Output
To make the output more readable, modify the program so that it outputs only
characters whose values are something other than whitespace.

Note: The code discussed in this section is in Echo03.java.

Make the following changes to suppress output of characters that are all
whitespace:

public void echoText()
throws SAXException
{

nl();
emit("CHARS: |");
emit("CHARS: ");
String s = ""+textBuffer;
if (!s.trim().equals("")) emit(s);
emit("|");

}

Next, add the following highlighted code to echo each set of characters delivered
by the parser:

public void characters(char buf[], int offset, int len)
throws SAXException
{

if (textBuffer != null) {
echoText();

../examples/jaxp/sax/samples/Echo03.java

ECHOING AN XML FILE WITH THE SAX PARSER 139
textBuffer = null;
}
String s = new String(buf, offset, len);
...

}

If you run the program now, you will see that you have also eliminated the inden-
tation, because the indent space is part of the whitespace that precedes the start
of an element. Add the following highlighted code to manage the indentation:

static private Writer out;

private String indentString = " "; // Amount to indent
private int indentLevel = 0;

...

public void startElement(...)
throws SAXException
{

indentLevel++;
nl();
emit("ELEMENT: ");
...

}

public void endElement(...)
throws SAXException
{

nl();
emit("END_ELM: ");
emit("</"+sName+">");
indentLevel--;

}
...
private void nl()
throws SAXException
{

...
try {

out.write(lineEnd);
for (int i=0; i < indentLevel; i++)

out.write(indentString);
} catch (IOException e) {
...

}

140
This code sets up an indent string, keeps track of the current indent level, and
outputs the indent string whenever the nl method is called. If you set the indent
string to "", the output will not be indented. (Try it. You’ll see why it’s worth the
work to add the indentation.)

You’ll be happy to know that you have reached the end of the “mechanical” code
in the Echo program. From this point on, you’ll be doing things that give you
more insight into how the parser works. The steps you’ve taken so far, though,
have given you a lot of insight into how the parser sees the XML data it pro-
cesses. You have also gained a helpful debugging tool that you can use to see
what the parser sees.

Inspecting the Output
Here is part of the output from this version of the program:

ELEMENT: <slideshow
...
>
CHARS:
CHARS:

ELEMENT: <slide
...
END_ELM: </slide>

CHARS:
CHARS:

Note: The complete output is Echo03-01.txt. (The browsable version is
Echo03-01.html.)

Note that the characters method is invoked twice in a row. Inspecting the
source file slideSample01.xml shows that there is a comment before the first
slide. The first call to characters comes before that comment. The second call
comes after. (Later, you’ll see how to be notified when the parser encounters a
comment, although in most cases you won’t need such notifications.)

Note, too, that the characters method is invoked after the first slide element, as
well as before. When you are thinking in terms of hierarchically structured data,
that seems odd. After all, you intended for the slideshow element to contain
slide elements and not text. Later, you’ll see how to restrict the slideshow ele-
ment by using a DTD. When you do that, the characters method will no longer
be invoked.

../examples/xml/samples/slideSample01.xml
../examples/jaxp/sax/samples/Echo03-01.txt
../examples/jaxp/sax/samples/Echo03-01.html

ADDING ADDITIONAL EVENT HANDLERS 141
In the absence of a DTD, though, the parser must assume that any element it sees
contains text such as that in the first item element of the overview slide:

<item>Why WonderWidgets are great</item>

Here, the hierarchical structure looks like this:

ELEMENT: <item>
CHARS: Why

ELEMENT:
CHARS: WonderWidgets
END_ELM:

CHARS: are great
END_ELM: </item>

Documents and Data
In this example, it’s clear that there are characters intermixed with the hierarchi-
cal structure of the elements. The fact that text can surround elements (or be pre-
vented from doing so with a DTD or schema) helps to explain why you
sometimes hear talk about “XML data” and other times hear about “XML docu-
ments.” XML comfortably handles both structured data and text documents that
include markup. The only difference between the two is whether or not text is
allowed between the elements.

Note: In a later section of this tutorial, you will work with the ignorable-

Whitespace method in the ContentHandler interface. This method can be invoked
only when a DTD is present. If a DTD specifies that slideshow does not contain
text, then all the whitespace surrounding the slide elements is by definition ignor-
able. On the other hand, if slideshow can contain text (which must be assumed to
be true in the absence of a DTD), then the parser must assume that spaces and lines
it sees between the slide elements are significant parts of the document.

Adding Additional Event Handlers
In addition to ignorableWhitespace, there are two other ContentHandler

methods that can find uses in even simple applications: setDocumentLocator
and processingInstruction. In this section, you’ll implement those two event
handlers.

142
Identifying the Document’s Location
A locator is an object that contains the information necessary to find a docu-
ment. The Locator class encapsulates a system ID (URL) or a public identifier
(URN) or both. You would need that information if you wanted to find some-
thing relative to the current document—in the same way, for example, that an
HTML browser processes an href="anotherFile" attribute in an anchor tag.
The browser uses the location of the current document to find anotherFile.

You could also use the locator to print good diagnostic messages. In addition to
the document’s location and public identifier, the locator contains methods that
give the column and line number of the most recently processed event. The set-

DocumentLocator method, however, is called only once: at the beginning of the
parse. To get the current line or column number, you would save the locator
when setDocumentLocator is invoked and then use it in the other event-han-
dling methods.

Note: The code discussed in this section is in Echo04.java. Its output is in Echo04-

01.txt. (The browsable version is Echo04-01.html.)

Start by removing the extra character-echoing code you added for the last exam-
ple:

public void characters(char buf[], int offset, int len)
throws SAXException
{

if (textBuffer != null) {
echoText();
textBuffer = null;

}
String s = new String(buf, offset, len);
...

}

../examples/jaxp/sax/samples/Echo04.java
../examples/jaxp/sax/samples/Echo04-01.txt
../examples/jaxp/sax/samples/Echo04-01.txt
../examples/jaxp/sax/samples/Echo04-01.html

ADDING ADDITIONAL EVENT HANDLERS 143
Next, add the following highlighted method to the Echo program to get the docu-
ment locator and use it to echo the document’s system ID.

...
private String indentString = " "; // Amount to indent
private int indentLevel = 0;

public void setDocumentLocator(Locator l)
{

try {
out.write("LOCATOR");
out.write("SYS ID: " + l.getSystemId());
out.flush();

} catch (IOException e) {
// Ignore errors

}
}

public void startDocument()
...

Notes:

• This method, in contrast to every other ContentHandler method, does not
return a SAXException. So rather than use emit for output, this code writes
directly to System.out. (This method is generally expected to simply save
the Locator for later use rather than do the kind of processing that gener-
ates an exception, as here.)

• The spelling of these methods is Id, not ID. So you have getSystemId and
getPublicId.

When you compile and run the program on slideSample01.xml, here is the sig-
nificant part of the output:

LOCATOR
SYS ID: file:<path>/../samples/slideSample01.xml

START DOCUMENT
<?xml version='1.0' encoding='UTF-8'?>
...

Here, it is apparent that setDocumentLocator is called before startDocument.
That can make a difference if you do any initialization in the event-handling
code.

144
Handling Processing Instructions
It sometimes makes sense to code application-specific processing instructions in
the XML data. In this exercise, you’ll modify the Echo program to display a pro-
cessing instruction contained in slideSample02.xml.

Note: The code discussed in this section is in Echo05.java. The file it operates on
is slideSample02.xml, as described in Writing Processing Instructions (page 48). The
output is in Echo05-02.txt. (The browsable versions are slideSample02-

xml.html and Echo05-02.html.)

As you saw in Writing Processing Instructions (page 48), the format for a pro-
cessing instruction is <?target data?>, where target is the application that is
expected to do the processing, and data is the instruction or information for it to
process. The sample file slideSample02.xml contains a processing instruction
for a mythical slide presentation program that queries the user to find out which
slides to display (technical, executive-level, or all):

<slideshow
...
>

<!-- PROCESSING INSTRUCTION -->
<?my.presentation.Program QUERY="exec, tech, all"?>

<!-- TITLE SLIDE -->

../examples/jaxp/sax/samples/Echo05.java
../examples/xml/samples/slideSample02.xml
../examples/jaxp/sax/samples/Echo05-02.txt
../examples/xml/samples/slideSample02-xml.html
../examples/xml/samples/slideSample02-xml.html
../examples/jaxp/sax/samples/Echo05-02.html

HANDLING ERRORS WITH THE NONVALIDATING PARSER 145
To display that processing instruction, add the following highlighted code to the
Echo application:

public void characters(char buf[], int offset, int len)
...
}

public void processingInstruction(String target, String data)
throws SAXException
{

nl();
emit("PROCESS: ");
emit("<?"+target+" "+data+"?>");

}

private void echoText()
...

When your edits are complete, compile and run the program. The relevant part of
the output should look like this:

ELEMENT: <slideshow
...

>
PROCESS: <?my.presentation.Program QUERY="exec, tech, all"?>
CHARS:
...

Summary
With the minor exception of ignorableWhitespace, you have used most of the
ContentHandler methods that you need to handle the most commonly useful
SAX events. You’ll see ignorableWhitespace a little later. Next, though, you’ll
get deeper insight into how you handle errors in the SAX parsing process.

Handling Errors with the Nonvalidating
Parser

The parser can generate three kinds of errors: a fatal error, an error, and a warn-
ing. In this exercise, you’ll see how the parser handles a fatal error.

146
This version of the Echo program uses the nonvalidating parser. So it can’t tell
whether the XML document contains the right tags or whether those tags are in
the right sequence. In other words, it can’t tell you whether the document is
valid. It can, however, tell whether or not the document is well formed.

In this section, you’ll modify the slide-show file to generate various kinds of
errors and see how the parser handles them. You’ll also find out which error con-
ditions are ignored by default, and you’ll see how to handle them.

Note: The XML file used in this exercise is slideSampleBad1.xml, as described in
Introducing an Error (page 49). The output is in Echo05-Bad1.txt. (The browsable
versions are slideSampleBad1-xml.html and Echo05-Bad1.html.)

When you created slideSampleBad1.xml, you deliberately created an XML file
that was not well formed. Run the Echo program on that file now. The output
now gives you an error message that looks like this (after formatting for readabil-
ity):

org.xml.sax.SAXParseException:
The element type "item" must be terminated by the
matching end-tag “</item>”.

...
at org.apache.xerces.parsers.AbstractSAXParser...
...
at Echo.main(...)

Note: The foregoing message was generated by Xerces, the XML parser that is part
of the JAXP 1.2 implementation libraries. If you are using a different parser, the
error message is likely to be somewhat different.

When a fatal error occurs, the parser cannot continue. So if the application does
not generate an exception (which you’ll see how to do a moment), then the
default error-event handler generates one. The stack trace is generated by the
Throwable exception handler in your main method:

 ...
} catch (Throwable t) {

t.printStackTrace();
}

../examples/xml/samples/slideSampleBad1.xml
../examples/xml/samples/slideSampleBad1-xml.html
../examples/jaxp/sax/samples/Echo05-Bad1.txt
../examples/jaxp/sax/samples/Echo05-Bad1.html

HANDLING ERRORS WITH THE NONVALIDATING PARSER 147
That stack trace is not very useful. Next, you’ll see how to generate better diag-
nostics when an error occurs.

Handling a SAXParseException
When the error was encountered, the parser generated a SAXParseException—a
subclass of SAXException that identifies the file and location where the error
occurred.

Note: The code you’ll create in this exercise is in Echo06.java. The output is in
Echo06-Bad1.txt. (The browsable version is Echo06-Bad1.html.)

Add the following highlighted code to generate a better diagnostic message
when the exception occurs:

...
} catch (SAXParseException spe) {

// Error generated by the parser
System.out.println("\n** Parsing error"

+ ", line " + spe.getLineNumber()
+ ", uri " + spe.getSystemId());

System.out.println(" " + spe.getMessage());

} catch (Throwable t) {
t.printStackTrace();

}

Running this version of the program on slideSampleBad1.xml generates an
error message that is a bit more helpful:

** Parsing error, line 22, uri file:<path>/slideSampleBad1.xml
The element type "item" must be ...

Note: The text of the error message depends on the parser used. This message was
generated using JAXP 1.2.

Note: Catching all throwables is not generally a great idea for production applica-
tions. We’re doing it now so that we can build up to full error handling gradually. In
addition, it acts as a catch-all for null pointer exceptions that can be thrown when
the parser is passed a null value.

../examples/jaxp/sax/samples/Echo06.java
../examples/jaxp/sax/samples/Echo06-Bad1.txt
../examples/jaxp/sax/samples/Echo06-Bad1.html

148
Handling a SAXException
A more general SAXException instance may sometimes be generated by the
parser, but it more frequently occurs when an error originates in one of applica-
tion’s event-handling methods. For example, the signature of the startDocument
method in the ContentHandler interface is defined as returning a SAXExcep-

tion:

public void startDocument() throws SAXException

All the ContentHandler methods (except for setDocumentLocator) have that
signature declaration.

A SAXException can be constructed using a message, another exception, or
both. So, for example, when Echo.startDocument outputs a string using the
emit method, any I/O exception that occurs is wrapped in a SAXException and
sent back to the parser:

private void emit(String s)
throws SAXException
{

try {
out.write(s);
out.flush();

} catch (IOException e) {
throw new SAXException("I/O error", e);

}
}

Note: If you saved the Locator object when setDocumentLocator was invoked,
you could use it to generate a SAXParseException, identifying the document and
location, instead of generating a SAXException.

When the parser delivers the exception back to the code that invoked the parser,
it makes sense to use the original exception to generate the stack trace. Add the
following highlighted code to do that:

 ...
} catch (SAXParseException err) {

System.out.println("\n** Parsing error"
+ ", line " + err.getLineNumber()
+ ", uri " + err.getSystemId());

System.out.println(" " + err.getMessage());

HANDLING ERRORS WITH THE NONVALIDATING PARSER 149
} catch (SAXException sxe) {
// Error generated by this application
// (or a parser-initialization error)
Exception x = sxe;
if (sxe.getException() != null)

x = sxe.getException();
x.printStackTrace();

} catch (Throwable t) {
t.printStackTrace();

}

This code tests to see whether the SAXException is wrapping another exception.
If it is, it generates a stack trace originating where the exception occurred to
make it easier to pinpoint the responsible code. If the exception contains only a
message, the code prints the stack trace starting from the location where the
exception was generated.

Improving the SAXParseException Handler
Because the SAXParseException can also wrap another exception, add the fol-
lowing highlighted code to use the contained exception for the stack trace:

 ...
} catch (SAXParseException err) {

System.out.println("\n** Parsing error"
+ ", line " + err.getLineNumber()
+ ", uri " + err.getSystemId());

System.out.println(" " + err.getMessage());

// Use the contained exception, if any

150
Exception x = spe;
if (spe.getException() != null)

x = spe.getException();
x.printStackTrace();

} catch (SAXException sxe) {
// Error generated by this application
// (or a parser-initialization error)
Exceptionx = sxe;
if (sxe.getException() != null)

x = sxe.getException();
x.printStackTrace();

} catch (Throwable t) {
t.printStackTrace();

}

The program is now ready to handle any SAX parsing exceptions it sees. You’ve
seen that the parser generates exceptions for fatal errors. But for nonfatal errors
and warnings, exceptions are never generated by the default error handler, and no
messages are displayed. In a moment, you’ll learn more about errors and warn-
ings and will find out how to supply an error handler to process them.

Handling a ParserConfigurationException
Recall that the SAXParserFactory class can throw an exception if it cannot cre-
ate a parser. Such an error might occur if the factory cannot find the class needed
to create the parser (class not found error), is not permitted to access it (illegal
access exception), or cannot instantiate it (instantiation error).

Add the following highlighted code to handle such errors:

} catch (SAXException sxe) {
Exceptionx = sxe;
if (sxe.getException() != null)

x = sxe.getException();
x.printStackTrace();

} catch (ParserConfigurationException pce) {
// Parser with specified options can't be built
pce.printStackTrace();

} catch (Throwable t) {
t.printStackTrace();

HANDLING ERRORS WITH THE NONVALIDATING PARSER 151
Admittedly, there are quite a few error handlers here. But at least now you know
the kinds of exceptions that can occur.

Note: A javax.xml.parsers.FactoryConfigurationError can also be thrown if
the factory class specified by the system property cannot be found or instantiated.
That is a nontrappable error, because the program is not expected to be able to
recover from it.

Handling an IOException
While we’re at it, let’s add a handler for IOExceptions:

} catch (ParserConfigurationException pce) {
// Parser with specified options can't be built
pce.printStackTrace();

} catch (IOException ioe) {
// I/O error
ioe.printStackTrace();

}

} catch (Throwable t) {
...

We’ll leave the handler for Throwables to catch null pointer errors, but note that
at this point it is doing the same thing as the IOException handler. Here, we’re
merely illustrating the kinds of exceptions that can occur, in case there are some
that your application could recover from.

Handling NonFatal Errors
A nonfatal error occurs when an XML document fails a validity constraint. If the
parser finds that the document is not valid, then an error event is generated. Such
errors are generated by a validating parser, given a DTD or schema, when a doc-
ument has an invalid tag, when a tag is found where it is not allowed, or (in the
case of a schema) when the element contains invalid data.

You won’t deal with validation issues until later in this tutorial. But because
we’re on the subject of error handling, you’ll write the error-handling code now.

The most important principle to understand about nonfatal errors is that they are
ignored by default. But if a validation error occurs in a document, you probably

152
don’t want to continue processing it. You probably want to treat such errors as
fatal. In the code you write next, you’ll set up the error handler to do just that.

Note: The code for the program you’ll create in this exercise is in Echo07.java.

To take over error handling, you override the DefaultHandler methods that han-
dle fatal errors, nonfatal errors, and warnings as part of the ErrorHandler inter-
face. The SAX parser delivers a SAXParseException to each of these methods,
so generating an exception when an error occurs is as simple as throwing it back.

Add the following highlighted code to override the handler for errors:

public void processingInstruction(String target, String data)
throws SAXException
{

...
}

// treat validation errors as fatal
public void error(SAXParseException e)
throws SAXParseException
{

throw e;
}

Note: It can be instructive to examine the error-handling methods defined in
org.xml.sax.helpers.DefaultHandler. You’ll see that the error() and warn-

ing() methods do nothing, whereas fatalError() throws an exception. Of course,
you could always override the fatalError() method to throw a different exception.
But if your code doesn’t throw an exception when a fatal error occurs, then the SAX
parser will. The XML specification requires it.

Handling Warnings
Warnings, too, are ignored by default. Warnings are informative can only be gen-
erated in the presence of a DTD or schema. For example, if an element is defined
twice in a DTD, a warning is generated. It’s not illegal, and it doesn’t cause prob-
lems, but it’s something you might like to know about because it might not have
been intentional.

../examples/jaxp/sax/samples/Echo07.java

DISPLAYING SPECIAL CHARACTERS AND CDATA 153
Add the following highlighted code to generate a message when a warning
occurs:

// treat validation errors as fatal
public void error(SAXParseException e)
throws SAXParseException
{

throw e;
}

// dump warnings too
public void warning(SAXParseException err)
throws SAXParseException
{

System.out.println("** Warning"
+ ", line " + err.getLineNumber()
+ ", uri " + err.getSystemId());

System.out.println(" " + err.getMessage());
}

Because there is no good way to generate a warning without a DTD or schema,
you won’t be seeing any just yet. But when one does occur, you’re ready!

Displaying Special Characters and
CDATA

The next thing we will do with the parser is to customize it a bit so that you can
see how to get information it usually ignores. In this section, you’ll learn how the
parser handles

• Special characters (<, &, and so on)

• Text with XML-style syntax

Handling Special Characters
In XML, an entity is an XML structure (or plain text) that has a name. Referenc-
ing the entity by name causes it to be inserted into the document in place of the
entity reference. To create an entity reference, you surround the entity name with
an ampersand and a semicolon:

 &entityName;

154
Earlier, you put an entity reference into your XML document by coding

Market Size < predicted

Note: The file containing this XML is slideSample03.xml, as described in Using
an Entity Reference in an XML Document (page 52). The results of processing it
are shown in Echo07-03.txt. (The browsable versions are slideSample03-

xml.html and Echo07-03.html.)

When you run the Echo program on slideSample03.xml, you see the following
output:

ELEMENT: <item>
CHARS: Market Size < predicted
END_ELM: </item>

The parser has converted the reference into the entity it represents and has passed
the entity to the application.

Handling Text with XML-Style Syntax
When you are handling large blocks of XML or HTML that include many spe-
cial characters, you use a CDATA section.

Note: The XML file used in this example is slideSample04.xml. The results of
processing it are shown in Echo07-04.txt. (The browsable versions are
slideSample04-xml.html and Echo07-04.html.)

A CDATA section works like <pre>...</pre> in HTML, only more so: all
whitespace in a CDATA section is significant, and characters in it are not inter-
preted as XML. A CDATA section starts with <![CDATA[and ends with]]>. The
file slideSample04.xml contains this CDATA section for a fictitious technical
slide:

 ...
<slide type="tech">

<title>How it Works</title>
<item>First we fozzle the frobmorten</item>
<item>Then we framboze the staten</item>
<item>Finally, we frenzle the fuznaten</item>

../examples/xml/samples/slideSample03.xml
../examples/jaxp/sax/samples/Echo07-03.txt
../examples/xml/samples/slideSample03-xml.html
../examples/xml/samples/slideSample03-xml.html
../examples/jaxp/sax/samples/Echo07-03.html
../examples/xml/samples/slideSample04.xml
../examples/jaxp/sax/samples/Echo07-04.txt
../examples/xml/samples/slideSample04-xml.html
../examples/jaxp/sax/samples/Echo07-04.html

DISPLAYING SPECIAL CHARACTERS AND CDATA 155
<item><![CDATA[Diagram:
frobmorten <--------------- fuznaten

| <3> ^
| <1> | <1> = fozzle
V | <2> = framboze

staten-------------------------+ <3> = frenzle
<2>

]]></item>
</slide>

</slideshow>

When you run the Echo program on the new file, you see the following output:

ELEMENT: <item>
CHARS: Diagram:

frobmorten <--------------- fuznaten
| <3> ^
| <1> | <1> = fozzle
V | <2> = framboze

staten-------------------------+ <3> = frenzle
<2>

END_ELM: </item>

You can see here that the text in the CDATA section arrived as it was written.
Because the parser didn’t treat the angle brackets as XML, they didn’t generate
the fatal errors they would otherwise cause. (If the angle brackets weren’t in a
CDATA section, the document would not be well formed.)

Handling CDATA and Other Characters
The existence of CDATA makes the proper echoing of XML a bit tricky. If the text
to be output is not in a CDATA section, then any angle brackets, ampersands, and
other special characters in the text should be replaced with the appropriate entity
reference. (Replacing left angle brackets and ampersands is most important,
other characters will be interpreted properly without misleading the parser.)

But if the output text is in a CDATA section, then the substitutions should not
occur, resulting in text like that in the earlier example. In a simple program such
as our Echo application, it’s not a big deal. But many XML-filtering applications
will want to keep track of whether the text appears in a CDATA section, so that
they can treat special characters properly. (Later, you will see how to use a Lex-

icalHandler to find out whether or not you are processing a CDATA section.)

156
One other area to watch for is attributes. The text of an attribute value can also
contain angle brackets and semicolons that need to be replaced by entity refer-
ences. (Attribute text can never be in a CDATA section, though, so there is never
any question about doing that substitution.)

Parsing with a DTD
After the XML declaration, the document prolog can include a DTD, reference
an external DTD, or both. In this section, you’ll see the effect of the DTD on the
data that the parser delivers to your application.

DTD’s Effect on the Nonvalidating Parser
In this section, you’ll use the Echo program to see how the data appears to the
SAX parser when the data file references a DTD.

Note: The XML file used in this section is slideSample05.xml, which references
slideshow1a.dtd. The output is shown in Echo07-05.txt. (The browsable ver-
sions are slideshow1a-dtd.html, slideSample05-xml.html, and Echo07-

05.html.)

Running the Echo program on your latest version of slideSample.xml shows
that many of the superfluous calls to the characters method have now disap-
peared.

Before, you saw this:

...
>
PROCESS: ...
CHARS:

ELEMENT: <slide
ATTR: ...

>
ELEMENT: <title>
CHARS: Wake up to ...
END_ELM: </title>

END_ELM: </slide>
CHARS:

../examples/xml/samples/slideSample05.xml
../examples/xml/samples/slideshow1a.dtd
../examples/xml/samples/slideshow1a-dtd.html
../examples/xml/samples/slideSample05-xml.html
../examples/jaxp/sax/samples/Echo07-05.txt
../examples/jaxp/sax/samples/Echo07-05.html
../examples/jaxp/sax/samples/Echo07-05.html

PARSING WITH A DTD 157
ELEMENT: <slide
ATTR: ...

>
...

Now you see this:

...
>
PROCESS: ...

ELEMENT: <slide
ATTR: ...

>
ELEMENT: <title>
CHARS: Wake up to ...
END_ELM: </title>

END_ELM: </slide>
ELEMENT: <slide

ATTR: ...
>
...

It is evident that the whitespace characters that were formerly being echoed
around the slide elements are no longer being delivered by the parser, because
the DTD declares that slideshow consists solely of slide elements:

 <!ELEMENT slideshow (slide+)>

Tracking Ignorable Whitespace
Now that the DTD is present, the parser is no longer calling the characters

method with whitespace that it knows to be irrelevant. From the standpoint of an
application that is interested in processing only the XML data, that is great. The
application is never bothered with whitespace that exists purely to make the
XML file readable.

On the other hand, if you were writing an application that was filtering an XML
data file and if you wanted to output an equally readable version of the file, then
that whitespace would no longer be irrelevant: it would be essential. To get those
characters, you add the ignorableWhitespace method to your application.
You’ll do that next.

158
Note: The code written in this section is contained in Echo08.java. The output is
in Echo08-05.txt. (The browsable version is Echo08-05.html.)

To process the (generally) ignorable whitespace that the parser is seeing, add the
following highlighted code to implement the ignorableWhitespace event han-
dler in your version of the Echo program:

public void characters (char buf[], int offset, int len)
...
}

public void ignorableWhitespace (char buf[], int offset, int
Len)
throws SAXException
{

nl();
emit("IGNORABLE");

}

public void processingInstruction(String target, String data)
...

This code simply generates a message to let you know that ignorable whitespace
was seen.

Note: Again, not all parsers are created equal. The SAX specification does not
require that this method be invoked. The Java XML implementation does so when-
ever the DTD makes it possible.

When you run the Echo application now, your output looks like this:

ELEMENT: <slideshow
ATTR: ...

>
IGNORABLE
IGNORABLE
PROCESS: ...
IGNORABLE
IGNORABLE

ELEMENT: <slide
ATTR: ...

>
IGNORABLE

../examples/jaxp/sax/samples/Echo08.java
../examples/jaxp/sax/samples/Echo08-05.txt
../examples/jaxp/sax/samples/Echo08-05.html

PARSING WITH A DTD 159
ELEMENT: <title>
CHARS: Wake up to ...
END_ELM: </title>

IGNORABLE
END_ELM: </slide>

IGNORABLE
IGNORABLE

ELEMENT: <slide
ATTR: ...

>
...

Here, it is apparent that the ignorableWhitespace is being invoked before and
after comments and slide elements, whereas characters was being invoked
before there was a DTD.

Cleanup
Now that you have seen ignorable whitespace echoed, remove that code from
your version of the Echo program. You won’t need it any more in the exercises
that follow.

Note: That change has been made in Echo09.java.

Empty Elements, Revisited
Now that you understand how certain instances of whitespace can be ignorable,
it is time revise the definition of an empty element. That definition can now be
expanded to include

 <foo> </foo>

where there is whitespace between the tags and the DTD says that the
whitespace is ignorable.

../examples/jaxp/sax/samples/Echo09.java

160
Echoing Entity References
When you wrote slideSample06.xml, you defined entities for the singular and
plural versions of the product name in the DTD:

<!ENTITY product "WonderWidget">
<!ENTITY products "WonderWidgets">

You referenced them in the XML this way:

<title>Wake up to &products;!</title>

Now it’s time to see how they’re echoed when you process them with the SAX
parser.

Note: The XML used here is contained in slideSample06.xml, which references
slideshow1b.dtd, as described in Defining Attributes and Entities in the
DTD (page 59). The output is shown in Echo09-06.txt. (The browsable versions
are slideSample06-xml.html, slideshow1b-dtd.html, and Echo09-06.html.)

When you run the Echo program on slideSample06.xml, here is the kind of
thing you see:

ELEMENT: <title>
CHARS: Wake up to WonderWidgets!
END_ELM: </title>

Note that the product name has been substituted for the entity reference.

Echoing the External Entity
In slideSample07.xml, you defined an external entity to reference a copyright
file.

Note: The XML used here is contained in slideSample07.xml and in copy-

right.xml. The output is shown in Echo09-07.txt. (The browsable versions are
slideSample07-xml.html, copyright-xml.html, and Echo09-07.html.)

../examples/xml/samples/slideSample06.xml
../examples/xml/samples/slideshow1b.dtd
../examples/jaxp/sax/samples/Echo09-06.txt
../examples/xml/samples/slideSample06-xml.html
../examples/xml/samples/slideshow1b-dtd.html
../examples/jaxp/sax/samples/Echo09-06.html
../examples/xml/samples/slideSample07.xml
../examples/jaxp/sax/samples/copyright.xml
../examples/jaxp/sax/samples/copyright.xml
../examples/jaxp/sax/samples/Echo09-07.txt
../examples/xml/samples/slideSample07-xml.html
../examples/jaxp/sax/samples/copyright-xml.html
../examples/jaxp/sax/samples/Echo09-07.html

CHOOSING YOUR PARSER IMPLEMENTATION 161
When you run the Echo program on that version of the slide presentation, here is
what you see:

...
END_ELM: </slide>
ELEMENT: <slide

ATTR: type "all"
>

ELEMENT: <item>
CHARS:

This is the standard copyright message that our lawyers
make us put everywhere so we don't have to shell out a
million bucks every time someone spills hot coffee in their
lap...

END_ELM: </item>
END_ELM: </slide>
...

Note that the newline that follows the comment in the file is echoed as a charac-
ter, but the comment itself is ignored. That is why the copyright message appears
to start on the next line after the CHARS: label instead of immediately after the
label: the first character echoed is actually the newline that follows the comment.

Summarizing Entities
An entity that is referenced in the document content, whether internal or exter-
nal, is termed a general entity. An entity that contains DTD specifications that
are referenced from within the DTD is termed a parameter entity. (More on that
later.)

An entity that contains XML (text and markup), and is therefore parsed, is
known as a parsed entity. An entity that contains binary data (such as images) is
known as an unparsed entity. (By its nature, it must be external.) We’ll discuss
references to unparsed entities later, in Using the DTDHandler and
EntityResolver (page 177).

Choosing Your Parser Implementation
If no other factory class is specified, the default SAXParserFactory class is
used. To use a parser from a different manufacturer, you can change the value of

162
the environment variable that points to it. You can do that from the command
line:

java -Djavax.xml.parsers.SAXParserFactory=yourFactoryHere ...

The factory name you specify must be a fully qualified class name (all package
prefixes included). For more information, see the documentation in the newIn-

stance() method of the SAXParserFactory class.

Using the Validating Parser
By now, you have done a lot of experimenting with the nonvalidating parser. It’s
time to have a look at the validating parser to find out what happens when you
use it to parse the sample presentation.

You need to understand about two things about the validating parser at the outset:

• A schema or document type definition (DTD) is required.

• Because the schema or DTD is present, the ignorableWhitespace

method is invoked whenever possible.

Configuring the Factory
The first step is to modify the Echo program so that it uses the validating parser
instead of the nonvalidating parser.

Note: The code in this section is contained in Echo10.java.

To use the validating parser, make the following highlighted changes:

public static void main(String argv[])
{

if (argv.length != 1) {
...

}
// Use the default (non-validating) parser
// Use the validating parser
SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setValidating(true);
try {

...

../examples/jaxp/sax/samples/Echo10.java

USING THE VALIDATING PARSER 163
Here, you configure the factory so that it will produce a validating parser when
newSAXParser is invoked. To configure it to return a namespace-aware parser,
you can also use setNamespaceAware(true). Sun’s implementation supports
any combination of configuration options. (If a combination is not supported by
a particular implementation, it is required to generate a factory configuration
error.)

Validating with XML Schema
Although a full treatment of XML Schema is beyond the scope of this tutorial,
this section shows you the steps you take to validate an XML document using an
existing schema written in the XML Schema language. (To learn more about
XML Schema, you can review the online tutorial, XML Schema Part 0: Primer,
at http://www.w3.org/TR/xmlschema-0/. You can also examine the sample
programs that are part of the JAXP download. They use a simple XML Schema
definition to validate personnel data stored in an XML file.)

Note: There are multiple schema-definition languages, including RELAX NG,
Schematron, and the W3C “XML Schema” standard. (Even a DTD qualifies as a
“schema,” although it is the only one that does not use XML syntax to describe
schema constraints.) However, “XML Schema” presents us with a terminology
challenge. Although the phrase “XML Schema schema” would be precise, we’ll use
the phrase “XML Schema definition” to avoid the appearance of redundancy.

To be notified of validation errors in an XML document, the parser factory must
be configured to create a validating parser, as shown in the preceding section. In
addition, the following must be true:

• The appropriate properties must be set on the SAX parser.

• The appropriate error handler must be set.

• The document must be associated with a schema.

http://www.w3.org/TR/xmlschema-0/

164
Setting the SAX Parser Properties
It’s helpful to start by defining the constants you’ll use when setting the proper-
ties:

static final String JAXP_SCHEMA_LANGUAGE =
"http://java.sun.com/xml/jaxp/properties/schemaLanguage";

static final String W3C_XML_SCHEMA =
"http://www.w3.org/2001/XMLSchema";

Next, you configure the parser factory to generate a parser that is namespace-
aware as well as validating:

...
SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setNamespaceAware(true);
factory.setValidating(true);

You’ll learn more about namespaces in Validating with XML
Schema (page 246). For now, understand that schema validation is a namespace-
oriented process. Because JAXP-compliant parsers are not namespace-aware by
default, it is necessary to set the property for schema validation to work.

The last step is to configure the parser to tell it which schema language to use.
Here, you use the constants you defined earlier to specify the W3C’s XML
Schema language:

saxParser.setProperty(JAXP_SCHEMA_LANGUAGE, W3C_XML_SCHEMA);

In the process, however, there is an extra error to handle. You’ll take a look at
that error next.

Setting Up the Appropriate Error Handling
In addition to the error handling you’ve already learned about, there is one error
that can occur when you are configuring the parser for schema-based validation.
If the parser is not 1.2-compliant and therefore does not support XML Schema, it
can throw a SAXNotRecognizedException.

USING THE VALIDATING PARSER 165
To handle that case, you wrap the setProperty() statement in a try/catch
block, as shown in the code highlighted here:

...
SAXParser saxParser = factory.newSAXParser();
try {

saxParser.setProperty(JAXP_SCHEMA_LANGUAGE, W3C_XML_SCHEMA);
}
catch (SAXNotRecognizedException x) {

// Happens if the parser does not support JAXP 1.2
...

}
...

Associating a Document with a Schema
Now that the program is ready to validate the data using an XML Schema defini-
tion, it is only necessary to ensure that the XML document is associated with
one. There are two ways to do that:

• By including a schema declaration in the XML document

• By specifying the schema to use in the application

Note: When the application specifies the schema to use, it overrides any schema
declaration in the document.

To specify the schema definition in the document, you create XML such as this:

<documentRoot
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation='YourSchemaDefinition.xsd'

>
...

The first attribute defines the XML namespace (xmlns) prefix, xsi, which stands
for XML Schema instance. The second line specifies the schema to use for ele-
ments in the document that do not have a namespace prefix—that is, for the ele-
ments you typically define in any simple, uncomplicated XML document.

Note: You’ll learn about namespaces in Validating with XML Schema (page 246).
For now, think of these attributes as the “magic incantation” you use to validate a
simple XML file that doesn’t use them. After you’ve learned more about

166
namespaces, you’ll see how to use XML Schema to validate complex documents
that use them. Those ideas are discussed in Validating with Multiple
Namespaces (page 249).

You can also specify the schema file in the application:

static final String JAXP_SCHEMA_SOURCE =
"http://java.sun.com/xml/jaxp/properties/schemaSource";

...
SAXParser saxParser = spf.newSAXParser();
...
saxParser.setProperty(JAXP_SCHEMA_SOURCE,

new File(schemaSource));

Now that you know how to use an XML Schema definition, we’ll turn to the
kinds of errors you can see when the application is validating its incoming data.
To do that, you’ll use a document type definition (DTD) as you experiment with
validation.

Experimenting with Validation Errors
To see what happens when the XML document does not specify a DTD, remove
the DOCTYPE statement from the XML file and run the Echo program on it.

Note: The output shown here is contained in Echo10-01.txt. (The browsable ver-
sion is Echo10-01.html.)

The result you see looks like this:

<?xml version='1.0' encoding='UTF-8'?>
** Parsing error, line 9, uri .../slideSample01.xml

Document root element "slideshow", must match DOCTYPE root
"null"

Note: This message was generated by the JAXP 1.2 libraries. If you are using a dif-
ferent parser, the error message is likely to be somewhat different.

This message says that the root element of the document must match the element
specified in the DOCTYPE declaration. That declaration specifies the document’s

../examples/jaxp/sax/samples/Echo10-01.txt
../examples/jaxp/sax/samples/Echo10-01.html

USING THE VALIDATING PARSER 167
DTD. Because you don’t yet have one, it’s value is null. In other words, the mes-
sage is saying that you are trying to validate the document, but no DTD has been
declared, because no DOCTYPE declaration is present.

So now you know that a DTD is a requirement for a valid document. That makes
sense. What happens when you run the parser on your current version of the slide
presentation, with the DTD specified?

Note: The output shown here is produced using slideSample07.xml, as described
in Referencing Binary Entities (page 66). The output is contained in Echo10-

07.txt. (The browsable version is Echo10-07.html.)

This time, the parser gives a different error message:

 ** Parsing error, line 29, uri file:...
The content of element type "slide" must match

"(image?,title,item*)

This message says that the element found at line 29 (<item>) does not match the
definition of the <slide> element in the DTD. The error occurs because the def-
inition says that the slide element requires a title. That element is not
optional, and the copyright slide does not have one. To fix the problem, add a
question mark to make title an optional element:

<!ELEMENT slide (image?, title?, item*)>

Now what happens when you run the program?

Note: You could also remove the copyright slide, producing the same result shown
next, as reflected in Echo10-06.txt. (The browsable version is Echo10-06.html.)

The answer is that everything runs fine until the parser runs into the tag
contained in the overview slide. Because that tag is not defined in the DTD, the
attempt to validate the document fails. The output looks like this:

 ...
ELEMENT: <title>
CHARS: Overview
END_ELM: </title>
ELEMENT: <item>

../examples/xml/samples/slideSample07.xml
../examples/jaxp/sax/samples/Echo10-07.txt
../examples/jaxp/sax/samples/Echo10-07.txt
../examples/jaxp/sax/samples/Echo10-07.html
../examples/jaxp/sax/samples/Echo10-06.txt
../examples/jaxp/sax/samples/Echo10-06.html

168
CHARS: Why ** Parsing error, line 28, uri: ...
Element "em" must be declared.
org.xml.sax.SAXParseException: ...
...

The error message identifies the part of the DTD that caused validation to fail. In
this case it is the line that defines an item element as (#PCDATA | item).

As an exercise, make a copy of the file and remove all occurrences of from
it. Can the file be validated now? (In the next section, you’ll learn how to define
parameter entries so that we can use XHTML in the elements we are defining as
part of the slide presentation.)

Error Handling in the Validating Parser
It is important to recognize that the only reason an exception is thrown when the
file fails validation is as a result of the error-handling code you entered in the
early stages of this tutorial. That code is reproduced here:

public void error(SAXParseException e)
throws SAXParseException
{

throw e;
}

If that exception is not thrown, the validation errors are simply ignored. Try com-
menting out the line that throws the exception. What happens when you run the
parser now?

In general, a SAX parsing error is a validation error, although you have seen that
it can also be generated if the file specifies a version of XML that the parser is
not prepared to handle. Remember that your application will not generate a vali-
dation exception unless you supply an error handler such as the one here.

Parsing a Parameterized DTD
This section uses the Echo program to see what happens when you reference
xhtml.dtd in slideshow2.dtd. It also covers the kinds of warnings that are
generated by the SAX parser when a DTD is present.

PARSING A PARAMETERIZED DTD 169
Note: The XML file used here is slideSample08.xml, which references
slideshow2.dtd. The output is contained in Echo10-08.txt. (The browsable ver-
sions are slideSample08-xml.html, slideshow2-dtd.html, and Echo10-

08.html.)

When you try to echo the slide presentation, you will find that it now contains a
new error. The relevant part of the output is shown here (formatted for readabil-
ity):

<?xml version='1.0' encoding='UTF-8'?>
** Parsing error, line 22, uri: .../slideshow.dtd
Element type "title" must not be declared more than once.

Note: The foregoing message was generated by the JAXP 1.2 libraries. If you are
using a different parser, the error message is likely to be somewhat different.

The problem is that xhtml.dtd defines a title element that is entirely different
from the title element defined in the slideshow DTD. Because there is no hier-
archy in the DTD, these two definitions conflict.

The slideSample09.xml version solves the problem by changing the name of
the slide title. Run the Echo program on that version of the slide presentation. It
should run to completion and display output like that shown in Echo10-09.

Congratulations! You have now read a fully validated XML document. The
change in that version of the file has the effect of putting the DTD’s title ele-
ment into a slideshow “namespace” that you artificially constructed by hyphen-
ating the name, so the title element in the “slideshow namespace” (slide-
title, really) is no longer in conflict with the title element in xhtml.dtd.

Note: As mentioned in Using Namespaces (page 73), namespaces let you accom-
plish the same goal without having to rename any elements.

Next, we’ll take a look at the kinds of warnings that the validating parser can
produce when processing the DTD.

../examples/xml/samples/slideshow2.dtd
../examples/xml/samples/slideSample08.xml
../examples/xml/samples/slideshow2-dtd.html
../examples/xml/samples/slideSample08-xml.html
../examples/jaxp/sax/samples/Echo10-08.txt
../examples/jaxp/sax/samples/Echo10-08.html
../examples/jaxp/sax/samples/Echo10-08.html

170
DTD Warnings
As mentioned earlier, warnings are generated only when the SAX parser is pro-
cessing a DTD. Some warnings are generated only by the validating parser. The
nonvalidating parser’s main goal is operate as rapidly as possible, but it too gen-
erates some warnings. (The explanations that follow tell which does what.)

The XML specification suggests that warnings should be generated as a result of
the following:

• Providing additional declarations for entities, attributes, or notations.
(Such declarations are ignored. Only the first is used. Also, note that dupli-
cate definitions of elements always produce a fatal error when validating,
as you saw earlier.)

• Referencing an undeclared element type. (A validity error occurs only if
the undeclared type is actually used in the XML document. A warning
results when the undeclared element is referenced in the DTD.)

• Declaring attributes for undeclared element types.

The Java XML SAX parser also emits warnings in other cases:

• No <!DOCTYPE ...> when validating.

• References to an undefined parameter entity when not validating. (When
validating, an error results. Although nonvalidating parsers are not
required to read parameter entities, the Java XML parser does so. Because
it is not a requirement, the Java XML parser generates a warning, rather
than an error.)

• Certain cases where the character-encoding declaration does not look
right.

At this point, you have digested many XML concepts, including DTDs and
external entities. You have also learned your way around the SAX parser. The
remainder of this chapter covers advanced topics that you will need to under-
stand only if you are writing SAX-based applications. If your primary goal is to
write DOM-based applications, you can skip ahead to Chapter 6.

Handling Lexical Events
You saw earlier that if you are writing text out as XML, you need to know
whether you are in a CDATA section. If you are, then angle brackets (<) and
ampersands (&) should be output unchanged. But if you’re not in a CDATA sec-

HANDLING LEXICAL EVENTS 171
tion, they should be replaced by the predefined entities < and &. But how
do you know whether you’re processing a CDATA section?

Then again, if you are filtering XML in some way, you want to pass comments
along. Normally the parser ignores comments. How can you get comments so
that you can echo them?

Finally, there are the parsed entity definitions. If an XML-filtering application
sees &myEntity; it needs to echo the same string, and not the text that is inserted
in its place. How do you go about doing that?

This section answers those questions. It shows you how to use
org.xml.sax.ext.LexicalHandler to identify comments, CDATA sections, and
references to parsed entities.

Comments, CDATA tags, and references to parsed entities constitute lexical infor-
mation—that is, information that concerns the text of the XML itself, rather than
the XML’s information content. Most applications, of course, are concerned only
with the content of an XML document. Such applications will not use the
LexicalEventListener API. But applications that output XML text will find it
invaluable.

Note: Lexical event handling is an optional parser feature. Parser implementations
are not required to support it. (The reference implementation does so.) This discus-
sion assumes that your parser does so.

How the LexicalHandler Works
To be informed when the SAX parser sees lexical information, you configure the
XmlReader that underlies the parser with a LexicalHandler. The LexicalHan-

dler interface defines these event-handling methods:

comment(String comment)
Passes comments to the application

startCDATA(), endCDATA()
Tells when a CDATA section is starting and ending, which tells your applica-
tion what kind of characters to expect the next time characters() is called

startEntity(String name), endEntity(String name)
Gives the name of a parsed entity

startDTD(String name, String publicId, String systemId), endDTD()
Tells when a DTD is being processed, and identifies it

172
Working with a LexicalHandler
In the remainder of this section, you’ll convert the Echo application into a lexical
handler and play with its features.

Note: The code shown in this section is in Echo11.java. The output is shown in
Echo11-09.txt. (The browsable version is Echo11-09.html.)

To start, add the following highlighted code to implement the LexicalHandler

interface and add the appropriate methods.

import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.ext.LexicalHandler;
...
public class Echo extends HandlerBase

implements LexicalHandler
{

public static void main(String argv[])
{

...
// Use an instance of ourselves as the SAX event handler
DefaultHandler handler = new Echo();
Echo handler = new Echo();
...

At this point, the Echo class extends one class and implements an additional
interface. You have changed the class of the handler variable accordingly, so you
can use the same instance as either a DefaultHandler or a LexicalHandler, as
appropriate.

Next, add the following highlighted code to get the XMLReader that the parser
delegates to, and configure it to send lexical events to your lexical handler:

public static void main(String argv[])
{

...
try {

...
// Parse the input
SAXParser saxParser = factory.newSAXParser();
XMLReader xmlReader = saxParser.getXMLReader();
xmlReader.setProperty(

"http://xml.org/sax/properties/lexical-handler",

../examples/jaxp/sax/samples/Echo11.java
../examples/jaxp/sax/samples/Echo11-09.txt
../examples/jaxp/sax/samples/Echo11-09.html

HANDLING LEXICAL EVENTS 173
handler
);

saxParser.parse(new File(argv[0]), handler);
} catch (SAXParseException spe) {

...

Here, you configure the XMLReader using the setProperty() method defined in
the XMLReader class. The property name, defined as part of the SAX standard, is
the URN, http://xml.org/sax/properties/lexical-handler.

Finally, add the following highlighted code to define the appropriate methods
that implement the interface.

public void warning(SAXParseException err)
...

}

public void comment(char[] ch, int start, int length)
throws SAXException
{
}

public void startCDATA()
throws SAXException
{
}

pubic void endCDATA()
throws SAXException
{
}

public void startEntity(String name)
throws SAXException
{
}

public void endEntity(String name)
throws SAXException
{
}

public void startDTD(
String name, String publicId, String systemId)

throws SAXException
{
}

174
public void endDTD()
throws SAXException
{
}

private void echoText()
...

You have now turned the Echo class into a lexical handler. In the next section,
you’ll start experimenting with lexical events.

Echoing Comments
The next step is to do something with one of the new methods. Add the follow-
ing highlighted code to echo comments in the XML file:

public void comment(char[] ch, int start, int length)
throws SAXException

{
String text = new String(ch, start, length);
nl();
emit("COMMENT: "+text);

}

When you compile the Echo program and run it on your XML file, the result
looks something like this:

COMMENT: A SAMPLE set of slides
COMMENT: FOR WALLY / WALLIES
COMMENT:

DTD for a simple "slide show".

COMMENT: Defines the %inline; declaration
COMMENT: ...

The line endings in the comments are passed as part of the comment string, again
normalized to newlines. You can also see that comments in the DTD are echoed
along with comments from the file. (That can pose problems when you want to
echo only comments that are in the data file. To get around that problem, you can
use the startDTD and endDTD methods.)

HANDLING LEXICAL EVENTS 175
Echoing Other Lexical Information
To finish learning about lexical events, you’ll exercise the remaining Lexical-

Handler methods.

Note: The code shown in this section is in Echo12.java. The file it operates on is
slideSample09.xml. The results of processing are in Echo12-09.txt. (The brows-
able versions are slideSample09-xml.html and Echo12-09.html.)

Make the following highlighted changes to remove the comment echo (you no
longer need that) and echo the other events, along with any characters that have
been accumulated when an event occurs:

public void comment(char[] ch, int start, int length)
throws SAXException
{

String text = new String(ch, start, length);
nl();
emit("COMMENT: "+text);

}

public void startCDATA()
throws SAXException
{

echoText();
nl();
emit("START CDATA SECTION");

}

public void endCDATA()
throws SAXException
{

echoText();
nl();
emit("END CDATA SECTION");

}

public void startEntity(String name)
throws SAXException
{

echoText();
nl();
emit("START ENTITY: "+name);

}

../examples/jaxp/sax/samples/Echo12-09.txt
../examples/xml/samples/slideSample09-xml.html
../examples/jaxp/sax/samples/Echo12-09.html
../examples/jaxp/sax/samples/Echo12.java
../examples/xml/samples/slideSample09.xml

176
public void endEntity(String name)
throws SAXException
{

echoText();
nl();
emit("END ENTITY: "+name);

}

public void startDTD(String name, String publicId, String
systemId)
throws SAXException
{

nl();
emit("START DTD: "+name

+" publicId=" + publicId
+" systemId=" + systemId);

}

public void endDTD()
throws SAXException
{

nl();
emit("END DTD");

}

Here is what you see when the DTD is processed:

START DTD: slideshow
publicId=null
systemId=slideshow3.dtd

START ENTITY: ...
...
END DTD

Note: To see events that occur while the DTD is being processed, use
org.xml.sax.ext.DeclHandler.

Here is some of the additional output you see when the internally defined prod-

ucts entity is processed with the latest version of the program:

START ENTITY: products
CHARS: WonderWidgets
END ENTITY: products

USING THE DTDHANDLER AND ENTITYRESOLVER 177
And here is the additional output you see as a result of processing the external
copyright entity:

START ENTITY: copyright
CHARS:

This is the standard copyright message that our lawyers
make us put everywhere so we don't have to shell out a
million bucks every time someone spills hot coffee in their
lap...

END ENTITY: copyright

Finally, you get output that shows when the CDATA section was processed:

START CDATA SECTION
CHARS: Diagram:

frobmorten <--------------fuznaten
| <3> ^
| <1> | <1> = fozzle
V | <2> = framboze

staten---------------------+ <3> = frenzle
<2>

END CDATA SECTION

In summary, the LexicalHandler gives you the event notifications you need to
produce an accurate reflection of the original XML text.

Note: To accurately echo the input, you would modify the characters() method
to echo the text it sees in the appropriate fashion, depending on whether or not the
program was in CDATA mode.

Using the DTDHandler and
EntityResolver

In this section, we discuss the two remaining SAX event handlers: DTDHandler
and EntityResolver. The DTDHandler is invoked when the DTD encounters an
unparsed entity or a notation declaration. The EntityResolver comes into play
when a URN (public ID) must be resolved to a URL (system ID).

178
The DTDHandler API
In Choosing Your Parser Implementation (page 161) you saw a method for refer-
encing a file that contains binary data, such as an image file, using MIME data
types. That is the simplest, most extensible mechanism. For compatibility with
older SGML-style data, though, it is also possible to define an unparsed entity.

The NDATA keyword defines an unparsed entity:

 <!ENTITY myEntity SYSTEM "..URL.." NDATA gif>

The NDATA keyword says that the data in this entity is not parsable XML data but
instead is data that uses some other notation. In this case, the notation is named
gif. The DTD must then include a declaration for that notation, which would
look something like this:

 <!NOTATION gif SYSTEM "..URL..">

When the parser sees an unparsed entity or a notation declaration, it does nothing
with the information except to pass it along to the application using the DTDHan-

dler interface. That interface defines two methods:

notationDecl(String name, String publicId, String systemId)

unparsedEntityDecl(String name, String publicId,
String systemId, String notationName)

The notationDecl method is passed the name of the notation and either the pub-
lic or the system identifier, or both, depending on which is declared in the DTD.
The unparsedEntityDecl method is passed the name of the entity, the appropri-
ate identifiers, and the name of the notation it uses.

Note: The DTDHandler interface is implemented by the DefaultHandler class.

Notations can also be used in attribute declarations. For example, the following
declaration requires notations for the GIF and PNG image-file formats:

<!ENTITY image EMPTY>
<!ATTLIST image

...
type NOTATION (gif | png) "gif"

>

FURTHER INFORMATION 179
Here, the type is declared as being either gif or png. The default, if neither is
specified, is gif.

Whether the notation reference is used to describe an unparsed entity or an
attribute, it is up to the application to do the appropriate processing. The parser
knows nothing at all about the semantics of the notations. It only passes on the
declarations.

The EntityResolver API
The EntityResolver API lets you convert a public ID (URN) into a system ID
(URL). Your application may need to do that, for example, to convert something
like href="urn:/someName" into "http://someURL".

The EntityResolver interface defines a single method:

resolveEntity(String publicId, String systemId)

This method returns an InputSource object, which can be used to access the
entity’s contents. Converting a URL into an InputSource is easy enough. But
the URL that is passed as the system ID will be the location of the original docu-
ment which is, as likely as not, somewhere out on the web. To access a local
copy, if there is one, you must maintain a catalog somewhere on the system that
maps names (public IDs) into local URLs.

Further Information
For further information on the SAX standard, see

• The SAX standard page: http://www.saxproject.org/

For more information on the StAX pull parser, see:

• The Java Community Process page:
http://jcp.org/en/jsr/detail?id=173.

• Elliot Rusty Harold’s introduction at
http://www.xml.com/pub/a/2003/09/17/stax.html.

http://jcp.org/en/jsr/detail?id=173
http://www.xml.com/pub/a/2003/09/17/stax.html
http://www.saxproject.org/

180
For more information on schema-based validation mechanisms, see

• The W3C standard validation mechanism, XML Schema:
http://www.w3c.org/XML/Schema

• RELAX NG’s regular-expression-based validation mechanism:
http://www.oasis-open.org/committees/relax-ng/

• Schematron’s assertion-based validation mechanism:
http://www.ascc.net/xml/resource/schematron/schematron.html

http://www.w3c.org/XML/Schema
http://www.oasis-open.org/committees/relax-ng/
http://www.ascc.net/xml/resource/schematron/schematron.html

6

181
Document Object
Model

IN Chapter 5, you wrote an XML file that contains slides for a presentation.
You then used the SAX API to echo the XML to your display.

In this chapter, you’ll use the Document Object Model (DOM) to build a small
application called SlideShow. You’ll start by constructing and inspecting a
DOM. Then see how to write a DOM as an XML structure, display it in a GUI,
and manipulate the tree structure.

A DOM is a garden-variety tree structure, where each node contains one of the
components from an XML structure. The two most common types of nodes are
element nodes and text nodes. Using DOM functions lets you create nodes,
remove nodes, change their contents, and traverse the node hierarchy.

In this chapter, you’ll parse an existing XML file to construct a DOM, display
and inspect the DOM hierarchy, convert the DOM into a display-friendly JTree,
and explore the syntax of namespaces. You’ll also create a DOM from scratch,
and see how to use some of the implementation-specific features in Sun’s JAXP
implementation to convert an existing data set to XML.

First though, we’ll make sure that DOM is the most appropriate choice for your
application.

182
Note: The examples in this chapter can be found in <INSTALL>/j2eetutorial14/

examples/jaxp/dom/samples/.

When to Use DOM
The Document Object Model standard is, above all, designed for documents (for
example, articles and books). In addition, the JAXP 1.2 implementation supports
XML Schema, something that may be an important consideration for any given
application.

On the other hand, if you are dealing with simple data structures and if XML
Schema isn’t a big part of your plans, then you may find that one of the more
object-oriented standards, such as JDOM and dom4j (page 1387), is better suited
for your purpose.

From the start, DOM was intended to be language-neutral. Because it was
designed for use with languages such as C and Perl, DOM does not take advan-
tage of Java’s object-oriented features. That fact, in addition to the distinction
between documents and data, also helps to account for the ways in which pro-
cessing a DOM differs from processing a JDOM or dom4j structure.

In this section, we’ll examine the differences between the models underlying
those standards to help you choose the one that is most appropriate for your
application.

Documents Versus Data
The major point of departure between the document model used in DOM and the
data model used in JDOM or dom4j lies in

• The kind of node that exists in the hierarchy

• The capacity for mixed content

It is the difference in what constitutes a “node” in the data hierarchy that prima-
rily accounts for the differences in programming with these two models. How-
ever, the capacity for mixed content, more than anything else, accounts for the
difference in how the standards define a node. So we start by examining DOM’s
mixed-content model.

WHEN TO USE DOM 183
Mixed-Content Model
Recall from the discussion of Documents and Data (page 141) that text and ele-
ments can be freely intermixed in a DOM hierarchy. That kind of structure is
dubbed mixed content in the DOM model.

Mixed content occurs frequently in documents. For example, suppose you
wanted to represent this structure:

<sentence>This is an <bold>important</bold> idea.</sentence>

The hierarchy of DOM nodes would look something like this, where each line
represents one node:

ELEMENT: sentence
+ TEXT: This is an
+ ELEMENT: bold

 + TEXT: important
+ TEXT: idea.

Note that the sentence element contains text, followed by a subelement, followed
by additional text. It is the intermixing of text and elements that defines the
mixed-content model.

Kinds of Nodes
To provide the capacity for mixed content, DOM nodes are inherently very sim-
ple. In the foregoing example, the “content” of the first element (its value) sim-
ply identifies the kind of node it is.

First-time users of a DOM are usually thrown by this fact. After navigating to the
<sentence> node, they ask for the node's “content”, and expect to get something
useful. Instead, all they can find is the name of the element, sentence.

Note: The DOM Node API defines nodeValue(), nodeType(), and nodeName()

methods. For the first element node, nodeName() returns sentence, while node-

Value() returns null. For the first text node, nodeName() returns #text, and node-

Value() returns This is an . The important point is that the value of an element
is not the same as its content.

184
Instead, obtaining the content you care about when processing a DOM means
inspecting the list of subelements the node contains, ignoring those you aren’t
interested in and processing the ones you do care about.

In our example, what does it mean if you ask for the “text” of the sentence? Any
of the following could be reasonable, depending on your application:

• This is an

• This is an idea.

• This is an important idea.

• This is an <bold>important</bold> idea.

A Simpler Model
With DOM, you are free to create the semantics you need. However, you are also
required to do the processing necessary to implement those semantics. Standards
such as JDOM and dom4j, on the other hand, make it easier to do simple things,
because each node in the hierarchy is an object.

Although JDOM and dom4j make allowances for elements having mixed con-
tent, they are not primarily designed for such situations. Instead, they are tar-
geted for applications where the XML structure contains data.

As described in Documents and Data (page 59), the elements in a data structure
typically contain either text or other elements, but not both. For example, here is
some XML that represents a simple address book:

<addressbook>
<entry>

<name>Fred</name>
<email>fred@home</email>

</entry>
 ...

</addressbook>

Note: For very simple XML data structures like this one, you could also use the reg-
ular-expression package (java.util.regex) built into version 1.4 of the Java plat-
form.

In JDOM and dom4j, after you navigate to an element that contains text, you
invoke a method such as text() to get its content. When processing a DOM,

WHEN TO USE DOM 185
though, you must inspect the list of subelements to “put together” the text of the
node, as you saw earlier -- even if that list contains only one item (a TEXT node).

So for simple data structures such as the address book, you can save yourself a
bit of work by using JDOM or dom4j. It may make sense to use one of those
models even when the data is technically “mixed” but there is always one (and
only one) segment of text for a given node.

Here is an example of that kind of structure, which would also be easily pro-
cessed in JDOM or dom4j:

<addressbook>
<entry>Fred

<email>fred@home</email>
</entry>
...

</addressbook>

Here, each entry has a bit of identifying text, followed by other elements. With
this structure, the program could navigate to an entry, invoke text() to find out
whom it belongs to, and process the <email> subelement if it is at the correct
node.

Increasing the Complexity
But for you to get a full understanding of the kind of processing you need to do
when searching or manipulating a DOM, it is important to know the kinds of
nodes that a DOM can conceivably contain.

Here is an example that tries to bring the point home. It is a representation of this
data:

<sentence>
The &projectName; <![CDATA[<i>project</i>]]> is
<?editor: red><bold>important</bold><?editor: normal>.

</sentence>

This sentence contains an entity reference — a pointer to an entity that is defined
elsewhere. In this case, the entity contains the name of the project. The example
also contains a CDATA section (uninterpreted data, like <pre> data in HTML) as
well as processing instructions (<?...?>), which in this case tell the editor
which color to use when rendering the text.

186
Here is the DOM structure for that data. It’s fairly representative of the kind of
structure that a robust application should be prepared to handle:

+ ELEMENT: sentence
+ TEXT: The
+ ENTITY REF: projectName

+ COMMENT: The latest name we're using
+ TEXT: Eagle

+ CDATA: <i>project</i>
+ TEXT: is
+ PI: editor: red
+ ELEMENT: bold

+ TEXT: important
+ PI: editor: normal

This example depicts the kinds of nodes that may occur in a DOM. Although
your application may be able to ignore most of them most of the time, a truly
robust implementation needs to recognize and deal with each of them.

Similarly, the process of navigating to a node involves processing subelements—
ignoring the ones you don’t care about and inspecting the ones you do care
about—until you find the node you are interested in.

A program that works on fixed, internally generated data can afford to make sim-
plifying assumptions: that processing instructions, comments, CDATA nodes, and
entity references will not exist in the data structure. But truly robust applications
that work on a variety of data—especially data coming from the outside world—
must be prepared to deal with all possible XML entities.

(A “simple” application will work only as long as the input data contains the
simplified XML structures it expects. But there are no validation mechanisms to
ensure that more complex structures will not exist. After all, XML was specifi-
cally designed to allow them.)

To be more robust, a DOM application must do these things:

1. When searching for an element:

a. Ignore comments, attributes, and processing instructions.

b. Allow for the possibility that subelements do not occur in the expected
order.

c. Skip over TEXT nodes that contain ignorable whitespace, if not validat-
ing.

2. When extracting text for a node:

a. Extract text from CDATA nodes as well as text nodes.

WHEN TO USE DOM 187
b. Ignore comments, attributes, and processing instructions when gather-
ing the text.

c. If an entity reference node or another element node is encountered,
recurse (that is, apply the text-extraction procedure to all subnodes).

Note: The JAXP 1.2 parser does not insert entity reference nodes into the
DOM. Instead, it inserts a TEXT node containing the contents of the refer-
ence. The JAXP 1.1 parser which is built into the 1.4 platform, on the other
hand, does insert entity reference nodes. So a robust implementation that is
parser-independent needs to be prepared to handle entity reference nodes.

Of course, many applications won’t have to worry about such things, because the
kind of data they see will be strictly controlled. But if the data can come from a
variety of external sources, then the application will probably need to take these
possibilities into account.

The code you need to carry out these functions is given near the end of the DOM
tutorial in Searching for Nodes (page 243) and Obtaining Node
Content (page 244). Right now, the goal is simply to determine whether DOM is
suitable for your application.

Choosing Your Model
As you can see, when you are using DOM, even a simple operation such as get-
ting the text from a node can take a bit of programming. So if your programs
handle simple data structures, then JDOM, dom4j, or even the 1.4 regular-
expression package (java.util.regex) may be more appropriate for your
needs.

For full-fledged documents and complex applications, on the other hand, DOM
gives you a lot of flexibility. And if you need to use XML Schema, then again
DOM is the way to go—for now, at least.

If you process both documents and data in the applications you develop, then
DOM may still be your best choice. After all, after you have written the code to
examine and process a DOM structure, it is fairly easy to customize it for a spe-
cific purpose. So choosing to do everything in DOM means that you’ll only have
to deal with one set of APIs, rather than two.

In addition, the DOM standard is a codified standard for an in-memory docu-
ment model. It’s powerful and robust, and it has many implementations. That is a

188
significant decision-making factor for many large installations, particularly for
large-scale applications that need to minimize costs resulting from API changes.

Finally, even though the text in an address book may not permit bold, italics, col-
ors, and font sizes today, someday you may want to handle these things. Because
DOM will handle virtually anything you throw at it, choosing DOM makes it
easier to future proof your application.

Reading XML Data into a DOM
In this section, you’ll construct a Document Object Model by reading in an exist-
ing XML file. In the following sections, you’ll see how to display the XML in a
Swing tree component and practice manipulating the DOM.

Note: In Chapter 7, you’ll see how to write out a DOM as an XML file. (You’ll also
see how to convert an existing data file into XML with relative ease.)

Creating the Program
The Document Object Model provides APIs that let you create, modify, delete,
and rearrange nodes. So it is relatively easy to create a DOM, as you’ll see later
in Creating and Manipulating a DOM (page 237).

Before you try to create a DOM, however, it is helpful to understand how a DOM
is structured. This series of exercises will make DOM internals visible by dis-
playing them in a Swing JTree.

Create the Skeleton
Now let’s build a simple program to read an XML document into a DOM and
then write it back out again.

Note: The code discussed in this section is in DomEcho01.java. The file it operates
on is slideSample01.xml. (The browsable version is slideSample01-xml.html.)

../examples/jaxp/dom/samples/DomEcho01.java
../examples/jaxp/dom/samples/slideSample01.xml
../examples/jaxp/dom/samples/slideSample01-xml.html

READING XML DATA INTO A DOM 189
Start with the normal basic logic for an application, and check to make sure that
an argument has been supplied on the command line:

public class DomEcho {
public static void main(String argv[])
{

if (argv.length != 1) {
System.err.println(

"Usage: java DomEcho filename");
System.exit(1);

}
}// main

}// DomEcho

Import the Required Classes
In this section, all the classes individually named so you that can see where each
class comes from when you want to reference the API documentation. In your
own applications, you may well want to replace the import statements shown
here with the shorter form, such as javax.xml.parsers.*

Add these lines to import the JAXP APIs you’ll use:

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

Add these lines for the exceptions that can be thrown when the XML document
is parsed:

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

Add these lines to read the sample XML file and identify errors:

import java.io.File;
import java.io.IOException;

Finally, import the W3C definition for a DOM and DOM exceptions:

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;

190
Note: A DOMException is thrown only when traversing or manipulating a DOM.
Errors that occur during parsing are reported using a different mechanism that is
covered later.

Declare the DOM
The org.w3c.dom.Document class is the W3C name for a DOM. Whether you
parse an XML document or create one, a Document instance will result. You’ll
want to reference that object from another method later, so define it as a global
object here:

public class DomEcho
{

static Document document;

public static void main(String argv[])
{

It needs to be static because you’ll generate its contents from the main method
in a few minutes.

Handle Errors
Next, put in the error-handling logic. This logic is basically the same as the code
you saw in Handling Errors with the Nonvalidating Parser (page 145) in
Chapter 5, so we don’t go into it in detail here. The major point is that a JAXP-
conformant document builder is required to report SAX exceptions when it has
trouble parsing the XML document. The DOM parser does not have to actually
use a SAX parser internally, but because the SAX standard is already there, it
makes sense to use it for reporting errors. As a result, the error-handling code for
DOM applications are very similar to that for SAX applications:

public static void main(String argv[])
{

if (argv.length != 1) {
...

}

try {

} catch (SAXParseException spe) {
// Error generated by the parser

READING XML DATA INTO A DOM 191
System.out.println("\n** Parsing error"
+ ", line " + spe.getLineNumber()
+ ", uri " + spe.getSystemId());

System.out.println(" " + spe.getMessage());

// Use the contained exception, if any
Exception x = spe;
if (spe.getException() != null)

x = spe.getException();
x.printStackTrace();

} catch (SAXException sxe) {
// Error generated during parsing
Exception x = sxe;
if (sxe.getException() != null)

x = sxe.getException();
x.printStackTrace();

} catch (ParserConfigurationException pce) {
// Parser with specified options can't be built
pce.printStackTrace();

} catch (IOException ioe) {
// I/O error
ioe.printStackTrace();

}

}// main

Instantiate the Factory
Next, add the following highlighted code to obtain an instance of a factory that
can give us a document builder:

public static void main(String argv[])
{

if (argv.length != 1) {
...

}
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();
try {

192
Get a Parser and Parse the File
Now, add the following highlighted code to get an instance of a builder, and use
it to parse the specified file:

try {
DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.parse(new File(argv[0]));

} catch (SAXParseException spe) {

Note: By now, you should be getting the idea that every JAXP application starts in
pretty much the same way. You’re right! Save this version of the file as a template.
You’ll use it later on as the basis for XSLT transformation application.

Run the Program
Throughout most of the DOM tutorial, you’ll use the sample slide shows you
saw in the Chapter 5. In particular, you’ll use slideSample01.xml, a simple
XML file with nothing much in it, and slideSample10.xml, a more complex
example that includes a DTD, processing instructions, entity references, and a
CDATA section.

For instructions on how to compile and run your program, see Compiling and
Running the Program (page 134) from Chapter 5. Substitute DomEcho for Echo

as the name of the program, and you’re ready to roll.

For now, just run the program on slideSample01.xml. If it runs without error,
you have successfully parsed an XML document and constructed a DOM. Con-
gratulations!

Note: You’ll have to take my word for it, for the moment, because at this point you
don’t have any way to display the results. But that feature is coming shortly...

Additional Information
Now that you have successfully read in a DOM, there are one or two more things
you need to know in order to use DocumentBuilder effectively. You need to
know about:

• Configuring the factory

READING XML DATA INTO A DOM 193
• Handling validation errors

Configuring the Factory
By default, the factory returns a nonvalidating parser that knows nothing about
namespaces. To get a validating parser, or one that understands namespaces (or
both), you configure the factory to set either or both of those options using fol-
lowing highlighted commands:

public static void main(String argv[])
{

if (argv.length != 1) {
...

}
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();
factory.setValidating(true);
factory.setNamespaceAware(true);
try {

...

Note: JAXP-conformant parsers are not required to support all combinations of
those options, even though the reference parser does. If you specify an invalid com-
bination of options, the factory generates a ParserConfigurationException when
you attempt to obtain a parser instance.

You’ll learn more about how to use namespaces in Validating with XML
Schema (page 246). To complete this section, though, you’ll want to learn some-
thing about handling validation errors.

Handling Validation Errors
Remember when you were wading through the SAX tutorial in Chapter 5, and
all you really wanted to do was construct a DOM? Well, now that information
begins to pay off.

Recall that the default response to a validation error, as dictated by the SAX stan-
dard, is to do nothing. The JAXP standard requires throwing SAX exceptions, so
you use exactly the same error-handling mechanisms as you use for a SAX appli-
cation. In particular, you use the DocumentBuilder’s setErrorHandler method
to supply it with an object that implements the SAX ErrorHandler interface.

194
Note: DocumentBuilder also has a setEntityResolver method you can use.

The following code uses an anonymous inner class to define that ErrorHandler.
The highlighted code makes sure that validation errors generate an exception.

builder.setErrorHandler(
new org.xml.sax.ErrorHandler() {

// ignore fatal errors (an exception is guaranteed)
public void fatalError(SAXParseException exception)
throws SAXException {
}
// treat validation errors as fatal
public void error(SAXParseException e)
throws SAXParseException
{

throw e;
}

 // dump warnings too
public void warning(SAXParseException err)
throws SAXParseException
{

System.out.println("** Warning"
+ ", line " + err.getLineNumber()
+ ", uri " + err.getSystemId());

System.out.println(" " + err.getMessage());
}

}
);

This code uses an anonymous inner class to generate an instance of an object that
implements the ErrorHandler interface. It’s “anonymous” because it has no
class name. You can think of it as an “ErrorHandler” instance, although techni-
cally it’s a no-name instance that implements the specified interface. The code is
substantially the same as that described in Handling Errors with the Nonvalidat-
ing Parser (page 145). For a more complete background on validation issues,
refer to Using the Validating Parser (page 162).

Looking Ahead
In the next section, you’ll display the DOM structure in a JTree and begin to
explore its structure. For example, you’ll see what entity references and CDATA

DISPLAYING A DOM HIERARCHY 195
sections look like in the DOM. And perhaps most importantly, you’ll see how
text nodes (which contain the actual data) reside under element nodes in a DOM.

Displaying a DOM Hierarchy
To create or manipulate a DOM, it helps to have a clear idea of how the nodes in
a DOM are structured. In this section of the tutorial, you’ll expose the internal
structure of a DOM.

At this point you need a way to expose the nodes in a DOM so that you can see
what it contains. To do that, you’ll convert a DOM into a JTreeModel and dis-
play the full DOM in a JTree. It takes a bit of work, but the end result will be a
diagnostic tool you can use in the future, as well as something you can use to
learn about DOM structure now.

Note: In this section, we build a Swing GUI that can display a DOM. The code is
in DomEcho02.java. If you have no interest in the Swing details, you can skip ahead
to Examining the Structure of a DOM (page 211) and copy DomEcho02.java to pro-
ceed from there. (But be sure to look at Table 6–1, Node Types, page 202.)

Convert DomEcho to a GUI Application
Because the DOM is a tree and because the Swing JTree component is all about
displaying trees, it makes sense to stuff the DOM into a JTree so that you can
look at it. The first step is to hack up the DomEcho program so that it becomes a
GUI application.

Add Import Statements
Start by importing the GUI components you’ll need to set up the application and
display a JTree:

// GUI components and layouts
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTree;

../examples/jaxp/dom/samples/DomEcho02.java

196
Later, you’ll tailor the DOM display to generate a user-friendly version of the
JTree display. When the user selects an element in that tree, you’ll display sub-
elements in an adjacent editor pane. So while you’re doing the setup work here,
import the components you need to set up a divided view (JSplitPane) and to
display the text of the subelements (JEditorPane):

import javax.swing.JSplitPane;
import javax.swing.JEditorPane;

Next, add a few support classes you’ll need to get this thing off the ground:

// GUI support classes
import java.awt.BorderLayout;
import java.awt.Dimension;
import java.awt.Toolkit;
import java.awt.event.WindowEvent;
import java.awt.event.WindowAdapter;

And, import some classes to make a fancy border:

// For creating borders
import javax.swing.border.EmptyBorder;
import javax.swing.border.BevelBorder;
import javax.swing.border.CompoundBorder;

(These are optional. You can skip them and the code that depends on them if you
want to simplify things.)

Create the GUI Framework
The next step is to convert the application into a GUI application. To do that, you
make the static main method create an instance of the class, which will have
become a GUI pane.

Start by converting the class into a GUI pane by extending the Swing JPanel

class:

public class DomEcho02 extends JPanel
{

// Global value so it can be ref'd by the tree adapter
static Document document;
...

DISPLAYING A DOM HIERARCHY 197
While you’re there, define a few constants you’ll use to control window sizes:

public class DomEcho02 extends JPanel
{

// Global value so it can be ref'd by the tree adapter
static Document document;

static final int windowHeight = 460;
static final int leftWidth = 300;
static final int rightWidth = 340;
static final int windowWidth = leftWidth + rightWidth;

Now, in the main method, invoke a method that will create the outer frame that
the GUI pane will sit in:

public static void main(String argv[])
{

...
DocumentBuilderFactory factory ...
try {

DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.parse(new File(argv[0]));
makeFrame();

 } catch (SAXParseException spe) {
...

Next, you’ll define the makeFrame method itself. It contains the standard code to
create a frame, handle the exit condition gracefully, give it an instance of the
main panel, size it, locate it on the screen, and make it visible:

 ...
} // main

public static void makeFrame()
{

// Set up a GUI framework
JFrame frame = new JFrame("DOM Echo");
frame.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e)
{System.exit(0);}

});

// Set up the tree, the views, and display it all
final DomEcho02 echoPanel = new DomEcho02();
frame.getContentPane().add("Center", echoPanel);

198
frame.pack();
Dimension screenSize =

Toolkit.getDefaultToolkit().getScreenSize();
int w = windowWidth + 10;
int h = windowHeight + 10;
frame.setLocation(screenSize.width/3 - w/2,

screenSize.height/2 - h/2);
frame.setSize(w, h);
frame.setVisible(true);

} // makeFrame

Add the Display Components
The only thing left in the effort to convert the program to a GUI application is to
create the class constructor and make it create the panel’s contents. Here is the
constructor:

public class DomEcho02 extends JPanel
{

...
static final int windowWidth = leftWidth + rightWidth;

public DomEcho02()
{
} // Constructor

Here, you use the border classes you imported earlier to make a regal border
(optional):

public DomEcho02()
{

// Make a nice border
EmptyBorder eb = new EmptyBorder(5,5,5,5);
BevelBorder bb = new BevelBorder(BevelBorder.LOWERED);
CompoundBorder cb = new CompoundBorder(eb,bb);
this.setBorder(new CompoundBorder(cb,eb));

} // Constructor

Next, create an empty tree and put it into a JScrollPane so that users can see its
contents as it gets large:

public DomEcho02(
{

...

DISPLAYING A DOM HIERARCHY 199
// Set up the tree
JTree tree = new JTree();

// Build left-side view
JScrollPane treeView = new JScrollPane(tree);
treeView.setPreferredSize(

new Dimension(leftWidth, windowHeight));

} // Constructor

Now create a noneditable JEditPane that will eventually hold the contents
pointed to by selected JTree nodes:

public DomEcho02(
{

....

// Build right-side view
JEditorPane htmlPane = new JEditorPane("text/html","");
htmlPane.setEditable(false);
JScrollPane htmlView = new JScrollPane(htmlPane);
htmlView.setPreferredSize(

new Dimension(rightWidth, windowHeight));

} // Constructor

With the left-side JTree and the right-side JEditorPane constructed, create a
JSplitPane to hold them:

public DomEcho02()
{

....

// Build split-pane view
JSplitPane splitPane =

new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
treeView, htmlView);

splitPane.setContinuousLayout(true);
splitPane.setDividerLocation(leftWidth);
splitPane.setPreferredSize(

new Dimension(windowWidth + 10, windowHeight+10));

} // Constructor

With this code, you set up the JSplitPane with a vertical divider. That produces
a horizontal split between the tree and the editor pane. (It’s really more of a hori-
zontal layout.) You also set the location of the divider so that the tree gets the

200
width it prefers, with the remainder of the window width allocated to the editor
pane.

 Finally, specify the layout for the panel and add the split pane:

public DomEcho02()
{

...

// Add GUI components
this.setLayout(new BorderLayout());
this.add("Center", splitPane);

} // Constructor

Congratulations! The program is now a GUI application. You can run it now to
see what the general layout will look like on the screen. For reference, here is the
completed constructor:

public DomEcho02()
{

// Make a nice border
EmptyBorder eb = new EmptyBorder(5,5,5,5);
BevelBorder bb = new BevelBorder(BevelBorder.LOWERED);
CompoundBorder CB = new CompoundBorder(eb,bb);
this.setBorder(new CompoundBorder(CB,eb));

// Set up the tree
JTree tree = new JTree();

// Build left-side view
JScrollPane treeView = new JScrollPane(tree);
treeView.setPreferredSize(

new Dimension(leftWidth, windowHeight));

// Build right-side view
JEditorPane htmlPane = new JEditorPane("text/html","");
htmlPane.setEditable(false);
JScrollPane htmlView = new JScrollPane(htmlPane);
htmlView.setPreferredSize(

new Dimension(rightWidth, windowHeight));

// Build split-pane view
JSplitPane splitPane =

new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
treeView, htmlView)

splitPane.setContinuousLayout(true);

DISPLAYING A DOM HIERARCHY 201
splitPane.setDividerLocation(leftWidth);
splitPane.setPreferredSize(

new Dimension(windowWidth + 10, windowHeight+10));

// Add GUI components
this.setLayout(new BorderLayout());
this.add("Center", splitPane);

} // Constructor

Create Adapters to Display the DOM in
a JTree
Now that you have a GUI framework to display a JTree in, the next step is to get
the JTree to display the DOM. But a JTree wants to display a TreeModel. A
DOM is a tree, but it’s not a TreeModel. So you’ll create an adapter class that
makes the DOM look like a TreeModel to a JTree.

Now, when the TreeModel passes nodes to the JTree, JTree uses the toString

function of those nodes to get the text to display in the tree. The value returned
by the standard toString function isn’t very pretty, so you’ll wrap the DOM
nodes in an AdapterNode that returns the text we want. What the TreeModel

gives to the JTree, then, will in fact be AdapterNode objects that wrap DOM
nodes.

Note: The classes that follow are defined as inner classes. If you are coding for the
1.1 platform, you will need to define these classes as external classes.

Define the AdapterNode Class
Start by importing the tree, event, and utility classes you’ll need to make this
work:

// For creating a TreeModel
import javax.swing.tree.*;
import javax.swing.event.*;
import java.util.*;

public class DomEcho extends JPanel
{

202
Moving back down to the end of the program, define a set of strings for the node
element types:

 ...
} // makeFrame

// An array of names for DOM node types
// (Array indexes = nodeType() values.)
static final String[] typeName = {

"none",
"Element",
"Attr",
"Text",
"CDATA",
"EntityRef",
"Entity",
"ProcInstr",
"Comment",
"Document",
"DocType",
"DocFragment",
"Notation",

};

} // DomEcho

These are the strings that will be displayed in the JTree. The specification of
these node types can be found in the DOM Level 2 Core Specification at http:/
/www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113, under the specifi-
cation for Node. Table 6–1 is adapted from that specification.

Table 6–1 Node Types

Node nodeName() nodeValue() Attributes nodeType()

 Attr
Name of
attribute

Value of
attribute

null 2

 CDATASection
#cdata-sec-
tion

Content of
the CDATA
section

null 4

DISPLAYING A DOM HIERARCHY 203
Note: Print this table and keep it handy! You need it when working with the DOM,
because all these types are intermixed in a DOM tree. So your code is forever ask-
ing, “Is this the kind of node I’m interested in?”

Next, define the AdapterNode wrapper for DOM nodes as an inner class:

static final String[] typeName = {
...

};

public class AdapterNode
{

org.w3c.dom.Node domNode;

Comment #comment
Content of the
comment

null 8

Document #document null null 9

DocumentFragment
#document-
fragment

null null 11

DocumentType
Document
type name

null null 10

Element Tag name null NamedNodeMap 1

Entity Entity name null null 6

EntityReference
Name of
entity refer-
enced

null null 5

Notation Notation name null null 12

ProcessingIn-
struction

Target
Entire content
excluding the
target

null 7

Text #text
Content of the
text node

null 3

Table 6–1 Node Types (Continued)

Node nodeName() nodeValue() Attributes nodeType()

204
// Construct an Adapter node from a DOM node
public AdapterNode(org.w3c.dom.Node node) {

domNode = node;
}

// Return a string that identifies this node
// in the tree
public String toString() {

String s = typeName[domNode.getNodeType()];
String nodeName = domNode.getNodeName();
if (! nodeName.startsWith("#")) {

s += ": " + nodeName;
}
if (domNode.getNodeValue() != null) {

if (s.startsWith("ProcInstr"))
s += ", ";

else
s += ": ";

// Trim the value to get rid of NL's
// at the front
String t = domNode.getNodeValue().trim();
int x = t.indexOf("\n");
if (x >= 0) t = t.substring(0, x);
s += t;

}
return s;

}

} // AdapterNode

} // DomEcho

This class declares a variable to hold the DOM node and requires it to be speci-
fied as a constructor argument. It then defines the toString operation, which
returns the node type from the String array, and then adds more information
from the node to further identify it.

As you can see Table 6–1, every node has a type, a name, and a value, which
may or may not be empty. Where the node name starts with #, that field dupli-
cates the node type, so there is no point in including it. That explains the lines
that read

if (! nodeName.startsWith("#")) {
s += ": " + nodeName;

}

DISPLAYING A DOM HIERARCHY 205
The remainder of the toString method deserves a couple of notes. For example
these lines merely provide a little syntactic sugar:

if (s.startsWith("ProcInstr"))
s += ", ";

else
s += ": ";

The type field for processing instructions ends with a colon (:) anyway, so those
lines keep the code from doubling the colon.

The other interesting lines are

String t = domNode.getNodeValue().trim();
int x = t.indexOf("\n");
if (x >= 0) t = t.substring(0, x);
s += t;

These lines trim the value field down to the first newline (linefeed) character in
the field. If you omit these lines, you will see some funny characters (square
boxes, typically) in the JTree.

Note: Recall that XML stipulates that all line endings are normalized to newlines,
regardless of the system the data comes from. That makes programming quite a bit
simpler.

Wrapping a DomNode and returning the desired string are the AdapterNode’s
major functions. But because the TreeModel adapter must answer questions such
as “How many children does this node have?” and must satisfy commands such
as “Give me this node’s Nth child,” it will be helpful to define a few additional
utility methods. (The adapter can always access the DOM node and get that
information for itself, but this way things are more encapsulated.)

206
Next, add the following highlighted code to return the index of a specified child,
the child that corresponds to a given index, and the count of child nodes:

public class AdapterNode
{

...
public String toString() {

...
}

public int index(AdapterNode child) {
//System.err.println("Looking for index of " + child);
int count = childCount();
for (int i=0; i<count; i++) {

AdapterNode n = this.child(i);
if (child == n) return i;

}
return -1; // Should never get here.

}

public AdapterNode child(int searchIndex) {
//Note: JTree index is zero-based.
org.w3c.dom.Node node =

domNode.getChildNodes().item(searchIndex);
return new AdapterNode(node);

}

public int childCount() {
return domNode.getChildNodes().getLength();

}

} // AdapterNode

} // DomEcho

Note: During development, it was only after I started writing the TreeModel adapter
that I realized these were needed and went back to add them. In a moment, you’ll
see why.

Define the TreeModel Adapter
Now, at last, you are ready to write the TreeModel adapter. One of the really nice
things about the JTree model is the ease with which you can convert an existing
tree for display. One reason for that is the clear separation between the display-

DISPLAYING A DOM HIERARCHY 207
able view, which JTree uses, and the modifiable view, which the application
uses. For more on that separation, see “Understanding the TreeModel” at http:/
/java.sun.com/products/jfc/tsc/articles/jtree/index.html. For now,
the important point is that to satisfy the TreeModel interface we need only (a)
provide methods to access and report on children and (b) register the appropriate
JTree listener so that it knows to update its view when the underlying model
changes.

Add the following highlighted code to create the TreeModel adapter and specify
the child-processing methods:

...
} // AdapterNode

// This adapter converts the current Document (a DOM) into
// a JTree model.
public class DomToTreeModelAdapter implements
javax.swing.tree.TreeModel
{

// Basic TreeModel operations
public Object getRoot() {

//System.err.println("Returning root: " +document);
return new AdapterNode(document);

}

public boolean isLeaf(Object aNode) {
// Determines whether the icon shows up to the left.
// Return true for any node with no children
AdapterNode node = (AdapterNode) aNode;
if (node.childCount() > 0) return false;
return true;

}

public int getChildCount(Object parent)
AdapterNode node = (AdapterNode) parent;
return node.childCount();

}

public Object getChild(Object parent, int index) {
AdapterNode node = (AdapterNode) parent;
return node.child(index);

}

public int getIndexOfChild(Object parent, Object child) {
AdapterNode node = (AdapterNode) parent;
return node.index((AdapterNode) child);

}

http://java.sun.com/products/jfc/tsc/articles/jtree/index.html
http://java.sun.com/products/jfc/tsc/articles/jtree/index.html

208
public void valueForPathChanged(
TreePath path, Object newValue)

{
// Null. We won't be making changes in the GUI
// If we did, we would ensure the new value was
// really new and then fire a TreeNodesChanged event.

}

} // DomToTreeModelAdapter

} // DomEcho

In this code, the getRoot method returns the root node of the DOM, wrapped as
an AdapterNode object. From this point on, all nodes returned by the adapter
will be AdapterNodes that wrap DOM nodes. By the same token, whenever the
JTree asks for the child of a given parent, the number of children that parent has,
and so on, the JTree will pass us an AdapterNode. We know that, because we
control every node the JTree sees, starting with the root node.

JTree uses the isLeaf method to determine whether or not to display a clickable
expand/contract icon to the left of the node, so that method returns true only if
the node has children. In this method, we see the cast from the generic object
JTree sends us to the AdapterNode object we know it must be. We know it is
sending us an adapter object, but the interface, to be general, defines objects, so
we must do the casts.

The next three methods return the number of children for a given node, the child
that lives at a given index, and the index of a given child, respectively. That’s all
straightforward.

The last method is invoked when the user changes a value stored in the JTree. In
this application, we won’t support that. But if we did, the application would have
to make the change to the underlying model and then inform any listeners that a
change has occurred. (The JTree might not be the only listener. In many applica-
tions, it isn’t.)

To inform listeners that a change has occurred, you’ll need the ability to register
them. That brings us to the last two methods required to implement the Tree-

Model interface. Add the following highlighted code to define them:

public class DomToTreeModelAdapter ...
{

...
public void valueForPathChanged(

TreePath path, Object newValue)

DISPLAYING A DOM HIERARCHY 209
{
...

}
private Vector listenerList = new Vector();
public void addTreeModelListener(

TreeModelListener listener) {
if (listener != null
&& ! listenerList.contains(listener)) {

listenerList.addElement(listener);
}

}

public void removeTreeModelListener(
TreeModelListener listener)

{
if (listener != null) {

listenerList.removeElement(listener);
}

}

} // DomToTreeModelAdapter

Because this application won’t be making changes to the tree, these methods will
go unused for now. However, they’ll be there in the future when you need them.

Note: This example uses Vector so that it will work with 1.1 applications. If cod-
ing for 1.2 or later, though, I’d use the excellent collections framework instead:
private LinkedList listenerList = new LinkedList();

The operations on the List are then add and remove. To iterate over the list, as in
the following operations, you would use

Iterator it = listenerList.iterator();
while (it.hasNext()) {

TreeModelListener listener = (TreeModelListener) it.next();
...

}

Here, too, are some optional methods you won’t use in this application. At this
point, though, you have constructed a reasonable template for a TreeModel

adapter. In the interest of completeness, you might want to add the following

210
highlighted code. You can then invoke them whenever you need to notify JTree

listeners of a change:

public void removeTreeModelListener(
TreeModelListener listener)

{
...

}

public void fireTreeNodesChanged(TreeModelEvent e) {
Enumeration listeners = listenerList.elements();
while (listeners.hasMoreElements()) {

TreeModelListener listener =
(TreeModelListener) listeners.nextElement();

listener.treeNodesChanged(e);
}

}

public void fireTreeNodesInserted(TreeModelEvent e) {
Enumeration listeners = listenerList.elements();
while (listeners.hasMoreElements()) {

TreeModelListener listener =
(TreeModelListener) listeners.nextElement();

listener.treeNodesInserted(e);
}

}

public void fireTreeNodesRemoved(TreeModelEvent e) {
Enumeration listeners = listenerList.elements();
while (listeners.hasMoreElements()) {

TreeModelListener listener =
(TreeModelListener) listeners.nextElement();

listener.treeNodesRemoved(e);
}

}

public void fireTreeStructureChanged(TreeModelEvent e) {
Enumeration listeners = listenerList.elements();
while (listeners.hasMoreElements()) {

TreeModelListener listener =
(TreeModelListener) listeners.nextElement();

listener.treeStructureChanged(e);
}

}

} // DomToTreeModelAdapter

EXAMINING THE STRUCTURE OF A DOM 211
Note: These methods are taken from the TreeModelSupport class described in
“Understanding the TreeModel.” That architecture was produced by Tom Santos
and Steve Wilson and is a lot more elegant than the quick hack going on here. It
seemed worthwhile to put them here, though, so that they would be immediately at
hand when and if they’re needed.

Finishing Up
At this point, you are basically finished constructing the GUI. All you need to do
is to jump back to the constructor and add the code to construct an adapter and
deliver it to the JTree as the TreeModel:

// Set up the tree
JTree tree = new JTree(new DomToTreeModelAdapter());

You can now compile and run the code on an XML file. In the next section, you
will do that, as well as explore the DOM structures that result.

Examining the Structure of a DOM
In this section, you’ll use the GUIfied DomEcho application created in the pre-
ceding section to visually examine a DOM. You’ll see what nodes make up the
DOM and how they are arranged. With the understanding you acquire, you’ll be
well prepared to construct and modify Document Object Model structures in the
future.

Displaying a Simple Tree
We’ll start by displaying a simple file so that you get an idea of basic DOM
structure. Then we’ll look at the structure that results when you include some
advanced XML elements.

Note: The code used to create the figures in this section is in DomEcho02.java. The
file displayed is slideSample01.xml. (The browsable version is slideSample01-

xml.html.)

../examples/jaxp/dom/samples/DomEcho02.java
../examples/jaxp/dom/samples/slideSample01.xml
../examples/jaxp/dom/samples/slideSample01-xml.html
../examples/jaxp/dom/samples/slideSample01-xml.html

212
Figure 6–1 shows the tree you see when you run the DomEcho program on the
first XML file you created, slideSample01.xml.

Figure 6–1 Document, Comment, and Element Nodes Displayed

Recall that the first bit of text displayed for each node is the element type. After
that comes the element name, if any, and then the element value. This view
shows three element types: Document, Comment, and Element. There is only one
node of Document type for the whole tree, the root node. The Comment node dis-
plays the value attribute, and the Element node displays the element name,
slideshow.

Compare Figure 6–1 with the code in the AdapterNode’s toString method to
see whether the name or the value is being displayed for a particular node. If you
need to make it more clear, modify the program to indicate which property is
being displayed (for example, with N: name, V: value).

EXAMINING THE STRUCTURE OF A DOM 213
Expanding the slideshow element brings up the display shown in Figure 6–2.

Figure 6–2 Element Node Expanded, No Attribute Nodes Showing

Here, you can see the Text nodes and Comment nodes, which are interspersed
between slide elements. The empty Text nodes exist because there is no DTD
to tell the parser that no text exists. (Generally, the vast majority of nodes in a
DOM tree will be Element and Text nodes.)

Note: Important! Text nodes exist under element nodes in a DOM, and data is
always stored in text nodes. Perhaps the most common error in DOM processing is
to navigate to an element node and expect it to contain the data that is stored in that
element. Not so! Even the simplest element node has a text node under it that con-
tains the data. For example, given <size>12</size>, there is an element node
(size), and a text node under it that contains the actual data (12).

Notably absent from this picture are the Attribute nodes. An inspection of the
table in org.w3c.dom.Node shows that there is indeed an Attribute node type.
But they are not included as children in the DOM hierarchy. They are instead
obtained via the Node interface getAttributes method.

214
Note: The display of the text nodes is the reason for including the following lines
in the AdapterNode’s toString method. If you remove them, you’ll see the funny
characters (typically square blocks) that are generated by the newline characters
that are in the text.

String t = domNode.getNodeValue().trim();

int x = t.indexOf("\n");

if (x >= 0) t = t.substring(0, x);

s += t;

Displaying a More Complex Tree
Here, you’ll display the example XML file you created at the end of Chapter 5 to
see what entity references, processing instructions, and CDATA sections look like
in the DOM.

Note: The file displayed in this section is slideSample10.xml. The
slideSample10.xml file references slideshow3.dtd, which, in turn, references
copyright.xml and a (very simplistic) xhtml.dtd. (The browsable versions are
slideSample10-xml.html, slideshow3-dtd.html, copyright-xml.html, and
xhtml-dtd.html.)

../examples/jaxp/dom/samples/slideSample10.xml
../examples/jaxp/dom/samples/slideSample10.xml
../examples/jaxp/dom/samples/slideshow3.dtd
../examples/jaxp/dom/samples/copyright.xml
../examples/jaxp/dom/samples/xhtml.dtd
../examples/jaxp/dom/samples/slideSample10-xml.html
../examples/jaxp/dom/samples/slideshow3-dtd.html
../examples/jaxp/dom/samples/copyright-xml.html
../examples/jaxp/dom/samples/xhtml-dtd.html

EXAMINING THE STRUCTURE OF A DOM 215
Figure 6–3 shows the result of running the DomEcho application on
slideSample10.xml, which includes a DOCTYPE entry that identifies the docu-
ment’s DTD.

Figure 6–3 DocType Node Displayed

The DocType interface is actually an extension of w3c.org.dom.Node. It defines
a getEntities method, which you use to obtain Entity nodes—the nodes that
define entities such as the product entity, which has the value WonderWidgets.
Like Attribute nodes, Entity nodes do not appear as children of DOM nodes.

216
When you expand the slideshow node, you get the display shown in Figure 6–4.

Figure 6–4 Processing Instruction Node Displayed

Here, the processing instruction node is highlighted, showing that those nodes do
appear in the tree. The name property contains the target specification, which
identifies the application that the instruction is directed to. The value property
contains the text of the instruction.

Note that empty text nodes are also shown here, even though the DTD specifies
that a slideshow can contain slide elements only, never text. Logically, then,
you might think that these nodes would not appear. (When this file was run
through the SAX parser, those elements generated ignorableWhitespace events
rather than character events.)

EXAMINING THE STRUCTURE OF A DOM 217
Moving down to the second slide element and opening the item element under
it brings up the display shown in Figure 6–5.

Figure 6–5 JAXP 1.2 DOM: Item Text Returned from an Entity Reference

Here, you can see that a text node containing the copyright text (rather than the
entity reference that points to it) was inserted into the DOM.

For most applications, the insertion of the text is exactly what you want. In that
way, when you’re looking for the text under a node, you don’t have to worry
about any entity references it might contain. For other applications, though, you
may need the ability to reconstruct the original XML. For example, an editor

218
application would need to save the result of user modifications without throwing
away entity references in the process.

Various DocumentBuilderFactory APIs give you control over the kind of DOM
structure that is created. For example, add the following highlighted line to pro-
duce the DOM structure shown in Figure 6–6.

public static void main(String argv[])
{

...
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();
factory.setExpandEntityReferences(false);
...

Figure 6–6 JAXP 1.1 in 1.4 Platform: Entity Reference Node Displayed

Here, the entity reference node is highlighted. Note that the entity reference con-
tains multiple nodes under it. This example shows only comment and text nodes,
but the entity could conceivably contain other element nodes.

EXAMINING THE STRUCTURE OF A DOM 219
Moving down to the last item element under the last slide brings up the display
shown in Figure 6–7.

Figure 6–7 CDATA Node Displayed

Here, the CDATA node is highlighted. Note that there are no nodes under it.
Because a CDATA section is entirely uninterpreted, all its contents are contained
in the node’s value property.

Summary of Lexical Controls
Lexical information is the information you need to reconstruct the original syn-
tax of an XML document. As discussed earlier, preserving lexical information is
important in editing applications, where you want to save a document that is an
accurate reflection of the original—complete with comments, entity references,
and any CDATA sections it may have included at the outset.

Most applications, however, are concerned only with the content of the XML
structures. They can afford to ignore comments, and they don’t care whether data
was coded in a CDATA section or as plain text, or whether it included an entity ref-
erence. For such applications, a minimum of lexical information is desirable,

220
because it simplifies the number and kind of DOM nodes that the application
must be prepared to examine.

The following DocumentBuilderFactory methods give you control over the lex-
ical information you see in the DOM:

• setCoalescing(): To convert CDATA nodes to Text nodes and append to
an adjacent Text node (if any)

• setExpandEntityReferences(): To expand entity reference nodes

• setIgnoringComments(): To ignore comments

• setIgnoringElementContentWhitespace(): To ignore whitespace that
is not a significant part of element content

The default values for all these properties is false, which preserves all the lexi-
cal information necessary to reconstruct the incoming document in its original
form. Setting them to true lets you construct the simplest possible DOM so that
the application can focus on the data’s semantic content without having to worry
about lexical syntax details. Table 6–2 summarizes the effects of the settings.

Finishing Up
At this point, you have seen most of the nodes you will ever encounter in a DOM
tree. There are one or two more that we’ll mention in the next section, but you
now know what you need to know to create or modify a DOM structure.

Table 6–2 Configuring DocumentBuilderFactory

API Preserve Lexical Info Focus on Content

setCoalescing() false true

setExpandEntityRefer-
ences()

false true

setIgnoringComments() false true

setIgnoringElement
ContentWhitespace()

false true

CONSTRUCTING A USER-FRIENDLY JTREE FROM A DOM 221
Constructing a User-Friendly JTree from
a DOM

Now that you know what a DOM looks like internally, you’ll be better prepared
to modify a DOM or construct one from scratch. Before we go on to that,
though, this section presents some modifications to the JTreeModel that let you
produce a more user-friendly version of the JTree suitable for use in a GUI.

Note: In this section, we modify the Swing GUI to improve the display, culminating
in DomEcho04.java. If you have no interest in the Swing details, you can skip ahead
to Creating and Manipulating a DOM (page 237) and use DomEcho04.java to
proceed from there.

Compressing the Tree View
Displaying the DOM in tree form is all very well for experimenting and for
learning how a DOM works. But it’s not the kind of friendly display that most
users want to see in a JTree. However, it turns out that very few modifications
are needed to turn the TreeModel adapter into something that presents a user-
friendly display. In this section, you’ll make those modifications.

Note: The code discussed in this section is in DomEcho03.java. The file the program
operates on is slideSample01.xml. (The browsable version is slideSample01-

xml.html.)

Make the Operation Selectable
When you modify the adapter, you’re going to compress the view of the DOM,
eliminating all but the nodes you really want to display. Start by defining a bool-

../examples/jaxp/dom/samples/DomEcho03.java
../examples/jaxp/dom/samples/DomEcho04.java
../examples/jaxp/dom/samples/slideSample01.xml
../examples/jaxp/dom/samples/slideSample01-xml.html
../examples/jaxp/dom/samples/slideSample01-xml.html
../examples/jaxp/dom/samples/DomEcho04.java

222
ean variable that controls whether you want the compressed or the uncompressed
view of the DOM:

public class DomEcho extends JPanel
{

static Document document;
boolean compress = true;

 static final int windowHeight = 460;
 ...

Identify Tree Nodes

The next step is to identify the nodes you want to show up in the tree. To do that,
add the following highlighted code:

...
import org.w3c.dom.Document;
import org.w3c.dom.DOMException;
import org.w3c.dom.Node;

public class DomEcho extends JPanel
{

...

public static void makeFrame() {
...

}

// An array of names for DOM node type
static final String[] typeName = {

...
};

static final int ELEMENT_TYPE = Node.ELEMENT_NODE;

// The list of elements to display in the tree
static String[] treeElementNames = {

"slideshow",
"slide",
"title", // For slide show #1
"slide-title", // For slide show #10
"item",

};

boolean treeElement(String elementName) {
for (int i=0; i<treeElementNames.length; i++) {

CONSTRUCTING A USER-FRIENDLY JTREE FROM A DOM 223
if (elementName.equals(treeElementNames[i]))
return true;

}
return false;

}

This code sets up a constant you can use to identify the ELEMENT node type,
declares the names of the elements you want in the tree, and creates a method
that tells whether or not a given element name is a tree element. Because
slideSample01.xml has title elements and because slideSample10.xml has
slide-title elements, you set up the contents of this array so that it will work
with either data file.

Note: The mechanism you are creating here depends on the fact that structure nodes
like slideshow and slide never contain text, whereas text usually does appear in
content nodes like item. Although those “content” nodes may contain subelements
in slideShow10.xml, the DTD constrains those subelements to be XHTML nodes.
Because they are XHTML nodes (an XML version of HTML that is constrained to
be well formed), the entire substructure under an item node can be combined into
a single string and displayed in the htmlPane that makes up the other half of the
application window. In the second part of this section, you’ll do that concatenation,
displaying the text and XHTML as content in the htmlPane.

Although you could simply reference the node types defined in the class
org.w3c.dom.Node, defining the ELEMENT_TYPE constant keeps the code a little
more readable. Each node in the DOM has a name, a type, and (potentially) a list
of subnodes. The functions that return these values are getNodeName(), getNo-
deType, and getChildNodes(). Defining our own constants will let us write
code like this:

Node node = nodeList.item(i);
int type = node.getNodeType();
if (type == ELEMENT_TYPE) {

....

As a stylistic choice, the extra constants help us keep the reader (and ourselves!)
clear about what we’re doing. Here, it is fairly clear when we are dealing with a
node object, and when we are dealing with a type constant. Otherwise, it would
be tempting to code something like if (node == ELEMENT_NODE), which of
course would not work at all.

224
Control Node Visibility
The next step is to modify the AdapterNode’s childCount function so that it
counts only tree element nodes—nodes that are designated as displayable in the
JTree. Make the following highlighted modifications to do that:

public class DomEcho extends JPanel
{

...
public class AdapterNode
{

...
public AdapterNode child(int searchIndex) {

...
}
public int childCount() {

if (!compress) {
// Indent this
return domNode.getChildNodes().getLength();

}
int count = 0;
for (int i=0;

i<domNode.getChildNodes().getLength(); i++)
{

org.w3c.dom.Node node =
domNode.getChildNodes().item(i);

if (node.getNodeType() == ELEMENT_TYPE
&& treeElement(node.getNodeName()))
{

++count;
}

}
return count;

}
} // AdapterNode

The only tricky part about this code is checking to make sure that the node is an
element node before comparing the node. The DocType node makes that neces-
sary, because it has the same name (slideshow) as the slideshow element.

CONSTRUCTING A USER-FRIENDLY JTREE FROM A DOM 225
Control Child Access
Finally, you need to modify the AdapterNode’s child function to return the Nth
item from the list of displayable nodes, rather than the Nth item from all nodes in
the list. Add the following highlighted code to do that:

public class DomEcho extends JPanel
{

...
public class AdapterNode
{

...
public int index(AdapterNode child) {

...
}
public AdapterNode child(int searchIndex) {
//Note: JTree index is zero-based.
org.w3c.dom.Node node =

domNode.getChildNodes()Item(searchIndex);
if (compress) {

// Return Nth displayable node
int elementNodeIndex = 0;
for (int i=0;

i<domNode.getChildNodes().getLength(); i++)
{

node = domNode.getChildNodes()Item(i);
if (node.getNodeType() == ELEMENT_TYPE
&& treeElement(node.getNodeName())
&& elementNodeIndex++ == searchIndex) {

break;
}

}
}
return new AdapterNode(node);

} // child
} // AdapterNode

There’s nothing special going on here. It’s a slightly modified version of the
same logic you used when returning the child count.

Check the Results
When you compile and run this version of the application on
slideSample01.xml and then expand the nodes in the tree, you see the results

226
shown in Figure 6–8. The only nodes remaining in the tree are the high-level
“structure” nodes.

Figure 6–8 Tree View with a Collapsed Hierarchy

Extra Credit
The way the application stands now, the information that tells the application
how to compress the tree for display is hardcoded. Here are some ways you can
consider extending the application:

• Use a command-line argument: Whether you compress or don’t compress
the tree could be determined by a command-line argument rather than
being a hardcoded Boolean variable. On the other hand, the list of elements
that goes into the tree is still hardcoded, so maybe that option doesn’t make
much sense, unless...

• Read the treeElement list from a file: If you read the list of elements to
include in the tree from an external file, that would make the whole appli-
cation command-driven. That would be good. But wouldn’t it be really
nice to derive that information from the DTD or schema instead? So you
might want to consider...

• Automatically build the list: Watch out, though! As things stand right now,
there are no standard DTD parsers! If you use a DTD, then, you’ll need to
write your parser to make sense out of its somewhat arcane syntax. You’ll

CONSTRUCTING A USER-FRIENDLY JTREE FROM A DOM 227
probably have better luck if you use a schema instead of a DTD. The nice
thing about schemas is that they use XML syntax, so you can use an XML
parser to read the schema in the same way you use it to read any other XML
file.

As you analyze the schema, note that the JTree-displayable structure nodes
are those that have no text, whereas the content nodes may contain text and,
optionally, XHTML subnodes. That distinction works for this example and
will likely work for a large body of real world applications. It’s easy to con-
struct cases that will create a problem, though, so you’ll have to be on the
lookout for schema/DTD specifications that embed non-XHTML elements
in text-capable nodes, and take the appropriate action.

Acting on Tree Selections
Now that the tree is being displayed properly, the next step is to concatenate the
subtrees under selected nodes to display them in the htmlPane. While you’re at
it, you’ll use the concatenated text to put node-identifying information back in
the JTree.

Note: The code discussed in this section is in DomEcho04.java.

Identify Node Types
When you concatenate the subnodes under an element, the processing you do
depends on the type of node. So the first thing to do is to define constants for the
remaining node types. Add the following highlighted code:

public class DomEcho extends JPanel
{

...
// An array of names for DOM node types
static final String[] typeName = {

...
};
static final int ELEMENT_TYPE = 1;
static final int ATTR_TYPE = Node.ATTRIBUTE_NODE;
static final int TEXT_TYPE = Node.TEXT_NODE;
static final int CDATA_TYPE = Node.CDATA_SECTION_NODE;
static final int ENTITYREF_TYPE =

 Node.ENTITY_REFERENCE_NODE;

../examples/jaxp/dom/samples/DomEcho04.java

228
static final int ENTITY_TYPE = Node.ENTITY_NODE;
static final int PROCINSTR_TYPE =

 Node.PROCESSING_INSTRUCTION_NODE;
static final int COMMENT_TYPE = Node.COMMENT_NODE;
static final int DOCUMENT_TYPE = Node.DOCUMENT_NODE;
static final int DOCTYPE_TYPE = Node.DOCUMENT_TYPE_NODE;
static final int DOCFRAG_TYPE = Node.DOCUMENT_FRAGMENT_NODE;
static final int NOTATION_TYPE = Node.NOTATION_NODE;

Concatenate Subnodes to Define Element
Content
Next, you define the method that concatenates the text and subnodes for an ele-
ment and returns it as the element’s content. To define the content method,
you’ll add the following big chunk of highlighted code, but this is the last big
chunk of code in the DOM tutorial.

public class DomEcho extends JPanel
{

...
public class AdapterNode
{

...
public String toString() {
...
}
public String content() {

String s = "";
org.w3c.dom.NodeList nodeList =

domNode.getChildNodes();
for (int i=0; i<nodeList.getLength(); i++) {

org.w3c.dom.Node node = nodeList.item(i);
int type = node.getNodeType();
AdapterNode adpNode = new AdapterNode(node);
if (type == ELEMENT_TYPE) {

if (treeElement(node.getNodeName()))
continue;

s += "<" + node.getNodeName() + ">";
s += adpNode.content();
s += "</" + node.getNodeName() + ">";

} else if (type == TEXT_TYPE) {
s += node.getNodeValue();

} else if (type == ENTITYREF_TYPE) {
// The content is in the TEXT node under it
s += adpNode.content();

} else if (type == CDATA_TYPE) {

CONSTRUCTING A USER-FRIENDLY JTREE FROM A DOM 229
StringBuffer sb = new StringBuffer(
node.getNodeValue());

for (int j=0; j<sb.length(); j++) {
if (sb.charAt(j) == '<') {

sb.setCharAt(j, '&');
sb.insert(j+1, "lt;");
j += 3;

} else if (sb.charAt(j) == '&') {
sb.setCharAt(j, '&');
sb.insert(j+1, "amp;");
j += 4;

}
}
s += "<pre>" + sb + "</pre>";

}
}
return s;

}
...

} // AdapterNode

Note: This code collapses EntityRef nodes, as inserted by the JAXP 1.1 parser that
is included in the Java 1.4 platform. With JAXP 1.2, that portion of the code is not
necessary because entity references are converted to text nodes by the parser. Other
parsers may insert such nodes, however, so including this code future proofs your
application, should you use a different parser in the future.

Although this code is not the most efficient that anyone ever wrote, it works and
will do fine for our purposes. In this code, you are recognizing and dealing with
the following data types:

Element
For elements with names such as the XHTML em node, you return the node’s
content sandwiched between the appropriate and tags. However,
when processing the content for the slideshow element, for example, you
don’t include tags for the slide elements it contains, so when returning a
node’s content, you skip any subelements that are themselves displayed in
the tree.

Text
No surprise here. For a text node, you simply return the node’s value.

Entity Reference
Unlike CDATA nodes, entity references can contain multiple subelements. So
the strategy here is to return the concatenation of those subelements.

230
CDATA
As with a text node, you return the node’s value. However, because the text
in this case may contain angle brackets and ampersands, you need to convert
them to a form that displays properly in an HTML pane. Unlike the XML
CDATA tag, the HTML <pre> tag does not prevent the parsing of character-
format tags, break tags, and the like. So you must convert left angle brackets
(<) and ampersands (&) to get them to display properly.

On the other hand, there are quite a few node types you are not processing with
the preceding code. It’s worth a moment to examine them and understand why:

Attribute
These nodes do not appear in the DOM but are obtained by invoking getAt-

tributes on element nodes.

Entity
These nodes also do not appear in the DOM. They are obtained by invoking
getEntities on DocType nodes.

Processing Instruction
These nodes don’t contain displayable data.

Comment
Ditto. Nothing you want to display here.

Document
This is the root node for the DOM. There’s no data to display for that.

DocType
The DocType node contains the DTD specification, with or without external
pointers. It appears only under the root node and has no data to display in the
tree.

Document Fragment
This node is equivalent to a document node. It’s a root node that the DOM
specification intends for holding intermediate results during operations such
as cut-and-paste. As with a document node, there’s no data to display.

Notation
We’re just ignoring this one. These nodes are used to include binary data in
the DOM. As discussed earlier in Choosing Your Parser
Implementation (page 161) and Using the DTDHandler and
EntityResolver (page 177), the MIME types (in conjunction with
namespaces) make a better mechanism for that.

CONSTRUCTING A USER-FRIENDLY JTREE FROM A DOM 231
Display the Content in the JTree
With the content concatenation out of the way, only a few small programming
steps remain. The first is to modify toString so that it uses the first line of the
node’s content for identifying information. Add the following highlighted code:

public class DomEcho extends JPanel
{

...
public class AdapterNode
{

...
public String toString() {

...
if (! nodeName.startsWith("#")) {

s += ": " + nodeName;
}
if (compress) {

String t = content().trim();
int x = t.indexOf("\n”);
if (x >= 0) t = t.substring(0, x);
s += " " + t;
return s;

}
if (domNode.getNodeValue() != null) {

...
}
return s;

}

Wire the JTree to the JEditorPane
Returning now to the application’s constructor, create a tree selection listener
and use it to wire the JTree to the JEditorPane:

public class DomEcho extends JPanel
{

...
public DomEcho()
{

...
// Build right-side view
JEditorPane htmlPane = new JEditorPane("text/html","");
htmlPane.setEditable(false);
JScrollPane htmlView = new JScrollPane(htmlPane);
htmlView.setPreferredSize(

232
new Dimension(rightWidth, windowHeight));

tree.addTreeSelectionListener(
new TreeSelectionListener() {

public void valueChanged(TreeSelectionEvent e)
{

TreePath p = e.getNewLeadSelectionPath();
if (p != null) {

AdapterNode adpNode =
(AdapterNode)

p.getLastPathComponent();
htmlPane.setText(adpNode.content());

}
}

}
);

Now, when a JTree node is selected, its contents are delivered to the htmlPane.

Note: The TreeSelectionListener in this example is created using an anonymous
inner-class adapter. If you are programming for the 1.1 version of the platform,
you’ll need to define an external class for this purpose.

If you compile this version of the application, you’ll discover immediately that
the htmlPane needs to be specified as final to be referenced in an inner class,
so add the following highlighted keyword:

public DomEcho04()
{

...
// Build right-side view
final JEditorPane htmlPane = new

JEditorPane("text/html","");
htmlPane.setEditable(false);
JScrollPane htmlView = new JScrollPane(htmlPane);
htmlView.setPreferredSize(

new Dimension(rightWidth, windowHeight));

Run the Application
When you compile the application and run it on slideSample10.xml (the
browsable version is slideSample10-xml.html), you get a display like that

../examples/jaxp/dom/samples/slideSample10.xml
../examples/jaxp/dom/samples/slideSample10-xml.html

CONSTRUCTING A USER-FRIENDLY JTREE FROM A DOM 233
shown in Figure 6–9. Expanding the hierarchy shows that the JTree now
includes identifying text for a node whenever possible.

Figure 6–9 Collapsed Hierarchy Showing Text in Nodes

234
Selecting an item that includes XHTML subelements produces a display like that
shown in Figure 6–10:

Figure 6–10 Node with Tag Selected

CONSTRUCTING A USER-FRIENDLY JTREE FROM A DOM 235
Selecting a node that contains an entity reference causes the entity text to be
included, as shown in Figure 6–11:

Figure 6–11 Node with Entity Reference Selected

236
Finally, selecting a node that includes a CDATA section produces results like those
shown in Figure 6–12:

Figure 6–12 Node with CDATA Component Selected

Extra Credit
Now that you have the application working, here are some ways you might think
about extending it in the future:

• Use title text to identify slides: Special case the slide element so that the
contents of the title node are used as the identifying text. When selected,
convert the title node’s contents to a centered H1 tag, and ignore the title
element when constructing the tree.

• Convert item elements to lists: Remove item elements from the JTree and
convert them to HTML lists using , , and tags, including
them in the slide’s content when the slide is selected.

CREATING AND MANIPULATING A DOM 237
Handling Modifications
A full discussion of the mechanisms for modifying the JTree’s underlying data
model is beyond the scope of this tutorial. However, a few words on the subject
are in order.

Most importantly, note that if you allow the user to modify the structure by
manipulating the JTree, you must take the compression into account when you
figure out where to apply the change. For example, if you are displaying text in
the tree and the user modifies that, the changes would have to be applied to text
subelements and perhaps would require a rearrangement of the XHTML subtree.

When you make those changes, you’ll need to understand more about the inter-
actions between a JTree, its TreeModel, and an underlying data model. That
subject is covered in depth in the Swing Connection article, “Understanding the
TreeModel” at http://java.sun.com/products/jfc/tsc/articles/jtree/

index.html.

Finishing Up
You now understand what there is to know about the structure of a DOM, and
you know how to adapt a DOM to create a user-friendly display in a JTree. It
has taken quite a bit of coding, but in return you have obtained valuable tools for
exposing a DOM’s structure and a template for GUI applications. In the next sec-
tion, you’ll make a couple of minor modifications to the code that turn the appli-
cation into a vehicle for experimentation, and then you’ll experiment with
building and manipulating a DOM.

Creating and Manipulating a DOM
By now, you understand the structure of the nodes that make up a DOM. Creat-
ing a DOM is easy. This section of the DOM tutorial is going to take much less
work than anything you’ve seen up to now. All the foregoing work, however, has
generated the basic understanding that will make this section a piece of cake.

Obtaining a DOM from the Factory
In this version of the application, you’ll still create a document builder factory,
but this time you’ll tell it to create a new DOM instead of parsing an existing

http://java.sun.com/products/jfc/tsc/articles/jtree/
http://java.sun.com/products/jfc/tsc/articles/jtree/

238
XML document. You’ll keep all the existing functionality intact, however, and
add the new functionality in such a way that you can flick a switch to get back
the parsing behavior.

Note: The code discussed in this section is in DomEcho05.java.

Modify the Code
Start by turning off the compression feature. As you work with the DOM in this
section, you’ll want to see all the nodes:

public class DomEcho05 extends JPanel
{

...
boolean compress = true;
boolean compress = false;

Next, you create a buildDom method that creates the document object. The easi-
est way is to create the method and then copy the DOM-construction section
from the main method to create the buildDom. The modifications shown next
show you the changes needed to make that code suitable for the buildDom

method.

public class DomEcho05 extends JPanel
{

...
public static void makeFrame() {

...
}
public static void buildDom()
{

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

try {
DocumentBuilder builder =

factory.newDocumentBuilder();
document = builder.parse(new File(argv[0]));
document = builder.newDocument();

} catch (SAXException sxe) {
...

} catch (ParserConfigurationException pce) {
// Parser with specified options can't be built
pce.printStackTrace();

../examples/jaxp/dom/samples/DomEcho05.java

CREATING AND MANIPULATING A DOM 239
} catch (IOException ioe) {
...

}
}

In this code, you replace the line that does the parsing with one that creates a
DOM. Then, because the code is no longer parsing an existing file, you remove
exceptions that are no longer thrown: SAXException and IOException.

And because you will be working with Element objects, add the statement to
import that class at the top of the program:

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;
import org.w3c.dom.Element;

Create Element and Text Nodes
Now, for your first experiment, add the Document operations to create a root
node and several children:

public class DomEcho05 extends JPanel
{

...
public static void buildDom()
{

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

try {
DocumentBuilder builder =

factory.newDocumentBuilder();
document = builder.newDocument();
// Create from whole cloth
Element root =

(Element)
document.createElement("rootElement");

document.appendChild(root);
root.appendChild(

document.createTextNode("Some"));
root.appendChild(

document.createTextNode(" "));
root.appendChild(

document.createTextNode("text"));
} catch (ParserConfigurationException pce) {

240
// Parser with specified options can't be built
pce.printStackTrace();

}
}

Finally, modify the argument-list checking code at the top of the main method so
that you invoke buildDom and makeFrame instead of generating an error:

public class DomEcho05 extends JPanel
{

...
public static void main(String argv[])
{

if (argv.length != 1) {
System.err.println("...");
System.exit(1);
buildDom();
makeFrame();
return;

}

That’s all there is to it! Now if you supply an argument the specified file is
parsed, and if you don’t, the experimental code that builds a DOM is executed.

Run the Application
Compile and run the program with no arguments, producing the result shown in
Figure 6–13:

CREATING AND MANIPULATING A DOM 241
Figure 6–13 Element Node and Text Nodes Created

Normalizing the DOM
In this experiment, you’ll manipulate the DOM you created by normalizing it
after it has been constructed.

Note: The code discussed in this section is in DomEcho06.java.

Add the following highlighted code to normalize the DOM:

public static void buildDom()
{

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

try {
...
root.appendChild(document.createTextNode("Some"));
root.appendChild(document.createTextNode(" "));
root.appendChild(document.createTextNode("text"));
document.getDocumentElement().normalize();

} catch (ParserConfigurationException pce) {
...

../examples/jaxp/dom/samples/DomEcho06.java

242
In this code, getDocumentElement returns the document’s root node, and the
normalize operation manipulates the tree under it.

When you compile and run the application now, the result looks like Figure 6–
14:

Figure 6–14 Text Nodes Merged After Normalization

Here, you can see that the adjacent text nodes have been combined into a single
node. The normalize operation is one that you typically use after making modifi-
cations to a DOM, to ensure that the resulting DOM is as compact as possible.

Note: Now that you have this program to experiment with, see what happens to
other combinations of CDATA, entity references, and text nodes when you normalize
the tree.

CREATING AND MANIPULATING A DOM 243
Other Operations
To complete this section, we’ll take a quick look at some of the other operations
you might want to apply to a DOM:

• Traversing nodes

• Searching for nodes

• Obtaining node content

• Creating attributes

• Removing and changing nodes

• Inserting nodes

Traversing Nodes
The org.w3c.dom.Node interface defines a number of methods you can use to
traverse nodes, including getFirstChild, getLastChild, getNextSibling,
getPreviousSibling, and getParentNode. Those operations are sufficient to
get from anywhere in the tree to any other location in the tree.

Searching for Nodes
When you are searching for a node with a particular name, there is a bit more to
take into account. Although it is tempting to get the first child and inspect it to
see whether it is the right one, the search must account for the fact that the first
child in the sublist could be a comment or a processing instruction. If the XML
data hasn’t been validated, it could even be a text node containing ignorable
whitespace.

In essence, you need to look through the list of child nodes, ignoring the ones
that are of no concern and examining the ones you care about. Here is an exam-
ple of the kind of routine you need to write when searching for nodes in a DOM
hierarchy. It is presented here in its entirety (complete with comments) so that
you can use it as a template in your applications.

/**
* Find the named subnode in a node's sublist.
* Ignores comments and processing instructions.
* Ignores TEXT nodes (likely to exist and contain
* ignorable whitespace, if not validating.
* Ignores CDATA nodes and EntityRef nodes.
* Examines element nodes to find one with

244
* the specified name.
*
* @param name the tag name for the element to find
* @param node the element node to start searching from
* @return the Node found
*/

public Node findSubNode(String name, Node node) {
if (node.getNodeType() != Node.ELEMENT_NODE) {

System.err.println(
"Error: Search node not of element type");

System.exit(22);
}

if (! node.hasChildNodes()) return null;

NodeList list = node.getChildNodes();
for (int i=0; i < list.getLength(); i++) {

Node subnode = list.item(i);
if (subnode.getNodeType() == Node.ELEMENT_NODE) {

if (subnode.getNodeName().equals(name)) return subnode;
}

}
return null;

}

For a deeper explanation of this code, see Increasing the Complexity (page 185)
in When to Use DOM (page 182).

Note, too, that you can use APIs described in Summary of Lexical
Controls (page 219) to modify the kind of DOM the parser constructs. The nice
thing about this code, though, is that it will work for almost any DOM.

Obtaining Node Content
When you want to get the text that a node contains, you again need to look
through the list of child nodes, ignoring entries that are of no concern and accu-
mulating the text you find in TEXT nodes, CDATA nodes, and EntityRef nodes.

Here is an example of the kind of routine you can use for that process:

/**
 * Return the text that a node contains. This routine:
 * Ignores comments and processing instructions.
* Concatenates TEXT nodes, CDATA nodes, and the results of
 * recursively processing EntityRef nodes.
 * Ignores any element nodes in the sublist.

CREATING AND MANIPULATING A DOM 245
 * (Other possible options are to recurse into element
 * sublists or throw an exception.)
 *
 * @param node a DOM node
 * @return a String representing its contents
 */

public String getText(Node node) {
StringBuffer result = new StringBuffer();
if (! node.hasChildNodes()) return "";

NodeList list = node.getChildNodes();
for (int i=0; i < list.getLength(); i++) {

Node subnode = list.item(i);
if (subnode.getNodeType() == Node.TEXT_NODE) {

result.append(subnode.getNodeValue());
}
else if (subnode.getNodeType() ==

Node.CDATA_SECTION_NODE)
{

result.append(subnode.getNodeValue());
}
else if (subnode.getNodeType() ==

Node.ENTITY_REFERENCE_NODE)
{

// Recurse into the subtree for text
// (and ignore comments)
result.append(getText(subnode));

}
}
return result.toString();

}

For a deeper explanation of this code, see Increasing the Complexity (page 185)
in When to Use DOM (page 182).

Again, you can simplify this code by using the APIs described in Summary of
Lexical Controls (page 219) to modify the kind of DOM the parser constructs.
But the nice thing about this code is that it will work for almost any DOM.

Creating Attributes
The org.w3c.dom.Element interface, which extends Node, defines a setAt-

tribute operation, which adds an attribute to that node. (A better name from the
Java platform standpoint would have been addAttribute. The attribute is not a
property of the class, and a new object is created.)

246
You can also use the Document’s createAttribute operation to create an
instance of Attribute and then use the setAttributeNode method to add it.

Removing and Changing Nodes
To remove a node, you use its parent Node’s removeChild method. To change it,
you can use either the parent node’s replaceChild operation or the node’s set-
NodeValue operation.

Inserting Nodes
The important thing to remember when creating new nodes is that when you cre-
ate an element node, the only data you specify is a name. In effect, that node
gives you a hook to hang things on. You hang an item on the hook by adding to
its list of child nodes. For example, you might add a text node, a CDATA node, or
an attribute node. As you build, keep in mind the structure you examined in the
exercises you’ve seen in this tutorial. Remember: Each node in the hierarchy is
extremely simple, containing only one data element.

Finishing Up
Congratulations! You’ve learned how a DOM is structured and how to manipu-
late it. And you now have a DomEcho application that you can use to display a
DOM’s structure, condense it to GUI-compatible dimensions, and experiment
with to see how various operations affect the structure. Have fun with it!

Validating with XML Schema
You’re now ready to take a deeper look at the process of XML Schema valida-
tion. Although a full treatment of XML Schema is beyond the scope of this tuto-
rial, this section shows you the steps you take to validate an XML document
using an XML Schema definition. (To learn more about XML Schema, you can
review the online tutorial, XML Schema Part 0: Primer, at http://www.w3.org/
TR/xmlschema-0/. You can also examine the sample programs that are part of
the JAXP download. They use a simple XML Schema definition to validate per-
sonnel data stored in an XML file.)

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/

VALIDATING WITH XML SCHEMA 247
At the end of this section, you’ll also learn how to use an XML Schema defini-
tion to validate a document that contains elements from multiple namespaces.

Overview of the Validation Process
To be notified of validation errors in an XML document, the following must be
true:

• The factory must configured, and the appropriate error handler set.

• The document must be associated with at least one schema, and possibly
more.

Configuring the DocumentBuilder
Factory
It’s helpful to start by defining the constants you’ll use when configuring the fac-
tory. (These are the same constants you define when using XML Schema for
SAX parsing.)

static final String JAXP_SCHEMA_LANGUAGE =
"http://java.sun.com/xml/jaxp/properties/schemaLanguage";

static final String W3C_XML_SCHEMA =
"http://www.w3.org/2001/XMLSchema";

Next, you configure DocumentBuilderFactory to generate a namespace-aware,
validating parser that uses XML Schema:

...
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance()
factory.setNamespaceAware(true);
factory.setValidating(true);

try {
factory.setAttribute(JAXP_SCHEMA_LANGUAGE, W3C_XML_SCHEMA);

}
catch (IllegalArgumentException x) {

// Happens if the parser does not support JAXP 1.2
...

}

248
Because JAXP-compliant parsers are not namespace-aware by default, it is nec-
essary to set the property for schema validation to work. You also set a factory
attribute to specify the parser language to use. (For SAX parsing, on the other
hand, you set a property on the parser generated by the factory.)

Associating a Document with a Schema
Now that the program is ready to validate with an XML Schema definition, it is
necessary only to ensure that the XML document is associated with (at least)
one. There are two ways to do that:

• With a schema declaration in the XML document

• By specifying the schema(s) to use in the application

Note: When the application specifies the schema(s) to use, it overrides any schema
declarations in the document.

To specify the schema definition in the document, you create XML like this:

<documentRoot
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation='YourSchemaDefinition.xsd'

>
...

The first attribute defines the XML namespace (xmlns) prefix, xsi, which stands
for “XML Schema instance.” The second line specifies the schema to use for ele-
ments in the document that do not have a namespace prefix—that is, for the ele-
ments you typically define in any simple, uncomplicated XML document.
(You’ll see how to deal with multiple namespaces in the next section.)

You can also specify the schema file in the application:

static final String schemaSource = "YourSchemaDefinition.xsd";
static final String JAXP_SCHEMA_SOURCE =

"http://java.sun.com/xml/jaxp/properties/schemaSource";
...
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance()
...
factory.setAttribute(JAXP_SCHEMA_SOURCE,

new File(schemaSource));

VALIDATING WITH XML SCHEMA 249
Here, too, there are mechanisms at your disposal that will let you specify multi-
ple schemas. We’ll take a look at those next.

Validating with Multiple Namespaces
Namespaces let you combine elements that serve different purposes in the same
document without having to worry about overlapping names.

Note: The material discussed in this section also applies to validating when using
the SAX parser. You’re seeing it here, because at this point you’ve learned enough
about namespaces for the discussion to make sense.

To contrive an example, consider an XML data set that keeps track of personnel
data. The data set may include information from the W2 tax form as well as
information from the employee’s hiring form, with both elements named <form>

in their respective schemas.

If a prefix is defined for the tax namespace, and another prefix defined for the
hiring namespace, then the personnel data could include segments like this:

<employee id=”...”>
<name>....</name>
<tax:form>

...w2 tax form data...
</tax:form>
<hiring:form>

...employment history, etc....
</hiring:form>

</employee>

The contents of the tax:form element would obviously be different from the
contents of the hiring:form and would have to be validated differently.

Note, too, that in this example there is a default namespace that the unqualified
element names employee and name belong to. For the document to be properly
validated, the schema for that namespace must be declared, as well as the sche-
mas for the tax and hiring namespaces.

Note: The default” namespace is actually a specific namespace. It is defined as the
“namespace that has no name.” So you can’t simply use one namespace as your
default this week, and another namespace as the default later. This “unnamed

250
namespace” (or “null namespace”) is like the number zero. It doesn’t have any value
to speak of (no name), but it is still precisely defined. So a namespace that does have
a name can never be used as the default namespace.

When parsed, each element in the data set will be validated against the appropri-
ate schema, as long as those schemas have been declared. Again, the schemas
can be declared either as part of the XML data set or in the program. (It is also
possible to mix the declarations. In general, though, it is a good idea to keep all
the declarations together in one place.)

Declaring the Schemas in the XML Data Set
To declare the schemas to use for the preceding example in the data set, the XML
code would look something like this:

<documentRoot
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="employeeDatabase.xsd"
xsi:schemaLocation=

”http://www.irs.gov/ fullpath/w2TaxForm.xsd
 http://www.ourcompany.com/ relpath/hiringForm.xsd“

xmlns:tax="http://www.irs.gov/"
xmlns:hiring="http://www.ourcompany.com/"

>
...

The noNamespaceSchemaLocation declaration is something you’ve seen before,
as are the last two entries, which define the namespace prefixes tax and hiring.
What’s new is the entry in the middle, which defines the locations of the schemas
to use for each namespace referenced in the document.

The xsi:schemaLocation declaration consists of entry pairs, where the first
entry in each pair is a fully qualified URI that specifies the namespace, and the
second entry contains a full path or a relative path to the schema definition. (In
general, fully qualified paths are recommended. In that way, only one copy of the
schema will tend to exist.)

Note that you cannot use the namespace prefixes when defining the schema loca-
tions. The xsi:schemaLocation declaration understands only namespace names
and not prefixes.

VALIDATING WITH XML SCHEMA 251
Declaring the Schemas in the Application
To declare the equivalent schemas in the application, the code would look some-
thing like this:

static final String employeeSchema = "employeeDatabase.xsd";
static final String taxSchema = "w2TaxForm.xsd";
static final String hiringSchema = "hiringForm.xsd";

static final String[] schemas = {
employeeSchema,
taxSchema,
hiringSchema,
};

static final String JAXP_SCHEMA_SOURCE =
"http://java.sun.com/xml/jaxp/properties/schemaSource";

...
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance()
...
factory.setAttribute(JAXP_SCHEMA_SOURCE, schemas);

Here, the array of strings that points to the schema definitions (.xsd files) is
passed as the argument to the factory.setAttribute method. Note the differ-
ences from when you were declaring the schemas to use as part of the XML data
set:

• There is no special declaration for the default (unnamed) schema.

• You don’t specify the namespace name. Instead, you only give pointers to
the .xsd files.

To make the namespace assignments, the parser reads the .xsd files, and finds in
them the name of the target namespace they apply to. Because the files are spec-
ified with URIs, the parser can use an EntityResolver (if one has been defined)
to find a local copy of the schema.

If the schema definition does not define a target namespace, then it applies to the
default (unnamed, or null) namespace. So, in our example, you would expect to
see these target namespace declarations in the schemas:

• employeeDatabase.xsd: none

• w2TaxForm.xsd: http://www.irs.gov/

• hiringForm.xsd: http://www.ourcompany.com

252
At this point, you have seen two possible values for the schema source property
when invoking the factory.setAttribute() method: a File object in fac-

tory.setAttribute(JAXP_SCHEMA_SOURCE, new File(schemaSource)) and
an array of strings in factory.setAttribute(JAXP_SCHEMA_SOURCE, sche-

mas). Here is a complete list of the possible values for that argument:

• A string that points to the URI of the schema

• An InputStream with the contents of the schema

• A SAX InputSource

• A File

• An array of Objects, each of which is one of the types defined here.

Note: An array of Objects can be used only when the schema language (like http:/
/java.sun.com/xml/jaxp/properties/schemaLanguage) has the ability to
assemble a schema at runtime. Also, when an array of Objects is passed it is ille-
gal to have two schemas that share the same namespace.

Further Information
For further information on the TreeModel, see

• “Understanding the TreeModel”: http://java.sun.com/products/

jfc/tsc/articles/jtree/index.html

For further information on the W3C Document Object Model (DOM), see

• The DOM standard page: http://www.w3.org/DOM/

For more information on schema-based validation mechanisms, see

• The W3C standard validation mechanism, XML Schema: http://

www.w3.org/XML/Schema

• RELAX NG’s regular-expression based validation mechanism: http://
www.oasis-open.org/committees/relax-ng/

• Schematron’s assertion-based validation mechanism: http://

www.ascc.net/xml/resource/schematron/schematron.html

http://www.w3.org/DOM/
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://www.oasis-open.org/committees/relax-ng/
http://www.oasis-open.org/committees/relax-ng/
http://www.ascc.net/xml/resource/schematron/schematron.html
http://www.ascc.net/xml/resource/schematron/schematron.html
http://java.sun.com/products/jfc/tsc/articles/jtree/index.html
http://java.sun.com/products/jfc/tsc/articles/jtree/index.html

7

253
Extensible Stylesheet
Language

Transformations

THE Extensible Stylesheet Language Transformations (XSLT) standard
defines mechanisms for addressing XML data (XPath) and for specifying trans-
formations on the data in order to convert it into other forms. JAXP includes an
interpreting implementation of XSLT called Xalan (“ZAY-lahn”).

Note: The term Xalan doesn’t appear to be stand for anything. It is said to be the
name of a rare musical instrument, but the only instrument that comes close is the
Xalam (“zah-LAHM”) -- an early precursor to the banjo.

In this chapter, you’ll learn how to use Xalan. You’ll write out a Document
Object Model as an XML file, and you’ll see how to generate a DOM from an
arbitrary data file in order to convert it to XML. Finally, you’ll convert XML data
into a different form, unlocking the mysteries of the XPath addressing mecha-
nism along the way.

Note: The examples in this chapter can be found in
<INSTALL>/j2eetutorial14/examples/jaxp/xslt/samples/.

254
Introducing XSL, XSLT, and XPath
The Extensible Stylesheet Language (XSL) has three major subcomponents:

XSL-FO
The Formatting Objects standard. By far the largest subcomponent, this stan-
dard gives mechanisms for describing font sizes, page layouts, and other
aspects of object rendering. This subcomponent is not covered by JAXP, nor
is it included in this tutorial.

XSLT
This is the transformation language, which lets you define a transformation
from XML into some other format. For example, you might use XSLT to
produce HTML or a different XML structure. You could even use it to pro-
duce plain text or to put the information in some other document format.
(And as you’ll see in Generating XML from an Arbitrary Data
Structure (page 272), a clever application can press it into service to manipu-
late non-XML data as well.)

XPath
At bottom, XSLT is a language that lets you specify what sorts of things to
do when a particular element is encountered. But to write a program for dif-
ferent parts of an XML data structure, you need to specify the part of the
structure you are talking about at any given time. XPath is that specification
language. It is an addressing mechanism that lets you specify a path to an
element so that, for example, <article><title> can be distinguished from
<person><title>. In that way, you can describe different kinds of transla-
tions for the different <title> elements.

The remainder of this section describes the packages that make up the JAXP
Transformation APIs.

The JAXP Transformation Packages
Here is a description of the packages that make up the JAXP Transformation
APIs:

javax.xml.transform
This package defines the factory class you use to get a Transformer object.
You then configure the transformer with input (source) and output (result)
objects, and invoke its transform() method to make the transformation
happen. The source and result objects are created using classes from one of
the other three packages.

HOW XPATH WORKS 255
javax.xml.transform.dom
Defines the DOMSource and DOMResult classes, which let you use a DOM as
an input to or output from a transformation.

javax.xml.transform.sax
Defines the SAXSource and SAXResult classes, which let you use a SAX
event generator as input to a transformation, or deliver SAX events as output
to a SAX event processor.

javax.xml.transform.stream
Defines the StreamSource and StreamResult classes, which let you use an
I/O stream as an input to or output from a transformation.

How XPath Works
The XPath specification is the foundation for a variety of specifications, includ-
ing XSLT and linking/addressing specifications such as XPointer. So an under-
standing of XPath is fundamental to a lot of advanced XML usage. This section
provides a thorough introduction to XPath in the context of XSLT so that you
can refer to it as needed.

Note: In this tutorial, you won’t actually use XPath until later, in the section, Trans-
forming XML Data with XSLT (page 287). So, if you like, you can skip this section
and go on ahead to the next section, Writing Out a DOM as an XML
File (page 265). (When you get to the end of that section, there will be a note that
refers you back here so that you don’t forget!)

XPath Expressions
In general, an XPath expression specifies a pattern that selects a set of XML
nodes. XSLT templates then use those patterns when applying transformations.
(XPointer, on the other hand, adds mechanisms for defining a point or a range so
that XPath expressions can be used for addressing.)

256
The nodes in an XPath expression refer to more than just elements. They also
refer to text and attributes, among other things. In fact, the XPath specification
defines an abstract document model that defines seven kinds of nodes:

• Root

• Element

• Text

• Attribute

• Comment

• Processing instruction

• Namespace

Note: The root element of the XML data is modeled by an element node. The XPath
root node contains the document’s root element as well as other information relating
to the document.

The XSLT/XPath Data Model
Like the Document Object Model, the XSLT/XPath data model consists of a tree
containing a variety of nodes. Under any given element node, there are text
nodes, attribute nodes, element nodes, comment nodes, and processing instruc-
tion nodes.

In this abstract model, syntactic distinctions disappear, and you are left with a
normalized view of the data. In a text node, for example, it makes no difference
whether the text was defined in a CDATA section or whether it included entity ref-
erences. The text node will consist of normalized data, as it exists after all pars-
ing is complete. So the text will contain a < character, whether or not an entity
reference such as < or a CDATA section was used to include it. (Similarly, the
text will contain an & character, whether it was delivered using & or it was in
a CDATA section.)

In this section, we’ll deal mostly with element nodes and text nodes. For the
other addressing mechanisms, see the XPath specification.

http://www.w3.org/TR/xpath

HOW XPATH WORKS 257
Templates and Contexts
An XSLT template is a set of formatting instructions that apply to the nodes
selected by an XPath expression. In a stylesheet, an XSLT template would look
something like this:

<xsl:template match="//LIST">
...

</xsl:template>

The expression //LIST selects the set of LIST nodes from the input stream.
Additional instructions within the template tell the system what to do with them.

The set of nodes selected by such an expression defines the context in which
other expressions in the template are evaluated. That context can be considered
as the whole set—for example, when determining the number of the nodes it
contains.

The context can also be considered as a single member of the set, as each mem-
ber is processed one by one. For example, inside the LIST-processing template,
the expression @type refers to the type attribute of the current LIST node. (Sim-
ilarly, the expression @* refers to all the attributes for the current LIST element.)

Basic XPath Addressing
An XML document is a tree-structured (hierarchical) collection of nodes. As
with a hierarchical directory structure, it is useful to specify a path that points to
a particular node in the hierarchy (hence the name of the specification: XPath).
In fact, much of the notation of directory paths is carried over intact:

• The forward slash (/) is used as a path separator.

• An absolute path from the root of the document starts with a /.

• A relative path from a given location starts with anything else.

• A double period (..) indicates the parent of the current node.

• A single period (.) indicates the current node.

For example, In an Extensible HTML (XHTML) document (an XML document
that looks like HTML but is well formed according to XML rules), the path
/h1/h2/ would indicate an h2 element under an h1. (Recall that in XML, ele-
ment names are case-sensitive, so this kind of specification works much better in
XHTML than it would in plain HTML, because HTML is case-insensitive.)

258
In a pattern-matching specification such as XPath, the specification /h1/h2

selects all h2 elements that lie under an h1 element. To select a specific h2 ele-
ment, you use square brackets [] for indexing (like those used for arrays). The
path /h1[4]/h2[5] would therefore select the fifth h2 element under the fourth
h1 element.

Note: In XHTML, all element names are in lowercase. That is a fairly common con-
vention for XML documents. However, uppercase names are easier to read in a tuto-
rial like this one. So for the remainder of the XSLT tutorial, all XML element names
will be in uppercase. (Attribute names, on the other hand, will remain in lowercase.)

A name specified in an XPath expression refers to an element. For example, h1
in /h1/h2 refers to an h1 element. To refer to an attribute, you prefix the attribute
name with an @ sign. For example, @type refers to the type attribute of an ele-
ment. Assuming that you have an XML document with LIST elements, for exam-
ple, the expression LIST/@type selects the type attribute of the LIST element.

Note: Because the expression does not begin with /, the reference specifies a list
node relative to the current context—whatever position in the document that hap-
pens to be.

Basic XPath Expressions
The full range of XPath expressions takes advantage of the wildcards, operators,
and functions that XPath defines. You’ll learn more about those shortly. Here, we
look at a couple of the most common XPath expressions simply to introduce
them.

The expression @type="unordered" specifies an attribute named type whose
value is unordered. As you know, an expression such as LIST/@type specifies
the type attribute of a LIST element.

You can combine those two notations to get something interesting! In XPath, the
square-bracket notation ([]) normally associated with indexing is extended to
specify selection criteria. So the expression LIST[@type="unordered"] selects
all LIST elements whose type value is unordered.

Similar expressions exist for elements. Each element has an associated string-
value, which is formed by concatenating all the text segments that lie under the

HOW XPATH WORKS 259
element. (A more detailed explanation of how that process works is coming up in
String-Value of an Element, page 261.)

Suppose you model what’s going on in your organization using an XML struc-
ture that consists of PROJECT elements and ACTIVITY elements that have a text
string with the project name, multiple PERSON elements to list the people
involved and, optionally, a STATUS element that records the project status. Here
are other examples that use the extended square-bracket notation:

• /PROJECT[.="MyProject"]: Selects a PROJECT named "MyProject"

• /PROJECT[STATUS]: Selects all projects that have a STATUS child element

• /PROJECT[STATUS="Critical"]: Selects all projects that have a STATUS

child element with the string-value Critical

Combining Index Addresses
The XPath specification defines quite a few addressing mechanisms, and they
can be combined in many different ways. As a result, XPath delivers a lot of
expressive power for a relatively simple specification. This section illustrates
other interesting combinations:

• LIST[@type="ordered"][3]: Selects all LIST elements of type ordered,
and returns the third

• LIST[3][@type="ordered"]: Selects the third LIST element, but only if it
is of type ordered

Note: Many more combinations of address operators are listed in section 2.5 of the
XPath specification. This is arguably the most useful section of the spec for defining
an XSLT transform.

Wildcards
By definition, an unqualified XPath expression selects a set of XML nodes that
matches that specified pattern. For example, /HEAD matches all top-level HEAD
entries, whereas /HEAD[1] matches only the first. Table 7–1 lists the wildcards

http://www.w3.org/TR/xpath

260
that can be used in XPath expressions to broaden the scope of the pattern match-
ing.

In the project database example, /*/PERSON[.="Fred"] matches any PROJECT

or ACTIVITY element that names Fred.

Extended-Path Addressing
So far, all the patterns you’ve seen have specified an exact number of levels in
the hierarchy. For example, /HEAD specifies any HEAD element at the first level in
the hierarchy, whereas /*/* specifies any element at the second level in the hier-
archy. To specify an indeterminate level in the hierarchy, use a double forward
slash (//). For example, the XPath expression //PARA selects all paragraph ele-
ments in a document, wherever they may be found.

The // pattern can also be used within a path. So the expression
/HEAD/LIST//PARA indicates all paragraph elements in a subtree that begins
from /HEAD/LIST.

Table 7–1 XPath Wildcards

Wildcard Meaning

* Matches any element node (not attributes or text)

node()
Matches any node of any kind: element node, text node, attribute node,
processing instruction node, namespace node, or comment node

@* Matches any attribute node

HOW XPATH WORKS 261
XPath Data Types and Operators
XPath expressions yield either a set of nodes, a string, a Boolean (a true/false
value), or a number. Table 7–2 lists the operators that can be used in an Xpath
expression

Expressions can be grouped in parentheses, so you don’t have to worry about
operator precedence.

Note: Operator precedence is a term that answers the question, “If you specify a +

b * c, does that mean (a+b) * c or a + (b*c)?” (The operator precedence is
roughly the same as that shown in the table.)

String-Value of an Element
The string-value of an element is the concatenation of all descendent text nodes,
no matter how deep. Consider this mixed-content XML data:

<PARA>This paragraph contains a bold word</PARA>

The string-value of the <PARA> element is This paragraph contains a bold

word. In particular, note that is a child of <PARA> and that the text bold is a

Table 7–2 XPath Operators

Operator Meaning

|
Alternative. For example, PARA|LIST selects all PARA and LIST
elements.

or, and Returns the or/and of two Boolean values.

=, != Equal or not equal, for Booleans, strings, and numbers.

<, >, <=, >=
Less than, greater than, less than or equal to, greater than or equal
to, for numbers.

+, -, *, div, mod
Add, subtract, multiply, floating-point divide, and modulus
(remainder) operations (e.g., 6 mod 4 = 2)

262
child of . The point is that all the text in all children of a node joins in the
concatenation to form the string-value.

Also, it is worth understanding that the text in the abstract data model defined by
XPath is fully normalized. So whether the XML structure contains the entity ref-
erence < or < in a CDATA section, the element’s string-value will contain the <

character. Therefore, when generating HTML or XML with an XSLT stylesheet,
you must convert occurrences of < to < or enclose them in a CDATA section.
Similarly, occurrences of & must be converted to &.

XPath Functions
This section ends with an overview of the XPath functions. You can use XPath
functions to select a collection of nodes in the same way that you would use an
element specification such as those you have already seen. Other functions return
a string, a number, or a Boolean value. For example, the expression
/PROJECT/text() gets the string-value of PROJECT nodes.

Many functions depend on the current context. In the preceding example, the
context for each invocation of the text() function is the PROJECT node that is
currently selected.

There are many XPath functions—too many to describe in detail here. This sec-
tion provides a brief listing that shows the available XPath functions, along with
a summary of what they do.

Note: Skim the list of functions to get an idea of what’s there. For more information,
see section 4 of the XPath specification.

Node-Set Functions
Many XPath expressions select a set of nodes. In essence, they return a node-set.
One function does that, too.

• id(...): Returns the node with the specified ID.

(Elements have an ID only when the document has a DTD, which specifies
which attribute has the ID type.)

http://www.w3.org/TR/xpath

HOW XPATH WORKS 263
Positional Functions
These functions return positionally based numeric values.

• last(): Returns the index of the last element. For example,
/HEAD[last()] selects the last HEAD element.

• position(): Returns the index position. For example, /HEAD[position()
<= 5] selects the first five HEAD elements.

• count(...): Returns the count of elements. For example,
/HEAD[count(HEAD)=0] selects all HEAD elements that have no subheads.

String Functions
These functions operate on or return strings.

• concat(string, string, ...): Concatenates the string values.

• starts-with(string1, string2): Returns true if string1 starts with
string2.

• contains(string1, string2): Returns true if string1 contains
string2.

• substring-before(string1, string2): Returns the start of string1

before string2 occurs in it.

• substring-after(string1, string2): Returns the remainder of
string1 after string2 occurs in it.

• substring(string, idx): Returns the substring from the index position
to the end, where the index of the first char = 1.

• substring(string, idx, len): Returns the substring of the specified
length from the index position.

• string-length(): Returns the size of the context node’s string-value; the
context node is the currently selected node—the node that was selected by
an XPath expression in which a function such as string-length() is
applied.

• string-length(string): Returns the size of the specified string.

• normalize-space(): Returns the normalized string-value of the current
node (no leading or trailing whitespace, and sequences of whitespace char-
acters converted to a single space).

• normalize-space(string): Returns the normalized string-value of the
specified string.

264
• translate(string1, string2, string3): Converts string1, replacing
occurrences of characters in string2 with the corresponding character
from string3.

Note: XPath defines three ways to get the text of an element: text(),
string(object), and the string-value implied by an element name in an expression
like this: /PROJECT[PERSON="Fred"].

Boolean Functions
These functions operate on or return Boolean values.

• not(...): Negates the specified Boolean value.

• true(): Returns true.

• false(): Returns false.

• lang(string): Returns true if the language of the context node (specified
by xml:Lang attributes) is the same as (or a sublanguage of) the specified
language; for example, Lang("en") is true for
<PARA_xml:Lang="en">...</PARA>.

Numeric Functions
These functions operate on or return numeric values.

• sum(...): Returns the sum of the numeric value of each node in the spec-
ified node-set.

• floor(N): Returns the largest integer that is not greater than N.

• ceiling(N): Returns the smallest integer that is not less than N.

• round(N): Returns the integer that is closest to N.

Conversion Functions
These functions convert one data type to another.

• string(...): Returns the string value of a number, Boolean, or node-set.

• boolean(...): Returns a Boolean value for a number, string, or node-set
(a non-zero number, a nonempty node-set, and a nonempty string are all
true).

WRITING OUT A DOM AS AN XML FILE 265
• number(...): Returns the numeric value of a Boolean, string, or node-set
(true is 1, false is 0, a string containing a number becomes that number, the
string-value of a node-set is converted to a number).

Namespace Functions
These functions let you determine the namespace characteristics of a node.

• local-name(): Returns the name of the current node, minus the
namespace prefix.

• local-name(...): Returns the name of the first node in the specified node
set, minus the namespace prefix.

• namespace-uri(): Returns the namespace URI from the current node.

• namespace-uri(...): Returns the namespace URI from the first node in
the specified node-set.

• name(): Returns the expanded name (URI plus local name) of the current
node.

• name(...): Returns the expanded name (URI plus local name) of the first
node in the specified node-set.

Summary
XPath operators, functions, wildcards, and node-addressing mechanisms can be
combined in wide variety of ways. The introduction you’ve had so far should
give you a good head start at specifying the pattern you need for any particular
purpose.

Writing Out a DOM as an XML File
After you have constructed a DOM—either by parsing an XML file or building it
programmatically—you frequently want to save it as XML. This section shows
you how to do that using the Xalan transform package.

Using that package, you’ll create a transformer object to wire a DOMSource to a
StreamResult. You’ll then invoke the transformer’s transform() method to
write out the DOM as XML data.

266
Reading the XML
The first step is to create a DOM in memory by parsing an XML file. By now,
you should be getting comfortable with the process.

Note: The code discussed in this section is in TransformationApp01.java.

The following code provides a basic template to start from. (It should be familiar.
It’s basically the same code you wrote at the start of Chapter 6. If you saved it
then, that version should be essentially equivalent to what you see here.)

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;

import java.io.*;

public class TransformationApp
{

static Document document;

public static void main(String argv[])
{

if (argv.length != 1) {
System.err.println (

"Usage: java TransformationApp filename");
System.exit (1);

}

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

//factory.setNamespaceAware(true);
//factory.setValidating(true);

try {
File f = new File(argv[0]);
DocumentBuilder builder =

factory.newDocumentBuilder();

../examples/jaxp/xslt/samples/TransformationApp01.java

WRITING OUT A DOM AS AN XML FILE 267
document = builder.parse(f);

} catch (SAXParseException spe) {
// Error generated by the parser
System.out.println("\n** Parsing error"

+ ", line " + spe.getLineNumber()
+ ", uri " + spe.getSystemId());

System.out.println(" " + spe.getMessage());

// Use the contained exception, if any
Exception x = spe;
if (spe.getException() != null)

x = spe.getException();
x.printStackTrace();

} catch (SAXException sxe) {
// Error generated by this application
// (or a parser-initialization error)
Exception x = sxe;
if (sxe.getException() != null)

x = sxe.getException();
x.printStackTrace();

} catch (ParserConfigurationException pce) {
// Parser with specified options can't be built
pce.printStackTrace();

} catch (IOException ioe) {
// I/O error
ioe.printStackTrace();

}
} // main

}

Creating a Transformer
The next step is to create a transformer you can use to transmit the XML to Sys-

tem.out.

Note: The code discussed in this section is in TransformationApp02.java. The file
it runs on is slideSample01.xml. The output is in TransformationLog02.txt.
(The browsable versions are slideSample01-xml.html and
TransformationLog02.html.)

../examples/jaxp/xslt/samples/TransformationApp02.java
../examples/jaxp/xslt/samples/slideSample01.xml
../examples/jaxp/xslt/samples/TransformationLog02.txt
../examples/jaxp/xslt/samples/slideSample01-xml.html
../examples/jaxp/xslt/samples/TransformationLog02.html

268
 Start by adding the following highlighted import statements:

import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerConfigurationException;

import javax.xml.transform.dom.DOMSource;

import javax.xml.transform.stream.StreamResult;

import java.io.*;

Here, you add a series of classes that should now be forming a standard pattern:
an entity (Transformer), the factory to create it (TransformerFactory), and the
exceptions that can be generated by each. Because a transformation always has a
source and a result, you then import the classes necessary to use a DOM as a
source (DOMSource) and an output stream for the result (StreamResult).

Next, add the code to carry out the transformation:

try {
File f = new File(argv[0]);
DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.parse(f);

 // Use a Transformer for output
TransformerFactory tFactory =

TransformerFactory.newInstance();
Transformer transformer = tFactory.newTransformer();

DOMSource source = new DOMSource(document);
StreamResult result = new StreamResult(System.out);
transformer.transform(source, result);

Here, you create a transformer object, use the DOM to construct a source object,
and use System.out to construct a result object. You then tell the transformer to
operate on the source object and output to the result object.

In this case, the “transformer” isn’t actually changing anything. In XSLT termi-
nology, you are using the identity transform, which means that the “transforma-
tion” generates a copy of the source, unchanged.

Note: You can specify a variety of output properties for transformer objects, as
defined in the W3C specification at http://www.w3.org/TR/xslt#output. For

http://www.w3.org/TR/xslt#output

WRITING OUT A DOM AS AN XML FILE 269
example, to get indented output, you can invoke
transformer.setOutputProperty(OutputKeys.INDENT, "yes");

Finally, add the following highlighted code to catch the new errors that can be
generated:

} catch (TransformerConfigurationException tce) {
// Error generated by the parser
System.out.println ("* Transformer Factory error");
System.out.println(" " + tce.getMessage());

 // Use the contained exception, if any
Throwable x = tce;
if (tce.getException() != null)

x = tce.getException();
x.printStackTrace();

} catch (TransformerException te) {
// Error generated by the parser
System.out.println ("* Transformation error");
System.out.println(" " + te.getMessage());

// Use the contained exception, if any
Throwable x = te;
if (te.getException() != null)

x = te.getException();
x.printStackTrace();

} catch (SAXParseException spe) {
...

Notes:

• TransformerExceptions are thrown by the transformer object.

• TransformerConfigurationExceptions are thrown by the factory.

• To preserve the XML document’s DOCTYPE setting, it is also necessary to
add the following code:
import javax.xml.transform.OutputKeys;
...
if (document.getDoctype() != null){
String systemValue = (new

File(document.getDoctype().getSystemId())).getName();
transformer.setOutputProperty(
OutputKeys.DOCTYPE_SYSTEM, systemValue

270
);
}

Writing the XML
For instructions on how to compile and run the program, see Compiling and
Running the Program (page 134) from the SAX tutorial, Chapter 5. (If you’re
working along, substitute TransformationApp for Echo as the name of the pro-
gram. If you are compiling the sample code, use TransformationApp02.) When
you run the program on slideSample01.xml, this is the output you see:

<?xml version="1.0" encoding="UTF-8"?>
<!-- A SAMPLE set of slides -->
<slideshow author="Yours Truly" date="Date of publication"
title="Sample Slide Show">

<!-- TITLE SLIDE -->
<slide type="all">

<title>Wake up to WonderWidgets!</title>
</slide>

<!-- OVERVIEW -->
<slide type="all">

<title>Overview</title>
<item>Why WonderWidgets are great</item>
<item/>
<item>Who buys WonderWidgets</item>

</slide>

</slideshow>

Note: The order of the attributes may vary, depending on which parser you are
using.

To find out more about configuring the factory and handling validation errors,
see Reading XML Data into a DOM (page 188), and Additional
Information (page 192).

WRITING OUT A DOM AS AN XML FILE 271
Writing Out a Subtree of the DOM
It is also possible to operate on a subtree of a DOM. In this section, you’ll exper-
iment with that option.

Note: The code discussed in this section is in TransformationApp03.java. The
output is in TransformationLog03.txt. (The browsable version is
TransformationLog03.html.)

The only difference in the process is that now you will create a DOMSource using
a node in the DOM, rather than the entire DOM. The first step is to import the
classes you need to get the node you want. Add the following highlighted code to
do that:

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

The next step is to find a good node for the experiment. Add the following high-
lighted code to select the first <slide> element:

try {
File f = new File(argv[0]);
DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.parse(f);

// Get the first <slide> element in the DOM
NodeList list = document.getElementsByTagName("slide");
Node node = list.item(0);

Then make the following changes to construct a source object that consists of the
subtree rooted at that node:

DOMSource source = new DOMSource(document);
DOMSource source = new DOMSource(node);
StreamResult result = new StreamResult(System.out);
transformer.transform(source, result);

../examples/jaxp/xslt/samples/TransformationApp03.java
../examples/jaxp/xslt/samples/TransformationLog03.txt
../examples/jaxp/xslt/samples/TransformationLog03.html

272
Now run the application. Your output should look like this:

<?xml version="1.0" encoding="UTF-8"?>
<slide type="all">

<title>Wake up to WonderWidgets!</title>
</slide>

Cleaning Up
Because it will be easiest to do now, make the following changes to back out the
additions you made in this section. (TransformationApp04.java contains these
changes.)

Import org.w3c.dom.DOMException;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
...

try {
...
// Get the first <slide> element in the DOM
NodeList list = document.getElementsByTagName("slide");
Node node = list.item(0);
...
DOMSource source = new DOMSource(node);
StreamResult result = new StreamResult(System.out);
transformer.transform(source, result);

Summary
At this point, you’ve seen how to use a transformer to write out a DOM and how
to use a subtree of a DOM as the source object in a transformation. In the next
section, you’ll see how to use a transformer to create XML from any data struc-
ture you are capable of parsing.

Generating XML from an Arbitrary Data
Structure

In this section, you’ll use XSLT to convert an arbitrary data structure to XML.

../examples/jaxp/xslt/samples/TransformationApp04.java

GENERATING XML FROM AN ARBITRARY DATA STRUCTURE 273
Here is an outline of the process:

1. You’ll modify an existing program that reads the data, to make it generate
SAX events. (Whether that program is a real parser or simply a data filter
of some kind is irrelevant for the moment.)

2. You’ll then use the SAX “parser” to construct a SAXSource for the trans-
formation.

3. You’ll use the same StreamResult object you created in the last exercise
so that you can see the results. (But note that you could just as easily create
a DOMResult object to create a DOM in memory.)

4. You’ll wire the source to the result using the transformer object to make the
conversion.

For starters, you need a data set you want to convert and a program capable of
reading the data. In the next two sections, you’ll create a simple data file and a
program that reads it.

Creating a Simple File
We’ll start by creating a data set for an address book. You can duplicate the pro-
cess, if you like, or simply use the data stored in PersonalAddressBook.ldif.

The file shown here was produced by creating a new address book in Netscape
Messenger, giving it some dummy data (one address card), and then exporting it
in LDIF format.

Note: LDIF stands for LDAP Data Interchange Format. LDAP, in turn, stands for
Lightweight Directory Access Protocol. I prefer to think of LDIF as the “Line
Delimited Interchange Format”, because that is pretty much what it is.

Figure 7–1 shows the address book entry that was created.

274
Figure 7–1 Address Book Entry

Exporting the address book produces a file like the one shown next. The parts of
the file that we care about are shown in bold.

dn: cn=Fred Flintstone,mail=fred@barneys.house
modifytimestamp: 20010409210816Z
cn: Fred Flintstone
xmozillanickname: Fred
mail: Fred@barneys.house
xmozillausehtmlmail: TRUE
givenname: Fred
sn: Flintstone
telephonenumber: 999-Quarry
homephone: 999-BedrockLane
facsimiletelephonenumber: 888-Squawk
pagerphone: 777-pager

GENERATING XML FROM AN ARBITRARY DATA STRUCTURE 275
cellphone: 555-cell
xmozillaanyphone: 999-Quarry
objectclass: top
objectclass: person

Note that each line of the file contains a variable name, a colon, and a space fol-
lowed by a value for the variable. The sn variable contains the person’s surname
(last name) and the variable cn contains the DisplayName field from the address
book entry.

Creating a Simple Parser
The next step is to create a program that parses the data.

Note: The code discussed in this section is in AddressBookReader01.java. The
output is in AddressBookReaderLog01.txt.

The text for the program is shown next. It’s an absurdly simple program that
doesn’t even loop for multiple entries because, after all, it’s only a demo!

import java.io.*;

public class AddressBookReader
{

public static void main(String argv[])
{

// Check the arguments
if (argv.length != 1) {

System.err.println (
"Usage: java AddressBookReader filename");

System.exit (1);
}
String filename = argv[0];
File f = new File(filename);
AddressBookReader01 reader = new AddressBookReader01();
reader.parse(f);

}

/** Parse the input */
public void parse(File f)
{

try {

../examples/jaxp/xslt/samples/AddressBookReader01.java
../examples/jaxp/xslt/samples/AddressBookReaderLog01.txt

276
// Get an efficient reader for the file
FileReader r = new FileReader(f);
BufferedReader br = new BufferedReader(r);

 // Read the file and display its contents.
String line = br.readLine();
while (null != (line = br.readLine())) {

if (line.startsWith("xmozillanickname: "))
break;

}
output("nickname", "xmozillanickname", line);
line = br.readLine();
output("email", "mail", line);
line = br.readLine();
output("html", "xmozillausehtmlmail", line);
line = br.readLine();
output("firstname","givenname", line);
line = br.readLine();
output("lastname", "sn", line);
line = br.readLine();
output("work", "telephonenumber", line);
line = br.readLine();
output("home", "homephone", line);
line = br.readLine();
output("fax", "facsimiletelephonenumber",

line);
line = br.readLine();
output("pager", "pagerphone", line);
line = br.readLine();
output("cell", "cellphone", line);

}
catch (Exception e) {

e.printStackTrace();
}

}

void output(String name, String prefix, String line)
{

int startIndex = prefix.length() + 2;
// 2=length of ": "

String text = line.substring(startIndex);
System.out.println(name + ": " + text);

}
}

This program contains three methods:

GENERATING XML FROM AN ARBITRARY DATA STRUCTURE 277
main
The main method gets the name of the file from the command line, creates
an instance of the parser, and sets it to work parsing the file. This method
will be going away when we convert the program into a SAX parser. (That’s
one reason for putting the parsing code into a separate method.)

parse
This method operates on the File object sent to it by the main routine. As
you can see, it’s about as simple as it can get. The only nod to efficiency is
the use of a BufferedReader, which can become important when you start
operating on large files.

output
The output method contains the logic for the structure of a line. It takes
three arguments. The first argument gives the method a name to display, so
we can output html as a variable name, instead of xmozillausehtmlmail.
The second argument gives the variable name stored in the file (xmozil-
lausehtmlmail). The third argument gives the line containing the data. The
routine then strips off the variable name from the start of the line and outputs
the desired name, plus the data.

Running this program on PersonalAddressBook.ldif produces this output:

nickname: Fred
email: Fred@barneys.house
html: TRUE
firstname: Fred
lastname: Flintstone
work: 999-Quarry
home: 999-BedrockLane
fax: 888-Squawk
pager: 777-pager
cell: 555-cell

I think we can all agree that this is a bit more readable.

Modifying the Parser to Generate SAX
Events
The next step is to modify the parser to generate SAX events so that you can use
it as the basis for a SAXSource object in an XSLT transform.

278
Note: The code discussed in this section is in AddressBookReader02.java.

 Start by importing the additional classes you’ll need:

import java.io.*;

import org.xml.sax.*;
import org.xml.sax.helpers.AttributesImpl;

Next, modify the application so that it extends XmlReader. That change converts
the application into a parser that generates the appropriate SAX events.

public class AddressBookReader
implements XMLReader

{

Now remove the main method. You won’t need it any more.

public static void main(String argv[])
{

// Check the arguments
if (argv.length != 1) {

System.err.println ("Usage: Java AddressBookReader
filename");

System.exit (1);
}
String filename = argv[0];
File f = new File(filename);
AddressBookReader02 reader = new AddressBookReader02();
reader.parse(f);

}

Add some global variables that will come in handy in a few minutes:

public class AddressBookReader
implements XMLReader

{
ContentHandler handler;

// We're not doing namespaces, and we have no
// attributes on our elements.
String nsu = ""; // NamespaceURI

../examples/jaxp/xslt/samples/AddressBookReader02.java

GENERATING XML FROM AN ARBITRARY DATA STRUCTURE 279
Attributes atts = new AttributesImpl();
String rootElement = "addressbook";

String indent = "\n "; // for readability!

The SAX ContentHandler is the object that will get the SAX events generated
by the parser. To make the application into an XmlReader, you’ll define a set-

ContentHandler method. The handler variable will hold a reference to the
object that is sent when setContentHandler is invoked.

And when the parser generates SAX element events, it will need to supply
namespace and attribute information. Because this is a simple application, you’re
defining null values for both of those.

You’re also defining a root element for the data structure (addressbook) and set-
ting up an indent string to improve the readability of the output.

Next, modify the parse method so that it takes an InputSource (rather than a
File) as an argument and account for the exceptions it can generate:

public void parse(File f)InputSource input)
throws IOException, SAXException

Now make the following changes to get the reader encapsulated by the Input-

Source object:

try {
// Get an efficient reader for the file
FileReader r = new FileReader(f);
java.io.Reader r = input.getCharacterStream();
BufferedReader Br = new BufferedReader(r);

Note: In the next section, you’ll create the input source object and what you put in
it will, in fact, be a buffered reader. But the AddressBookReader could be used
by someone else, somewhere down the line. This step makes sure that the process-
ing will be efficient, regardless of the reader you are given.

280
The next step is to modify the parse method to generate SAX events for the start
of the document and the root element. Add the following highlighted code to do
that:

/** Parse the input */
public void parse(InputSource input)
...
{

try {
...
// Read the file and display its contents.
String line = br.readLine();
while (null != (line = br.readLine())) {

if (line.startsWith("xmozillanickname: ")) break;
}

if (handler==null) {
throw new SAXException("No content handler");

}

handler.startDocument();
handler.startElement(nsu, rootElement,

rootElement, atts);

output("nickname", "xmozillanickname", line);
...
output("cell", "cellphone", line);

handler.ignorableWhitespace("\n".toCharArray(),
0, // start index
1 // length
);

handler.endElement(nsu, rootElement, rootElement);
handler.endDocument();

}
catch (Exception e) {
...

Here, you check to make sure that the parser is properly configured with a Con-

tentHandler. (For this application, we don’t care about anything else.) You then
generate the events for the start of the document and the root element, and you
finish by sending the end event for the root element and the end event for the
document.

GENERATING XML FROM AN ARBITRARY DATA STRUCTURE 281
A couple of items are noteworthy at this point:

• We haven’t bothered to send the setDocumentLocator event, because that
is optional. Were it important, that event would be sent immediately before
the startDocument event.

• We’ve generated an ignorableWhitespace event before the end of the
root element. This, too, is optional, but it drastically improves the readabil-
ity of the output, as you’ll see in a few moments. (In this case, the
whitespace consists of a single newline, which is sent in the same way that
characters are sent to the characters method: as a character array, a start-
ing index, and a length.)

Now that SAX events are being generated for the document and the root element,
the next step is to modify the output method to generate the appropriate element
events for each data item. Make the following changes to do that:

void output(String name, String prefix, String line)
throws SAXException
{

int startIndex = prefix.length() + 2; // 2=length of ": "
String text = line.substring(startIndex);
System.out.println(name + ": " + text);

int textLength = line.length() - startIndex;
handler.ignorableWhitespace(indent.toCharArray(),

0, // start index
indent.length()
);

handler.startElement(nsu, name, name /*"qName"*/, atts);
handler.characters(line.toCharArray(),

startIndex,
textLength);

handler.endElement(nsu, name, name);
}

Because the ContentHandler methods can send SAXExceptions back to the
parser, the parser must be prepared to deal with them. In this case, we don’t
expect any, so we’ll simply allow the application to fail if any occur.

You then calculate the length of the data, again generating some ignorable
whitespace for readability. In this case, there is only one level of data, so we can
use a fixed-indent string. (If the data were more structured, we would have to
calculate how much space to indent, depending on the nesting of the data.)

282
Note: The indent string makes no difference to the data but will make the output a
lot easier to read. When everything is working, try generating the result without that
string! All the elements will wind up concatenated end to end:
<addressbook><nickname>Fred</nickname><email>...

Next, add the method that configures the parser with the ContentHandler that is
to receive the events it generates:

void output(String name, String prefix, String line)
throws SAXException

{
...

}

/** Allow an application to register a content event handler. */
public void setContentHandler(ContentHandler handler) {

this.handler = handler;
}

/** Return the current content handler. */
public ContentHandler getContentHandler() {

return this.handler;
}

Several other methods must be implemented in order to satisfy the XmlReader

interface. For the purpose of this exercise, we’ll generate null methods for all of
them. For a production application, though, you may want to consider imple-
menting the error handler methods to produce a more robust application. For
now, add the following highlighted code to generate null methods for them:

/** Allow an application to register an error event handler. */
public void setErrorHandler(ErrorHandler handler)
{ }

/** Return the current error handler. */
public ErrorHandler getErrorHandler()
{ return null; }

GENERATING XML FROM AN ARBITRARY DATA STRUCTURE 283
Then add the following highlighted code to generate null methods for the
remainder of the XmlReader interface. (Most of them are of value to a real SAX
parser but have little bearing on a data-conversion application like this one.)

/** Parse an XML document from a system identifier (URI). */
public void parse(String systemId)
throws IOException, SAXException
{ }

 /** Return the current DTD handler. */
public DTDHandler getDTDHandler()
{ return null; }

/** Return the current entity resolver. */
public EntityResolver getEntityResolver()
{ return null; }

/** Allow an application to register an entity resolver. */
public void setEntityResolver(EntityResolver resolver)
{ }

/** Allow an application to register a DTD event handler. */
public void setDTDHandler(DTDHandler handler)
{ }

/** Look up the value of a property. */
public Object getProperty(String name)
{ return null; }

/** Set the value of a property. */
public void setProperty(String name, Object value)
{ }

/** Set the state of a feature. */
public void setFeature(String name, boolean value)
{ }

/** Look up the value of a feature. */
public boolean getFeature(String name)
{ return false; }

Congratulations! You now have a parser you can use to generate SAX events. In
the next section, you’ll use it to construct a SAX source object that will let you
transform the data into XML.

284
Using the Parser as a SAXSource
Given a SAX parser to use as an event source, you can (easily!) construct a trans-
former to produce a result. In this section, you’ll modify the TransformerApp

you’ve been working with to produce a stream output result, although you could
just as easily produce a DOM result.

Note: The code discussed in this section is in TransformationApp04.java. The
results of running it are in TransformationLog04.txt.

Make sure that you put the AddressBookReader aside and open the Transfor-

mationApp. The work you do in this section affects the TransformationApp!
(They look similar, so it’s easy to start working on the wrong one.)

Start by making the following changes to import the classes you’ll need to con-
struct a SAXSource object. (You won’t need the DOM classes at this point, so
they are discarded here, although leaving them in doesn’t do any harm.)

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.xml.sax.ContentHandler;
import org.xml.sax.InputSource;
import org.w3c.dom.Document;
import org.w3c.dom.DOMException;
...
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.sax.SAXSource;
import javax.xml.transform.stream.StreamResult;

Next, remove a few other holdovers from our DOM-processing days, and add the
code to create an instance of the AddressBookReader:

public class TransformationApp
{

// Global value so it can be ref'd by the tree-adapter
static Document document;

 public static void main(String argv[])
{

...
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();
//factory.setNamespaceAware(true);
//factory.setValidating(true);

../examples/jaxp/xslt/samples/TransformationApp04.java
../examples/jaxp/xslt/samples/TransformationLog04.txt

GENERATING XML FROM AN ARBITRARY DATA STRUCTURE 285
// Create the sax "parser".
AddressBookReader saxReader = new AddressBookReader();

try {
File f = new File(argv[0]);
DocumentBuilder builder =

factory.newDocumentBuilder();
document = builder.parse(f);

Guess what—you’re almost finished. Just a couple of steps to go. Add the fol-
lowing highlighted code to construct a SAXSource object:

// Use a Transformer for output
...
Transformer transformer = tFactory.newTransformer();

// Use the parser as a SAX source for input
FileReader fr = new FileReader(f);
BufferedReader br = new BufferedReader(fr);
InputSource inputSource = new InputSource(br);
SAXSource source = new SAXSource(saxReader, inputSource);

StreamResult result = new StreamResult(System.out);
transformer.transform(source, result);

Here, you construct a buffered reader (as mentioned earlier) and encapsulate it in
an input source object. You then create a SAXSource object, passing it the reader
and the InputSource object, and pass that to the transformer.

When the application runs, the transformer configures itself as the Con-

tentHandler for the SAX parser (the AddressBookReader) and tells the parser
to operate on the inputSource object. Events generated by the parser then go to
the transformer, which does the appropriate thing and passes the data on to the
result object.

Finally, remove the exceptions you no longer need to worry about, because the
TransformationApp no longer generates them:

catch (SAXParseException spe) {
// Error generated by the parser
System.out.println("\n** Parsing error"

+ ", line " + spe.getLineNumber()
+ ", uri " + spe.getSystemId());

System.out.println(" " + spe.getMessage());

// Use the contained exception, if any

286
Exception x = spe;
if (spe.getException() != null)

x = spe.getException();
x.printStackTrace();

} catch (SAXException sxe) {
// Error generated by this application
// (or a parser-initialization error)
Exception x = sxe;
if (sxe.getException() != null)

x = sxe.getException();
x.printStackTrace();

} catch (ParserConfigurationException pce) {
// Parser with specified options can't be built
pce.printStackTrace();

} catch (IOException ioe) {
...

You’re finished! You have now created a transformer that uses a SAXSource as
input and produces a StreamResult as output.

Doing the Conversion
Now run the application on the address book file. Your output should look like
this:

<?xml version="1.0" encoding="UTF-8"?>
<addressbook>

<nickname>Fred</nickname>
<email>fred@barneys.house</email>
<html>TRUE</html>
<firstname>Fred</firstname>
<lastname>Flintstone</lastname>
<work>999-Quarry</work>
<home>999-BedrockLane</home>
<fax>888-Squawk</fax>
<pager>777-pager</pager>
<cell>555-cell</cell>

</addressbook>

You have now successfully converted an existing data structure to XML. And it
wasn’t even very hard. Congratulations!

TRANSFORMING XML DATA WITH XSLT 287
Transforming XML Data with XSLT
The Extensible Stylesheet Language Transformations (XSLT) APIs can be used
for many purposes. For example, with a sufficiently intelligent stylesheet, you
could generate PDF or PostScript output from the XML data. But generally,
XSLT is used to generate formatted HTML output, or to create an alternative
XML representation of the data.

In this section, you’ll use an XSLT transform to translate XML input data to
HTML output.

Note: The XSLT specification is large and complex, so this tutorial can only scratch
the surface. It will give you enough background to get started so that you can under-
take simple XSLT processing tasks. It should also give you a head start when you
investigate XSLT further. For a more thorough grounding, consult a good reference
manual, such as Michael Kay’s XSLT: Programmer's Reference (Wrox, 2001).

Defining a Simple <article> Document
Type
We’ll start by defining a very simple document type that can be used for writing
articles. Our <article> documents will contain these structure tags:

• <TITLE>: The title of the article

• <SECT>: A section, consisting of a heading and a body

• <PARA>: A paragraph

• <LIST>: A list

• <ITEM>: An entry in a list

• <NOTE>: An aside, that is offset from the main text

The slightly unusual aspect of this structure is that we won’t create a separate
element tag for a section heading. Such elements are commonly created to dis-
tinguish the heading text (and any tags it contains) from the body of the section
(that is, any structure elements underneath the heading).

Instead, we’ll allow the heading to merge seamlessly into the body of a section.
That arrangement adds some complexity to the stylesheet, but it will give us a
chance to explore XSLT’s template-selection mechanisms. It also matches our
intuitive expectations about document structure, where the text of a heading is

288
followed directly by structure elements, an arrangement that can simplify out-
line-oriented editing.

Note: This kind of structure is not easily validated, because XML’s mixed-content
model allows text anywhere in a section, whereas we want to confine text and inline
elements so that they appear only before the first structure element in the body of
the section. The assertion-based validator (Schematron, page 1392) can do it, but
most other schema mechanisms can’t. So we’ll dispense with defining a DTD for
the document type.

In this structure, sections can be nested. The depth of the nesting will determine
what kind of HTML formatting to use for the section heading (for example, h1 or
h2). Using a plain SECT tag (instead of numbered sections) is also useful with
outline-oriented editing, because it lets you move sections around at will without
having to worry about changing the numbering for any of the affected sections.

For lists, we’ll use a type attribute to specify whether the list entries are unor-

dered (bulleted), alpha (enumerated with lowercase letters), ALPHA (enumerated
with uppercase letters), or numbered.

We’ll also allow for some inline tags that change the appearance of the text:

• : Bold

• <I>: Italics

• <U>: Underline

• <DEF>: Definition

• <LINK>: Link to a URL

Note: An inline tag does not generate a line break, so a style change caused by an
inline tag does not affect the flow of text on the page (although it will affect the
appearance of that text). A structure tag, on the other hand, demarcates a new seg-
ment of text, so at a minimum it always generates a line break in addition to other
format changes.

The <DEF> tag will be used for terms that are defined in the text. Such terms will
be displayed in italics, the way they ordinarily are in a document. But using a
special tag in the XML will allow an index program to find such definitions and
add them to an index, along with keywords in headings. In the preceding Note,
for example, the definitions of inline tags and structure tags could have been
marked with <DEF> tags for future indexing.

TRANSFORMING XML DATA WITH XSLT 289
Finally, the LINK tag serves two purposes. First, it will let us create a link to a
URL without having to put the URL in twice; so we can code
<link>http//...</link> instead of http//....
Of course, we’ll also want to allow a form that looks like <link tar-

get="...">...name...</link>. That leads to the second reason for the <link>
tag. It will give us an opportunity to play with conditional expressions in XSLT.

Note: Although the article structure is exceedingly simple (consisting of only 11
tags), it raises enough interesting problems to give us a good view of XSLT’s basic
capabilities. But we’ll still leave large areas of the specification untouched. In What
Else Can XSLT Do? (page 309), we’ll point out the major features we skipped.

Creating a Test Document
Here, you’ll create a simple test document using nested <SECT> elements, a few
<PARA> elements, a <NOTE> element, a <LINK>, and a <LIST type="unor-

dered">. The idea is to create a document with one of everything so that we can
explore the more interesting translation mechanisms.

Note: The sample data described here is contained in article1.xml. (The brows-
able version is article1-xml.html.)

To make the test document, create a file called article.xml and enter the fol-
lowing XML data.

<?xml version="1.0"?>
<ARTICLE>

<TITLE>A Sample Article</TITLE>
<SECT>The First Major Section

<PARA>This section will introduce a subsection.</PARA>
<SECT>The Subsection Heading

<PARA>This is the text of the subsection.
</PARA>

</SECT>
</SECT>

</ARTICLE>

Note that in the XML file, the subsection is totally contained within the major
section. (In HTML, on the other hand, headings do not contain the body of a sec-

../examples/jaxp/xslt/samples/article1.xml
../examples/jaxp/xslt/samples/article1-xml.html

290
tion.) The result is an outline structure that is harder to edit in plain-text form,
like this, but is much easier to edit with an outline-oriented editor.

Someday, given a tree-oriented XML editor that understands inline tags such as
 and <I>, it should be possible to edit an article of this kind in outline form,
without requiring a complicated stylesheet. (Such an editor would allow the
writer to focus on the structure of the article, leaving layout until much later in
the process.) In such an editor, the article fragment would look something like
this:

<ARTICLE>
<TITLE>A Sample Article
<SECT>The First Major Section

<PARA>This section will introduce a subsection.
<SECT>The Subheading

<PARA>This is the text of the subsection. Note that ...

Note: At the moment, tree-structured editors exist, but they treat inline tags such as
 and <I> in the same way that they treat structure tags, and that can make the
“outline” a bit difficult to read.

Writing an XSLT Transform
Now it’s time to begin writing an XSLT transform that will convert the XML
article and render it in HTML.

Note: The transform described in this section is contained in article1a.xsl. (The
browsable version is article1a-xsl.html.)

Start by creating a normal XML document:

<?xml version="1.0" encoding="ISO-8859-1"?>

../examples/jaxp/xslt/samples/article1a.xsl
../examples/jaxp/xslt/samples/article1a-xsl.html

TRANSFORMING XML DATA WITH XSLT 291
Then add the following highlighted lines to create an XSL stylesheet:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0"
>

</xsl:stylesheet>

Now set it up to produce HTML-compatible output:

<xsl:stylesheet
...
>
<xsl:output method="html"/>

 ...

</xsl:stylesheet>

We’ll get into the detailed reasons for that entry later in this section. For now,
note that if you want to output anything other than well-formed XML, then
you’ll need an <xsl:output> tag like the one shown, specifying either text or
html. (The default value is xml.)

Note: When you specify XML output, you can add the indent attribute to produce
nicely indented XML output. The specification looks like this:
<xsl:output method="xml" indent="yes"/>.

Processing the Basic Structure Elements
You’ll start filling in the stylesheet by processing the elements that go into creat-
ing a table of contents: the root element, the title element, and headings. You’ll
also process the PARA element defined in the test document.

Note: If on first reading you skipped the section that discusses the XPath addressing
mechanisms, How XPath Works (page 255), now is a good time to go back and
review that section.

292
Begin by adding the main instruction that processes the root element:

<xsl:template match="/">
<html><body>

<xsl:apply-templates/>
</body></html>

</xsl:template>

</xsl:stylesheet>

The new XSL commands are shown in bold. (Note that they are defined in the
xsl namespace.) The instruction <xsl:apply-templates> processes the chil-
dren of the current node. In this case, the current node is the root node.

Despite its simplicity, this example illustrates a number of important ideas, so
it’s worth understanding thoroughly. The first concept is that a stylesheet con-
tains a number of templates, defined with the <xsl:template> tag. Each tem-
plate contains a match attribute, which uses the XPath addressing mechanisms
described in How XPath Works (page 255) to select the elements that the tem-
plate will be applied to.

Within the template, tags that do not start with the xsl: namespace prefix are
simply copied. The newlines and whitespace that follow them are also copied,
and that helps to make the resulting output readable.

Note: When a newline is not present, whitespace is generally ignored. To include
whitespace in the output in such cases, or to include other text, you can use the
<xsl:text> tag. Basically, an XSLT stylesheet expects to process tags. So every-
thing it sees needs to be either an <xsl:..> tag, some other tag, or whitespace.

In this case, the non-XSL tags are HTML tags. So when the root tag is matched,
XSLT outputs the HTML start tags, processes any templates that apply to chil-
dren of the root, and then outputs the HTML end tags.

Process the <TITLE> Element
Next, add a template to process the article title:

<xsl:template match="/ARTICLE/TITLE">
<h1 align="center"> <xsl:apply-templates/> </h1>

</xsl:template>

</xsl:stylesheet>

TRANSFORMING XML DATA WITH XSLT 293
In this case, you specify a complete path to the TITLE element and output some
HTML to make the text of the title into a large, centered heading. In this case, the
apply-templates tag ensures that if the title contains any inline tags such as
italics, links, or underlining, they also will be processed.

More importantly, the apply-templates instruction causes the text of the title to
be processed. Like the DOM data model, the XSLT data model is based on the
concept of text nodes contained in element nodes (which, in turn, can be con-
tained in other element nodes, and so on). That hierarchical structure constitutes
the source tree. There is also a result tree, which contains the output.

XSLT works by transforming the source tree into the result tree. To visualize the
result of XSLT operations, it is helpful to understand the structure of those trees,
and their contents. (For more on this subject, see The XSLT/XPath Data
Model, page 256.)

Process Headings
To continue processing the basic structure elements, add a template to process
the top-level headings:

<xsl:template match="/ARTICLE/SECT">
<h2> <xsl:apply-templates

select="text()|B|I|U|DEF|LINK"/> </h2>
<xsl:apply-templates select="SECT|PARA|LIST|NOTE"/>

</xsl:template>

</xsl:stylesheet>

Here, you specify the path to the topmost SECT elements. But this time, you apply
templates in two stages using the select attribute. For the first stage, you select
text nodes, as well as inline tags such as bold and italics, using the XPath text()

function. (The vertical pipe (|) is used to match multiple items: text or a bold tag
or an italics tag, etc.) In the second stage, you select the other structure elements
contained in the file, for sections, paragraphs, lists, and notes.

Using the select attribute lets you put the text and inline elements between the
<h2>...</h2> tags, while making sure that all the structure tags in the section
are processed afterward. In other words, you make sure that the nesting of the
headings in the XML document is not reflected in the HTML formatting, a dis-
tinction that is important for HTML output.

294
In general, using the select clause lets you apply all templates to a subset of the
information available in the current context. As another example, this template
selects all attributes of the current node:

<xsl:apply-templates select="@*"/></attributes>

Next, add the virtually identical template to process subheadings that are nested
one level deeper:

<xsl:template match="/ARTICLE/SECT/SECT">
<h3> <xsl:apply-templates

select="text()|B|I|U|DEF|LINK"/> </h3>
<xsl:apply-templates select="SECT|PARA|LIST|NOTE"/>

</xsl:template>

</xsl:stylesheet>

Generate a Runtime Message
You could add templates for deeper headings, too, but at some point you must
stop, if only because HTML goes down only to five levels. For this example,
you’ll stop at two levels of section headings. But if the XML input happens to
contain a third level, you’ll want to deliver an error message to the user. This sec-
tion shows you how to do that.

Note: We could continue processing SECT elements that are further down, by select-
ing them with the expression /SECT/SECT//SECT. The // selects any SECT elements,
at any depth, as defined by the XPath addressing mechanism. But instead we’ll take
the opportunity to play with messaging.

Add the following template to generate an error when a section is encountered
that is nested too deep:

<xsl:template match="/ARTICLE/SECT/SECT/SECT">
<xsl:message terminate="yes">

Error: Sections can only be nested 2 deep.
</xsl:message>

</xsl:template>

</xsl:stylesheet>

TRANSFORMING XML DATA WITH XSLT 295
The terminate="yes" clause causes the transformation process to stop after the
message is generated. Without it, processing could still go on, with everything in
that section being ignored.

As an additional exercise, you could expand the stylesheet to handle sections
nested up to four sections deep, generating <h2>...<h5> tags. Generate an error
on any section nested five levels deep.

Finally, finish the stylesheet by adding a template to process the PARA tag:

<xsl:template match="PARA">
<p><xsl:apply-templates/></p>

</xsl:template>

</xsl:stylesheet>

Writing the Basic Program
Now you’ll modify the program that uses XSLT to echo an XML file unchanged,
changing it so that it uses your stylesheet.

Note: The code shown in this section is contained in Stylizer.java. The result is
stylizer1a.html. (The browser-displayable version of the HTML source is
stylizer1a-src.html.)

Start by copying TransformationApp02, which parses an XML file and writes
to System.out. Save it as Stylizer.java.

Next, modify occurrences of the class name and the usage section of the pro-
gram:

public class TransformationAppStylizer
{

if (argv.length != 1 2) {
System.err.println (

"Usage: java TransformationApp filename");
"Usage: java Stylizer stylesheet xmlfile");

System.exit (1);
}
...

../examples/jaxp/xslt/samples/Stylizer.java
../examples/jaxp/xslt/samples/stylizer1a.html
../examples/jaxp/xslt/samples/stylizer1a-src.html

296
Then modify the program to use the stylesheet when creating the Transformer

object.

...
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;
...

public class Stylizer
{

...
public static void main (String argv[])
{

...
try {

File f = new File(argv[0]);
File stylesheet = new File(argv[0]);
File datafile = new File(argv[1]);

DocumentBuilder builder =
factory.newDocumentBuilder();

document = builder.parse(f datafile);
...
StreamSource stylesource =

new StreamSource(stylesheet);
Transformer transformer =

Factory.newTransformer(stylesource);
...

This code uses the file to create a StreamSource object and then passes the
source object to the factory class to get the transformer.

Note: You can simplify the code somewhat by eliminating the DOMSource class.
Instead of creating a DOMSource object for the XML file, create a StreamSource

object for it, as well as for the stylesheet.

Now compile and run the program using article1a.xsl to transform
article1.xml. The results should look like this:

<html>
<body>

<h1 align="center">A Sample Article</h1>

TRANSFORMING XML DATA WITH XSLT 297
<h2>The First Major Section

</h2>
<p>This section will introduce a subsection.</p>
<h3>The Subsection Heading

</h3>
<p>This is the text of the subsection.

</p>

</body>
</html>

At this point, there is quite a bit of excess whitespace in the output. In the next
section, you’ll see how to eliminate most of it.

Trimming the Whitespace
Recall that when you look at the structure of a DOM, there are many text nodes
that contain nothing but ignorable whitespace. Most of the excess whitespace in
the output comes from these nodes. Fortunately, XSL gives you a way to elimi-
nate them. (For more about the node structure, see The XSLT/XPath Data
Model, page 256.)

Note: The stylesheet described here is article1b.xsl. The result is
stylizer1b.html. (The browser-displayable versions are article1b-xsl.html

and stylizer1b-src.html.)

To remove some of the excess whitespace, add the following highlighted line to
the stylesheet.

<xsl:stylesheet ...
>
<xsl:output method="html"/>
<xsl:strip-space elements="SECT"/>
...

This instruction tells XSL to remove any text nodes under SECT elements that
contain nothing but whitespace. Nodes that contain text other than whitespace
will not be affected, nor will other kinds of nodes.

../examples/jaxp/xslt/samples/article1b.xsl
../examples/jaxp/xslt/samples/stylizer1b.html
../examples/jaxp/xslt/samples/article1b-xsl.html
../examples/jaxp/xslt/samples/stylizer1b-src.html

298
Now, when you run the program the result looks like this:

<html>
<body>

<h1 align="center">A Sample Article</h1>

<h2>The First Major Section
</h2>

<p>This section will introduce a subsection.</p>
<h3>The Subsection Heading

</h3>
<p>This is the text of the subsection.

</p>

</body>
</html>

That’s quite an improvement. There are still newline characters and whitespace
after the headings, but those come from the way the XML is written:

<SECT>The First Major Section
____<PARA>This section will introduce a subsection.</PARA>
^^^^

Here, you can see that the section heading ends with a newline and indentation
space, before the PARA entry starts. That’s not a big worry, because the browsers
that will process the HTML compress and ignore the excess space routinely. But
there is still one more formatting tool at our disposal.

Note: The stylesheet described here is article1c.xsl. The result is
stylizer1c.html. (The browser-displayable versions are article1c-xsl.html

and stylizer1c-src.html.)

To get rid of that last little bit of whitespace, add this template to the stylesheet:

<xsl:template match="text()">
<xsl:value-of select="normalize-space()"/>

</xsl:template>

</xsl:stylesheet>

../examples/jaxp/xslt/samples/article1c.xsl
../examples/jaxp/xslt/samples/stylizer1c.html
../examples/jaxp/xslt/samples/article1c-xsl.html
../examples/jaxp/xslt/samples/stylizer1c-src.html

TRANSFORMING XML DATA WITH XSLT 299
The output now looks like this:

<html>
<body>
<h1 align="center">A Sample Article</h1>
<h2>The First Major Section</h2>
<p>This section will introduce a subsection.</p>
<h3>The Subsection Heading</h3>
<p>This is the text of the subsection.</p>
</body>
</html>

That is quite a bit better. Of course, it would be nicer if it were indented, but that
turns out to be somewhat harder than expected. Here are some possible avenues
of attack, along with the difficulties:

Indent option
Unfortunately, the indent="yes" option that can be applied to XML output
is not available for HTML output. Even if that option were available, it
wouldn’t help, because HTML elements are rarely nested! Although HTML
source is frequently indented to show the implied structure, the HTML tags
themselves are not nested in a way that creates a real structure.

Indent variables
The <xsl:text> function lets you add any text you want, including
whitespace. So it could conceivably be used to output indentation space. The
problem is to vary the amount of indentation space. XSLT variables seem
like a good idea, but they don’t work here. The reason is that when you
assign a value to a variable in a template, the value is known only within that
template (statically, at compile time). Even if the variable is defined globally,
the assigned value is not stored in a way that lets it be dynamically known by
other templates at runtime. When <apply-templates/> invokes other tem-
plates, those templates are unaware of any variable settings made elsewhere.

Parameterized templates
Using a parameterized template is another way to modify a template’s
behavior. But determining the amount of indentation space to pass as the
parameter remains the crux of the problem.

At the moment, then, there does not appear to be any good way to control the
indentation of HTML formatted output. That would be inconvenient if you
needed to display or edit the HTML as plain text. But it’s not a problem if you do
your editing on the XML form, using the HTML version only for display in a
browser. (When you view stylizer1c.html, for example, you see the results
you expect.)

300
Processing the Remaining Structure
Elements
In this section, you’ll process the LIST and NOTE elements, which add more
structure to an article.

Note: The sample document described in this section is article2.xml, and the
stylesheet used to manipulate it is article2.xsl. The result is stylizer2.html.
(The browser-displayable versions are article2-xml.html, article2-xsl.html,
and stylizer2-src.html.)

Start by adding some test data to the sample document:

<?xml version="1.0"?>
<ARTICLE>

<TITLE>A Sample Article</TITLE>
<SECT>The First Major Section

...
</SECT>
<SECT>The Second Major Section

<PARA>This section adds a LIST and a NOTE.
<PARA>Here is the LIST:

<LIST type="ordered">
<ITEM>Pears</ITEM>
<ITEM>Grapes</ITEM>

</LIST>
</PARA>
<PARA>And here is the NOTE:

<NOTE>Don't forget to go to the hardware store
on your way to the grocery!

</NOTE>
</PARA>

</SECT>
</ARTICLE>

Note: Although the list and note in the XML file are contained in their respective
paragraphs, it really makes no difference whether they are contained or not; the gen-
erated HTML will be the same either way. But having them contained will make
them easier to deal with in an outline-oriented editor.

../examples/jaxp/xslt/samples/article2.xml
../examples/jaxp/xslt/samples/article2.xsl
../examples/jaxp/xslt/samples/stylizer2.html
../examples/jaxp/xslt/samples/article2-xml.html
../examples/jaxp/xslt/samples/article2-xsl.html
../examples/jaxp/xslt/samples/stylizer2-src.html

TRANSFORMING XML DATA WITH XSLT 301
Modify <PARA> Handling
Next, modify the PARA template to account for the fact that we are now allowing
some of the structure elements to be embedded with a paragraph:

<xsl:template match="PARA">
<p><xsl:apply-templates/></p>
<p> <xsl:apply-templates select="text()|B|I|U|DEF|LINK"/>

</p>
<xsl:apply-templates select="PARA|LIST|NOTE"/>

</xsl:template>

This modification uses the same technique you used for section headings. The
only difference is that SECT elements are not expected within a paragraph. (How-
ever, a paragraph could easily exist inside another paragraph—for example, as
quoted material.)

Process <LIST> and <ITEM> Elements
Now you’re ready to add a template to process LIST elements:

<xsl:template match="LIST">
<xsl:if test="@type='ordered'">

<xsl:apply-templates/>

</xsl:if>
<xsl:if test="@type='unordered'">

<xsl:apply-templates/>

</xsl:if>
</xsl:template>

</xsl:stylesheet>

The <xsl:if> tag uses the test="" attribute to specify a Boolean condition. In
this case, the value of the type attribute is tested, and the list that is generated
changes depending on whether the value is ordered or unordered.

Note two important things in this example:

• There is no else clause, nor is there a return or exit statement, so it takes
two <xsl:if> tags to cover the two options. (Or the <xsl:choose> tag
could have been used, which provides case-statement functionality.)

302
• Single quotes are required around the attribute values. Otherwise, the
XSLT processor attempts to interpret the word ordered as an XPath func-
tion instead of as a string.

Now finish LIST processing by handling ITEM elements:

<xsl:template match="ITEM">
<xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

Ordering Templates in a Stylesheet
By now, you should have the idea that templates are independent of one another,
so it doesn’t generally matter where they occur in a file. So from this point on,
we’ll show only the template you need to add. (For the sake of comparison,
they’re always added at the end of the example stylesheet.)

Order does make a difference when two templates can apply to the same node. In
that case, the one that is defined last is the one that is found and processed. For
example, to change the ordering of an indented list to use lowercase alphabetics,
you could specify a template pattern that looks like this: //LIST//LIST. In that
template, you would use the HTML option to generate an alphabetic enumera-
tion, instead of a numeric one.

But such an element could also be identified by the pattern //LIST. To make sure
that the proper processing is done, the template that specifies //LIST would have
to appear before the template that specifies //LIST//LIST.

Process <NOTE> Elements
The last remaining structure element is the NOTE element. Add the following
template to handle that.

<xsl:template match="NOTE">
<blockquote>Note:

<xsl:apply-templates/>
</p></blockquote>

</xsl:template>

</xsl:stylesheet>

TRANSFORMING XML DATA WITH XSLT 303
This code brings up an interesting issue that results from the inclusion of the

 tag. For the file to be well-formed XML, the tag must be specified in the
stylesheet as
, but that tag is not recognized by many browsers. And
although most browsers recognize the sequence
</br>, they all treat it like a
paragraph break instead of a single line break.

In other words, the transformation must generate a
 tag, but the stylesheet
must specify
. That brings us to the major reason for that special output tag
we added early in the stylesheet:

<xsl:stylesheet ... >
<xsl:output method="html"/>
...

</xsl:stylesheet>

That output specification converts empty tags such as
 to their HTML
form,
, on output. That conversion is important, because most browsers do
not recognize the empty tags. Here is a list of the affected tags:

area frame isindex
base hr link
basefont img meta
br input param
col

To summarize, by default XSLT produces well-formed XML on output. And
because an XSL stylesheet is well-formed XML to start with, you cannot easily
put a tag such as
 in the middle of it. The <xsl:output method="html"/>

tag solves the problem so that you can code
 in the stylesheet but get

in the output.

The other major reason for specifying <xsl:output method="html"/> is that,
as with the specification <xsl:output method="text"/>, generated text is not
escaped. For example, if the stylesheet includes the < entity reference, it will
appear as the < character in the generated text. When XML is generated, on the
other hand, the < entity reference in the stylesheet would be unchanged, so it
would appear as < in the generated text.

Note: If you actually want < to be generated as part of the HTML output, you’ll
need to encode it as &lt;. That sequence becomes < on output, because
only the & is converted to an & character.

304
Run the Program
Here is the HTML that is generated for the second section when you run the pro-
gram now:

...
<h2>The Second Major Section</h2>
<p>This section adds a LIST and a NOTE.</p>
<p>Here is the LIST:</p>

Pears
Grapes

<p>And here is the NOTE:</p>
<blockquote>
Note:

Don't forget to go to the hardware store on your way to the
grocery!
</blockquote>

Process Inline (Content) Elements
The only remaining tags in the ARTICLE type are the inline tags—the ones that
don’t create a line break in the output, but instead are integrated into the stream
of text they are part of.

Inline elements are different from structure elements in that inline elements are
part of the content of a tag. If you think of an element as a node in a document
tree, then each node has both content and structure. The content is composed of
the text and inline tags it contains. The structure consists of the other elements
(structure elements) under the tag.

Note: The sample document described in this section is article3.xml, and the
stylesheet used to manipulate it is article3.xsl. The result is stylizer3.html.
(The browser-displayable versions are article3-xml.html, article3-xsl.html,
and stylizer3-src.html.)

Start by adding one more bit of test data to the sample document:

<?xml version="1.0"?>
<ARTICLE>

<TITLE>A Sample Article</TITLE>
<SECT>The First Major Section

../examples/jaxp/xslt/samples/article3.xml
../examples/jaxp/xslt/samples/article3.xsl
../examples/jaxp/xslt/samples/stylizer3.html
../examples/jaxp/xslt/samples/article3-xml.html
../examples/jaxp/xslt/samples/article3-xsl.html
../examples/jaxp/xslt/samples/stylizer3-src.html

TRANSFORMING XML DATA WITH XSLT 305
...
</SECT>
<SECT>The Second Major Section

...
</SECT>
<SECT>The <I>Third</I> Major Section

<PARA>In addition to the inline tag in the heading,
this section defines the term <DEF>inline</DEF>,
which literally means "no line break". It also
adds a simple link to the main page for the Java
platform (<LINK>http://java.sun.com</LINK>),
as well as a link to the
<LINK target="http://java.sun.com/xml">XML</LINK>
page.

</PARA>
</SECT>

</ARTICLE>

Now process the inline <DEF> elements in paragraphs, renaming them to HTML
italics tags:

<xsl:template match="DEF">
<i> <xsl:apply-templates/> </i>

</xsl:template>

Next, comment out the text-node normalization. It has served its purpose, and
now you’re to the point that you need to preserve important spaces:

<!--
<xsl:template match="text()">

<xsl:value-of select="normalize-space()"/>
</xsl:template>

-->

This modification keeps us from losing spaces before tags such as <I> and
<DEF>. (Try the program without this modification to see the result.)

Now process basic inline HTML elements such as , <I>, and <U> for bold,
italics, and underlining.

<xsl:template match="B|I|U">
<xsl:element name="{name()}">

<xsl:apply-templates/>
</xsl:element>

</xsl:template>

306
The <xsl:element> tag lets you compute the element you want to generate.
Here, you generate the appropriate inline tag using the name of the current ele-
ment. In particular, note the use of curly braces ({}) in the name=".." expres-
sion. Those curly braces cause the text inside the quotes to be processed as an
XPath expression instead of being interpreted as a literal string. Here, they cause
the XPath name() function to return the name of the current node.

Curly braces are recognized anywhere that an attribute value template can occur.
(Attribute value templates are defined in section 7.6.2 of the XSLT specification,
and they appear several places in the template definitions.). In such expressions,
curly braces can also be used to refer to the value of an attribute, {@foo}, or to
the content of an element {foo}.

Note: You can also generate attributes using <xsl:attribute>. For more informa-
tion, see section 7.1.3 of the XSLT Specification.

The last remaining element is the LINK tag. The easiest way to process that tag
will be to set up a named template that we can drive with a parameter:

<xsl:template name="htmLink">
<xsl:param name="dest" select="UNDEFINED"/>
<xsl:element name="a">

<xsl:attribute name="href">
<xsl:value-of select="$dest"/>

</xsl:attribute>
<xsl:apply-templates/>

</xsl:element>
</xsl:template>

The major difference in this template is that, instead of specifying a match

clause, you give the template a name using the name="" clause. So this template
gets executed only when you invoke it.

Within the template, you also specify a parameter named dest using the
<xsl:param> tag. For a bit of error checking, you use the select clause to give
that parameter a default value of UNDEFINED. To reference the variable in the
<xsl:value-of> tag, you specify $dest.

Note: Recall that an entry in quotes is interpreted as an expression unless it is fur-
ther enclosed in single quotes. That’s why the single quotes were needed earlier in
"@type='ordered'"—to make sure that ordered was interpreted as a string.

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt

TRANSFORMING XML DATA WITH XSLT 307
The <xsl:element> tag generates an element. Previously, you have been able to
simply specify the element we want by coding something like <html>. But here
you are dynamically generating the content of the HTML anchor (<a>) in the
body of the <xsl:element> tag. And you are dynamically generating the href

attribute of the anchor using the <xsl:attribute> tag.

The last important part of the template is the <apply-templates> tag, which
inserts the text from the text node under the LINK element. Without it, there
would be no text in the generated HTML link.

Next, add the template for the LINK tag, and call the named template from within
it:

<xsl:template match="LINK">
<xsl:if test="@target">

<!--Target attribute specified.-->
<xsl:call-template name="htmLink">

<xsl:with-param name="dest" select="@target"/>
</xsl:call-template>

</xsl:if>
</xsl:template>

<xsl:template name="htmLink">
...

The test="@target" clause returns true if the target attribute exists in the
LINK tag. So this <xsl-if> tag generates HTML links when the text of the link
and the target defined for it are different.

The <xsl:call-template> tag invokes the named template, whereas
<xsl:with-param> specifies a parameter using the name clause and specifies its
value using the select clause.

As the very last step in the stylesheet construction process, add the <xsl-if> tag
to process LINK tags that do not have a target attribute.

<xsl:template match="LINK">
<xsl:if test="@target">

...
</xsl:if>

<xsl:if test="not(@target)">
<xsl:call-template name="htmLink">

<xsl:with-param name="dest">
<xsl:apply-templates/>

308
</xsl:with-param>
</xsl:call-template>

</xsl:if>
</xsl:template>

The not(...) clause inverts the previous test (remember, there is no else

clause). So this part of the template is interpreted when the target attribute is
not specified. This time, the parameter value comes not from a select clause,
but from the contents of the <xsl:with-param> element.

Note: Just to make it explicit: Parameters and variables (which are discussed in a
few moments in What Else Can XSLT Do? (page 309) can have their value speci-
fied either by a select clause, which lets you use XPath expressions, or by the con-
tent of the element, which lets you use XSLT tags.

In this case, the content of the parameter is generated by the <xsl:apply-tem-

plates/> tag, which inserts the contents of the text node under the LINK ele-
ment.

Run the Program
When you run the program now, the results should look something like this:

...
<h2>The <I>Third</I> Major Section

</h2>
<p>In addition to the inline tag in the heading, this section

defines the term <i>inline</i>, which literally means
"no line break". It also adds a simple link to the
main page for the Java platform (<a href="http://java.
sun.com">http://java.sun.com),
as well as a link to the
XML page.

</p>

Good work! You have now converted a rather complex XML file to HTML. (As
simple as it appears at first, it certainly provides a lot of opportunity for explora-
tion.)

TRANSFORMING XML DATA WITH XSLT 309
Printing the HTML
You have now converted an XML file to HTML. One day, someone will produce
an HTML-aware printing engine that you’ll be able to find and use through the
Java Printing Service API. At that point, you’ll have ability to print an arbitrary
XML file by generating HTML. All you’ll have to do is to set up a stylesheet and
use your browser.

What Else Can XSLT Do?
As lengthy as this section has been, it has only scratched the surface of XSLT’s
capabilities. Many additional possibilities await you in the XSLT specification.
Here are a few things to look for:

import (Section 2.6.2) and include (section 2.6.1)
Use these statements to modularize and combine XSLT stylesheets. The
include statement simply inserts any definitions from the included file. The
import statement lets you override definitions in the imported file with defi-
nitions in your own stylesheet.

for-each loops (section 8)
Loop over a collection of items and process each one in turn.

choose (case statement) for conditional processing (section 9.2)
Branch to one of multiple processing paths depending on an input value.

Generating numbers (section 7.7)
Dynamically generate numbered sections, numbered elements, and numeric
literals. XSLT provides three numbering modes:

• Single: Numbers items under a single heading, like an ordered list in
HTML.

• Multiple: Produces multilevel numbering such as “A.1.3”.

• Any: Consecutively numbers items wherever they appear, as with footnotes
in a chapter.

Formatting numbers (section 12.3)
Control enumeration formatting so that you get numerics (format="1"),
uppercase alphabetics (format="A"), lowercase alphabetics (format="a"),
or compound numbers, like “A.1,” as well as numbers and currency amounts
suited for a specific international locale.

Sorting output (section 10)
Produce output in a desired sorting order.

http://www.w3.org/TR/xslt

310
Mode-based templates (section 5.7)
Process an element multiple times, each time in a different “mode.” You add
a mode attribute to templates and then specify <apply-templates

mode="..."> to apply only the templates with a matching mode. Combine
with the <apply-templates select="..."> attribute to apply mode-based
processing to a subset of the input data.

Variables (section 11)
Variables are something like method parameters, in that they let you control
a template’s behavior. But they are not as valuable as you might think. The
value of a variable is known only within the scope of the current template or
<xsl:if> tag (for example) in which it is defined. You can’t pass a value
from one template to another, or even from an enclosed part of a template to
another part of the same template.

These statements are true even for a “global” variable. You can change its
value in a template, but the change applies only to that template. And when
the expression used to define the global variable is evaluated, that evaluation
takes place in the context of the structure’s root node. In other words, global
variables are essentially runtime constants. Those constants can be useful for
changing the behavior of a template, especially when coupled with include

and import statements. But variables are not a general-purpose data-man-
agement mechanism.

The Trouble with Variables
It is tempting to create a single template and set a variable for the destination of
the link, rather than go to the trouble of setting up a parameterized template and
calling it two different ways. The idea is to set the variable to a default value
(say, the text of the LINK tag) and then, if the target attribute exists, set the des-
tination variable to the value of the target attribute.

That would be a good idea—if it worked. But again, the issue is that variables are
known only in the scope within which they are defined. So when you code an
<xsl:if> tag to change the value of the variable, the value is known only within
the context of the <xsl:if> tag. Once </xsl:if> is encountered, any change to
the variable’s setting is lost.

A similarly tempting idea is the possibility of replacing the
text()|B|I|U|DEF|LINK specification with a variable ($inline). But because
the value of the variable is determined by where it is defined, the value of a glo-
bal inline variable consists of text nodes, nodes, and so on, that happen to

TRANSFORMING FROM THE COMMAND LINE WITH XALAN 311
exist at the root level. In other words, the value of such a variable, in this case, is
null.

Transforming from the Command Line
with Xalan

To run a transform from the command line, you initiate a Xalan Process class
using the following command:

java org.apache.xalan.xslt.Process
-IN article3.xml -XSL article3.xsl

Note: Remember to use the endorsed directories mechanism to access the Xalan
libraries, as described in Compiling and Running the Program (page 134).

With this command, the output goes to System.out. The -OUT option can also be
used to output to a file.

The Process command also allows for a variety of other options. For details, see
http://xml.apache.org/xalan-j/commandline.html.

Concatenating Transformations with a
Filter Chain

It is sometimes useful to create a filter chain: a concatenation of XSLT transfor-
mations in which the output of one transformation becomes the input of the next.
This section shows you how to do that.

Writing the Program
Start by writing a program to do the filtering. This example shows the full source
code, but to make things easier you can use one of the programs you’ve been
working on as a basis.

Note: The code described here is contained in FilterChain.java.

http://xml.apache.org/xalan-j/commandline.html
../examples/jaxp/xslt/samples/FilterChain.java

312
The sample program includes the import statements that identify the package
locations for each class:

import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;
import javax.xml.parsers.SAXParserFactory;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.xml.sax.InputSource;
import org.xml.sax.XMLReader;
import org.xml.sax.XMLFilter;

import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.TransformerConfigurationException;

import javax.xml.transform.sax.SAXTransformerFactory;
import javax.xml.transform.sax.SAXSource;
import javax.xml.transform.sax.SAXResult;

import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;

import java.io.*;

The program also includes the standard error handlers you’re used to. They’re
listed here, all gathered together in one place:

}
catch (TransformerConfigurationException tce) {

// Error generated by the parser
System.out.println ("* Transformer Factory error");
System.out.println(" " + tce.getMessage());

// Use the contained exception, if any
Throwable x = tce;
if (tce.getException() != null)

x = tce.getException();
x.printStackTrace();

}
catch (TransformerException te) {

// Error generated by the parser
System.out.println ("* Transformation error");
System.out.println(" " + te.getMessage());

CONCATENATING TRANSFORMATIONS WITH A FILTER CHAIN 313
// Use the contained exception, if any
Throwable x = te;
if (te.getException() != null)

x = te.getException();
x.printStackTrace();

}
catch (SAXException sxe) {

// Error generated by this application
// (or a parser-initialization error)
Exception x = sxe;
if (sxe.getException() != null)

x = sxe.getException();
x.printStackTrace();

}
catch (ParserConfigurationException pce) {

// Parser with specified options can't be built
pce.printStackTrace();

}
catch (IOException ioe) {

// I/O error
ioe.printStackTrace();

}

Between the import statements and the error handling, the core of the program
consists of the following code.

public static void main (String argv[])
{

if (argv.length != 3) {
System.err.println (

"Usage: java FilterChain style1 style2 xmlfile");
System.exit (1);

}

 try {
// Read the arguments
File stylesheet1 = new File(argv[0]);
File stylesheet2 = new File(argv[1]);
File datafile = new File(argv[2]);

 // Set up the input stream
BufferedInputStream bis = new

BufferedInputStream(newFileInputStream(datafile));
InputSource input = new InputSource(bis);

 // Set up to read the input file (see Note #1)
SAXParserFactory spf = SAXParserFactory.newInstance();

314
spf.setNamespaceAware(true);
SAXParser parser = spf.newSAXParser();
XMLReader reader = parser.getXMLReader();

 // Create the filters (see Note #2)
SAXTransformerFactory stf =

(SAXTransformerFactory)
TransformerFactory.newInstance();

XMLFilter filter1 = stf.newXMLFilter(
new StreamSource(stylesheet1));

XMLFilter filter2 = stf.newXMLFilter(
new StreamSource(stylesheet2));

// Wire the output of the reader to filter1 (see Note #3)
// and the output of filter1 to filter2
filter1.setParent(reader);
filter2.setParent(filter1);

 // Set up the output stream
StreamResult result = new StreamResult(System.out);

// Set up the transformer to process the SAX events
generated

// by the last filter in the chain
Transformer transformer = stf.newTransformer();
SAXSource transformSource = new SAXSource(

filter2, input);
transformer.transform(transformSource, result);

} catch (...) {
...

Notes:

1. The Xalan transformation engine currently requires a namespace-aware
SAX parser.

2. This weird bit of code is explained by the fact that SAXTransformerFac-
tory extends TransformerFactory, adding methods to obtain filter
objects. The newInstance() method is a static method (defined in Trans-

formerFactory), which (naturally enough) returns a TransformerFac-

tory object. In reality, though, it returns a SAXTransformerFactory. So to
get at the extra methods defined by SAXTransformerFactory, the return
value must be cast to the actual type.

3. An XMLFilter object is both a SAX reader and a SAX content handler. As
a SAX reader, it generates SAX events to whatever object has registered to
receive them. As a content handler, it consumes SAX events generated by

CONCATENATING TRANSFORMATIONS WITH A FILTER CHAIN 315
its “parent” object—which is, of necessity, a SAX reader as well. (Calling
the event generator a “parent” must make sense when looking at the inter-
nal architecture. From an external perspective, the name doesn’t appear to
be particularly fitting.) The fact that filters both generate and consume
SAX events allows them to be chained together.

Understanding How the Filter Chain
Works
The code listed earlier shows you how to set up the transformation. Figure 7–2
should help you understand what’s happening when it executes.

Figure 7–2 Operation of Chained Filters

When you create the transformer, you pass it a SAXSource object, which encap-
sulates a reader (in this case, filter2) and an input stream. You also pass it a
pointer to the result stream, where it directs its output. Figure 7–2 shows what
happens when you invoke transform() on the transformer. Here is an explana-
tion of the steps:

1. The transformer sets up an internal object as the content handler for
filter2 and tells it to parse the input source.

2. filter2, in turn, sets itself up as the content handler for filter1 and tells
it to parse the input source.

316
3. filter1, in turn, tells the parser object to parse the input source.

4. The parser does so, generating SAX events, which it passes to filter1.

5. filter1, acting in its capacity as a content handler, processes the events
and does its transformations. Then, acting in its capacity as a SAX reader
(XMLReader), it sends SAX events to filter2.

6. filter2 does the same, sending its events to the transformer’s content
handler, which generates the output stream.

Testing the Program
To try out the program, you’ll create an XML file based on a tiny fraction of the
XML DocBook format, and convert it to the ARTICLE format defined here. Then
you’ll apply the ARTICLE stylesheet to generate an HTML version. (The DocBook
specification is large and complex. For other simplified formats, see Further
Information, page 318.)

Note: This example processes small-docbook-article.xml using docbookToAr-

ticle.xsl and article1c.xsl. The result is filterout.html (The browser-dis-
playable versions are small-docbook-article-xml.html, docbookToArticle-

xsl.html, article1c-xsl.html, and filterout-src.html.)

Start by creating a small article that uses a minute subset of the XML DocBook

format:

<?xml version="1.0"?>
<Article>

<ArtHeader>
<Title>Title of my (Docbook) article</Title>

</ArtHeader>
<Sect1>

<Title>Title of Section 1.</Title>
<Para>This is a paragraph.</Para>

</Sect1>
</Article>

Next, create a stylesheet to convert it into the ARTICLE format:

<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0"
>

../examples/jaxp/xslt/samples/small-docbook-article.xml
../examples/jaxp/xslt/samples/docbookToArticle.xsl
../examples/jaxp/xslt/samples/docbookToArticle.xsl
../examples/jaxp/xslt/samples/article1c.xsl
../examples/jaxp/xslt/samples/filterout.html
../examples/jaxp/xslt/samples/small-docbook-article-xml.html
../examples/jaxp/xslt/samples/docbookToArticle-xsl.html
../examples/jaxp/xslt/samples/docbookToArticle-xsl.html
../examples/jaxp/xslt/samples/article1c-xsl.html
../examples/jaxp/xslt/samples/filterout-src.html

CONCATENATING TRANSFORMATIONS WITH A FILTER CHAIN 317
<xsl:output method="xml"/> (see Note 1)

 <xsl:template match="/">
<ARTICLE>

<xsl:apply-templates/>
</ARTICLE>

</xsl:template>

<!-- Lower level titles strip element tag --> (see Note 2)

<!-- Top-level title -->
<xsl:template match="/Article/ArtHeader/Title"> (Note 3)

<TITLE> <xsl:apply-templates/> </TITLE>
</xsl:template>

 <xsl:template match="//Sect1"> (see Note 4)
<SECT><xsl:apply-templates/></SECT>

</xsl:template>

 <xsl:template match="Para">
<PARA><xsl:apply-templates/></PARA> (see Note 5)

</xsl:template>

</xsl:stylesheet>

Notes:

1. This time, the stylesheet is generating XML output.

2. The template that follows (for the top-level title element) matches only the
main title. For section titles, the TITLE tag gets stripped. (Because no tem-
plate conversion governs those title elements, they are ignored. The text
nodes they contain, however, are still echoed as a result of XSLT’s built-in
template rules—so only the tag is ignored, not the text.)

3. The title from the DocBook article header becomes the ARTICLE title.

4. Numbered section tags are converted to plain SECT tags.

5. This template carries out a case conversion, so Para becomes PARA.

Although it hasn’t been mentioned explicitly, XSLT defines a number of built-in
(default) template rules. The complete set is listed in section 5.8 of the specifica-
tion. Mainly, these rules provide for the automatic copying of text and attribute
nodes and for skipping comments and processing instructions. They also dictate
that inner elements are processed, even when their containing tags don’t have
templates. That is why the text node in the section title is processed, even though
the section title is not covered by any template.

318
Now run the FilterChain program, passing it the stylesheet (docbookToArti-
cle.xsl), the ARTICLE stylesheet (article1c.xsl), and the small DocBook file
(small-docbook-article.xml), in that order. The result should like this:

<html>
<body>
<h1 align="center">Title of my (Docbook) article</h1>
<h2>Title of Section 1.</h2>
<p>This is a paragraph.</p>
</body>
</html>

Note: This output was generated using JAXP 1.0. However, with some later ver-
sions of JAXP, the first filter in the chain does not translate any of the tags in the
input file. If you have one of those versions, the output you see will consist of con-
catenated plain text in the HTML output, like this: “Title of my (Docbook) arti-

cle Title of Section 1. This is a paragraph.”.

Further Information
For more information on XSL stylesheets, XSLT, and transformation engines,
see

• A great introduction to XSLT that starts with a simple HTML page and
uses XSLT to customize it, one step at a time:
http://www.xfront.com/rescuing-xslt.html

• Extensible Stylesheet Language (XSL):
http://www.w3.org/Style/XSL/

• The XML Path Language: http://www.w3.org/TR/xpath

• The Xalan transformation engine: http://xml.apache.org/xalan-j/

• Output properties that can be programmatically specified on transformer
objects: http://www.w3.org/TR/xslt#output.

• DocBookLite, a smaller, more lightweight version of DocBook used for
O’Reilly’s books and supported by several editors: http://www.doc-

book.org/wiki/moin.cgi/DocBookLite.

• Simplified DocBook, intended for articles: http://www.doc-

book.org/specs/wd-docbook-simple-1.1b1.html

• Using Xalan from the command line: http://xml.apache.org/xalan-
j/commandline.html

http://www.docbook.org/wiki/moin.cgi/DocBookLite
http://www.docbook.org/wiki/moin.cgi/DocBookLite
http://www.docbook.org/specs/wd-docbook-simple-1.1b1.html
http://www.docbook.org/specs/wd-docbook-simple-1.1b1.html
../examples/jaxp/xslt/samples/small-docbook-article.xml
../examples/jaxp/xslt/samples/article1c.xsl
../examples/jaxp/xslt/samples/docbookToArticle.xsl
../examples/jaxp/xslt/samples/docbookToArticle.xsl
http://www.w3.org/Style/XSL/
http://www.w3.org/Style/XSL/
http://www.w3.org/TR/xpath
http://xml.apache.org/xalan-j/commandline.html
http://xml.apache.org/xalan-j/commandline.html
http://xml.apache.org/xalan-j/
http://www.xfront.com/rescuing-xslt.html
http://www.xfront.com/rescuing-xslt.html
http://www.w3.org/TR/xslt#output

8

319
Building Web Services
with JAX-RPC

JAX-RPC stands for Java API for XML-based RPC. JAX-RPC is a technology
for building web services and clients that use remote procedure calls (RPC) and
XML. Often used in a distributed client-server model, an RPC mechanism
enables clients to execute procedures on other systems.

In JAX-RPC, a remote procedure call is represented by an XML-based protocol
such as SOAP. The SOAP specification defines the envelope structure, encoding
rules, and conventions for representing remote procedure calls and responses.
These calls and responses are transmitted as SOAP messages (XML files) over
HTTP.

Although SOAP messages are complex, the JAX-RPC API hides this complexity
from the application developer. On the server side, the developer specifies the
remote procedures by defining methods in an interface written in the Java pro-
gramming language. The developer also codes one or more classes that imple-
ment those methods. Client programs are also easy to code. A client creates a
proxy (a local object representing the service) and then simply invokes methods
on the proxy. With JAX-RPC, the developer does not generate or parse SOAP
messages. It is the JAX-RPC runtime system that converts the API calls and
responses to and from SOAP messages.

With JAX-RPC, clients and web services have a big advantage: the platform
independence of the Java programming language. In addition, JAX-RPC is not
restrictive: a JAX-RPC client can access a web service that is not running on the

320
Java platform, and vice versa. This flexibility is possible because JAX-RPC uses
technologies defined by the World Wide Web Consortium (W3C): HTTP, SOAP,
and the Web Service Description Language (WSDL). WSDL specifies an XML
format for describing a service as a set of endpoints operating on messages.

Setting the Port
Several files in the JAX-RPC examples depend on the port that you specified
when you installed the Application Server. The tutorial examples assume that
the server runs on the default port, 8080. If you have changed the port, you must
update the port number in the following files before building and running the
JAX-RPC examples:

• <INSTALL>/j2eetutorial14/examples/jaxrpc/staticstub/

config-wsdl.xml

• <INSTALL>/j2eetutorial14/examples/jaxrpc/

dynamicproxy/config-wsdl.xml

• <INSTALL>/j2eetutorial14/examples/jaxrpc/appclient/

config-wsdl.xml

• <INSTALL>/j2eetutorial14/examples/jaxrpc/webclient/

config-wsdl.xml

• <INSTALL>/j2eetutorial14/examples/jaxrpc/

webclient/web/response.jsp

• <INSTALL>/j2eetutorial14/examples/security/

basicauthclient/SecureHello.wsdl

• <INSTALL>/j2eetutorial14/examples/security/

mutualauthclient/SecureHello.wsdl

Creating a Simple Web Service and
Client with JAX-RPC

This section shows how to build and deploy a simple web service and client. A
later section, Web Service Clients (page 333), provides examples of additional
JAX-RPC clients that access the service. The source code for the service is in
<INSTALL>/j2eetutorial14/examples/jaxrpc/helloservice/ and the client
is in <INSTALL>/j2eetutorial14/examples/jaxrpc/staticstub/.

CREATING A SIMPLE WEB SERVICE AND CLIENT WITH JAX-RPC 321
Figure 8–1 illustrates how JAX-RPC technology manages communication
between a web service and client.

Figure 8–1 Communication Between a JAX-RPC Web Service and a Client

The starting point for developing a JAX-RPC web service is the service endpoint
interface. A service endpoint interface (SEI) is a Java interface that declares the
methods that a client can invoke on the service.

You use the SEI, the wscompile tool, and two configuration files to generate the
WSDL specification of the web service and the stubs that connect a web service
client to the JAX-RPC runtime. For reference documentation on wscompile, see
the Application Server man pages at http://docs.sun.com/db/doc/817-6092.

Together, the wscompile tool, the deploytool utility, and the Application Server
provide the Application Server’s implementation of JAX-RPC.

These are the basic steps for creating the web service and client:

1. Code the SEI and implementation class and interface configuration file.

2. Compile the SEI and implementation class.

3. Use wscompile to generate the files required to deploy the service.

4. Use deploytool to package the files into a WAR file.

5. Deploy the WAR file. The tie classes (which are used to communicate with
clients) are generated by the Application Server during deployment.

6. Code the client class and WSDL configuration file.

7. Use wscompile to generate and compile the stub files.

8. Compile the client class.

9. Run the client.

http://docs.sun.com/db/doc/817-6092

322
The sections that follow cover these steps in greater detail.

Coding the Service Endpoint Interface
and Implementation Class
In this example, the service endpoint interface declares a single method named
sayHello. This method returns a string that is the concatenation of the string
Hello with the method parameter.

A service endpoint interface must conform to a few rules:

• It extends the java.rmi.Remote interface.

• It must not have constant declarations, such as public final static.

• The methods must throw the java.rmi.RemoteException or one of its
subclasses. (The methods may also throw service-specific exceptions.)

• Method parameters and return types must be supported JAX-RPC types
(see Types Supported by JAX-RPC, page 330).

In this example, the service endpoint interface is named HelloIF:

package helloservice;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface HelloIF extends Remote {
 public String sayHello(String s) throws RemoteException;
}

In addition to the interface, you’ll need the class that implements the interface. In
this example, the implementation class is called HelloImpl:

package helloservice;

public class HelloImpl implements HelloIF {

 public String message ="Hello";

 public String sayHello(String s) {
 return message + s;
 }
}

CREATING A SIMPLE WEB SERVICE AND CLIENT WITH JAX-RPC 323
Building the Service
To build MyHelloService, in a terminal window go to the
<INSTALL>/j2eetutorial14/examples/jaxrpc/helloservice/ directory and
type the following:

asant build

The build task command executes these asant subtasks:

• compile-service

• generate-wsdl

The compile-service Task
This asant task compiles HelloIF.java and HelloImpl.java, writing the class
files to the build subdirectory.

The generate-wsdl Task
The generate-wsdl task runs wscompile, which creates the WSDL and map-
ping files. The WSDL file describes the web service and is used to generate the
client stubs in Static Stub Client (page 327). The mapping file contains informa-
tion that correlates the mapping between the Java interfaces and the WSDL defi-
nition. It is meant to be portable so that any J2EE-compliant deployment tool can
use this information, along with the WSDL file and the Java interfaces, to gener-
ate stubs and ties for the deployed web services.

The files created in this example are MyHelloService.wsdl and mapping.xml.
The generate-wsdl task runs wscompile with the following arguments:

wscompile -define -mapping build/mapping.xml -d build -nd build
-classpath build config-interface.xml

The -classpath flag instructs wscompile to read the SEI in the build directory,
and the -define flag instructs wscompile to create WSDL and mapping files.
The -mapping flag specifies the mapping file name. The -d and -nd flags tell the
tool to write class and WSDL files to the build subdirectory.

324
The wscompile tool reads an interface configuration file that specifies informa-
tion about the SEI. In this example, the configuration file is named config-

interface.xml and contains the following:

<?xml version="1.0" encoding="UTF-8"?>
<configuration
 xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">
 <service
 name="MyHelloService"
 targetNamespace="urn:Foo"
 typeNamespace="urn:Foo"
 packageName="helloservice">
 <interface name="helloservice.HelloIF"/>
 </service>
</configuration>

This configuration file tells wscompile to create a WSDL file named MyHello

Service.wsdl with the following information:

• The service name is MyHelloService.

• The WSDL target and type namespace is urn:Foo. The choice for what to
use for the namespaces is up to you. The role of the namespaces is similar
to the use of Java package names—to distinguish names that might other-
wise conflict. For example, a company can decide that all its Java code
should be in the package com.wombat.*. Similarly, it can also decide to
use the namespace http://wombat.com.

• The SEI is helloservice.HelloIF.

The packageName attribute instructs wscompile to put the service classes into
the helloservice package.

Packaging and Deploying the Service
You can package and deploy the service using either deploytool or asant.

Packaging and Deploying the Service with
deploytool
Behind the scenes, a JAX-RPC web service is implemented as a servlet. Because
a servlet is a web component, you run the New Web Component wizard of the

CREATING A SIMPLE WEB SERVICE AND CLIENT WITH JAX-RPC 325
deploytool utility to package the service. During this process the wizard per-
forms the following tasks:

• Creates the web application deployment descriptor

• Creates a WAR file

• Adds the deployment descriptor and service files to the WAR file

To start the New Web Component wizard, select File→New→Web Component.
The wizard displays the following dialog boxes.

1. Introduction dialog box

a. Read the explanatory text for an overview of the wizard’s features.

b. Click Next.

2. WAR File dialog box

a. Select the button labeled Create New Stand-Alone WAR Module.

b. In the WAR File field, click Browse and navigate to
<INSTALL>/j2eetutorial14/examples/jaxrpc/helloservice/.

c. In the File Name field, enter MyHelloService.

d. Click Create Module File.

e. Click Edit Contents.

f. In the tree under Available Files, locate the
<INSTALL>/j2eetutorial14/examples/jaxrpc/helloservice/
directory.

g. Select the build subdirectory.

h. Click Add.

i. Click OK.

j. In the Context Root field, enter /hello-jaxrpc.

k. Click Next.

3. Choose Component Type dialog box

a. Select the Web Services Endpoint button.

b. Click Next.

4. Choose Service dialog box

a. In the WSDL File combo box, select WEB-INF/wsdl/MyHelloSer-

vice.wsdl.

b. In the Mapping File combo box, select build/mapping.xml.

c. Click Next.

326
5. Component General Properties dialog box

a. In the Service Endpoint Implementation combo box, select helloser-
vice.HelloImpl.

b. Click Next.

6. Web Service Endpoint dialog box

a. In the Service Endpoint Interface combo box, select helloser-

vice.HelloIF.

b. In the Namespace combo box, select urn:Foo.

c. In the Local Part combo box, select HelloIFPort.

d. The deploytool utility will enter a default Endpoint Address URI Hel-
loImpl in this dialog. This endpoint address must be updated in the next
section.

e. Click Next.

f. Click Finish.

Specifying the Endpoint Address
To access MyHelloService, the tutorial clients will specify this service endpoint
address URI:

http://localhost:8080/hello-jaxrpc/hello

The /hello-jaxrpc string is the context root of the servlet that implements
MyHelloService. The /hello string is the servlet alias. You already set the con-
text root in Packaging and Deploying the Service with deploytool above. To
specify the endpoint address, set the alias as follows:

1. In deploytool, select MyHelloService in the tree.

2. In the tree, select HelloImpl.

3. Select the Aliases tab.

4. In the Component Aliases table, add /hello.

5. In the Endpoint tab, select hello for the Endpoint Address in the Sun-spe-
cific Settings frame.

6. Select File→Save.

CREATING A SIMPLE WEB SERVICE AND CLIENT WITH JAX-RPC 327
Deploying the Service
In deploytool, perform these steps:

1. In the tree, select MyHelloService.

2. Select Tools→Deploy.

You can view the WSDL file of the deployed service by requesting the URL
http://localhost:8080/hello-jaxrpc/hello?WSDL in a web browser. Now
you are ready to create a client that accesses this service.

Packaging and Deploying the Service with
asant
To package and deploy the helloservice example, follow these steps:

1. In a terminal window, go to
<INSTALL>/j2eetutorial14/examples/jaxrpc/helloservice/.

2. Run asant create-war.

3. Make sure the Application Server is started.

4. Set your admin username and password in
<INSTALL>/j2eetutorial14/examples/common/build.properties.

5. Run asant deploy-war.

You can view the WSDL file of the deployed service by requesting the URL
http://localhost:8080/hello-jaxrpc/hello?WSDL in a web browser. Now
you are ready to create a client that accesses this service.

Undeploying the Service
At this point in the tutorial, do not undeploy the service. When you are finished
with this example, you can undeploy the service by typing this command:

asant undeploy

Static Stub Client
HelloClient is a stand-alone program that calls the sayHello method of the
MyHelloService. It makes this call through a stub, a local object that acts as a
proxy for the remote service. Because the stub is created by wscompile at devel-
opment time (as opposed to runtime), it is usually called a static stub.

328
Coding the Static Stub Client
Before it can invoke the remote methods on the stub, the client performs these
steps:

1. Creates a Stub object:
(Stub)(new MyHelloService_Impl().getHelloIFPort())

The code in this method is implementation-specific because it relies on a
MyHelloService_Impl object, which is not defined in the specifications.
The MyHelloService_Impl class will be generated by wscompile in the
following section.

2. Sets the endpoint address that the stub uses to access the service:
stub._setProperty
(javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY, args[0]);

At runtime, the endpoint address is passed to HelloClient in args[0] as
a command-line parameter, which asant gets from the end-

point.address property in the build.properties file. This address
must match the one you set for the service in Specifying the Endpoint
Address (page 326).

3. Casts stub to the service endpoint interface, HelloIF:

HelloIF hello = (HelloIF)stub;

Here is the full source code listing for the HelloClient.java file, which is
located in the directory <INSTALL>/j2eetutorial14/exam-

ples/jaxrpc/staticstub/src/:

package staticstub;

import javax.xml.rpc.Stub;

public class HelloClient {

 private String endpointAddress;

 public static void main(String[] args) {

 System.out.println("Endpoint address = " + args[0]);
 try {
 Stub stub = createProxy();
 stub._setProperty
 (javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,
 args[0]);
 HelloIF hello = (HelloIF)stub;

CREATING A SIMPLE WEB SERVICE AND CLIENT WITH JAX-RPC 329
 System.out.println(hello.sayHello("Duke!"));
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 private static Stub createProxy() {
// Note: MyHelloService_Impl is implementation-specific.

 return
 (Stub) (new MyHelloService_Impl().getHelloIFPort());
 }
}

Building and Running the Static Stub Client
To build and package the client, go to the <INSTALL>/j2eetutorial14/exam-

ples/jaxrpc/staticstub/ directory and type the following:

asant build

The build task invokes three asant subtasks:

• generate-stubs

• compile-client

• package-client

The generate-stubs task runs the wscompile tool with the following argu-
ments:

wscompile -gen:client -d build -classpath build config-wsdl.xml

This wscompile command reads the MyHelloService.wsdl file that was gener-
ated in Building the Service (page 323). The command generates files based on
the information in the WSDL file and the command-line flags.

The -gen:client flag instructs wscompile to generate the stubs, other runtime
files such as serializers, and value types. The -d flag tells the tool to write the
generated output to the build/staticstub subdirectory.

330
The wscompile tool reads a WSDL configuration file that specifies the location
of the WSDL file. In this example, the configuration file is named config-

wsdl.xml, and it contains the following:

<configuration
xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">
<wsdl location="http://localhost:8080/hello-

jaxrpc/hello?WSDL" packageName="staticstub"/>
</configuration>

The packageName attribute specifies the Java package for the generated stubs.
Notice that the location of the WSDL file is specified as a URL. This causes the
wscompile command to request the WSDL file from the web service, and this
means that the web service must be correctly deployed and running in order for
the command to succeed. If the web service is not running or if the port at which
the service is deployed is different from the port in the configuration file, the
command will fail.

The compile-client task compiles src/HelloClient.java and writes the
class file to the build subdirectory.

The package-client task packages the files created by the generate-stubs
and compile-client tasks into the dist/client.jar file. Except for the Hel-

loClient.class, all the files in client.jar were created by wscompile. Note
that wscompile generated the HelloIF.class based on the information it read
from the MyHelloService.wsdl file.

To run the client, type the following:

asant run

This task invokes the web service client, passing the string Duke for the web ser-
vice method parameter. When you run this task, you should get the following
output:

Hello Duke!

Types Supported by JAX-RPC
Behind the scenes, JAX-RPC maps types of the Java programming language to
XML/WSDL definitions. For example, JAX-RPC maps the java.lang.String

class to the xsd:string XML data type. Application developers don’t need to

TYPES SUPPORTED BY JAX-RPC 331
know the details of these mappings, but they should be aware that not every class
in the Java 2 Platform, Standard Edition (J2SE) can be used as a method parame-
ter or return type in JAX-RPC.

J2SE SDK Classes
JAX-RPC supports the following J2SE SDK classes:

java.lang.Boolean
java.lang.Byte
java.lang.Double
java.lang.Float
java.lang.Integer
java.lang.Long
java.lang.Short
java.lang.String

java.math.BigDecimal
java.math.BigInteger

java.net.URI

java.util.Calendar
java.util.Date

Primitives
JAX-RPC supports the following primitive types of the Java programming lan-
guage:

boolean
byte
double
float
int
long
short

332
Arrays
JAX-RPC also supports arrays that have members of supported JAX-RPC types.
Examples of supported arrays are int[] and String[]. Multidimensional
arrays, such as BigDecimal[][], are also supported.

Value Types
A value type is a class whose state can be passed between a client and a remote
service as a method parameter or return value. For example, in an application for
a university library, a client might call a remote procedure with a value type
parameter named Book, a class that contains the fields Title, Author, and Pub-

lisher.

To be supported by JAX-RPC, a value type must conform to the following rules:

• It must have a public default constructor.

• It must not implement (either directly or indirectly) the java.rmi.Remote
interface.

• Its fields must be supported JAX-RPC types.

The value type can contain public, private, or protected fields. The field of a
value type must meet these requirements:

• A public field cannot be final or transient.

• A nonpublic field must have corresponding getter and setter methods.

JavaBeans Components
JAX-RPC also supports JavaBeans components, which must conform to the
same set of rules as application classes. In addition, a JavaBeans component
must have a getter and a setter method for each bean property. The type of the
bean property must be a supported JAX-RPC type. For an example of using a
JavaBeans component in a web service, see JAX-RPC Coffee Supplier
Service (page 1293).

WEB SERVICE CLIENTS 333
Web Service Clients
This section shows how to create and run these types of clients:

• Dynamic proxy

• Dynamic invocation interface (DII)

• Application client

When you run these client examples, they will access the MyHelloService that
you deployed in Creating a Simple Web Service and Client with JAX-
RPC (page 320).

Dynamic Proxy Client
This example resides in the <INSTALL>/j2eetutorial14/exam-

ples/jaxrpc/dynamicproxy/ directory.

The client in the preceding section uses a static stub for the proxy. In contrast,
the client example in this section calls a remote procedure through a dynamic
proxy, a class that is created during runtime. Although the source code for the
static stub client relies on an implementation-specific class, the code for the
dynamic proxy client does not have this limitation.

Coding the Dynamic Proxy Client
The DynamicProxyHello program constructs the dynamic proxy as follows:

1. Creates a Service object named helloService:

Service helloService =
 serviceFactory.createService(helloWsdlUrl,
 new QName(nameSpaceUri, serviceName));

A Service object is a factory for proxies. To create the Service object
(helloService), the program calls the createService method on
another type of factory, a ServiceFactory object.

The createService method has two parameters: the URL of the WSDL
file and a QName object. At runtime, the client gets information about the
service by looking up its WSDL. In this example, the URL of the WSDL
file points to the WSDL that was deployed with MyHelloService:

http://localhost:8080/hello-jaxrpc/hello?WSDL

334
A QName object is a tuple that represents an XML qualified name. The
tuple is composed of a namespace URI and the local part of the qualified
name. In the QName parameter of the createService invocation, the local
part is the service name, MyHelloService.

2. The program creates a proxy (myProxy) with a type of the service endpoint
interface (HelloIF):

dynamicproxy.HelloIF myProxy =
 (dynamicproxy.HelloIF)helloService.getPort(
 new QName(nameSpaceUri, portName),
 dynamicproxy.HelloIF.class);

The helloService object is a factory for dynamic proxies. To create
myProxy, the program calls the getPort method of helloService. This
method has two parameters: a QName object that specifies the port name
and a java.lang.Class object for the service endpoint interface (Hel-
loIF). The HelloIF class is generated by wscompile. The port name
(HelloIFPort) is specified by the WSDL file.

Here is the listing for the HelloClient.java file, located in the
<INSTALL>/j2eetutorial14/examples/jaxrpc/dynamicproxy/src/ direc-
tory:

package dynamicproxy;

import java.net.URL;
import javax.xml.rpc.Service;
import javax.xml.rpc.JAXRPCException;
import javax.xml.namespace.QName;
import javax.xml.rpc.ServiceFactory;
import dynamicproxy.HelloIF;

public class HelloClient {

 public static void main(String[] args) {
 try {

 String UrlString = args[0] + "?WSDL";
 String nameSpaceUri = "urn:Foo";
 String serviceName = "MyHelloService";
 String portName = "HelloIFPort";

 System.out.println("UrlString = " + UrlString);
 URL helloWsdlUrl = new URL(UrlString);

 ServiceFactory serviceFactory =

WEB SERVICE CLIENTS 335
 ServiceFactory.newInstance();

 Service helloService =
 serviceFactory.createService(helloWsdlUrl,
 new QName(nameSpaceUri, serviceName));

 dynamicproxy.HelloIF myProxy =
 (dynamicproxy.HelloIF)
 helloService.getPort(
 new QName(nameSpaceUri, portName),
 dynamicproxy.HelloIF.class);

 System.out.println(myProxy.sayHello("Buzz"));

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Building and Running the Dynamic Proxy
Client
Before performing the steps in this section, you must first create and deploy
MyHelloService as described in Creating a Simple Web Service and Client with
JAX-RPC (page 320).

To build and package the client, go to the <INSTALL>/j2eetutorial14/exam-

ples/jaxrpc/dynamicproxy/ directory and type the following:

asant build

The preceding command runs these tasks:

• generate-interface

• compile-client

• package-dynamic

The generate-interface task runs wscompile with the -import option. The
wscompile command reads the MyHelloService.wsdl file and generates the
service endpoint interface class (HelloIF.class). Although this wscompile

invocation also creates stubs, the dynamic proxy client does not use these stubs,
which are required only by static stub clients.

The compile-client task compiles the src/HelloClient.java file.

336
The package-dynamic task creates the dist/client.jar file, which contains
HelloIF.class and HelloClient.class.

To run the client, type the following:

asant run

The client should display the following line:

Hello Buzz

Dynamic Invocation Interface Client
This example resides in the <INSTALL>/j2eetutorial14/exam-

ples/jaxrpc/dii/ directory.

With the dynamic invocation interface (DII), a client can call a remote procedure
even if the signature of the remote procedure or the name of the service is
unknown until runtime. In contrast to a static stub or dynamic proxy client, a DII
client does not require runtime classes generated by wscompile. However, as
you’ll see in the following section, the source code for a DII client is more com-
plicated than the code for the other two types of clients.

This example is for advanced users who are familiar with WSDL documents.
(See Further Information, page 344.)

Coding the DII Client
The DIIHello program performs these steps:

1. Creates a Service object:

Service service =

 factory.createService(new QName(qnameService));

To get a Service object, the program invokes the createService method
of a ServiceFactory object. The parameter of the createService

method is a QName object that represents the name of the service, MyHel-
loService. The WSDL file specifies this name as follows:

<service name="MyHelloService">

2. From the Service object, creates a Call object:
QName port = new QName(qnamePort);
Call call = service.createCall(port);

WEB SERVICE CLIENTS 337
A Call object supports the dynamic invocation of the remote procedures
of a service. To get a Call object, the program invokes the Service

object’s createCall method. The parameter of createCall is a QName

object that represents the service endpoint interface, MyHelloServiceRPC.
In the WSDL file, the name of this interface is designated by the port-

Type element:

 <portType name="HelloIF">

3. Sets the service endpoint address on the Call object:
call.setTargetEndpointAddress(endpoint);

In the WSDL file, this address is specified by the <soap:address> ele-
ment.

4. Sets these properties on the Call object:
SOAPACTION_USE_PROPERTY
SOAPACTION_URI_PROPERTY
ENCODING_STYLE_PROPERTY

To learn more about these properties, refer to the SOAP and WSDL docu-
ments listed in Further Information (page 344).

5. Specifies the method’s return type, name, and parameter:
QName QNAME_TYPE_STRING = new QName(NS_XSD, "string");
call.setReturnType(QNAME_TYPE_STRING);

call.setOperationName(new QName(BODY_NAMESPACE_VALUE,
 "sayHello"));

call.addParameter("String_1", QNAME_TYPE_STRING,
 ParameterMode.IN);

To specify the return type, the program invokes the setReturnType

method on the Call object. The parameter of setReturnType is a QName

object that represents an XML string type.

The program designates the method name by invoking the setOpera-

tionName method with a QName object that represents sayHello.

To indicate the method parameter, the program invokes the addParameter
method on the Call object. The addParameter method has three argu-
ments: a String for the parameter name (String_1), a QName object for
the XML type, and a ParameterMode object to indicate the passing mode
of the parameter (IN).

6. Invokes the remote method on the Call object:

338
String[] params = { "Murphy" };
String result = (String)call.invoke(params);

The program assigns the parameter value (Murphy) to a String array
(params) and then executes the invoke method with the String array as
an argument.

Here is the listing for the HelloClient.java file, located in the
<INSTALL>/j2eetutorial14/examples/jaxrpc/dii/src/ directory:

package dii;

import javax.xml.rpc.Call;
import javax.xml.rpc.Service;
import javax.xml.rpc.JAXRPCException;
import javax.xml.namespace.QName;
import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.ParameterMode;

public class HelloClient {

 private static String qnameService = "MyHelloService";
 private static String qnamePort = "HelloIF";

 private static String BODY_NAMESPACE_VALUE =
 "urn:Foo";
 private static String ENCODING_STYLE_PROPERTY =
 "javax.xml.rpc.encodingstyle.namespace.uri";
 private static String NS_XSD =
 "http://www.w3.org/2001/XMLSchema";
 private static String URI_ENCODING =
 "http://schemas.xmlsoap.org/soap/encoding/";

 public static void main(String[] args) {

 System.out.println("Endpoint address = " + args[0]);

 try {
 ServiceFactory factory =
 ServiceFactory.newInstance();
 Service service =
 factory.createService(
 new QName(qnameService));

 QName port = new QName(qnamePort);

 Call call = service.createCall(port);
 call.setTargetEndpointAddress(args[0]);

WEB SERVICE CLIENTS 339
 call.setProperty(Call.SOAPACTION_USE_PROPERTY,
 new Boolean(true));
 call.setProperty(Call.SOAPACTION_URI_PROPERTY
 "");
 call.setProperty(ENCODING_STYLE_PROPERTY,
 URI_ENCODING);
 QName QNAME_TYPE_STRING =
 new QName(NS_XSD, "string");
 call.setReturnType(QNAME_TYPE_STRING);

 call.setOperationName(
 new QName(BODY_NAMESPACE_VALUE,"sayHello"));
 call.addParameter("String_1", QNAME_TYPE_STRING,
 ParameterMode.IN);
 String[] params = { "Murph!" };

 String result = (String)call.invoke(params);
 System.out.println(result);

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Building and Running the DII Client
Before performing the steps in this section, you must first create and deploy
MyHelloService as described in Creating a Simple Web Service and Client with
JAX-RPC (page 320).

To build and package the client, go to the <INSTALL>/j2eetutorial14/exam-

ples/jaxrpc/dii/ directory and type the following:

asant build

This build task compiles HelloClient and packages it into the dist/cli-

ent.jar file. Unlike the previous client examples, the DII client does not require
files generated by wscompile.

To run the client, type this command:

asant run

340
The client should display this line:

Hello Murph!

Application Client
Unlike the stand-alone clients in the preceding sections, the client in this section
is an application client. Because it’s a J2EE component, an application client can
locate a local web service by invoking the JNDI lookup method.

J2EE Application HelloClient Listing
Here is the listing for the HelloClient.java file, located in the
<INSTALL>/j2eetutorial14/examples/jaxrpc/appclient/src/ directory:

package appclient;

import javax.xml.rpc.Stub;
import javax.naming.*;

public class HelloClient {

 private String endpointAddress;

 public static void main(String[] args) {

 System.out.println("Endpoint address = " + args[0]);

 try {
 Context ic = new InitialContext();
 MyHelloService myHelloService = (MyHelloService)

ic.lookup("java:comp/env/service/MyJAXRPCHello");
 appclient.HelloIF helloPort =
 myHelloService.getHelloIFPort();
 ((Stub)helloPort)._setProperty
 (Stub.ENDPOINT_ADDRESS_PROPERTY,args[0]);

 System.out.println(helloPort.sayHello("Jake!"));
 System.exit(0);

 } catch (Exception ex) {
 ex.printStackTrace();

WEB SERVICE CLIENTS 341
 System.exit(1);
 }
 }
}

Building the Application Client
Before performing the steps in this section, you must first create and deploy
MyHelloService as described in Creating a Simple Web Service and Client with
JAX-RPC (page 320).

To build the client, go to the <INSTALL>/j2eetutorial14/exam-
ples/jaxrpc/appclient/ directory and type the following:

asant build

As with the static stub client, the preceding command compiles HelloCli-

ent.java and runs wscompile by invoking the generate-stubs target.

Packaging the Application Client
Packaging this client is a two-step process:

1. Create an EAR file for a J2EE application.

2. Create a JAR file for the application client and add it to the EAR file.

To create the EAR file, follow these steps:

1. In deploytool, select File→New→Application.

2. Click Browse.

3. In the file chooser, navigate to <INSTALL>/j2eetutorial14/exam-
ples/jaxrpc/appclient.

4. In the File Name field, enter HelloServiceApp.

5. Click New Application.

6. Click OK.

To start the New Application Client wizard, select File→New→Application Cli-
ent. The wizard displays the following dialog boxes.

1. Introduction dialog box

a. Read the explanatory text for an overview of the wizard’s features.

b. Click Next.

342
2. JAR File Contents dialog box

a. Select the button labeled Create New AppClient Module in Application.

b. In the combo box below this button, select HelloServiceApp.

c. In the AppClient Display Name field, enter HelloClient.

d. Click Edit Contents.

e. In the tree under Available Files, locate the
<INSTALL>/j2eetutorial14/examples/jaxrpc/appclient direc-
tory.

f. Select the build directory.

g. Click Add.

h. Click OK.

i. Click Next.

3. General dialog box

a. In the Main Class combo box, select appclient.HelloClient.

b. Click Next.

c. Click Finish.

Specifying the Web Reference
When it invokes the lookup method, the HelloClient refers to the web service
as follows:

MyHelloService myHelloService = (MyHelloService)
ic.lookup("java:comp/env/service/MyJAXRPCHello");

You specify this reference as follows.

1. In the tree, select HelloClient.

2. Select the Web Service Refs tab.

3. Click Add.

4. In the Coded Name field, enter service/MyJAXRPCHello.

5. In the Service Interface combo box, select appclient.MyHelloService.

6. In the WSDL File combo box, select META-INF/wsdl/MyHelloSer-

vice.wsdl.

7. In the Namespace field, enter urn:Foo.

8. In the Local Part field, enter MyHelloService.

WEB SERVICE CLIENTS 343
9. In the Mapping File combo box, select mapping.xml.

10.Click OK.

Deploying and Running the Application Client
To deploy the application client, follow these steps:

1. Select the HelloServiceApp application.

2. Select Tools→Deploy.

3. In the Deploy Module dialog box select the checkbox labeled Return Cli-
ent JAR.

4. In the field below the checkbox, enter this directory:

<INSTALL>/j2eetutorial14/examples/jaxrpc/appclient

5. Click OK.

To run the client follow these steps:

1. In a terminal window, go to the <INSTALL>/j2eetutorial14/exam-
ples/jaxrpc/appclient/ directory.

2. Type the following on a single line:

appclient -client HelloServiceAppClient.jar
http://localhost:8080/hello-jaxrpc/hello

The client should display this line:

Hello Jake!

More JAX-RPC Clients
Other chapters in this book also have JAX-RPC client examples:

• Chapter 16 shows how a JSP page can be a static stub client that accesses
a remote web service. See The Example JSP Pages (page 632).

• Chapter 32 includes a static stub client that demonstrates basic authentica-
tion. See Example: Basic Authentication with JAX-RPC (page 1161).

• Chapter 32 includes a static stub client that demonstrates mutual authenti-
cation. See Example: Client-Certificate Authentication over HTTP/SSL
with JAX-RPC (page 1167).

344
Web Services Interoperability and JAX-
RPC

JAX-RPC 1.1 supports the Web Services Interoperability (WS-I) Basic Profile
Version 1.0, Working Group Approval Draft. The WS-I Basic Profile is a docu-
ment that clarifies the SOAP 1.1 and WSDL 1.1 specifications in order to pro-
mote SOAP interoperability. For links related to WS-I, see Further
Information (page 344).

To support WS-I, JAX-RPC has the following features:

• When run with the -f:wsi option, wscompile verifies that a WSDL is WS-
I-compliant or generates classes needed by JAX-RPC services and clients
that are WS-I-compliant.

• The JAX-RPC runtime supports doc/literal and rpc/literal encodings for
services, static stubs, dynamic proxies, and DII.

Further Information
For more information about JAX-RPC and related technologies, refer to the fol-
lowing:

• Java API for XML-based RPC 1.1 specification
http://java.sun.com/xml/downloads/jaxrpc.html

• JAX-RPC home
http://java.sun.com/xml/jaxrpc/

• Simple Object Access Protocol (SOAP) 1.1 W3C Note
http://www.w3.org/TR/SOAP/

• Web Services Description Language (WSDL) 1.1 W3C Note
http://www.w3.org/TR/wsdl

• WS-I Basic Profile 1.0
http://www.ws-i.org

http://java.sun.com/xml/downloads/jaxrpc.html
http://java.sun.com/xml/jaxrpc/
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/wsdl
http://www.ws-i.org

9

345
SOAP with
Attachments API for

Java

SOAP with Attachments API for Java (SAAJ) is used mainly for the SOAP
messaging that goes on behind the scenes in JAX-RPC and JAXR implementa-
tions. Secondarily, it is an API that developers can use when they choose to write
SOAP messaging applications directly rather than use JAX-RPC. The SAAJ API
allows you to do XML messaging from the Java platform: By simply making
method calls using the SAAJ API, you can read and write SOAP-based XML
messages, and you can optionally send and receive such messages over the Inter-
net (some implementations may not support sending and receiving). This chapter
will help you learn how to use the SAAJ API.

The SAAJ API conforms to the Simple Object Access Protocol (SOAP) 1.1
specification and the SOAP with Attachments specification. The SAAJ 1.2 spec-
ification defines the javax.xml.soap package, which contains the API for creat-
ing and populating a SOAP message. This package has all the API necessary for
sending request-response messages. (Request-response messages are explained
in SOAPConnection Objects, page 351.)

346
Note: The javax.xml.messaging package, defined in the Java API for XML Mes-
saging (JAXM) 1.1 specification, is not part of the J2EE 1.4 platform and is not dis-
cussed in this chapter. The JAXM API is available as a separate download from
http://java.sun.com/xml/jaxm/.

This chapter starts with an overview of messages and connections, giving some
of the conceptual background behind the SAAJ API to help you understand why
certain things are done the way they are. Next, the tutorial shows you how to use
the basic SAAJ API, giving examples and explanations of the commonly used
features. The code examples in the last part of the tutorial show you how to build
an application. The case study in Chapter 35 includes SAAJ code for both send-
ing and consuming a SOAP message.

Overview of SAAJ
This section presents a high-level view of how SAAJ messaging works and
explains concepts in general terms. Its goal is to give you some terminology and
a framework for the explanations and code examples that are presented in the
tutorial section.

The overview looks at SAAJ from two perspectives: messages and connections.

Messages
SAAJ messages follow SOAP standards, which prescribe the format for mes-
sages and also specify some things that are required, optional, or not allowed.
With the SAAJ API, you can create XML messages that conform to the SOAP
1.1 and WS-I Basic Profile 1.0 specifications simply by making Java API calls.

The Structure of an XML Document

Note: For more information on XML documents, see Chapters 2 and 4.

An XML document has a hierarchical structure made up of elements, subele-
ments, subsubelements, and so on. You will notice that many of the SAAJ

http://java.sun.com/xml/jaxm/

OVERVIEW OF SAAJ 347
classes and interfaces represent XML elements in a SOAP message and have the
word element or SOAP (or both) in their names.

An element is also referred to as a node. Accordingly, the SAAJ API has the
interface Node, which is the base class for all the classes and interfaces that rep-
resent XML elements in a SOAP message. There are also methods such as
SOAPElement.addTextNode, Node.detachNode, and Node.getValue, which
you will see how to use in the tutorial section.

What Is in a Message?
The two main types of SOAP messages are those that have attachments and
those that do not.

Messages with No Attachments
The following outline shows the very high-level structure of a SOAP message
with no attachments. Except for the SOAP header, all the parts listed are required
to be in every SOAP message.

I. SOAP message

A. SOAP part

1. SOAP envelope

a. SOAP header (optional)

b. SOAP body

The SAAJ API provides the SOAPMessage class to represent a SOAP message,
the SOAPPart class to represent the SOAP part, the SOAPEnvelope interface to
represent the SOAP envelope, and so on. Figure 9–1 illustrates the structure of a
SOAP message with no attachments.

Note: Many SAAJ API interfaces extend DOM interfaces. In a SAAJ message, the
SOAPPart class is also a DOM document. See SAAJ and DOM (page 350) for
details.

When you create a new SOAPMessage object, it will automatically have the parts
that are required to be in a SOAP message. In other words, a new SOAPMessage

object has a SOAPPart object that contains a SOAPEnvelope object. The SOAPEn-

velope object in turn automatically contains an empty SOAPHeader object fol-

348
lowed by an empty SOAPBody object. If you do not need the SOAPHeader object,
which is optional, you can delete it. The rationale for having it automatically
included is that more often than not you will need it, so it is more convenient to
have it provided.

The SOAPHeader object can include one or more headers that contain metadata
about the message (for example, information about the sending and receiving
parties). The SOAPBody object, which always follows the SOAPHeader object if
there is one, contains the message content. If there is a SOAPFault object (see
Using SOAP Faults, page 373), it must be in the SOAPBody object.

Figure 9–1 SOAPMessage Object with No Attachments

Messages with Attachments
A SOAP message may include one or more attachment parts in addition to the
SOAP part. The SOAP part must contain only XML content; as a result, if any of
the content of a message is not in XML format, it must occur in an attachment
part. So if, for example, you want your message to contain a binary file, your
message must have an attachment part for it. Note that an attachment part can

OVERVIEW OF SAAJ 349
contain any kind of content, so it can contain data in XML format as well. Figure
9–2 shows the high-level structure of a SOAP message that has two attachments.

Figure 9–2 SOAPMessage Object with Two AttachmentPart Objects

The SAAJ API provides the AttachmentPart class to represent an attachment
part of a SOAP message. A SOAPMessage object automatically has a SOAPPart

object and its required subelements, but because AttachmentPart objects are

350
optional, you must create and add them yourself. The tutorial section walks you
through creating and populating messages with and without attachment parts.

If a SOAPMessage object has one or more attachments, each AttachmentPart

object must have a MIME header to indicate the type of data it contains. It may
also have additional MIME headers to identify it or to give its location. These
headers are optional but can be useful when there are multiple attachments.
When a SOAPMessage object has one or more AttachmentPart objects, its SOAP-
Part object may or may not contain message content.

SAAJ and DOM
In SAAJ 1.2, the SAAJ APIs extend their counterparts in the org.w3c.dom pack-
age:

• The Node interface extends the org.w3c.dom.Node interface.

• The SOAPElement interface extends both the Node interface and the
org.w3c.dom.Element interface.

• The SOAPPart class implements the org.w3c.dom.Document interface.

• The Text interface extends the org.w3c.dom.Text interface.

Moreover, the SOAPPart of a SOAPMessage is also a DOM Level 2 Document and
can be manipulated as such by applications, tools, and libraries that use DOM.
See Chapter 6 for details about DOM. For details on how to use DOM docu-
ments with the SAAJ API, see Adding Content to the SOAPPart
Object (page 363) and Adding a Document to the SOAP Body (page 364).

Connections
All SOAP messages are sent and received over a connection. With the SAAJ
API, the connection is represented by a SOAPConnection object, which goes
from the sender directly to its destination. This kind of connection is called a
point-to-point connection because it goes from one endpoint to another endpoint.
Messages sent using the SAAJ API are called request-response messages. They
are sent over a SOAPConnection object with the call method, which sends a
message (a request) and then blocks until it receives the reply (a response).

OVERVIEW OF SAAJ 351
SOAPConnection Objects
The following code fragment creates the SOAPConnection object connection
and then, after creating and populating the message, uses connection to send
the message. As stated previously, all messages sent over a SOAPConnection

object are sent with the call method, which both sends the message and blocks
until it receives the response. Thus, the return value for the call method is the
SOAPMessage object that is the response to the message that was sent. The
request parameter is the message being sent; endpoint represents where it is
being sent.

SOAPConnectionFactory factory =
SOAPConnectionFactory.newInstance();

SOAPConnection connection = factory.createConnection();

. . .// create a request message and give it content

java.net.URL endpoint =
new URL("http://fabulous.com/gizmo/order");

SOAPMessage response = connection.call(request, endpoint);

Note that the second argument to the call method, which identifies where the
message is being sent, can be a String object or a URL object. Thus, the last two
lines of code from the preceding example could also have been the following:

String endpoint = "http://fabulous.com/gizmo/order";
SOAPMessage response = connection.call(request, endpoint);

A web service implemented for request-response messaging must return a
response to any message it receives. The response is a SOAPMessage object, just
as the request is a SOAPMessage object. When the request message is an update,
the response is an acknowledgment that the update was received. Such an
acknowledgment implies that the update was successful. Some messages may
not require any response at all. The service that gets such a message is still
required to send back a response because one is needed to unblock the call

method. In this case, the response is not related to the content of the message; it
is simply a message to unblock the call method.

Now that you have some background on SOAP messages and SOAP connec-
tions, in the next section you will see how to use the SAAJ API.

352
Tutorial
This tutorial walks you through how to use the SAAJ API. First, it covers the
basics of creating and sending a simple SOAP message. Then you will learn
more details about adding content to messages, including how to create SOAP
faults and attributes. Finally, you will learn how to send a message and retrieve
the content of the response. After going through this tutorial, you will know how
to perform the following tasks:

• Creating and Sending a Simple Message

• Adding Content to the Header

• Adding Content to the SOAPPart Object

• Adding a Document to the SOAP Body

• Manipulating Message Content Using SAAJ or DOM APIs

• Adding Attachments

• Adding Attributes

• Using SOAP Faults

In the section Code Examples (page 378), you will see the code fragments from
earlier parts of the tutorial in runnable applications, which you can test yourself.
To see how the SAAJ API can be used in server code, see the SAAJ part of the
Coffee Break case study (SAAJ Coffee Supplier Service, page 1302), which
shows an example of both the client and the server code for a web service appli-
cation.

A SAAJ client can send request-response messages to web services that are
implemented to do request-response messaging. This section demonstrates how
you can do this.

TUTORIAL 353
Creating and Sending a Simple
Message
This section covers the basics of creating and sending a simple message and
retrieving the content of the response. It includes the following topics:

• Creating a Message

• Parts of a Message

• Accessing Elements of a Message

• Adding Content to the Body

• Getting a SOAPConnection Object

• Sending a Message

• Getting the Content of a Message

Creating a Message
The first step is to create a message using a MessageFactory object. The SAAJ
API provides a default implementation of the MessageFactory class, thus mak-
ing it easy to get an instance. The following code fragment illustrates getting an
instance of the default message factory and then using it to create a message.

MessageFactory factory = MessageFactory.newInstance();
SOAPMessage message = factory.createMessage();

As is true of the newInstance method for SOAPConnectionFactory, the newIn-

stance method for MessageFactory is static, so you invoke it by calling Mes-

sageFactory.newInstance.

Parts of a Message
A SOAPMessage object is required to have certain elements, and, as stated previ-
ously, the SAAJ API simplifies things for you by returning a new SOAPMessage

object that already contains these elements. So message, which was created in
the preceding line of code, automatically has the following:

I. A SOAPPart object that contains

A. A SOAPEnvelope object that contains

 1. An empty SOAPHeader object

354
 2. An empty SOAPBody object

The SOAPHeader object is optional and can be deleted if it is not needed. How-
ever, if there is one, it must precede the SOAPBody object. The SOAPBody object
can hold either the content of the message or a fault message that contains status
information or details about a problem with the message. The section Using
SOAP Faults (page 373) walks you through how to use SOAPFault objects.

Accessing Elements of a Message
The next step in creating a message is to access its parts so that content can be
added. There are two ways to do this. The SOAPMessage object message, created
in the preceding code fragment, is the place to start.

The first way to access the parts of the message is to work your way through the
structure of the message. The message contains a SOAPPart object, so you use
the getSOAPPart method of message to retrieve it:

SOAPPart soapPart = message.getSOAPPart();

Next you can use the getEnvelope method of soapPart to retrieve the SOAPEn-

velope object that it contains.

SOAPEnvelope envelope = soapPart.getEnvelope();

You can now use the getHeader and getBody methods of envelope to retrieve
its empty SOAPHeader and SOAPBody objects.

SOAPHeader header = envelope.getHeader();
SOAPBody body = envelope.getBody();

The second way to access the parts of the message is to retrieve the message
header and body directly, without retrieving the SOAPPart or SOAPEnvelope. To
do so, use the getSOAPHeader and getSOAPBody methods of SOAPMessage:

SOAPHeader header = message.getSOAPHeader();
SOAPBody body = message.getSOAPBody();

This example of a SAAJ client does not use a SOAP header, so you can delete it.
(You will see more about headers later.) Because all SOAPElement objects,

TUTORIAL 355
including SOAPHeader objects, are derived from the Node interface, you use the
method Node.detachNode to delete header.

header.detachNode();

Adding Content to the Body
The SOAPBody object contains either content or a fault. To add content to the
body, you normally create one or more SOAPBodyElement objects to hold the
content. You can also add subelements to the SOAPBodyElement objects by using
the addChildElement method. For each element or child element, you add con-
tent by using the addTextNode method.

When you create any new element, you also need to create an associated Name

object so that it is uniquely identified. One way to create Name objects is by using
SOAPEnvelope methods, so you can use the envelope variable from the earlier
code fragment to create the Name object for your new element. Another way to
create Name objects is to use SOAPFactory methods, which are useful if you do
not have access to the SOAPEnvelope.

Note: The SOAPFactory class also lets you create XML elements when you are not
creating an entire message or do not have access to a complete SOAPMessage object.
For example, JAX-RPC implementations often work with XML fragments rather
than complete SOAPMessage objects. Consequently, they do not have access to a
SOAPEnvelope object, and this makes using a SOAPFactory object to create Name

objects very useful. In addition to a method for creating Name objects, the SOAPFac-

tory class provides methods for creating Detail objects and SOAP fragments. You
will find an explanation of Detail objects in Overview of SOAP Faults (page 373)
and Creating and Populating a SOAPFault Object (page 375).

Name objects associated with SOAPBodyElement or SOAPHeaderElement objects
must be fully qualified; that is, they must be created with a local name, a prefix
for the namespace being used, and a URI for the namespace. Specifying a
namespace for an element makes clear which one is meant if more than one ele-
ment has the same local name.

356
The following code fragment retrieves the SOAPBody object body from message,
uses a SOAPFactory to create a Name object for the element to be added, and adds
a new SOAPBodyElement object to body.

SOAPBody body = message.getSOAPBody();
SOAPFactory soapFactory = SOAPFactory.newInstance();
Name bodyName = soapFactory.createName("GetLastTradePrice",

"m", "http://wombat.ztrade.com");
SOAPBodyElement bodyElement = body.addBodyElement(bodyName);

At this point, body contains a SOAPBodyElement object identified by the Name

object bodyName, but there is still no content in bodyElement. Assuming that you
want to get a quote for the stock of Sun Microsystems, Inc., you need to create a
child element for the symbol using the addChildElement method. Then you
need to give it the stock symbol using the addTextNode method. The Name object
for the new SOAPElement object symbol is initialized with only a local name
because child elements inherit the prefix and URI from the parent element.

Name name = soapFactory.createName("symbol");
SOAPElement symbol = bodyElement.addChildElement(name);
symbol.addTextNode("SUNW");

You might recall that the headers and content in a SOAPPart object must be in
XML format. The SAAJ API takes care of this for you, building the appropriate
XML constructs automatically when you call methods such as addBodyElement,
addChildElement, and addTextNode. Note that you can call the method
addTextNode only on an element such as bodyElement or any child elements
that are added to it. You cannot call addTextNode on a SOAPHeader or SOAPBody
object because they contain elements and not text.

The content that you have just added to your SOAPBody object will look like the
following when it is sent over the wire:

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <m:GetLastTradePrice xmlns:m="http://wombat.ztrade.com">
 <symbol>SUNW</symbol>
 </m:GetLastTradePrice>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Let’s examine this XML excerpt line by line to see how it relates to your SAAJ
code. Note that an XML parser does not care about indentations, but they are

TUTORIAL 357
generally used to indicate element levels and thereby make it easier for a human
reader to understand.

Here is the SAAJ code:

SOAPMessage message = messageFactory.createMessage();
SOAPHeader header = message.getSOAPHeader();
SOAPBody body = message.getSOAPBody();

Here is the XML it produces:

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 . . .
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The outermost element in this XML example is the SOAP envelope element,
indicated by SOAP-ENV:Envelope. Note that Envelope is the name of the ele-
ment, and SOAP-ENV is the namespace prefix. The interface SOAPEnvelope repre-
sents a SOAP envelope.

The first line signals the beginning of the SOAP envelope element, and the last
line signals the end of it; everything in between is part of the SOAP envelope.
The second line is an example of an attribute for the SOAP envelope element.
Because a SOAP envelope element always contains this attribute with this value,
a SOAPMessage object comes with it automatically included. xmlns stands for
“XML namespace,” and its value is the URI of the namespace associated with
Envelope.

The next line is an empty SOAP header. We could remove it by calling
header.detachNode after the getSOAPHeader call.

The next two lines mark the beginning and end of the SOAP body, represented in
SAAJ by a SOAPBody object. The next step is to add content to the body.

Here is the SAAJ code:

Name bodyName = soapFactory.createName("GetLastTradePrice",
"m", "http://wombat.ztrade.com");

SOAPBodyElement bodyElement = body.addBodyElement(bodyName);

358
Here is the XML it produces:

<m:GetLastTradePrice
 xmlns:m="http://wombat.ztrade.com">

</m:GetLastTradePrice>

These lines are what the SOAPBodyElement bodyElement in your code repre-
sents. GetLastTradePrice is its local name, m is its namespace prefix, and
http://wombat.ztrade.com is its namespace URI.

Here is the SAAJ code:

Name name = soapFactory.createName("symbol");
SOAPElement symbol = bodyElement.addChildElement(name);
symbol.addTextNode("SUNW");

Here is the XML it produces:

<symbol>SUNW</symbol>

The String "SUNW" is the text node for the element <symbol>. This String

object is the message content that your recipient, the stock quote service,
receives.

The following example shows how to add multiple SOAPElement objects and add
text to each of them. The code first creates the SOAPBodyElement object
purchaseLineItems, which has a fully qualified name associated with it. That
is, the Name object for it has a local name, a namespace prefix, and a namespace
URI. As you saw earlier, a SOAPBodyElement object is required to have a fully
qualified name, but child elements added to it, such as SOAPElement objects, can
have Name objects with only the local name.

SOAPBody body = message.getSOAPBody();
Name bodyName = soapFactory.createName("PurchaseLineItems",

"PO", "http://sonata.fruitsgalore.com");
SOAPBodyElement purchaseLineItems =

body.addBodyElement(bodyName);

Name childName = soapFactory.createName("Order");
SOAPElement order =

purchaseLineItems.addChildElement(childName);

childName = soapFactory.createName("Product");
SOAPElement product = order.addChildElement(childName);
product.addTextNode("Apple");

TUTORIAL 359
childName = soapFactory.createName("Price");
SOAPElement price = order.addChildElement(childName);
price.addTextNode("1.56");

childName = soapFactory.createName("Order");
SOAPElement order2 =

purchaseLineItems.addChildElement(childName);

childName = soapFactory.createName("Product");
SOAPElement product2 = order2.addChildElement(childName);
product2.addTextNode("Peach");

childName = soapFactory.createName("Price");
SOAPElement price2 = order2.addChildElement(childName);
price2.addTextNode("1.48");

The SAAJ code in the preceding example produces the following XML in the
SOAP body:

<PO:PurchaseLineItems
 xmlns:PO="http://sonata.fruitsgalore.com">
 <Order>
 <Product>Apple</Product>
 <Price>1.56</Price>
 </Order>

 <Order>
 <Product>Peach</Product>
 <Price>1.48</Price>
 </Order>
</PO:PurchaseLineItems>

Getting a SOAPConnection Object
The SAAJ API is focused primarily on reading and writing messages. After you
have written a message, you can send it using various mechanisms (such as JMS
or JAXM). The SAAJ API does, however, provide a simple mechanism for
request-response messaging.

To send a message, a SAAJ client can use a SOAPConnection object. A SOAP-

Connection object is a point-to-point connection, meaning that it goes directly
from the sender to the destination (usually a URL) that the sender specifies.

The first step is to obtain a SOAPConnectionFactory object that you can use to
create your connection. The SAAJ API makes this easy by providing the SOAP-

360
ConnectionFactory class with a default implementation. You can get an
instance of this implementation using the following line of code.

SOAPConnectionFactory soapConnectionFactory =
SOAPConnectionFactory.newInstance();

Now you can use soapConnectionFactory to create a SOAPConnection object.

SOAPConnection connection =
soapConnectionFactory.createConnection();

You will use connection to send the message that you created.

Sending a Message
A SAAJ client calls the SOAPConnection method call on a SOAPConnection

object to send a message. The call method takes two arguments: the message
being sent and the destination to which the message should go. This message is
going to the stock quote service indicated by the URL object endpoint.

java.net.URL endpoint = new URL(
"http://wombat.ztrade.com/quotes");

SOAPMessage response = connection.call(message, endpoint);

The content of the message you sent is the stock symbol SUNW; the SOAPMes-

sage object response should contain the last stock price for Sun Microsystems,
which you will retrieve in the next section.

A connection uses a fair amount of resources, so it is a good idea to close a con-
nection as soon as you are finished using it.

connection.close();

Getting the Content of a Message
The initial steps for retrieving a message’s content are the same as those for giv-
ing content to a message: Either you use the Message object to get the SOAPBody

object, or you access the SOAPBody object through the SOAPPart and SOAPEnve-

lope objects.

Then you access the SOAPBody object’s SOAPBodyElement object, because that is
the element to which content was added in the example. (In a later section you

TUTORIAL 361
will see how to add content directly to the SOAPPart object, in which case you
would not need to access the SOAPBodyElement object to add content or to
retrieve it.)

To get the content, which was added with the method SOAPElement.addText-

Node, you call the method Node.getValue. Note that getValue returns the value
of the immediate child of the element that calls the method. Therefore, in the fol-
lowing code fragment, the getValue method is called on bodyElement, the ele-
ment on which the addTextNode method was called.

To access bodyElement, you call the getChildElements method on soapBody.
Passing bodyName to getChildElements returns a java.util.Iterator object
that contains all the child elements identified by the Name object bodyName. You
already know that there is only one, so calling the next method on it will return
the SOAPBodyElement you want. Note that the Iterator.next method returns a
Java Object, so you need to cast the Object it returns to a SOAPBodyElement

object before assigning it to the variable bodyElement.

SOAPBody soapBody = response.getSOAPBody();
java.util.Iterator iterator =

soapBody.getChildElements(bodyName);
SOAPBodyElement bodyElement =

(SOAPBodyElement)iterator.next();
String lastPrice = bodyElement.getValue();
System.out.print("The last price for SUNW is ");
System.out.println(lastPrice);

If more than one element had the name bodyName, you would have to use a
while loop using the Iterator.hasNext method to make sure that you got all of
them.

while (iterator.hasNext()) {
SOAPBodyElement bodyElement =

(SOAPBodyElement)iterator.next();
String lastPrice = bodyElement.getValue();
System.out.print("The last price for SUNW is ");
System.out.println(lastPrice);

}

At this point, you have seen how to send a very basic request-response message
and get the content from the response. The next sections provide more detail on
adding content to messages.

362
Adding Content to the Header
To add content to the header, you create a SOAPHeaderElement object. As with
all new elements, it must have an associated Name object, which you can create
using the message’s SOAPEnvelope object or a SOAPFactory object.

For example, suppose you want to add a conformance claim header to the mes-
sage to state that your message conforms to the WS-I Basic Profile. The follow-
ing code fragment retrieves the SOAPHeader object from message and adds a
new SOAPHeaderElement object to it. This SOAPHeaderElement object contains
the correct qualified name and attribute for a WS-I conformance claim header.

SOAPHeader header = message.getSOAPHeader();
Name headerName = soapFactory.createName("Claim",

"wsi", "http://ws-i.org/schemas/conformanceClaim/");
SOAPHeaderElement headerElement =

header.addHeaderElement(headerName);
headerElement.addAttribute(soapFactory.createName(

"conformsTo"), "http://ws-i.org/profiles/basic1.0/");

At this point, header contains the SOAPHeaderElement object headerElement
identified by the Name object headerName. Note that the addHeaderElement

method both creates headerElement and adds it to header.

A conformance claim header has no content. This code produces the following
XML header:

<SOAP-ENV:Header>
 <wsi:Claim conformsTo="http://ws-i.org/profiles/basic1.0/"
 xmlns:wsi="http://ws-i.org/schemas/conformanceClaim/"/>
</SOAP-ENV:Header>

For more information about creating SOAP messages that conform to WS-I, see
the Messaging section of the WS-I Basic Profile.

For a different kind of header, you might want to add content to headerElement.
The following line of code uses the method addTextNode to do this.

headerElement.addTextNode("order");

Now you have the SOAPHeader object header that contains a SOAPHeaderEle-

ment object whose content is "order".

http://www.ws-i.org/Profiles/Basic/2003-01/BasicProfile-1.0-WGAD.html#messaging

TUTORIAL 363
Adding Content to the SOAPPart Object
If the content you want to send is in a file, SAAJ provides an easy way to add it
directly to the SOAPPart object. This means that you do not access the SOAPBody

object and build the XML content yourself, as you did in the preceding section.

To add a file directly to the SOAPPart object, you use a javax.xml.trans-

form.Source object from JAXP (the Java API for XML Processing). There are
three types of Source objects: SAXSource, DOMSource, and StreamSource. A
StreamSource object holds an XML document in text form. SAXSource and
DOMSource objects hold content along with the instructions for transforming the
content into an XML document.

The following code fragment uses the JAXP API to build a DOMSource object
that is passed to the SOAPPart.setContent method. The first three lines of code
get a DocumentBuilderFactory object and use it to create the Document-

Builder object builder. Because SOAP messages use namespaces, you should
set the NamespaceAware property for the factory to true. Then builder parses
the content file to produce a Document object.

DocumentBuilderFactory dbFactory =
DocumentBuilderFactory.newInstance();

dbFactory.setNamespaceAware(true);
DocumentBuilder builder = dbFactory.newDocumentBuilder();
Document document =

builder.parse("file:///music/order/soap.xml");
DOMSource domSource = new DOMSource(document);

The following two lines of code access the SOAPPart object (using the SOAPMes-

sage object message) and set the new Document object as its content. The SOAP-

Part.setContent method not only sets content for the SOAPBody object but also
sets the appropriate header for the SOAPHeader object.

SOAPPart soapPart = message.getSOAPPart();
soapPart.setContent(domSource);

364
The XML file you use to set the content of the SOAPPart object must include
Envelope and Body elements:

<SOAP-ENV:Envelope
xmlns="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 ...
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

You will see other ways to add content to a message in the sections Adding a
Document to the SOAP Body (page 364) and Adding Attachments (page 365).

Adding a Document to the SOAP Body
In addition to setting the content of the entire SOAP message to that of a DOM-

Source object, you can add a DOM document directly to the body of the mes-
sage. This capability means that you do not have to create a
javax.xml.transform.Source object. After you parse the document, you can
add it directly to the message body:

SOAPBody body = message.getSOAPBody();
SOAPBodyElement docElement = body.addDocument(document);

Manipulating Message Content Using
SAAJ or DOM APIs
Because SAAJ nodes and elements implement the DOM Node and Element

interfaces, you have many options for adding or changing message content:

• Use only DOM APIs.

• Use only SAAJ APIs.

• Use SAAJ APIs and then switch to using DOM APIs.

• Use DOM APIs and then switch to using SAAJ APIs.

The first three of these cause no problems. After you have created a message,
whether or not you have imported its content from another document, you can
start adding or changing nodes using either SAAJ or DOM APIs.

But if you use DOM APIs and then switch to using SAAJ APIs to manipulate the
document, any references to objects within the tree that were obtained using

TUTORIAL 365
DOM APIs are no longer valid. If you must use SAAJ APIs after using DOM
APIs, you should set all your DOM typed references to null, because they can
become invalid. For more information about the exact cases in which references
become invalid, see the SAAJ API documentation.

The basic rule is that you can continue manipulating the message content using
SAAJ APIs as long as you want to, but after you start manipulating it using
DOM, you should no longer use SAAJ APIs.

Adding Attachments
An AttachmentPart object can contain any type of content, including XML.
And because the SOAP part can contain only XML content, you must use an
AttachmentPart object for any content that is not in XML format.

Creating an AttachmentPart Object and
Adding Content
The SOAPMessage object creates an AttachmentPart object, and the message
also must add the attachment to itself after content has been added. The SOAP-

Message class has three methods for creating an AttachmentPart object.

The first method creates an attachment with no content. In this case, an Attach-

mentPart method is used later to add content to the attachment.

AttachmentPart attachment = message.createAttachmentPart();

You add content to attachment by using the AttachmentPart method setCon-

tent. This method takes two parameters: a Java Object for the content, and a
String object for the MIME content type that is used to encode the object. Con-
tent in the SOAPBody part of a message automatically has a Content-Type header
with the value "text/xml" because the content must be in XML. In contrast, the
type of content in an AttachmentPart object must be specified because it can be
any type.

Each AttachmentPart object has one or more MIME headers associated with it.
When you specify a type to the setContent method, that type is used for the
header Content-Type. Note that Content-Type is the only header that is
required. You may set other optional headers, such as Content-Id and Content-

Location. For convenience, SAAJ provides get and set methods for the head-
ers Content-Type, Content-Id, and Content-Location. These headers can be

366
helpful in accessing a particular attachment when a message has multiple attach-
ments. For example, to access the attachments that have particular headers, you
can call the SOAPMessage method getAttachments and pass it a MIMEHeaders

object containing the MIME headers you are interested in.

The following code fragment shows one of the ways to use the method setCon-

tent. The Java Object in the first parameter can be a String, a stream, a
javax.xml.transform.Source object, or a javax.activation.DataHandler

object. The Java Object being added in the following code fragment is a String,
which is plain text, so the second argument must be "text/plain". The code
also sets a content identifier, which can be used to identify this AttachmentPart
object. After you have added content to attachment, you must add it to the
SOAPMessage object, something that is done in the last line.

String stringContent = "Update address for Sunny Skies " +
"Inc., to 10 Upbeat Street, Pleasant Grove, CA 95439";

attachment.setContent(stringContent, "text/plain");
attachment.setContentId("update_address");

message.addAttachmentPart(attachment);

The attachment variable now represents an AttachmentPart object that con-
tains the string stringContent and has a header that contains the string "text/

plain". It also has a Content-Id header with "update_address" as its value.
And attachment is now part of message.

The other two SOAPMessage.createAttachment methods create an Attach-

mentPart object complete with content. One is very similar to the Attachment-

Part.setContent method in that it takes the same parameters and does
essentially the same thing. It takes a Java Object containing the content and a
String giving the content type. As with AttachmentPart.setContent, the
Object can be a String, a stream, a javax.xml.transform.Source object, or a
javax.activation.DataHandler object.

The other method for creating an AttachmentPart object with content takes a
DataHandler object, which is part of the JavaBeans Activation Framework
(JAF). Using a DataHandler object is fairly straightforward. First, you create a

TUTORIAL 367
java.net.URL object for the file you want to add as content. Then you create a
DataHandler object initialized with the URL object:

URL url = new URL("http://greatproducts.com/gizmos/img.jpg");
DataHandler dataHandler = new DataHandler(url);
AttachmentPart attachment =

message.createAttachmentPart(dataHandler);
attachment.setContentId("attached_image");

message.addAttachmentPart(attachment);

You might note two things about this code fragment. First, it sets a header for
Content-ID using the method setContentId. This method takes a String that
can be whatever you like to identify the attachment. Second, unlike the other
methods for setting content, this one does not take a String for Content-Type.
This method takes care of setting the Content-Type header for you, something
that is possible because one of the things a DataHandler object does is to deter-
mine the data type of the file it contains.

Accessing an AttachmentPart Object
If you receive a message with attachments or want to change an attachment to a
message you are building, you need to access the attachment. The SOAPMessage

class provides two versions of the getAttachments method for retrieving its
AttachmentPart objects. When it is given no argument, the method SOAPMes-

sage.getAttachments returns a java.util.Iterator object over all the
AttachmentPart objects in a message. When getAttachments is given a Mime-

Headers object, which is a list of MIME headers, getAttachments returns an
iterator over the AttachmentPart objects that have a header that matches one of
the headers in the list. The following code uses the getAttachments method that
takes no arguments and thus retrieves all the AttachmentPart objects in the
SOAPMessage object message. Then it prints the content ID, the content type, and
the content of each AttachmentPart object.

java.util.Iterator iterator = message.getAttachments();
while (iterator.hasNext()) {

AttachmentPart attachment =
(AttachmentPart)iterator.next();

String id = attachment.getContentId();
String type = attachment.getContentType();
System.out.print("Attachment " + id +

" has content type " + type);
if (type == "text/plain") {

368
Object content = attachment.getContent();
System.out.println("Attachment " +

"contains:\n" + content);
}

}

Adding Attributes
An XML element can have one or more attributes that give information about
that element. An attribute consists of a name for the attribute followed immedi-
ately by an equal sign (=) and its value.

The SOAPElement interface provides methods for adding an attribute, for getting
the value of an attribute, and for removing an attribute. For example, in the fol-
lowing code fragment, the attribute named id is added to the SOAPElement

object person. Because person is a SOAPElement object rather than a SOAP-

BodyElement object or SOAPHeaderElement object, it is legal for its Name object
to contain only a local name.

Name attributeName = envelope.createName("id");
person.addAttribute(attributeName, "Person7");

These lines of code will generate the first line in the following XML fragment.

<person id="Person7">
 ...
</person>

The following line of code retrieves the value of the attribute whose name is id.

String attributeValue =
person.getAttributeValue(attributeName);

If you had added two or more attributes to person, the preceding line of code
would have returned only the value for the attribute named id. If you wanted to
retrieve the values for all the attributes for person, you would use the method
getAllAttributes, which returns an iterator over all the values. The following
lines of code retrieve and print each value on a separate line until there are no
more attribute values. Note that the Iterator.next method returns a Java
Object, which is cast to a Name object so that it can be assigned to the Name

TUTORIAL 369
object attributeName. (The examples in DOMExample.java and
DOMSrcExample.java (page 388) use code similar to this.)

Iterator iterator = person.getAllAttributes();
while (iterator.hasNext()){

Name attributeName = (Name) iterator.next();
System.out.println("Attribute name is " +

attributeName.getQualifiedName());
System.out.println("Attribute value is " +

element.getAttributeValue(attributeName));
}

The following line of code removes the attribute named id from person. The
variable successful will be true if the attribute was removed successfully.

boolean successful = person.removeAttribute(attributeName);

In this section you have seen how to add, retrieve, and remove attributes. This
information is general in that it applies to any element. The next section dis-
cusses attributes that can be added only to header elements.

Header Attributes
Attributes that appear in a SOAPHeaderElement object determine how a recipient
processes a message. You can think of header attributes as offering a way to
extend a message, giving information about such things as authentication, trans-
action management, payment, and so on. A header attribute refines the meaning
of the header, whereas the header refines the meaning of the message contained
in the SOAP body.

The SOAP 1.1 specification defines two attributes that can appear only in SOAP-

HeaderElement objects: actor and mustUnderstand. The next two sections dis-
cuss these attributes.

See HeaderExample.java (page 387) for an example that uses the code shown in
this section.

The Actor Attribute
The actor attribute is optional, but if it is used, it must appear in a SOAPHeader-

Element object. Its purpose is to indicate the recipient of a header element. The
default actor is the message’s ultimate recipient; that is, if no actor attribute is
supplied, the message goes directly to the ultimate recipient.

370
An actor is an application that can both receive SOAP messages and forward
them to the next actor. The ability to specify one or more actors as intermediate
recipients makes it possible to route a message to multiple recipients and to sup-
ply header information that applies specifically to each of the recipients.

For example, suppose that a message is an incoming purchase order. Its SOAP-

Header object might have SOAPHeaderElement objects with actor attributes that
route the message to applications that function as the order desk, the shipping
desk, the confirmation desk, and the billing department. Each of these applica-
tions will take the appropriate action, remove the SOAPHeaderElement objects
relevant to it, and send the message on to the next actor.

Note: Although the SAAJ API provides the API for adding these attributes, it does
not supply the API for processing them. For example, the actor attribute requires
that there be an implementation such as a messaging provider service to route the
message from one actor to the next.

An actor is identified by its URI. For example, the following line of code, in
which orderHeader is a SOAPHeaderElement object, sets the actor to the given
URI.

orderHeader.setActor("http://gizmos.com/orders");

Additional actors can be set in their own SOAPHeaderElement objects. The fol-
lowing code fragment first uses the SOAPMessage object message to get its SOAP-
Header object header. Then header creates four SOAPHeaderElement objects,
each of which sets its actor attribute.

SOAPHeader header = message.getSOAPHeader();
SOAPFactory soapFactory = SOAPFactory.newInstance();

String nameSpace = "ns";
String nameSpaceURI = "http://gizmos.com/NSURI";

Name order = soapFactory.createName("orderDesk",
nameSpace, nameSpaceURI);

SOAPHeaderElement orderHeader =
header.addHeaderElement(order);

orderHeader.setActor("http://gizmos.com/orders");

Name shipping =
soapFactory.createName("shippingDesk",

nameSpace, nameSpaceURI);

TUTORIAL 371
SOAPHeaderElement shippingHeader =
header.addHeaderElement(shipping);

shippingHeader.setActor("http://gizmos.com/shipping");

Name confirmation =
soapFactory.createName("confirmationDesk",

nameSpace, nameSpaceURI);
SOAPHeaderElement confirmationHeader =

header.addHeaderElement(confirmation);
confirmationHeader.setActor(

"http://gizmos.com/confirmations");

Name billing = soapFactory.createName("billingDesk",
nameSpace, nameSpaceURI);

SOAPHeaderElement billingHeader =
header.addHeaderElement(billing);

billingHeader.setActor("http://gizmos.com/billing");

The SOAPHeader interface provides two methods that return a java.util.Iter-

ator object over all the SOAPHeaderElement objects that have an actor that
matches the specified actor. The first method, examineHeaderElements, returns
an iterator over all the elements that have the specified actor.

java.util.Iterator headerElements =
header.examineHeaderElements("http://gizmos.com/orders");

The second method, extractHeaderElements, not only returns an iterator over
all the SOAPHeaderElement objects that have the specified actor attribute but
also detaches them from the SOAPHeader object. So, for example, after the order
desk application did its work, it would call extractHeaderElements to remove
all the SOAPHeaderElement objects that applied to it.

java.util.Iterator headerElements =
header.extractHeaderElements("http://gizmos.com/orders");

Each SOAPHeaderElement object can have only one actor attribute, but the same
actor can be an attribute for multiple SOAPHeaderElement objects.

Two additional SOAPHeader methods—examineAllHeaderElements and
extractAllHeaderElements—allow you to examine or extract all the header

372
elements, whether or not they have an actor attribute. For example, you could use
the following code to display the values of all the header elements:

Iterator allHeaders =
header.examineAllHeaderElements();

while (allHeaders.hasNext()) {
SOAPHeaderElement headerElement =

(SOAPHeaderElement)allHeaders.next();
Name headerName =

headerElement.getElementName();
System.out.println("\nHeader name is " +

headerName.getQualifiedName());
System.out.println("Actor is " +

headerElement.getActor());
}

The mustUnderstand Attribute
The other attribute that must be added only to a SOAPHeaderElement object is
mustUnderstand. This attribute says whether or not the recipient (indicated by
the actor attribute) is required to process a header entry. When the value of the
mustUnderstand attribute is true, the actor must understand the semantics of
the header entry and must process it correctly to those semantics. If the value is
false, processing the header entry is optional. A SOAPHeaderElement object
with no mustUnderstand attribute is equivalent to one with a mustUnderstand

attribute whose value is false.

The mustUnderstand attribute is used to call attention to the fact that the seman-
tics in an element are different from the semantics in its parent or peer elements.
This allows for robust evolution, ensuring that a change in semantics will not be
silently ignored by those who may not fully understand it.

If the actor for a header that has a mustUnderstand attribute set to true cannot
process the header, it must send a SOAP fault back to the sender. (See Using
SOAP Faults, page 373.) The actor must not change state or cause any side
effects, so that, to an outside observer, it appears that the fault was sent before
any header processing was done.

The following code fragment creates a SOAPHeader object with a SOAPHeader-

Element object that has a mustUnderstand attribute.

SOAPHeader header = message.getSOAPHeader();

Name name = soapFactory.createName("Transaction", "t",
"http://gizmos.com/orders");

TUTORIAL 373
SOAPHeaderElement transaction = header.addHeaderElement(name);
transaction.setMustUnderstand(true);
transaction.addTextNode("5");

This code produces the following XML:

<SOAP-ENV:Header>
 <t:Transaction
 xmlns:t="http://gizmos.com/orders"
 SOAP-ENV:mustUnderstand="1">
 5
 </t:Transaction>
</SOAP-ENV:Header>

You can use the getMustUnderstand method to retrieve the value of the mus-

tUnderstand attribute. For example, you could add the following to the code
fragment at the end of the preceding section:

System.out.println("mustUnderstand is " +
headerElement.getMustUnderstand());

Using SOAP Faults
In this section, you will see how to use the API for creating and accessing a
SOAP fault element in an XML message.

Overview of SOAP Faults
If you send a message that was not successful for some reason, you may get back
a response containing a SOAP fault element, which gives you status information,
error information, or both. There can be only one SOAP fault element in a mes-
sage, and it must be an entry in the SOAP body. Furthermore, if there is a SOAP
fault element in the SOAP body, there can be no other elements in the SOAP
body. This means that when you add a SOAP fault element, you have effectively
completed the construction of the SOAP body.

A SOAPFault object, the representation of a SOAP fault element in the SAAJ
API, is similar to an Exception object in that it conveys information about a
problem. However, a SOAPFault object is quite different in that it is an element
in a message’s SOAPBody object rather than part of the try/catch mechanism
used for Exception objects. Also, as part of the SOAPBody object, which pro-

374
vides a simple means for sending mandatory information intended for the ulti-
mate recipient, a SOAPFault object only reports status or error information. It
does not halt the execution of an application, as an Exception object can.

If you are a client using the SAAJ API and are sending point-to-point messages,
the recipient of your message may add a SOAPFault object to the response to
alert you to a problem. For example, if you sent an order with an incomplete
address for where to send the order, the service receiving the order might put a
SOAPFault object in the return message telling you that part of the address was
missing.

Another example of who might send a SOAP fault is an intermediate recipient,
or actor. As stated in the section Adding Attributes (page 368), an actor that can-
not process a header that has a mustUnderstand attribute with a value of true
must return a SOAP fault to the sender.

A SOAPFault object contains the following elements:

• A fault code: Always required. The fault code must be a fully qualified
name: it must contain a prefix followed by a local name. The SOAP 1.1
specification defines a set of fault code local name values in section 4.4.1,
which a developer can extend to cover other problems. The default fault
code local names defined in the specification relate to the SAAJ API as fol-
lows:

• VersionMismatch: The namespace for a SOAPEnvelope object was
invalid.

• MustUnderstand: An immediate child element of a SOAPHeader object
had its mustUnderstand attribute set to true, and the processing party
did not understand the element or did not obey it.

• Client: The SOAPMessage object was not formed correctly or did not
contain the information needed to succeed.

• Server: The SOAPMessage object could not be processed because of a
processing error, not because of a problem with the message itself.

• A fault string: Always required. A human-readable explanation of the
fault.

• A fault actor: Required if the SOAPHeader object contains one or more
actor attributes; optional if no actors are specified, meaning that the only
actor is the ultimate destination. The fault actor, which is specified as a
URI, identifies who caused the fault. For an explanation of what an actor
is, see The Actor Attribute, page 369.

TUTORIAL 375
• A Detail object: Required if the fault is an error related to the SOAPBody

object. If, for example, the fault code is Client, indicating that the mes-
sage could not be processed because of a problem in the SOAPBody object,
the SOAPFault object must contain a Detail object that gives details about
the problem. If a SOAPFault object does not contain a Detail object, it can
be assumed that the SOAPBody object was processed successfully.

Creating and Populating a SOAPFault Object
You have seen how to add content to a SOAPBody object; this section walks you
through adding a SOAPFault object to a SOAPBody object and then adding its
constituent parts.

As with adding content, the first step is to access the SOAPBody object.

SOAPBody body = message.getSOAPBody();

With the SOAPBody object body in hand, you can use it to create a SOAPFault

object. The following line of code creates a SOAPFault object and adds it to
body.

SOAPFault fault = body.addFault();

The SOAPFault interface provides convenience methods that create an element,
add the new element to the SOAPFault object, and add a text node, all in one
operation. For example, in the following lines of code, the method setFault-

Code creates a faultcode element, adds it to fault, and adds a Text node with
the value "SOAP-ENV:Server" by specifying a default prefix and the namespace
URI for a SOAP envelope.

Name faultName =
soapFactory.createName("Server",

"", SOAPConstants.URI_NS_SOAP_ENVELOPE);
fault.setFaultCode(faultName);
fault.setFaultActor("http://gizmos.com/orders");
fault.setFaultString("Server not responding");

The SOAPFault object fault, created in the preceding lines of code, indicates
that the cause of the problem is an unavailable server and that the actor at http:/
/gizmos.com/orders is having the problem. If the message were being routed
only to its ultimate destination, there would have been no need to set a fault
actor. Also note that fault does not have a Detail object because it does not
relate to the SOAPBody object.

376
The following code fragment creates a SOAPFault object that includes a Detail

object. Note that a SOAPFault object can have only one Detail object, which is
simply a container for DetailEntry objects, but the Detail object can have
multiple DetailEntry objects. The Detail object in the following lines of code
has two DetailEntry objects added to it.

SOAPFault fault = body.addFault();

Name faultName = soapFactory.createName("Client",
"", SOAPConstants.URI_NS_SOAP_ENVELOPE);

fault.setFaultCode(faultName);
fault.setFaultString("Message does not have necessary info");

Detail detail = fault.addDetail();

Name entryName = soapFactory.createName("order",
"PO", "http://gizmos.com/orders/");

DetailEntry entry = detail.addDetailEntry(entryName);
entry.addTextNode("Quantity element does not have a value");

Name entryName2 = soapFactory.createName("confirmation",
"PO", "http://gizmos.com/confirm");

DetailEntry entry2 = detail.addDetailEntry(entryName2);
entry2.addTextNode("Incomplete address: no zip code");

See SOAPFaultTest.java (page 394) for an example that uses code like that
shown in this section.

Retrieving Fault Information
Just as the SOAPFault interface provides convenience methods for adding infor-
mation, it also provides convenience methods for retrieving that information.
The following code fragment shows what you might write to retrieve fault infor-
mation from a message you received. In the code fragment, newMessage is the
SOAPMessage object that has been sent to you. Because a SOAPFault object must
be part of the SOAPBody object, the first step is to access the SOAPBody object.
Then the code tests to see whether the SOAPBody object contains a SOAPFault

object. If it does, the code retrieves the SOAPFault object and uses it to retrieve

TUTORIAL 377
its contents. The convenience methods getFaultCode, getFaultString, and
getFaultActor make retrieving the values very easy.

SOAPBody body = newMessage.getSOAPBody();
if (body.hasFault()) {

SOAPFault newFault = body.getFault();
Name code = newFault.getFaultCodeAsName();
String string = newFault.getFaultString();
String actor = newFault.getFaultActor();

Next the code prints the values it has just retrieved. Not all messages are required
to have a fault actor, so the code tests to see whether there is one. Testing
whether the variable actor is null works because the method getFaultActor

returns null if a fault actor has not been set.

System.out.println("SOAP fault contains: ");
System.out.println(" Fault code = " +

code.getQualifiedName());
System.out.println(" Fault string = " + string);

if (actor != null) {
System.out.println(" Fault actor = " + actor);

}

The final task is to retrieve the Detail object and get its DetailEntry objects.
The code uses the SOAPFault object newFault to retrieve the Detail object
newDetail, and then it uses newDetail to call the method getDetailEntries.
This method returns the java.util.Iterator object entries, which contains
all the DetailEntry objects in newDetail. Not all SOAPFault objects are
required to have a Detail object, so the code tests to see whether newDetail is
null. If it is not, the code prints the values of the DetailEntry objects as long as
there are any.

Detail newDetail = newFault.getDetail();
if (newDetail != null) {

Iterator entries = newDetail.getDetailEntries();
while (entries.hasNext()) {

DetailEntry newEntry =
(DetailEntry)entries.next();

String value = newEntry.getValue();
System.out.println(" Detail entry = " + value);

}
}

378
In summary, you have seen how to add a SOAPFault object and its contents to a
message as well as how to retrieve the contents. A SOAPFault object, which is
optional, is added to the SOAPBody object to convey status or error information. It
must always have a fault code and a String explanation of the fault. A SOAP-

Fault object must indicate the actor that is the source of the fault only when
there are multiple actors; otherwise, it is optional. Similarly, the SOAPFault

object must contain a Detail object with one or more DetailEntry objects only
when the contents of the SOAPBody object could not be processed successfully.

See SOAPFaultTest.java (page 394) for an example that uses code like that
shown in this section.

Code Examples
The first part of this tutorial uses code fragments to walk you through the funda-
mentals of using the SAAJ API. In this section, you will use some of those code
fragments to create applications. First, you will see the program Request.java.
Then you will see how to run the programs MyUddiPing.java, HeaderExam-
ple.java, DOMExample.java, DOMSrcExample.java, Attachments.java, and
SOAPFaultTest.java.

You do not have to start the Application Server in order to run these examples.

Request.java
The class Request.java puts together the code fragments used in the section
Tutorial (page 352) and adds what is needed to make it a complete example of a
client sending a request-response message. In addition to putting all the code
together, it adds import statements, a main method, and a try/catch block with
exception handling.

import javax.xml.soap.*;
import java.util.*;
import java.net.URL;

public class Request {
public static void main(String[] args){

try {
SOAPConnectionFactory soapConnectionFactory =

SOAPConnectionFactory.newInstance();
SOAPConnection connection =

CODE EXAMPLES 379
soapConnectionFactory.createConnection();
SOAPFactory soapFactory =

SOAPFactory.newInstance();

MessageFactory factory =
MessageFactory.newInstance();

SOAPMessage message = factory.createMessage();

SOAPHeader header = message.getSOAPHeader();
SOAPBody body = message.getSOAPBody();
header.detachNode();

Name bodyName = soapFactory.createName(
"GetLastTradePrice", "m",
"http://wombats.ztrade.com");

SOAPBodyElement bodyElement =
body.addBodyElement(bodyName);

Name name = soapFactory.createName("symbol");
SOAPElement symbol =

bodyElement.addChildElement(name);
symbol.addTextNode("SUNW");

URL endpoint = new URL
("http://wombat.ztrade.com/quotes");

SOAPMessage response =
connection.call(message, endpoint);

connection.close();

SOAPBody soapBody = response.getSOAPBody();

Iterator iterator =
soapBody.getChildElements(bodyName);

bodyElement = (SOAPBodyElement)iterator.next();
String lastPrice = bodyElement.getValue();

System.out.print("The last price for SUNW is ");
System.out.println(lastPrice);

} catch (Exception ex) {
ex.printStackTrace();

}
}

}

380
For Request.java to be runnable, the second argument supplied to the call

method would have to be a valid existing URI, and this is not true in this case.
However, the application in the next section is one that you can run.

MyUddiPing.java
The program MyUddiPing.java is another example of a SAAJ client application.
It sends a request to a Universal Description, Discovery and Integration (UDDI)
service and gets back the response. A UDDI service is a business registry and
repository from which you can get information about businesses that have regis-
tered themselves with the registry service. For this example, the MyUddiPing
application is not actually accessing a UDDI service registry but rather a test
(demo) version. Because of this, the number of businesses you can get informa-
tion about is limited. Nevertheless, MyUddiPing demonstrates a request being
sent and a response being received.

Setting Up
The MyUddiPing example is in the following directory:

<INSTALL>/j2eetutorial14/examples/saaj/myuddiping/

Note: <INSTALL> is the directory where you installed the tutorial bundle.

In the myuddiping directory, you will find two files and the src directory. The
src directory contains one source file, MyUddiPing.java.

The file uddi.properties contains the URL of the destination (a UDDI test reg-
istry) and the proxy host and proxy port of the sender. By default, the destination
is the IBM test registry; the Microsoft test registry is commented out.

If you access the Internet from behind a firewall, edit the uddi.properties file
to supply the correct proxy host and proxy port. If you are not sure what the val-
ues for these are, consult your system administrator or another person with that
information. The typical value of the proxy port is 8080. You can also edit the
file to specify another registry.

The file build.xml is the asant build file for this example. It includes the file
<INSTALL>/j2eetutorial14/examples/saaj/common/targets.xml, which
contains a set of targets common to all the SAAJ examples.

../examples/saaj/myuddiping/src/MyUddiPing.java

CODE EXAMPLES 381
The prepare target creates a directory named build. To invoke the prepare tar-
get, you type the following at the command line:

asant prepare

The target named build compiles the source file MyUddiPing.java and puts the
resulting .class file in the build directory. So to do these tasks, you type the
following at the command line:

asant build

Examining MyUddiPing
We will go through the file MyUddiPing.java a few lines at a time, concentrat-
ing on the last section. This is the part of the application that accesses only the
content you want from the XML message returned by the UDDI registry.

The first few lines of code import the packages used in the application.

import javax.xml.soap.*;
import java.net.*;
import java.util.*;
import java.io.*;

The next few lines begin the definition of the class MyUddiPing, which starts
with the definition of its main method. The first thing it does is to check to see
whether two arguments were supplied. If they were not, it prints a usage message
and exits. The usage message mentions only one argument; the other is supplied
by the build.xml target.

public class MyUddiPing {
public static void main(String[] args) {

try {
if (args.length != 2) {

System.err.println("Usage: asant run " +
"-Dbusiness-name=<name>");

System.exit(1);
}

../examples/saaj/myuddiping/src/MyUddiPing.java

382
The following lines create a java.util.Properties object that contains the
system properties and the properties from the file uddi.properties, which is in
the myuddiping directory.

Properties myprops = new Properties();
myprops.load(new FileInputStream(args[0]));

Properties props = System.getProperties();

Enumeration propNames = myprops.propertyNames();
while (propNames.hasMoreElements()) {

String s = (String)propNames.nextElement();
props.setProperty(s, myprops.getProperty(s));

}

The next four lines create a SOAPMessage object. First, the code gets an instance
of SOAPConnectionFactory and uses it to create a connection. Then it gets an
instance of MessageFactory and an instance of SOAPFactory, using the Mes-

sageFactory instance to create a message.

SOAPConnectionFactory soapConnectionFactory =
SOAPConnectionFactory.newInstance();

SOAPConnection connection =
soapConnectionFactory.createConnection();

MessageFactory messageFactory =
MessageFactory.newInstance();

SOAPFactory soapFactory = SOAPFactory.newInstance();

SOAPMessage message =
messageFactory.createMessage();

The next lines of code retrieve the SOAPHeader and SOAPBody objects from the
message and remove the header.

SOAPHeader header = message.getSOAPHeader();
SOAPBody body = message.getSOAPBody();
header.detachNode();

The following lines of code create the UDDI find_business message. The first
line creates a SOAPBodyElement with a fully qualified name, including the
required namespace for a UDDI version 2 message. The next lines add two
attributes to the new element: the required attribute generic, with the UDDI ver-
sion number 2.0, and the optional attribute maxRows, with the value 100. Then
the code adds a child element that has the Name object name and adds text to the

CODE EXAMPLES 383
element by using the method addTextNode. The added text is the business name
you will supply at the command line when you run the application.

SOAPBodyElement findBusiness =
body.addBodyElement(soapFactory.createName(

"find_business", "",
"urn:uddi-org:api_v2"));

findBusiness.addAttribute(soapFactory.createName(
"generic"), "2.0");

findBusiness.addAttribute(soapFactory.createName(
"maxRows"), "100");

SOAPElement businessName =
findBusiness.addChildElement(

soapFactory.createName("name"));
businessName.addTextNode(args[1]);

The next line of code saves the changes that have been made to the message.
This method will be called automatically when the message is sent, but it does
not hurt to call it explicitly.

message.saveChanges();

The following lines display the message that will be sent:

System.out.println("\n--- Request Message ---\n");
message.writeTo(System.out);

The next line of code creates the java.net.URL object that represents the desti-
nation for this message. It gets the value of the property named URL from the sys-
tem property file.

URL endpoint = new URL(
System.getProperties().getProperty("URL"));

Next, the message message is sent to the destination that endpoint represents,
which is the UDDI test registry. The call method will block until it gets a SOAP-
Message object back, at which point it returns the reply.

SOAPMessage reply =
connection.call(message, endpoint);

384
In the next lines of code, the first line prints a line giving the URL of the sender
(the test registry), and the others display the returned message.

System.out.println("\n\nReceived reply from: " +
endpoint);

System.out.println("\n---- Reply Message ----\n");
reply.writeTo(System.out);

The returned message is the complete SOAP message, an XML document, as it
looks when it comes over the wire. It is a businessList that follows the format
specified in http://uddi.org/pubs/DataStructure-V2.03-Published-

20020719.htm#_Toc25130802.

As interesting as it is to see the XML that is actually transmitted, the XML docu-
ment format does not make it easy to see the text that is the message’s content.
To remedy this, the last part of MyUddiPing.java contains code that prints only
the text content of the response, making it much easier to see the information you
want.

Because the content is in the SOAPBody object, the first step is to access it, as
shown in the following line of code.

SOAPBody replyBody = reply.getSOAPBody();

Next, the code displays a message describing the content:

System.out.println("\n\nContent extracted from " +
"the reply message:\n");

To display the content of the message, the code uses the known format of the
reply message. First, it gets all the reply body’s child elements named busi-

nessList:

Iterator businessListIterator =
replyBody.getChildElements(

soapFactory.createName("businessList",
"", "urn:uddi-org:api_v2"));

The method getChildElements returns the elements in the form of a
java.util.Iterator object. You access the child elements by calling the
method next on the Iterator object. An immediate child of a SOAPBody object
is a SOAPBodyElement object.

We know that the reply can contain only one businessList element, so the code
then retrieves this one element by calling the iterator’s next method. Note that

http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm#_Toc25130802
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm#_Toc25130802

CODE EXAMPLES 385
the method Iterator.next returns an Object, which must be cast to the spe-
cific kind of object you are retrieving. Thus, the result of calling
businessListIterator.next is cast to a SOAPBodyElement object:

SOAPBodyElement businessList =
(SOAPBodyElement)businessListIterator.next();

The next element in the hierarchy is a single businessInfos element, so the
code retrieves this element in the same way it retrieved the businessList. Chil-
dren of SOAPBodyElement objects and all child elements from this point forward
are SOAPElement objects.

Iterator businessInfosIterator =
businessList.getChildElements(

soapFactory.createName("businessInfos",
"", "urn:uddi-org:api_v2"));

SOAPElement businessInfos =
(SOAPElement)businessInfosIterator.next();

The businessInfos element contains zero or more businessInfo elements. If
the query returned no businesses, the code prints a message saying that none
were found. If the query returned businesses, however, the code extracts the
name and optional description by retrieving the child elements that have those
names. The method Iterator.hasNext can be used in a while loop because it
returns true as long as the next call to the method next will return a child ele-
ment. Accordingly, the loop ends when there are no more child elements to
retrieve.

Iterator businessInfoIterator =
businessInfos.getChildElements(

soapFactory.createName("businessInfo",
"", "urn:uddi-org:api_v2"));

if (! businessInfoIterator.hasNext()) {
System.out.println("No businesses found " +

"matching the name \"" + args[1] + "\".");
} else {

while (businessInfoIterator.hasNext()) {
SOAPElement businessInfo = (SOAPElement)

businessInfoIterator.next();

Iterator nameIterator =
businessInfo.getChildElements(

soapFactory.createName("name",

386
"", "urn:uddi-org:api_v2"));
while (nameIterator.hasNext()) {

businessName =
(SOAPElement)nameIterator.next();

System.out.println("Company name: " +
businessName.getValue());

}
Iterator descriptionIterator =

businessInfo.getChildElements(
soapFactory.createName(

"description", "",
"urn:uddi-org:api_v2"));

while (descriptionIterator.hasNext()) {
SOAPElement businessDescription =

(SOAPElement) descriptionIterator.next();
System.out.println("Description: " +

businessDescription.getValue());
}
System.out.println("");

}

Running MyUddiPing
Make sure you have edited the uddi.properties file and compiled MyUddiP-

ing.java as described in Setting Up (page 380).

With the code compiled, you are ready to run MyUddiPing. The run target takes
two arguments, but you need to supply only one of them. The first argument is
the file uddi.properties, which is supplied by a property set in build.xml.
The other argument is the name of the business for which you want to get a
description, and you need to supply this argument on the command line. Note
that any property set on the command line overrides any value set for that prop-
erty in the build.xml file.

Use the following command to run the example:

asant run -Dbusiness-name=food

Output similar to the following will appear after the full XML message:

Content extracted from the reply message:

Company name: Food
Description: Test Food

CODE EXAMPLES 387
Company name: Food Manufacturing

Company name: foodCompanyA
Description: It is a food company sells biscuit

If you want to run MyUddiPing again, you may want to start over by deleting the
build directory and the .class file it contains. You can do this by typing the fol-
lowing at the command line:

asant clean

HeaderExample.java
The example HeaderExample.java, based on the code fragments in the section
Adding Attributes (page 368), creates a message that has several headers. It then
retrieves the contents of the headers and prints them. You will find the code for
HeaderExample in the following directory:

<INSTALL>/j2eetutorial14/examples/saaj/headers/src/

Running HeaderExample
To run HeaderExample, you use the file build.xml that is in the directory
<INSTALL>/j2eetutorial14/examples/saaj/headers/.

To run HeaderExample, use the following command:

asant run

This command executes the prepare, build, and run targets in the build.xml

and targets.xml files.

When you run HeaderExample, you will see output similar to the following:

----- Request Message ----

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header>
<ns:orderDesk SOAP-ENV:actor="http://gizmos.com/orders"
xmlns:ns="http://gizmos.com/NSURI"/>
<ns:shippingDesk SOAP-ENV:actor="http://gizmos.com/shipping"
xmlns:ns="http://gizmos.com/NSURI"/>
<ns:confirmationDesk

../examples/saaj/headers/src/HeaderExample.java

388
SOAP-ENV:actor="http://gizmos.com/confirmations"
xmlns:ns="http://gizmos.com/NSURI"/>
<ns:billingDesk SOAP-ENV:actor="http://gizmos.com/billing"
xmlns:ns="http://gizmos.com/NSURI"/>
<t:Transaction SOAP-ENV:mustUnderstand="1" xmlns:t="http://
gizmos.com/orders">5</t:Transaction>
</SOAP-ENV:Header><SOAP-ENV:Body/></SOAP-ENV:Envelope>
Header name is ns:orderDesk
Actor is http://gizmos.com/orders
mustUnderstand is false

Header name is ns:shippingDesk
Actor is http://gizmos.com/shipping
mustUnderstand is false

Header name is ns:confirmationDesk
Actor is http://gizmos.com/confirmations
mustUnderstand is false

Header name is ns:billingDesk
Actor is http://gizmos.com/billing
mustUnderstand is false

Header name is t:Transaction
Actor is null
mustUnderstand is true

DOMExample.java and
DOMSrcExample.java
The examples DOMExample.java and DOMSrcExample.java show how to add a
DOM document to a message and then traverse its contents. They show two
ways to do this:

• DOMExample.java creates a DOM document and adds it to the body of a
message.

• DOMSrcExample.java creates the document, uses it to create a DOMSource
object, and then sets the DOMSource object as the content of the message’s
SOAP part.

You will find the code for DOMExample and DOMSrcExample in the following
directory:

<INSTALL>/j2eetutorial14/examples/saaj/dom/src/

../examples/saaj/dom/src/DOMExample.java
../examples/saaj/dom/src/DOMSrcExample.java

CODE EXAMPLES 389
Examining DOMExample
DOMExample first creates a DOM document by parsing an XML document,
almost exactly like the JAXP example DomEcho01.java in the directory
<INSTALL>/j2eetutorial14/examples/jaxp/dom/samples/. The file it parses
is one that you specify on the command line.

static Document document;
...

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

factory.setNamespaceAware(true);
try {

DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.parse(new File(args[0]));
...

Next, the example creates a SOAP message in the usual way. Then it adds the
document to the message body:

SOAPBodyElement docElement = body.addDocument(document);

This example does not change the content of the message. Instead, it displays the
message content and then uses a recursive method, getContents, to traverse the
element tree using SAAJ APIs and display the message contents in a readable
form.

public void getContents(Iterator iterator, String indent) {

while (iterator.hasNext()) {
Node node = (Node) iterator.next();
SOAPElement element = null;
Text text = null;
if (node instanceof SOAPElement) {

element = (SOAPElement)node;
Name name = element.getElementName();
System.out.println(indent + "Name is " +

name.getQualifiedName());
Iterator attrs = element.getAllAttributes();
while (attrs.hasNext()){

Name attrName = (Name)attrs.next();
System.out.println(indent +

" Attribute name is " +
attrName.getQualifiedName());

System.out.println(indent +
" Attribute value is " +

390
element.getAttributeValue(attrName));
}
Iterator iter2 = element.getChildElements();
getContents(iter2, indent + " ");

} else {
text = (Text) node;
String content = text.getValue();
System.out.println(indent +

"Content is: " + content);
}

}
}

Examining DOMSrcExample
DOMSrcExample differs from DOMExample in only a few ways. First, after it
parses the document, DOMSrcExample uses the document to create a DOM-

Source object. This code is the same as that of DOMExample except for the last
line:

static DOMSource domSource;
...
try {

DocumentBuilder builder =
factory.newDocumentBuilder();

document = builder.parse(new File(args[0]));
domSource = new DOMSource(document);
...

Then, after DOMSrcExample creates the message, it does not get the header and
body and add the document to the body, as DOMExample does. Instead, DOM-
SrcExample gets the SOAP part and sets the DOMSource object as its content:

// Create a message
SOAPMessage message = messageFactory.createMessage();

// Get the SOAP part and set its content to domSource
SOAPPart soapPart = message.getSOAPPart();
soapPart.setContent(domSource);

The example then uses the getContents method to obtain the contents of both
the header (if it exists) and the body of the message.

The most important difference between these two examples is the kind of docu-
ment you can use to create the message. Because DOMExample adds the docu-

CODE EXAMPLES 391
ment to the body of the SOAP message, you can use any valid XML file to create
the document. But because DOMSrcExample makes the document the entire
content of the message, the document must already be in the form of a valid
SOAP message, and not just any XML document.

Running DOMExample and DOMSrcExample
To run DOMExample and DOMSrcExample, you use the file build.xml that is
in the directory <INSTALL>/j2eetutorial14/examples/saaj/dom/. This
directory also contains several sample XML files you can use:

• domsrc1.xml, an example that has a SOAP header (the contents of the
HeaderExample output) and the body of a UDDI query

• domsrc2.xml, an example of a reply to a UDDI query (specifically, some
sample output from the MyUddiPing example), but with spaces added for
readability

• uddimsg.xml, similar to domsrc2.xml except that it is only the body of the
message and contains no spaces

• slide.xml, similar to the slideSample01.xml file in <INSTALL>/

j2eetutorial14/examples/jaxp/dom/samples/

To run DOMExample, use a command like the following:

asant run-dom -Dxml-file=uddimsg.xml

After running DOMExample, you will see output something like the following:

Running DOMExample.
Name is businessList
Attribute name is generic
Attribute value is 2.0
Attribute name is operator
Attribute value is www.ibm.com/services/uddi
Attribute name is truncated
Attribute value is false
Attribute name is xmlns
Attribute value is urn:uddi-org:api_v2
...

To run DOMSrcExample, use a command like the following:

asant run-domsrc -Dxml-file=domsrc2.xml

392
When you run DOMSrcExample, you will see output that begins like the follow-
ing:

run-domsrc:
Running DOMSrcExample.
Body contents:
Content is:

Name is businessList
 Attribute name is generic
 Attribute value is 2.0
 Attribute name is operator
 Attribute value is www.ibm.com/services/uddi
 Attribute name is truncated
 Attribute value is false
 Attribute name is xmlns
 Attribute value is urn:uddi-org:api_v2
 ...

If you run DOMSrcExample with the file uddimsg.xml or slide.xml, you will
see runtime errors.

Attachments.java
The example Attachments.java, based on the code fragments in the sections
Creating an AttachmentPart Object and Adding Content (page 365) and Access-
ing an AttachmentPart Object (page 367), creates a message that has a text
attachment and an image attachment. It then retrieves the contents of the attach-
ments and prints the contents of the text attachment. You will find the code for
Attachments in the following directory:

<INSTALL>/j2eetutorial14/examples/saaj/attachments/src/

Attachments first creates a message in the usual way. It then creates an Attach-

mentPart for the text attachment:

AttachmentPart attachment1 = message.createAttachmentPart();

../examples/saaj/attachments/src/Attachments.java

CODE EXAMPLES 393
After it reads input from a file into a string named stringContent, it sets the
content of the attachment to the value of the string and the type to text/plain

and also sets a content ID.

attachment1.setContent(stringContent, "text/plain");
attachment1.setContentId("attached_text");

It then adds the attachment to the message:

message.addAttachmentPart(attachment1);

The example uses a javax.activation.DataHandler object to hold a reference
to the graphic that constitutes the second attachment. It creates this attachment
using the form of the createAttachmentPart method that takes a DataHandler

argument.

// Create attachment part for image
URL url = new URL("file:///../xml-pic.jpg");
DataHandler dataHandler = new DataHandler(url);
AttachmentPart attachment2 =

message.createAttachmentPart(dataHandler);
attachment2.setContentId("attached_image");

message.addAttachmentPart(attachment2);

The example then retrieves the attachments from the message. It displays the
contentId and contentType attributes of each attachment and the contents of
the text attachment.

Running Attachments
To run Attachments, you use the file build.xml that is in the directory
<INSTALL>/j2eetutorial14/examples/saaj/attachments/.

To run Attachments, use the following command:

asant run -Dfile=path_name

Specify any text file as the path_name argument. The attachments directory
contains a file named addr.txt that you can use:

asant run -Dfile=addr.txt

394
When you run Attachments using this command line, you will see output like the
following:

Running Attachments.
Attachment attached_text has content type text/plain
Attachment contains:
Update address for Sunny Skies, Inc., to
10 Upbeat Street
Pleasant Grove, CA 95439

Attachment attached_image has content type image/jpeg

SOAPFaultTest.java
The example SOAPFaultTest.java, based on the code fragments in the sections
Creating and Populating a SOAPFault Object (page 375) and Retrieving Fault
Information (page 376), creates a message that has a SOAPFault object. It then
retrieves the contents of the SOAPFault object and prints them. You will find the
code for SOAPFaultTest in the following directory:

<INSTALL>/j2eetutorial14/examples/saaj/fault/src/

Running SOAPFaultTest
To run SOAPFaultTest, you use the file build.xml that is in the directory
<INSTALL>/j2eetutorial14/examples/saaj/fault/.

To run SOAPFaultTest, use the following command:

asant run

When you run SOAPFaultTest, you will see output like the following (line
breaks have been inserted in the message for readability):

Here is what the XML message looks like:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/><SOAP-ENV:Body>
<SOAP-ENV:Fault><faultcode>SOAP-ENV:Client</faultcode>
<faultstring>Message does not have necessary info</faultstring>
<faultactor>http://gizmos.com/order</faultactor>
<detail>

../examples/saaj/fault/src/SOAPFaultTest.java

FURTHER INFORMATION 395
<PO:order xmlns:PO="http://gizmos.com/orders/">
Quantity element does not have a value</PO:order>
<PO:confirmation xmlns:PO="http://gizmos.com/confirm">
Incomplete address: no zip code</PO:confirmation>
</detail></SOAP-ENV:Fault>
</SOAP-ENV:Body></SOAP-ENV:Envelope>

SOAP fault contains:
 Fault code = SOAP-ENV:Client
 Local name = Client
 Namespace prefix = SOAP-ENV, bound to
http://schemas.xmlsoap.org/soap/envelope/
 Fault string = Message does not have necessary info
 Fault actor = http://gizmos.com/order
 Detail entry = Quantity element does not have a value
 Detail entry = Incomplete address: no zip code

Further Information
For more information about SAAJ, SOAP, and WS-I, see the following:

• SAAJ 1.2 specification, available from
http://java.sun.com/xml/downloads/saaj.html

• SAAJ web site:
http://java.sun.com/xml/saaj/

• Simple Object Access Protocol (SOAP) 1.1:
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

• WS-I Basic Profile:
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-
16.html

• JAXM web site:
http://java.sun.com/xml/jaxm/

http://java.sun.com/xml/saaj/
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://java.sun.com/xml/jaxm/
http://java.sun.com/xml/downloads/saaj.html

396

10
397
Java API for XML
Registries

THE Java API for XML Registries (JAXR) provides a uniform and standard
Java API for accessing various kinds of XML registries.

After providing a brief overview of JAXR, this chapter describes how to imple-
ment a JAXR client to publish an organization and its web services to a registry
and to query a registry to find organizations and services. Finally, it explains how
to run the examples provided with this tutorial and offers links to more informa-
tion on JAXR.

Overview of JAXR
This section provides a brief overview of JAXR. It covers the following topics:

• What Is a Registry?

• What Is JAXR?

• JAXR Architecture

What Is a Registry?
An XML registry is an infrastructure that enables the building, deployment, and
discovery of web services. It is a neutral third party that facilitates dynamic and

398
loosely coupled business-to-business (B2B) interactions. A registry is available
to organizations as a shared resource, often in the form of a web-based service.

Currently there are a variety of specifications for XML registries. These include

• The ebXML Registry and Repository standard, which is sponsored by the
Organization for the Advancement of Structured Information Standards
(OASIS) and the United Nations Centre for the Facilitation of Procedures
and Practices in Administration, Commerce and Transport (U.N./
CEFACT)

• The Universal Description, Discovery, and Integration (UDDI) project,
which is being developed by a vendor consortium

A registry provider is an implementation of a business registry that conforms to a
specification for XML registries.

What Is JAXR?
JAXR enables Java software programmers to use a single, easy-to-use abstrac-
tion API to access a variety of XML registries. A unified JAXR information
model describes content and metadata within XML registries.

JAXR gives developers the ability to write registry client programs that are por-
table across various target registries. JAXR also enables value-added capabilities
beyond those of the underlying registries.

The current version of the JAXR specification includes detailed bindings
between the JAXR information model and both the ebXML Registry and the
UDDI version 2 specifications. You can find the latest version of the specifica-
tion at

http://java.sun.com/xml/downloads/jaxr.html

At this release of the J2EE platform, JAXR implements the level 0 capability
profile defined by the JAXR specification. This level allows access to both UDDI
and ebXML registries at a basic level. At this release, JAXR supports access
only to UDDI version 2 registries.

Currently several public UDDI version 2 registries exist.

Service Registry, an ebXML registry and repositry with a JAXR provider, is
available as part of the Sun Java Enterprise System.

http://java.sun.com/xml/downloads/jaxr.html

OVERVIEW OF JAXR 399
JAXR Architecture
The high-level architecture of JAXR consists of the following parts:

• A JAXR client: This is a client program that uses the JAXR API to access
a business registry via a JAXR provider.

• A JAXR provider: This is an implementation of the JAXR API that provides
access to a specific registry provider or to a class of registry providers that
are based on a common specification.

A JAXR provider implements two main packages:

• javax.xml.registry, which consists of the API interfaces and classes
that define the registry access interface.

• javax.xml.registry.infomodel, which consists of interfaces that define
the information model for JAXR. These interfaces define the types of
objects that reside in a registry and how they relate to each other. The basic
interface in this package is the RegistryObject interface. Its subinterfaces
include Organization, Service, and ServiceBinding.

The most basic interfaces in the javax.xml.registry package are

• Connection. The Connection interface represents a client session with a
registry provider. The client must create a connection with the JAXR pro-
vider in order to use a registry.

• RegistryService. The client obtains a RegistryService object from its
connection. The RegistryService object in turn enables the client to
obtain the interfaces it uses to access the registry.

The primary interfaces, also part of the javax.xml.registry package, are

• BusinessQueryManager, which allows the client to search a registry for
information in accordance with the javax.xml.registry.infomodel

interfaces. An optional interface, DeclarativeQueryManager, allows the
client to use SQL syntax for queries. (The implementation of JAXR in the
Application Server does not implement DeclarativeQueryManager.)

• BusinessLifeCycleManager, which allows the client to modify the infor-
mation in a registry by either saving it (updating it) or deleting it.

When an error occurs, JAXR API methods throw a JAXRException or one of its
subclasses.

400
Many methods in the JAXR API use a Collection object as an argument or a
returned value. Using a Collection object allows operations on several registry
objects at a time.

Figure 10–1 illustrates the architecture of JAXR. In the Application Server, a
JAXR client uses the capability level 0 interfaces of the JAXR API to access the
JAXR provider. The JAXR provider in turn accesses a registry. The Application
Server supplies a JAXR provider for UDDI registries.

Figure 10–1 JAXR Architecture

Implementing a JAXR Client
This section describes the basic steps to follow in order to implement a JAXR
client that can perform queries and updates to a UDDI registry. A JAXR client is
a client program that can access registries using the JAXR API. This section cov-
ers the following topics:

• Establishing a Connection

• Querying a Registry

• Managing Registry Data

• Using Taxonomies in JAXR Clients

IMPLEMENTING A JAXR CLIENT 401
This tutorial does not describe how to implement a JAXR provider. A JAXR pro-
vider provides an implementation of the JAXR specification that allows access to
an existing registry provider, such as a UDDI or ebXML registry. The implemen-
tation of JAXR in the Application Server itself is an example of a JAXR pro-
vider.

The Application Server provides JAXR in the form of a resource adapter using
the J2EE Connector architecture. The resource adapter is in the directory
<J2EE_HOME>/lib/install/applications/jaxr-ra. (<J2EE_HOME> is the
directory where the Application Server is installed.)

This tutorial includes several client examples, which are described in Running
the Client Examples (page 426), and a J2EE application example, described in
Using JAXR Clients in J2EE Applications (page 434). The examples are in the
directory <INSTALL>/j2eetutorial14/examples/jaxr/. (<INSTALL> is the
directory where you installed the tutorial bundle.) Each example directory has a
build.xml file (which refers to a targets.xml file) and a build.properties

file in the directory <INSTALL>/j2eetutorial14/examples/jaxr/common/.

Establishing a Connection
The first task a JAXR client must complete is to establish a connection to a regis-
try. Establishing a connection involves the following tasks:

• Preliminaries: Getting Access to a Registry

• Creating or Looking Up a Connection Factory

• Creating a Connection

• Setting Connection Properties

• Obtaining and Using a RegistryService Object

Preliminaries: Getting Access to a Registry
Any user of a JAXR client can perform queries on a registry. To add data to the
registry or to update registry data, however, a user must obtain permission from
the registry to access it. To register with one of the public UDDI version 2 regis-
tries, go to one of the following web sites and follow the instructions:

• http://test.uddi.microsoft.com/ (Microsoft)

• http://uddi.ibm.com/testregistry/registry.html (IBM)

http://test.uddi.microsoft.com/
http://uddi.ibm.com/testregistry/registry.html

402
These UDDI version 2 registries are intended for testing purposes. When you
register, you will obtain a user name and password. You will specify this user
name and password for some of the JAXR client example programs.

Certificates that allow you to access the IBM registry from a client program are
part of the Java Runtime Environment (JRE). To access the Microsoft registry,
you must obtain the Microsoft certificates and import them to the JRE. See the
following sections for details on how to do this:

• Obtaining Certificates for the Microsoft Registry

• Importing the Certificates into the JRE

Obtaining Certificates for the Microsoft Registry
To obtain the Microsoft certificates, perform these steps:

1. Open the Internet Explorer browser.

2. Go to the following URL:
https://test.uddi.microsoft.com/

3. From the browser’s File menu, choose Properties.

4. In the General window, click Certificates.

5. Click the Certificate Path tab.

6. For each item in the path that allows you to view its certificate, perform
these steps:

a. Click the General tab of the Certificates window.

b. Click Install Certificate.

c. In the Certificate Import Wizard, perform these steps:

1.Click Next.

2.Select “Automatically select the certificate store based on the type of
certificate” (the default).

3.Click Finish.

4.Click OK in the success dialog box.

7. When you have finished, click OK in the Properties window.

8. Click the Details tab of the Certificates window.

9. Click Copy to File.

10.In the Certificate Export Wizard, perform these steps:

a. Click Next.

b. Select “DER encoded binary X.509(.CER)” (the default).

https://test.uddi.microsoft.com/

IMPLEMENTING A JAXR CLIENT 403
c. Click Next.

d. Click Browse and use the file chooser dialog to specify a folder and file
name (for example, $HOME/certfile.cer).

e. Click Next.

f. Click Finish.

g. Click OK in the success dialog box.

Importing the Certificates into the JRE
To import the certificates you saved into the Java Runtime Environment (JRE),
follow these steps:

1. Set the JAVA_HOME environment variable and make sure that the location of
the JDK bin directory is in your PATH.

2. Go to the directory $JAVA_HOME/jre/lib/security.

3. Copy the cacerts file to cacerts.orig to keep a copy of the original cer-
tificates.

4. (UNIX systems only) Make the cacerts file writable (by default it is read-
only).

5. For the certificate file you exported, use the keytool command as follows
(all on one line):
keytool -import -keystore cacerts -file location_of_cer_file
-alias any_unique_name

For example:

keytool -import -keystore cacerts -file ~/cert1.cer -alias
mscerts

When prompted for the keystore password, type changeit.

When asked “Trust this certificate?” answer yes.

Now standalone Java programs can access the Microsoft registry.

To allow J2EE applications to access the Microsoft registry from a container
using the Application Server, follow the steps above, but go to the directory
<J2EE_HOME>/domains/domain1/config and specify the file cacerts.jks.

Creating or Looking Up a Connection Factory
A client creates a connection from a connection factory. A JAXR provider can
supply one or more preconfigured connection factories. Clients can obtain these

404
factories by looking them up using the Java Naming and Directory Interface
(JNDI) API.

At this release of the Application Server, JAXR supplies a connection factory
through the JAXR RA, but you need to create a connector resource whose JNDI
name is eis/JAXR to access this connection factory from a J2EE application. To
look up this connection factory in a J2EE component, use code like the follow-
ing:

import javax.xml.registry.*;
import javax.naming.*;
...

Context context = new InitialContext();
ConnectionFactory connFactory = (ConnectionFactory)

context.lookup("java:comp/env/eis/JAXR");

Later in this chapter you will learn how to create this connector resource.

To use JAXR in a stand-alone client program, you must create an instance of the
abstract class ConnectionFactory:

import javax.xml.registry.*;
...
ConnectionFactory connFactory =

ConnectionFactory.newInstance();

Creating a Connection
To create a connection, a client first creates a set of properties that specify the
URL or URLs of the registry or registries being accessed. For example, the fol-
lowing code provides the URLs of the query service and publishing service for
the IBM test registry. (There should be no line break in the strings.)

Properties props = new Properties();
props.setProperty("javax.xml.registry.queryManagerURL",

"http://uddi.ibm.com/testregistry/inquiryapi");
props.setProperty("javax.xml.registry.lifeCycleManagerURL",

"https://uddi.ibm.com/testregistry/publishapi");

With the Application Server implementation of JAXR, if the client is accessing a
registry that is outside a firewall, it must also specify proxy host and port infor-
mation for the network on which it is running. For queries it may need to specify

IMPLEMENTING A JAXR CLIENT 405
only the HTTP proxy host and port; for updates it must specify the HTTPS
proxy host and port.

props.setProperty("com.sun.xml.registry.http.proxyHost",
"myhost.mydomain");

props.setProperty("com.sun.xml.registry.http.proxyPort",
"8080");

props.setProperty("com.sun.xml.registry.https.proxyHost",
"myhost.mydomain");

props.setProperty("com.sun.xml.registry.https.proxyPort",
"8080");

The client then sets the properties for the connection factory and creates the con-
nection:

connFactory.setProperties(props);
Connection connection = connFactory.createConnection();

The makeConnection method in the sample programs shows the steps used to
create a JAXR connection.

Setting Connection Properties
The implementation of JAXR in the Application Server allows you to set a num-
ber of properties on a JAXR connection. Some of these are standard properties
defined in the JAXR specification. Other properties are specific to the implemen-
tation of JAXR in the Application Server. Tables 10–1 and 10–2 list and describe
these properties.

Table 10–1 Standard JAXR Connection Properties

Property Name and Description
Data
Type Default Value

javax.xml.registry.queryManagerURL

Specifies the URL of the query manager service within
the target registry provider.

String None

javax.xml.registry.lifeCycleManagerURL

Specifies the URL of the life-cycle manager service
within the target registry provider (for registry updates).

String
Same as the specified
queryManagerURL
value

406
javax.xml.registry.semanticEquivalences

Specifies semantic equivalences of concepts as one or
more tuples of the ID values of two equivalent concepts
separated by a comma. The tuples are separated by verti-
cal bars:
id1,id2|id3,id4

String None

javax.xml.registry.security.authentica-
tionMethod

Provides a hint to the JAXR provider on the authentica-
tion method to be used for authenticating with the regis-
try provider.

String

None;
UDDI_GET_AUTHTOKEN
is the only supported
value

javax.xml.registry.uddi.maxRows

The maximum number of rows to be returned by find
operations. Specific to UDDI providers.

Integer None

javax.xml.registry.postalAddressScheme

The ID of a ClassificationScheme to be used as the
default postal address scheme. See Specifying Postal
Addresses (page 424) for an example.

String None

Table 10–2 Implementation-Specific JAXR Connection Properties

Property Name and Description
Data
Type Default Value

com.sun.xml.registry.http.proxyHost

Specifies the HTTP proxy host to be used for access-
ing external registries.

String None

com.sun.xml.registry.http.proxyPort

Specifies the HTTP proxy port to be used for access-
ing external registries; usually 8080.

String None

Table 10–1 Standard JAXR Connection Properties (Continued)

Property Name and Description
Data
Type Default Value

IMPLEMENTING A JAXR CLIENT 407
You set these properties in a JAXR client program. Here is an example:

Properties props = new Properties();
props.setProperty("javax.xml.registry.queryManagerURL",

"http://uddi.ibm.com/testregistry/inquiryapi");
props.setProperty("javax.xml.registry.lifeCycleManagerURL",

"https://uddi.ibm.com/testregistry/publishapi");

com.sun.xml.registry.https.proxyHost

Specifies the HTTPS proxy host to be used for
accessing external registries.

String
Same as HTTP proxy
host value

com.sun.xml.registry.https.proxyPort

Specifies the HTTPS proxy port to be used for
accessing external registries; usually 8080.

String
Same as HTTP proxy
port value

com.sun.xml.registry.http.proxyUserName

Specifies the user name for the proxy host for HTTP
proxy authentication, if one is required.

String None

com.sun.xml.registry.http.proxyPassword

Specifies the password for the proxy host for HTTP
proxy authentication, if one is required.

String None

com.sun.xml.registry.useCache

Tells the JAXR implementation to look for registry
objects in the cache first and then to look in the regis-
try if not found.

Boolean,
passed in
as String

True

com.sun.xml.registry.userTaxonomyFile-
names

For details on setting this property, see Defining a
Taxonomy (page 421).

String None

Table 10–2 Implementation-Specific JAXR Connection Properties (Continued)

Property Name and Description
Data
Type Default Value

408
...
ConnectionFactory factory = ConnectionFactory.newInstance();
factory.setProperties(props);
connection = factory.createConnection();

Obtaining and Using a RegistryService Object
After creating the connection, the client uses the connection to obtain a Regis-

tryService object and then the interface or interfaces it will use:

RegistryService rs = connection.getRegistryService();
BusinessQueryManager bqm = rs.getBusinessQueryManager();
BusinessLifeCycleManager blcm =

rs.getBusinessLifeCycleManager();

Typically, a client obtains both a BusinessQueryManager object and a Busi-

nessLifeCycleManager object from the RegistryService object. If it is using
the registry for simple queries only, it may need to obtain only a BusinessQue-

ryManager object.

Querying a Registry
The simplest way for a client to use a registry is to query it for information about
the organizations that have submitted data to it. The BusinessQueryManager

interface supports a number of find methods that allow clients to search for data
using the JAXR information model. Many of these methods return a BulkRe-

sponse (a collection of objects) that meets a set of criteria specified in the
method arguments. The most useful of these methods are as follows:

• findOrganizations, which returns a list of organizations that meet the
specified criteria—often a name pattern or a classification within a classi-
fication scheme

• findServices, which returns a set of services offered by a specified orga-
nization

• findServiceBindings, which returns the service bindings (information
about how to access the service) that are supported by a specified service

The JAXRQuery program illustrates how to query a registry by organization name
and display the data returned. The JAXRQueryByNAICSClassification and
JAXRQueryByWSDLClassification programs illustrate how to query a registry

IMPLEMENTING A JAXR CLIENT 409
using classifications. All JAXR providers support at least the following taxono-
mies for classifications:

• The North American Industry Classification System (NAICS). See http:/
/www.census.gov/epcd/www/naics.html for details.

• The Universal Standard Products and Services Classification (UNSPSC).
See http://www.eccma.org/unspsc/ for details.

• The ISO 3166 country codes classification system maintained by the Inter-
national Organization for Standardization (ISO). See http://

www.iso.org/iso/en/prods-services/iso3166ma/

index.html for details.

The following sections describe how to perform some common queries:

• Finding Organizations by Name

• Finding Organizations by Classification

• Finding Services and Service Bindings

Finding Organizations by Name
To search for organizations by name, you normally use a combination of find
qualifiers (which affect sorting and pattern matching) and name patterns (which
specify the strings to be searched). The findOrganizations method takes a col-
lection of findQualifier objects as its first argument and takes a collection of
namePattern objects as its second argument. The following fragment shows
how to find all the organizations in the registry whose names begin with a speci-
fied string, qString, and sort them in alphabetical order.

// Define find qualifiers and name patterns
Collection findQualifiers = new ArrayList();
findQualifiers.add(FindQualifier.SORT_BY_NAME_DESC);
Collection namePatterns = new ArrayList();
namePatterns.add(qString);

// Find using the name
BulkResponse response =

bqm.findOrganizations(findQualifiers,
namePatterns, null, null, null, null);

Collection orgs = response.getCollection();

A client can use percent signs (%) to specify that the query string can occur any-
where within the organization name. For example, the following code fragment

http://www.census.gov/epcd/www/naics.html
http://www.census.gov/epcd/www/naics.html
http://www.eccma.org/unspsc/
http://www.iso.org/iso/en/prods-services/iso3166ma/index.html
http://www.iso.org/iso/en/prods-services/iso3166ma/index.html
http://www.iso.org/iso/en/prods-services/iso3166ma/index.html

410
performs a case-sensitive search for organizations whose names contain
qString:

Collection findQualifiers = new ArrayList();
findQualifiers.add(FindQualifier.CASE_SENSITIVE_MATCH);
Collection namePatterns = new ArrayList();
namePatterns.add("%" + qString + "%");

// Find orgs with name containing qString
BulkResponse response =

bqm.findOrganizations(findQualifiers, namePatterns, null,
null, null, null);

Collection orgs = response.getCollection();

Finding Organizations by Classification
To find organizations by classification, you establish the classification within a
particular classification scheme and then specify the classification as an argu-
ment to the findOrganizations method.

The following code fragment finds all organizations that correspond to a particu-
lar classification within the NAICS taxonomy. (You can find the NAICS codes at
http://www.census.gov/epcd/naics/naicscod.txt.) The NAICS taxonomy
has a well-known universally unique identifier (UUID) that is defined by the
UDDI specification. The getRegistryObject method finds an object based
upon its key. (See Creating an Organization, page 414 for more information
about keys).

String uuid_naics =
"UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2";

ClassificationScheme cScheme =
(ClassificationScheme) bqm.getRegistryObject(uuid_naics,

LifeCycleManager.CLASSIFICATION_SCHEME);
InternationalString sn = blcm.createInternationalString(

"All Other Specialty Food Stores"));
Classification classification =

blcm.createClassification(cScheme, sn, "445299");
Collection classifications = new ArrayList();
classifications.add(classification);
// make JAXR request
BulkResponse response = bqm.findOrganizations(null,

null, classifications, null, null, null);
Collection orgs = response.getCollection();

http://www.census.gov/epcd/naics/naicscod.txt

IMPLEMENTING A JAXR CLIENT 411
You can also use classifications to find organizations that offer services based on
technical specifications that take the form of WSDL (Web Services Description
Language) documents. In JAXR, a concept is used as a proxy to hold the infor-
mation about a specification. The steps are a little more complicated than in the
preceding example, because the client must first find the specification concepts
and then find the organizations that use those concepts.

The following code fragment finds all the WSDL specification instances used
within a given registry. You can see that the code is similar to the NAICS query
code except that it ends with a call to findConcepts instead of findOrganiza-
tions. Like the NAICS taxonomy, the classification scheme uddi-org:types

has a well-known UUID that is defined by the UDDI specification.

String uuid_types =
"UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4";

ClassificationScheme uddiOrgTypes =
(ClassificationScheme) bqm.getRegistryObject(uuid_types,

LifeCycleManager.CLASSIFICATION_SCHEME);

/*
 * Create a classification, specifying the scheme
 * and the taxonomy name and value defined for WSDL
 * documents by the UDDI specification.
 */
Classification wsdlSpecClassification =
blcm.createClassification(uddiOrgTypes,

blcm.createInternationalString("wsdlSpec"), "wsdlSpec");

Collection classifications = new ArrayList();
classifications.add(wsdlSpecClassification);

// Find concepts
BulkResponse br = bqm.findConcepts(null, null,

classifications, null, null);

To narrow the search, you could use other arguments of the findConcepts

method (search qualifiers, names, external identifiers, or external links).

The next step is to go through the concepts, find the WSDL documents they cor-
respond to, and display the organizations that use each document:

// Display information about the concepts found
Collection specConcepts = br.getCollection();
Iterator iter = specConcepts.iterator();
if (!iter.hasNext()) {

System.out.println("No WSDL specification concepts found");

412
} else {
while (iter.hasNext()) {

Concept concept = (Concept) iter.next();

String name = getName(concept);

Collection links = concept.getExternalLinks();
System.out.println("\nSpecification Concept:\n\tName: " +

name + "\n\tKey: " + getKey(concept) +
"\n\tDescription: " + getDescription(concept));

if (links.size() > 0) {
ExternalLink link =

(ExternalLink) links.iterator().next();
System.out.println("\tURL of WSDL document: '" +

link.getExternalURI() + "'");
}

// Find organizations that use this concept
Collection specConcepts1 = new ArrayList();
specConcepts1.add(concept);
br = bqm.findOrganizations(null, null, null,

specConcepts1, null, null);

// Display information about organizations
...

}

If you find an organization that offers a service you wish to use, you can invoke
the service using the JAX-RPC API.

Finding Services and Service Bindings
After a client has located an organization, it can find that organization’s services
and the service bindings associated with those services.

Iterator orgIter = orgs.iterator();
while (orgIter.hasNext()) {

Organization org = (Organization) orgIter.next();
Collection services = org.getServices();
Iterator svcIter = services.iterator();
while (svcIter.hasNext()) {

Service svc = (Service) svcIter.next();
Collection serviceBindings =

svc.getServiceBindings();
Iterator sbIter = serviceBindings.iterator();
while (sbIter.hasNext()) {

IMPLEMENTING A JAXR CLIENT 413
ServiceBinding sb =
(ServiceBinding) sbIter.next();

}
}

}

Managing Registry Data
If a client has authorization to do so, it can submit data to a registry, modify it,
and remove it. It uses the BusinessLifeCycleManager interface to perform
these tasks.

Registries usually allow a client to modify or remove data only if the data is
being modified or removed by the same user who first submitted the data.

Managing registry data involves the following tasks:

• Getting Authorization from the Registry

• Creating an Organization

• Adding Classifications

• Adding Services and Service Bindings to an Organization

• Publishing an Organization

• Publishing a Specification Concept

• Removing Data from the Registry

Getting Authorization from the Registry
Before it can submit data, the client must send its user name and password to the
registry in a set of credentials. The following code fragment shows how to do
this.

String username = "myUserName";
String password = "myPassword";

// Get authorization from the registry
PasswordAuthentication passwdAuth =

new PasswordAuthentication(username,
password.toCharArray());

Set creds = new HashSet();
creds.add(passwdAuth);
connection.setCredentials(creds);

414
Creating an Organization
The client creates the organization and populates it with data before publishing
it.

An Organization object is one of the more complex data items in the JAXR
API. It normally includes the following:

• A Name object.

• A Description object.

• A Key object, representing the ID by which the organization is known to
the registry. This key is created by the registry, not by the user, and is
returned after the organization is submitted to the registry.

• A PrimaryContact object, which is a User object that refers to an autho-
rized user of the registry. A User object normally includes a PersonName

object and collections of TelephoneNumber, EmailAddress, and Postal-

Address objects.

• A collection of Classification objects.

• Service objects and their associated ServiceBinding objects.

For example, the following code fragment creates an organization and specifies
its name, description, and primary contact. When a client creates an organization
to be published to a UDDI registry, it does not include a key; the registry returns
the new key when it accepts the newly created organization. The blcm object in
the following code fragment is the BusinessLifeCycleManager object returned
in Obtaining and Using a RegistryService Object (page 408). An Internation-

alString object is used for string values that may need to be localized.

// Create organization name and description
InternationalString s =

blcm.createInternationalString("The Coffee Break");
Organization org = blcm.createOrganization(s);
s = blcm.createInternationalString("Purveyor of " +

"the finest coffees. Established 1914");
org.setDescription(s);

// Create primary contact, set name
User primaryContact = blcm.createUser();
PersonName pName = blcm.createPersonName("Jane Doe");
primaryContact.setPersonName(pName);

// Set primary contact phone number
TelephoneNumber tNum = blcm.createTelephoneNumber();
tNum.setNumber("(800) 555-1212");

IMPLEMENTING A JAXR CLIENT 415
Collection phoneNums = new ArrayList();
phoneNums.add(tNum);
primaryContact.setTelephoneNumbers(phoneNums);

// Set primary contact email address
EmailAddress emailAddress =

blcm.createEmailAddress("jane.doe@TheCoffeeBreak.com");
Collection emailAddresses = new ArrayList();
emailAddresses.add(emailAddress);
primaryContact.setEmailAddresses(emailAddresses);

// Set primary contact for organization
org.setPrimaryContact(primaryContact);

Adding Classifications
Organizations commonly belong to one or more classifications based on one or
more classification schemes (taxonomies). To establish a classification for an
organization using a taxonomy, the client first locates the taxonomy it wants to
use. It uses the BusinessQueryManager to find the taxonomy. .

// Set classification scheme to NAICS, using
// well-known UUID of ntis-gov:naics:1997
String uuid_naics =

"UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2";
ClassificationScheme cScheme =

(ClassificationScheme) bqm.getRegistryObject(uuid_naics,
LifeCycleManager.CLASSIFICATION_SCHEME);

The client then creates a classification using the classification scheme and a con-
cept (a taxonomy element) within the classification scheme. For example, the
following code sets up a classification for the organization within the NAICS
taxonomy. The second and third arguments of the createClassification

method are the name and the value of the concept.

// Create and add classification
InternationalString sn = blcm.createInternationalString(

"All Other Specialty Food Stores"));
Classification classification =

blcm.createClassification(cScheme, sn, "445299");
Collection classifications = new ArrayList();
classifications.add(classification);
org.addClassifications(classifications);

416
Services also use classifications, so you can use similar code to add a classifica-
tion to a Service object.

Adding Services and Service Bindings to an
Organization
Most organizations add themselves to a registry in order to offer services, so the
JAXR API has facilities to add services and service bindings to an organization.

Like an Organization object, a Service object has a name, a description, and a
unique key that is generated by the registry when the service is registered. It may
also have classifications associated with it.

A service also commonly has service bindings, which provide information about
how to access the service. A ServiceBinding object normally has a description,
an access URI, and a specification link, which provides the linkage between a
service binding and a technical specification that describes how to use the ser-
vice by using the service binding.

The following code fragment shows how to create a collection of services, add
service bindings to a service, and then add the services to the organization. It
specifies an access URI but not a specification link. Because the access URI is
not real and because JAXR by default checks for the validity of any published
URI, the binding sets its validateURI property to false.

// Create services and service
Collection services = new ArrayList();
InternationalString s =

blcm.createInternationalString("My Service Name");
Service service = blcm.createService(s);
s = blcm.createInternationalString("My Service Description");
service.setDescription(s);

// Create service bindings
Collection serviceBindings = new ArrayList();
ServiceBinding binding = blcm.createServiceBinding();
s = blcm.createInternationalString("My Service Binding " +

"Description");
binding.setDescription(s);
// allow us to publish a fictitious URI without an error
binding.setValidateURI(false);
binding.setAccessURI("http://TheCoffeeBreak.com:8080/sb/");
serviceBindings.add(binding);

// Add service bindings to service

IMPLEMENTING A JAXR CLIENT 417
service.addServiceBindings(serviceBindings);

// Add service to services, then add services to organization
services.add(service);
org.addServices(services);

Publishing an Organization
The primary method a client uses to add or modify organization data is the save-
Organizations method, which creates one or more new organizations in a regis-
try if they did not exist previously. If one of the organizations exists but some of
the data have changed, the saveOrganizations method updates and replaces the
data.

After a client populates an organization with the information it wants to make
public, it saves the organization. The registry returns the key in its response, and
the client retrieves it.

// Add organization and submit to registry
// Retrieve key if successful
Collection orgs = new ArrayList();
orgs.add(org);
BulkResponse response = blcm.saveOrganizations(orgs);
Collection exceptions = response.getException();
if (exceptions == null) {

System.out.println("Organization saved");

Collection keys = response.getCollection();
Iterator keyIter = keys.iterator();
if (keyIter.hasNext()) {

javax.xml.registry.infomodel.Key orgKey =
(javax.xml.registry.infomodel.Key) keyIter.next();

String id = orgKey.getId();
System.out.println("Organization key is " + id);

}
}

Publishing a Specification Concept
A service binding can have a technical specification that describes how to access
the service. An example of such a specification is a WSDL document. To publish
the location of a service’s specification (if the specification is a WSDL docu-
ment), you create a Concept object and then add the URL of the WSDL docu-
ment to the Concept object as an ExternalLink object. The following code

418
fragment shows how to create a concept for the WSDL document associated
with the simple web service example in Creating a Simple Web Service and Cli-
ent with JAX-RPC (page 320). First, you call the createConcept method to cre-
ate a concept named HelloConcept. After setting the description of the concept,
you create an external link to the URL of the Hello service’s WSDL document,
and then add the external link to the concept.

InternationalString s =
blcm.createInternationalString("HelloConcept");

Concept specConcept = blcm.createConcept(null, s, "");
s = blcm.createInternationalString(

"Concept for Hello Service");
specConcept.setDescription(s);
s = blcm.createInternationalString("Hello WSDL document");
ExternalLink wsdlLink =

blcm.createExternalLink(
"http://localhost:8080/hello-jaxrpc/hello?WSDL", s);

specConcept.addExternalLink(wsdlLink);

Next, you classify the Concept object as a WSDL document. To do this for a
UDDI registry, you search the registry for the well-known classification scheme
uddi-org:types using its key. (The UDDI term for a classification scheme is
tModel.) Then you create a classification using the name and value wsdlSpec.
Finally, you add the classification to the concept.

String uuid_types =
"UUID:C1ACF26D-9672-4404-9D70-39B756E62AB4";

ClassificationScheme uddiOrgTypes =
(ClassificationScheme) bqm.getRegistryObject(uuid_types,

LifeCycleManager.CLASSIFICATION_SCHEME);
Classification wsdlSpecClassification =

blcm.createClassification(uddiOrgTypes,
blcm.createInternationalString("wsdlSpec"),
"wsdlSpec");

specConcept.addClassification(wsdlSpecClassification);

Finally, you save the concept using the saveConcepts method, similarly to the
way you save an organization:

Collection concepts = new ArrayList();
concepts.add(specConcept);
BulkResponse concResponse = blcm.saveConcepts(concepts);

After you have published the concept, you normally add the concept for the
WSDL document to a service binding. To do this, you can retrieve the key for the

IMPLEMENTING A JAXR CLIENT 419
concept from the response returned by the saveConcepts method; you use a
code sequence very similar to that of finding the key for a saved organization.

String conceptKeyId = null;
Collection concExceptions = concResponse.getExceptions();
javax.xml.registry.infomodel.Key concKey = null;
if (concExceptions == null) {

System.out.println("WSDL Specification Concept saved");

Collection keys = concResponse.getCollection();
Iterator keyIter = keys.iterator();
if (keyIter.hasNext()) {

concKey =
(javax.xml.registry.infomodel.Key) keyIter.next();

conceptKeyId = concKey.getId();
System.out.println("Concept key is " + conceptKeyId);

}
}

Then you can call the getRegistryObject method to retrieve the concept from
the registry:

Concept specConcept =
(Concept) bqm.getRegistryObject(conceptKeyId,

LifeCycleManager.CONCEPT);

Next, you create a SpecificationLink object for the service binding and set the
concept as the value of its SpecificationObject:

SpecificationLink specLink =
blcm.createSpecificationLink();

specLink.setSpecificationObject(specConcept);
binding.addSpecificationLink(specLink);

Now when you publish the organization with its service and service bindings,
you have also published a link to the WSDL document. Now the organization
can be found via queries such as those described in Finding Organizations by
Classification (page 410).

If the concept was published by someone else and you don’t have access to the
key, you can find it using its name and classification. The code looks very similar
to the code used to search for a WSDL document in Finding Organizations by

420
Classification (page 410), except that you also create a collection of name pat-
terns and include that in your search. Here is an example:

// Define name pattern
Collection namePatterns = new ArrayList();
namePatterns.add("HelloConcept");

BulkResponse br = bqm.findConcepts(null, namePatterns,
classifications, null, null);

Removing Data from the Registry
A registry allows you to remove from it any data that you have submitted to it.
You use the key returned by the registry as an argument to one of the Business-

LifeCycleManager delete methods: deleteOrganizations, deleteServices,
deleteServiceBindings, deleteConcepts, and others.

The JAXRDelete sample program deletes the organization created by the JAXR-

Publish program. It deletes the organization that corresponds to a specified key
string and then displays the key again so that the user can confirm that it has
deleted the correct one.

String id = key.getId();
System.out.println("Deleting organization with id " + id);
Collection keys = new ArrayList();
keys.add(key);
BulkResponse response = blcm.deleteOrganizations(keys);
Collection exceptions = response.getException();
if (exceptions == null) {

System.out.println("Organization deleted");
Collection retKeys = response.getCollection();
Iterator keyIter = retKeys.iterator();
javax.xml.registry.infomodel.Key orgKey = null;
if (keyIter.hasNext()) {

orgKey =
(javax.xml.registry.infomodel.Key) keyIter.next();

id = orgKey.getId();
System.out.println("Organization key was " + id);

}
}

A client can use a similar mechanism to delete concepts, services, and service
bindings.

IMPLEMENTING A JAXR CLIENT 421
Using Taxonomies in JAXR Clients
In the JAXR API, a taxonomy is represented by a ClassificationScheme

object. This section describes how to use the implementation of JAXR in the
Application Server

• To define your own taxonomies

• To specify postal addresses for an organization

Defining a Taxonomy
The JAXR specification requires that a JAXR provider be able to add user-
defined taxonomies for use by JAXR clients. The mechanisms clients use to add
and administer these taxonomies are implementation-specific.

The implementation of JAXR in the Application Server uses a simple file-based
approach to provide taxonomies to the JAXR client. These files are read at run-
time, when the JAXR provider starts up.

The taxonomy structure for the Application Server is defined by the JAXR Pre-
defined Concepts DTD, which is declared both in the file jaxrconcepts.dtd

and, in XML schema form, in the file jaxrconcepts.xsd. The file jaxrcon-

cepts.xml contains the taxonomies for the implementation of JAXR in the
Application Server. All these files are contained in the <J2EE_HOME>/lib/jaxr-

impl.jar file. This JAR file also includes files that define the well-known taxon-
omies used by the implementation of JAXR in the Application Server:
naics.xml, iso3166.xml, and unspsc.xml.

The entries in the jaxrconcepts.xml file look like this:

<PredefinedConcepts>
<JAXRClassificationScheme id="schId" name="schName">
<JAXRConcept id="schId/conCode" name="conName"
parent="parentId" code="conCode"></JAXRConcept>
...
</JAXRClassificationScheme>
</PredefinedConcepts>

The taxonomy structure is a containment-based structure. The element Pre-

definedConcepts is the root of the structure and must be present. The JAXR-

ClassificationScheme element is the parent of the structure, and the
JAXRConcept elements are children and grandchildren. A JAXRConcept element
may have children, but it is not required to do so.

422
In all element definitions, attribute order and case are significant.

To add a user-defined taxonomy, follow these steps.

1. Publish the JAXRClassificationScheme element for the taxonomy as a
ClassificationScheme object in the registry that you will be accessing.
To publish a ClassificationScheme object, you must set its name. You
also give the scheme a classification within a known classification scheme
such as uddi-org:types. In the following code fragment, the name is the
first argument of the LifeCycleManager.createClassificationScheme
method call.
ClassificationScheme cScheme =

blcm.createClassificationScheme("MyScheme",
"A Classification Scheme");

ClassificationScheme uddiOrgTypes =
bqm.findClassificationSchemeByName(null,

"uddi-org:types");
if (uddiOrgTypes != null) {

Classification classification =
blcm.createClassification(uddiOrgTypes,

"postalAddress", "postalAddress");
postalScheme.addClassification(classification);
ExternalLink externalLink =

blcm.createExternalLink(
"http://www.mycom.com/myscheme.html",
"My Scheme");

postalScheme.addExternalLink(externalLink);
Collection schemes = new ArrayList();
schemes.add(cScheme);
BulkResponse br =

blcm.saveClassificationSchemes(schemes);
}

The BulkResponse object returned by the saveClassificationSchemes

method contains the key for the classification scheme, which you need to
retrieve:

if (br.getStatus() == JAXRResponse.STATUS_SUCCESS) {
System.out.println("Saved ClassificationScheme");
Collection schemeKeys = br.getCollection();
Iterator keysIter = schemeKeys.iterator();
while (keysIter.hasNext()) {

javax.xml.registry.infomodel.Key key =
(javax.xml.registry.infomodel.Key)

keysIter.next();
System.out.println("The postalScheme key is " +

key.getId());
System.out.println("Use this key as the scheme" +

IMPLEMENTING A JAXR CLIENT 423
" uuid in the taxonomy file");
}

}

2. In an XML file, define a taxonomy structure that is compliant with the
JAXR Predefined Concepts DTD. Enter the ClassificationScheme ele-
ment in your taxonomy XML file by specifying the returned key ID value
as the id attribute and the name as the name attribute. For the foregoing
code fragment, for example, the opening tag for the JAXRClassifica-

tionScheme element looks something like this (all on one line):
<JAXRClassificationScheme
id="uuid:nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn"
name="MyScheme">

The ClassificationScheme id must be a universally unique identifier
(UUID).

3. Enter each JAXRConcept element in your taxonomy XML file by specify-
ing the following four attributes, in this order:

a. id is the JAXRClassificationScheme id value, followed by a / sepa-
rator, followed by the code of the JAXRConcept element.

b. name is the name of the JAXRConcept element.

c. parent is the immediate parent id (either the ClassificationScheme

id or that of the parent JAXRConcept).

d. code is the JAXRConcept element code value.

The first JAXRConcept element in the naics.xml file looks like this (all
on one line):

<JAXRConcept
id="uuid:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2/11"
name="Agriculture, Forestry, Fishing and Hunting"
parent="uuid:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2"
code="11"></JAXRConcept>

4. To add the user-defined taxonomy structure to the JAXR provider, specify
the connection property com.sun.xml.registry.userTaxonomyFilena-

mes in your client program. You set the property as follows:
props.setProperty
("com.sun.xml.registry.userTaxonomyFilenames",

"c:\mydir\xxx.xml|c:\mydir\xxx2.xml");

Use the vertical bar (|) as a separator if you specify more than one file
name.

424
Specifying Postal Addresses
The JAXR specification defines a postal address as a structured interface with
attributes for street, city, country, and so on. The UDDI specification, on the
other hand, defines a postal address as a free-form collection of address lines,
each of which can also be assigned a meaning. To map the JAXR PostalAd-

dress format to a known UDDI address format, you specify the UDDI format as
a ClassificationScheme object and then specify the semantic equivalences
between the concepts in the UDDI format classification scheme and the com-
ments in the JAXR PostalAddress classification scheme. The JAXR PostalAd-

dress classification scheme is provided by the implementation of JAXR in the
Application Server.

In the JAXR API, a PostalAddress object has the fields streetNumber, street,
city, state, postalCode, and country. In the implementation of JAXR in the
Application Server, these are predefined concepts in the jaxrconcepts.xml file,
within the ClassificationScheme named PostalAddressAttributes.

To specify the mapping between the JAXR postal address format and another
format, you set two connection properties:

• The javax.xml.registry.postalAddressScheme property, which spec-
ifies a postal address classification scheme for the connection

• The javax.xml.registry.semanticEquivalences property, which
specifies the semantic equivalences between the JAXR format and the
other format

For example, suppose you want to use a scheme named MyPostalAddressS-

cheme, which you published to a registry with the UUID uuid:f7922839-f1f7-

9228-c97d-ce0b4594736c.

<JAXRClassificationScheme id="uuid:f7922839-f1f7-9228-c97d-
ce0b4594736c" name="MyPostalAddressScheme">

First, you specify the postal address scheme using the id value from the JAXR-

ClassificationScheme element (the UUID). Case does not matter:

props.setProperty("javax.xml.registry.postalAddressScheme",
"uuid:f7922839-f1f7-9228-c97d-ce0b4594736c");

IMPLEMENTING A JAXR CLIENT 425
Next, you specify the mapping from the id of each JAXRConcept element in the
default JAXR postal address scheme to the id of its counterpart in the scheme
you published:

props.setProperty("javax.xml.registry.semanticEquivalences",
"urn:uuid:PostalAddressAttributes/StreetNumber," +
"uuid:f7922839-f1f7-9228-c97d-ce0b4594736c/

StreetAddressNumber|" +
"urn:uuid:PostalAddressAttributes/Street," +
"urn:uuid:f7922839-f1f7-9228-c97d-ce0b4594736c/

StreetAddress|" +
"urn:uuid:PostalAddressAttributes/City," +
"urn:uuid:f7922839-f1f7-9228-c97d-ce0b4594736c/City|" +
"urn:uuid:PostalAddressAttributes/State," +
"urn:uuid:f7922839-f1f7-9228-c97d-ce0b4594736c/State|" +
"urn:uuid:PostalAddressAttributes/PostalCode," +
"urn:uuid:f7922839-f1f7-9228-c97d-ce0b4594736c/ZipCode|" +
"urn:uuid:PostalAddressAttributes/Country," +
"urn:uuid:f7922839-f1f7-9228-c97d-ce0b4594736c/Country");

After you create the connection using these properties, you can create a postal
address and assign it to the primary contact of the organization before you pub-
lish the organization:

String streetNumber = "99";
String street = "Imaginary Ave. Suite 33";
String city = "Imaginary City";
String state = "NY";
String country = "USA";
String postalCode = "00000";
String type = "";
PostalAddress postAddr =

blcm.createPostalAddress(streetNumber, street, city, state,
country, postalCode, type);

Collection postalAddresses = new ArrayList();
postalAddresses.add(postAddr);
primaryContact.setPostalAddresses(postalAddresses);

If the postal address scheme and semantic equivalences for the query are the
same as those specified for the publication, a JAXR query can then retrieve the
postal address using PostalAddress methods. To retrieve postal addresses when
you do not know what postal address scheme was used to publish them, you can
retrieve them as a collection of Slot objects. The JAXRQueryPostal.java sam-
ple program shows how to do this.

426
In general, you can create a user-defined postal address taxonomy for any Post-

alAddress tModels that use the well-known categorization in the uddi-

org:types taxonomy, which has the tModel UUID uuid:c1acf26d-9672-

4404-9d70-39b756e62ab4 with a value of postalAddress. You can retrieve the
tModel overviewDoc, which points to the technical detail for the specification of
the scheme, where the taxonomy structure definition can be found. (The JAXR
equivalent of an overviewDoc is an ExternalLink.)

Running the Client Examples
The simple client programs provided with this tutorial can be run from the com-
mand line. You can modify them to suit your needs. They allow you to specify
either the IBM registry or the Microsoft registry for queries and updates; you can
specify any other UDDI version 2 registry.

The client examples, in the <INSTALL>/j2eetutorial14/examples/jaxr/sim-

ple/src/ directory, are as follows:

• JAXRQuery.java shows how to search a registry for organizations.

• JAXRQueryByNAICSClassification.java shows how to search a registry
using a common classification scheme.

• JAXRQueryByWSDLClassification.java shows how to search a registry
for web services that describe themselves by means of a WSDL document.

• JAXRPublish.java shows how to publish an organization to a registry.

• JAXRDelete.java shows how to remove an organization from a registry.

• JAXRSaveClassificationScheme.java shows how to publish a classifi-
cation scheme (specifically, a postal address scheme) to a registry.

• JAXRPublishPostal.java shows how to publish an organization with a
postal address for its primary contact.

• JAXRQueryPostal.java shows how to retrieve postal address data from an
organization.

• JAXRDeleteScheme.java shows how to delete a classification scheme
from a registry.

• JAXRPublishConcept.java shows how to publish a concept for a WSDL
document.

• JAXRPublishHelloOrg.java shows how to publish an organization with
a service binding that refers to a WSDL document.

• JAXRDeleteConcept.java shows how to delete a concept.

../examples/jaxr/JAXRQuery.java
../examples/jaxr/JAXRQueryByNAICSClassification.java
../examples/jaxr/JAXRQueryByWSDLClassification.java
../examples/jaxr/JAXRPublish.java
../examples/jaxr/JAXRDelete.java
../examples/jaxr/JAXRSaveClassificationScheme.java
../examples/jaxr/JAXRPublishPostal.java
../examples/jaxr/JAXRQueryPostal.java
../examples/jaxr/JAXRDeleteScheme.java
../examples/jaxr/JAXRPublishConcept.java
../examples/jaxr/JAXRPublishHelloOrg.java
../examples/jaxr/JAXRDeleteConcept.java
../examples/jaxr/simple/src/JAXRQuery.java
../examples/jaxr/simple/src/JAXRQueryByNAICSClassification.java
../examples/jaxr/simple/src/JAXRQueryByWSDLClassification.java
../examples/jaxr/simple/src/JAXRPublish.java
../examples/jaxr/simple/src/JAXRDelete.java
../examples/jaxr/simple/src/JAXRSaveClassificationScheme.java
../examples/jaxr/simple/src/JAXRPublishPostal.java
../examples/jaxr/simple/src/JAXRQueryPostal.java
../examples/jaxr/simple/src/JAXRDeleteScheme.java
../examples/jaxr/simple/src/JAXRPublishConcept.java
../examples/jaxr/simple/src/JAXRPublishHelloOrg.java
../examples/jaxr/simple/src/JAXRDeleteConcept.java

RUNNING THE CLIENT EXAMPLES 427
• JAXRGetMyObjects.java lists all the objects that you own in a registry.

The <INSTALL>/j2eetutorial14/examples/jaxr/simple/ directory also con-
tains the following:

• A build.xml file for the examples

• A JAXRExamples.properties file, in the src subdirectory, that supplies
string values used by the sample programs

• A file called postalconcepts.xml that serves as the taxonomy file for the
postal address examples

You do not have to have the Application Server running in order to run most of
these client examples. You do need to have it running in order to run JAXRPub-

lishConcept.java and JAXRPublishHelloOrg.java.

Before You Compile the Examples
Before you compile the examples, edit the file <INSTALL>/j2eetutorial14/

examples/jaxr/simple/src/JAXRExamples.properties as follows.

1. Edit the following lines to specify the registry you wish to access. For both
the queryURL and the publishURL assignments, comment out all but the
registry you wish to access. The default is the IBM registry.
Uncomment one pair of query and publish URLs.
IBM:
query.url=http://uddi.ibm.com/testregistry/inquiryapi
publish.url=https://uddi.ibm.com/testregistry/publishapi
Microsoft:
#query.url=http://test.uddi.microsoft.com/inquire
#publish.url=https://test.uddi.microsoft.com/publish

The IBM and Microsoft registries both contain a considerable amount of
data that you can perform queries on. Moreover, you do not have to regis-
ter if you are only going to perform queries.

We have not included the URLs of the SAP registry; feel free to add them.

If you want to publish to any of the public registries, the registration pro-
cess for obtaining access to them is not difficult (see Preliminaries: Get-
ting Access to a Registry, page 401). Each of them, however, allows you
to have only one organization registered at a time. If you publish an orga-
nization to one of them, you must delete it before you can publish another.
Because the organization that the JAXRPublish example publishes is ficti-
tious, you will want to delete it immediately anyway.

../examples/jaxr/JAXRGetMyObjects.java
../examples/jaxr/JAXRExamples.properties
../examples/jaxr/simple/src/JAXRGetMyObjects.java
../examples/jaxr/simple/src/JAXRExamples.properties

428
Be aware also that because the public registries are test registries, they do
not always behave reliably.

2. Edit the following lines to specify the user name and password you
obtained when you registered with the registry.
Specify user name and password
registry.username=
registry.password=

3. Edit the following lines, which contain empty strings for the proxy hosts,
to specify your own proxy settings. The proxy host is the system on your
network through which you access the Internet; you usually specify it in
your Internet browser settings.
HTTP and HTTPS proxy host and port
http.proxyHost=
http.proxyPort=8080
https.proxyHost=
https.proxyPort=8080

The proxy ports have the value 8080, which is the usual one; change this
string if your proxy uses a different port.

Your entries usually follow this pattern:

http.proxyHost=proxyhost.mydomain
http.proxyPort=8080
https.proxyHost=proxyhost.mydomain
https.proxyPort=8080

4. If you are running the Application Server on a system other than your own
or if it is using a nondefault HTTP port, change the following lines:
link.uri=http://localhost:8080/hello-jaxrpc/hello?WSDL
...
wsdlorg.svcbnd.uri=http://localhost:8080/hello-jaxrpc/hello

Specify the fully qualified host name instead of localhost, or change
8080 to the correct value for your system.

5. Feel free to change any of the organization data in the remainder of the file.
This data is used by the publishing and postal address examples. Try to
make the organization names unusual so that queries will return relatively
few results.

You can edit the src/JAXRExamples.properties file at any time. The asant

targets that run the client examples will use the latest version of the file.

RUNNING THE CLIENT EXAMPLES 429
Compiling the Examples
To compile the programs, go to the <INSTALL>/j2eetutorial14/examples/

jaxr/simple/ directory. A build.xml file allows you to use the following com-
mand to compile all the examples:

asant compile

The asant tool creates a subdirectory called build.

Running the Examples
You do not need to startApplication Server in order to run the examples against
public registries.

Running the JAXRPublish Example
To run the JAXRPublish program, use the run-publish target with no com-
mand-line arguments:

asant run-publish

The program output displays the string value of the key of the new organization,
which is named The Coffee Break.

After you run the JAXRPublish program but before you run JAXRDelete, you
can run JAXRQuery to look up the organization you published.

Running the JAXRQuery Example
To run the JAXRQuery example, use the asant target run-query. Specify a
query-string argument on the command line to search the registry for organi-
zations whose names contain that string. For example, the following command
line searches for organizations whose names contain the string "coff" (search-
ing is not case-sensitive):

asant -Dquery-string=coff run-query

430
Running the JAXRQueryByNAICSClassification
Example
After you run the JAXRPublish program, you can also run the JAXRQueryByNA-

ICSClassification example, which looks for organizations that use the All
Other Specialty Food Stores classification, the same one used for the organiza-
tion created by JAXRPublish. To do so, use the asant target run-query-naics:

asant run-query-naics

Running the JAXRDelete Example
To run the JAXRDelete program, specify the key string displayed by the JAXR-

Publish program as input to the run-delete target:

asant -Dkey-string=keyString run-delete

Publishing a Classification Scheme
To publish organizations with postal addresses to public registries, you must first
publish a classification scheme for the postal address.

To run the JAXRSaveClassificationScheme program, use the target run-save-
scheme:

asant run-save-scheme

The program returns a UUID string, which you will use in the next section.

The public registries allow you to own more than one classification scheme at a
time (the limit is usually a total of about 10 classification schemes and concepts
put together).

Running the Postal Address Examples
Before you run the postal address examples, open the file src/postalcon-

cepts.xml in an editor. Wherever you see the string uuid-from-save, replace it
with the UUID string returned by the run-save-scheme target (including the
uuid: prefix).

RUNNING THE CLIENT EXAMPLES 431
For a given registry, you only need to publish the classification scheme and edit
postalconcepts.xml once. After you perform those two steps, you can run the
JAXRPublishPostal and JAXRQueryPostal programs multiple times.

1. Run the JAXRPublishPostal program. Specify the string you entered in
the postalconcepts.xml file, including the uuid: prefix, as input to the
run-publish-postal target:
asant -Duuid-string=uuidstring run-publish-postal

The uuidstring would look something like this (case is not significant):

uuid:938d9ccd-a74a-4c7e-864a-e6e2c6822519

The program output displays the string value of the key of the new organi-
zation.

2. Run the JAXRQueryPostal program. The run-query-postal target spec-
ifies the postalconcepts.xml file in a <sysproperty> tag.

As input to the run-query-postal target, specify both a query-string

argument and a uuid-string argument on the command line to search
the registry for the organization published by the run-publish-postal

target:

asant -Dquery-string=coffee
-Duuid-string=uuidstring run-query-postal

The postal address for the primary contact will appear correctly with the
JAXR PostalAddress methods. Any postal addresses found that use
other postal address schemes will appear as Slot lines.

3. Make sure to follow the instructions in Running the JAXRDelete
Example (page 430) to delete the organization you published.

Deleting a Classification Scheme
To delete the classification scheme you published after you have finished using
it, run the JAXRDeleteScheme program using the run-delete-scheme target:

asant -Duuid-string=uuidstring run-delete-scheme

For the public UDDI registries, deleting a classification scheme removes it from
the registry logically but not physically. The classification scheme will still be
visible if, for example, you call the method QueryManager.getRegisteredOb-

jects. However, you can no longer use the classification scheme. Therefore, you
may prefer not to delete the classification scheme from the registry, in case you

432
want to use it again. The public registries normally allow you to own up to 10 of
these objects.

Publishing a Concept for a WSDL Document
To publish the location of the WSDL document for the JAX-RPC Hello service,
first deploy the service to the Application Server as described in Creating a Sim-
ple Web Service and Client with JAX-RPC (page 320).

Then run the JAXRPublishConcept program using the run-publish-concept

target:

asant run-publish-concept

The program output displays the UUID string of the new specification concept,
which is named HelloConcept. You will use this string in the next section.

After you run the JAXRPublishConcept program, you can run JAXRPublish-

HelloOrg to publish an organization that uses this concept.

Publishing an Organization with a WSDL
Document in Its Service Binding
To run the JAXRPublishHelloOrg example, use the asant target run-publish-
hello-org. Specify the string returned from JAXRPublishConcept (including
the uuid: prefix) as input to this target:

asant -Duuid-string=uuidstring run-publish-hello-org

The uuidstring would look something like this (it may be in either uppercase
or lowercase, depending on which registry you are using):

UUID:A499E230-5296-11D8-B936-000629DC0A53

The program output displays the string value of the key of the new organization,
which is named Hello Organization.

After you publish the organization, run the JAXRQueryByWSDLClassification

example to search for it. To delete it, run JAXRDelete.

RUNNING THE CLIENT EXAMPLES 433
Running the JAXRQueryByWSDLClassification
Example
To run the JAXRQueryByWSDLClassification example, use the asant target
run-query-wsdl. Specify a query-string argument on the command line to
search the registry for specification concepts whose names contain that string.
For example, the following command line searches for concepts whose names
contain the string "helloconcept" (searching is not case-sensitive):

asant -Dquery-string=helloconcept run-query-wsdl

This example finds the concept and organization you published. A common
string such as "hello" returns many results from the public registries and is
likely to run for several minutes.

Deleting a Concept
To run the JAXRDeleteConcept program, specify the UUID string displayed by
the JAXRPublishConcept program as input to the run-delete-concept target:

asant -Duuid-string=uuidString run-delete-concept

Deleting a concept from a public UDDI registry is similar to deleting a classifi-
cation scheme: The concept is removed logically but not physically. Do not
delete the concept until after you have deleted any organizations that refer to it.

Getting a List of Your Registry Objects
To get a list of the objects you own in the registry—organizations, classification
schemes, and concepts—run the JAXRGetMyObjects program by using the run-

get-objects target:

asant run-get-objects

Other Targets
To remove the build directory and class files, use the command

asant clean

434
To obtain a syntax reminder for the targets, use the command

asant -projecthelp

Using JAXR Clients in J2EE Applications
You can create J2EE applications that use JAXR clients to access registries. This
section explains how to write, compile, package, deploy, and run a J2EE applica-
tion that uses JAXR to publish an organization to a registry and then query the
registry for that organization. The application in this section uses two compo-
nents: an application client and a stateless session bean.

The section covers the following topics:

• Coding the Application Client: MyAppClient.java

• Coding the PubQuery Session Bean

• Compiling the Source Files

• Starting the Application Server

• Creating JAXR Resources

• Creating and Packaging the Application

• Deploying the Application

• Running the Application Client

You will find the source files for this section in the directory <INSTALL>/

j2eetutorial14/examples/jaxr/clientsession. Path names in this section
are relative to this directory.

The following directory contains a built version of this application:

<INSTALL>/j2eetutorial14/examples/jaxr/provided-ears

If you run into difficulty at any time, you can open the EAR file in deploytool

and compare that file to your own version. (You cannot deploy this EAR file,
however. It uses an unedited version of the required properties file.)

USING JAXR CLIENTS IN J2EE APPLICATIONS 435
Coding the Application Client:
MyAppClient.java
The application client class, src/MyAppClient.java, obtains a handle to the
PubQuery enterprise bean’s remote home interface, using the JNDI API naming
context java:comp/env. The program then creates an instance of the bean and
calls the bean’s two business methods: executePublish and executeQuery.

Coding the PubQuery Session Bean
The PubQuery bean is a stateless session bean that has one create method and
two business methods. The bean uses remote interfaces rather than local inter-
faces because it is accessed from the application client.

The remote home interface source file is src/PubQueryHome.java.

The remote interface, src/PubQueryRemote.java, declares two business meth-
ods: executePublish and executeQuery. The bean class, src/PubQuery-

Bean.java, implements the executePublish and executeQuery methods and
their helper methods getName, getDescription, and getKey. These methods are
very similar to the methods of the same name in the simple examples JAXRQu-

ery.java and JAXRPublish.java. The executePublish method uses informa-
tion in the file PubQueryBeanExample.properties to create an organization
named The Coffee Enterprise Bean Break. The executeQuery method uses the
organization name, specified in the application client code, to locate this organi-
zation.

The bean class also implements the required methods ejbCreate, setSession-
Context, ejbRemove, ejbActivate, and ejbPassivate.

The ejbCreate method of the bean class allocates resources—in this case, by
looking up the ConnectionFactory and creating the Connection.

The ejbRemove method must deallocate the resources that were allocated by the
ejbCreate method. In this case, the ejbRemove method closes the Connection.

../examples/jaxr/clientsession/src/MyAppClient.java
../examples/jaxr/clientsession/src/PubQueryHome.java
../examples/jaxr/clientsession/src/PubQueryRemote.java
../examples/jaxr/clientsession/src/PubQueryBean.java
../examples/jaxr/clientsession/src/PubQueryBean.java

436
Editing the Properties File
Before you compile the application, edit the PubQueryBeanExamples.proper-

ties file in the same way you edited the JAXRExamples.properties file to run
the simple examples.

1. Uncomment the query.url and publish.url lines for the registry you
wish to use. The default is the IBM registry.

2. Provide values for the registry.username and registry.password

properties to specify the user name and password you obtained when you
registered with the registry.

3. Change the values for the http.proxyHost and https.proxyHost entries
so that they specify the system on your network through which you access
the Internet.

4. Feel free to change any of the organization data in the remainder of the file.
Try to make the organization name unusual so that queries will return rel-
atively few results.

Compiling the Source Files
To compile the application source files, go to the directory <INSTALL>/

j2eetutorial14/examples/jaxr/clientsession. Use the following com-
mand:

asant compile

The compile target places the properties file and the class files in the build

directory.

Starting the Application Server
To run this example, you need to start the Application Server. Follow the instruc-
tions in Starting and Stopping the Application Server (page 27).

Creating JAXR Resources
To use JAXR in a J2EE application that uses the Application Server, you need to
access the JAXR resource adapter (see Implementing a JAXR Client, page 400)

USING JAXR CLIENTS IN J2EE APPLICATIONS 437
through a connector connection pool and a connector resource. You can create
these resources in the Admin Console.

If you have not done so, start the Admin Console as described in Starting the
Admin Console (page 28).

To create the connector connection pool, perform the following steps:

1. In the tree component, expand the Resources node, then expand the Con-
nectors node.

2. Click Connector Connection Pools.

3. Click New.

4. On the Create Connector Connection Pool page:

a. Type jaxr-pool in the Name field.

b. Choose jaxr-ra from the Resource Adapter drop-down list.

c. Click Next.

5. On the next page, choose javax.xml.registry.ConnectionFactory

(the only choice) from the Connection Definition drop-down list, and click
Next.

6. On the next page, click Finish.

To create the connector resource, perform the following steps:

1. Under the Connectors node, click Connector Resources.

2. Click New. The Create Connector Resource page appears.

3. In the JNDI Name field, type eis/JAXR.

4. Choose jaxr-pool from the Pool Name drop-down list.

5. Click OK.

If you are in a hurry, you can create these objects by executing the following
command (from the directory <INSTALL>/j2eetutorial14/examples/jaxr/

clientsession):

asant create-resource

Creating and Packaging the Application
Creating and packaging this application involve four steps:

1. Starting deploytool and Creating the Application

438
2. Packaging the Session Bean

3. Packaging the Application Client

4. Checking the JNDI Names

Starting deploytool and Creating the
Application

1. Start deploytool. For instructions, see Starting the deploytool
Utility (page 29).

2. Choose File→New→Application.

3. Click Browse (next to the Application File Name field), and use the file
chooser to locate the directory clientsession.

4. In the File Name field, type ClientSessionApp.

5. Click New Application.

6. Click OK.

Packaging the Session Bean
1. Choose File→New→Enterprise Bean to start the Enterprise Bean wizard.

Then click Next.

2. In the EJB JAR General Settings screen:

a. Select Create New JAR Module in Application, and make sure that the
application is ClientSessionApp.

b. In the JAR Display Name field, type PubQueryJAR.

c. Click the Edit Contents button.

d. In the dialog box, locate the clientsession/build directory. Select
PubQueryBean.class, PubQueryHome.class, PubQueryRe-

mote.class, and PubQueryBeanExample.properties from the Avail-
able Files tree. Click Add, and then OK.

3. In the Bean General Settings screen:

a. From the Enterprise Bean Class menu, choose PubQueryBean.

b. Verify that the Enterprise Bean Name is PubQueryBean and that the
Enterprise Bean Type is Stateless Session.

USING JAXR CLIENTS IN J2EE APPLICATIONS 439
c. In the Remote Interfaces area, choose PubQueryHome from the Remote
Home Interface drop-down list, and choose PubQueryRemote from the
Remote Interface drop-down list.

After you finish the wizard, perform the following steps:

1. Click the PubQueryBean node, and then click the Transactions tab. In the
inspector pane, select the Container-Managed radio button.

2. Click the PubQueryBean node, and then click the Resource Ref’s tab. In the
inspector pane:

a. Click Add.

b. In the Coded Name field, type eis/JAXR.

c. From the Type menu, choose javax.xml.registry.ConnectionFac-

tory.

d. In the Deployment Settings area, type eis/JAXR in the JNDI name
combo box, and type j2ee in both the User Name and the Password
fields.

Packaging the Application Client
1. Choose File→New→Application Client to start the Application Client

Wizard. Then click Next.

2. In the JAR File Contents screen:

a. Verify that Create New AppClient Module in Application is selected
and that the application is ClientSessionApp.

b. In the AppClient Display Name field, type MyAppClient.

c. Click the Edit Contents button.

d. In the dialog box, locate the clientsession/build directory. Select
MyAppClient.class from the Available Files tree. Click Add, and then
OK.

3. In the General screen, select MyAppClient from the Main Class drop-down
list.

After you finish the wizard, click the EJB Ref’s tab, and then click Add in the
inspector pane. In the dialog box, follow these steps:

1. Type ejb/remote/PubQuery in the Coded Name field.

2. Choose Session from the EJB Type drop-down list.

3. Choose Remote from the Interfaces drop-down list.

440
4. Choose PubQueryHome from the Home Interface combo box.

5. Choose PubQueryRemote from the Local/Remote Interface combo box.

6. In the Target EJB area, select JNDI Name and choose PubQueryBean from
the combo box. The session bean uses remote interfaces, so the client
accesses the bean through the JNDI name rather than the bean name.

Checking the JNDI Names
Select the application, click Sun-specific Settings on the General page, and ver-
ify that the JNDI names for the application components are correct. They should
appear as shown in Tables 10–3 and 10–4.

Deploying the Application
1. Save the application.

2. Choose Tools→Deploy.

3. In the dialog box, type your administrative user name and password (if
they are not already filled in), and click OK.

4. In the Application Client Stub Directory area, select the Return Client Jar
checkbox, and make sure that the directory is clientsession.

5. Click OK.

Table 10–3 Application Pane for ClientSessionApp

Component Type Component JNDI Name

EJB PubQueryBean PubQueryBean

Table 10–4 References Pane for ClientSessionApp

Ref. Type Referenced By Reference Name JNDI Name

EJB Ref MyAppClient ejb/remote/PubQuery PubQueryBean

Resource PubQueryBean eis/JAXR eis/JAXR

FURTHER INFORMATION 441
6. In the Distribute Module dialog box, click Close when the process com-
pletes. You will find a file named ClientSessionAppClient.jar in the
specified directory.

Running the Application Client
To run the client, use the following command:

appclient -client ClientSessionAppClient.jar

The program output in the terminal window looks like this:

Looking up EJB reference
Looked up home
Narrowed home
Got the EJB
To view the bean output,

check <install_dir>/domains/domain1/logs/server.log.

In the server log, you will find the output from the executePublish and exe-

cuteQuery methods, wrapped in logging information.

After you run the example, use the run-delete target in the simple directory to
delete the organization that was published.

Further Information
For more information about JAXR, registries, and web services, see the follow-
ing:

• Java Specification Request (JSR) 93: JAXR 1.0:
 http://jcp.org/jsr/detail/093.jsp

• JAXR home page:

http://java.sun.com/xml/jaxr/

• Universal Description, Discovery and Integration (UDDI) project:
http://www.uddi.org/

• ebXML:
 http://www.ebxml.org/

• Service Registry (ebXML Registry/Repository):

http://jcp.org/jsr/detail/093.jsp
http://java.sun.com/xml/jaxr/
http://www.uddi.org/
http://www.ebxml.org/

442
http://www.sun.com/products/soa/registry/

• Open Source JAXR Provider for ebXML Registries:
http://ebxmlrr.sourceforge.net/jaxr/

• Java 2 Platform, Enterprise Edition:
http://java.sun.com/j2ee/

• Java Technology and XML:
http://java.sun.com/xml/

• Java Technology and Web Services:
http://java.sun.com/webservices/

http://java.sun.com/j2ee/
http://www.sun.com/products/soa/registry/
http://java.sun.com/xml/
http://java.sun.com/webservices/
http://ebxmlrr.sourceforge.net/jaxr/

11
443
Java Servlet
Technology

AS soon as the web began to be used for delivering services, service providers
recognized the need for dynamic content. Applets, one of the earliest attempts
toward this goal, focused on using the client platform to deliver dynamic user
experiences. At the same time, developers also investigated using the server plat-
form for this purpose. Initially, Common Gateway Interface (CGI) scripts were
the main technology used to generate dynamic content. Although widely used,
CGI scripting technology has a number of shortcomings, including platform
dependence and lack of scalability. To address these limitations, Java servlet
technology was created as a portable way to provide dynamic, user-oriented con-
tent.

What Is a Servlet?
A servlet is a Java programming language class that is used to extend the capa-
bilities of servers that host applications access via a request-response program-
ming model. Although servlets can respond to any type of request, they are
commonly used to extend the applications hosted by web servers. For such appli-
cations, Java Servlet technology defines HTTP-specific servlet classes.

The javax.servlet and javax.servlet.http packages provide interfaces and
classes for writing servlets. All servlets must implement the Servlet interface,

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/package-summary.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/package-summary.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/Servlet.html

444
which defines life-cycle methods. When implementing a generic service, you
can use or extend the GenericServlet class provided with the Java Servlet API.
The HttpServlet class provides methods, such as doGet and doPost, for han-
dling HTTP-specific services.

This chapter focuses on writing servlets that generate responses to HTTP
requests. Some knowledge of the HTTP protocol is assumed; if you are unfamil-
iar with this protocol, you can get a brief introduction to HTTP in Appendix C.

The Example Servlets
This chapter uses the Duke’s Bookstore application to illustrate the tasks
involved in programming servlets. Table 11–1 lists the servlets that handle each
bookstore function. Each programming task is illustrated by one or more serv-
lets. For example, BookDetailsServlet illustrates how to handle HTTP GET

requests, BookDetailsServlet and CatalogServlet show how to construct
responses, and CatalogServlet illustrates how to track session information.

Table 11–1 Duke’s Bookstore Example Servlets

Function Servlet

Enter the bookstore BookStoreServlet

Create the bookstore banner BannerServlet

Browse the bookstore catalog CatalogServlet

Put a book in a shopping cart CatalogServlet,
BookDetailsServlet

Get detailed information on a specific book BookDetailsServlet

Display the shopping cart ShowCartServlet

Remove one or more books from the shopping cart ShowCartServlet

Buy the books in the shopping cart CashierServlet

Send an acknowledgment of the purchase ReceiptServlet

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/GenericServlet.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpServlet.html

THE EXAMPLE SERVLETS 445
The data for the bookstore application is maintained in a database and accessed
through the database access class database.BookDBAO. The database package
also contains the class BookDetails, which represents a book. The shopping cart
and shopping cart items are represented by the classes cart.ShoppingCart and
cart.ShoppingCartItem, respectively.

The source code for the bookstore application is located in the <INSTALL>/

j2eetutorial14/examples/web/bookstore1/ directory, which is created
when you unzip the tutorial bundle (see Building the Examples, page xxxvii). A
sample bookstore1.war is provided in <INSTALL>/j2eetutorial14/exam-

ples/web/provided-wars/. To build the application, follow these steps:

1. Build and package the bookstore common files as described in Duke’s
Bookstore Examples (page 103).

2. In a terminal window, go to <INSTALL>/j2eetutorial14/examples/

web/bookstore1/.

3. Run asant build. This target will spawn any necessary compilations and
copy files to the <INSTALL>/j2eetutorial14/examples/web/

bookstore1/build/ directory.

4. Start the Application Server.

5. Perform all the operations described in Accessing Databases from Web
Applications (page 104).

To package and deploy the example using asant, follow these steps:

1. In a terminal window, go to <INSTALL>/j2eetutorial14/examples/

web/bookstore1/.

2. Run asant create-bookstore-war.

3. Run asant deploy-war.

To learn how to configure the example, use deploytool to package and deploy
it:

1. Start deploytool.

2. Create a web application called bookstore1 by running the New Web
Component wizard. Select File→New→Web Component.

3. In the New Web Component wizard:

a. Select the Create New Stand-Alone WAR Module radio button.

b. In the WAR File field, enter <INSTALL>/j2eetutorial14/examples/
web/bookstore1/bookstore1.war. The WAR Display Name field will
show bookstore1.

446
c. In the Context Root field, enter /bookstore1.

d. Click Edit Contents.

e. In the Edit Archive Contents dialog box, navigate to <INSTALL>/

j2eetutorial14/examples/web/bookstore1/build/. Select
errorpage.html, duke.books.gif, and the servlets, database,
filters, listeners, and util packages. Click Add.

f. Add the shared bookstore library. Navigate to <INSTALL>/

j2eetutorial14/examples/web/bookstore/dist/. Select book-

store.jar and click Add.

g. Click OK.

h. Click Next.

i. Select the Servlet radio button.

j. Click Next.

k. Select BannerServlet from the Servlet Class combo box.

l. Click Finish.

4. Add the rest of the web components listed in Table 11–2. For each servlet:

a. Select File→New→Web Component.

b. Click the Add to Existing WAR Module radio button. Because the WAR
contains all the servlet classes, you do not have to add any more content.

c. Click Next.

d. Select the Servlet radio button.

e. Click Next.

f. Select the servlet from the Servlet Class combo box.

g. Click Finish.

Table 11–2 Duke’s Bookstore Web Components

Web Component Name Servlet Class Alias

BannerServlet BannerServlet /banner

BookStoreServlet BookStoreServlet /bookstore

CatalogServlet CatalogServlet /bookcatalog

BookDetailsServlet BookDetailsServlet /bookdetails

ShowCartServlet ShowCartServlet /bookshowcart

THE EXAMPLE SERVLETS 447
5. Set the alias for each web component.

a. Select the component.

b. Select the Aliases tab.

c. Click the Add button.

d. Enter the alias.

6. Add the listener class listeners.ContextListener (described in Han-
dling Servlet Life-Cycle Events, page 450).

a. Select the Event Listeners tab.

b. Click Add.

c. Select the listeners.ContextListener class from the drop-down
field in the Event Listener Classes pane.

7. Add an error page (described in Handling Errors, page 452).

a. Select the File Ref’s tab.

b. In the Error Mapping pane, click Add Error.

c. Enter exception.BookNotFoundException in the Error/Exception
field.

d. Enter /errorpage.html in the Resource to be Called field.

e. Repeat for exception.BooksNotFoundException and javax.serv-

let.UnavailableException.

8. Add the filters filters.HitCounterFilter and filters.OrderFilter

(described in Filtering Requests and Responses, page 463).

a. Select the Filter Mapping tab.

b. Click Edit Filter List.

c. Click Add Filter.

d. Select filters.HitCounterFilter from the Filter Class column.
deploytool will automatically enter HitCounterFilter in the Filter
Name column.

CashierServlet CashierServlet /bookcashier

ReceiptServlet ReceiptServlet /bookreceipt

Table 11–2 Duke’s Bookstore Web Components (Continued)

Web Component Name Servlet Class Alias

448
e. Click Add Filter.

f. Select filters.OrderFilter from the Filter Class column. deploy-
tool will automatically enter OrderFilter in the Filter Name column.

g. Click OK.

h. Click Add.

i. Select HitCounterFilter from the Filter Name drop-down menu.

j. Select the Filter this Servlet radio button in the Filter Target frame.

k. Select BookStoreServlet from the Servlet Name drop-down menu.

l. Click OK.

m.Repeat for OrderFilter. Select ReceiptServlet from the Servlet
Name drop-down menu.

9. Add a resource reference for the database.

a. Select the Resource Ref’s tab.

b. Click Add.

c. Enter jdbc/BookDB in the Coded Name field.

d. Accept the default type javax.sql.DataSource.

e. Accept the default authorization Container.

f. Accept the default selected Shareable.

g. Enter jdbc/BookDB in the JNDI name field of the Sun-specific Settings
frame.

10.Select File→Save.

11.Deploy the application.

a. Select Tools→Deploy.

b. In the Connection Settings frame, enter the user name and password you
specified when you installed the Application Server.

c. Click OK.

To run the application, open the bookstore URL http://localhost:8080/

bookstore1/bookstore.

Troubleshooting
The Duke’s Bookstore database access object returns the following exceptions:

• BookNotFoundException: Returned if a book can’t be located in the book-
store database. This will occur if you haven’t loaded the bookstore data-

SERVLET LIFE CYCLE 449
base with data by running asant create-db_common or if the database
server hasn’t been started or it has crashed.

• BooksNotFoundException: Returned if the bookstore data can’t be
retrieved. This will occur if you haven’t loaded the bookstore database
with data or if the database server hasn’t been started or it has crashed.

• UnavailableException: Returned if a servlet can’t retrieve the web con-
text attribute representing the bookstore. This will occur if the database
server hasn’t been started.

Because we have specified an error page, you will see the message

The application is unavailable. Please try later.

If you don’t specify an error page, the web container generates a default page
containing the message

A Servlet Exception Has Occurred

and a stack trace that can help you diagnose the cause of the exception. If you
use errorpage.html, you will have to look in the server log to determine the
cause of the exception.

Servlet Life Cycle
The life cycle of a servlet is controlled by the container in which the servlet has
been deployed. When a request is mapped to a servlet, the container performs the
following steps.

1. If an instance of the servlet does not exist, the web container

a. Loads the servlet class.

b. Creates an instance of the servlet class.

c. Initializes the servlet instance by calling the init method. Initialization
is covered in Initializing a Servlet (page 456).

2. Invokes the service method, passing request and response objects. Ser-
vice methods are discussed in Writing Service Methods (page 457).

If the container needs to remove the servlet, it finalizes the servlet by calling the
servlet’s destroy method. Finalization is discussed in Finalizing a
Servlet (page 477).

450
Handling Servlet Life-Cycle Events
You can monitor and react to events in a servlet’s life cycle by defining listener
objects whose methods get invoked when life-cycle events occur. To use these
listener objects you must define and specify the listener class.

Defining the Listener Class
You define a listener class as an implementation of a listener interface. Table 11–
3 lists the events that can be monitored and the corresponding interface that must
be implemented. When a listener method is invoked, it is passed an event that
contains information appropriate to the event. For example, the methods in the
HttpSessionListener interface are passed an HttpSessionEvent, which con-
tains an HttpSession.

Table 11–3 Servlet Life-Cycle Events

Object Event Listener Interface and Event Class

Web context
(see Accessing the
Web
Context, page 473)

Initialization and
destruction

javax.servlet.
ServletContextListener and
ServletContextEvent

Attribute added,
removed, or
replaced

javax.servlet.
ServletContextAttributeListener and
ServletContextAttributeEvent

Session
(See Maintaining Cli-
ent State, page 474)

Creation,
invalidation,
activation,
passivation, and
timeout

javax.servlet.http.
HttpSessionListener,
javax.servlet.http.
HttpSessionActivationListener, and
HttpSessionEvent

Attribute added,
removed, or
replaced

javax.servlet.http.
HttpSessionAttributeListener and
HttpSessionBindingEvent

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionActivationListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionActivationListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContextListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContextListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContextEvent.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContextAttributeListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContextAttributeListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContextAttributeEvent.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionEvent.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionAttributeListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionAttributeListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionBindingEvent.html

SERVLET LIFE CYCLE 451
The listeners.ContextListener class creates and removes the database
access and counter objects used in the Duke’s Bookstore application. The meth-
ods retrieve the web context object from ServletContextEvent and then store
(and remove) the objects as servlet context attributes.

import database.BookDBAO;
import javax.servlet.*;
import util.Counter;

public final class ContextListener
implements ServletContextListener {
private ServletContext context = null;
public void contextInitialized(ServletContextEvent event) {

context = event.getServletContext();
try {

BookDBAO bookDB = new BookDBAO();
context.setAttribute("bookDB", bookDB);

} catch (Exception ex) {
System.out.println(

"Couldn't create database: " + ex.getMessage());
}
Counter counter = new Counter();
context.setAttribute("hitCounter", counter);
counter = new Counter();
context.setAttribute("orderCounter", counter);

}

public void contextDestroyed(ServletContextEvent event) {
context = event.getServletContext();
BookDBAO bookDB = context.getAttribute("bookDB");
bookDB.remove();
context.removeAttribute("bookDB");

Request

A servlet request
has started being
processed by web
components

javax.servlet.
ServletRequestListener and
ServletRequestEvent

Attribute added,
removed, or
replaced

javax.servlet.
ServletRequestAttributeListener and
ServletRequestAttributeEvent

Table 11–3 Servlet Life-Cycle Events (Continued)

Object Event Listener Interface and Event Class

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequestListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequestListener.html
../examples/web/bookstore1/src/listeners/ContextListener.java
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequestEvent.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequestAttributeListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequestAttributeListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequestAttributeEvent.html

452
context.removeAttribute("hitCounter");
context.removeAttribute("orderCounter");

}
}

Specifying Event Listener Classes
You specify an event listener class in the Event Listener tab of the WAR inspec-
tor. Review step 6. in The Example Servlets (page 444) for the deploytool pro-
cedure for specifying the ContextListener listener class.

Handling Errors
Any number of exceptions can occur when a servlet is executed. When an excep-
tion occurs, the web container will generate a default page containing the mes-
sage

A Servlet Exception Has Occurred

But you can also specify that the container should return a specific error page for
a given exception. Review step 7. in The Example Servlets (page 444) for
deploytool procedures for mapping the exceptions exception.BookNotFound,
exception.BooksNotFound, and exception.OrderException returned by the
Duke’s Bookstore application to errorpage.html.

Sharing Information
Web components, like most objects, usually work with other objects to accom-
plish their tasks. There are several ways they can do this. They can use private
helper objects (for example, JavaBeans components), they can share objects that
are attributes of a public scope, they can use a database, and they can invoke
other web resources. The Java servlet technology mechanisms that allow a web
component to invoke other web resources are described in Invoking Other Web
Resources (page 469).

SHARING INFORMATION 453
Using Scope Objects
Collaborating web components share information via objects that are maintained
as attributes of four scope objects. You access these attributes using the
[get|set]Attribute methods of the class representing the scope. Table 11–4
lists the scope objects.

Table 11–4 Scope Objects

Scope
Object Class Accessible From

Web context
javax.servlet.
ServletContext

Web components within a web context. See Access-
ing the Web Context (page 473).

Session
javax.servlet.
http.HttpSession

Web components handling a request that belongs to
the session. See Maintaining Client
State (page 474).

Request
subtype of
javax.servlet.
ServletRequest

Web components handling the request.

Page
javax.servlet.
jsp.JspContext

The JSP page that creates the object. See Using
Implicit Objects (page 498).

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContext.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSession.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequest.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/jsp/JspContext.html

454
Figure 11–1 shows the scoped attributes maintained by the Duke’s Bookstore
application.

Figure 11–1 Duke’s Bookstore Scoped Attributes

Controlling Concurrent Access to Shared
Resources
In a multithreaded server, it is possible for shared resources to be accessed con-
currently. In addition to scope object attributes, shared resources include in-
memory data (such as instance or class variables) and external objects such as
files, database connections, and network connections. Concurrent access can
arise in several situations:

• Multiple web components accessing objects stored in the web context.

• Multiple web components accessing objects stored in a session.

• Multiple threads within a web component accessing instance variables. A
web container will typically create a thread to handle each request. If you
want to ensure that a servlet instance handles only one request at a time, a
servlet can implement the SingleThreadModel interface. If a servlet
implements this interface, you are guaranteed that no two threads will exe-
cute concurrently in the servlet’s service method. A web container can

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/SingleThreadModel.html

SHARING INFORMATION 455
implement this guarantee by synchronizing access to a single instance of
the servlet, or by maintaining a pool of web component instances and dis-
patching each new request to a free instance. This interface does not pre-
vent synchronization problems that result from web components accessing
shared resources such as static class variables or external objects. In addi-
tion, the Servlet 2.4 specification deprecates the SingleThreadModel

interface.

When resources can be accessed concurrently, they can be used in an inconsis-
tent fashion. To prevent this, you must control the access using the synchroniza-
tion techniques described in the Threads lesson in The Java Tutorial, by Mary
Campione et al. (Addison-Wesley, 2000).

In the preceding section we show five scoped attributes shared by more than one
servlet: bookDB, cart, currency, hitCounter, and orderCounter. The bookDB

attribute is discussed in the next section. The cart, currency, and counters can be
set and read by multiple multithreaded servlets. To prevent these objects from
being used inconsistently, access is controlled by synchronized methods. For
example, here is the util.Counter class:

public class Counter {
private int counter;
public Counter() {

counter = 0;
}
public synchronized int getCounter() {

return counter;
}
public synchronized int setCounter(int c) {

counter = c;
return counter;

}
public synchronized int incCounter() {

return(++counter);
}

}

Accessing Databases
Data that is shared between web components and is persistent between invoca-
tions of a web application is usually maintained by a database. Web components
use the JDBC API to access relational databases. The data for the bookstore
application is maintained in a database and is accessed through the database

http://java.sun.com/docs/books/tutorial/essential/threads/index.html
http://java.sun.com/docs/books/tutorial
../examples/web/bookstore1/src/util/Counter.java

456
access class database.BookDBAO. For example, ReceiptServlet invokes the
BookDBAO.buyBooks method to update the book inventory when a user makes a
purchase. The buyBooks method invokes buyBook for each book contained in the
shopping cart. To ensure that the order is processed in its entirety, the calls to
buyBook are wrapped in a single JDBC transaction. The use of the shared data-
base connection is synchronized via the [get|release]Connection methods.

public void buyBooks(ShoppingCart cart) throws OrderException {
Collection items = cart.getItems();
Iterator i = items.iterator();
try {

getConnection();
con.setAutoCommit(false);
while (i.hasNext()) {

ShoppingCartItem sci = (ShoppingCartItem)i.next();
BookDetails bd = (BookDetails)sci.getItem();
String id = bd.getBookId();
int quantity = sci.getQuantity();
buyBook(id, quantity);

}
con.commit();
con.setAutoCommit(true);
releaseConnection();

} catch (Exception ex) {
try {
con.rollback();
releaseConnection();
throw new OrderException("Transaction failed: " +

ex.getMessage());
} catch (SQLException sqx) {

releaseConnection();
throw new OrderException("Rollback failed: " +

sqx.getMessage());
}

}
}

Initializing a Servlet
After the web container loads and instantiates the servlet class and before it
delivers requests from clients, the web container initializes the servlet. To cus-
tomize this process to allow the servlet to read persistent configuration data, ini-
tialize resources, and perform any other one-time activities, you override the

../examples/web/bookstore1/src/database/BookDBAO.java
../examples/web/bookstore1/src/servlets/ReceiptServlet.java

WRITING SERVICE METHODS 457
init method of the Servlet interface. A servlet that cannot complete its initial-
ization process should throw UnavailableException.

All the servlets that access the bookstore database (BookStoreServlet, Cata-
logServlet, BookDetailsServlet, and ShowCartServlet) initialize a variable
in their init method that points to the database access object created by the web
context listener:

public class CatalogServlet extends HttpServlet {
private BookDBAO bookDB;
public void init() throws ServletException {

bookDB = (BookDBAO)getServletContext().
getAttribute("bookDB");

if (bookDB == null) throw new
UnavailableException("Couldn't get database.");

}
}

Writing Service Methods
The service provided by a servlet is implemented in the service method of a
GenericServlet, in the doMethod methods (where Method can take the value
Get, Delete, Options, Post, Put, or Trace) of an HttpServlet object, or in any
other protocol-specific methods defined by a class that implements the Servlet

interface. In the rest of this chapter, the term service method is used for any
method in a servlet class that provides a service to a client.

The general pattern for a service method is to extract information from the
request, access external resources, and then populate the response based on that
information.

For HTTP servlets, the correct procedure for populating the response is to first
retrieve an output stream from the response, then fill in the response headers, and
finally write any body content to the output stream. Response headers must
always be set before the response has been committed. Any attempt to set or add
headers after the response has been committed will be ignored by the web con-
tainer. The next two sections describe how to get information from requests and
generate responses.

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/Servlet.html
../examples/web/bookstore1/src/servlets/BookStoreServlet.java
../examples/web/bookstore1/src/servlets/CatalogServlet.java
../examples/web/bookstore1/src/servlets/CatalogServlet.java
../examples/web/bookstore1/src/servlets/BookDetailsServlet.java
../examples/web/bookstore1/src/servlets/ShowCartServlet.java

458
Getting Information from Requests
A request contains data passed between a client and the servlet. All requests
implement the ServletRequest interface. This interface defines methods for
accessing the following information:

• Parameters, which are typically used to convey information between cli-
ents and servlets

• Object-valued attributes, which are typically used to pass information
between the servlet container and a servlet or between collaborating serv-
lets

• Information about the protocol used to communicate the request and about
the client and server involved in the request

• Information relevant to localization

For example, in CatalogServlet the identifier of the book that a customer
wishes to purchase is included as a parameter to the request. The following code
fragment illustrates how to use the getParameter method to extract the identi-
fier:

String bookId = request.getParameter("Add");
if (bookId != null) {

BookDetails book = bookDB.getBookDetails(bookId);

You can also retrieve an input stream from the request and manually parse the
data. To read character data, use the BufferedReader object returned by the
request’s getReader method. To read binary data, use the ServletInputStream

returned by getInputStream.

HTTP servlets are passed an HTTP request object, HttpServletRequest, which
contains the request URL, HTTP headers, query string, and so on.

An HTTP request URL contains the following parts:

http://[host]:[port][request path]?[query string]

The request path is further composed of the following elements:

• Context path: A concatenation of a forward slash (/) with the context root
of the servlet’s web application.

• Servlet path: The path section that corresponds to the component alias that
activated this request. This path starts with a forward slash (/).

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequest.html
../examples/web/bookstore1/src/servlets/CatalogServlet.java
http://java.sun.com/j2se/1.4/docs/api/java/io/BufferedReader.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletInputStream.html

WRITING SERVICE METHODS 459
• Path info: The part of the request path that is not part of the context path or
the servlet path.

If the context path is /catalog and for the aliases listed in Table 11–5, Table 11–
6 gives some examples of how the URL will be parsed.

Query strings are composed of a set of parameters and values. Individual param-
eters are retrieved from a request by using the getParameter method. There are
two ways to generate query strings:

• A query string can explicitly appear in a web page. For example, an HTML
page generated by the CatalogServlet could contain the link <a href="/

bookstore1/catalog?Add=101">Add To Cart. CatalogServlet

extracts the parameter named Add as follows:
String bookId = request.getParameter("Add");

• A query string is appended to a URL when a form with a GET HTTP
method is submitted. In the Duke’s Bookstore application, CashierServ-
let generates a form, then a user name input to the form is appended to the
URL that maps to ReceiptServlet, and finally ReceiptServlet extracts
the user name using the getParameter method.

Table 11–5 Aliases

Pattern Servlet

/lawn/* LawnServlet

/*.jsp JSPServlet

Table 11–6 Request Path Elements

Request Path Servlet Path Path Info

/catalog/lawn/index.html /lawn /index.html

/catalog/help/feedback.jsp /help/feedback.jsp null

../examples/web/bookstore1/src/servlets/CatalogServlet.java
../examples/web/bookstore1/src/servlets/CashierServlet.java
../examples/web/bookstore1/src/servlets/CashierServlet.java
../examples/web/bookstore1/src/servlets/ReceiptServlet.java

460
Constructing Responses
A response contains data passed between a server and the client. All responses
implement the ServletResponse interface. This interface defines methods that
allow you to:

• Retrieve an output stream to use to send data to the client. To send charac-
ter data, use the PrintWriter returned by the response’s getWriter

method. To send binary data in a MIME body response, use the Serv-

letOutputStream returned by getOutputStream. To mix binary and text
data, for example—to create a multipart response—use a ServletOutput-
Stream and manage the character sections manually.

• Indicate the content type (for example, text/html) being returned by the
response with the setContentType(String) method. This method must
be called before the response is committed. A registry of content type
names is kept by the Internet Assigned Numbers Authority (IANA) at:
http://www.iana.org/assignments/media-types/

• Indicate whether to buffer output with the setBufferSize(int) method.
By default, any content written to the output stream is immediately sent to
the client. Buffering allows content to be written before anything is actu-
ally sent back to the client, thus providing the servlet with more time to set
appropriate status codes and headers or forward to another web resource.
The method must be called before any content is written or before the
response is committed.

• Set localization information such as locale and character encoding. See
Chapter 22 for details.

HTTP response objects, HttpServletResponse, have fields representing HTTP
headers such as the following:

• Status codes, which are used to indicate the reason a request is not satisfied
or that a request has been redirected.

• Cookies, which are used to store application-specific information at the cli-
ent. Sometimes cookies are used to maintain an identifier for tracking a
user’s session (see Session Tracking, page 476).

In Duke’s Bookstore, BookDetailsServlet generates an HTML page that dis-
plays information about a book that the servlet retrieves from a database. The
servlet first sets response headers: the content type of the response and the buffer
size. The servlet buffers the page content because the database access can gener-
ate an exception that would cause forwarding to an error page. By buffering the
response, the servlet prevents the client from seeing a concatenation of part of a

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletResponse.html
http://java.sun.com/j2se/1.4/docs/api/java/io/PrintWriter.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletOutputStream.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletOutputStream.html
http://www.iana.org/assignments/media-types/
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpServletResponse.html
../examples/web/bookstore1/src/servlets/BookDetailsServlet.java

WRITING SERVICE METHODS 461
Duke’s Bookstore page with the error page should an error occur. The doGet

method then retrieves a PrintWriter from the response.

To fill in the response, the servlet first dispatches the request to BannerServlet,
which generates a common banner for all the servlets in the application. This
process is discussed in Including Other Resources in the Response (page 470).
Then the servlet retrieves the book identifier from a request parameter and uses
the identifier to retrieve information about the book from the bookstore database.
Finally, the servlet generates HTML markup that describes the book information
and then commits the response to the client by calling the close method on the
PrintWriter.

public class BookDetailsServlet extends HttpServlet {
 public void doGet (HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

// set headers before accessing the Writer
response.setContentType("text/html");
response.setBufferSize(8192);
PrintWriter out = response.getWriter();

// then write the response
out.println("<html>" +

"<head><title>+
messages.getString("TitleBookDescription")
+</title></head>");

// Get the dispatcher; it gets the banner to the user
RequestDispatcher dispatcher =

getServletContext().
getRequestDispatcher("/banner");

if (dispatcher != null)
dispatcher.include(request, response);

// Get the identifier of the book to display
String bookId = request.getParameter("bookId");
if (bookId != null) {

// and the information about the book
try {

BookDetails bd =
bookDB.getBookDetails(bookId);

...
// Print the information obtained
out.println("<h2>" + bd.getTitle() + "</h2>" +
...

} catch (BookNotFoundException ex) {
response.resetBuffer();

462
throw new ServletException(ex);
}

}
out.println("</body></html>");
out.close();

}
}

BookDetailsServlet generates a page that looks like Figure 11–2.

Figure 11–2 Book Details

FILTERING REQUESTS AND RESPONSES 463
Filtering Requests and Responses
A filter is an object that can transform the header and content (or both) of a
request or response. Filters differ from web components in that filters usually do
not themselves create a response. Instead, a filter provides functionality that can
be “attached” to any kind of web resource. Consequently, a filter should not have
any dependencies on a web resource for which it is acting as a filter; this way it
can be composed with more than one type of web resource. The main tasks that a
filter can perform are as follows:

• Query the request and act accordingly.

• Block the request-and-response pair from passing any further.

• Modify the request headers and data. You do this by providing a custom-
ized version of the request.

• Modify the response headers and data. You do this by providing a custom-
ized version of the response.

• Interact with external resources.

Applications of filters include authentication, logging, image conversion, data
compression, encryption, tokenizing streams, XML transformations, and so on.

You can configure a web resource to be filtered by a chain of zero, one, or more
filters in a specific order. This chain is specified when the web application con-
taining the component is deployed and is instantiated when a web container
loads the component.

In summary, the tasks involved in using filters are

• Programming the filter

• Programming customized requests and responses

• Specifying the filter chain for each web resource

Programming Filters
The filtering API is defined by the Filter, FilterChain, and FilterConfig

interfaces in the javax.servlet package. You define a filter by implementing
the Filter interface. The most important method in this interface is doFilter,

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/Filter.html

464
which is passed request, response, and filter chain objects. This method can per-
form the following actions:

• Examine the request headers.

• Customize the request object if the filter wishes to modify request headers
or data.

• Customize the response object if the filter wishes to modify response head-
ers or data.

• Invoke the next entity in the filter chain. If the current filter is the last filter
in the chain that ends with the target web component or static resource, the
next entity is the resource at the end of the chain; otherwise, it is the next
filter that was configured in the WAR. The filter invokes the next entity by
calling the doFilter method on the chain object (passing in the request
and response it was called with, or the wrapped versions it may have cre-
ated). Alternatively, it can choose to block the request by not making the
call to invoke the next entity. In the latter case, the filter is responsible for
filling out the response.

• Examine response headers after it has invoked the next filter in the chain.

• Throw an exception to indicate an error in processing.

In addition to doFilter, you must implement the init and destroy methods.
The init method is called by the container when the filter is instantiated. If you
wish to pass initialization parameters to the filter, you retrieve them from the
FilterConfig object passed to init.

The Duke’s Bookstore application uses the filters HitCounterFilter and
OrderFilter to increment and log the value of counters when the entry and
receipt servlets are accessed.

In the doFilter method, both filters retrieve the servlet context from the filter
configuration object so that they can access the counters stored as context
attributes. After the filters have completed application-specific processing, they
invoke doFilter on the filter chain object passed into the original doFilter
method. The elided code is discussed in the next section.

public final class HitCounterFilter implements Filter {
private FilterConfig filterConfig = null;

public void init(FilterConfig filterConfig)
throws ServletException {
this.filterConfig = filterConfig;

}
public void destroy() {

../examples/web/bookstore1/src/filters/HitCounterFilter.java
../examples/web/bookstore1/src/filters/OrderFilter.java

FILTERING REQUESTS AND RESPONSES 465
this.filterConfig = null;
}
public void doFilter(ServletRequest request,

ServletResponse response, FilterChain chain)
throws IOException, ServletException {
if (filterConfig == null)

return;
StringWriter sw = new StringWriter();
PrintWriter writer = new PrintWriter(sw);
Counter counter = (Counter)filterConfig.

getServletContext().
getAttribute("hitCounter");

writer.println();
writer.println("===============");
writer.println("The number of hits is: " +

counter.incCounter());
writer.println("===============");
// Log the resulting string
writer.flush();
System.out.println(sw.getBuffer().toString());
...
chain.doFilter(request, wrapper);
...

}
}

Programming Customized Requests and
Responses
There are many ways for a filter to modify a request or response. For example, a
filter can add an attribute to the request or can insert data in the response. In the
Duke’s Bookstore example, HitCounterFilter inserts the value of the counter
into the response.

A filter that modifies a response must usually capture the response before it is
returned to the client. To do this, you pass a stand-in stream to the servlet that
generates the response. The stand-in stream prevents the servlet from closing the
original response stream when it completes and allows the filter to modify the
servlet’s response.

To pass this stand-in stream to the servlet, the filter creates a response wrapper
that overrides the getWriter or getOutputStream method to return this stand-in
stream. The wrapper is passed to the doFilter method of the filter chain. Wrap-
per methods default to calling through to the wrapped request or response object.

466
This approach follows the well-known Wrapper or Decorator pattern described
in Design Patterns, Elements of Reusable Object-Oriented Software, by Erich
Gamma et al. (Addison-Wesley, 1995). The following sections describe how the
hit counter filter described earlier and other types of filters use wrappers.

To override request methods, you wrap the request in an object that extends
ServletRequestWrapper or HttpServletRequestWrapper. To override
response methods, you wrap the response in an object that extends ServletRe-
sponseWrapper or HttpServletResponseWrapper.

HitCounterFilter wraps the response in a CharResponseWrapper. The
wrapped response is passed to the next object in the filter chain, which is Book-
StoreServlet. Then BookStoreServlet writes its response into the stream
created by CharResponseWrapper. When chain.doFilter returns, Hit-

CounterFilter retrieves the servlet’s response from PrintWriter and writes it
to a buffer. The filter inserts the value of the counter into the buffer, resets the
content length header of the response, and then writes the contents of the buffer
to the response stream.

PrintWriter out = response.getWriter();
CharResponseWrapper wrapper = new CharResponseWrapper(

(HttpServletResponse)response);
chain.doFilter(request, wrapper);
CharArrayWriter caw = new CharArrayWriter();
caw.write(wrapper.toString().substring(0,

wrapper.toString().indexOf("</body>")-1));
caw.write("<p>\n<center>" +

messages.getString("Visitor") + "" +
counter.getCounter() + "</center>");

caw.write("\n</body></html>");
response.setContentLength(caw.toString().getBytes().length);
out.write(caw.toString());
out.close();

public class CharResponseWrapper extends
HttpServletResponseWrapper {
private CharArrayWriter output;
public String toString() {

return output.toString();
}
public CharResponseWrapper(HttpServletResponse response){

super(response);
output = new CharArrayWriter();

}

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequestWrapper.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpServletRequestWrapper.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletResponseWrapper.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletResponseWrapper.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpServletResponseWrapper.html
../examples/web/bookstore1/src/filters/CharResponseWrapper.java

FILTERING REQUESTS AND RESPONSES 467
public PrintWriter getWriter(){
return new PrintWriter(output);

}
}

Figure 11–3 shows the entry page for Duke’s Bookstore with the hit counter.

Figure 11–3 Duke’s Bookstore with Hit Counter

468
Specifying Filter Mappings
A web container uses filter mappings to decide how to apply filters to web
resources. A filter mapping matches a filter to a web component by name, or to
web resources by URL pattern. The filters are invoked in the order in which filter
mappings appear in the filter mapping list of a WAR. You specify a filter map-
ping list for a WAR by using deploytool or by coding the list directly in the
web application deployment descriptor as follows:

1. Declare the filter. This element creates a name for the filter and declares
the filter’s implementation class and initialization parameters.

2. Map the filter to a web resource by name or by URL pattern.

3. Constrain how the filter will be applied to requests by choosing one of the
enumerated dispatcher options:

• REQUEST: Only when the request comes directly from the client

• FORWARD: Only when the request has been forwarded to a component
(see Transferring Control to Another Web Component, page 472)

• INCLUDE: Only when the request is being processed by a component that
has been included (see Including Other Resources in the
Response, page 470)

• ERROR: Only when the request is being processed with the error page
mechanism (see Handling Errors, page 452)

You can direct the filter to be applied to any combination of the preceding
situations by including multiple dispatcher elements. If no elements are
specified, the default option is REQUEST.

If you want to log every request to a web application, you map the hit counter fil-
ter to the URL pattern /*. Step 8. in The Example Servlets (page 444) shows
how to create and map the filters for the Duke’s Bookstore application. Table 11–
7 summarizes the filter definition and mapping list for the Duke’s Bookstore
application. The filters are matched by servlet name, and each filter chain con-
tains only one filter.

Table 11–7 Duke’s Bookstore Filter Definition and Mapping List

Filter Class Servlet

HitCounterFilter filters.HitCounterFilter BookStoreServlet

OrderFilter filters.OrderFilter ReceiptServlet

INVOKING OTHER WEB RESOURCES 469
You can map a filter to one or more web resources and you can map more than
one filter to a web resource. This is illustrated in Figure 11–4, where filter F1 is
mapped to servlets S1, S2, and S3, filter F2 is mapped to servlet S2, and filter F3
is mapped to servlets S1 and S2.

Figure 11–4 Filter-to-Servlet Mapping

Recall that a filter chain is one of the objects passed to the doFilter method of a
filter. This chain is formed indirectly via filter mappings. The order of the filters
in the chain is the same as the order in which filter mappings appear in the web
application deployment descriptor.

When a filter is mapped to servlet S1, the web container invokes the doFilter

method of F1. The doFilter method of each filter in S1’s filter chain is invoked
by the preceding filter in the chain via the chain.doFilter method. Because
S1’s filter chain contains filters F1 and F3, F1’s call to chain.doFilter invokes
the doFilter method of filter F3. When F3’s doFilter method completes,
control returns to F1’s doFilter method.

Invoking Other Web Resources
Web components can invoke other web resources in two ways: indirectly and
directly. A web component indirectly invokes another web resource when it
embeds a URL that points to another web component in content returned to a cli-

470
ent. In the Duke’s Bookstore application, most web components contain embed-
ded URLs that point to other web components. For example, ShowCartServlet
indirectly invokes the CatalogServlet through the embedded URL
/bookstore1/catalog.

A web component can also directly invoke another resource while it is executing.
There are two possibilities: The web component can include the content of
another resource, or it can forward a request to another resource.

To invoke a resource available on the server that is running a web component,
you must first obtain a RequestDispatcher object using the getRequestDis-

patcher("URL") method.

You can get a RequestDispatcher object from either a request or the web con-
text; however, the two methods have slightly different behavior. The method
takes the path to the requested resource as an argument. A request can take a rel-
ative path (that is, one that does not begin with a /), but the web context requires
an absolute path. If the resource is not available or if the server has not imple-
mented a RequestDispatcher object for that type of resource, getRequestDis-
patcher will return null. Your servlet should be prepared to deal with this
condition.

Including Other Resources in the
Response
It is often useful to include another web resource—for example, banner content
or copyright information—in the response returned from a web component. To
include another resource, invoke the include method of a RequestDispatcher

object:

include(request, response);

If the resource is static, the include method enables programmatic server-side
includes. If the resource is a web component, the effect of the method is to send
the request to the included web component, execute the web component, and
then include the result of the execution in the response from the containing serv-
let. An included web component has access to the request object, but it is limited
in what it can do with the response object:

• It can write to the body of the response and commit a response.

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/RequestDispatcher.html

INVOKING OTHER WEB RESOURCES 471
• It cannot set headers or call any method (for example, setCookie) that
affects the headers of the response.

The banner for the Duke’s Bookstore application is generated by BannerServ-

let. Note that both doGet and doPost are implemented because BannerServlet

can be dispatched from either method in a calling servlet.

public class BannerServlet extends HttpServlet {
public void doGet (HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

output(request, response);
}
public void doPost (HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

output(request, response);
}

private void output(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
PrintWriter out = response.getWriter();
out.println("<body bgcolor=\"#ffffff\">" +
"<center>" + "<hr>
 " + "<h1>" +
"Duke's " +
<img src=\"" + request.getContextPath() +
"/duke.books.gif\">" +
"Bookstore" +
"</h1>" + "</center>" + "
 <hr>
 ");

}
}

Each servlet in the Duke’s Bookstore application includes the result from Ban-

nerServlet using the following code:

RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher("/banner");

if (dispatcher != null)
dispatcher.include(request, response);

}

../examples/web/bookstore1/src/servlets/BannerServlet.java
../examples/web/bookstore1/src/servlets/BannerServlet.java

472
Transferring Control to Another Web
Component
In some applications, you might want to have one web component do prelimi-
nary processing of a request and have another component generate the response.
For example, you might want to partially process a request and then transfer to
another component depending on the nature of the request.

To transfer control to another web component, you invoke the forward method
of a RequestDispatcher. When a request is forwarded, the request URL is set to
the path of the forwarded page. The original URI and its constituent parts are
saved as request attributes javax.servlet.forward.[request_uri|context-

path|servlet_path|path_info|query_string]. The Dispatcher servlet,
used by a version of the Duke’s Bookstore application described in The Example
JSP Pages (page 576), saves the path information from the original URL,
retrieves a RequestDispatcher from the request, and then forwards to the JSP
page template.jsp.

public class Dispatcher extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response) {
RequestDispatcher dispatcher = request.

getRequestDispatcher("/template.jsp");
if (dispatcher != null)

dispatcher.forward(request, response);
}
public void doPost(HttpServletRequest request,
...

}

The forward method should be used to give another resource responsibility for
replying to the user. If you have already accessed a ServletOutputStream or
PrintWriter object within the servlet, you cannot use this method; doing so
throws an IllegalStateException.

../examples/web/bookstore2/src/Dispatcher.java
../examples/web/bookstore3/web/template/template.txt

ACCESSING THE WEB CONTEXT 473
Accessing the Web Context
The context in which web components execute is an object that implements the
ServletContext interface. You retrieve the web context using the getServlet-

Context method. The web context provides methods for accessing:

• Initialization parameters

• Resources associated with the web context

• Object-valued attributes

• Logging capabilities

The web context is used by the Duke’s Bookstore filters filters.HitCounter-
Filter and OrderFilter, which are discussed in Filtering Requests and
Responses (page 463). Each filter stores a counter as a context attribute. Recall
from Controlling Concurrent Access to Shared Resources (page 454) that the
counter’s access methods are synchronized to prevent incompatible operations
by servlets that are running concurrently. A filter retrieves the counter object
using the context’s getAttribute method. The incremented value of the counter
is recorded in the log.

public final class HitCounterFilter implements Filter {
private FilterConfig filterConfig = null;
public void doFilter(ServletRequest request,

ServletResponse response, FilterChain chain)
throws IOException, ServletException {
...
StringWriter sw = new StringWriter();
PrintWriter writer = new PrintWriter(sw);
ServletContext context = filterConfig.

getServletContext();
Counter counter = (Counter)context.

getAttribute("hitCounter");
...
writer.println("The number of hits is: " +

counter.incCounter());
...
System.out.println(sw.getBuffer().toString());
...

}
}

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContext.html
../examples/web/bookstore1/src/filters/HitCounterFilter.java
../examples/web/bookstore1/src/filters/HitCounterFilter.java

474
Maintaining Client State
Many applications require that a series of requests from a client be associated
with one another. For example, the Duke’s Bookstore application saves the state
of a user’s shopping cart across requests. Web-based applications are responsible
for maintaining such state, called a session, because HTTP is stateless. To sup-
port applications that need to maintain state, Java servlet technology provides an
API for managing sessions and allows several mechanisms for implementing
sessions.

Accessing a Session
Sessions are represented by an HttpSession object. You access a session by
calling the getSession method of a request object. This method returns the cur-
rent session associated with this request, or, if the request does not have a ses-
sion, it creates one.

Associating Objects with a Session
You can associate object-valued attributes with a session by name. Such
attributes are accessible by any web component that belongs to the same web
context and is handling a request that is part of the same session.

The Duke’s Bookstore application stores a customer’s shopping cart as a session
attribute. This allows the shopping cart to be saved between requests and also
allows cooperating servlets to access the cart. CatalogServlet adds items to the
cart; ShowCartServlet displays, deletes items from, and clears the cart; and
CashierServlet retrieves the total cost of the books in the cart.

public class CashierServlet extends HttpServlet {
public void doGet (HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

// Get the user's session and shopping cart
HttpSession session = request.getSession();
ShoppingCart cart =

(ShoppingCart)session.

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSession.html
../examples/web/bookstore1/src/servlets/CatalogServlet.java
../examples/web/bookstore1/src/servlets/ShowCartServlet.java
../examples/web/bookstore1/src/servlets/CashierServlet.java

MAINTAINING CLIENT STATE 475
getAttribute("cart");
...
// Determine the total price of the user's books
double total = cart.getTotal();

Notifying Objects That Are Associated with a
Session
Recall that your application can notify web context and session listener objects
of servlet life-cycle events (Handling Servlet Life-Cycle Events, page 450). You
can also notify objects of certain events related to their association with a session
such as the following:

• When the object is added to or removed from a session. To receive this
notification, your object must implement the javax.serv-

let.http.HttpSessionBindingListener interface.

• When the session to which the object is attached will be passivated or acti-
vated. A session will be passivated or activated when it is moved between
virtual machines or saved to and restored from persistent storage. To
receive this notification, your object must implement the javax.serv-

let.http.HttpSessionActivationListener interface.

Session Management
Because there is no way for an HTTP client to signal that it no longer needs a
session, each session has an associated timeout so that its resources can be
reclaimed. The timeout period can be accessed by using a session’s
[get|set]MaxInactiveInterval methods. You can also set the timeout period
using deploytool:

1. Select the WAR.

2. Select the General tab.

3. Click the Advanced Setting button.

4. Enter the timeout period in the Session Timeout field.

To ensure that an active session is not timed out, you should periodically access
the session via service methods because this resets the session’s time-to-live
counter.

When a particular client interaction is finished, you use the session’s invali-

date method to invalidate a session on the server side and remove any session

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionBindingListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionBindingListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionActivationListener.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSessionActivationListener.html

476
data. The bookstore application’s ReceiptServlet is the last servlet to access a
client’s session, so it has the responsibility to invalidate the session:

public class ReceiptServlet extends HttpServlet {
public void doPost(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

// Get the user's session and shopping cart
HttpSession session = request.getSession();
// Payment received -- invalidate the session
session.invalidate();
...

Session Tracking
A web container can use several methods to associate a session with a user, all of
which involve passing an identifier between the client and the server. The identi-
fier can be maintained on the client as a cookie, or the web component can
include the identifier in every URL that is returned to the client.

If your application uses session objects, you must ensure that session tracking is
enabled by having the application rewrite URLs whenever the client turns off
cookies. You do this by calling the response’s encodeURL(URL) method on all
URLs returned by a servlet. This method includes the session ID in the URL
only if cookies are disabled; otherwise, it returns the URL unchanged.

The doGet method of ShowCartServlet encodes the three URLs at the bottom
of the shopping cart display page as follows:

out.println("<p> <p><a href=\"" +
response.encodeURL(request.getContextPath() +

"/bookcatalog") +
"\">" + messages.getString("ContinueShopping") +
" " +
"<a href=\"" +

response.encodeURL(request.getContextPath() +
"/bookcashier") +
"\">" + messages.getString("Checkout") +
" " +
"<a href=\"" +

response.encodeURL(request.getContextPath() +
"/bookshowcart?Clear=clear") +
"\">" + messages.getString("ClearCart") +
"");

../examples/web/bookstore1/src/servlets/ReceiptServlet.java
../examples/web/bookstore1/src/servlets/ShowCartServlet.java

FINALIZING A SERVLET 477
If cookies are turned off, the session is encoded in the Check Out URL as fol-
lows:

http://localhost:8080/bookstore1/cashier;
jsessionid=c0o7fszeb1

If cookies are turned on, the URL is simply

http://localhost:8080/bookstore1/cashier

Finalizing a Servlet
When a servlet container determines that a servlet should be removed from ser-
vice (for example, when a container wants to reclaim memory resources or when
it is being shut down), the container calls the destroy method of the Servlet

interface. In this method, you release any resources the servlet is using and save
any persistent state. The following destroy method releases the database object
created in the init method described in Initializing a Servlet (page 456):

public void destroy() {
bookDB = null;

}

All of a servlet’s service methods should be complete when a servlet is removed.
The server tries to ensure this by calling the destroy method only after all ser-
vice requests have returned or after a server-specific grace period, whichever
comes first. If your servlet has operations that take a long time to run (that is,
operations that may run longer than the server’s grace period), the operations
could still be running when destroy is called. You must make sure that any
threads still handling client requests complete; the remainder of this section
describes how to do the following:

• Keep track of how many threads are currently running the service method

• Provide a clean shutdown by having the destroy method notify long-run-
ning threads of the shutdown and wait for them to complete

• Have the long-running methods poll periodically to check for shutdown
and, if necessary, stop working, clean up, and return

478
Tracking Service Requests
To track service requests, include in your servlet class a field that counts the
number of service methods that are running. The field should have synchronized
access methods to increment, decrement, and return its value.

public class ShutdownExample extends HttpServlet {
private int serviceCounter = 0;
...
// Access methods for serviceCounter
protected synchronized void enteringServiceMethod() {

serviceCounter++;
}
protected synchronized void leavingServiceMethod() {

serviceCounter--;
}
protected synchronized int numServices() {

return serviceCounter;
}

}

The service method should increment the service counter each time the method
is entered and should decrement the counter each time the method returns. This
is one of the few times that your HttpServlet subclass should override the ser-

vice method. The new method should call super.service to preserve the func-
tionality of the original service method:

protected void service(HttpServletRequest req,
HttpServletResponse resp)
throws ServletException,IOException {

enteringServiceMethod();
try {

super.service(req, resp);
} finally {

leavingServiceMethod();
}

}

Notifying Methods to Shut Down
To ensure a clean shutdown, your destroy method should not release any shared
resources until all the service requests have completed. One part of doing this is
to check the service counter. Another part is to notify the long-running methods

FINALIZING A SERVLET 479
that it is time to shut down. For this notification, another field is required. The
field should have the usual access methods:

public class ShutdownExample extends HttpServlet {
private boolean shuttingDown;
...
//Access methods for shuttingDown
protected synchronized void setShuttingDown(boolean flag) {

shuttingDown = flag;
}
protected synchronized boolean isShuttingDown() {

return shuttingDown;
}

}

Here is an example of the destroy method using these fields to provide a clean
shutdown:

public void destroy() {
/* Check to see whether there are still service methods /*
/* running, and if there are, tell them to stop. */
if (numServices() > 0) {

setShuttingDown(true);
}

/* Wait for the service methods to stop. */
while(numServices() > 0) {

try {
Thread.sleep(interval);

} catch (InterruptedException e) {
}

}
}

Creating Polite Long-Running Methods
The final step in providing a clean shutdown is to make any long-running meth-
ods behave politely. Methods that might run for a long time should check the
value of the field that notifies them of shutdowns and should interrupt their work,
if necessary.

public void doPost(...) {
...
for(i = 0; ((i < lotsOfStuffToDo) &&

!isShuttingDown()); i++) {

480
try {
partOfLongRunningOperation(i);

} catch (InterruptedException e) {
...

}
}

}

Further Information
For further information on Java Servlet technology, see

• Java Servlet 2.4 specification:
http://java.sun.com/products/servlet/download.html#specs

• The Java Servlet web site:
http://java.sun.com/products/servlet

http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/servlet

12
481
JavaServer Pages
Technology

JAVASERVER Pages (JSP) technology allows you to easily create web content
that has both static and dynamic components. JSP technology makes available
all the dynamic capabilities of Java Servlet technology but provides a more natu-
ral approach to creating static content. The main features of JSP technology are
as follows:

• A language for developing JSP pages, which are text-based documents that
describe how to process a request and construct a response

• An expression language for accessing server-side objects

• Mechanisms for defining extensions to the JSP language

JSP technology also contains an API that is used by developers of web contain-
ers, but this API is not covered in this tutorial.

What Is a JSP Page?
A JSP page is a text document that contains two types of text: static data, which
can be expressed in any text-based format (such as HTML, SVG, WML, and
XML), and JSP elements, which construct dynamic content.

The recommended file extension for the source file of a JSP page is .jsp. The
page can be composed of a top file that includes other files that contain either a

http://www.w3.org/MarkUp
http://www.w3.org/TR/SVG
http://www.oasis-open.org/cover/wap-wml.html
http://www.w3.org/TR/REC-xml

482
complete JSP page or a fragment of a JSP page. The recommended extension for
the source file of a fragment of a JSP page is .jspf.

The JSP elements in a JSP page can be expressed in two syntaxes—standard and
XML—though any given file can use only one syntax. A JSP page in XML syn-
tax is an XML document and can be manipulated by tools and APIs for XML
documents. This chapter and Chapters 14 through 16 document only the stan-
dard syntax. The XML syntax is covered in Chapter 13. A syntax card and refer-
ence that summarizes both syntaxes is available at

http://java.sun.com/products/jsp/docs.html#syntax

Example
The web page in Figure 12–1 is a form that allows you to select a locale and dis-
plays the date in a manner appropriate to the locale.

Figure 12–1 Localized Date Form

The source code for this example is in the <INSTALL>/j2eetutorial14/exam-

ples/web/date/ directory. The JSP page, index.jsp, used to create the form
appears in a moment; it is a typical mixture of static HTML markup and JSP ele-
ments. If you have developed web pages, you are probably familiar with the
HTML document structure statements (<head>, <body>, and so on) and the
HTML statements that create a form (<form>) and a menu (<select>).

http://java.sun.com/products/jsp/docs.html#syntax
../examples/web/date/web/index.txt

WHAT IS A JSP PAGE? 483
The lines in bold in the example code contain the following types of JSP con-
structs:

• A page directive (<%@page ... %>) sets the content type returned by the
page.

• Tag library directives (<%@taglib ... %>) import custom tag libraries.

• jsp:useBean creates an object containing a collection of locales and ini-
tializes an identifier that points to that object.

• JSP expression language expressions (${ }) retrieve the value of object
properties. The values are used to set custom tag attribute values and create
dynamic content.

• Custom tags set a variable (c:set), iterate over a collection of locale
names (c:forEach), and conditionally insert HTML text into the response
(c:if, c:choose, c:when, c:otherwise).

• jsp:setProperty sets the value of an object property.

• A function (f:equals) tests the equality of an attribute and the current
item of a collection. (Note: A built-in == operator is usually used to test
equality).

Here is the JSP page:

<%@ page contentType="text/html; charset=UTF-8" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core"

prefix="c" %>
<%@ taglib uri="/functions" prefix="f" %>
<html>
<head><title>Localized Dates</title></head>
<body bgcolor="white">
<jsp:useBean id="locales" scope="application"

class="mypkg.MyLocales"/>

<form name="localeForm" action="index.jsp" method="post">
<c:set var="selectedLocaleString" value="${param.locale}" />
<c:set var="selectedFlag"

value="${!empty selectedLocaleString}" />
Locale:
<select name=locale>
<c:forEach var="localeString" items="${locales.localeNames}" >
<c:choose>

<c:when test="${selectedFlag}">
<c:choose>

<c:when
test="${f:equals(selectedLocaleString,

localeString)}" >

484
<option selected>${localeString}</option>
</c:when>
<c:otherwise>

<option>${localeString}</option>
</c:otherwise>

</c:choose>
</c:when>
<c:otherwise>

<option>${localeString}</option>
</c:otherwise>

</c:choose>
</c:forEach>
</select>
<input type="submit" name="Submit" value="Get Date">
</form>

<c:if test="${selectedFlag}" >
<jsp:setProperty name="locales"

property="selectedLocaleString"
value="${selectedLocaleString}" />

<jsp:useBean id="date" class="mypkg.MyDate"/>
<jsp:setProperty name="date" property="locale"

value="${locales.selectedLocale}"/>
Date: ${date.date}

</c:if>
</body>
</html>

A sample date.war is provided in <INSTALL>/j2eetutorial14/examples/

web/provided-wars/. To build this example, perform the following steps:

1. In a terminal window, go to <INSTALL>/j2eetutorial14/examples/

web/date/.

2. Run asant build. This target will spawn any necessary compilations and
copy files to the <INSTALL>/j2eetutorial14/examples/web/date/

build/ directory.

To package and deploy the example using asant, follow these steps:

1. Run asant create-war.

2. Start the Application Server.

3. Run asant deploy-war.

To learn how to configure the example, use deploytool to package and deploy
it:

1. Start the Application Server.

WHAT IS A JSP PAGE? 485
2. Start deploytool.

3. Create a web application called date by running the New Web Component
wizard. Select File→New→Web Component.

4. In the New Web Component wizard:

a. Select the Create New Stand-Alone WAR Module radio button.

b. In the WAR File field, enter <INSTALL>/docs/tutorial/examples/

web/date/date.war. The WAR Display Name field shows date.

c. In the Context Root field, enter /date.

d. Click Edit Contents.

e. In the Edit Contents dialog box, navigate to <INSTALL>/

j2eetutorial14/examples/web/date/build/. Select index.jsp,
functions.tld, and the mypkg directory and click Add, then click OK.

f. Click Next.

g. Select the No Component radio button, then click Next.

h. Click Finish.

5. Select File→Save.

6. Deploy the application.

a. Select Tools→Deploy.

b. In the Connection Settings frame, enter the user name and password you
specified when you installed the Application Server.

c. Click OK.

d. A pop-up dialog box will display the results of the deployment. Click
Close.

To run the example, perform these steps:

1. Set the character encoding in your browser to UTF-8.

2. Open the URL http://localhost:8080/date in a browser.

You will see a combo box whose entries are locales. Select a locale and click Get
Date. You will see the date expressed in a manner appropriate for that locale.

486
The Example JSP Pages
To illustrate JSP technology, this chapter rewrites each servlet in the Duke’s
Bookstore application introduced in The Example Servlets (page 444) as a JSP
page (see Table 12–1).

The data for the bookstore application is still maintained in a database and is
accessed through database.BookDBAO. However, the JSP pages access BookD-

BAO through the JavaBeans component database.BookDB. This class allows the
JSP pages to use JSP elements designed to work with JavaBeans components
(see JavaBeans Component Design Conventions, page 507).

Table 12–1 Duke’s Bookstore Example JSP Pages

Function JSP Pages

Enter the bookstore. bookstore.jsp

Create the bookstore banner. banner.jsp

Browse the books offered for sale. bookcatalog.jsp

Add a book to the shopping cart. bookcatalog.jsp and bookdetails.jsp

Get detailed information on a specific
book.

bookdetails.jsp

Display the shopping cart. bookshowcart.jsp

Remove one or more books from the
shopping cart.

bookshowcart.jsp

Buy the books in the shopping cart. bookcashier.jsp

Receive an acknowledgment for the
purchase.

bookreceipt.jsp

../examples/web/bookstore2/src/database/BookDBAO.java
../examples/web/bookstore2/src/database/BookDB.java

THE EXAMPLE JSP PAGES 487
The implementation of the database bean follows. The bean has two instance
variables: the current book and the data access object.

package database;
public class BookDB {

private String bookId = "0";
private BookDBAO database = null;

public BookDB () throws Exception {
}
public void setBookId(String bookId) {

this.bookId = bookId;
}
public void setDatabase(BookDAO database) {

this.database = database;
}
public BookDetails getBookDetails()

throws Exception {
return (BookDetails)database.getBookDetails(bookId);

}
...

}

This version of the Duke’s Bookstore application is organized along the Model-
View-Controller (MVC) architecture. The MVC architecture is a widely used
architectural approach for interactive applications that distributes functionality
among application objects so as to minimize the degree of coupling between the
objects. To achieve this, it divides applications into three layers: model, view,
and controller. Each layer handles specific tasks and has responsibilities to the
other layers:

• The model represents business data, along with business logic or opera-
tions that govern access and modification of this business data. The model
notifies views when it changes and lets the view query the model about its
state. It also lets the controller access application functionality encapsu-
lated by the model. In the Duke’s Bookstore application, the shopping cart
and database access object contain the business logic for the application.

• The view renders the contents of a model. It gets data from the model and
specifies how that data should be presented. It updates data presentation
when the model changes. A view also forwards user input to a controller.
The Duke’s Bookstore JSP pages format the data stored in the session-
scoped shopping cart and the page-scoped database bean.

• The controller defines application behavior. It dispatches user requests and
selects views for presentation. It interprets user inputs and maps them into

488
actions to be performed by the model. In a web application, user inputs are
HTTP GET and POST requests. A controller selects the next view to display
based on the user interactions and the outcome of the model operations. In
the Duke’s Bookstore application, the Dispatcher servlet is the controller.
It examines the request URL, creates and initializes a session-scoped Jav-
aBeans component—the shopping cart—and dispatches requests to view
JSP pages.

Note: When employed in a web application, the MVC architecture is often referred
to as a Model-2 architecture. The bookstore example discussed in Chapter 11,
which intermixes presentation and business logic, follows what is known as a
Model-1 architecture. The Model-2 architecture is the recommended approach to
designing web applications.

In addition, this version of the application uses several custom tags from the Jav-
aServer Pages Standard Tag Library (JSTL), described in Chapter 14:

• c:if, c:choose, c:when, and c:otherwise for flow control

• c:set for setting scoped variables

• c:url for encoding URLs

• fmt:message, fmt:formatNumber, and fmt:formatDate for providing
locale-sensitive messages, numbers, and dates

Custom tags are the preferred mechanism for performing a wide variety of
dynamic processing tasks, including accessing databases, using enterprise ser-
vices such as email and directories, and implementing flow control. In earlier
versions of JSP technology, such tasks were performed with JavaBeans compo-
nents in conjunction with scripting elements (discussed in Chapter 16).
Although still available in JSP 2.0 technology, scripting elements tend to make
JSP pages more difficult to maintain because they mix presentation and logic,
something that is discouraged in page design. Custom tags are introduced in
Using Custom Tags (page 513) and described in detail in Chapter 15.

Finally, this version of the example contains an applet to generate a dynamic dig-
ital clock in the banner. See Including an Applet (page 519) for a description of
the JSP element that generates HTML for downloading the applet.

The source code for the application is located in the <INSTALL>/

j2eetutorial14/examples/web/bookstore2/ directory (see Building the
Examples, page xxxvii). A sample bookstore2.war is provided in <INSTALL>/

THE EXAMPLE JSP PAGES 489
j2eetutorial14/examples/web/provided-wars/. To build the example, fol-
low these steps:

1. Build and package the bookstore common files as described in Duke’s
Bookstore Examples (page 103).

2. In a terminal window, go to <INSTALL>/j2eetutorial14/examples/

web/bookstore2/.

3. Run asant build. This target will spawn any necessary compilations and
will copy files to the <INSTALL>/j2eetutorial14/examples/web/

bookstore2/build/ directory.

4. Start the Application Server.

5. Perform all the operations described in Accessing Databases from Web
Applications (page 104).

To package and deploy the example using asant, follow these steps:

1. Run asant create-bookstore-war.

2. Run asant deploy-war.

To learn how to configure the example, use deploytool to package and deploy
it:

1. Start deploytool.

2. Create a web application called bookstore2 by running the New Web
Component wizard. Select File→New→Web Component.

3. In the New Web Component wizard:

a. Select the Create New Stand-Alone WAR Module radio button.

b. Click Browse.

c. In the WAR File field, enter <INSTALL>/j2eetutorial14/examples/
web/bookstore2/bookstore2.war. The WAR Display Name field will
show bookstore2.

d. In the Context Root field, enter /bookstore2.

e. Click Edit Contents.

f. In the Edit Contents dialog box, navigate to <INSTALL>/

j2eetutorial14/examples/web/bookstore2/build/. Select the JSP
pages bookstore.jsp, bookdetails.jsp, bookcatalog.jsp, book-
showcart.jsp, bookcashier.jsp, bookordererror.jsp, bookre-

ceipt.jsp, duke.books.gif, and the clock, dispatcher, database,
listeners, and template directories and click Add.

490
g. Move /WEB-INF/classes/clock/ to the root directory of the WAR. By default,
deploytool packages all classes in /WEB-INF/classes/. Because clock/Digital-
Clock.class is a client-side class, it must be packaged in the root directory. To do
this, simply drag the clock directory from /WEB-INF/classes/ to the root directory
in the pane labeled Contents of bookstore2.

h. Add the shared bookstore library. Navigate to <INSTALL>/j2eetutorial14/exam-

ples/web/bookstore/dist/. Select bookstore.jar, and click Add. Click OK, then
click Next.

i. Select the Servlet radio button, then click Next.

j. Select dispatcher.Dispatcher from the Servlet class combo box, then click Finish.

4. Add the listener class listeners.ContextListener (described in Handling Servlet
Life-Cycle Events, page 450).

a. Select the Event Listeners tab.

b. Click Add.

c. Select the listeners.ContextListener class from drop-down field in the Event
Listener Classes pane.

5. Add the aliases.

a. Select the Dispatcher web component.

b. Select the Aliases tab.

c. Click Add and then type /bookstore in the Aliases field. Repeat to add the aliases
/bookcatalog, /bookdetails, /bookshowcart, /bookcashier, /bookorderer-

ror, and /bookreceipt.

6. Add the context parameter that specifies the JSTL resource bundle base name.

a. Select the web module.

b. Select the Context tab.

c. Click Add.

d. Enter javax.servlet.jsp.jstl.fmt.localizationContext in the Coded Param-
eter field.

e. Enter messages.BookstoreMessages in the Value field.

7. Set the prelude and coda for all JSP pages.

a. Select the JSP Properties tab.

b. Click the Add button next to the Name list.

c. Enter bookstore2.

d. Click the Add URL button.

e. Enter *.jsp.

THE EXAMPLE JSP PAGES 491
f. Click the Edit Preludes button.

g. Click Add.

h. Enter /template/prelude.jspf.

i. Click OK.

j. Click the Edit Codas button.

k. Click Add.

l. Enter /template/coda.jspf.

m.Click OK.

8. Add a resource reference for the database.

a. Select the Resource Ref’s tab.

b. Click Add.

c. Enter jdbc/BookDB in the Coded Name field.

d. Accept the default type javax.sql.DataSource.

e. Accept the default authorization Container.

f. Accept the default selected Shareable.

g. Enter jdbc/BookDB in the JNDI name field of the Sun-specific Settings
frame.

9. Select File→Save.

10.Deploy the application.

a. Select Tools→Deploy.

b. Click OK.

To run the application, open the bookstore URL http://localhost:8080/

bookstore2/bookstore. Click on the Start Shopping link and you will see the
screen in Figure 12–2.

492
Figure 12–2 Book Catalog

See Troubleshooting (page 448) for help with diagnosing common problems related to the
database server. If the messages in your pages appear as strings of the form ??? Key ???, the
likely cause is that you have not provided the correct resource bundle base name as a context
parameter.

THE LIFE CYCLE OF A JSP PAGE 493
The Life Cycle of a JSP Page
A JSP page services requests as a servlet. Thus, the life cycle and many of the
capabilities of JSP pages (in particular the dynamic aspects) are determined by
Java Servlet technology. You will notice that many sections in this chapter refer
to classes and methods described in Chapter 11.

When a request is mapped to a JSP page, the web container first checks whether
the JSP page’s servlet is older than the JSP page. If the servlet is older, the web
container translates the JSP page into a servlet class and compiles the class. Dur-
ing development, one of the advantages of JSP pages over servlets is that the
build process is performed automatically.

Translation and Compilation
During the translation phase each type of data in a JSP page is treated differently.
Static data is transformed into code that will emit the data into the response
stream. JSP elements are treated as follows:

• Directives are used to control how the web container translates and exe-
cutes the JSP page.

• Scripting elements are inserted into the JSP page’s servlet class. See
Chapter 16 for details.

• Expression language expressions are passed as parameters to calls to the
JSP expression evaluator.

• jsp:[set|get]Property elements are converted into method calls to Jav-
aBeans components.

• jsp:[include|forward] elements are converted into invocations of the
Java Servlet API.

• The jsp:plugin element is converted into browser-specific markup for
activating an applet.

• Custom tags are converted into calls to the tag handler that implements the
custom tag.

If you would like the Application Server to keep the generated servlets for a web
module in deploytool, perform these steps:

1. Select the WAR.

2. Select the General tab.

3. Click the Sun-specific Settings button.

494
4. Select the Servlet/JSP Settings option from the View combo box.

5. Click the Add button in the JSP Configuration frame.

6. Select keepgenerated from the Name column.

7. Select true from the Value column.

8. Click Close.

In the Application Server, the source for the servlet created from a JSP page
named pageName is in this file:

<J2EE_HOME>/domains/domain1/generated/
jsp/WAR_NAME/pageName_jsp.java

For example, the source for the index page (named index.jsp) for the date

localization example discussed at the beginning of the chapter would be named

<J2EE_HOME>/domains/domain1/generated/
jsp/date/index_jsp.java

Both the translation and the compilation phases can yield errors that are
observed only when the page is requested for the first time. If an error is encoun-
tered during either phase, the server will return JasperException and a message
that includes the name of the JSP page and the line where the error occurred.

After the page has been translated and compiled, the JSP page’s servlet (for the
most part) follows the servlet life cycle described in Servlet Life
Cycle (page 449):

1. If an instance of the JSP page’s servlet does not exist, the container

a. Loads the JSP page’s servlet class

b. Instantiates an instance of the servlet class

c. Initializes the servlet instance by calling the jspInit method

2. The container invokes the _jspService method, passing request and
response objects.

If the container needs to remove the JSP page’s servlet, it calls the jspDestroy

method.

Execution
You can control various JSP page execution parameters by using page directives.
The directives that pertain to buffering output and handling errors are discussed

THE LIFE CYCLE OF A JSP PAGE 495
here. Other directives are covered in the context of specific page-authoring tasks
throughout the chapter.

Buffering
When a JSP page is executed, output written to the response object is automati-
cally buffered. You can set the size of the buffer using the following page direc-
tive:

<%@ page buffer="none|xxxkb" %>

A larger buffer allows more content to be written before anything is actually sent
back to the client, thus providing the JSP page with more time to set appropriate
status codes and headers or to forward to another web resource. A smaller buffer
decreases server memory load and allows the client to start receiving data more
quickly.

Handling Errors
Any number of exceptions can arise when a JSP page is executed. To specify that
the web container should forward control to an error page if an exception occurs,
include the following page directive at the beginning of your JSP page:

<%@ page errorPage="file_name" %>

The Duke’s Bookstore application page prelude.jspf contains the directive

<%@ page errorPage="errorpage.jsp"%>

The following page directive at the beginning of errorpage.jsp indicates that it
is serving as an error page

<%@ page isErrorPage="true" %>

This directive makes an object of type javax.servlet.jsp.ErrorData avail-
able to the error page so that you can retrieve, interpret, and possibly display
information about the cause of the exception in the error page. You access the
error data object in an expression language (see Expression Language, page 499)
expression via the page context. Thus, ${pageContext.errorData.status-

Code} is used to retrieve the status code, and ${pageContext.error-

Data.throwable} retrieves the exception. If the exception is generated during

../examples/web/bookstore2/web/template/prelude.txt
../examples/web/bookstore2/web/template/errorpage.txt
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/jsp/ErrorData.html

496
the evaluation of an EL expression, you can retrieve the root cause of the excep-
tion using this expression:

${pageContext.errorData.throwable.rootCause}

For example, the error page for Duke’s Bookstore is as follows:

<%@ page isErrorPage="true" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core"

prefix="c" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt"

prefix="fmt" %>
<html>
<head>
<title><fmt:message key="ServerError"/></title>
</head>
<body bgcolor="white">
<h3>
<fmt:message key="ServerError"/>
</h3>
<p>
${pageContext.errorData.throwable}
<c:choose>

<c:when test="${!empty
pageContext.errorData.throwable.cause}">
: ${pageContext.errorData.throwable.cause}

</c:when>
<c:when test="${!empty

pageContext.errorData.throwable.rootCause}">
: ${pageContext.errorData.throwable.rootCause}

</c:when>
</c:choose>
</body>
</html>

Note: You can also define error pages for the WAR that contains a JSP page. If error
pages are defined for both the WAR and a JSP page, the JSP page’s error page takes
precedence.

Creating Static Content
You create static content in a JSP page simply by writing it as if you were creat-
ing a page that consisted only of that content. Static content can be expressed in

CREATING DYNAMIC CONTENT 497
any text-based format, such as HTML, Wireless Markup Language (WML), and
XML. The default format is HTML. If you want to use a format other than
HTML, at the beginning of your JSP page you include a page directive with the
contentType attribute set to the content type. The purpose of the contentType

directive is to allow the browser to correctly interpret the resulting content. So if
you wanted a page to contain data expressed in WML, you would include the
following directive:

<%@ page contentType="text/vnd.wap.wml"%>

A registry of content type names is kept by the IANA at

http://www.iana.org/assignments/media-types/

Response and Page Encoding
You also use the contentType attribute to specify the encoding of the response.
For example, the date application specifies that the page should be encoded
using UTF-8, an encoding that supports almost all locales, using the following
page directive:

<%@ page contentType="text/html; charset=UTF-8" %>

If the response encoding weren’t set, the localized dates would not be rendered
correctly.

To set the source encoding of the page itself, you would use the following page

directive.

<%@ page pageEncoding="UTF-8" %>

You can also set the page encoding of a set of JSP pages. The value of the page
encoding varies depending on the configuration specified in the JSP configura-
tion section of the web application deployment descriptor (see Declaring Page
Encodings, page 523).

Creating Dynamic Content
You create dynamic content by accessing Java programming language object
properties.

http://www.iana.org/assignments/media-types/

498
Using Objects within JSP Pages
You can access a variety of objects, including enterprise beans and JavaBeans
components, within a JSP page. JSP technology automatically makes some
objects available, and you can also create and access application-specific objects.

Using Implicit Objects
Implicit objects are created by the web container and contain information related
to a particular request, page, session, or application. Many of the objects are
defined by the Java servlet technology underlying JSP technology and are dis-
cussed at length in Chapter 11. The section Implicit Objects (page 502) explains
how you access implicit objects using the JSP expression language.

Using Application-Specific Objects
When possible, application behavior should be encapsulated in objects so that
page designers can focus on presentation issues. Objects can be created by devel-
opers who are proficient in the Java programming language and in accessing
databases and other services. The main way to create and use application-spe-
cific objects within a JSP page is to use JSP standard tags (discussed in Java-
Beans Components, page 507) to create JavaBeans components and set their
properties, and EL expressions to access their properties. You can also access
JavaBeans components and other objects in scripting elements, which are
described in Chapter 16.

Using Shared Objects
The conditions affecting concurrent access to shared objects (described in Con-
trolling Concurrent Access to Shared Resources, page 454) apply to objects
accessed from JSP pages that run as multithreaded servlets. You can use the fol-
lowing page directive to indicate how a web container should dispatch multiple
client requests

<%@ page isThreadSafe="true|false" %>

When the isThreadSafe attribute is set to true, the web container can choose to
dispatch multiple concurrent client requests to the JSP page. This is the default
setting. If using true, you must ensure that you properly synchronize access to
any shared objects defined at the page level. This includes objects created within

EXPRESSION LANGUAGE 499
declarations, JavaBeans components with page scope, and attributes of the page
context object (see Implicit Objects, page 502).

If isThreadSafe is set to false, requests are dispatched one at a time in the
order they were received, and access to page-level objects does not have to be
controlled. However, you still must ensure that access is properly synchronized
to attributes of the application or session scope objects and to JavaBeans
components with application or session scope. Furthermore, it is not recom-
mended to set isThreadSafe to false: The JSP page’s generated servlet will
implement the javax.servlet.SingleThreadModel interface, and because the
Servlet 2.4 specification deprecates SingleThreadModel, the generated servlet
will contain deprecated code.

Expression Language
A primary feature of JSP technology version 2.0 is its support for an expression
language (EL). An expression language makes it possible to easily access appli-
cation data stored in JavaBeans components. For example, the JSP expression
language allows a page author to access a bean using simple syntax such as
${name} for a simple variable or ${name.foo.bar} for a nested property.

The test attribute of the following conditional tag is supplied with an EL
expression that compares the number of items in the session-scoped bean named
cart with 0:

<c:if test="${sessionScope.cart.numberOfItems > 0}">
...

</c:if>

The JSP expression evaluator is responsible for handling EL expressions, which
are enclosed by the ${ } characters and can include literals. Here’s an example:

<c:if test="${bean1.a < 3}" >
...

</c:if>

Any value that does not begin with ${ is treated as a literal and is parsed to the
expected type using the PropertyEditor for the type:

<c:if test="true" >
...
</c:if>

500
Literal values that contain the ${ characters must be escaped as follows:

<mytags:example attr1="an expression is ${'${'}true}" />

Deactivating Expression Evaluation
Because the pattern that identifies EL expressions—${ }—was not reserved in
the JSP specifications before JSP 2.0, there may be applications where such a
pattern is intended to pass through verbatim. To prevent the pattern from being
evaluated, you can deactivate EL evaluation.

To deactivate the evaluation of EL expressions, you specify the isELIgnored

attribute of the page directive:

<%@ page isELIgnored ="true|false" %>

The valid values of this attribute are true and false. If it is true, EL expres-
sions are ignored when they appear in static text or tag attributes. If it is false,
EL expressions are evaluated by the container.

The default value varies depending on the version of the web application deploy-
ment descriptor. The default mode for JSP pages delivered using a Servlet 2.3 or
earlier descriptor is to ignore EL expressions; this provides backward compati-
bility. The default mode for JSP pages delivered with a Servlet 2.4 descriptor is
to evaluate EL expressions; this automatically provides the default that most
applications want. You can also deactivate EL expression evaluation for a group
of JSP pages (see Deactivating EL Expression Evaluation, page 522).

Using Expressions
EL expressions can be used:

• In static text

• In any standard or custom tag attribute that can accept an expression

The value of an expression in static text is computed and inserted into the current
output. If the static text appears in a tag body, note that an expression will not be
evaluated if the body is declared to be tagdependent (see body-content
Attribute, page 591).

EXPRESSION LANGUAGE 501
There are three ways to set a tag attribute value:

• With a single expression construct:
<some:tag value="${expr}"/>

The expression is evaluated and the result is coerced to the attribute’s
expected type.

• With one or more expressions separated or surrounded by text:
<some:tag value="some${expr}${expr}text${expr}"/>

The expressions are evaluated from left to right. Each expression is
coerced to a String and then concatenated with any intervening text. The
resulting String is then coerced to the attribute’s expected type.

• With text only:
<some:tag value="sometext"/>

In this case, the attribute’s String value is coerced to the attribute’s
expected type.

Expressions used to set attribute values are evaluated in the context of an
expected type. If the result of the expression evaluation does not match the
expected type exactly, a type conversion will be performed. For example, the
expression ${1.2E4} provided as the value of an attribute of type float will
result in the following conversion:

Float.valueOf("1.2E4").floatValue()

See section JSP2.8 of the JSP 2.0 specification for the complete type conversion
rules.

Variables
The web container evaluates a variable that appears in an expression by looking
up its value according to the behavior of PageContext.findAt-

tribute(String). For example, when evaluating the expression ${product},
the container will look for product in the page, request, session, and application
scopes and will return its value. If product is not found, null is returned. A vari-
able that matches one of the implicit objects described in Implicit
Objects (page 502) will return that implicit object instead of the variable’s value.

Properties of variables are accessed using the . operator and can be nested arbi-
trarily.

http://java.sun.com/products/jsp/download.html#specs

502
The JSP expression language unifies the treatment of the . and [] operators.
expr-a.identifier-b is equivalent to expr-a["identifier-b"]; that is, the
expression expr-b is used to construct a literal whose value is the identifier, and
then the [] operator is used with that value.

To evaluate expr-a[expr-b], evaluate expr-a into value-a and evaluate expr-

b into value-b. If either value-a or value-b is null, return null.

• If value-a is a Map, return value-a.get(value-b). If !value-a.con-

tainsKey(value-b), then return null.

• If value-a is a List or array, coerce value-b to int and return value-

a.get(value-b) or Array.get(value-a, value-b), as appropriate. If
the coercion couldn’t be performed, an error is returned. If the get call
returns an IndexOutOfBoundsException, null is returned. If the get call
returns another exception, an error is returned.

• If value-a is a JavaBeans object, coerce value-b to String. If value-b is
a readable property of value-a, then return the result of a get call. If the
get method throws an exception, an error is returned.

Implicit Objects
The JSP expression language defines a set of implicit objects:

• pageContext: The context for the JSP page. Provides access to various
objects including:

• servletContext: The context for the JSP page’s servlet and any web
components contained in the same application. See Accessing the Web
Context (page 473).

• session: The session object for the client. See Maintaining Client
State (page 474).

• request: The request triggering the execution of the JSP page. See Get-
ting Information from Requests (page 458).

• response: The response returned by the JSP page. See Constructing
Responses (page 460).

EXPRESSION LANGUAGE 503
In addition, several implicit objects are available that allow easy access to the
following objects:

• param: Maps a request parameter name to a single value

• paramValues: Maps a request parameter name to an array of values

• header: Maps a request header name to a single value

• headerValues: Maps a request header name to an array of values

• cookie: Maps a cookie name to a single cookie

• initParam: Maps a context initialization parameter name to a single value

Finally, there are objects that allow access to the various scoped variables
described in Using Scope Objects (page 453).

• pageScope: Maps page-scoped variable names to their values

• requestScope: Maps request-scoped variable names to their values

• sessionScope: Maps session-scoped variable names to their values

• applicationScope: Maps application-scoped variable names to their val-
ues

When an expression references one of these objects by name, the appropriate
object is returned instead of the corresponding attribute. For example, ${page-
Context} returns the PageContext object, even if there is an existing pageCon-

text attribute containing some other value.

Literals
The JSP expression language defines the following literals:

• Boolean: true and false

• Integer: as in Java

• Floating point: as in Java

• String: with single and double quotes; " is escaped as \", ' is escaped as
\', and \ is escaped as \\.

• Null: null

504
Operators
In addition to the . and [] operators discussed in Variables (page 501), the JSP
expression language provides the following operators:

• Arithmetic: +, - (binary), *, / and div, % and mod, - (unary)

• Logical: and, &&, or, ||, not, !

• Relational: ==, eq, !=, ne, <, lt, >, gt, <=, ge, >=, le. Comparisons can be
made against other values, or against boolean, string, integer, or floating
point literals.

• Empty: The empty operator is a prefix operation that can be used to deter-
mine whether a value is null or empty.

• Conditional: A ? B : C. Evaluate B or C, depending on the result of the
evaluation of A.

The precedence of operators highest to lowest, left to right is as follows:

• [] .

• () - Used to change the precedence of operators.

• - (unary) not ! empty
• * / div % mod

• + - (binary)
• < > <= >= lt gt le ge

• == != eq ne

• && and

• || or

• ? :

Reserved Words
The following words are reserved for the JSP expression language and should
not be used as identifiers.

and eq gt true instanceof
or ne le false empty
not lt ge null div mod

Note that many of these words are not in the language now, but they may be in
the future, so you should avoid using them.

EXPRESSION LANGUAGE 505
Examples
Table 12–2 contains example EL expressions and the result of evaluating them.

Table 12–2 Example Expressions

EL Expression Result

${1 > (4/2)} false

${4.0 >= 3} true

${100.0 == 100} true

${(10*10) ne 100} false

${'a' < 'b'} true

${'hip' gt 'hit'} false

${4 > 3} true

${1.2E4 + 1.4} 12001.4

${3 div 4} 0.75

${10 mod 4} 2

${empty param.Add}
True if the request parameter named Add is
null or an empty string

${pageContext.request.contextPath} The context path

${sessionScope.cart.numberOfItems}
The value of the numberOfItems property
of the session-scoped attribute named cart

${param['mycom.productId']}
The value of the request parameter named
mycom.productId

${header["host"]} The host

${departments[deptName]}
The value of the entry named deptName in
the departments map

${requestScope['javax.servlet.
forward.servlet_path']}

The value of the request-scoped attribute
named javax.servlet.
forward.servlet_path

506
Functions
The JSP expression language allows you to define a function that can be invoked
in an expression. Functions are defined using the same mechanisms as custom
tags (See Using Custom Tags, page 513 and Chapter 15).

Using Functions
Functions can appear in static text and tag attribute values.

To use a function in a JSP page, you use a taglib directive to import the tag
library containing the function. Then you preface the function invocation with
the prefix declared in the directive.

For example, the date example page index.jsp imports the /functions library
and invokes the function equals in an expression:

<%@ taglib prefix="f" uri="/functions"%>
...

<c:when
test="${f:equals(selectedLocaleString,

localeString)}" >

Defining Functions
To define a function you program it as a public static method in a public class.
The mypkg.MyLocales class in the date example defines a function that tests the
equality of two Strings as follows:

package mypkg;
public class MyLocales {

...
public static boolean equals(String l1, String l2) {

return l1.equals(l2);
}

}

Then you map the function name as used in the EL expression to the defining
class and function signature in a TLD. The following functions.tld file in the

JAVABEANS COMPONENTS 507
date example maps the equals function to the class containing the implementa-
tion of the function equals and the signature of the function:

<function>
<name>equals</name>
<function-class>mypkg.MyLocales</function-class>
<function-signature>boolean equals(java.lang.String,

java.lang.String)</function-signature>
</function>

A tag library can have only one function element that has any given name ele-
ment.

JavaBeans Components
JavaBeans components are Java classes that can be easily reused and composed
together into applications. Any Java class that follows certain design conventions
is a JavaBeans component.

JavaServer Pages technology directly supports using JavaBeans components
with standard JSP language elements. You can easily create and initialize beans
and get and set the values of their properties.

JavaBeans Component Design
Conventions
JavaBeans component design conventions govern the properties of the class and
govern the public methods that give access to the properties.

A JavaBeans component property can be

• Read/write, read-only, or write-only

• Simple, which means it contains a single value, or indexed, which means
it represents an array of values

A property does not have to be implemented by an instance variable. It must sim-
ply be accessible using public methods that conform to the following conven-
tions:

• For each readable property, the bean must have a method of the form

PropertyClass getProperty() { ... }

508
• For each writable property, the bean must have a method of the form

setProperty(PropertyClass pc) { ... }

In addition to the property methods, a JavaBeans component must define a con-
structor that takes no parameters.

The Duke’s Bookstore application JSP pages bookstore.jsp, bookde-

tails.jsp, catalog.jsp, and showcart.jsp use the database.BookDB and
database.BookDetails JavaBeans components. BookDB provides a JavaBeans
component front end to the access object database.BookDBAO. The JSP pages
showcart.jsp and cashier.jsp access the bean cart.ShoppingCart, which
represents a user’s shopping cart.

The BookDB bean has two writable properties, bookId and database, and three
readable properties: bookDetails, numberOfBooks, and books. These latter
properties do not correspond to any instance variables but rather are a function of
the bookId and database properties.

package database;
public class BookDB {

private String bookId = "0";
private BookDBAO database = null;
public BookDB () {
}
public void setBookId(String bookId) {
this.bookId = bookId;
}
public void setDatabase(BookDBAO database) {
this.database = database;
}
public BookDetails getBookDetails() throws

BookNotFoundException {
return (BookDetails)database.getBookDetails(bookId);

}
public List getBooks() throws BooksNotFoundException {

return database.getBooks();
}
public void buyBooks(ShoppingCart cart)

throws OrderException {
database.buyBooks(cart);

}
public int getNumberOfBooks() throws BooksNotFoundException {

return database.getNumberOfBooks();
}

}

../examples/web/bookstore2/src/database/BookDB.java
../examples/web/bookstore/src/database/BookDetails.java
../examples/web/bookstore/src/cart/ShoppingCart.java

JAVABEANS COMPONENTS 509
Creating and Using a JavaBeans
Component
To declare that your JSP page will use a JavaBeans component, you use a
jsp:useBean element. There are two forms:

<jsp:useBean id="beanName"
class="fully_qualified_classname" scope="scope"/>

and

<jsp:useBean id="beanName"
class="fully_qualified_classname" scope="scope">
<jsp:setProperty .../>

</jsp:useBean>

The second form is used when you want to include jsp:setProperty state-
ments, described in the next section, for initializing bean properties.

The jsp:useBean element declares that the page will use a bean that is stored
within and is accessible from the specified scope, which can be application,
session, request, or page. If no such bean exists, the statement creates the bean
and stores it as an attribute of the scope object (see Using Scope
Objects, page 453). The value of the id attribute determines the name of the
bean in the scope and the identifier used to reference the bean in EL expressions,
other JSP elements, and scripting expressions (see Chapter 16). The value sup-
plied for the class attribute must be a fully qualified class name. Note that beans
cannot be in the unnamed package. Thus the format of the value must be
package_name.class_name.

The following element creates an instance of mypkg.myLocales if none exists,
stores it as an attribute of the application scope, and makes the bean available
throughout the application by the identifier locales:

<jsp:useBean id="locales" scope="application"
class="mypkg.MyLocales"/>

510
Setting JavaBeans Component
Properties
The standard way to set JavaBeans component properties in a JSP page is by
using the jsp:setProperty element. The syntax of the jsp:setProperty ele-
ment depends on the source of the property value. Table 12–3 summarizes the
various ways to set a property of a JavaBeans component using the jsp:set-

Property element.

A property set from a constant string or request parameter must have one of the
types listed in Table 12–4. Because constants and request parameters are strings,

Table 12–3 Valid Bean Property Assignments from String Values

Value Source Element Syntax

String constant
<jsp:setProperty name="beanName"

property="propName" value="string constant"/>

Request parameter
<jsp:setProperty name="beanName"

property="propName" param="paramName"/>

Request parameter name
that matches bean property

<jsp:setProperty name="beanName"
property="propName"/>

<jsp:setProperty name="beanName"
property="*"/>

Expression

<jsp:setProperty name="beanName"
property="propName" value="expression"/>

<jsp:setProperty name="beanName"
property="propName" >
<jsp:attribute name="value">
expression
</jsp:attribute>

</jsp:setProperty>

1. beanName must be the same as that specified for the id
attribute in a useBean element.
2. There must be a setPropName method in the JavaBeans
component.
3. paramName must be a request parameter name.

JAVABEANS COMPONENTS 511
the web container automatically converts the value to the property’s type; the
conversion applied is shown in the table.

String values can be used to assign values to a property that has a PropertyEd-

itor class. When that is the case, the setAsText(String) method is used. A
conversion failure arises if the method throws an IllegalArgumentException.

The value assigned to an indexed property must be an array, and the rules just
described apply to the elements.

You use an expression to set the value of a property whose type is a compound
Java programming language type. The type returned from an expression must
match or be castable to the type of the property.

Table 12–4 Valid Property Value Assignments from String Values

Property Type Conversion on String Value

Bean Property Uses setAsText(string-literal)

boolean or Boolean As indicated in java.lang.Boolean.valueOf(String)

byte or Byte As indicated in java.lang.Byte.valueOf(String)

char or Character As indicated in java.lang.String.charAt(0)

double or Double As indicated in java.lang.Double.valueOf(String)

int or Integer As indicated in java.lang.Integer.valueOf(String)

float or Float As indicated in java.lang.Float.valueOf(String)

long or Long As indicated in java.lang.Long.valueOf(String)

short or Short As indicated in java.lang.Short.valueOf(String)

Object new String(string-literal)

512
The Duke’s Bookstore application demonstrates how to use the setProperty

element to set the current book from a request parameter in the database bean in
bookstore2/web/bookdetails.jsp:

<c:set var="bid" value="${param.bookId}"/>
<jsp:setProperty name="bookDB" property="bookId"

value="${bid}" />

The following fragment from the page bookstore2/web/bookshowcart.jsp

illustrates how to initialize a BookDB bean with a database object. Because the
initialization is nested in a useBean element, it is executed only when the bean is
created.

<jsp:useBean id="bookDB" class="database.BookDB" scope="page">
<jsp:setProperty name="bookDB" property="database"

value="${bookDBAO}" />
</jsp:useBean>

Retrieving JavaBeans Component
Properties
The main way to retrieve JavaBeans component properties is by using the JSP
EL expressions. Thus, to retrieve a book title, the Duke’s Bookstore application
uses the following expression:

${bookDB.bookDetails.title}

Another way to retrieve component properties is to use the jsp:getProperty

element. This element converts the value of the property into a String and
inserts the value into the response stream:

<jsp:getProperty name="beanName" property="propName"/>

Note that beanName must be the same as that specified for the id attribute in a
useBean element, and there must be a getPropName method in the JavaBeans
component. Although the preferred approach to getting properties is to use an
EL expression, the getProperty element is available if you need to disable
expression evaluation.

../examples/web/bookstore2/web/bookdetails.txt
../examples/web/bookstore2/web/bookshowcart.txt

USING CUSTOM TAGS 513
Using Custom Tags
Custom tags are user-defined JSP language elements that encapsulate recurring
tasks. Custom tags are distributed in a tag library, which defines a set of related
custom tags and contains the objects that implement the tags.

Custom tags have the syntax

<prefix:tag attr1="value" ... attrN="value" />

or

<prefix:tag attr1="value" ... attrN="value" >
body

</prefix:tag>

where prefix distinguishes tags for a library, tag is the tag identifier, and attr1

... attrN are attributes that modify the behavior of the tag.

To use a custom tag in a JSP page, you must

• Declare the tag library containing the tag

• Make the tag library implementation available to the web application

See Chapter 15 for detailed information on the different types of tags and how to
implement tags.

Declaring Tag Libraries
To declare that a JSP page will use tags defined in a tag library, you include a
taglib directive in the page before any custom tag from that tag library is used.
If you forget to include the taglib directive for a tag library in a JSP page, the
JSP compiler will treat any invocation of a custom tag from that library as static
data and will simply insert the text of the custom tag call into the response.

<%@ taglib prefix="tt" [tagdir=/WEB-INF/tags/dir | uri=URI] %>

The prefix attribute defines the prefix that distinguishes tags defined by a given
tag library from those provided by other tag libraries.

If the tag library is defined with tag files (see Encapsulating Reusable Content
Using Tag Files, page 586), you supply the tagdir attribute to identify the loca-
tion of the files. The value of the attribute must start with /WEB-INF/tags/. A

514
translation error will occur if the value points to a directory that doesn’t exist or
if it is used in conjunction with the uri attribute.

The uri attribute refers to a URI that uniquely identifies the tag library descrip-
tor (TLD), a document that describes the tag library (see Tag Library
Descriptors, page 602).

Tag library descriptor file names must have the extension .tld. TLD files are
stored in the WEB-INF directory or subdirectory of the WAR file or in the META-

INF/ directory or subdirectory of a tag library packaged in a JAR. You can refer-
ence a TLD directly or indirectly.

The following taglib directive directly references a TLD file name:

<%@ taglib prefix="tlt" uri="/WEB-INF/iterator.tld"%>

This taglib directive uses a short logical name to indirectly reference the TLD:

<%@ taglib prefix="tlt" uri="/tlt"%>

The iterator example defines and uses a simple iteration tag. The JSP pages
use a logical name to reference the TLD. A sample iterator.war is provided in
<INSTALL>/j2eetutorial14/examples/web/provided-wars/. To build the
example, follow these steps:

1. In a terminal window, go to <INSTALL>/j2eetutorial14/examples/

web/iterator/.

2. Run asant build. This target will spawn any necessary compilations and
will copy files to the <INSTALL>/j2eetutorial14/examples/web/iter-
ator/build/ directory.

To package and deploy the example using asant, follow these steps:

1. Run asant create-war.

2. Run asant deploy-war.

To learn how to configure the example, use deploytool to package and deploy
it:

1. Start deploytool.

2. Create a web application called iterator by running the New Web Com-
ponent wizard. Select File→New→Web Component.

3. In the New Web Component wizard:

a. Select the Create New Stand-Alone WAR Module radio button.

USING CUSTOM TAGS 515
b. In the WAR File field, enter <INSTALL>/docs/tutorial/examples/

web/iterator/iterator.war. The WAR Display Name field shows
iterator.

c. In the Context Root field, enter /iterator.

d. Click Edit Contents.

e. In the Edit Contents dialog box, navigate to <INSTALL>/docs/tuto-

rial/examples/web/iterator/build/. Select the index.jsp and
list.jsp JSP pages and iterator.tld and click Add. Notice that
iterator.tld is put into /WEB-INF/. Click OK.

f. Click Next.

g. Select the No Component radio button, then click Next.

h. Click Finish.

You map a logical name to an absolute location in the web application deploy-
ment descriptor. For the iterator example, map the logical name /tlt to the abso-
lute location /WEB-INF/iterator.tld using deploytool by following these
steps:

1. Select the File Ref’s tab.

2. Click the Add Tag Library button in the JSP Tag Libraries tab.

3. Enter the relative URI /tlt in the URI column.

4. Enter the absolute location /WEB-INF/iterator.tld in the Location col-
umn.

You can also reference a TLD in a taglib directive by using an absolute URI.
For example, the absolute URIs for the JSTL library are as follows:

• Core: http://java.sun.com/jsp/jstl/core

• XML: http://java.sun.com/jsp/jstl/xml

• Internationalization: http://java.sun.com/jsp/jstl/fmt

• SQL: http://java.sun.com/jsp/jstl/sql

• Functions: http://java.sun.com/jsp/jstl/functions

When you reference a tag library with an absolute URI that exactly matches the
URI declared in the taglib element of the TLD (see Tag Library
Descriptors, page 602), you do not have to add the taglib element to web.xml;
the JSP container automatically locates the TLD inside the JSTL library imple-
mentation.

516
Including the Tag Library
Implementation
In addition to declaring the tag library, you also must make the tag library imple-
mentation available to the web application. There are several ways to do this. Tag
library implementations can be included in a WAR in an unpacked format: Tag
files are packaged in the /WEB-INF/tag/ directory, and tag handler classes are
packaged in the /WEB-INF/classes/ directory of the WAR. Tag libraries already
packaged into a JAR file are included in the /WEB-INF/lib/ directory of the
WAR. Finally, an application server can load a tag library into all the web appli-
cations running on the server. For example, in the Application Server, the JSTL
TLDs and libraries are distributed in the archive appserv-jstl.jar in
<J2EE_HOME>/lib/. This library is automatically loaded into the classpath of all
web applications running on the Application Server so you don’t need to add it
to your web application.

To package the iterator tag library implementation in the /WEB-INF/classes/

directory and deploy the iterator example with deploytool, follow these
steps:

1. Select the General tab.

2. Click Edit Contents.

3. Add the iterator tag library classes.

a. In the Edit Contents dialog box, navigate to <INSTALL>/docs/tuto-

rial/examples/web/iterator/build/.

b. Select the iterator and myorg packages and click Add. Notice that the
tag library implementation classes are packaged into /WEB-INF/

classes/.

4. Click OK.

5. Select File→Save.

6. Start the Application Server.

7. Deploy the application.

a. Select Tools→Deploy.

b. Click OK.

To run the iterator application, open the URL http://localhost:8080/

iterator in a browser.

REUSING CONTENT IN JSP PAGES 517
Reusing Content in JSP Pages
There are many mechanisms for reusing JSP content in a JSP page. Three mech-
anisms that can be categorized as direct reuse—the include directive, preludes
and codas, and the jsp:include element—are discussed here. An indirect
method of content reuse occurs when a tag file is used to define a custom tag that
is used by many web applications. Tag files are discussed in the section Encapsu-
lating Reusable Content Using Tag Files (page 586) in Chapter 15.

The include directive is processed when the JSP page is translated into a servlet
class. The effect of the directive is to insert the text contained in another file—
either static content or another JSP page—into the including JSP page. You
would probably use the include directive to include banner content, copyright
information, or any chunk of content that you might want to reuse in another
page. The syntax for the include directive is as follows:

<%@ include file="filename" %>

For example, all the Duke’s Bookstore application pages could include the file
banner.jspf, which contains the banner content, by using the following direc-
tive:

<%@ include file="banner.jspf" %>

Another way to do a static include is to use the prelude and coda mechanisms
described in Defining Implicit Includes (page 523). This is the approach used by
the Duke’s Bookstore application.

Because you must put an include directive in each file that reuses the resource
referenced by the directive, this approach has its limitations. Preludes and codas
can be applied only to the beginnings and ends of pages. For a more flexible
approach to building pages out of content chunks, see A Template Tag
Library (page 624).

The jsp:include element is processed when a JSP page is executed. The
include action allows you to include either a static or a dynamic resource in a
JSP file. The results of including static and dynamic resources are quite different.
If the resource is static, its content is inserted into the calling JSP file. If the
resource is dynamic, the request is sent to the included resource, the included
page is executed, and then the result is included in the response from the calling
JSP page. The syntax for the jsp:include element is

<jsp:include page="includedPage" />

../examples/web/bookstore2/web/template/banner.txt

518
The hello1 application discussed in Packaging Web Modules (page 90) uses the
following statement to include the page that generates the response:

<jsp:include page="response.jsp"/>

Transferring Control to Another Web
Component

The mechanism for transferring control to another web component from a JSP
page uses the functionality provided by the Java Servlet API as described in
Transferring Control to Another Web Component (page 472). You access this
functionality from a JSP page by using the jsp:forward element:

<jsp:forward page="/main.jsp" />

Note that if any data has already been returned to a client, the jsp:forward ele-
ment will fail with an IllegalStateException.

jsp:param Element
When an include or forward element is invoked, the original request object is
provided to the target page. If you wish to provide additional data to that page,
you can append parameters to the request object by using the jsp:param ele-
ment:

<jsp:include page="..." >
<jsp:param name="param1" value="value1"/>

</jsp:include>

When jsp:include or jsp:forward is executed, the included page or for-
warded page will see the original request object, with the original parameters
augmented with the new parameters and new values taking precedence over
existing values when applicable. For example, if the request has a parameter
A=foo and a parameter A=bar is specified for forward, the forwarded request will
have A=bar,foo. Note that the new parameter has precedence.

The scope of the new parameters is the jsp:include or jsp:forward call; that
is, in the case of an jsp:include the new parameters (and values) will not apply
after the include.

INCLUDING AN APPLET 519
Including an Applet
You can include an applet or a JavaBeans component in a JSP page by using the
jsp:plugin element. This element generates HTML that contains the appropri-
ate client-browser-dependent construct (<object> or <embed>) that will result in
the download of the Java Plug-in software (if required) and the client-side com-
ponent and in the subsequent execution of any client-side component. The syn-
tax for the jsp:plugin element is as follows:

<jsp:plugin
type="bean|applet"
code="objectCode"
codebase="objectCodebase"
{ align="alignment" }
{ archive="archiveList" }
{ height="height" }
{ hspace="hspace" }
{ jreversion="jreversion" }
{ name="componentName" }
{ vspace="vspace" }
{ width="width" }
{ nspluginurl="url" }
{ iepluginurl="url" } >
{ <jsp:params>

{ <jsp:param name="paramName" value= paramValue" /> }+
</jsp:params> }
{ <jsp:fallback> arbitrary_text </jsp:fallback> }

</jsp:plugin>

The jsp:plugin tag is replaced by either an <object> or an <embed> tag as
appropriate for the requesting client. The attributes of the jsp:plugin tag pro-
vide configuration data for the presentation of the element as well as the version
of the plug-in required. The nspluginurl and iepluginurl attributes override
the default URL where the plug-in can be downloaded.

The jsp:params element specifies parameters to the applet or JavaBeans com-
ponent. The jsp:fallback element indicates the content to be used by the client
browser if the plug-in cannot be started (either because <object> or <embed> is
not supported by the client or because of some other problem).

If the plug-in can start but the applet or JavaBeans component cannot be found or
started, a plug-in-specific message will be presented to the user, most likely a
pop-up window reporting a ClassNotFoundException.

520
The Duke’s Bookstore page /template/prelude.jspf creates the banner that
displays a dynamic digital clock generated by DigitalClock (see Figure 12–3).

Figure 12–3 Duke’s Bookstore with Applet

Here is the jsp:plugin element that is used to download the applet:

<jsp:plugin
type="applet"
code="DigitalClock.class"
codebase="/bookstore2"
jreversion="1.4"
align="center" height="25" width="300"
nspluginurl="http://java.sun.com/j2se/1.4.2/download.html"
iepluginurl="http://java.sun.com/j2se/1.4.2/download.html" >
<jsp:params>

<jsp:param name="language"

../examples/web/bookstore2/web/template/prelude.txt

SETTING PROPERTIES FOR GROUPS OF JSP PAGES 521
value="${pageContext.request.locale.language}" />
<jsp:param name="country"

value="${pageContext.request.locale.country}" />
<jsp:param name="bgcolor" value="FFFFFF" />
<jsp:param name="fgcolor" value="CC0066" />

</jsp:params>
<jsp:fallback>

<p>Unable to start plugin.</p>
</jsp:fallback>

</jsp:plugin>

Setting Properties for Groups of JSP
Pages

It is possible to specify certain properties for a group of JSP pages:

• Expression language evaluation

• Treatment of scripting elements (see Disabling Scripting, page 634)

• Page encoding

• Automatic prelude and coda includes

A JSP property group is defined by naming the group and specifying one or
more URL patterns; all the properties in the group apply to the resources that
match any of the URL patterns. If a resource matches URL patterns in more than
one group, the pattern that is most specific applies. To define a property group
using deploytool, follow these steps:

1. Select the WAR.

2. Select the JSP Properties tab.

3. Click the Add button next to the Name list.

4. Enter the name of the property group.

5. Click the Add button next to the URL Pattern list.

6. Enter the URL pattern (a regular expression, such as *.jsp).

The following sections discuss the properties and explain how they are inter-
preted for various combinations of group properties, individual page directives,
and web application deployment descriptor versions.

522
Deactivating EL Expression Evaluation
Each JSP page has a default mode for EL expression evaluation. The default
value varies depending on the version of the web application deployment
descriptor. The default mode for JSP pages delivered using a Servlet 2.3 or ear-
lier descriptor is to ignore EL expressions; this provides backward compatibility.
The default mode for JSP pages delivered with a Servlet 2.4 descriptor is to eval-
uate EL expressions; this automatically provides the default that most applica-
tions want. For tag files (see Encapsulating Reusable Content Using Tag
Files, page 586), the default is to always evaluate expressions.

You can override the default mode through the isELIgnored attribute of the
page directive in JSP pages and through the isELIgnored attribute of the tag

directive in tag files. You can also explicitly change the default mode by setting
the value of the EL Evaluation Ignored checkbox in the JSP Properties tab. Table
12–5 summarizes the EL evaluation settings for JSP pages and their meanings.

Table 12–5 EL Evaluation Settings for JSP Pages

JSP Configuration
Page Directive
isELIgnored EL Encountered

Unspecified Unspecified Evaluated if 2.4 web.xml

Ignored if <= 2.3 web.xml

false Unspecified Evaluated

true Unspecified Ignored

Overridden by page
directive

false Evaluated

Overridden by page
directive

true Ignored

SETTING PROPERTIES FOR GROUPS OF JSP PAGES 523
Table 12–6 summarizes the EL evaluation settings for tag files and their mean-
ings.

Declaring Page Encodings
You set the page encoding of a group of JSP pages by selecting a page encoding
from the Page Encoding drop-down list. Valid values are the same as those of the
pageEncoding attribute of the page directive. A translation-time error results if
you define the page encoding of a JSP page with one value in the JSP configura-
tion element and then give it a different value in a pageEncoding directive.

Defining Implicit Includes
You can implicitly include preludes and codas for a group of JSP pages by add-
ing items to the Include Preludes and Codas lists. Their values are context-rela-
tive paths that must correspond to elements in the web application. When the
elements are present, the given paths are automatically included (as in an
include directive) at the beginning and end, respectively, of each JSP page in
the property group. When there is more than one include or coda element in a
group, they are included in the order they appear. When more than one JSP prop-
erty group applies to a JSP page, the corresponding elements will be processed
in the same order as they appear in the JSP configuration section.

For example, the Duke’s Bookstore application uses the files /template/pre-

lude.jspf and /template/coda.jspf to include the banner and other boiler-
plate in each screen. To add these files to the Duke’s Bookstore property group
using deploytool, follow these steps:

1. Define a property group with name bookstore2 and URL pattern *.jsp.

2. Click the Edit button next to the Include Preludes list.

Table 12–6 EL Evaluation Settings for Tag Files

Tag Directive isELIgnored EL Encountered

Unspecified Evaluated

false Evaluated

true Ignored

524
3. Click Add.

4. Enter /template/prelude.jspf.

5. Click OK.

6. Click the Edit button next to the Include Codas list.

7. Click Add.

8. Enter /template/coda.jspf.

9. Click OK.

Preludes and codas can put the included code only at the beginning and end of
each file. For a more flexible approach to building pages out of content chunks,
see A Template Tag Library (page 624).

Further Information
For further information on JavaServer Pages technology, see the following:

• JavaServer Pages 2.0 specification:
http://java.sun.com/products/jsp/download.html#specs

• The JavaServer Pages web site:
http://java.sun.com/products/jsp

http://java.sun.com/products/jsp/download.html#specs
http://java.sun.com/products/jsp

13
525
JavaServer Pages
Documents

A JSP document is a JSP page written in XML syntax as opposed to the stan-
dard syntax described in Chapter 12. Because it is written in XML syntax, a JSP
document is also an XML document and therefore gives you all the benefits
offered by the XML standard:

• You can author a JSP document using one of the many XML-aware tools
on the market, enabling you to ensure that your JSP document is well-
formed XML.

• You can validate the JSP document against a document type definition
(DTD).

• You can nest and scope namespaces within a JSP document.

• You can use a JSP document for data interchange between web applica-
tions and as part of a compile-time XML pipeline.

In addition to these benefits, the XML syntax gives the JSP page author less
complexity and more flexibility. For example, a page author can use any XML
document as a JSP document. Also, elements in XML syntax can be used in JSP
pages written in standard syntax, allowing a gradual transition from JSP pages to
JSP documents.

This chapter gives you details on the benefits of JSP documents and uses a sim-
ple example to show you how easy it is to create a JSP document.

526
You can also write tag files in XML syntax. This chapter covers only JSP docu-
ments. Writing tag files in XML syntax will be addressed in a future release of
the tutorial.

The Example JSP Document
This chapter uses the Duke’s Bookstore and books applications to demonstrate
how to write JSP pages in XML syntax. The JSP pages of the bookstore5 appli-
cation use the JSTL XML tags (see XML Tag Library, page 560) to manipulate
the book data from an XML stream. The books application contains the JSP doc-
ument books.jspx, which accesses the book data from the database and con-
verts it into the XML stream. The bookstore5 application accesses this XML
stream to get the book data.

These applications show how easy it is to generate XML data and stream it
between web applications. The books application can be considered the applica-
tion hosted by the book warehouse’s server. The bookstore5 application can be
considered the application hosted by the book retailer’s server. In this way, the
customer of the bookstore web site sees the list of books currently available,
according to the warehouse’s database.

The source for the Duke’s Bookstore application is located in the <INSTALL>/

j2eetutorial14/examples/web/bookstore5/ directory, which is created
when you unzip the tutorial bundle (see About the Examples, page xxxvi). Sam-
ple bookstore5.war and books.war files are provided in <INSTALL>/

j2eetutorial14/examples/web/provided-wars/.

To build the Duke’s Bookstore application, follow these steps:

1. Build and package the bookstore common files as described in Duke’s
Bookstore Examples (page 103).

2. In a terminal window, go to <INSTALL>/j2eetutorial14/examples/

web/bookstore5/.

3. Start the Application Server.

4. Perform all the operations described in Accessing Databases from Web
Applications (page 104).

To package and deploy the application using asant, follow these steps:

1. Run asant create-bookstore-war.

2. Run asant deploy-war.

THE EXAMPLE JSP DOCUMENT 527
To learn how to configure the application, use deploytool to package and
deploy it:

1. Start deploytool.

2. Create a web application called bookstore5 by running the New Web
Application Wizard. Select File→New→Web Component.

3. In the New Web Component wizard:

a. In the WAR File screen, select the Create New Stand-Alone WAR Mod-
ule radio button.

b. In the War File field, enter <INSTALL>/j2eetutorial14/examples/

web/bookstore5/bookstore5.war. The WAR Display Name field will
show bookstore5.

c. In the Context Root field, enter /bookstore5.

d. Click Edit Contents.

e. In the Edit Contents dialog box, navigate to <INSTALL>/

j2eetutorial14/examples/web/bookstore5/build/. Select every-
thing in the build directory and click Add. Click OK.

f. Add the shared bookstore library. Navigate to <INSTALL>/

j2eetutorial14/examples/web/bookstore/dist/. Select book-

store.jar and Click Add.

g. Click OK.

h. Click Next.

i. Select the JSP Page radio button.

j. Click Next.

k. Select /bookstore.jsp from the JSP Filename combo box.

l. Click Finish.

4. Add each of the web components listed in Table 13–1. For each compo-
nent:

a. Select File→New→Web Component.

b. In the WAR File screen, click the Add to Existing WAR Module radio
button. The WAR file contains all the JSP pages, so you do not have to
add any more content.

c. Click Next.

d. Select the JSP Page radio button.

e. Click Next.

f. Select the page from the JSP Filename combo box.

528
g. Click Finish.

h. From the tree, select the web component you added.

i. Select the Aliases tab.

j. Click Add. Enter the alias as shown in Table 13–1.

5. Add the context parameter that specifies the JSTL resource bundle base
name.

a. Select the bookstore5 WAR file from the tree.

b. Select the Context tab.

c. Click Add.

d. Enter javax.servlet.jsp.jstl.fmt.localizationContext in the
Coded Parameter field.

e. Enter messages.BookstoreMessages for the Value field.

6. Add the context parameter that identifies the context path to the XML
stream.

a. On the Context tab, again click Add.

b. Enter booksURL for the Coded Parameter.

c. Enter http://localhost:8080/books/books.jspx in the Value field.

7. Set the prelude and coda for all JSP pages.

a. Select the JSP Properties tab.

b. Click the Add button next to the Name list.

Table 13–1 Duke’s Bookstore Web Components

Web Component Name JSP Page Component Alias

bookcashier bookcashier.jsp /bookcashier

bookcatalog bookcatalog.jsp /bookcatalog

bookdetails bookdetails.jsp /bookdetails

bookreceipt bookreceipt.jsp /bookreceipt

bookshowcart bookshowcart.jsp /bookshowcart

bookstore bookstore.jsp /bookstore

THE EXAMPLE JSP DOCUMENT 529
c. Enter bookstore5.

d. Click the Add URL button next to the URL Pattern list.

e. Enter *.jsp.

f. Click the Edit Preludes button next to the Include Preludes list.

g. Click Add.

h. Enter /template/prelude.jspf.

i. Click OK.

j. Click the Edit Codas button next to the Include Codas list.

k. Click Add.

l. Enter /template/coda.jspf.

m.Click OK.

8. Select File→Save.

9. Deploy the application.

a. Select Tools→Deploy.

b. Click OK.

c. A pop-up dialog box will display the results of the deployment. Click
Close.

To build the books application, follow these steps:

1. In a terminal window, go to <INSTALL>/j2eetutorial14/examples/

web/books/.

2. Run asant build. This target will spawn any necessary compilations and
copy files to the <INSTALL>/j2eetutorial14/examples/web/books/

build/ directory.

To package and deploy the application using asant, follow these steps:

1. Run asant create-bookstore-war.

2. Run asant deploy-war.

To learn how to configure the application, use deploytool to package and
deploy it:

1. Create a web application called books by running the New Web Compo-
nent wizard. Select File→New→Web Component.

2. In the New Web Component wizard:

a. In the WAR File screen, select the Create New Stand-Alone WAR Mod-
ule radio button.

530
b. Click Browse and in the file chooser, navigate to <INSTALL>/

j2eetutorial14/examples/web/books/.

c. In the File Name field, enter books.

d. Click Create Module File. The WAR Display Name field will show
books.

e. In the Context Root field, enter /books.

f. Click Edit Contents.

g. In the Edit Contents dialog box, navigate to <INSTALL>/

j2eetutorial14/examples/web/books/build/. Select the JSP docu-
ment books.jspx and the database and listeners directories and
click Add.

h. Add the shared bookstore library. Navigate to <INSTALL>/

j2eetutorial14/examples/build/web/bookstore/dist/. Select
bookstore.jar and click Add. Click OK.

i. Click Next.

j. Select the JSP Page radio button.

k. Click Next.

l. Select /books.jspx from the JSP Filename combo box.

m.Click Finish.

3. Identify books.jspx as an XML document.

a. Select the JSP Properties tab.

b. Click the Add button next to the Name list.

c. Enter books.

d. Click the Add URL button next to the URL Pattern list.

e. Enter *.jspx.

f. Select the Is XML Document checkbox.

4. Add the listener class listeners.ContextListener (described in Han-
dling Servlet Life-Cycle Events, page 450).

a. Select the Event Listeners tab.

b. Click Add.

c. Select the listeners.ContextListener class from the drop-down
field in the Event Listener Classes pane.

5. Add a resource reference for the database.

a. Select the Resource Ref’s tab.

CREATING A JSP DOCUMENT 531
b. Click Add.

c. Enter jdbc/BookDB in the Coded Name field.

d. Accept the default type javax.sql.DataSource.

e. Accept the default authorization Container.

f. Accept the default selected Shareable.

g. Enter jdbc/BookDB in the JNDI name field of the Sun-specific Settings
for jdbc/BookDB frame.

6. Select File→Save.

7. Deploy the application.

a. Select the books WAR file from the tree.

b. Select Tools→Deploy.

c. Click OK.

d. A pop-up dialog box will display the results of the deployment. Click
Close.

To run the applications, open the bookstore URL http://localhost:8080/

bookstore5/bookstore.

Creating a JSP Document
A JSP document is an XML document and therefore must comply with the XML
standard. Fundamentally, this means that a JSP document must be well formed,
meaning that each start tag must have a corresponding end tag and that the docu-
ment must have only one root element. In addition, JSP elements included in the
JSP document must comply with the XML syntax.

Much of the standard JSP syntax is already XML-compliant, including all the
standard actions. Those elements that are not compliant are summarized in Table
13–2 along with the equivalent elements in XML syntax. As you can see, JSP
documents are not much different from JSP pages. If you know standard JSP

532
syntax, you will find it easy to convert your current JSP pages to XML syntax
and to create new JSP documents.

To illustrate how simple it is to transition from standard syntax to XML syntax,
let’s convert a simple JSP page to a JSP document. The standard syntax version
is as follows:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core"
prefix="c" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/functions"
prefix="fn" %>

<html>
<head><title>Hello</title></head>
<body bgcolor="white">

<h2>My name is Duke. What is yours?</h2>
<form method="get">

<input type="text" name="username" size="25">
<p></p>
<input type="submit" value="Submit">
<input type="reset" value="Reset">

</form>
<jsp:useBean id="userNameBean" class="hello.UserNameBean"

scope="request"/>
<jsp:setProperty name="userNameBean" property="name"

value="${param.username}" />

Table 13–2 Standard Syntax Versus XML Syntax

Syntax
Elements Standard Syntax XML Syntax

Comments <%--.. --%> <!-- .. -->

Declarations <%! ..%> <jsp:declaration> .. </jsp:declaration>

Directives

<%@ include .. %> <jsp:directive.include .. />

<%@ page .. %> <jsp:directive.page .. />

<%@ taglib .. %> xmlns:prefix="tag library URL"

Expressions <%= ..%> <jsp:expression> .. </jsp:expression>

Scriptlets <% ..%> <jsp:scriptlet> .. </jsp:scriptlet>

CREATING A JSP DOCUMENT 533
<c:if test="${fn:length(userNameBean.name) > 0}" >
<%@include file="response.jsp" %>

</c:if>
</body>

</html>

Here is the same page in XML syntax:

<html
xmlns:c="http://java.sun.com/jsp/jstl/core"
xmlns:fn="http://java.sun.com/jsp/jstl/functions" >
<head><title>Hello</title></head>
<body bgcolor="white" />

<h2>My name is Duke. What is yours?</h2>
<form method="get">

<input type="text" name="username" size="25" />
<p></p>
<input type="submit" value="Submit" />
<input type="reset" value="Reset" />

</form>
<jsp:useBean id="userNameBean" class="hello.UserNameBean"

scope="request"/>
<jsp:setProperty name="userNameBean" property="name"

value="${param.username}" />
<c:if test="${fn:length(userNameBean.name) gt 0}" >

<jsp:directive.include="response.jsp" />
</c:if>
</body>

</html>

As you can see, a number of constructs that are legal in standard syntax have
been changed to comply with XML syntax:

• The taglib directives have been removed. Tag libraries are now declared
using XML namespaces, as shown in the html element.

• The img and input tags did not have matching end tags and have been
made XML-compliant by the addition of a / to the start tag.

• The > symbol in the EL expression has been replaced with gt.

• The include directive has been changed to the XML-compliant
jsp:directive.include tag.

With only these few small changes, when you save the file with a .jspx exten-
sion, this page is a JSP document.

534
Using the example described in The Example JSP Document (page 526), the rest
of this chapter gives you more details on how to transition from standard syntax
to XML syntax. It explains how to use XML namespaces to declare tag libraries,
include directives, and create static and dynamic content in your JSP documents.
It also describes jsp:root and jsp:output, two elements that are used exclu-
sively in JSP documents.

Declaring Tag Libraries
This section explains how to use XML namespaces to declare tag libraries.

In standard syntax, the taglib directive declares tag libraries used in a JSP page.
Here is an example of a taglib directive:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core"
prefix="c" %>

This syntax is not allowed in JSP documents. To declare a tag library in a JSP
document, you use the xmlns attribute, which is used to declare namespaces
according to the XML standard:

...
xmlns:c="http://java.sun.com/jsp/jstl/core"
...

The value that identifies the location of the tag library can take three forms:

• A plain URI that is a unique identifier for the tag library. The container
tries to match it against any <taglib-uri> elements in the application’s
web.xml file or the <uri> element of tag library descriptors (TLDs) in JAR
files in WEB-INF/lib or TLDs under WEB-INF.

• A URN of the form urn:jsptld:path.

• A URN of the form urn:jsptagdir:path.

The URN of the form urn:jsptld:path points to one tag library packaged with
the application:

xmlns:u="urn:jsptld:/WEB-INF/tlds/my.tld"

CREATING A JSP DOCUMENT 535
The URN of the form urn:jsptagdir:path must start with /WEB-INF/tags/

and identifies tag extensions (implemented as tag files) installed in the WEB-INF/

tags/ directory or a subdirectory of it:

xmlns:u="urn:jsptagdir:/WEB-INF/tags/mytaglibs/"

You can include the xmlns attribute in any element in your JSP document, just as
you can in an XML document. This capability has many advantages:

• It follows the XML standard, making it easier to use any XML document
as a JSP document.

• It allows you to scope prefixes to an element and override them.

• It allows you to use xmlns to declare other namespaces and not just tag
libraries.

The books.jspx page declares the tag libraries it uses with the xmlns attributes
in the root element, books:

<books
xmlns:jsp="http://java.sun.com/JSP/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core"

>

In this way, all elements within the books element have access to these tag
libraries.

As an alternative, you can scope the namespaces:

<books>
...

<jsp:useBean xmlns:jsp="http://java.sun.com/JSP/Page"
id="bookDB"
class="database.BookDB"
scope="page">

<jsp:setProperty name="bookDB"
property="database" value="${bookDBAO}" />

</jsp:useBean>
<c:forEach xmlns:c="http://java.sun.com/jsp/jstl/core"

var="book" begin="0" items="${bookDB.books}">
...

</c:forEach>
</books>

536
In this way, the tag library referenced by the jsp prefix is available only to the
jsp:useBean element and its subelements. Similarly, the tag library referenced
by the c prefix is only available to the c:forEach element.

Scoping the namespaces also allows you to override the prefix. For example, in
another part of the page, you could bind the c prefix to a different namespace or
tag library. In contrast, the jsp prefix must always be bound to the JSP
namespace: http://java.sun.com/JSP/Page.

Including Directives in a JSP Document
Directives are elements that relay messages to the JSP container and affect how
it compiles the JSP page. The directives themselves do not appear in the XML
output.

There are three directives: include, page, and taglib. The taglib directive is
covered in the preceding section.

The jsp:directive.page element defines a number of page-dependent proper-
ties and communicates these to the JSP container. This element must be a child
of the root element. Its syntax is

<jsp:directive.page page_directive_attr_list />

The page_directive_attr_list is the same list of attributes that the <@ page

...> directive has. These are described in Chapter 12. All the attributes are
optional. Except for the import and pageEncoding attributes, there can be only
one instance of each attribute in an element, but an element can contain more
than one attribute.

An example of a page directive is one that tells the JSP container to load an error
page when it throws an exception. You can add this error page directive to the
books.jspx page:

<books xmlns:jsp="http://java.sun.com/JSP/Page">
<jsp:directive.page errorPage="errorpage.jsp" />
...

</books>

If there is an error when you try to execute the page (perhaps when you want to
see the XML output of books.jspx), the error page is accessed.

CREATING A JSP DOCUMENT 537
The jsp:directive.include element is used to insert the text contained in
another file—either static content or another JSP page—into the including JSP
document. You can place this element anywhere in a document. Its syntax is:

<jsp:directive.include file="relativeURLspec" />

The XML view of a JSP document does not contain jsp:directive.include

elements; rather the included file is expanded in place. This is done to simplify
validation.

Suppose that you want to use an include directive to add a JSP document con-
taining magazine data inside the JSP document containing the books data. To do
this, you can add the following include directive to books.jspx, assuming that
magazines.jspx generates the magazine XML data.

<jsp:root version="2.0" >
<books ...>
...
</books>
<jsp:directive.include file="magazine.jspx" />

</jsp:root>

Note that jsp:root is required because otherwise books.jspx would have two
root elements: <books> and <magazines>. The output generated from
books.jspx will be a sequence of XML documents: one with <books> and the
other with <magazines> as its root element.

The output of this example will not be well-formed XML because of the two root
elements, so the client might refuse to process it. However, it is still a legal JSP
document.

In addition to including JSP documents in JSP documents, you can also include
JSP pages written in standard syntax in JSP documents, and you can include JSP
documents in JSP pages written in standard syntax. The container detects the
page you are including and parses it as either a standard syntax JSP page or a
JSP document and then places it into the XML view for validation.

Creating Static and Dynamic Content
This section explains how to represent static text and dynamic content in a JSP
document. You can represent static text in a JSP document using uninterpreted
XML tags or the jsp:text element. The jsp:text element passes its content
through to the output.

538
If you use jsp:text, all whitespace is preserved. For example, consider this
example using XML tags:

<books>
<book>

Web Servers for Fun and Profit
</book>

</books>

The output generated from this XML has all whitespace removed:

<books><book>
Web Servers for Fun and Profit

</book></books>

If you wrap the example XML with a <jsp:text> tag, all whitespace is pre-
served. The whitespace characters are #x20, #x9, #xD,and #xA.

You can also use jsp:text to output static data that is not well formed. The
${counter} expression in the following example would be illegal in a JSP docu-
ment if it were not wrapped in a jsp:text tag.

<c:forEach var="counter" begin="1" end="${3}">
<jsp:text>${counter}</jsp:text>

</c:forEach>

This example will output

123

The jsp:text tag must not contain any other elements. Therefore, if you need to
nest a tag inside jsp:text, you must wrap the tag inside CDATA.

You also need to use CDATA if you need to output some elements that are not
well-formed. The following example requires CDATA wrappers around the
blockquote start and end tags because the blockquote element is not well

CREATING A JSP DOCUMENT 539
formed. This is because the blockquote element overlaps with other elements in
the example.

<c:forEach var="i" begin="1" end="${x}">
<![CDATA[<blockquote>]]>

</c:forEach>
...
<c:forEach var="i" begin="1" end="${x}">

<![CDATA[</blockquote>]]>
</c:forEach>

Just like JSP pages, JSP documents can generate dynamic content using expres-
sions language (EL) expressions, scripting elements, standard actions, and cus-
tom tags. The books.jspx document uses EL expressions and custom tags to
generate the XML book data.

As shown in this snippet from books.jspx, the c:forEach JSTL tag iterates
through the list of books and generates the XML data stream. The EL expres-
sions access the JavaBeans component, which in turn retrieves the data from the
database:

<c:forEach var="book" begin="0" items="${bookDB.books}">
<book id="${book.bookId}" >

<surname>${book.surname}</surname>
<firstname>${book.firstName}</firstname>
<title>${book.title}</title>
<price>${book.price}</price>
<year>${book.year}</year>
<description>${book.description}</description>
<inventory>${book.inventory}</inventory>

</book>
</c:forEach>

When using the expression language in your JSP documents, you must substitute
alternative notation for some of the operators so that they will not be interpreted
as XML markup. Table 13–3 enumerates the more common operators and their
alternative syntax in JSP documents.

Table 13–3 EL Operators and JSP Document-Compliant Alternative Notation

EL Operator JSP Document Notation

< lt

540
You can also use EL expressions with jsp:element to generate tags dynami-
cally rather than hardcode them. This example could be used to generate an
HTML header tag with a lang attribute:

<jsp:element name="${content.headerName}"
xmlns:jsp="http://java.sun.com/JSP/Page">

<jsp:attribute name="lang">${content.lang}</jsp:attribute>
<jsp:body>${content.body}</jsp:body>

</jsp:element>

The name attribute identifies the generated tag’s name. The jsp:attribute tag
generates the lang attribute. The body of the jsp:attribute tag identifies the
value of the lang attribute. The jsp:body tag generates the body of the tag. The
output of this example jsp:element could be

<h1 lang="fr">Heading in French</h1>

As shown in Table 13–2, scripting elements (described in Chapter 16) are repre-
sented as XML elements when they appear in a JSP document. The only excep-
tion is a scriptlet expression used to specify a request-time attribute value.
Instead of using <%=expr %>, a JSP document uses %= expr % to represent a
request-time attribute value.

The three scripting elements are declarations, scriptlets, and expressions.

A jsp:declaration element declares a scripting language construct that is
available to other scripting elements. A jsp:declaration element has no
attributes and its body is the declaration itself. Its syntax is

<jsp:declaration> declaration goes here </jsp:declaration>

> gt

<= le

>= ge

!= ne

Table 13–3 EL Operators and JSP Document-Compliant Alternative Notation

EL Operator JSP Document Notation

CREATING A JSP DOCUMENT 541
A jsp:scriptlet element contains a Java program fragment called a scriptlet.
This element has no attributes, and its body is the program fragment that consti-
tutes the scriptlet. Its syntax is

<jsp:scriptlet> code fragment goes here </jsp:scriptlet>

The jsp:expression element inserts the value of a scripting language expres-
sion, converted into a string, into the data stream returned to the client. A
jsp:expression element has no attributes and its body is the expression. Its
syntax is

<jsp:expression> expression goes here </jsp:expression>

Using the jsp:root Element
The jsp:root element represents the root element of a JSP document. A
jsp:root element is not required for JSP documents. You can specify your own
root element, enabling you to use any XML document as a JSP document. The
root element of the books.jspx example JSP document is books.

Although the jsp:root element is not required, it is still useful in these cases:

• When you want to identify the document as a JSP document to the JSP
container without having to add any configuration attributes to the deploy-
ment descriptor or name the document with a .jspx extension

• When you want to generate—from a single JSP document—more than one
XML document or XML content mixed with non-XML content

The version attribute is the only required attribute of the jsp:root element. It
specifies the JSP specification version that the JSP document is using.

The jsp:root element can also include xmlns attributes for specifying tag
libraries used by the other elements in the page.

The books.jspx page does not need a jsp:root element and therefore doesn’t
include one. However, suppose that you want to generate two XML documents
from books.jspx: one that lists books and another that lists magazines (assum-
ing magazines are in the database). This example is similar to the one in the sec-

542
tion Including Directives in a JSP Document (page 536). To do this, you can use
this jsp:root element:

<jsp:root
xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0" >
<books>...</books>
<magazines>...</magazines>

</jsp:root>

Notice in this example that jsp:root defines the JSP namespace because both
the books and the magazines elements use the elements defined in this
namespace.

Using the jsp:output Element
The jsp:output element specifies the XML declaration or the document type
declaration in the request output of the JSP document. For more information on
the XML declaration, see The XML Prolog (page 36). For more information on
the document type declaration, see Referencing the DTD (page 58).

The XML declaration and document type declaration that are declared by the
jsp:output element are not interpreted by the JSP container. Instead, the con-
tainer simply directs them to the request output.

To illustrate this, here is an example of specifying a document type declaration
with jsp:output:

<jsp:output doctype-root-element="books"
doctype-system="books.dtd" />

The resulting output is:

<!DOCTYPE books SYSTEM "books.dtd" >

Specifying the document type declaration in the jsp:output element will not
cause the JSP container to validate the JSP document against the books.dtd.

If you want the JSP document to be validated against the DTD, you must manu-
ally include the document type declaration within the JSP document, just as you
would with any XML document.

Table 13–4 shows all the jsp:output attributes. They are all optional, but some
attributes depend on other attributes occurring in the same jsp:output element,

CREATING A JSP DOCUMENT 543
as shown in the table. The rest of this section explains more about using
jsp:output to generate an XML declaration and a document type declaration.

Generating XML Declarations
Here is an example of an XML declaration:

<?xml version="1.0" encoding="UTF-8" ?>

This declaration is the default XML declaration. It means that if the JSP con-
tainer is generating an XML declaration, this is what the JSP container will
include in the output of your JSP document.

Neither a JSP document nor its request output is required to have an XML decla-
ration. In fact, if the JSP document is not producing XML output then it
shouldn’t have an XML declaration.

The JSP container will not include the XML declaration in the output when
either of the following is true:

• You set the omit-xml-declaration attribute of the jsp:output element
to either true or yes.

• You have a jsp:root element in your JSP document, and you do not spec-
ify omit-xml-declaration="false" in jsp:output.

Table 13–4 jsp:output Attributes

Attribute What It Specifies

omit-xml-declaration
A value of true or yes omits the XML declaration. A
value of false or no generates an XML declaration.

doctype-root-element
Indicates the root element of the XML document in the
DOCTYPE. Can be specified only if doctype-system is
specified.

doctype-system
Specifies that a DOCTYPE is generated in output and
gives the SYSTEM literal.

doctype-public
Specifies the value for the Public ID of the generated
DOCTYPE. Can be specified only if doctype-system is
specified.

544
The JSP container will include the XML declaration in the output when either of
the following is true:

• You set the omit-xml-declaration attribute of the jsp:output element
to either false or no.

• You do not have a jsp:root action in your JSP document, and you do not
specify the omit-xml-declaration attribute in jsp:output.

The books.jspx JSP document does not include a jsp:root action nor a
jsp:output. Therefore, the default XML declaration is generated in the output.

Generating a Document Type Declaration
A document type declaration (DTD) defines the structural rules for the XML
document in which the document type declaration occurs. XML documents are
not required to have a DTD associated with them. In fact, the books example
does not include one.

This section shows you how to use the jsp:output element to add a document
type declaration to the XML output of books.jspx. It also shows you how to
enter the document type declaration manually into books.jspx so that the JSP
container will interpret it and validate the document against the DTD.

As shown in Table 13–4, the jsp:output element has three attributes that you
use to generate the document type declaration:

• doctype-root-element: Indicates the root element of the XML docu-
ment

• doctype-system: Indicates the URI reference to the DTD

• doctype-public: A more flexible way to reference the DTD. This identi-
fier gives more information about the DTD without giving a specific loca-
tion. A public identifier resolves to the same actual document on any
system even though the location of that document on each system may
vary. See the XML 1.0 specification for more information.

The rules for using the attributes are as follows:

• The doctype attributes can appear in any order

• The doctype-root attribute must be specified if the doctype-system

attribute is specified

• The doctype-public attribute must not be specified unless doctype-sys-
tem is specified

http://www.w3.org/XML/

CREATING A JSP DOCUMENT 545
This syntax notation summarizes these rules:

<jsp:output (omit-xmldeclaration=
"yes"|"no"|"true"|"false"){doctypeDecl} />

doctypeDecl:=(doctype-root-element="rootElement"
doctype-public="PublicLiteral"

doctype-system="SystemLiteral")
| (doctype-root-element="rootElement"
doctype-system="SystemLiteral")

Suppose that you want to reference a DTD, called books.DTD, from the output of
the books.jspx page. The DTD would look like this:

<!ELEMENT books (book+) >
<!ELEMENT book (surname, firstname, title, price, year,

description, inventory) >
<!ATTLIST book id CDATA #REQUIRED >
<!ELEMENT surname (#PCDATA) >
<!ELEMENT firstname (#PCDATA) >
<!ELEMENT title (#PCDATA) >
<!ELEMENT price (#PCDATA) >
<!ELEMENT year (#PCDATA) >
<!ELEMENT description (#PCDATA) >
<!ELEMENT inventory (#PCDATA) >

To add a document type declaration that references the DTD to the XML request
output generated from books.jspx, include this jsp:output element in
books.jspx:

<jsp:output doctype-root-element="books"
doctype-system="books.DTD" />

With this jsp:output action, the JSP container generates this document type
declaration in the request output:

<!DOCTYPE books SYSTEM "books.DTD" />

The jsp:output need not be located before the root element of the document.
The JSP container will automatically place the resulting document type declara-
tion before the start of the output of the JSP document.

Note that the JSP container will not interpret anything provided by jsp:output.
This means that the JSP container will not validate the XML document against
the DTD. It only generates the document type declaration in the XML request

546
output. To see the XML output, run http://localhost:8080/books/

books.jspx in your browser after you have updated books.WAR with books.DTD

and the jsp:output element. When using some browsers, you might need to
view the source of the page to actually see the output.

Directing the document type declaration to output without interpreting it is use-
ful in situations when another system receiving the output expects to see it. For
example, two companies that do business via a web service might use a standard
DTD, against which any XML content exchanged between the companies is val-
idated by the consumer of the content. The document type declaration tells the
consumer what DTD to use to validate the XML data that it receives.

For the JSP container to validate books.jspx against book.DTD, you must manu-
ally include the document type declaration in the books.jspx file rather than use
jsp:output. However, you must add definitions for all tags in your DTD,
including definitions for standard elements and custom tags, such as jsp:use-

Bean and c:forEach. You also must ensure that the DTD is located in the
<J2EE_HOME>/domains/domain1/config/ directory so that the JSP container
will validate the JSP document against the DTD.

Identifying the JSP Document to the
Container

A JSP document must be identified as such to the web container so that the con-
tainer interprets it as an XML document. There are three ways to do this:

• In your application’s web.xml file, set the is-xml element of the jsp-

property-group element to true. Step 3. in The Example JSP
Document (page 526) explains how to do this if you are using deploytool

to build the application WAR file.

• Use a Java Servlet Specification version 2.4 web.xml file and give your JSP
document the .jspx extension.

• Include a jsp:root element in your JSP document. This method is back-
ward-compatible with JSP 1.2.

14
547
JavaServer Pages
Standard Tag Library

THE JavaServer Pages Standard Tag Library (JSTL) encapsulates core func-
tionality common to many JSP applications. Instead of mixing tags from numer-
ous vendors in your JSP applications, JSTL allows you to employ a single,
standard set of tags. This standardization allows you to deploy your applications
on any JSP container supporting JSTL and makes it more likely that the imple-
mentation of the tags is optimized.

JSTL has tags such as iterators and conditionals for handling flow control, tags
for manipulating XML documents, internationalization tags, tags for accessing
databases using SQL, and commonly used functions.

This chapter demonstrates JSTL through excerpts from the JSP version of the
Duke’s Bookstore application discussed in the earlier chapters. It assumes that
you are familiar with the material in the Using Custom Tags (page 513) section
of Chapter 12.

This chapter does not cover every JSTL tag, only the most commonly used ones.
Please refer to the reference pages at http://java.sun.com/products/jsp/
jstl/1.1/docs/tlddocs/index.html for a complete list of the JSTL tags and
their attributes.

http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/index.html
http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/index.html

548
The Example JSP Pages
This chapter illustrates JSTL using excerpts from the JSP version of the Duke’s
Bookstore application discussed in Chapter 12. Here, they are rewritten to
replace the JavaBeans component database access object with direct calls to the
database via the JSTL SQL tags. For most applications, it is better to encapsulate
calls to a database in a bean. JSTL includes SQL tags for situations where a new
application is being prototyped and the overhead of creating a bean may not be
warranted.

The source for the Duke’s Bookstore application is located in the <INSTALL>/

j2eetutorial14/examples/web/bookstore4/ directory created when you
unzip the tutorial bundle (see About the Examples, page xxxvi). A sample
bookstore4.war is provided in <INSTALL>/j2eetutorial14/examples/web/

provided-wars/. To build the example, follow these steps:

1. Build and package the bookstore common files as described in Duke’s
Bookstore Examples (page 103).

2. In a terminal window, go to <INSTALL>/j2eetutorial14/examples/

web/bookstore4/.

3. Run asant build. This target will copy files to the <INSTALL>/

j2eetutorial14/examples/web/bookstore4/build/ directory.

4. Start the Application Server.

5. Perform all the operations described in Accessing Databases from Web
Applications, page 104.

To package and deploy the example using asant, follow these steps:

1. Run asant create-bookstore-war.

2. Run asant deploy-war.

To learn how to configure the example, use deploytool to package and deploy
it:

1. Start deploytool.

2. Create a web application called bookstore4 by running the New Web
Component wizard. Select File→New→Web Component.

3. In the New Web Component wizard:

a. Select the Create New Stand-Alone WAR Module radio button.

THE EXAMPLE JSP PAGES 549
b. In the WAR File field, enter <INSTALL>/j2eetutorial14/examples/
web/bookstore4/bookstore4.war. The WAR Display Name field will
show bookstore4.

c. In the Context Root field, enter /bookstore4.

d. Click Edit Contents.

e. In the Edit Contents dialog box, navigate to <INSTALL>/

j2eetutorial14/examples/web/bookstore4/build/. Select the JSP
pages bookstore.jsp, bookdetails.jsp, bookcatalog.jsp, book-
showcart.jsp, bookcashier.jsp, and bookreceipt.jsp and the
template directory and click Add.

f. Add the shared bookstore library. Navigate to <INSTALL>/

j2eetutorial14/examples/web/bookstore/dist/. Select book-

store.jar and click Add.

g. Click OK.

h. Click Next.

i. Select the JSP Page radio button.

j. Click Next.

k. Select /bookstore.jsp from the JSP Filename combo box.

l. Click Finish.

4. Add the alias for the bookstore.jsp component:

a. Select the bookstore web component.

b. Select the Aliases tab.

c. Click Add.

d. Enter /bookstore into the Aliases table.

5. Add each of the web components listed in Table 14–1. For each compo-
nent:

a. Select File→New→Web Component.

b. Click the Add to Existing WAR Module radio button. Because the WAR
contains all the JSP pages, you do not have to add any more content.

c. Click Next.

d. Select the JSP Page radio button.

e. Click Next.

f. Select the page from the JSP Filename combo box.

550
g. Click Finish.

6. Set the alias for each web component.

a. Select the component.

b. Select the Aliases tab.

c. Click the Add button.

d. Enter the alias.

7. Add the context parameter that specifies the JSTL resource bundle base
name.

a. Select the web module.

b. Select the Context tab.

c. Click Add.

d. Enter javax.servlet.jsp.jstl.fmt.localizationContext in the
Coded Parameter field.

e. Enter messages.BookstoreMessages in the Value field.

8. Set the prelude and coda for all JSP pages.

a. Select the JSP Properties tab.

b. Click the Add button next to the Name list.

c. Enter bookstore4.

d. Click the Add URL button.

e. Enter *.jsp.

f. Click the Edit Preludes button.

Table 14–1 Duke’s Bookstore Web Components

Web Component Name JSP Page Alias

bookcatalog bookcatalog.jsp /bookcatalog

bookdetails bookdetails.jsp /bookdetails

bookshowcart bookshowcart.jsp /bookshowcart

bookcashier bookcashier.jsp /bookcashier

bookreceipt bookreceipt.jsp /bookreceipt

USING JSTL 551
g. Click Add.

h. Enter /template/prelude.jspf.

i. Click OK.

j. Click the Edit Codas button.

k. Click Add.

l. Enter /template/coda.jspf.

m.Click OK.

9. Add a resource reference for the database.

a. Select the Resource Ref’s tab.

b. Click Add.

c. Enter jdbc/BookDB in the Coded Name field.

d. Accept the default type javax.sql.DataSource.

e. Accept the default authorization Container.

f. Accept the default selected Shareable.

g. Enter jdbc/BookDB in the JNDI name field of the Sun-specific Settings
frame.

10.Select File→Save.

11.Deploy the application.

a. Select Tools→Deploy.

b. Click OK.

To run the application, open the bookstore URL http://localhost:8080/

bookstore4/bookstore.

See Troubleshooting (page 448) for help with diagnosing common problems.

Using JSTL
JSTL includes a wide variety of tags that fit into discrete functional areas. To
reflect this, as well as to give each area its own namespace, JSTL is exposed as
multiple tag libraries. The URIs for the libraries are as follows:

• Core: http://java.sun.com/jsp/jstl/core

• XML: http://java.sun.com/jsp/jstl/xml

• Internationalization: http://java.sun.com/jsp/jstl/fmt

• SQL: http://java.sun.com/jsp/jstl/sql

552
• Functions: http://java.sun.com/jsp/jstl/functions

Table 14–2 summarizes these functional areas along with the prefixes used in
this tutorial.

Thus, the tutorial references the JSTL core tags in JSP pages by using the fol-
lowing taglib directive:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core"
prefix="c" %>

In addition to declaring the tag libraries, tutorial examples access the JSTL API
and implementation. In the Application Server, the JSTL TLDs and libraries are
distributed in the archive <J2EE_HOME>/lib/appserv-jstl.jar. This library is

Table 14–2 JSTL Tags

Area Subfunction Prefix

Core

Variable support

c
Flow control

URL management

Miscellaneous

XML

Core

xFlow control

Transformation

I18n

Locale

fmtMessage formatting

Number and date formatting

Database SQL sql

Functions
Collection length

fn
String manipulation

USING JSTL 553
automatically loaded into the classpath of all web applications running on the
Application Server, so you don’t need to add it to your web application.

Tag Collaboration
Tags usually collaborate with their environment in implicit and explicit ways.
Implicit collaboration is done via a well-defined interface that allows nested tags
to work seamlessly with the ancestor tag that exposes that interface. The JSTL
conditional tags employ this mode of collaboration.

Explicit collaboration happens when a tag exposes information to its environ-
ment. JSTL tags expose information as JSP EL variables; the convention fol-
lowed by JSTL is to use the name var for any tag attribute that exports
information about the tag. For example, the forEach tag exposes the current
item of the shopping cart it is iterating over in the following way:

<c:forEach var="item" items="${sessionScope.cart.items}">
...

</c:forEach>

In situations where a tag exposes more than one piece of information, the name
var is used for the primary piece of information being exported, and an appro-
priate name is selected for any other secondary piece of information exposed.
For example, iteration status information is exported by the forEach tag via the
attribute status.

When you want to use an EL variable exposed by a JSTL tag in an expression in
the page’s scripting language (see Chapter 16), you use the standard JSP element
jsp:useBean to declare a scripting variable.

For example, bookshowcart.jsp removes a book from a shopping cart using a
scriptlet. The ID of the book to be removed is passed as a request parameter. The
value of the request parameter is first exposed as an EL variable (to be used later
by the JSTL sql:query tag) and then is declared as a scripting variable and
passed to the cart.remove method:

<c:set var="bookId" value="${param.Remove}"/>
<jsp:useBean id="bookId" type="java.lang.String" />
<% cart.remove(bookId); %>
<sql:query var="books"

../examples/web/bookstore4/web/bookshowcart.txt

554
dataSource="${applicationScope.bookDS}">
select * from PUBLIC.books where id = ?
<sql:param value="${bookId}" />

</sql:query>

Core Tag Library
Table 14–3 summarizes the core tags, which include those related to variables
and flow control, as well as a generic way to access URL-based resources whose
content can then be included or processed within the JSP page.

Variable Support Tags
The set tag sets the value of an EL variable or the property of an EL variable in
any of the JSP scopes (page, request, session, or application). If the variable does
not already exist, it is created.

Table 14–3 Core Tags

Area Function Tags Prefix

Core

Variable support
remove
set

c

Flow control

choose
when
otherwise

forEach
forTokens
if

URL management

import
param

redirect
param

url
param

Miscellaneous
catch
out

CORE TAG LIBRARY 555
The JSP EL variable or property can be set either from the attribute value:

<c:set var="foo" scope="session" value="..."/>

or from the body of the tag:

<c:set var="foo">
...

</c:set>

For example, the following sets an EL variable named bookID with the value of
the request parameter named Remove:

<c:set var="bookId" value="${param.Remove}"/>

To remove an EL variable, you use the remove tag. When the bookstore JSP
page bookreceipt.jsp is invoked, the shopping session is finished, so the cart

session attribute is removed as follows:

<c:remove var="cart" scope="session"/>

Flow Control Tags
To execute flow control logic, a page author must generally resort to using script-
lets. For example, the following scriptlet is used to iterate through a shopping
cart:

<%
Iterator i = cart.getItems().iterator();
while (i.hasNext()) {

ShoppingCartItem item =
(ShoppingCartItem)i.next();

...
%>

<tr>
<td align="right" bgcolor="#ffffff">
${item.quantity}
</td>
...

<%
}

%>

../examples/web/bookstore4/web/bookreceipt.txt

556
Flow control tags eliminate the need for scriptlets. The next two sections have
examples that demonstrate the conditional and iterator tags.

Conditional Tags
The if tag allows the conditional execution of its body according to the value of
the test attribute. The following example from bookcatalog.jsp tests whether
the request parameter Add is empty. If the test evaluates to true, the page queries
the database for the book record identified by the request parameter and adds the
book to the shopping cart:

<c:if test="${!empty param.Add}">
<c:set var="bid" value="${param.Add}"/>
<jsp:useBean id="bid" type="java.lang.String" />
 <sql:query var="books"

dataSource="${applicationScope.bookDS}">
select * from PUBLIC.books where id = ?
<sql:param value="${bid}" />

</sql:query>
<c:forEach var="bookRow" begin="0" items="${books.rows}">

<jsp:useBean id="bookRow" type="java.util.Map" />
<jsp:useBean id="addedBook"

class="database.BookDetails" scope="page" />
...
<% cart.add(bid, addedBook); %>

...
</c:if>

The choose tag performs conditional block execution by the embedded when

subtags. It renders the body of the first when tag whose test condition evaluates to
true. If none of the test conditions of nested when tags evaluates to true, then
the body of an otherwise tag is evaluated, if present.

For example, the following sample code shows how to render text based on a
customer’s membership category.

<c:choose>
<c:when test="${customer.category == 'trial'}" >

...
</c:when>
<c:when test="${customer.category == 'member'}" >

...
</c:when>

<c:when test="${customer.category == 'preferred'}" >
...

../examples/web/bookstore4/web/bookcatalog.txt

CORE TAG LIBRARY 557
</c:when>
<c:otherwise>

...
</c:otherwise>

</c:choose>

The choose, when, and otherwise tags can be used to construct an if-then-
else statement as follows:

<c:choose>
<c:when test="${count == 0}" >

No records matched your selection.
</c:when>
<c:otherwise>

${count} records matched your selection.
</c:otherwise>

</c:choose>

Iterator Tags
The forEach tag allows you to iterate over a collection of objects. You specify
the collection via the items attribute, and the current item is available through a
variable named by the var attribute.

A large number of collection types are supported by forEach, including all
implementations of java.util.Collection and java.util.Map. If the items

attribute is of type java.util.Map, then the current item will be of type
java.util.Map.Entry, which has the following properties:

• key: The key under which the item is stored in the underlying Map

• value: The value that corresponds to the key

Arrays of objects as well as arrays of primitive types (for example, int) are also
supported. For arrays of primitive types, the current item for the iteration is auto-
matically wrapped with its standard wrapper class (for example, Integer for
int, Float for float, and so on).

Implementations of java.util.Iterator and java.util.Enumeration are
supported, but they must be used with caution. Iterator and Enumeration

objects are not resettable, so they should not be used within more than one itera-
tion tag. Finally, java.lang.String objects can be iterated over if the string
contains a list of comma-separated values (for example: Monday,Tues-
day,Wednesday,Thursday,Friday).

558
Here’s the shopping cart iteration from the preceding section, now with the
forEach tag:

<c:forEach var="item" items="${sessionScope.cart.items}">
...
<tr>

<td align="right" bgcolor="#ffffff">
${item.quantity}

</td>
...

</c:forEach>

The forTokens tag is used to iterate over a collection of tokens separated by a
delimiter.

URL Tags
The jsp:include element provides for the inclusion of static and dynamic
resources in the same context as the current page. However, jsp:include cannot
access resources that reside outside the web application, and it causes unneces-
sary buffering when the resource included is used by another element.

In the following example, the transform element uses the content of the
included resource as the input of its transformation. The jsp:include element
reads the content of the response and writes it to the body content of the enclos-
ing transform element, which then rereads exactly the same content. It would be
more efficient if the transform element could access the input source directly
and thereby avoid the buffering involved in the body content of the transform
tag.

<acme:transform>
<jsp:include page="/exec/employeesList"/>

<acme:transform/>

The import tag is therefore the simple, generic way to access URL-based
resources, whose content can then be included and or processed within the JSP
page. For example, in XML Tag Library (page 560), import is used to read in
the XML document containing book information and assign the content to the
scoped variable xml:

<c:import url="/books.xml" var="xml" />
<x:parse doc="${xml}" var="booklist"

scope="application" />

CORE TAG LIBRARY 559
The param tag, analogous to the jsp:param tag (see jsp:param
Element, page 518), can be used with import to specify request parameters.

In Session Tracking (page 476) we discuss how an application must rewrite
URLs to enable session tracking whenever the client turns off cookies. You can
use the url tag to rewrite URLs returned from a JSP page. The tag includes the
session ID in the URL only if cookies are disabled; otherwise, it returns the URL
unchanged. Note that this feature requires that the URL be relative. The url tag
takes param subtags to include parameters in the returned URL. For example,
bookcatalog.jsp rewrites the URL used to add a book to the shopping cart as
follows:

<c:url var="url" value="/catalog" >
<c:param name="Add" value="${bookId}" />

</c:url>
<p>

The redirect tag sends an HTTP redirect to the client. The redirect tag takes
param subtags for including parameters in the returned URL.

Miscellaneous Tags
The catch tag provides a complement to the JSP error page mechanism. It
allows page authors to recover gracefully from error conditions that they can
control. Actions that are of central importance to a page should not be encapsu-
lated in a catch; in this way their exceptions will propagate instead to an error
page. Actions with secondary importance to the page should be wrapped in a
catch so that they never cause the error page mechanism to be invoked.

The exception thrown is stored in the variable identified by var, which always
has page scope. If no exception occurred, the scoped variable identified by var is
removed if it existed. If var is missing, the exception is simply caught and not
saved.

The out tag evaluates an expression and outputs the result of the evaluation to
the current JspWriter object. The syntax and attributes are as follows:

<c:out value="value" [escapeXml="{true|false}"]
[default="defaultValue"] />

If the result of the evaluation is a java.io.Reader object, then data is first read
from the Reader object and then written into the current JspWriter object. The

../examples/web/bookstore4/web/bookcatalog.txt

560
special processing associated with Reader objects improves performance when a
large amount of data must be read and then written to the response.

If escapeXml is true, the character conversions listed in Table 14–4 are applied.

XML Tag Library
The JSTL XML tag set is listed in Table 14–5.

Table 14–4 Character Conversions

Character
Character
Entity Code

< <

> >

& &

' '

" "

Table 14–5 XML Tags

Area Function Tags Prefix

XML

Core
out
parse
set

x
Flow control

choose
when
otherwise

forEach
if

Transformation
transform

param

XML TAG LIBRARY 561
A key aspect of dealing with XML documents is to be able to easily access their
content. XPath (see How XPath Works, page 255), a W3C recommendation
since 1999, provides an easy notation for specifying and selecting parts of an
XML document. In the JSTL XML tags, XPath expressions specified using the
select attribute are used to select portions of XML data streams. Note that
XPath is used as a local expression language only for the select attribute. This
means that values specified for select attributes are evaluated using the XPath
expression language but that values for all other attributes are evaluated using the
rules associated with the JSP 2.0 expression language.

In addition to the standard XPath syntax, the JSTL XPath engine supports the
following scopes to access web application data within an XPath expression:

• $foo

• $param:

• $header:

• $cookie:

• $initParam:

• $pageScope:

• $requestScope:

• $sessionScope:

• $applicationScope:

These scopes are defined in exactly the same way as their counterparts in the JSP
expression language discussed in Implicit Objects (page 502). Table 14–6 shows
some examples of using the scopes.

The XML tags are illustrated in another version (bookstore5) of the Duke’s
Bookstore application. This version replaces the database with an XML repre-
sentation of the bookstore database, which is retrieved from another web appli-
cation. The directions for building and deploying this version of the application

Table 14–6 Example XPath Expressions

XPath Expression Result

$sessionScope:profile The session-scoped EL variable named profile

$initParam:mycom.productId
The String value of the mycom.productId context
parameter

562
are in The Example JSP Document (page 526). A sample bookstore5.war is
provided in <INSTALL>/j2eetutorial14/examples/web/provided-wars/.

Core Tags
The core XML tags provide basic functionality to easily parse and access XML
data.

The parse tag parses an XML document and saves the resulting object in the EL
variable specified by attribute var. In bookstore5, the XML document is parsed
and saved to a context attribute in parsebooks.jsp, which is included by all JSP
pages that need access to the document:

<c:if test="${applicationScope:booklist == null}" >
<c:import url="${initParam.booksURL}" var="xml" />
<x:parse doc="${xml}" var="booklist" scope="application" />

</c:if>

The set and out tags parallel the behavior described in Variable Support
Tags (page 554) and Miscellaneous Tags (page 559) for the XPath local expres-
sion language. The set tag evaluates an XPath expression and sets the result into
a JSP EL variable specified by attribute var. The out tag evaluates an XPath
expression on the current context node and outputs the result of the evaluation to
the current JspWriter object.

The JSP page bookdetails.jsp selects a book element whose id attribute
matches the request parameter bookId and sets the abook attribute. The out tag
then selects the book’s title element and outputs the result.

<x:set var="abook"
select="$applicationScope.booklist/

books/book[@id=$param:bookId]" />
<h2><x:out select="$abook/title"/></h2>

As you have just seen, x:set stores an internal XML representation of a node
retrieved using an XPath expression; it doesn’t convert the selected node into a
String and store it. Thus, x:set is primarily useful for storing parts of docu-
ments for later retrieval.

If you want to store a String, you must use x:out within c:set. The x:out tag
converts the node to a String, and c:set then stores the String as an EL vari-

../examples/web/bookstore5/web/parsebooks.txt
../examples/web/bookstore5/web/bookdetails.txt

XML TAG LIBRARY 563
able. For example, bookdetails.jsp stores an EL variable containing a book
price, which is later provided as the value of a fmt tag, as follows:

<c:set var="price">
<x:out select="$abook/price"/>

</c:set>
<h4><fmt:message key="ItemPrice"/>:

<fmt:formatNumber value="${price}" type="currency"/>

The other option, which is more direct but requires that the user have more
knowledge of XPath, is to coerce the node to a String manually by using
XPath’s string function.

<x:set var="price" select="string($abook/price)"/>

Flow Control Tags
The XML flow control tags parallel the behavior described in Flow Control
Tags (page 555) for XML data streams.

The JSP page bookcatalog.jsp uses the forEach tag to display all the books
contained in booklist as follows:

<x:forEach var="book"
select="$applicationScope:booklist/books/*">
<tr>

<c:set var="bookId">
<x:out select="$book/@id"/>

</c:set>=
<td bgcolor="#ffffaa">

<c:url var="url"
value="/bookdetails" >

<c:param name="bookId" value="${bookId}" />
<c:param name="Clear" value="0" />

</c:url>

<x:out select="$book/title"/>
</td>

<td bgcolor="#ffffaa" rowspan=2>
<c:set var="price">

<x:out select="$book/price"/>
</c:set>
<fmt:formatNumber value="${price}" type="currency"/>

</td>

../examples/web/bookstore5/web/bookdetails.txt
../examples/web/bookstore5/web/bookcatalog.txt

564
<td bgcolor="#ffffaa" rowspan=2>
<c:url var="url" value="/catalog" >

<c:param name="Add" value="${bookId}" />
</c:url>
<p>

<fmt:message key="CartAdd"/>
</td>

</tr>
<tr>

<td bgcolor="#ffffff">
 <fmt:message key="By"/>

<x:out select="$book/firstname"/>
<x:out select="$book/surname"/></td></tr>

</x:forEach>

Transformation Tags
The transform tag applies a transformation, specified by an XSLT stylesheet set
by the attribute xslt, to an XML document, specified by the attribute doc. If the
doc attribute is not specified, the input XML document is read from the tag’s
body content.

The param subtag can be used along with transform to set transformation
parameters. The attributes name and value are used to specify the parameter. The
value attribute is optional. If it is not specified, the value is retrieved from the
tag’s body.

Internationalization Tag Library
Chapter 22 covers how to design web applications so that they conform to the
language and formatting conventions of client locales. This section describes
tags that support the internationalization of JSP pages.

JSTL defines tags for setting the locale for a page, creating locale-sensitive mes-
sages, and formatting and parsing data elements such as numbers, currencies,

INTERNATIONALIZATION TAG LIBRARY 565
dates, and times in a locale-sensitive or customized manner. Table 14–7 lists the
tags.

JSTL i18n tags use a localization context to localize their data. A localization
context contains a locale and a resource bundle instance. To specify the localiza-
tion context at deployment time, you define the context parameter javax.serv-
let.jsp.jstl.fmt.localizationContext, whose value can be a
javax.servlet.jsp.jstl.fmt.LocalizationContext or a String. A String

context parameter is interpreted as a resource bundle base name. For the Duke’s
Bookstore application, the context parameter is the String messages.Book-

storeMessages. When a request is received, JSTL automatically sets the locale
based on the value retrieved from the request header and chooses the correct
resource bundle using the base name specified in the context parameter.

Setting the Locale
The setLocale tag is used to override the client-specified locale for a page. The
requestEncoding tag is used to set the request’s character encoding, in order to
be able to correctly decode request parameter values whose encoding is different
from ISO-8859-1.

Table 14–7 Internationalization Tags

Area Function Tags Prefix

I18n

Setting Locale
setLocale
requestEncoding

fmt

Messaging

bundle
message

param
setBundle

Number and Date Formatting

formatNumber
formatDate
parseDate
parseNumber
setTimeZone
timeZone

566
Messaging Tags
By default, the capability to sense the browser locale setting is enabled in JSTL.
This means that the client determines (via its browser setting) which locale to
use, and allows page authors to cater to the language preferences of their clients.

The setBundle and bundle Tags
You can set the resource bundle at runtime with the JSTL fmt:setBundle and
fmt:bundle tags. fmt:setBundle is used to set the localization context in a vari-
able or configuration variable for a specified scope. fmt:bundle is used to set the
resource bundle for a given tag body.

The message Tag
The message tag is used to output localized strings. The following tag from
bookcatalog.jsp is used to output a string inviting customers to choose a book
from the catalog.

<h3><fmt:message key="Choose"/></h3>

The param subtag provides a single argument (for parametric replacement) to the
compound message or pattern in its parent message tag. One param tag must be
specified for each variable in the compound message or pattern. Parametric
replacement takes place in the order of the param tags.

Formatting Tags
JSTL provides a set of tags for parsing and formatting locale-sensitive numbers
and dates.

The formatNumber tag is used to output localized numbers. The following tag
from bookshowcart.jsp is used to display a localized price for a book.

<fmt:formatNumber value="${book.price}" type="currency"/>

Note that because the price is maintained in the database in dollars, the localiza-
tion is somewhat simplistic, because the formatNumber tag is unaware of
exchange rates. The tag formats currencies but does not convert them.

../examples/web/bookstore4/web/bookcatalog.txt
../examples/web/bookstore4/web/bookshowcart.txt

SQL TAG LIBRARY 567
Analogous tags for formatting dates (formatDate) and for parsing numbers and
dates (parseNumber, parseDate) are also available. The timeZone tag estab-
lishes the time zone (specified via the value attribute) to be used by any nested
formatDate tags.

In bookreceipt.jsp, a “pretend” ship date is created and then formatted with
the formatDate tag:

<jsp:useBean id="now" class="java.util.Date" />
<jsp:setProperty name="now" property="time"

value="${now.time + 432000000}" />
<fmt:message key="ShipDate"/>
<fmt:formatDate value="${now}" type="date"

dateStyle="full"/>.

SQL Tag Library
The JSTL SQL tags for accessing databases listed in Table 14–8 are designed for
quick prototyping and simple applications. For production applications, database
operations are normally encapsulated in JavaBeans components.

The setDataSource tag allows you to set data source information for the data-
base. You can provide a JNDI name or DriverManager parameters to set the data
source information. All of the Duke’s Bookstore pages that have more than one
SQL tag use the following statement to set the data source:

<sql:setDataSource dataSource="jdbc/BookDB" />

Table 14–8 SQL Tags

Area Function Tags Prefix

Database

setDataSource

sql
SQL

query
dateParam
param

transaction
update

dateParam
param

../examples/web/bookstore4/web/bookreceipt.txt

568
The query tag performs an SQL query that returns a result set. For parameter-
ized SQL queries, you use a nested param tag inside the query tag.

In bookcatalog.jsp, the value of the Add request parameter determines which
book information should be retrieved from the database. This parameter is saved
as the attribute name bid and is passed to the param tag.

<c:set var="bid" value="${param.Add}"/>
<sql:query var="books" >

select * from PUBLIC.books where id = ?
<sql:param value="${bid}" />

</sql:query>

The update tag is used to update a database row. The transaction tag is used to
perform a series of SQL statements atomically.

The JSP page bookreceipt.jsp page uses both tags to update the database
inventory for each purchase. Because a shopping cart can contain more than one
book, the transaction tag is used to wrap multiple queries and updates. First,
the page establishes that there is sufficient inventory; then the updates are per-
formed.

<c:set var="sufficientInventory" value="true" />
<sql:transaction>

<c:forEach var="item" items="${sessionScope.cart.items}">
<c:set var="book" value="${item.item}" />
<c:set var="bookId" value="${book.bookId}" />

<sql:query var="books"
sql="select * from PUBLIC.books where id = ?" >
<sql:param value="${bookId}" />

</sql:query>
<jsp:useBean id="inventory"

class="database.BookInventory" />
<c:forEach var="bookRow" begin="0"

items="${books.rowsByIndex}">
<jsp:useBean id="bookRow" type="java.lang.Object[]" />
<jsp:setProperty name="inventory" property="quantity"

value="${bookRow[7]}" />

<c:if test="${item.quantity > inventory.quantity}">
<c:set var="sufficientInventory" value="false" />
<h3>
<fmt:message key="OrderError"/>
There is insufficient inventory for
<i>${bookRow[3]}</i>.</h3>

</c:if>

../examples/web/bookstore4/web/bookcatalog.txt

SQL TAG LIBRARY 569
</c:forEach>
</c:forEach>

<c:if test="${sufficientInventory == 'true'}" />
<c:forEach var="item" items="${sessionScope.cart.items}">
 <c:set var="book" value="${item.item}" />
 <c:set var="bookId" value="${book.bookId}" />

<sql:query var="books"
sql="select * from PUBLIC.books where id = ?" >
<sql:param value="${bookId}" />

</sql:query>

<c:forEach var="bookRow" begin="0"
items="${books.rows}">
<sql:update var="books" sql="update PUBLIC.books set

inventory = inventory - ? where id = ?" >
<sql:param value="${item.quantity}" />
<sql:param value="${bookId}" />

</sql:update>
</c:forEach>

</c:forEach>
<h3><fmt:message key="ThankYou"/>

${param.cardname}.</h3>

</c:if>

</sql:transaction>

query Tag Result Interface
The Result interface is used to retrieve information from objects returned from
a query tag.

public interface Result
public String[] getColumnNames();
public int getRowCount()
public Map[] getRows();
public Object[][] getRowsByIndex();
public boolean isLimitedByMaxRows();

For complete information about this interface, see the API documentation for the
JSTL packages.

The var attribute set by a query tag is of type Result. The getRows method
returns an array of maps that can be supplied to the items attribute of a forEach

tag. The JSTL expression language converts the syntax ${result.rows} to a

http://java.sun.com/products/jsp/jstl/1.1/docs/api/index.html

570
call to result.getRows. The expression ${books.rows} in the following exam-
ple returns an array of maps.

When you provide an array of maps to the forEach tag, the var attribute set by
the tag is of type Map. To retrieve information from a row, use the
get("colname") method to get a column value. The JSP expression language
converts the syntax ${map.colname} to a call to map.get("colname"). For
example, the expression ${book.title} returns the value of the title entry of a
book map.

The Duke’s Bookstore page bookdetails.jsp retrieves the column values from
the book map as follows.

<c:forEach var="book" begin="0" items="${books.rows}">
<h2>${book.title}</h2>
 <fmt:message key="By"/> ${book.firstname}
${book.surname}
(${book.year})

<h4><fmt:message key="Critics"/></h4>
<blockquote>${book.description}</blockquote>
<h4><fmt:message key="ItemPrice"/>:
<fmt:formatNumber value="${book.price}" type="currency"/>
</h4>

</c:forEach>

The following excerpt from bookcatalog.jsp uses the Row interface to retrieve
values from the columns of a book row using scripting language expressions.
First, the book row that matches a request parameter (bid) is retrieved from the
database. Because the bid and bookRow objects are later used by tags that use
scripting language expressions to set attribute values and by a scriptlet that adds
a book to the shopping cart, both objects are declared as scripting variables using
the jsp:useBean tag. The page creates a bean that describes the book, and
scripting language expressions are used to set the book properties from book row
column values. Then the book is added to the shopping cart.

You might want to compare this version of bookcatalog.jsp to the versions in
JavaServer Pages Technology (page 481) and Custom Tags in JSP
Pages (page 575) that use a book database JavaBeans component.

<sql:query var="books"
dataSource="${applicationScope.bookDS}">
select * from PUBLIC.books where id = ?
<sql:param value="${bid}" />

</sql:query>
<c:forEach var="bookRow" begin="0"

../examples/web/bookstore4/web/bookdetails.txt
../examples/web/bookstore4/web/bookcatalog.txt

SQL TAG LIBRARY 571
items="${books.rowsByIndex}">
<jsp:useBean id="bid" type="java.lang.String" />
<jsp:useBean id="bookRow" type="java.lang.Object[]" />
<jsp:useBean id="addedBook" class="database.BookDetails"

scope="page" >
<jsp:setProperty name="addedBook" property="bookId"

value="${bookRow[0]}" />
<jsp:setProperty name="addedBook" property="surname"

value="${bookRow[1]}" />
<jsp:setProperty name="addedBook" property="firstName"

value="${bookRow[2]}" />
<jsp:setProperty name="addedBook" property="title"

value="${bookRow[3]}" />
<jsp:setProperty name="addedBook" property="price"

value="${bookRow[4])}" />
<jsp:setProperty name="addedBook" property="year"

value="${bookRow[6]}" />
<jsp:setProperty name="addedBook"

property="description"
value="${bookRow[7]}" />

<jsp:setProperty name="addedBook" property="inventory"
value="${bookRow[8]}" />

</jsp:useBean>
<% cart.add(bid, addedBook); %>
...

</c:forEach>

572
Functions
Table 14–9 lists the JSTL functions.

Although the java.util.Collection interface defines a size method, it does
not conform to the JavaBeans component design pattern for properties and so
cannot be accessed via the JSP expression language. The length function can be
applied to any collection supported by the c:forEach and returns the length of
the collection. When applied to a String, it returns the number of characters in
the string.

For example, the index.jsp page of the hello1 application introduced in
Chapter 3 uses the fn:length function and the c:if tag to determine whether to
include a response page:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core"
prefix="c" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/functions"
prefix="fn" %>

<html>
<head><title>Hello</title></head>
...
<input type="text" name="username" size="25">
<p></p>
<input type="submit" value="Submit">
<input type="reset" value="Reset">

Table 14–9 Functions

Area Function Tags Prefix

Functions

Collection
length

length

fn
String
manipulation

toUpperCase, toLowerCase
substring, substringAfter,
substringBefore
trim
replace
indexOf, startsWith, endsWith,
contains, containsIgnoreCase
split, join
escapeXml

FURTHER INFORMATION 573
</form>

<c:if test="${fn:length(param.username) > 0}" >
 <%@include file="response.jsp" %>
</c:if>
</body>
</html>

The rest of the JSTL functions are concerned with string manipulation:

• toUpperCase, toLowerCase: Changes the capitalization of a string

• substring, substringBefore, substringAfter: Gets a subset of a string

• trim: Trims whitespace from a string

• replace: Replaces characters in a string

• indexOf, startsWith, endsWith, contains, containsIgnoreCase:
Checks whether a string contains another string

• split: Splits a string into an array

• join: Joins a collection into a string

• escapeXml: Escapes XML characters in a string

Further Information
For further information on JSTL, see the following:

• The tag reference documentation:
http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/
index.html

• The API reference documentation:
http://java.sun.com/products/jsp/jstl/1.1/docs/api/
index.html

• The JSTL 1.1 specification:
http://java.sun.com/products/jsp/jstl/downloads/
index.html#specs

• The JSTL web site:
http://java.sun.com/products/jsp/jstl

http://java.sun.com/products/jsp/jstl/downloads/index.html#specs
http://java.sun.com/products/jsp/jstl
http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/index.html
http://java.sun.com/products/jsp/jstl/1.1/docs/api/index.html

574

15
575
Custom Tags in JSP
Pages

THE standard JSP tags simplify JSP page development and maintenance. JSP
technology also provides a mechanism for encapsulating other types of dynamic
functionality in custom tags, which are extensions to the JSP language. Some
examples of tasks that can be performed by custom tags include operating on
implicit objects, processing forms, accessing databases and other enterprise ser-
vices such as email and directories, and implementing flow control. Custom tags
increase productivity because they can be reused in more than one application.

Custom tags are distributed in a tag library, which defines a set of related custom
tags and contains the objects that implement the tags. The object that implements
a custom tag is called a tag handler. JSP technology defines two types of tag
handlers: simple and classic. Simple tag handlers can be used only for tags that
do not use scripting elements in attribute values or the tag body. Classic tag han-
dlers must be used if scripting elements are required. Simple tag handlers are
covered in this chapter, and classic tag handlers are discussed in Chapter 16.

You can write simple tag handlers using the JSP language or using the Java lan-
guage. A tag file is a source file containing a reusable fragment of JSP code that
is translated into a simple tag handler by the web container. Tag files can be used
to develop custom tags that are presentation-centric or that can take advantage of
existing tag libraries, or by page authors who do not know Java. When the flexi-
bility of the Java programming language is needed to define the tag, JSP technol-

576
ogy provides a simple API for developing a tag handler in the Java programming
language.

This chapter assumes that you are familiar with the material in Chapter 12, espe-
cially the section Using Custom Tags (page 513). For more information about
tag libraries and for pointers to some freely available libraries, see

http://java.sun.com/products/jsp/taglibraries/index.jsp

What Is a Custom Tag?
A custom tag is a user-defined JSP language element. When a JSP page contain-
ing a custom tag is translated into a servlet, the tag is converted to operations on
a tag handler. The web container then invokes those operations when the JSP
page’s servlet is executed.

Custom tags have a rich set of features. They can

• Be customized via attributes passed from the calling page.

• Pass variables back to the calling page.

• Access all the objects available to JSP pages.

• Communicate with each other. You can create and initialize a JavaBeans
component, create a public EL variable that refers to that bean in one tag,
and then use the bean in another tag.

• Be nested within one another and communicate via private variables.

The Example JSP Pages
This chapter describes the tasks involved in defining simple tags. We illustrate
the tasks using excerpts from the JSP version of the Duke’s Bookstore applica-
tion discussed in The Example JSP Pages (page 486), rewritten here to take
advantage of several custom tags:

• A catalog tag for rendering the book catalog

• A shipDate tag for rendering the ship date of an order

• A template library for ensuring a common look and feel among all screens
and composing screens out of content chunks

http://java.sun.com/products/jsp/taglibraries/index.jsp

THE EXAMPLE JSP PAGES 577
The last section in the chapter, Examples (page 622), describes several tags in
detail: a simple iteration tag and the set of tags in the tutorial-template tag
library.

The tutorial-template tag library defines a set of tags for creating an applica-
tion template. The template is a JSP page that has placeholders for the parts that
need to change with each screen. Each of these placeholders is referred to as a
parameter of the template. For example, a simple template might include a title
parameter for the top of the generated screen and a body parameter to refer to a
JSP page for the custom content of the screen. The template is created using a set
of nested tags—definition, screen, and parameter—that are used to build a
table of screen definitions for Duke’s Bookstore. An insert tag to insert param-
eters from the table into the screen.

Figure 15–1 shows the flow of a request through the following Duke’s Bookstore
web components:

• template.jsp, which determines the structure of each screen. It uses the
insert tag to compose a screen from subcomponents.

• screendefinitions.jsp, which defines the subcomponents used by each
screen. All screens have the same banner but different title and body con-
tent (specified by the JSP Pages column in Table 12–1).

• Dispatcher, a servlet, which processes requests and forwards to tem-

plate.jsp.

../examples/web/bookstore3/web/template/template.txt
../examples/web/bookstore3/web/template/screendefinitions.txt
../examples/web/bookstore3/src/Dispatcher.java

578
Figure 15–1 Request Flow through Duke’s Bookstore Components

The source code for the Duke’s Bookstore application is located in the
<INSTALL>/j2eetutorial14/examples/web/bookstore3/ directory created
when you unzip the tutorial bundle (see About the Examples, page xxxvi). A
sample bookstore3.war is provided in <INSTALL>/j2eetutorial14/exam-

ples/web/provided-wars/. To build the example, follow these steps:

1. Build and package the bookstore common files as described in Duke’s
Bookstore Examples (page 103).

2. In a terminal window, go to <INSTALL>/j2eetutorial14/examples/

bookstore3/.

3. Run asant build. This target will spawn any necessary compilations and
will copy files to the <INSTALL>/j2eetutorial14/examples/web/

bookstore3/build/ directory.

4. Start the Application Server.

5. Perform all the operations described in Accessing Databases from Web
Applications, page 104.

To package and deploy the example using asant, follow these steps:

1. Run asant create-bookstore-war.

2. Run asant deploy-war.

THE EXAMPLE JSP PAGES 579
To learn how to configure the example, use deploytool to package and deploy
it:

1. Start deploytool.

2. Create a web application called bookstore3. Select File→New→Web
Component.

3. In the New Web Component wizard:

a. Select the Create New Stand-Alone WAR Module radio button.

b. In the WAR File field, enter <INSTALL>/j2eetutorial14/examples/
web/bookstore3/bookstore3.war. The WAR Display Name field will
show bookstore3.

c. In the Context Root field, enter /bookstore3.

d. Click Edit Contents.

e. In the Edit Contents dialog box, navigate to <INSTALL>/

j2eetutorial14/examples/web/bookstore3/build/. Select the JSP
pages bookstore.jsp, bookdetails.jsp, bookcatalog.jsp, book-
showcart.jsp, bookcashier.jsp, bookreceipt.jsp, and bookor-

dererror.jsp, the tag files catalog.tag and shipDate.tag, the
custom TLD, tutorial-template.tld, and the dispatcher, data-
base, listeners, and template directories and click Add. Click OK.

f. Add the shared bookstore library. Navigate to <INSTALL>/

j2eetutorial14/examples/web/bookstore/dist/. Select book-

store.jar, and click Add. Click OK.

g. Click Next.

h. Select the Servlet radio button, then .

i. Click Next.

j. Select dispatcher.Dispatcher from the Servlet class combo box.

k. Click Finish.

4. Add the listener class listeners.ContextListener (described in Han-
dling Servlet Life-Cycle Events, page 450).

a. Select the Event Listeners tab.

b. Click Add.

c. Select the listeners.ContextListener class from drop-down field in
the Event Listener Classes pane.

5. Add the aliases.

a. Select Dispatcher.

580
b. Select the Aliases tab.

c. Click Add and then type /bookstore in the Aliases field. Repeat to add
the aliases /bookcatalog, /bookdetails, /bookshowcart, /book-

cashier, /bookordererror, and /bookreceipt.

6. Add the context parameter that specifies the JSTL resource bundle base
name.

a. Select the web module.

b. Select the Context tab.

c. Click Add.

d. Enter javax.servlet.jsp.jstl.fmt.localizationContext in the
Coded Parameter field.

e. Enter messages.BookstoreMessages in the Value field.

7. Set the prelude for all JSP pages.

a. Select the JSP Properties tab.

b. Click the Add button next to the Name list.

c. Enter bookstore3.

d. Click the Add URL button.

e. Enter *.jsp.

f. Click the Edit Preludes button.

g. Click Add.

h. Enter /template/prelude.jspf.

i. Click OK.

8. Add a resource reference for the database.

a. Select the Resource Ref’s tab.

b. Click Add.

c. Enter jdbc/BookDB in the Coded Name field.

d. Accept the default type javax.sql.DataSource.

e. Accept the default authorization Container.

f. Accept the default selected Shareable.

g. Enter jdbc/BookDB in the JNDI name field of the Sun-specific Settings
frame.

9. Deploy the application.

a. Select Tools→Deploy.

TYPES OF TAGS 581
b. Click OK.

c. A pop-up dialog box will display the results of the deployment. Click
Close.

To run the example, open the bookstore URL http://localhost:8080/

bookstore3/bookstore.

See Troubleshooting (page 448) for help with diagnosing common problems.

Types of Tags
Simple tags are invoked using XML syntax. They have a start tag and an end tag,
and possibly a body:

<tt:tag>
body

</tt:tag>

A custom tag with no body is expressed as follows:

<tt:tag /> or <tt:tag></tt:tag>

Tags with Attributes
A simple tag can have attributes. Attributes customize the behavior of a custom
tag just as parameters customize the behavior of a method. There are three types
of attributes:

• Simple attributes

• Fragment attributes

• Dynamic attributes

Simple Attributes
Simple attributes are evaluated by the container before being passed to the tag
handler. Simple attributes are listed in the start tag and have the syntax
attr="value". You can set a simple attribute value from a String constant, or
an expression language (EL) expression, or by using a jsp:attribute element
(see jsp:attribute Element, page 583). The conversion process between the con-
stants and expressions and attribute types follows the rules described for Java-

582
Beans component properties in Setting JavaBeans Component
Properties (page 510).

The Duke’s Bookstore page bookcatalog.jsp calls the catalog tag, which has
two attributes. The first attribute, a reference to a book database object, is set by
an EL expression. The second attribute, which sets the color of the rows in a
table that represents the bookstore catalog, is set with a String constant.

<sc:catalog bookDB ="${bookDB}" color="#cccccc">

Fragment Attributes
A JSP fragment is a portion of JSP code passed to a tag handler that can be
invoked as many times as needed. You can think of a fragment as a template that
is used by a tag handler to produce customized content. Thus, unlike a simple
attribute which is evaluated by the container, a fragment attribute is evaluated by
a tag handler during tag invocation.

To declare a fragment attribute, you use the fragment attribute of the attribute

directive (see Declaring Tag Attributes in Tag Files, page 591) or use the frag-

ment subelement of the attribute TLD element (see Declaring Tag Attributes
for Tag Handlers, page 609). You define the value of a fragment attribute by
using a jsp:attribute element. When used to specify a fragment attribute, the
body of the jsp:attribute element can contain only static text and standard
and custom tags; it cannot contain scripting elements (see Chapter 16).

JSP fragments can be parametrized via expression language (EL) variables in the
JSP code that composes the fragment. The EL variables are set by the tag han-
dler, thus allowing the handler to customize the fragment each time it is invoked
(see Declaring Tag Variables in Tag Files, page 592, and Declaring Tag Variables
for Tag Handlers, page 610).

The catalog tag discussed earlier accepts two fragments: normalPrice, which
is displayed for a product that’s full price, and onSale, which is displayed for a
product that’s on sale.

<sc:catalog bookDB ="${bookDB}" color="#cccccc">
<jsp:attribute name="normalPrice">

<fmt:formatNumber value="${price}" type="currency"/>
 </jsp:attribute>

<jsp:attribute name="onSale">
<strike><fmt:formatNumber value="${price}"

type="currency"/></strike>

../examples/web/bookstore3/web/bookcatalog.txt

TYPES OF TAGS 583
<fmt:formatNumber value="${salePrice}"
type="currency"/>

</jsp:attribute>
</sc:catalog>

The tag executes the normalPrice fragment, using the values for the price EL
variable, if the product is full price. If the product is on sale, the tag executes the
onSale fragment using the price and salePrice variables.

Dynamic Attributes
A dynamic attribute is an attribute that is not specified in the definition of the
tag. Dynamic attributes are used primarily by tags whose attributes are treated in
a uniform manner but whose names are not necessarily known at development
time.

For example, this tag accepts an arbitrary number of attributes whose values are
colors and outputs a bulleted list of the attributes colored according to the values:

<colored:colored color1="red" color2="yellow" color3="blue"/>

You can also set the value of dynamic attributes using an EL expression or using
the jsp:attribute element.

jsp:attribute Element
The jsp:attribute element allows you to define the value of a tag attribute in
the body of an XML element instead of in the value of an XML attribute.

For example, the Duke’s Bookstore template page screendefinitions.jsp

uses jsp:attribute to use the output of fmt:message to set the value of the
value attribute of tt:parameter:

...
<tt:screen id="/bookcatalog">

<tt:parameter name="title" direct="true">
<jsp:attribute name="value" >

<fmt:message key="TitleBookCatalog"/>
</jsp:attribute>

</tt:parameter>
<tt:parameter name="banner" value="/template/banner.jsp"

direct="false"/>

584
<tt:parameter name="body" value="/bookcatalog.jsp"
direct="false"/>

</tt:screen>
...

jsp:attribute accepts a name attribute and a trim attribute. The name attribute
identifies which tag attribute is being specified. The optional trim attribute
determines whether or not whitespace appearing at the beginning and end of the
element body should be discarded. By default, the leading and trailing
whitespace is discarded. The whitespace is trimmed when the JSP page is trans-
lated. If a body contains a custom tag that produces leading or trailing
whitespace, that whitespace is preserved regardless of the value of the trim

attribute.

An empty body is equivalent to specifying "" as the value of the attribute.

The body of jsp:attribute is restricted according to the type of attribute being
specified:

• For simple attributes that accept an EL expression, the body can be any JSP
content.

• For simple attributes that do not accept an EL expression, the body can
contain only static text.

• For fragment attributes, the body must not contain any scripting elements
(see Chapter 16).

Tags with Bodies
A simple tag can contain custom and core tags, HTML text, and tag-dependent
body content between the start tag and the end tag.

In the following example, the Duke’s Bookstore application page bookshow-

cart.jsp uses the JSTL c:if tag to print the body if the request contains a
parameter named Clear:

<c:if test="${param.Clear}">

You just cleared your shopping cart!

</c:if>

../examples/web/bookstore3/web/bookshowcart.txt
../examples/web/bookstore3/web/bookshowcart.txt

TYPES OF TAGS 585
jsp:body Element
You can also explicitly specify the body of a simple tag by using the jsp:body

element. If one or more attributes are specified with the jsp:attribute ele-
ment, then jsp:body is the only way to specify the body of the tag. If one or
more jsp:attribute elements appear in the body of a tag invocation but you
don’t include a jsp:body element, the tag has an empty body.

Tags That Define Variables
A simple tag can define an EL variable that can be used within the calling page.
In the following example, the iterator tag sets the value of the EL variable
departmentName as it iterates through a collection of department names.

<tlt:iterator var="departmentName" type="java.lang.String"
group="${myorg.departmentNames}">

<tr>
<td>

${departmentName}</td>
</tr>

</tlt:iterator>

Communication between Tags
Custom tags communicate with each other through shared objects. There are two
types of shared objects: public and private.

In the following example, the c:set tag creates a public EL variable called
aVariable, which is then reused by anotherTag.

<c:set var="aVariable" value="aValue" />
<tt:anotherTag attr1="${aVariable}" />

Nested tags can share private objects. In the next example, an object created by
outerTag is available to innerTag. The inner tag retrieves its parent tag and then
retrieves an object from the parent. Because the object is not named, the poten-
tial for naming conflicts is reduced.

<tt:outerTag>
<tt:innerTag />

</tt:outerTag>

586
The Duke’s Bookstore page template.jsp uses a set of cooperating tags that
share public and private objects to define the screens of the application. These
tags are described in A Template Tag Library (page 624).

Encapsulating Reusable Content Using
Tag Files

A tag file is a source file that contains a fragment of JSP code that is reusable as
a custom tag. Tag files allow you to create custom tags using JSP syntax. Just as
a JSP page gets translated into a servlet class and then compiled, a tag file gets
translated into a tag handler and then compiled.

The recommended file extension for a tag file is .tag. As is the case with JSP
files, the tag can be composed of a top file that includes other files that contain
either a complete tag or a fragment of a tag file. Just as the recommended exten-
sion for a fragment of a JSP file is .jspf, the recommended extension for a frag-
ment of a tag file is .tagf.

The following version of the Hello, World application introduced in Chapter 3
uses a tag to generate the response. The response tag, which accepts two
attributes—a greeting string and a name—is encapsulated in response.tag:

<%@ attribute name="greeting" required="true" %>
<%@ attribute name="name" required="true" %>
<h2>${greeting}, ${name}!</h2>

The highlighted line in the greeting.jsp page invokes the response tag if the
length of the username request parameter is greater than 0:

<%@ taglib tagdir="/WEB-INF/tags" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core"

prefix="c" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/functions"

prefix="fn" %>
<html>
<head><title>Hello</title></head>
<body bgcolor="white">

<c:set var="greeting" value="Hello" />
<h2>${greeting}, my name is Duke. What's yours?</h2>
<form method="get">
<input type="text" name="username" size="25">
<p></p>

../examples/web/bookstore3/web/template/template.txt

ENCAPSULATING REUSABLE CONTENT USING TAG FILES 587
<input type="submit" value="Submit">
<input type="reset" value="Reset">
</form>

<c:if test="${fn:length(param.username) > 0}" >
<h:response greeting="${greeting}"

name="${param.username}"/>
</c:if>
</body>
</html>

A sample hello3.war is provided in <INSTALL>/j2eetutorial14/examples/

web/provided-wars/. To build the hello3 application, follow these steps:

1. In a terminal window, go to <INSTALL>/j2eetutorial14/examples/

web/hello3/.

2. Run asant build. This target will spawn any necessary compilations and
copy files to the <INSTALL>/j2eetutorial14/examples/web/hello3/

build/ directory.

To package and deploy the example using asant, follow these steps:

1. Run asant create-war.

2. Start the Application Server.

3. Run asant deploy-war.

To learn how to configure the example, use deploytool to package and deploy
it:

1. Start the Application Server.

2. Start deploytool.

3. Create a web application called hello3 by running the New Web Compo-
nent wizard. Select File→New→Web Component.

4. In the New Web Component wizard:

a. Select the Create New Stand-Alone WAR Module radio button.

b. In the WAR File field, enter <INSTALL>/j2eetutorial14/examples/
web/hello3/hello3.war. The WAR Display Name field will show
hello3.

c. In the Context Root field, enter /hello3.

d. Click Edit Contents.

588
e. In the Edit Contents dialog, navigate to <INSTALL>/j2eetutorial14/

examples/web/hello3/build/. Select duke.waving.gif, greet-

ing.jsp, and response.tag and click Add. Click OK.

f. Click Next.

g. Select the No Component radio button and click Next.

h. Click Finish.

5. Set greeting.jsp to be a welcome file (see Declaring Welcome
Files, page 101).

a. Select the File Ref’s tab.

b. Click Add to add a welcome file.

c. Select greeting.jsp from the drop-down list.

6. Select File→Save.

7. Deploy the application.

a. Select Tools→Deploy.

b. In the Connection Settings frame, enter the user name and password you
specified when you installed the Application Server.

c. Click OK.

d. A pop-up dialog box will display the results of the deployment. Click
Close.

To run the example, open your browser to http://localhost:8080/hello3

Tag File Location
Tag files can be placed in one of two locations: in the /WEB-INF/tags/ directory
or subdirectory of a web application or in a JAR file (see Packaged Tag
Files, page 607) in the /WEB-INF/lib/ directory of a web application. Packaged
tag files require a tag library descriptor (see Tag Library Descriptors, page 602),
an XML document that contains information about a library as a whole and
about each tag contained in the library. Tag files that appear in any other location
are not considered tag extensions and are ignored by the web container.

ENCAPSULATING REUSABLE CONTENT USING TAG FILES 589
Tag File Directives
Directives are used to control aspects of tag file translation to a tag handler, and
to specify aspects of the tag, attributes of the tag, and variables exposed by the
tag. Table 15–1 lists the directives that you can use in tag files.

Declaring Tags
The tag directive is similar to the JSP page’s page directive but applies to tag
files. Some of the elements in the tag directive appear in the tag element of a

Table 15–1 Tag File Directives

Directive Description

taglib
Identical to taglib directive (see Declaring Tag Libraries, page 513) for JSP
pages.

include
Identical to include directive (see Reusing Content in JSP Pages, page 517)
for JSP pages. Note that if the included file contains syntax unsuitable for tag
files, a translation error will occur.

tag

Similar to the page directive in a JSP page, but applies to tag files instead of
JSP pages. As with the page directive, a translation unit can contain more
than one instance of the tag directive. All the attributes apply to the complete
translation unit. However, there can be only one occurrence of any attribute or
value defined by this directive in a given translation unit. With the exception
of the import attribute, multiple attribute or value (re)definitions result in a
translation error.

Also used for declaring custom tag properties such as display name. See
Declaring Tags (page 589).

attribute
Declares an attribute of the custom tag defined in the tag file. See Declaring
Tag Attributes in Tag Files (page 591).

variable
Declares an EL variable exposed by the tag to the calling page. See Declaring
Tag Variables in Tag Files (page 592).

590
TLD (see Declaring Tag Handlers, page 607). Table 15–2 lists the tag directive
attributes.

Table 15–2 tag Directive Attributes

Attribute Description

display-name
(optional) A short name that is intended to be displayed by tools.
Defaults to the name of the tag file without the extension .tag.

body-content

(optional) Provides information on the content of the body of the
tag. Can be either empty, tagdependent, or scriptless. A
translation error will result if JSP or any other value is used.
Defaults to scriptless. See body-content Attribute (page 591).

dynamic-attributes

(optional) Indicates whether this tag supports additional attributes
with dynamic names. The value identifies a scoped attribute in
which to place a Map containing the names and values of the
dynamic attributes passed during invocation of the tag.

A translation error results if the value of the dynamic-
attributes of a tag directive is equal to the value of a name-
given of a variable directive or the value of a name attribute of
an attribute directive.

small-icon
(optional) Relative path, from the tag source file, of an image file
containing a small icon that can be used by tools. Defaults to no
small icon.

large-icon
(optional) Relative path, from the tag source file, of an image file
containing a large icon that can be used by tools. Defaults to no
large icon.

description
(optional) Defines an arbitrary string that describes this tag.
Defaults to no description.

example
(optional) Defines an arbitrary string that presents an informal
description of an example of a use of this action. Defaults to no
example.

language
(optional) Carries the same syntax and semantics of the language
attribute of the page directive.

import
(optional) Carries the same syntax and semantics of the import
attribute of the page directive.

ENCAPSULATING REUSABLE CONTENT USING TAG FILES 591
body-content Attribute
You specify the type of a tag’s body content using the body-content attribute:

bodycontent="empty | scriptless | tagdependent"

You must declare the body content of tags that do not accept a body as empty.
For tags that have a body there are two options. Body content containing custom
and standard tags and HTML text is specified as scriptless. All other types of
body content—for example, SQL statements passed to the query tag—is speci-
fied as tagdependent. If no attribute is specified, the default is scriptless.

Declaring Tag Attributes in Tag Files
To declare the attributes of a custom tag defined in a tag file, you use the
attribute directive. A TLD has an analogous attribute element (see Declar-
ing Tag Attributes for Tag Handlers, page 609). Table 15–3 lists the attribute

directive attributes.

pageEncoding
(optional) Carries the same syntax and semantics of the pageEn-
coding attribute in the page directive.

isELIgnored
(optional) Carries the same syntax and semantics of the isELI-
gnored attribute of the page directive.

Table 15–3 attribute Directive Attributes

Attribute Description

description (optional) Description of the attribute. Defaults to no description.

Table 15–2 tag Directive Attributes (Continued)

Attribute Description

592
Declaring Tag Variables in Tag Files
Tag attributes are used to customize tag behavior much as parameters are used to
customize the behavior of object methods. In fact, using tag attributes and EL
variables, it is possible to emulate various types of parameters—IN, OUT, and
nested.

To emulate IN parameters, use tag attributes. A tag attribute is communicated
between the calling page and the tag file when the tag is invoked. No further
communication occurs between the calling page and the tag file.

name

The unique name of the attribute being declared. A translation error results
if more than one attribute directive appears in the same translation unit
with the same name.

A translation error results if the value of a name attribute of an attribute
directive is equal to the value of the dynamic-attributes attribute of a
tag directive or the value of a name-given attribute of a variable direc-
tive.

required
(optional) Whether this attribute is required (true) or optional (false).
Defaults to false.

rtexprvalue
(optional) Whether the attribute’s value can be dynamically calculated at
runtime by an expression. Defaults to true.

type
(optional) The runtime type of the attribute’s value. Defaults to
java.lang.String.

fragment

(optional) Whether this attribute is a fragment to be evaluated by the tag
handler (true) or a normal attribute to be evaluated by the container before
being passed to the tag handler.

If this attribute is true:
You do not specify the rtexprvalue attribute. The container fixes the
rtexprvalue attribute at true.
You do not specify the type attribute. The container fixes the type attribute
at javax.servlet.jsp.tagext.JspFragment.

Defaults to false.

Table 15–3 attribute Directive Attributes (Continued)

Attribute Description

ENCAPSULATING REUSABLE CONTENT USING TAG FILES 593
To emulate OUT or nested parameters, use EL variables. The variable is not ini-
tialized by the calling page but instead is set by the tag file. Each type of param-
eter is synchronized with the calling page at various points according to the
scope of the variable. See Variable Synchronization (page 594) for details.

To declare an EL variable exposed by a tag file, you use the variable directive.
A TLD has an analogous variable element (see Declaring Tag Variables for
Tag Handlers, page 610). Table 15–4 lists the variable directive attributes.

Table 15–4 variable Directive Attributes

Attribute Description

description
(optional) An optional description of this variable. Defaults to no
description.

name-given |
name-from-
attribute

Defines an EL variable to be used in the page invoking this tag. Either
name-given or name-from-attribute must be specified. If name-
given is specified, the value is the name of the variable. If name-
from-attribute is specified, the value is the name of an attribute
whose (translation-time) value at the start of the tag invocation will give
the name of the variable.
Translation errors arise in the following circumstances:

1. Specifying neither name-given nor name-from-attribute or
both.
2. If two variable directives have the same name-given.
3. If the value of a name-given attribute of a variable directive is
equal to the value of a name attribute of an attribute directive or the
value of a dynamic-attributes attribute of a tag directive.

alias

Defines a variable, local to the tag file, to hold the value of the EL vari-
able. The container will synchronize this value with the variable whose
name is given in name-from-attribute.

Required when name-from-attribute is specified. A translation
error results if used without name-from-attribute.

A translation error results if the value of alias is the same as the value
of a name attribute of an attribute directive or the name-given
attribute of a variable directive.

variable-class
(optional) The name of the class of the variable. The default is
java.lang.String.

declare (optional) Whether or not the variable is declared. True is the default.

594
Variable Synchronization
The web container handles the synchronization of variables between a tag file
and a calling page. Table 15–5 summarizes when and how each object is syn-
chronized according to the object’s scope.

If name-given is used to specify the variable name, then the name of the variable
in the calling page and the name of the variable in the tag file are the same and
are equal to the value of name-given.

The name-from-attribute and alias attributes of the variable directive can
be used to customize the name of the variable in the calling page while another
name is used in the tag file. When using these attributes, you set the name of the
variable in the calling page from the value of name-from-attribute at the time
the tag was called. The name of the corresponding variable in the tag file is the
value of alias.

scope
(optional) The scope of the variable. Can be either AT_BEGIN, AT_END,
or NESTED. Defaults to NESTED.

Table 15–5 Variable Synchronization Behavior

Tag File Location AT_BEGIN NESTED AT_END

Beginning Not sync. Save Not sync.

Before any fragment invocation
via jsp:invoke or jsp:doBody
(see Evaluating Fragments Passed to

Tag Files, page 597)

Tag→page Tag→page Not sync.

End Tag→page Restore Tag→page

Table 15–4 variable Directive Attributes

Attribute Description

ENCAPSULATING REUSABLE CONTENT USING TAG FILES 595
Synchronization Examples
The following examples illustrate how variable synchronization works between
a tag file and its calling page. All the example JSP pages and tag files reference
the JSTL core tag library with the prefix c. The JSP pages reference a tag file
located in /WEB-INF/tags with the prefix my.

AT_BEGIN Scope
In this example, the AT_BEGIN scope is used to pass the value of the variable
named x to the tag’s body and at the end of the tag invocation.

<%-- callingpage.jsp --%>
<c:set var="x" value="1"/>
${x} <%-- (x == 1) --%>
<my:example>

${x} <%-- (x == 2) --%>
</my:example>
${x} <%-- (x == 4) --%>

<%-- example.tag --%>
<%@ variable name-given="x" scope="AT_BEGIN" %>
${x} <%-- (x == null) --%>
<c:set var="x" value="2"/>
<jsp:doBody/>
${x} <%-- (x == 2) --%>
<c:set var="x" value="4"/>

NESTED Scope
In this example, the NESTED scope is used to make a variable named x available
only to the tag’s body. The tag sets the variable to 2, and this value is passed to
the calling page before the body is invoked. Because the scope is NESTED and

596
because the calling page also had a variable named x, its original value, 1, is
restored when the tag completes.

<%-- callingpage.jsp --%>
<c:set var="x" value="1"/>
${x} <%-- (x == 1) --%>
<my:example>

${x} <%-- (x == 2) --%>
</my:example>
${x} <%-- (x == 1) --%>

<%-- example.tag --%>
<%@ variable name-given="x" scope="NESTED" %>
${x} <%-- (x == null) --%>
<c:set var="x" value="2"/>
<jsp:doBody/>
${x} <%-- (x == 2) --%>
<c:set var="x" value="4"/>

AT_END Scope
In this example, the AT_END scope is used to return a value to the page. The body
of the tag is not affected.

<%-- callingpage.jsp --%>
<c:set var="x" value="1"/>
${x} <%-- (x == 1) --%>
<my:example>

${x} <%-- (x == 1) --%>
</my:example>
${x} <%-- (x == 4) --%>

<%-- example.tag --%>
<%@ variable name-given="x" scope="AT_END" %>
${x} <%-- (x == null) --%>
<c:set var="x" value="2"/>
<jsp:doBody/>
${x} <%-- (x == 2) --%>
<c:set var="x" value="4"/>

AT_BEGIN and name-from-attribute
In this example the AT_BEGIN scope is used to pass an EL variable to the tag’s
body and make to it available to the calling page at the end of the tag invocation.

ENCAPSULATING REUSABLE CONTENT USING TAG FILES 597
The name of the variable is specified via the value of the attribute var. The vari-
able is referenced by a local name, result, in the tag file.

<%-- callingpage.jsp --%>
<c:set var="x" value="1"/>
${x} <%-- (x == 1) --%>
<my:example var="x">

${x} <%-- (x == 2) --%>
${result} <%-- (result == null) --%>
<c:set var="result" value="invisible"/>

</my:example>
${x} <%-- (x == 4) --%>
${result} <%-- (result == ‘invisible’) --%>

<%-- example.tag --%>
<%@ attribute name="var" required="true" rtexprvalue="false"%>
<%@ variable alias="result" name-from-attribute="var"

scope="AT_BEGIN" %>
${x} <%-- (x == null) --%>
${result} <%-- (result == null) --%>
<c:set var="x" value="ignored"/>
<c:set var="result" value="2"/>
<jsp:doBody/>
${x} <%-- (x == ‘ignored’) --%>
${result} <%-- (result == 2) --%>
<c:set var="result" value="4"/>

Evaluating Fragments Passed to Tag Files
When a tag file is executed, the web container passes it two types of fragments:
fragment attributes and the tag body. Recall from the discussion of fragment
attributes that fragments are evaluated by the tag handler as opposed to the web
container. Within a tag file, you use the jsp:invoke element to evaluate a frag-
ment attribute and use the jsp:doBody element to evaluate a tag file body.

The result of evaluating either type of fragment is sent to the response or is
stored in an EL variable for later manipulation. To store the result of evaluating a
fragment to an EL variable, you specify the var or varReader attribute. If var is
specified, the container stores the result in an EL variable of type String with
the name specified by var. If varReader is specified, the container stores the
result in an EL variable of type java.io.Reader, with the name specified by
varReader. The Reader object can then be passed to a custom tag for further
processing. A translation error occurs if both var and varReader are specified.

598
An optional scope attribute indicates the scope of the resulting variable. The
possible values are page (default), request, session, or application. A trans-
lation error occurs if you use this attribute without specifying the var or
varReader attribute.

Examples

Simple Attribute Example
The Duke’s Bookstore shipDate tag, defined in shipDate.tag, is a custom tag
that has a simple attribute. The tag generates the date of a book order according
to the type of shipping requested.

<%@ taglib prefix="sc" tagdir="/WEB-INF/tags" %>
<h3><fmt:message key="ThankYou"/> ${param.cardname}.</h3>

<fmt:message key="With"/>
<fmt:message key="${param.shipping}"/>,
<fmt:message key="ShipDateLC"/>
<sc:shipDate shipping="${param.shipping}" />

The tag determines the number of days until shipment from the shipping

attribute passed to it by the page bookreceipt.jsp. From the number of days,
the tag computes the ship date. It then formats the ship date.

<%@ attribute name="shipping" required="true" %>

<jsp:useBean id="now" class="java.util.Date" />
<jsp:useBean id="shipDate" class="java.util.Date" />
<c:choose>
 <c:when test="${shipping == 'QuickShip'}">
 <c:set var="days" value="2" />
 </c:when>
 <c:when test="${shipping == 'NormalShip'}">
 <c:set var="days" value="5" />
 </c:when>
 <c:when test="${shipping == 'SaverShip'}">
 <c:set var="days" value="7" />
 </c:when>
</c:choose>
<jsp:setProperty name="shipDate" property="time"

value="${now.time + 86400000 * days}" />
<fmt:formatDate value="${shipDate}" type="date"

dateStyle="full"/>.

../examples/web/bookstore3/web/shipDate.txt
../examples/web/bookstore3/web/bookreceipt.txt

ENCAPSULATING REUSABLE CONTENT USING TAG FILES 599
Simple and Fragment Attribute and Variable
Example
The Duke’s Bookstore catalog tag, defined in catalog.tag, is a custom tag
with simple and fragment attributes and variables. The tag renders the catalog of
a book database as an HTML table. The tag file declares that it sets variables
named price and salePrice via variable directives. The fragment normal-
Price uses the variable price, and the fragment onSale uses the variables
price and salePrice. Before the tag invokes the fragment attributes using the
jsp:invoke element, the web container passes values for the variables back to
the calling page.

<%@ attribute name="bookDB" required="true"
type="database.BookDB" %>

<%@ attribute name="color" required="true" %>
<%@ attribute name="normalPrice" fragment="true" %>
<%@ attribute name="onSale" fragment="true" %>

<%@ variable name-given="price" %>
<%@ variable name-given="salePrice" %>

<center>
<table>
<c:forEach var="book" begin="0" items="${bookDB.books}">

<tr>
<c:set var="bookId" value="${book.bookId}" />
<td bgcolor="${color}">

<c:url var="url" value="/bookdetails" >
<c:param name="bookId" value="${bookId}" />

</c:url>
<

strong>${book.title} </td>
<td bgcolor="${color}" rowspan=2>
<c:set var="salePrice" value="${book.price * .85}" />
<c:set var="price" value="${book.price}" />
<c:choose>

<c:when test="${book.onSale}" >
<jsp:invoke fragment="onSale" />

</c:when>
<c:otherwise>

<jsp:invoke fragment="normalPrice"/>
</c:otherwise>

</c:choose>

 </td>

../examples/web/bookstore3/web/catalog.txt

600
...
</table>
</center>

The page bookcatalog.jsp invokes the catalog tag that has the simple
attributes bookDB, which contains catalog data, and color, which customizes the
coloring of the table rows. The formatting of the book price is determined by two
fragment attributes—normalPrice and onSale—that are conditionally invoked
by the tag according to data retrieved from the book database.

<sc:catalog bookDB ="${bookDB}" color="#cccccc">
<jsp:attribute name="normalPrice">

<fmt:formatNumber value="${price}" type="currency"/>
</jsp:attribute>
<jsp:attribute name="onSale">

<strike>
<fmt:formatNumber value="${price}" type="currency"/>
</strike>

<fmt:formatNumber value="${salePrice}" type="currency"/>

</jsp:attribute>
</sc:catalog>

The screen produced by bookcatalog.jsp is shown in Figure 15–2. You can
compare it to the version in Figure 12–2.

../examples/web/bookstore3/web/bookcatalog.txt

ENCAPSULATING REUSABLE CONTENT USING TAG FILES 601
Figure 15–2 Book Catalog

Dynamic Attribute Example
The following code implements the tag discussed in Dynamic
Attributes (page 583). An arbitrary number of attributes whose values are colors

602
are stored in a Map named by the dynamic-attributes attribute of the tag

directive. The JSTL forEach tag is used to iterate through the Map and the
attribute keys and colored attribute values are printed in a bulleted list.

<%@ tag dynamic-attributes="colorMap"%>

<c:forEach var="color" begin="0" items="${colorMap}">

${color.key} =
${color.value}

</c:forEach>

Tag Library Descriptors
If you want to redistribute your tag files or implement your custom tags with tag
handlers written in Java, you must declare the tags in a tag library descriptor
(TLD). A tag library descriptor is an XML document that contains information
about a library as a whole and about each tag contained in the library. TLDs are
used by a web container to validate the tags and by JSP page development tools.

Tag library descriptor file names must have the extension .tld and must be
packaged in the /WEB-INF/ directory or subdirectory of the WAR file or in the /

META-INF/ directory or subdirectory of a tag library packaged in a JAR. If a tag
is implemented as a tag file and is packaged in /WEB-INF/tags/ or a subdirec-
tory, a TLD will be generated automatically by the web container, though you
can provide one if you wish.

A TLD must begin with a root taglib element that specifies the schema and
required JSP version:

<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee/web-

jsptaglibrary_2_0.xsd"
version="2.0">

TAG LIBRARY DESCRIPTORS 603
Table 15–6 lists the subelements of the taglib element.

Top-Level Tag Library Descriptor
Elements
This section describes some top-level TLD elements. Subsequent sections
describe how to declare tags defined in tag files, how to declare tags defined in
tag handlers, and how to declare tag attributes and variables.

Table 15–6 taglib Subelements

Element Description

description (optional) A string describing the use of the tag library.

display-name (optional) Name intended to be displayed by tools.

icon (optional) Icon that can be used by tools.

tlib-version The tag library’s version.

short-name (optional) Name that could be used by a JSP page-authoring tool to cre-
ate names with a mnemonic value.

uri A URI that uniquely identifies the tag library.

validator See validator Element (page 604).

listener See listener Element (page 604).

tag-file | tag Declares the tag files or tags defined in the tag library. See Declaring Tag
Files (page 604) and Declaring Tag Handlers (page 607). A tag library is
considered invalid if a tag-file element has a name subelement with
the same content as a name subelement in a tag element.

function Zero or more EL functions (see Functions, page 506) defined in the tag
library.

tag-extension
(optional) Extensions that provide extra information about the tag library
for tools.

604
validator Element
This element defines an optional tag library validator that can be used to validate
the conformance of any JSP page importing this tag library to its requirements.
Table 15–7 lists the subelements of the validator element.

listener Element
A tag library can specify some classes that are event listeners (see Handling
Servlet Life-Cycle Events, page 450). The listeners are listed in the TLD as lis-
tener elements, and the web container will instantiate the listener classes and
register them in a way analogous to that of listeners defined at the WAR level.
Unlike WAR-level listeners, the order in which the tag library listeners are regis-
tered is undefined. The only subelement of the listener element is the lis-

tener-class element, which must contain the fully qualified name of the
listener class.

Declaring Tag Files
Although not required for tag files, providing a TLD allows you to share the tag
across more than one tag library and lets you import the tag library using a URI
instead of the tagdir attribute.

Table 15–7 validator Subelements

Element Description

validator-class
The class implementing
javax.servlet.jsp.tagext.TagLibraryValidator

init-param (optional) Initialization parameters

TAG LIBRARY DESCRIPTORS 605
tag-file TLD Element
A tag file is declared in the TLD using a tag-file element. Its subelements are
listed in Table 15–8.

Unpackaged Tag Files
Tag files placed in a subdirectory of /WEB-INF/tags/ do not require a TLD file
and don’t have to be packaged. Thus, to create reusable JSP code, you simply
create a new tag file and place the code inside it.

The web container generates an implicit tag library for each directory under and
including /WEB-INF/tags/. There are no special relationships between subdi-

Table 15–8 tag-file Subelements

Element Description

description (optional) A description of the tag.

display-name (optional) Name intended to be displayed by tools.

icon (optional) Icon that can be used by tools.

name The unique tag name.

path

Where to find the tag file implementing this tag, relative to the root of
the web application or the root of the JAR file for a tag library packaged
in a JAR. This must begin with /WEB-INF/tags/ if the tag file resides
in the WAR, or /META-INF/tags/ if the tag file resides in a JAR.

example (optional) Informal description of an example use of the tag.

tag-extension
(optional) Extensions that provide extra information about the tag for
tools.

606
rectories; they are allowed simply for organizational purposes. For example, the
following web application contains three tag libraries:

/WEB-INF/tags/
/WEB-INF/tags/a.tag
/WEB-INF/tags/b.tag
/WEB-INF/tags/foo/
/WEB-INF/tags/foo/c.tag
/WEB-INF/tags/bar/baz/
/WEB-INF/tags/bar/baz/d.tag

The implicit TLD for each library has the following values:

• tlib-version for the tag library. Defaults to 1.0.

• short-name is derived from the directory name. If the directory is /WEB-
INF/tags/, the short name is simply tags. Otherwise, the full directory
path (relative to the web application) is taken, minus the /WEB-INF/tags/

prefix. Then all / characters are replaced with -(hyphen), which yields the
short name. Note that short names are not guaranteed to be unique.

• A tag-file element is considered to exist for each tag file, with the fol-
lowing subelements:

• The name for each is the filename of the tag file, without the .tag exten-
sion.

• The path for each is the path of the tag file, relative to the root of the
web application.

So, for the example, the implicit TLD for the /WEB-INF/tags/bar/baz/ direc-
tory would be as follows:

<taglib>
<tlib-version>1.0</tlib-version>
<short-name>bar-baz</short-name>
<tag-file>

<name>d</name>
<path>/WEB-INF/tags/bar/baz/d.tag</path>

</tag-file>
</taglib>

Despite the existence of an implicit tag library, a TLD in the web application can
still create additional tags from the same tag files. To accomplish this, you add a
tag-file element with a path that points to the tag file.

TAG LIBRARY DESCRIPTORS 607
Packaged Tag Files
Tag files can be packaged in the /META-INF/tags/ directory in a JAR file
installed in the /WEB-INF/lib/ directory of the web application. Tags placed
here are typically part of a reusable library of tags that can be used easily in any
web application.

Tag files bundled in a JAR require a tag library descriptor. Tag files that appear in
a JAR but are not defined in a TLD are ignored by the web container.

When used in a JAR file, the path subelement of the tag-file element specifies
the full path of the tag file from the root of the JAR. Therefore, it must always
begin with /META-INF/tags/.

Tag files can also be compiled into Java classes and bundled as a tag library. This
is useful when you wish to distribute a binary version of the tag library without
the original source. If you choose this form of packaging, you must use a tool
that produces portable JSP code that uses only standard APIs.

Declaring Tag Handlers
When tags are implemented with tag handlers written in Java, each tag in the
library must be declared in the TLD with a tag element. The tag element con-
tains the tag name, the class of its tag handler, information on the tag’s attributes,
and information on the variables created by the tag (see Tags That Define
Variables, page 585).

Each attribute declaration contains an indication of whether the attribute is
required, whether its value can be determined by request-time expressions, the
type of the attribute, and whether the attribute is a fragment. Variable informa-
tion can be given directly in the TLD or through a tag extra info class. Table 15–
9 lists the subelements of the tag element.

Table 15–9 tag Subelements

Element Description

description (optional) A description of the tag.

display-name (optional) name intended to be displayed by tools.

icon (optional) Icon that can be used by tools.

608
body-content Element
You specify the type of body that is valid for a tag by using the body-content

element. This element is used by the web container to validate that a tag invoca-
tion has the correct body syntax and is used by page-composition tools to assist
the page author in providing a valid tag body. There are three possible values:

• tagdependent: The body of the tag is interpreted by the tag implementa-
tion itself, and is most likely in a different language, for example, embed-
ded SQL statements.

• empty: The body must be empty.

• scriptless: The body accepts only static text, EL expressions, and cus-
tom tags. No scripting elements are allowed.

name The unique tag name.

tag-class The fully qualified name of the tag handler class.

tei-class (optional) Subclass of javax.servlet.jsp.tagext.TagExtraInfo.
See Declaring Tag Variables for Tag Handlers (page 610).

body-content The body content type. See body-content Element (page 608).

variable (optional) Declares an EL variable exposed by the tag to the calling page.
See Declaring Tag Variables for Tag Handlers (page 610).

attribute Declares an attribute of the custom tag. See Declaring Tag Attributes for
Tag Handlers (page 609).

dynamic-
attributes

Whether the tag supports additional attributes with dynamic names.
Defaults to false. If true, the tag handler class must implement the
javax.servlet.jsp.tagext.DynamicAttributes interface.

example (optional) Informal description of an example use of the tag.

tag-extension
(optional) Extensions that provide extra information about the tag for
tools.

Table 15–9 tag Subelements (Continued)

Element Description

TAG LIBRARY DESCRIPTORS 609
Declaring Tag Attributes for Tag Handlers
For each tag attribute, you must specify whether the attribute is required,
whether the value can be determined by an expression, the type of the attribute in
an attribute element (optional), and whether the attribute is a fragment. If the
rtexprvalue element is true or yes, then the type element defines the return
type expected from any expression specified as the value of the attribute. For
static values, the type is always java.lang.String. An attribute is specified in a
TLD in an attribute element. Table 15–10 lists the subelements of the
attribute element.

If a tag attribute is not required, a tag handler should provide a default value.

Table 15–10 attribute Subelements

Element Description

description (optional) A description of the attribute.

name
The unique name of the attribute being declared. A translation error results
if more than one attribute element appears in the same tag with the
same name.

required (optional) Whether the attribute is required. The default is false.

rtexprvalue
(optional) Whether the attribute’s value can be dynamically calculated at
runtime by an EL expression. The default is false.

type
(optional) The runtime type of the attribute’s value. Defaults to
java.lang.String if not specified.

fragment

(optional) Whether this attribute is a fragment to be evaluated by the tag
handler (true) or a normal attribute to be evaluated by the container
before being passed to the tag handler.

If this attribute is true:
You do not specify the rtexprvalue attribute. The container fixes the
rtexprvalue attribute at true.
You do not specify the type attribute. The container fixes the type
attribute at javax.servlet.jsp.tagext.JspFragment.

Defaults to false.

610
The tag element for a tag that outputs its body if a test evaluates to true declares
that the test attribute is required and that its value can be set by a runtime
expression.

<tag>
<name>present</name>

 <tag-class>condpkg.IfSimpleTag</tag-class>
<body-content>scriptless</body-content>
...
<attribute>

<name>test</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
...

</tag>

Declaring Tag Variables for Tag Handlers
The example described in Tags That Define Variables (page 585) defines an EL
variable departmentName:

<tlt:iterator var="departmentName" type="java.lang.String"
group="${myorg.departmentNames}">

<tr>
<td>

${departmentName}</td>
</tr>

</tlt:iterator>

When the JSP page containing this tag is translated, the web container generates
code to synchronize the variable with the object referenced by the variable. To
generate the code, the web container requires certain information about the vari-
able:

• Variable name

• Variable class

• Whether the variable refers to a new or an existing object

• The availability of the variable

There are two ways to provide this information: by specifying the variable

TLD subelement or by defining a tag extra info class and including the tei-

class element in the TLD (see TagExtraInfo Class, page 619). Using the vari-

TAG LIBRARY DESCRIPTORS 611
able element is simpler but less dynamic. With the variable element, the only
aspect of the variable that you can specify at runtime is its name (via the name-

from-attribute element). If you provide this information in a tag extra info
class, you can also specify the type of the variable at runtime.

Table 15–11 lists the subelements of the variable element.

Table 15-12 summarizes a variable’s availability according to its declared scope.

Table 15–11 variable Subelements

Element Description

description (optional) A description of the variable.

name-given |
name-from-
attribute

Defines an EL variable to be used in the page invoking this tag. Either
name-given or name-from-attribute must be specified. If name-
given is specified, the value is the name of the variable. If name-from-
attribute is specified, the value is the name of an attribute whose (trans-
lation-time) value at the start of the tag invocation will give the name of the
variable.
Translation errors arise in the following circumstances:

1. Specifying neither name-given nor name-from-attribute or both.
2. If two variable elements have the same name-given.

variable-
class

(optional) The fully qualified name of the class of the object.
java.lang.String is the default.

declare
(optional) Whether or not the object is declared. True is the default. A
translation error results if both declare and fragment are specified.

scope
(optional) The scope of the variable defined. Can be either AT_BEGIN,
AT_END, or NESTED (see Table 15–12). Defaults to NESTED.

Table 15–12 Variable Availability

Value Availability

NESTED Between the start tag and the end tag.

612
You can define the following variable element for the tlt:iterator tag:

<tag>
<variable>

<name-given>var</name-given>
<variable-class>java.lang.String</variable-class>
<declare>true</declare>
<scope>NESTED</scope>

</variable>
</tag>

Programming Simple Tag Handlers
The classes and interfaces used to implement simple tag handlers are contained
in the javax.servlet.jsp.tagext package. Simple tag handlers implement the
SimpleTag interface. Interfaces can be used to take an existing Java object and
make it a tag handler. For most newly created handlers, you would use the Sim-

pleTagSupport classes as a base class.

The heart of a simple tag handler is a single method—doTag—which gets
invoked when the end element of the tag is encountered. Note that the default
implementation of the doTag method of SimpleTagSupport does nothing.

A tag handler has access to an API that allows it to communicate with the JSP
page. The entry point to the API is the JSP context object (javax.serv-
let.jsp.JspContext). The JspContext object provides access to implicit
objects. PageContext extends JspContext with servlet-specific behavior.
Through these objects, a tag handler can retrieve all the other implicit objects
(request, session, and application) that are accessible from a JSP page. If the tag

AT_BEGIN
From the start tag until the scope of any enclosing
tag. If there’s no enclosing tag, then to the end of the
page.

AT_END
After the end tag until the scope of any enclosing tag.
If there’s no enclosing tag, then to the end of the
page.

Table 15–12 Variable Availability (Continued)

Value Availability

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/jsp/tagext/package-summary.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/jsp/tagext/SimpleTag.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/jsp/tagext/SimpleTagSupport.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/jsp/tagext/SimpleTagSupport.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/jsp/JspContext.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/jsp/JspContext.html

PROGRAMMING SIMPLE TAG HANDLERS 613
is nested, a tag handler also has access to the handler (called the parent) that is
associated with the enclosing tag.

Including Tag Handlers in Web
Applications
Tag handlers can be made available to a web application in two basic ways. The
classes implementing the tag handlers can be stored in an unpacked form in the
WEB-INF/classes/ subdirectory of the web application. Alternatively, if the
library is distributed as a JAR, it is stored in the WEB-INF/lib/ directory of the
web application.

How Is a Simple Tag Handler Invoked?
The SimpleTag interface defines the basic protocol between a simple tag handler
and a JSP page’s servlet. The JSP page’s servlet invokes the setJspContext,
setParent, and attribute setting methods before calling doStartTag.

ATag t = new ATag();
t.setJSPContext(...);
t.setParent(...);
t.setAttribute1(value1);
t.setAttribute2(value2);
...
t.setJspBody(new JspFragment(...))
t.doTag();

The following sections describe the methods that you need to develop for each
type of tag introduced in Types of Tags (page 581).

Tag Handlers for Basic Tags
The handler for a basic tag without a body must implement the doTag method of
the SimpleTag interface. The doTag method is invoked when the end element of
the tag is encountered.

The basic tag discussed in the first section, <tt:basic />, would be imple-
mented by the following tag handler:

614
public HelloWorldSimpleTag extends SimpleTagSupport {
public void doTag() throws JspException, IOException {

getJspContext().getOut().write("Hello, world.");
}

}

Tag Handlers for Tags with Attributes

Defining Attributes in a Tag Handler
For each tag attribute, you must define a set method in the tag handler that con-
forms to the JavaBeans architecture conventions. For example, consider the tag
handler for the JSTL c:if tag:

<c:if test="${Clear}">

This tag handler contains the following method:

public void setTest(boolean test) {
this.test = test;

}

Attribute Validation
The documentation for a tag library should describe valid values for tag
attributes. When a JSP page is translated, a web container will enforce any con-
straints contained in the TLD element for each attribute.

The attributes passed to a tag can also be validated at translation time using the
validate method of a class derived from TagExtraInfo. This class is also used
to provide information about variables defined by the tag (see TagExtraInfo
Class, page 619).

The validate method is passed the attribute information in a TagData object,
which contains attribute-value tuples for each of the tag’s attributes. Because the
validation occurs at translation time, the value of an attribute that is computed at
request time will be set to TagData.REQUEST_TIME_VALUE.

The tag <tt:twa attr1="value1"/> has the following TLD attribute ele-
ment:

PROGRAMMING SIMPLE TAG HANDLERS 615
<attribute>
<name>attr1</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>

This declaration indicates that the value of attr1 can be determined at runtime.

The following validate method checks whether the value of attr1 is a valid
Boolean value. Note that because the value of attr1 can be computed at runt-
ime, validate must check whether the tag user has chosen to provide a runtime
value.

public class TwaTEI extends TagExtraInfo {
public ValidationMessage[] validate(TagData data) {

Object o = data.getAttribute("attr1");
if (o != null && o != TagData.REQUEST_TIME_VALUE) {

if (((String)o).toLowerCase().equals("true") ||
((String)o).toLowerCase().equals("false"))
return null;

else
return new ValidationMessage(data.getId(),

"Invalid boolean value.");
}
else

return null;
}

}

Setting Dynamic Attributes
Simple tag handlers that support dynamic attributes must declare that they do so
in the tag element of the TLD (see Declaring Tag Handlers, page 607). In addi-
tion, your tag handler must implement the setDynamicAttribute method of the
DynamicAttributes interface. For each attribute specified in the tag invocation
that does not have a corresponding attribute element in the TLD, the web con-
tainer calls setDynamicAttribute, passing in the namespace of the attribute (or
null if in the default namespace), the name of the attribute, and the value of the
attribute. You must implement the setDynamicAttribute method to remember
the names and values of the dynamic attributes so that they can be used later
when doTag is executed. If the setDynamicAttribute method throws an excep-
tion, the doTag method is not invoked for the tag, and the exception must be
treated in the same manner as if it came from an attribute setter method.

616
The following implementation of setDynamicAttribute saves the attribute
names and values in lists. Then, in the doTag method, the names and values are
echoed to the response in an HTML list.

private ArrayList keys = new ArrayList();
private ArrayList values = new ArrayList();

public void setDynamicAttribute(String uri,
String localName, Object value) throws JspException {
keys.add(localName);
values.add(value);

}

public void doTag() throws JspException, IOException {
JspWriter out = getJspContext().getOut();
for(int i = 0; i < keys.size(); i++) {
 String key = (String)keys.get(i);
 Object value = values.get(i);
 out.println("" + key + " = " + value + "");
}

}

Tag Handlers for Tags with Bodies
A simple tag handler for a tag with a body is implemented differently depending
on whether or not the tag handler needs to manipulate the body. A tag handler
manipulates the body when it reads or modifies the contents of the body.

Tag Handler Does Not Manipulate the Body
If a tag handler needs simply to evaluate the body, it gets the body using the
getJspBody method of SimpleTag and then evaluates the body using the invoke

method.

The following tag handler accepts a test parameter and evaluates the body of
the tag if the test evaluates to true. The body of the tag is encapsulated in a JSP
fragment. If the test is true, the handler retrieves the fragment using the
getJspBody method. The invoke method directs all output to a supplied writer

PROGRAMMING SIMPLE TAG HANDLERS 617
or, if the writer is null, to the JspWriter returned by the getOut method of the
JspContext associated with the tag handler.

public class IfSimpleTag extends SimpleTagSupport {
private boolean test;
public void setTest(boolean test) {

this.test = test;
}
public void doTag() throws JspException, IOException {

if(test){
getJspBody().invoke(null);

}
}

}

Tag Handler Manipulates the Body
If the tag handler needs to manipulate the body, the tag handler must capture the
body in a StringWriter. The invoke method directs all output to a supplied
writer. Then the modified body is written to the JspWriter returned by the
getOut method of the JspContext. Thus, a tag that converts its body to upper-
case could be written as follows:

public class SimpleWriter extends SimpleTagSupport {
public void doTag() throws JspException, IOException {

StringWriter sw = new StringWriter();
jspBody.invoke(sw);
jspContext().

getOut().println(sw.toString().toUpperCase());
}

}

Tag Handlers for Tags That Define
Variables
Similar communication mechanisms exist for communication between JSP page
and tag handlers as for JSP pages and tag files.

To emulate IN parameters, use tag attributes. A tag attribute is communicated
between the calling page and the tag handler when the tag is invoked. No further
communication occurs between the calling page and the tag handler.

618
To emulate OUT or nested parameters, use variables with availability AT_BEGIN,
AT_END, or NESTED. The variable is not initialized by the calling page but instead
is set by the tag handler.

For AT_BEGIN availability, the variable is available in the calling page from the
start tag until the scope of any enclosing tag. If there’s no enclosing tag, then the
variable is available to the end of the page. For AT_END availability, the variable
is available in the calling page after the end tag until the scope of any enclosing
tag. If there’s no enclosing tag, then the variable is available to the end of the
page. For nested parameters, the variable is available in the calling page between
the start tag and the end tag.

When you develop a tag handler you are responsible for creating and setting the
object referenced by the variable into a context that is accessible from the page.
You do this by using the JspContext().setAttribute(name, value) or

JspContext.setAttribute(name, value, scope) method. You retrieve the
page context using the getJspContext method of SimpleTag.

Typically, an attribute passed to the custom tag specifies the name of the variable
and the value of the variable is dependent on another attribute. For example, the
iterator tag introduced in Chapter 12 retrieves the name of the variable from
the var attribute and determines the value of the variable from a computation
performed on the group attribute.

public void doTag() throws JspException, IOException {
if (iterator == null)

return;
while (iterator.hasNext()) {

getJspContext().setAttribute(var, iterator.next());
getJspBody().invoke(null);

}
}
public void setVar(String var) {

this.var = var;
}
public void setGroup(Collection group) {

this.group = group;
if(group.size() > 0)

iterator = group.iterator();
}

PROGRAMMING SIMPLE TAG HANDLERS 619
The scope that a variable can have is summarized in Table 15–13. The scope
constrains the accessibility and lifetime of the object.

TagExtraInfo Class
In Declaring Tag Variables for Tag Handlers (page 610) we discussed how to
provide information about tag variables in the tag library descriptor. Here we
describe another approach: defining a tag extra info class. You define a tag extra
info class by extending the class javax.servlet.jsp.tagext.TagExtraInfo.
A TagExtraInfo must implement the getVariableInfo method to return an
array of VariableInfo objects containing the following information:

• Variable name

• Variable class

• Whether the variable refers to a new object

• The availability of the variable

The web container passes a parameter of type javax.serv-

let.jsp.tagext.TagData to the getVariableInfo method, which contains
attribute-value tuples for each of the tag’s attributes. These attributes can be used
to provide the VariableInfo object with an EL variable’s name and class.

The following example demonstrates how to provide information about the vari-
able created by the iterator tag in a tag extra info class. Because the name

Table 15–13 Scope of Objects

Name Accessible From Lifetime

page Current page
Until the response has been sent back
to the user or the request is passed to
a new page

request
Current page and any included or
forwarded pages

Until the response has been sent back
to the user

session
Current request and any subsequent
request from the same browser
(subject to session lifetime)

The life of the user’s session

application
Current and any future request in
the same web application

The life of the application

620
(var) and class (type) of the variable are passed in as tag attributes, they can be
retrieved using the data.getAttributeString method and can be used to fill in
the VariableInfo constructor. To allow the variable var to be used only within
the tag body, you set the scope of the object to NESTED.

package iterator;
public class IteratorTEI extends TagExtraInfo {

public VariableInfo[] getVariableInfo(TagData data) {
String type = data.getAttributeString("type");
if (type == null)

type = "java.lang.Object";
return new VariableInfo[] {

new VariableInfo(data.getAttributeString("var"),
type,
true,
VariableInfo.NESTED)

};
}

}

The fully qualified name of the tag extra info class defined for an EL variable
must be declared in the TLD in the tei-class subelement of the tag element.
Thus, the tei-class element for IteratorTei would be as follows:

<tei-class>
iterator.IteratorTEI

</tei-class>

Cooperating Tags
Tags cooperate by sharing objects. JSP technology supports two styles of object
sharing.

The first style requires that a shared object be named and stored in the page con-
text (one of the implicit objects accessible to JSP pages as well as tag handlers).
To access objects created and named by another tag, a tag handler uses the page-
Context.getAttribute(name, scope) method.

In the second style of object sharing, an object created by the enclosing tag han-
dler of a group of nested tags is available to all inner tag handlers. This form of
object sharing has the advantage that it uses a private namespace for the objects,
thus reducing the potential for naming conflicts.

PROGRAMMING SIMPLE TAG HANDLERS 621
To access an object created by an enclosing tag, a tag handler must first obtain its
enclosing tag by using the static method SimpleTagSupport.findAncestor-

WithClass(from, class) or the SimpleTagSupport.getParent method. The
former method should be used when a specific nesting of tag handlers cannot be
guaranteed. After the ancestor has been retrieved, a tag handler can access any
statically or dynamically created objects. Statically created objects are members
of the parent. Private objects can also be created dynamically. Such privately
named objects would have to be managed by the tag handler; one approach
would be to use a Map to store name-object pairs.

The following example illustrates a tag handler that supports both the named
approach and the private object approach to sharing objects. In the example, the
handler for a query tag checks whether an attribute named connectionId has
been set. If the connectionId attribute has been set, the handler retrieves the
connection object from the page context. Otherwise, the tag handler first
retrieves the tag handler for the enclosing tag and then retrieves the connection
object from that handler.

public class QueryTag extends SimpleTagSupport {
public int doTag() throws JspException {

String cid = getConnectionId();
Connection connection;
if (cid != null) {
// there is a connection id, use it

connection =(Connection)pageContext.
getAttribute(cid);

} else {
ConnectionTag ancestorTag =

(ConnectionTag)findAncestorWithClass(this,
ConnectionTag.class);

if (ancestorTag == null) {
throw new JspTagException("A query without

a connection attribute must be nested
within a connection tag.");

}
connection = ancestorTag.getConnection();
...

}
}

}

622
The query tag implemented by this tag handler can be used in either of the fol-
lowing ways:

<tt:connection cid="con01" ... >
...

</tt:connection>
<tt:query id="balances" connectionId="con01">

SELECT account, balance FROM acct_table
where customer_number = ?

<tt:param value="${requestScope.custNumber}" />
</tt:query>

<tt:connection ... >
<tt:query cid="balances">

SELECT account, balance FROM acct_table
where customer_number = ?
<tt:param value="${requestScope.custNumber}" />

</tt:query>
</tt:connection>

The TLD for the tag handler use the following declaration to indicate that the
connectionId attribute is optional:

<tag>
...
<attribute>

<name>connectionId</name>
<required>false</required>

</attribute>
</tag>

Examples
The simple tags described in this section demonstrate solutions to two recurring
problems in developing JSP applications: minimizing the amount of Java pro-
gramming in JSP pages and ensuring a common look and feel across applica-
tions. In doing so, they illustrate many of the styles of tags discussed in the first
part of the chapter.

An Iteration Tag
Constructing page content that is dependent on dynamically generated data often
requires the use of flow control scripting statements. By moving the flow control

PROGRAMMING SIMPLE TAG HANDLERS 623
logic to tag handlers, flow control tags reduce the amount of scripting needed in
JSP pages. Iteration is a very common flow control function and is easily han-
dled by a custom tag.

The discussion on using tag libraries in Chapter 12 introduced a tag library con-
taining an iterator tag. The tag retrieves objects from a collection stored in a
JavaBeans component and assigns them to an EL variable. The body of the tag
retrieves information from the variable. As long as elements remain in the col-
lection, the iterator tag causes the body to be reevaluated. The tag in this
example is simplified to make it easy to demonstrate how to program a custom
tag. web applications requiring such functionality should use the JSTL forEach

tag, which is discussed in Iterator Tags (page 557).

JSP Page
The index.jsp page invokes the iterator tag to iterate through a collection of
department names. Each item in the collection is assigned to the department-

Name variable.

<%@ taglib uri="/tlt" prefix="tlt" %>
<html>

<head>
<title>Departments</title>
</head>
<body bgcolor="white">
<jsp:useBean id="myorg" class="myorg.Organization"/>
<table border=2 cellspacing=3 cellpadding=3>

<tr>
<td>Departments</td>

</tr>
<tlt:iterator var="departmentName" type="java.lang.String"

group="${myorg.departmentNames}">
<tr>

<td>
${departmentName}</td>

</tr>
</tlt:iterator>
</table>
</body>

</html>

Tag Handler
The collection is set in the tag handler via the group attribute. The tag handler
retrieves an element from the group and passes the element back to the page in

624
the EL variable whose name is determined by the var attribute. The variable is
accessed in the calling page using the JSP expression language. After the vari-
able is set, the tag body is evaluated with the invoke method.

public void doTag() throws JspException, IOException {
if (iterator == null)

return;
while (iterator.hasNext()) {

getJspContext().setAttribute(var, iterator.next());
getJspBody().invoke(null);

}
}
public void setVar(String var) {

this.var = var;
}
public void setGroup(Collection group) {

this.group = group;
if(group.size() > 0)

iterator = group.iterator();
}

A Template Tag Library
A template provides a way to separate the common elements that are part of each
screen from the elements that change with each screen of an application. Putting
all the common elements together into one file makes it easier to maintain and
enforce a consistent look and feel in all the screens. It also makes development
of individual screens easier because the designer can focus on portions of a
screen that are specific to that screen while the template takes care of the com-
mon portions.

The template is a JSP page that has placeholders for the parts that need to change
with each screen. Each of these placeholders is referred to as a parameter of the
template. For example, a simple template might include a title parameter for the
top of the generated screen and a body parameter to refer to a JSP page for the
custom content of the screen.

The template uses a set of nested tags—definition, screen, and parameter—
to define a table of screen definitions and uses an insert tag to insert parameters
from a screen definition into a specific application screen.

PROGRAMMING SIMPLE TAG HANDLERS 625
JSP Pages
The template for the Duke’s Bookstore example, template.jsp, is shown next.
This page includes a JSP page that creates the screen definition and then uses the
insert tag to insert parameters from the definition into the application screen.

<%@ taglib uri="/tutorial-template" prefix="tt" %>
<%@ page errorPage="/template/errorinclude.jsp" %>
<%@ include file="/template/screendefinitions.jsp" %>
<html>
<head>
<title>
<tt:insert definition="bookstore" parameter="title"/>
</title>
</head>
<body bgcolor="#FFFFFF">
 <tt:insert definition="bookstore" parameter="banner"/>
<tt:insert definition="bookstore" parameter="body"/>
<center>Copyright © 2004 Sun Microsystems, Inc. </
em></center>
</body>
</html>

The screendefinitions.jsp page creates a definition for the screen specified
by the request attribute javax.servlet.forward.servlet_path:

<tt:definition name="bookstore"
screen="${requestScope

['javax.servlet.forward.servlet_path']}">
<tt:screen id="/bookstore">
<tt:parameter name="title" value="Duke's Bookstore"

direct="true"/>
<tt:parameter name="banner" value="/template/banner.jsp"

direct="false"/>
<tt:parameter name="body" value="/bookstore.jsp"

direct="false"/>
</tt:screen>
<tt:screen id="/bookcatalog">
<tt:parameter name="title" direct="true">

 <jsp:attribute name="value" >
 <fmt:message key="TitleBookCatalog"/>
 </jsp:attribute>
 </tt:parameter>
 <tt:parameter name="banner" value="/template/banner.jsp"

direct="false"/>
<tt:parameter name="body" value="/bookcatalog.jsp"

../examples/web/bookstore3/web/template/template.txt
../examples/web/bookstore3/web/template/screendefinitions.txt

626
direct="false"/>
</tt:screen>
...

</tt:definition>

The template is instantiated by the Dispatcher servlet. Dispatcher first gets the
requested screen. Dispatcher performs business logic and updates model
objects based on the requested screen. For example, if the requested screen is
/bookcatalog, Dispatcher determines whether a book is being added to the
cart based on the value of the Add request parameter. It sets the price of the book
if it’s on sale, and then adds the book to the cart. Finally, the servlet dispatches
the request to template.jsp:

public class Dispatcher extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response) {
String bookId = null;
BookDetails book = null;
String clear = null;
BookDBAO bookDBAO =

(BookDBAO)getServletContext().
getAttribute("bookDBAO");

HttpSession session = request.getSession();
String selectedScreen = request.getServletPath();
ShoppingCart cart = (ShoppingCart)session.

getAttribute("cart");
if (cart == null) {

cart = new ShoppingCart();
session.setAttribute("cart", cart);

}
if (selectedScreen.equals("/bookcatalog")) {

bookId = request.getParameter("Add");
if (!bookId.equals("")) {

try {
book = bookDBAO.getBookDetails(bookId);
if (book.getOnSale()) {

double sale = book.getPrice() * .85;
Float salePrice = new Float(sale);
book.setPrice(salePrice.floatValue());

}
cart.add(bookId, book);

} catch (BookNotFoundException ex) {
// not possible

}
}

} else if (selectedScreen.equals("/bookshowcart")) {
bookId =request.getParameter("Remove");

../examples/web/bookstore3/src/Dispatcher.java

PROGRAMMING SIMPLE TAG HANDLERS 627
if (bookId != null) {
cart.remove(bookId);

}
clear = request.getParameter("Clear");
if (clear != null && clear.equals("clear")) {

cart.clear();
}

} else if (selectedScreen.equals("/bookreceipt")) {
// Update the inventory

try {
bookDBAO.buyBooks(cart);

} catch (OrderException ex) {
request.setAttribute("selectedScreen",

"/bookOrderError");
}

}
try {

request.
getRequestDispatcher(
"/template/template.jsp").
forward(request, response);

} catch(Exception ex) {
ex.printStackTrace();

}
}

public void doPost(HttpServletRequest request,
HttpServletResponse response) {
request.setAttribute("selectedScreen",

request.getServletPath());
try {

request.
getRequestDispatcher(
"/template/template.jsp").
forward(request, response);

} catch(Exception ex) {
ex.printStackTrace();

}
}

}

Tag Handlers
The template tag library contains four tag handlers—DefinitionTag,
ScreenTag, ParameterTag, and InsertTag—that demonstrate the use of coop-
erating tags. DefinitionTag, ScreenTag, and ParameterTag constitute a set of

628
nested tag handlers that share private objects. DefinitionTag creates a public
object named bookstore that is used by InsertTag.

In doTag, DefinitionTag creates a private object named screens that contains
a hash table of screen definitions. A screen definition consists of a screen identi-
fier and a set of parameters associated with the screen. These parameters are
loaded when the body of the definition tag, which contains nested screen and
parameter tags, is invoked. DefinitionTag creates a public object of class Def-
inition, selects a screen definition from the screens object based on the URL
passed in the request, and uses this screen definition to initialize a public Defi-

nition object.

public int doTag() {
try {

screens = new HashMap();
getJspBody().invoke(null);
Definition definition = new Definition();
PageContext context = (PageContext)getJspContext();
ArrayList params = (ArrayList) screens.get(screenId);
Iterator ir = null;
if (params != null) {

ir = params.iterator();
while (ir.hasNext())

definition.setParam((Parameter)ir.next());
// put the definition in the page context
context.setAttribute(definitionName, definition,

context.APPLICATION_SCOPE);
}

}

The table of screen definitions is filled in by ScreenTag and ParameterTag from
text provided as attributes to these tags. Table 15–14 shows the contents of the
screen definitions hash table for the Duke’s Bookstore application.

Table 15–14 Screen Definitions

Screen ID Title Banner Body

/bookstore Duke’s Bookstore /banner.jsp /bookstore.jsp

/bookcatalog Book Catalog /banner.jsp /bookcatalog.jsp

/bookdetails Book Description /banner.jsp /bookdetails.jsp

/bookshowcart Shopping Cart /banner.jsp /bookshowcart.jsp

../examples/web/bookstore3/src/template/DefinitionTag.java
../examples/web/bookstore3/src/template/Definition.java
../examples/web/bookstore3/src/template/Definition.java

PROGRAMMING SIMPLE TAG HANDLERS 629
If the URL passed in the request is /bookstore, the Definition object contains
the items from the first row of Table 15–14 (see Table 15–15).

The parameters for the URL /bookstore are shown in Table 15–16. The param-
eters specify that the value of the title parameter, Duke’s Bookstore, should
be inserted directly into the output stream, but the values of banner and body

should be included dynamically.

InsertTag inserts parameters of the screen definition into the response. The
doTag method retrieves the definition object from the page context and then
inserts the parameter value. If the parameter is direct, it is directly inserted into
the response; otherwise, the request is sent to the parameter, and the response is
dynamically included into the overall response.

/bookcashier Cashier /banner.jsp /bookcashier.jsp

/bookreceipt Receipt /banner.jsp /bookreceipt.jsp

Table 15–15 Definition Object Contents for URL /bookstore

Title Banner Body

Duke’s Bookstore /banner.jsp /bookstore.jsp

Table 15–16 Parameters for the URL /bookstore

Parameter
Name Parameter Value isDirect

title Duke’s Bookstore true

banner /banner.jsp false

body /bookstore.jsp false

Table 15–14 Screen Definitions (Continued)

Screen ID Title Banner Body

../examples/web/bookstore3/src/template/InsertTag.java

630
public void doTag() throws JspTagException {
Definition definition = null;
Parameter parameter = null;
boolean directInclude = false;
PageContext context = (PageContext)getJspContext();

// get the definition from the page context
definition = (Definition)context.getAttribute(

definitionName, context.APPLICATION_SCOPE);
// get the parameter

if (parameterName != null && definition != null)
parameter = (Parameter)

definition.getParam(parameterName);

if (parameter != null)
directInclude = parameter.isDirect();

try {
// if parameter is direct, print to out
if (directInclude && parameter != null)

context.getOut().print(parameter.getValue());
// if parameter is indirect,

include results of dispatching to page
else {

if ((parameter != null) &&
(parameter.getValue() != null))

context.include(parameter.getValue());
}

} catch (Exception ex) {
 throw new JspTagException(ex.getMessage());

}
}

16
631
Scripting in JSP Pages

JSP scripting elements allow you to use Java programming language state-
ments in your JSP pages. Scripting elements are typically used to create and
access objects, define methods, and manage the flow of control. Many tasks that
require the use of scripts can be eliminated by using custom tag libraries, in par-
ticular the JSP Standard Tag Library. Because one of the goals of JSP technology
is to separate static data from the code needed to dynamically generate content,
very sparing use of JSP scripting is recommended. Nevertheless, there may be
some circumstances that require its use.

There are three ways to create and use objects in scripting elements:

• Instance and class variables of the JSP page’s servlet class are created in
declarations and accessed in scriptlets and expressions.

• Local variables of the JSP page’s servlet class are created and used in
scriptlets and expressions.

• Attributes of scope objects (see Using Scope Objects, page 453) are cre-
ated and used in scriptlets and expressions.

This chapter briefly describes the syntax and usage of JSP scripting elements.

Bios.html

632
The Example JSP Pages
This chapter illustrates JSP scripting elements using webclient, a version of the
hello1 example introduced in Chapter 3 that accesses a web service. To build
the webclient example, follow these steps:

1. Build and deploy the JAX-RPC web service MyHelloService described in
Creating a Simple Web Service and Client with JAX-RPC (page 320).

2. In a terminal window, go to <INSTALL>/j2eetutorial14/examples/

jaxrpc/webclient/.

3. Run asant build. This target will spawn any necessary compilations and
will copy files to the <INSTALL>/j2eetutorial14/examples/jaxrpc/

webclient/build/ directory.

4. Start the Application Server.

To package and deploy the example using asant, follow these steps:

1. Run asant create-war.

2. Start the Application Server.

3. Run asant deploy-war.

To learn how to configure the example, use deploytool to package and deploy
it:

1. Start deploytool.

2. Create a web application called webclient by running the New Web Com-
ponent wizard. Select File→New→Web Component.

3. In the New Web Component wizard:

a. Select the Create New Stand-Alone WAR Module radio button.

b. Click Browse and in the file chooser, navigate to <INSTALL>/

j2eetutorial14/examples/jaxrpc/webclient/.

c. In the File Name field, enter webclient.

d. Click Choose Module File.

e. In the WAR Display Name field, enter webclient.

f. In the Context Root field, enter /webclient.

g. Click Edit Contents.

h. In the Edit Contents dialog box, navigate to <INSTALL>/

j2eetutorial14/examples/jaxrpc/webclient/build/. Select

USING SCRIPTING 633
duke.waving.gif, greeting.jsp, response.jsp, and the webclient

directory, and click Add.

i. Click OK.

j. Click Next.

k. Select the JSP Page radio button.

l. Click Next.

m.Select greeting.jsp from the JSP Filename combo box.

n. Click Finish.

4. Add an alias to the greeting web component.

a. Select the greeting web component.

b. Select the Aliases tab.

c. Click Add to add a new mapping.

d. Type /greeting in the Aliases list.

5. Select File→Save.

6. Deploy the WAR.

To run the example, open your browser to http://localhost:8080/

webclient/greeting.

Note: The example assumes that the Application Server runs on the default port,
8080. If you have changed the port, you must update the port number in the file
<INSTALL>/j2eetutorial14/examples/jaxrpc/webclient/
response.jsp before building and running the example.

Using Scripting
JSP technology allows a container to support any scripting language that can call
Java objects. If you wish to use a scripting language other than the default, java,
you must specify it in the language attribute of the page directive at the begin-
ning of a JSP page:

<%@ page language="scripting language" %>

Because scripting elements are converted to programming language statements
in the JSP page’s servlet class, you must import any classes and packages used

634
by a JSP page. If the page language is java, you import a class or package with
the import attribute of the page directive:

<%@ page import="fully_qualified_classname, packagename.*" %>

The webclient JSP page response.jsp uses the following page directive to
import the classes needed to access the JAX-RPC stub class and the web service
client classes:

<%@ page import="javax.xml.rpc.Stub,webclient.*" %>

Disabling Scripting
By default, scripting in JSP pages is valid. Because scripting can make pages dif-
ficult to maintain, some JSP page authors or page authoring groups may want to
follow a methodology in which scripting elements are not allowed.

You can disable scripting for a group of JSP pages by using deploytool and set-
ting the value of the Scripting Invalid checkbox in the JSP Properties tab of a
WAR. For information on how to define a group of JSP pages, see Setting Prop-
erties for Groups of JSP Pages (page 521). When scripting is invalid, it means
that scriptlets, scripting expressions, and declarations will produce a translation
error if present in any of the pages in the group. Table 16–1 summarizes the
scripting settings and their meanings.

Table 16–1 Scripting Settings

JSP Configuration Scripting Encountered

unspecified Valid

false Valid

true Translation Error

DECLARATIONS 635
Declarations
A JSP declaration is used to declare variables and methods in a page’s scripting
language. The syntax for a declaration is as follows:

<%! scripting language declaration %>

When the scripting language is the Java programming language, variables and
methods in JSP declarations become declarations in the JSP page’s servlet class.

Initializing and Finalizing a JSP Page
You can customize the initialization process to allow the JSP page to read persis-
tent configuration data, initialize resources, and perform any other one-time
activities; to do so, you override the jspInit method of the JspPage interface.
You release resources using the jspDestroy method. The methods are defined
using JSP declarations.

For example, an older version of the Duke’s Bookstore application retrieved the
object that accesses the bookstore database from the context and stored a refer-
ence to the object in the variable bookDBAO in the jspInit method. The variable
definition and the initialization and finalization methods jspInit and jspDe-

stroy were defined in a declaration:

<%!
private BookDBAO bookDBAO;
public void jspInit() {
bookDBAO =

(BookDBAO)getServletContext().getAttribute("bookDB");
if (bookDBAO == null)

System.out.println("Couldn’t get database.");
}
%>

When the JSP page was removed from service, the jspDestroy method released
the BookDBAO variable.

<%!
public void jspDestroy() {

bookDBAO = null;
}
%>

636
Scriptlets
A JSP scriptlet is used to contain any code fragment that is valid for the scripting
language used in a page. The syntax for a scriptlet is as follows:

<%
scripting language statements

%>

When the scripting language is set to java, a scriptlet is transformed into a Java
programming language statement fragment and is inserted into the service
method of the JSP page’s servlet. A programming language variable created
within a scriptlet is accessible from anywhere within the JSP page.

In the web service version of the hello1 application, greeting.jsp contains a
scriptlet to retrieve the request parameter named username and test whether it is
empty. If the if statement evaluates to true, the response page is included.
Because the if statement opens a block, the HTML markup would be followed
by a scriptlet that closes the block.

<%
String username = request.getParameter("username");
if (username != null && username.length() > 0) {

%>
<%@include file="response.jsp" %>

<%
}

%>

Expressions
A JSP expression is used to insert the value of a scripting language expression,
converted into a string, into the data stream returned to the client. When the
scripting language is the Java programming language, an expression is trans-
formed into a statement that converts the value of the expression into a String

object and inserts it into the implicit out object.

The syntax for an expression is as follows:

<%= scripting language expression %>

PROGRAMMING TAGS THAT ACCEPT SCRIPTING ELEMENTS 637
Note that a semicolon is not allowed within a JSP expression, even if the same
expression has a semicolon when you use it within a scriptlet.

In the web service version of the hello1 application, response.jsp contains the
following scriptlet, which creates a JAX-RPC stub, sets the endpoint on the stub,
and then invokes the sayHello method on the stub, passing the user name
retrieved from a request parameter:

<%
String resp = null;
try {

Stub stub = (Stub)(new
MyHelloService_Impl().getHelloIFPort());

stub._setProperty(
javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,
"http://localhost:8080/hello-jaxrpc/hello");

HelloIF hello = (HelloIF)stub;
resp =

hello.sayHello(request.getParameter("username"));
} catch (Exception ex) {

resp = ex.toString();
}

%>

A scripting expression is then used to insert the value of resp into the output
stream:

<h2><%= resp %>!</h2>

Programming Tags That Accept
Scripting Elements

Tags that accept scripting elements in attribute values or in the body cannot be
programmed as simple tags; they must be implemented as classic tags. The fol-
lowing sections describe the TLD elements and JSP tag extension API specific to
classic tag handlers. All other TLD elements are the same as for simple tags.

638
TLD Elements
You specify the character of a classic tag’s body content using the body-content
element:

<body-content>empty | JSP | tagdependent</body-content>

You must declare the body content of tags that do not have a body as empty. For
tags that have a body, there are two options. Body content containing custom and
core tags, scripting elements, and HTML text is categorized as JSP. All other
types of body content—for example, SQL statements passed to the query tag—
are labeled tagdependent.

Tag Handlers
The classes and interfaces used to implement classic tag handlers are contained
in the javax.servlet.jsp.tagext package. Classic tag handlers implement
either the Tag, the IterationTag, or the BodyTag interface. Interfaces can be
used to take an existing Java object and make it a tag handler. For newly created
classic tag handlers, you can use the TagSupport and BodyTagSupport classes
as base classes. These classes and interfaces are contained in the javax.serv-

let.jsp.tagext package.

Tag handler methods defined by the Tag and BodyTag interfaces are called by the
JSP page’s servlet at various points during the evaluation of the tag. When the
start element of a custom tag is encountered, the JSP page’s servlet calls methods
to initialize the appropriate handler and then invokes the handler’s doStartTag

method. When the end element of a custom tag is encountered, the handler’s
doEndTag method is invoked for all but simple tags. Additional methods are
invoked in between when a tag handler needs to manipulate the body of the tag.
For further information, see Tags with Bodies (page 640). To provide a tag han-
dler implementation, you must implement the methods, summarized in Table
16–2, that are invoked at various stages of processing the tag.

Table 16–2 Tag Handler Methods

Tag Type Interface Methods

Basic Tag doStartTag, doEndTag

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/jsp/tagext/package-summary.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/jsp/tagext/Tag.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/jsp/tagext/Tag.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/jsp/tagext/BodyTag.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/jsp/tagext/TagSupport.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/jsp/tagext/BodyTagSupport.html
http://java.sun.com/j2ee/1.4/docs/api/api/javax/servlet/jsp/tagext/package-summary.html
http://java.sun.com/j2ee/1.4/docs/api/api/javax/servlet/jsp/tagext/package-summary.html

PROGRAMMING TAGS THAT ACCEPT SCRIPTING ELEMENTS 639
A tag handler has access to an API that allows it to communicate with the JSP
page. The entry points to the API are two objects: the JSP context (javax.serv-
let.jsp.JspContext) for simple tag handlers and the page context
(javax.servlet.jsp.PageContext) for classic tag handlers. JspContext pro-
vides access to implicit objects. PageContext extends JspContext with HTTP-
specific behavior. A tag handler can retrieve all the other implicit objects
(request, session, and application) that are accessible from a JSP page through
these objects. In addition, implicit objects can have named attributes associated
with them. Such attributes are accessed using [set|get]Attribute methods.

If the tag is nested, a tag handler also has access to the handler (called the par-
ent) associated with the enclosing tag.

How Is a Classic Tag Handler Invoked?
The Tag interface defines the basic protocol between a tag handler and a JSP
page’s servlet. It defines the life cycle and the methods to be invoked when the
start and end tags are encountered.

The JSP page’s servlet invokes the setPageContext, setParent, and attribute-
setting methods before calling doStartTag. The JSP page’s servlet also guaran-
tees that release will be invoked on the tag handler before the end of the page.

Here is a typical tag handler method invocation sequence:

ATag t = new ATag();
t.setPageContext(...);
t.setParent(...);
t.setAttribute1(value1);

Attributes Tag
doStartTag, doEndTag,
setAttribute1,...,N, release

Body Tag doStartTag, doEndTag, release

Body, iterative
evaluation

IterationTag
doStartTag, doAfterBody, doEndTag,
release

Body, manipulation BodyTag
doStartTag, doEndTag, release,
doInitBody, doAfterBody

Table 16–2 Tag Handler Methods (Continued)

Tag Type Interface Methods

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/jsp/JspContext.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/jsp/JspContext.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/jsp/PageContext.html

640
t.setAttribute2(value2);
t.doStartTag();
t.doEndTag();
t.release();

The BodyTag interface extends Tag by defining additional methods that let a tag
handler access its body. The interface provides three new methods:

• setBodyContent: Creates body content and adds to the tag handler

• doInitBody: Called before evaluation of the tag body

• doAfterBody: Called after evaluation of the tag body

A typical invocation sequence is as follows:

t.doStartTag();
out = pageContext.pushBody();
t.setBodyContent(out);
// perform any initialization needed after body content is set
t.doInitBody();
t.doAfterBody();
// while doAfterBody returns EVAL_BODY_AGAIN we
// iterate body evaluation
...
t.doAfterBody();
t.doEndTag();
out = pageContext.popBody();
t.release();

Tags with Bodies
A tag handler for a tag with a body is implemented differently depending on
whether or not the tag handler needs to manipulate the body. A tag handler
manipulates the body when it reads or modifies the contents of the body.

Tag Handler Does Not Manipulate the Body
If the tag handler does not need to manipulate the body, the tag handler should
implement the Tag interface. If the tag handler implements the Tag interface and
the body of the tag needs to be evaluated, the doStartTag method must return
EVAL_BODY_INCLUDE; otherwise it should return SKIP_BODY.

If a tag handler needs to iteratively evaluate the body, it should implement the
IterationTag interface. The tag handler should return EVAL_BODY_AGAIN from

PROGRAMMING TAGS THAT ACCEPT SCRIPTING ELEMENTS 641
the doAfterBody method if it determines that the body needs to be evaluated
again.

Tag Handler Manipulates the Body
If the tag handler needs to manipulate the body, the tag handler must implement
BodyTag (or must be derived from BodyTagSupport).

When a tag handler implements the BodyTag interface, it must implement the
doInitBody and the doAfterBody methods. These methods manipulate body
content passed to the tag handler by the JSP page’s servlet.

A BodyContent object supports several methods to read and write its contents. A
tag handler can use the body content’s getString or getReader method to
extract information from the body, and the writeOut(out) method to write the
body contents to an out stream. The writer supplied to the writeOut method is
obtained using the tag handler’s getPreviousOut method. This method is used
to ensure that a tag handler’s results are available to an enclosing tag handler.

If the body of the tag needs to be evaluated, the doStartTag method must return
EVAL_BODY_BUFFERED; otherwise, it should return SKIP_BODY.

doInitBody Method
The doInitBody method is called after the body content is set but before it is
evaluated. You generally use this method to perform any initialization that
depends on the body content.

doAfterBody Method
The doAfterBody method is called after the body content is evaluated. doAf-
terBody must return an indication of whether to continue evaluating the body.
Thus, if the body should be evaluated again, as would be the case if you were
implementing an iteration tag, doAfterBody should return EVAL_BODY_AGAIN;
otherwise, doAfterBody should return SKIP_BODY.

The following example reads the content of the body (which contains an SQL
query) and passes it to an object that executes the query. Because the body does
not need to be reevaluated, doAfterBody returns SKIP_BODY.

public class QueryTag extends BodyTagSupport {
public int doAfterBody() throws JspTagException {

BodyContent bc = getBodyContent();
// get the bc as string
String query = bc.getString();
// clean up
bc.clearBody();

642
try {
Statement stmt = connection.createStatement();
result = stmt.executeQuery(query);

} catch (SQLException e) {
throw new JspTagException("QueryTag: " +

 e.getMessage());
}
return SKIP_BODY;

}
}

release Method
A tag handler should reset its state and release any private resources in the
release method.

Cooperating Tags
Tags cooperate by sharing objects. JSP technology supports two styles of object
sharing.

The first style requires that a shared object be named and stored in the page con-
text (one of the implicit objects accessible to JSP pages as well as tag handlers).
To access objects created and named by another tag, a tag handler uses the page-
Context.getAttribute(name, scope) method.

In the second style of object sharing, an object created by the enclosing tag han-
dler of a group of nested tags is available to all inner tag handlers. This form of
object sharing has the advantage that it uses a private namespace for the objects,
thus reducing the potential for naming conflicts.

To access an object created by an enclosing tag, a tag handler must first obtain its
enclosing tag using the static method TagSupport.findAncestorWith-

Class(from, class) or the TagSupport.getParent method. The former
method should be used when a specific nesting of tag handlers cannot be guaran-
teed. After the ancestor has been retrieved, a tag handler can access any statically
or dynamically created objects. Statically created objects are members of the
parent. Private objects can also be created dynamically. Such objects can be
stored in a tag handler using the setValue method and can be retrieved using the
getValue method.

The following example illustrates a tag handler that supports both the named
approach and the private object approach to sharing objects. In the example, the
handler for a query tag checks whether an attribute named connectionId has
been set. If the connection attribute has been set, the handler retrieves the con-

PROGRAMMING TAGS THAT ACCEPT SCRIPTING ELEMENTS 643
nection object from the page context. Otherwise, the tag handler first retrieves
the tag handler for the enclosing tag and then retrieves the connection object
from that handler.

public class QueryTag extends BodyTagSupport {
public int doStartTag() throws JspException {

String cid = getConnectionId();
Connection connection;
if (cid != null) {
// there is a connection id, use it

connection =(Connection)pageContext.
getAttribute(cid);

} else {
ConnectionTag ancestorTag =

(ConnectionTag)findAncestorWithClass(this,
ConnectionTag.class);

if (ancestorTag == null) {
throw new JspTagException("A query without

a connection attribute must be nested
within a connection tag.");

}
connection = ancestorTag.getConnection();
...

}
}

}

The query tag implemented by this tag handler can be used in either of the fol-
lowing ways:

<tt:connection cid="con01" ... >
...

</tt:connection>
<tt:query id="balances" connectionId="con01">

SELECT account, balance FROM acct_table
where customer_number = ?

<tt:param value="${requestScope.custNumber}" />
</tt:query>

<tt:connection ... >
<tt:query cid="balances">

SELECT account, balance FROM acct_table
where customer_number = ?
<tt:param value="${requestScope.custNumber}" />

</tt:query>
</tt:connection>

644
The TLD for the tag handler use the following declaration to indicate that the
connectionId attribute is optional:

<tag>
...
<attribute>

<name>connectionId</name>
<required>false</required>

</attribute>
</tag>

Tags That Define Variables
The mechanisms for defining variables in classic tags are similar to those
described in Chapter 15. You must declare the variable in a variable element of
the TLD or in a tag extra info class. You use
PageContext().setAttribute(name, value) or PageContext.setAt-

tribute(name, value, scope) methods in the tag handler to create or update
an association between a name that is accessible in the page context and the
object that is the value of the variable. For classic tag handlers, Table 16–3 illus-
trates how the availability of a variable affects when you may want to set or
update the variable’s value.

A variable defined by a custom tag can also be accessed in a scripting expres-
sion. For example, the web service described in the preceding section can be

Table 16–3 Variable Availability

Value Availability In Methods

NESTED
Between the start
tag and the end tag

doStartTag, doInitBody, and doAfterBody.

AT_BEGIN
From the start tag
until the end of the
page

doStartTag, doInitBody, doAfterBody, and
doEndTag.

AT_END
After the end tag
until the end of the
page

doEndTag

PROGRAMMING TAGS THAT ACCEPT SCRIPTING ELEMENTS 645
encapsulated in a custom tag that returns the response in a variable named by the
var attribute, and then var can be accessed in a scripting expression as follows:

<ws:hello var="response"
name="<%=request.getParameter("username")%>" />

<h2><%= response %>!</h2>

Remember that in situations where scripting is not allowed (in a tag body where
the body-content is declared as scriptless and in a page where scripting is
specified to be invalid), you wouldn’t be able to access the variable in a scriptlet
or an expression. Instead, you would have to use the JSP expression language to
access the variable.

646

17
647
JavaServer Faces
Technology

JAVASERVER Faces technology is a server-side user interface component
framework for Java technology-based web applications.

The main components of JavaServer Faces technology are as follows:

• An API for representing UI components and managing their state; han-
dling events, server-side validation, and data conversion; defining page
navigation; supporting internationalization and accessibility; and provid-
ing extensibility for all these features

• Two JavaServer Pages (JSP) custom tag libraries for expressing UI compo-
nents within a JSP page and for wiring components to server-side objects

The well-defined programming model and tag libraries significantly ease the
burden of building and maintaining web applications with server-side UIs. With
minimal effort, you can

• Wire client-generated events to server-side application code

• Bind UI components on a page to server-side data

• Construct a UI with reusable and extensible components

• Save and restore UI state beyond the life of server requests

As shown in Figure 17–1, the user interface you create with JavaServer Faces
technology (represented by myUI in the graphic) runs on the server and renders
back to the client.

http://java.sun.com/j2ee/javaserverfaces/1.1/docs/api/index.html
http://java.sun.com/j2ee/javaserverfaces/1.1/docs/tlddocs/index.html

648
Figure 17–1 The UI Runs on the Server

The JSP page, myform.jsp, is a JavaServer Faces page, which is a JSP page that
includes JavaServer Faces tags. It expresses the user interface components by
using custom tags defined by JavaServer Faces technology. The UI for the web
application (represented by myUI in the figure) manages the objects referenced
by the JSP page. These objects include

• The UI component objects that map to the tags on the JSP page

• The event listeners, validators, and converters that are registered on the
components

• The objects that encapsulate the data and application-specific functionality
of the components

This chapter gives an overview of JavaServer Faces technology. After going over
some of the primary benefits of using JavaServer Faces technology and explain-
ing what a JavaServer Faces application is, it lists the various application devel-
opment roles that users of this technology fall into. It then describes a simple
application and specifies which part of the application the developers of each
role work on. The chapter then moves on to summarizing each of the main fea-
tures of JavaServer Faces technology and how the various pieces of an applica-
tion that uses these features fit together. Finally, this chapter uses a page from a
simple application to summarize the life cycle of a JavaServer Faces page.

JAVASERVER FACES TECHNOLOGY BENEFITS 649
JavaServer Faces Technology Benefits
One of the greatest advantages of JavaServer Faces technology is that it offers a
clean separation between behavior and presentation. Web applications built
using JSP technology achieve this separation in part. However, a JSP application
cannot map HTTP requests to component-specific event handling nor manage UI
elements as stateful objects on the server, as a JavaServer Faces application can.
JavaServer Faces technology allows you to build web applications that imple-
ment the finer-grained separation of behavior and presentation that is tradition-
ally offered by client-side UI architectures.

The separation of logic from presentation also allows each member of a web
application development team to focus on his or her piece of the development
process, and it provides a simple programming model to link the pieces. For
example, page authors with no programming expertise can use JavaServer Faces
technology UI component tags to link to server-side objects from within a web
page without writing any scripts.

Another important goal of JavaServer Faces technology is to leverage familiar
UI-component and web-tier concepts without limiting you to a particular script-
ing technology or markup language. Although JavaServer Faces technology
includes a JSP custom tag library for representing components on a JSP page,
the JavaServer Faces technology APIs are layered directly on top of the Servlet
API, as shown in Figure 3–2. This layering of APIs enables several important
application use cases, such as using another presentation technology instead of
JSP pages, creating your own custom components directly from the component
classes, and generating output for various client devices.

Most importantly, JavaServer Faces technology provides a rich architecture for
managing component state, processing component data, validating user input,
and handling events.

650
What Is a JavaServer Faces
Application?

For the most part, JavaServer Faces applications are just like any other Java web
application. They run in a servlet container, and they typically contain the fol-
lowing:

• JavaBeans components containing application-specific functionality and
data

• Event listeners

• Pages, such as JSP pages

• Server-side helper classes, such as database access beans

In addition to these items, a JavaServer Faces application also has

• A custom tag library for rendering UI components on a page

• A custom tag library for representing event handlers, validators, and other
actions

• UI components represented as stateful objects on the server

• Backing beans, which define properties and functions for UI components

• Validators, converters, event listeners, and event handlers

• An application configuration resource file for configuring application
resources

A typical JavaServer Faces application that is using JSP pages for rendering
HTML must include a custom tag library that defines the tags representing UI
components. It must also have a custom tag library for representing other core
actions, such as validators and event handlers. Both of these tag libraries are pro-
vided by the JavaServer Faces implementation.

The component tag library eliminates the need to hardcode UI components in
HTML or another markup language, resulting in completely reusable UI compo-
nents. The core tag library makes it easy to register events, validators, and other
actions on the components.

This chapter provides more detail on each of these features.

FRAMEWORK ROLES 651
Framework Roles
Because of the division of labor enabled by the JavaServer Faces technology
design, application development and maintenance can proceed quickly and eas-
ily. In many teams, individual developers play more than one of these roles; how-
ever, it is still useful to consider JavaServer Faces technology from a variety of
perspectives based on primary responsibility. The members of a typical develop-
ment team are as follows:

• Page authors, who use a markup language, such as HTML, to author pages
for web applications and usually have experience with graphic design.
When using the JavaServer Faces technology framework, page authors are
the primary users of the custom tag libraries included with JavaServer
Faces technology.

• Application developers, who program the objects, the event handlers, the
converters, and the validators. Application developers can also provide the
extra helper classes.

• Component writers, who have user interface programming experience and
prefer to create custom UI components using a programming language.
These people can create their own components directly from the UI com-
ponent classes, or they can extend the standard components provided by
JavaServer Faces technology.

• Application architects, who design web applications, ensure their scalabil-
ity, define page navigation, configure beans, and register objects with the
application.

• Tools vendors, who provide tools (such as the Sun Java Studio Creator
application development tool) that leverage JavaServer Faces technology
to make building server-side user interfaces even easier.

The primary users of JavaServer Faces technology are page authors, application
developers, and application architects. The next section walks through a simple
application, explaining which piece of the application is developed by the page
author, application developer, and application architect.

Chapter 20 covers the responsibilities of a component writer.

652
A Simple JavaServer Faces Application
This section describes the process of developing a simple JavaServer Faces
application. You’ll see what features a typical JavaServer Faces application con-
tains and what part each role has in developing the application.

Steps in the Development Process
Developing a simple JavaServer Faces application usually requires these tasks:

• Create the pages using the UI component and core tags.

• Define page navigation in the application configuration resource file.

• Develop the backing beans.

• Add managed bean declarations to the application configuration resource
file.

These tasks can be done simultaneously or in any order. However, the people
performing the tasks will need to communicate during the development process.
For example, the page author needs to know the names of the objects in order to
access them from the page.

The example used in this section is the guessNumber application, located in the
<INSTALL>/j2eetutorial14/examples/web/ directory. It asks you to guess a
number between 0 and 10, inclusive. The second page tells you whether you
guessed correctly. The example also checks the validity of your input. The sys-
tem log prints Duke’s number. Figure 17–2 shows what the first page looks like.

A SIMPLE JAVASERVER FACES APPLICATION 653
Figure 17–2 The greeting.jsp Page of the guessNumber Application

The source for the guessNumber application is located in the <INSTALL>/

j2eetutorial14/examples/web/guessNumber/ directory created when you
unzip the tutorial bundle (see About the Examples, page xxxvi). A sample
guessNumber.war is provided in <INSTALL>/j2eetutorial14/examples/web/

provided-wars/.

To build this example, follow these steps:

1. Go to <INSTALL>/j2eetutorial14/examples/web/guessNumber/.

2. Run asant build.

To package and deploy the example using asant, follow these steps:

1. Run asant create-war.

2. Start the Application Server.

3. Run asant deploy-war.

To learn how to configure the example, use deploytool to package and deploy
it:

1. Start the Application Server.

654
2. Start deploytool.

3. Create a web application called guessNumber by running the New Web
Component wizard. Select File→New→Web Component.

4. In the New Web Component wizard:

a. Select the Create New Stand-Alone WAR Module radio button.

b. In the WAR File field, enter <INSTALL>/j2eetutorial14/examples/
web/guessNumber/guessNumber.war.

c. The WAR Display Name field shows guessNumber.

d. In the Context Root field, enter /guessNumber.

e. Click Edit Contents.

f. In the Edit Contents dialog box, navigate to <INSTALL>/

j2eetutorial14/examples/web/guessNumber/build/. Select every-
thing in the build directory and click Add.

g. In the Edit Contents dialog box, go back to <INSTALL>/

j2eetutorial14/examples/web/guessNumber/ and select faces-

config.xml. Click Add.

h. In the Contents of guessNumber pane, drag the faces-config.xml file
from the root level to the WEB-INF directory.

i. While in the Edit Contents dialog box, navigate to <J2EE_HOME>/lib/

and select the jsf-api.jar. Click Add, and then click OK.

j. Click Next.

k. Select the Servlet radio button.

l. Click Next.

m.Select javax.faces.webapp.FacesServlet from the Servlet Class
combo box.

n. In the Startup Load Sequence Position combo box, enter 1.

o. Click Finish.

5. In the Web Component tabbed panes:

a. Select the FacesServlet web component that is contained in the
guessNumber web application from the tree.

b. Select the Aliases tab.

c. Click Add, and enter /guess/* in the Aliases field.

d. Select the guessNumber web component from the tree.

6. Select File→Save.

7. Deploy the application.

A SIMPLE JAVASERVER FACES APPLICATION 655
8. Select Tools→Deploy.

9. In the Connection Settings frame, enter the user name and password you
specified when you installed the Application Server.

10.Click OK.

11.A pop-up dialog box will display the results of the deployment. Click
Close.

To run the example, open the URL http://localhost:8080/guessNumber in a
browser.

Creating the Pages
Creating the pages is the page author’s responsibility. This task involves laying
out UI components on the pages, mapping the components to beans, and adding
other core tags.

Here is the greeting.jsp page, the first page of the guessNumber application:

<HTML>
<HEAD> <title>Hello</title> </HEAD>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<body bgcolor="white">
<f:view>

<h:form id="helloForm" >
<h2>Hi. My name is Duke. I'm thinking of a number from
<h:outputText value="#{UserNumberBean.minimum}"/> to
<h:outputText value="#{UserNumberBean.maximum}"/>.
Can you guess it?</h2>
<h:graphicImage id="waveImg" url="/wave.med.gif" />
<h:inputText id="userNo"

value="#{UserNumberBean.userNumber}">
<f:validateLongRange

minimum="#{UserNumberBean.minimum}"
maximum="#{UserNumberBean.maximum}" />

</h:inputText>
<h:commandButton id="submit" action="success"

value="Submit" /> <p>
<h:message style="color: red;

font-family: 'New Century Schoolbook', serif;
font-style: oblique;
text-decoration: overline"
id="errors1"

../examples/web/guessNumber/web/greeting.txt

656
for="userNo"/>
</h:form>

</f:view>
</HTML>

This page demonstrates a few important features that you will use in most of
your JavaServer Faces applications. These features are described in the follow-
ing subsections.

User Interface Component Model (page 662) includes a table that lists all the
component tags included with JavaServer Faces technology. Using the HTML
Component Tags (page 699) discusses the tags in more detail.

The form Tag
The form tag represents an input form that allows the user to input some data and
submit it to the server, usually by clicking a button. All UI component tags that
represent editable components (such as text fields and menus) must be nested
inside the form tag. In the case of the greeting.jsp page, some of the tags con-
tained in the form are inputText, commandButton, and message.

The outputText Tag
The outputText tag represents a label. The greeting.jsp page has two out-

putText tags. One of the tags displays the number 0. The other tag displays the
number 10:

<h:outputText value="#{UserNumberBean.minimum}"/>
<h:outputText value="#{UserNumberBean.maximum}"/>

The value attributes of the tags get the values from the minimum and maximum

properties of UserNumberBean using value-binding expressions, which are used
to reference data stored in other objects, such as beans. The page author could
instead specify literal values using the value attributes of these tags. See Back-
ing Bean Management (page 674) for more information on value-binding
expressions.

A SIMPLE JAVASERVER FACES APPLICATION 657
The inputText Tag
The inputText tag represents a text field component. In the guessNumber exam-
ple, this text field takes an integer. The instance of this tag included in greet-

ing.jsp has two attributes: id and value.

The id attribute corresponds to the ID of the component object represented by
this tag. If you don’t include an id attribute, the JavaServer Faces implementa-
tion will generate one for you. See Using the HTML Component
Tags (page 699) for more information. In this case, the inputText tag requires
an id attribute because the message tag needs to refer to the userNo component.

The value attribute binds the userNo component value to the bean property
UserNumberBean.userNumber, which holds the data entered into the text field.
A page author can also bind a component instance to a property using the tag’s
binding attribute.

See Backing Bean Management (page 674) for more information on creating
beans, binding to bean properties, referencing bean methods, and configuring
beans.

See The UIInput and UIOutput Components (page 710) for more information on
the inputText tag.

The commandButton Tag
The commandButton tag represents the button used to submit the data entered in
the text field. The action attribute specifies an outcome that helps the navigation
mechanism decide which page to open next. Defining Page
Navigation (page 658) discusses this further. See The UICommand
Component (page 704) for more information on the commandButton tag.

The message Tag
The message tag displays an error message if the data entered in the field does
not comply with the rules specified by the LongRangeValidator implementa-
tion. The error message displays wherever you place the message tag on the
page. The style attribute allows you to specify the formatting style for the mes-
sage text. The for attribute refers to the component whose value failed valida-
tion, in this case the userNo component represented by the inputText tag in the
greeting.jsp page. Note that the tag representing the component whose value
is validated must include an id attribute so that the for attribute of the message

658
tag can refer to it. See The UIMessage and UIMessages Components (page 718)
for more information on the message tag.

The validateLongRange Tag
By nesting the validateLongRange tag within a component's tag, the page
author registers a LongRangeValidator onto the component. This validator
checks whether the component’s local data is within a certain range, defined by
the validateLongRange tag’s minimum and maximum attributes, which get the
values from the minimum and maximum properties of UserNumberBean using the
value-binding expressions #{UserNumberBean.minimum} and #{UserNumber-

Bean.maximum}. The page author can instead specify literal values with these
attributes. See Backing Bean Management (page 674) for details on value-bind-
ing expressions. For more information on the standard validators included with
JavaServer Faces technology, see Using the Standard Validators (page 732).

Defining Page Navigation
Defining page navigation involves determining which page to go to after the user
clicks a button or a hyperlink. Navigation for the application is defined in the
application configuration resource file using a powerful rule-based system. Here
are the navigation rules defined for the guessNumber example:

<navigation-rule>
<from-view-id>/greeting.jsp</from-view-id>
<navigation-case>

<from-outcome>success</from-outcome>
<to-view-id>/response.jsp</to-view-id>

</navigation-case>
</navigation-rule>
<navigation-rule>

<from-view-id>/response.jsp</from-view-id>
<navigation-case>

<from-outcome>success</from-outcome>
<to-view-id>/greeting.jsp</to-view-id>

</navigation-case>
</navigation-rule>

Each navigation-rule element defines how to get from one page (specified in
the from-view-id element) to the other pages of the application. The naviga-

tion-rule elements can contain any number of navigation-case elements,

A SIMPLE JAVASERVER FACES APPLICATION 659
each of which defines the page to open next (defined by to-view-id) based on a
logical outcome (defined by from-outcome).

The outcome can be defined by the action attribute of the UICommand compo-
nent that submits the form, as it is in the guessNumber example:

<h:commandButton id="submit" action="success"
value="Submit" />

The outcome can also come from the return value of an action method in a back-
ing bean. This method performs some processing to determine the outcome. For
example, the method can check whether the password the user entered on the
page matches the one on file. If it does, the method might return success; other-
wise, it might return failure. An outcome of failure might result in the logon
page being reloaded. An outcome of success might cause the page displaying
the user’s credit card activity to open. If you want the outcome to be returned by
a method on a bean, you must refer to the method using a method-binding
expression, using the action attribute, as shown by this example:

<h:commandButton id="submit"
action="#{userNumberBean.getOrderStatus}" value="Submit" />

To learn more about how navigation works and how to define navigation rules,
see Navigation Model (page 672) and Configuring Navigation Rules (page 829).
For information on referencing an action method, see Referencing a Method
That Performs Navigation (page 741). For information on writing an action
method, see Writing a Method to Handle Navigation (page 777).

Developing the Beans
Developing beans is one responsibility of the application developer. The page
author and the application developer—if they are two different people—will
need to work in tandem to make sure that the component tags refer to the proper
UI component properties, to ensure that the properties have the acceptable types,
and to take care of other such details.

A typical JavaServer Faces application couples a backing bean with each page in
the application. The backing bean defines properties and methods that are associ-
ated with the UI components used on the page. Each backing bean property is
bound to either a component instance or its value.

660
A backing bean can also define a set of methods that perform functions for the
component, such as validating the component’s data, handling events that the
component fires, and performing processing associated with navigation when the
component is activated.

The page author binds a component’s value to a bean property using the compo-
nent tag’s value attribute to refer to the property. Similarly, the page author
binds a component instance to a bean property by referring to the property using
the component tag’s binding attribute.

Here is the UserNumberBean backing bean property that maps to the data for the
userNo component:

Integer userNumber = null;
...
public void setUserNumber(Integer user_number) {

userNumber = user_number;
}
public Integer getUserNumber() {

return userNumber;
}
public String getResponse() {

if(userNumber != null &&
userNumber.compareTo(randomInt) == 0) {

return "Yay! You got it!";
} else {

return "Sorry, "+userNumber+" is incorrect.";
}

}

As you can see, this bean property is just like any other bean property: It has a set
of accessor methods and a private data field. This means that you can reference
beans you’ve already written from your JavaServer Faces pages.

A property can be any of the basic primitive and numeric types or any Java
object type for which an appropriate converter is available. JavaServer Faces
technology automatically converts the data to the type specified by the bean
property. See Writing Component Properties (page 750) for information on
which types are accepted by which component tags.

You can also use a converter to convert the component’s value to a type not sup-
ported by the component’s data. See Creating a Custom Converter (page 764) for
more information on applying a converter to a component.

In addition to binding components and their values to backing bean properties
using component tag attributes, the page author can refer to a backing bean

A SIMPLE JAVASERVER FACES APPLICATION 661
method from a component tag. See Backing Bean Management (page 674) for
more information on referencing methods from a component tag.

Adding Managed Bean Declarations
After developing the backing beans to be used in the application, you need to
configure them in the application configuration resource file so that the JavaSer-
ver Faces implementation can automatically create new instances of the beans
whenever they are needed.

The task of adding managed bean declarations to the application configuration
resource file is the application architect’s responsibility. Here is a managed bean
declaration for UserNumberBean:

<managed-bean>
<managed-bean-name>UserNumberBean</managed-bean-name>
<managed-bean-class>

guessNumber.UserNumberBean
</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
<managed-property>

<property-name>minimum</property-name>
<property-class>long</property-class>
<value>0</value>

</managed-property>
<managed-property>

<property-name>maximum</property-name>
<property-class>long</property-class>
<value>10</value>

</managed-property>
</managed-bean>

One outputText tag on the greeting.jsp page binds its component’s value to
the minimum property of UserNumberBean. The other outputText tag binds its
component’s value to the maximum property of UserNumberBean.

<h:outputText value="#{UserNumberBean.minimum}"/>
<h:outputText value="#{UserNumberBean.maximum}"/>

As shown in the tags, the part of the expression before the . matches the name
defined by the managed-bean-name element. The part of the expression after the
. matches the name defined by the property-name element corresponding to the
same managed-bean declaration.

662
Notice that the managed-property elements configure the minimum and maximum

properties with values. These values are set when the bean is initialized, which
happens when it is first referenced from a page.

Also notice that the application configuration resource file does not configure the
userNumber property. Any property that does not have a corresponding man-

aged-property element will be initialized to whatever the constructor of the
bean class has the instance variable set to.

The JavaServer Faces implementation processes this file on application startup
time. When the UserNumberBean is first referenced from the page, the JavaSer-
ver Faces implementation initializes it and stores it in session scope if no
instance exists. The bean is then available for all pages in the application. For
more information, see Backing Bean Management (page 674).

User Interface Component Model
JavaServer Faces UI components are configurable, reusable elements that com-
pose the user interfaces of JavaServer Faces applications. A component can be
simple, such as a button, or compound, such as a table, which can be composed
of multiple components.

JavaServer Faces technology provides a rich, flexible component architecture
that includes the following:

• A set of UIComponent classes for specifying the state and behavior of UI
components

• A rendering model that defines how to render the components in various
ways

• An event and listener model that defines how to handle component events

• A conversion model that defines how to register data converters onto a
component

• A validation model that defines how to register validators onto a compo-
nent

This section briefly describes each of these pieces of the component architecture.

USER INTERFACE COMPONENT MODEL 663
User Interface Component Classes
JavaServer Faces technology provides a set of UI component classes and associ-
ated behavioral interfaces that specify all the UI component functionality, such
as holding component state, maintaining a reference to objects, and driving event
handling and rendering for a set of standard components.

The component classes are completely extensible, allowing component writers
to create their own custom components. See Chapter 20 for an example of a cus-
tom image map component.

All JavaServer Faces UI component classes extend UIComponentBase, which
defines the default state and behavior of a UI component. The following set of UI
component classes is included with JavaServer Faces technology:

• UIColumn: Represents a single column of data in a UIData component.

• UICommand: Represents a control that fires actions when activated.

• UIData: Represents a data binding to a collection of data represented by a
DataModel instance.

• UIForm: Encapsulates a group of controls that submit data to the applica-
tion. This component is analogous to the form tag in HTML.

• UIGraphic: Displays an image.

• UIInput: Takes data input from a user. This class is a subclass of UIOut-
put.

• UIMessage: Displays a localized message.

• UIMessages: Displays a set of localized messages.

• UIOutput: Displays data output on a page.

• UIPanel: Manages the layout of its child components.

• UIParameter: Represents substitution parameters.

• UISelectBoolean: Allows a user to set a boolean value on a control by
selecting or deselecting it. This class is a subclass of UIInput.

• UISelectItem: Represents a single item in a set of items.

• UISelectItems: Represents an entire set of items.

• UISelectMany: Allows a user to select multiple items from a group of
items. This class is a subclass of UIInput.

• UISelectOne: Allows a user to select one item from a group of items. This
class is a subclass of UIInput.

• UIViewRoot: Represents the root of the component tree.

664
In addition to extending UIComponentBase, the component classes also imple-
ment one or more behavioral interfaces, each of which defines certain behavior
for a set of components whose classes implement the interface.

These behavioral interfaces are as follows:

• ActionSource: Indicates that the component can fire an action event.

• EditableValueHolder: Extends ValueHolder and specifies additional
features for editable components, such as validation and emitting value-
change events.

• NamingContainer: Mandates that each component rooted at this compo-
nent have a unique ID.

• StateHolder: Denotes that a component has state that must be saved
between requests.

• ValueHolder: Indicates that the component maintains a local value as well
as the option of accessing data in the model tier.

UICommand implements ActionSource and StateHolder. UIOutput and compo-
nent classes that extend UIOutput implement StateHolder and ValueHolder.
UIInput and component classes that extend UIInput implement EditableVal-
ueHolder, StateHolder, and ValueHolder. UIComponentBase implements
StateHolder. See the JavaServer Faces Technology 1.1 API Specification
(http://java.sun.com/j2ee/javaserverfaces/1.1/docs/api/index.html)
for more information on these interfaces.

Only component writers will need to use the component classes and behavioral
interfaces directly. Page authors and application developers will use a standard
UI component by including a tag that represents it on a JSP page. Most of the
components can be rendered in different ways on a page. For example, a UICom-

mand component can be rendered as a button or a hyperlink.

The next section explains how the rendering model works and how page authors
choose how to render the components by selecting the appropriate tags.

Component Rendering Model
The JavaServer Faces component architecture is designed such that the function-
ality of the components is defined by the component classes, whereas the com-

http://java.sun.com/j2ee/javaserverfaces/1.1/docs/api/index.html

USER INTERFACE COMPONENT MODEL 665
ponent rendering can be defined by a separate renderer. This design has several
benefits, including:

• Component writers can define the behavior of a component once but create
multiple renderers, each of which defines a different way to render the
component to the same client or to different clients.

• Page authors and application developers can change the appearance of a
component on the page by selecting the tag that represents the appropriate
combination of component and renderer.

A render kit defines how component classes map to component tags that are
appropriate for a particular client. The JavaServer Faces implementation
includes a standard HTML render kit for rendering to an HTML client.

For every UI component that a render kit supports, the render kit defines a set of
Renderer classes. Each Renderer class defines a different way to render the
particular component to the output defined by the render kit. For example, a
UISelectOne component has three different renderers. One of them renders the
component as a set of radio buttons. Another renders the component as a combo
box. The third one renders the component as a list box.

Each JSP custom tag defined in the standard HTML render kit is composed of
the component functionality (defined in the UIComponent class) and the render-
ing attributes (defined by the Renderer class). For example, the two tags in Table
17–1 represent a UICommand component rendered in two different ways.

Table 17–1 UICommand Tags

Tag Rendered As

commandButton

commandLink

666
The command part of the tags shown in Table 17–1 corresponds to the UICom-

mand class, specifying the functionality, which is to fire an action. The button and
hyperlink parts of the tags each correspond to a separate Renderer class, which
defines how the component appears on the page.

The JavaServer Faces implementation provides a custom tag library for render-
ing components in HTML. It supports all the component tags listed in Table 17–
2. To learn how to use the tags in an example, see Using the HTML Component
Tags (page 699).

Table 17–2 The UI Component Tags

Tag Functions Rendered As Appearance

column
Represents a column
of data in a UIData
component.

A column of data in an
HTML table

A column in a table

commandButton
Submits a form to
the application.

An HTML
<input type=type>
element, where the type
value can be submit,
reset, or image

A button

commandLink
Links to another
page or location on a
page.

An HTML <a href> ele-
ment

A hyperlink

dataTable
Represents a data
wrapper.

An HTML <table> ele-
ment

A table that can be
updated dynamically

form

Represents an input
form. The inner tags
of the form receive
the data that will be
submitted with the
form.

An HTML <form>
element

No appearance

graphicImage Displays an image.
An HTML
element

An image

inputHidden
Allows a page author
to include a hidden
variable in a page.

An HTML
<input type=hidden>
element

No appearance

USER INTERFACE COMPONENT MODEL 667
inputSecret

Allows a user to
input a string without
the actual string
appearing in the
field.

An HTML <input
type=password> ele-
ment

A text field, which dis-
plays a row of charac-
ters instead of the
actual string entered

inputText
Allows a user to
input a string.

An HTML <input
type=text> element

A text field

inputTextarea
Allows a user to
enter a multiline
string.

An HTML <textarea>
element

A multirow text field

message
Displays a localized
message.

An HTML tag if
styles are used

A text string

messages
Displays localized
messages.

A set of HTML
tags if styles are used

A text string

outputLabel

Displays a nested
component as a label
for a specified input
field.

An
HTML <label> element

Plain text

outputLink

Links to another
page or location on a
page without gener-
ating an action event.

An HTML <a> element A hyperlink

outputFormat
Displays a localized
message.

Plain text Plain text

outputText
Displays a line of
text.

Plain text Plain text

panelGrid Displays a table.
An HTML <table> ele-
ment with <tr> and <td>
elements

A table

panelGroup
Groups a set of com-
ponents under one
parent.

A row in a table

Table 17–2 The UI Component Tags (Continued)

Tag Functions Rendered As Appearance

668
selectBoolean
Checkbox

Allows a user to
change the value of a
Boolean choice.

An HTML <input
type=checkbox> ele-
ment.

A checkbox

selectItem

Represents one item
in a list of items in a
UISelectOne com-
ponent.

An HTML <option> ele-
ment

No appearance

selectItems
Represents a list of
items in a UISelec-
tOne component.

A list of HTML
<option> elements

No appearance

selectMany
Checkbox

Displays a set of
checkboxes from
which the user can
select multiple val-
ues.

A set of HTML <input>
elements of type check-
box

A set of checkboxes

selectMany
Listbox

Allows a user to
select multiple items
from a set of items,
all displayed at once.

An HTML <select> ele-
ment

A list box

selectManyMenu
Allows a user to
select multiple items
from a set of items.

An HTML <select> ele-
ment

A scrollable combo
box

selectOne
Listbox

Allows a user to
select one item from
a set of items, all dis-
played at once.

An HTML <select> ele-
ment A list box

selectOneMenu
Allows a user to
select one item from
a set of items.

An HTML <select> ele-
ment

A scrollable combo
box

selectOneRadio
Allows a user to
select one item from
a set of items.

An HTML <input
type=radio> element

A set of radio buttons

Table 17–2 The UI Component Tags (Continued)

Tag Functions Rendered As Appearance

USER INTERFACE COMPONENT MODEL 669
Conversion Model
A JavaServer Faces application can optionally associate a component with
server-side object data. This object is a JavaBeans component, such as a backing
bean. An application gets and sets the object data for a component by calling the
appropriate object properties for that component.

When a component is bound to an object, the application has two views of the
component’s data:

• The model view, in which data is represented as data types, such as int or
long.

• The presentation view, in which data is represented in a manner that can be
read or modified by the user. For example, a java.util.Date might be
represented as a text string in the format mm/dd/yy or as a set of three text
strings.

The JavaServer Faces implementation automatically converts component data
between these two views when the bean property associated with the component
is of one of the types supported by the component’s data. For example, if a UISe-
lectBoolean component is associated with a bean property of type
java.lang.Boolean, the JavaServer Faces implementation will automatically
convert the component’s data from String to Boolean. In addition, some com-
ponent data must be bound to properties of a particular type. For example, a
UISelectBoolean component must be bound to a property of type boolean or
java.lang.Boolean.

Sometimes you might want to convert a component’s data to a type other than a
standard type, or you might want to convert the format of the data. To facilitate
this, JavaServer Faces technology allows you to register a Converter implemen-
tation on UIOutput components and components whose classes subclass UIOut-
put. If you register the Converter implementation on a component, the
Converter implementation converts the component’s data between the two
views.

You can either use the standard converters supplied with the JavaServer Faces
implementation or create your own custom converter.

670
To create and use a custom converter in your application, three things must hap-
pen:

• The application developer must implement the Converter class. See Cre-
ating a Custom Converter (page 764).

• The application architect must register the Converter with the application.
See Registering a Custom Converter (page 828).

• The page author must refer to the Converter from the tag of the compo-
nent whose data must be converted. See Using a Custom
Converter (page 745).

Event and Listener Model
The JavaServer Faces event and listener model is similar to the JavaBeans event
model in that it has strongly typed event classes and listener interfaces that an
application can use to handle events generated by UI components.

An Event object identifies the component that generated the event and stores
information about the event. To be notified of an event, an application must pro-
vide an implementation of the Listener class and must register it on the compo-
nent that generates the event. When the user activates a component, such as by
clicking a button, an event is fired. This causes the JavaServer Faces implemen-
tation to invoke the listener method that processes the event.

JavaServer Faces technology supports three kinds of events: value-change
events, action events, and data-model events.

An action event occurs when the user activates a component that implements
ActionSource. These components include buttons and hyperlinks.

A value-change event occurs when the user changes the value of a component
represented by UIInput or one of its subclasses. An example is selecting a
checkbox, an action that results in the component’s value changing to true. The
component types that can generate these types of events are the UIInput, UISe-
lectOne, UISelectMany, and UISelectBoolean components. Value-change
events are fired only if no validation errors were detected.

Depending on the value of the immediate property (see The immediate
Attribute, page 701) of the component emitting the event, action events can be
processed during the invoke application phase or the apply request values phase,
and value-change events can be processed during the process validations phase
or the apply request values phase.

USER INTERFACE COMPONENT MODEL 671
A data-model event occurs when a new row of a UIData component is selected.
The discussion of data-model events is an advanced topic. It is not covered in
this tutorial but may be discussed in future versions of this tutorial.

There are two ways to cause your application to react to action events or value-
change events emitted by a standard component:

• Implement an event listener class to handle the event and register the lis-
tener on the component by nesting either a valueChangeListener tag or
an actionListener tag inside the component tag.

• Implement a method of a backing bean to handle the event and refer to the
method with a method-binding expression from the appropriate attribute of
the component’s tag.

See Implementing an Event Listener (page 767) for information on how to
implement an event listener. See Registering Listeners on
Components (page 731) for information on how to register the listener on a com-
ponent.

See Writing a Method to Handle an Action Event (page 779) and Writing a
Method to Handle a Value-Change Event (page 780) for information on how to
implement backing bean methods that handle these events.

See Referencing a Backing Bean Method (page 741) for information on how to
refer to the backing bean method from the component tag.

When emitting events from custom components, you must implement the appro-
priate Event class and manually queue the event on the component in addition to
implementing an event listener class or a backing bean method that handles the
event. Handling Events for Custom Components (page 812) explains how to do
this.

Validation Model
JavaServer Faces technology supports a mechanism for validating the local data
of editable components (such as text fields). This validation occurs before the
corresponding model data is updated to match the local value.

Like the conversion model, the validation model defines a set of standard classes
for performing common data validation checks. The JavaServer Faces core tag
library also defines a set of tags that correspond to the standard Validator

implementations. See Table 18–7 for a list of all the standard validation classes
and corresponding tags.

672
Most of the tags have a set of attributes for configuring the validator’s properties,
such as the minimum and maximum allowable values for the component’s data.
The page author registers the validator on a component by nesting the validator’s
tag within the component’s tag.

The validation model also allows you to create your own custom validator and
corresponding tag to perform custom validation. The validation model provides
two ways to implement custom validation:

• Implement a Validator interface that performs the validation. See Imple-
menting the Validator Interface (page 771) for more information.

• Implement a backing bean method that performs the validation. See Writ-
ing a Method to Perform Validation (page 779) for more information.

If you are implementing a Validator interface, you must also:

• Register the Validator implementation with the application. See Regis-
tering a Custom Validator (page 828) for more information.

• Create a custom tag or use a validator tag to register the validator on the
component. See Creating a Custom Tag (page 775) for more information.

If you are implementing a backing bean method to perform validation, you also
must reference the validator from the component tag’s validator attribute. See
Referencing a Method That Performs Validation (page 743) for more informa-
tion.

Navigation Model
Virtually all web applications are made up of a set of pages. One of the primary
concerns of a web application developer is to manage the navigation between
these pages. The JavaServer Faces navigation model makes it easy to define page
navigation and to handle any additional processing needed to choose the
sequence in which pages are loaded.

As defined by JavaServer Faces technology, navigation is a set of rules for
choosing the next page to be displayed after a button or hyperlink is clicked.
These rules are defined by the application architect in the application configura-
tion resource file (see Application Configuration Resource File, page 816) using
a small set of XML elements.

To handle navigation in the simplest application, you simply

• Define the rules in the application configuration resource file.

NAVIGATION MODEL 673
• Refer to an outcome String from the button or hyperlink component’s
action attribute. This outcome String is used by the JavaServer Faces
implementation to select the navigation rule.

In more complicated applications, you also must provide one or more action
methods, which perform some processing to determine what page should be dis-
played next. The component that triggers navigation references this method. The
rest of this section describes what happens when that component is activated.

When a button or hyperlink is clicked, the component associated with it gener-
ates an action event. This event is handled by the default ActionListener

instance, which calls the action method referenced by the component that trig-
gered the event.

This action method is located in a backing bean and is provided by the applica-
tion developer. It performs some processing and returns a logical outcome
String, which describes the result of the processing. The listener passes the log-
ical outcome and a reference to the action method that produced the outcome to
the default NavigationHandler. The NavigationHandler selects the page to
display next by matching the outcome or the action method reference against the
navigation rules in the application configuration resource file.

Each navigation rule defines how to navigate from one particular page to any
number of other pages in the application. Each navigation case within the navi-
gation rule defines a target page and either a logical outcome, a reference to an
action method, or both. Here is an example navigation rule from the guessNum-

ber application described in Defining Page Navigation (page 658):

<navigation-rule>
<from-view-id>/greeting.jsp</from-view-id>
<navigation-case>

<from-outcome>success</from-outcome>
<to-view-id>/response.jsp</to-view-id>

</navigation-case>
</navigation-rule>

This rule states that when the button or hyperlink component on greeting.jsp

is activated, the application will navigate from the greeting.jsp page to the
response.jsp page if the outcome referenced by the button or hyperlink com-
ponent’s tag is success.

The NavigationHandler selects the navigation rule that matches the page cur-
rently displayed. It then matches the outcome or the action method reference it
received from the default ActionListener with those defined by the navigation

../examples/web/guessNumber/web/response.txt

674
cases. It first tries to match both the method reference and the outcome against
the same navigation case. If that fails, it will attempt to match the outcome.
Finally, it will attempt to match the action method reference if the previous two
attempts failed.

When the NavigationHandler achieves a match, the render response phase
begins. During this phase, the page selected by the NavigationHandler will be
rendered.

For more information on how to define navigation rules, see Configuring Navi-
gation Rules (page 829).

For more information on how to implement action methods to handle navigation,
see Writing a Method to Handle an Action Event (page 779).

For more information on how to reference outcomes or action methods from
component tags, see Referencing a Method That Performs
Navigation (page 741).

Backing Bean Management
Another critical function of web applications is proper management of resources.
This includes separating the definition of UI component objects from objects
that perform application-specific processing and hold data. It also includes stor-
ing and managing these object instances in the proper scope.

A typical JavaServer Faces application includes one or more backing beans,
which are JavaBeans components (see JavaBeans Components, page 507) asso-
ciated with UI components used in a page. A backing bean defines UI compo-
nent properties, each of which is bound to either a component’s value or a
component instance. A backing bean can also define methods that perform func-
tions associated with a component, including validation, event handling, and
navigation processing.

To bind UI component values and instances to backing bean properties or to ref-
erence backing bean methods from UI component tags, page authors use the Jav-
aServer Faces expression language (EL) syntax. This syntax uses the delimiters
#{}. A JavaServer Faces expression can be a value-binding expression (for bind-
ing UI components or their values to external data sources) or a method-binding
expression (for referencing backing bean methods). It can also accept mixed lit-
erals and the evaluation syntax and operators of the JSP 2.0 expression language
(see Expression Language, page 499).

BACKING BEAN MANAGEMENT 675
To illustrate a value-binding expression and a method-binding expression, let’s
suppose that the userNo tag of the guessNumber application referenced a method
that performed the validation of user input rather than using LongRangeValida-

tor:

<h:inputText id="userNo"
value="#{UserNumberBean.userNumber}"
validator="#{UserNumberBean.validate}" />

This tag binds the userNo component’s value to the UserNumberBean.userNum-

ber backing bean property. It also refers to the UserNumberBean.validate

method, which performs validation of the component’s local value, which is
whatever the user enters into the field corresponding to this tag.

The property bound to the component’s value must be of a type supported by the
component. For example, the userNumber property returns an Integer, which is
one of the types that a UIInput component supports, as shown in Developing the
Beans (page 659).

In addition to the validator attribute, tags representing a UIInput can also use
a valueChangeListener attribute to refer to a method that responds to Val-

ueChangeEvents, which a UIInput component can fire.

A tag representing a component that implements ActionSource can refer to
backing bean methods using actionListener and action attributes. The
actionListener attribute refers to a method that handles an action event. The
action attribute refers to a method that performs some processing associated
with navigation and returns a logical outcome, which the navigation system uses
to determine which page to display next.

A tag can also bind a component instance to a backing bean property. It does this
by referencing the property from the binding attribute:

<inputText binding="#{UserNumberBean.userNoComponent}" />

The property referenced from the binding attribute must accept and return the
same component type as the component instance to which it’s bound. Here is an
example property that can be bound to the component represented by the preced-
ing example inputText tag:

UIInput userNoComponent = null;
...
public void setUserNoComponent(UIInput userNoComponent) {

this.userNoComponent = userNoComponent;

676
}
public UIInput getUserNoComponent() {

return userNoComponent;
}

When a component instance is bound to a backing bean property, the property
holds the component’s local value. Conversely, when a component’s value is
bound to a backing bean property, the property holds its model value, which is
updated with the local value during the update model values phase of the life
cycle.

Binding a component instance to a bean property has these advantages:

• The backing bean can programmatically modify component attributes.
• The backing bean can instantiate components rather than let the page

author do so.

Binding a component’s value to a bean property has these advantages:

• The page author has more control over the component attributes.

• The backing bean has no dependencies on the JavaServer Faces API (such
as the UI component classes), allowing for greater separation of the pre-
sentation layer from the model layer.

• The JavaServer Faces implementation can perform conversions on the data
based on the type of the bean property without the developer needing to
apply a converter.

In most situations, you will bind a component’s value rather than its instance to a
bean property. You’ll need to use a component binding only when you need to
change one of the component’s attributes dynamically. For example, if an appli-
cation renders a component only under certain conditions, it can set the compo-
nent’s rendered property accordingly by accessing the property to which the
component is bound.

Backing beans are created and stored with the application using the managed
bean creation facility, which is configured in the application configuration
resource file, as shown in Adding Managed Bean Declarations (page 661). When
the application starts up, it processes this file, making the beans available to the
application and instantiating them when the component tags reference them.

In addition to referencing bean properties using value and binding attributes,
you can reference bean properties (as well as methods and resource bundles)
from a custom component attribute by creating a ValueBinding instance for it.
See Creating the Component Tag Handler (page 795) and Enabling Value-Bind-

HOW THE PIECES FIT TOGETHER 677
ing of Component Properties (page 807) for more information on enabling your
component’s attributes to support value binding.

For more information on configuring beans using the managed bean creation
Facility, see Configuring Beans (page 817).

For more information on writing the beans and their properties, see Writing
Component Properties (page 750).

For more information on binding component instances or data to properties, see
Binding Component Values and Instances to External Data Sources (page 735).

For information on referencing backing bean methods from component tags, see
Referencing a Backing Bean Method (page 741).

How the Pieces Fit Together
Previous sections of this chapter introduce you to the various parts of the appli-
cation: the JSP pages, the backing beans, the listeners, the UI components, and
so on. This section shows how these pieces fit together in a real application.

Chapters 17-21 of this tutorial use the Duke’s Bookstore application (see The
Example JavaServer Faces Application, page 690) to explain basic concepts of
creating JavaServer Faces applications.

The example emulates a simple online shopping application. It provides a book
catalog from which users can select books and add them to a shopping cart.
Users can view and modify the shopping cart. When users are finished shopping,
they can purchase the books in the cart.

Figure 17–3 shows how three components from two different pages of the
Duke’s Bookstore application are wired to back-end objects and how these
objects are connected to each other on the server side. These pages and objects
are described in Table 17–3.

Table 17–3 JSP Pages and Objects of Duke’s Bookstore

JSP Page or Server-
side Object Description

bookcashier.jsp
A form that allows customers to fill out their information,
including their name, when ordering books from the web site.

678
Figure 17–3 Duke’s Bookstore Application Objects

bookcatalog.jsp
Displays a table containing all the books from the database and
allows the user to add a book to the shopping cart.

CashierBean The backing bean for the bookcashier.jsp page.

CatalogBean The backing bean for the bookcatalog.jsp page.

name component
A component represented by the name tag on the bookcash-
ier.jsp page.

fanClub component
A component represented by the fanClub tag on the book-
cashier.jsp page.

NameChanged value-
change listener

Handles the event of users entering their name in the name text
field rendered by the name tag on bookcashier.jsp.

ShoppingCart
Holds the data for all the books that the user has added to the
shopping cart.

Table 17–3 JSP Pages and Objects of Duke’s Bookstore (Continued)

JSP Page or Server-
side Object Description

HOW THE PIECES FIT TOGETHER 679
The bookcashier.jsp page represents a form into which customers enter their
personal information. The tag that represents the name component on the book-

cashier.jsp page renders a text field. When a user enters a value in the field,
the name component fires a value-change event, which is processed after the user
submits the form. The NameChanged value-change listener handles this event.
The tag representing the name component on the page binds the component’s
value to the name property of the CashierBean using the value-binding expres-
sion #{cashier.name} from its value attribute.

The bookcashier.jsp page also includes a selectBooleanCheckbox tag that
displays the fanClub component. This tag binds the fanClub component
instance to the specialOffer property of CashierBean using the value-binding
expression #{cashier.specialOffer} from its binding attribute. When the
customer clicks the Submit button on the page, the submit method of Cashier-
Bean checks if the customer has ordered more than $100 (or 100 euros) worth of
books. If he or she has, the fanClub component and its label are rendered. This
component allows the customer to choose to become a member in the Duke fan
club as a reward for ordering more than $100 (or 100 euros) worth of books.

The fanClub component’s tag binds the component instance rather than its value
to a backing bean property because CashierBean must have access to the ren-

dered property of the fanClub component so that it can dynamically set the
property to true. Because the component instance rather than the component
value is bound to the backing bean property, the backing bean can manipulate the
component properties more readily. Binding a Component Instance to a Bean
Property (page 739) provides more information on component binding.

The bookcatalog.jsp page represents a form in which all the books in the data-
base are displayed in a table. The UIData component generates this table, which
contains a row for each book. See The UIData Component (page 706) for infor-
mation on how the UIData component works. Each row also includes a button
called Add to Cart, which the customer clicks to add the book to the cart. The
commandButton tag that renders each Add to Cart button references the add

method of CatalogBean using the method-binding expression #{catalog.add}

from its action attribute.

When one of the Add to Cart buttons on the bookcatalog.jsp page is clicked,
the add method of CatalogBean is invoked. This method updates the shopping
cart.

The ShoppingCart object is a model object, whose purpose is to handle applica-
tion data, including retrieving data from the database.

../examples/web/bookstore6/web/bookcashier.txt
../examples/web/bookstore6/src/listeners/NameChanged.java
../examples/web/bookstore6/src/backing/CashierBean.java
../examples/web/bookstore6/web/bookcatalog.txt

680
The Life Cycle of a JavaServer Faces
Page

The life cycle of a JavaServer Faces page is similar to that of a JSP page: The cli-
ent makes an HTTP request for the page, and the server responds with the page
translated to HTML. However, because of the extra features that JavaServer
Faces technology offers, the life cycle provides some additional services to pro-
cess a page.

This section details the life cycle for the benefit of developers who need to know
information such as when validations, conversions, and events are usually han-
dled and what they can do to change how and when they are handled. Page
authors don’t necessarily need to know the details of the life cycle.

A JavaServer Faces page is represented by a tree of UI components, called a
view. When a client makes a request for the page, the life cycle starts. During the
life cycle, the JavaServer Faces implementation must build the view while con-
sidering state saved from a previous submission of the page. When the client
submits a page, the JavaServer Faces implementation must perform several
tasks, such as validating the data input of components in the view and converting
input data to types specified on the server side. The JavaServer Faces implemen-
tation performs all these tasks as a series of steps in the life cycle.

Which steps in the life cycle are executed depends on whether or not the request
originated from a JavaServer Faces application and whether or not the response
is generated with the rendering phase of the JavaServer Faces life cycle. This
section first explains the various life cycle scenarios. It then explains each of
these life cycle phases using the guessNumber example.

THE LIFE CYCLE OF A JAVASERVER FACES PAGE 681
Request Processing Life Cycle Scenarios
A JavaServer Faces application supports two kinds of responses and two kinds of
requests:

• Faces response: A servlet response that was created by the execution of the
Render Response Phase (page 686) of the request processing life cycle.

• Non-Faces response: A servlet response that was not created by the execu-
tion of the render response phase. An example is a JSP page that does not
incorporate JavaServer Faces components.

• Faces request: A servlet request that was sent from a previously generated
Faces response. An example is a form submit from a JavaServer Faces user
interface component, where the request URI identifies the JavaServer
Faces component tree to use for processing the request.

• Non-Faces request: A servlet request that was sent to an application com-
ponent, such as a servlet or JSP page, rather than directed to a JavaServer
Faces component tree.

These different requests and responses result in three possible life cycle scenar-
ios that can exist for a JavaServer Faces application:

Scenario 1: Non-Faces Request Generates Faces Response
An example of this scenario occurs when clicking a hyperlink on an HTML
page opens a JavaServer Faces page. To render a Faces response from a non-
Faces request, an application must provide a mapping to FacesServlet,
which accepts incoming requests and passes them to the life cycle imple-
mentation for processing. Identifying the Servlet for Life Cycle
Processing (page 838) describes how to provide a mapping to the
FacesServlet. When generating a Faces response, the application must cre-
ate a new view, store it in the FacesContext, acquire object references
needed by the view, and call FacesContext.renderResponse, which forces
immediate rendering of the view by skipping to the Render Response
Phase (page 686).

Scenario 2: Faces Request Generates Non-Faces Response
Sometimes a JavaServer Faces application might need to redirect to a differ-
ent web application resource or might need to generate a response that does
not contain any JavaServer Faces components. In these situations, the devel-
oper must skip the rendering phase (Render Response Phase, page 686) by
calling FacesContext.responseComplete. The FacesContext contains all
the information associated with a particular Faces request. This method can

682
be invoked during the Apply Request Values Phase (page 684), Process Val-
idations Phase (page 685), or the Update Model Values Phase (page 685).

Scenario 3: Faces Request Generates Faces Response
This is the most common scenario for the life cycle of a JavaServer Faces
application. It is also the scenario represented by the standard request pro-
cessing life cycle described in the next section. This scenario involves a Jav-
aServer Faces component submitting a request to a JavaServer Faces
application utilizing the FacesServlet. Because the request has been han-
dled by the JavaServer Faces implementation, no additional steps are
required by the application to generate the response. All listeners, validators
and converters will automatically be invoked during the appropriate phase of
the standard life cycle, which the next section describes.

Standard Request Processing Life Cycle
The standard request processing life cycle represents scenario 3, described in the
preceding section. Most users of JavaServer Faces technology don’t need to con-
cern themselves with the request processing life cycle. Indeed, JavaServer Faces
technology is sophisticated enough to perform the processing of a page so that
developers don’t need to deal with complex rendering issues, such as state
changes on individual components. For example, if the selection of a component
such as a checkbox affects the appearance of another component on the page,
JavaServer Faces technology will handle this event properly and will not allow
the page to be rendered without reflecting this change.

Figure 17–4 illustrates the steps in the JavaServer Faces request-response life
cycle.

THE LIFE CYCLE OF A JAVASERVER FACES PAGE 683
Figure 17–4 JavaServer Faces Standard Request-Response Life Cycle

The life cycle handles both kinds of requests: initial requests and postbacks.
When a user makes an initial request for a page, he or she is requesting the page
for the first time. When a user executes a postback, he or she submits the form
contained on a page that was previously loaded into the browser as a result of
executing an initial request. When the life cycle handles an initial request, it only
executes the restore view and render response phases because there is no user
input or actions to process. Conversely, when the life cycle handles a postback, it
executes all of the phases.

Restore View Phase
When a request for a JavaServer Faces page is made, such as when a link or a
button is clicked, the JavaServer Faces implementation begins the restore view
phase.

During this phase, the JavaServer Faces implementation builds the view of the
page, wires event handlers and validators to components in the view, and saves
the view in the FacesContext instance. The FacesContext instance contains all
the information needed to process a single request. All the application’s compo-
nent tags, event handlers, converters, and validators have access to the Faces-

Context instance.

684
If the request for the page is an initial request, the JavaServer Faces implementa-
tion creates an empty view during this phase and the life cycle advances to the
render response phase. The empty view will be populated when the page is pro-
cessed during a postback.

If the request for the page is a postback, a view corresponding to this page
already exists. During this phase, the JavaServer Faces implementation restores
the view by using the state information saved on the client or the server.

The view for the greeting.jsp page of the guessNumber example would have
the UIView component at the root of the tree, with helloForm as its child and the
rest of the JavaServer Faces UI components as children of helloForm.

Apply Request Values Phase
After the component tree is restored, each component in the tree extracts its new
value from the request parameters by using its decode method. The value is then
stored locally on the component. If the conversion of the value fails, an error
message associated with the component is generated and queued on FacesCon-

text. This message will be displayed during the render response phase, along
with any validation errors resulting from the process validations phase.

In the case of the userNo component on the greeting.jsp page, the value is
whatever the user entered in the field. Because the object property bound to the
component has an Integer type, the JavaServer Faces implementation converts
the value from a String to an Integer.

If any decode methods or event listeners called renderResponse on the current
FacesContext instance, the JavaServer Faces implementation skips to the render
response phase.

If events have been queued during this phase, the JavaServer Faces implementa-
tion broadcasts the events to interested listeners.

If some components on the page have their immediate attributes (see The imme-
diate Attribute, page 701) set to true, then the validation, conversion, and events
associated with these components will be processed during this phase.

At this point, if the application needs to redirect to a different web application
resource or generate a response that does not contain any JavaServer Faces com-
ponents, it can call FacesContext.responseComplete.

At the end of this phase, the components are set to their new values, and mes-
sages and events have been queued.

THE LIFE CYCLE OF A JAVASERVER FACES PAGE 685
Process Validations Phase
During this phase, the JavaServer Faces implementation processes all validators
registered on the components in the tree. It examines the component attributes
that specify the rules for the validation and compares these rules to the local
value stored for the component.

If the local value is invalid, the JavaServer Faces implementation adds an error
message to the FacesContext instance, and the life cycle advances directly to
the render response phase so that the page is rendered again with the error mes-
sages displayed. If there were conversion errors from the apply request values
phase, the messages for these errors are also displayed.

If any validate methods or event listeners called renderResponse on the cur-
rent FacesContext, the JavaServer Faces implementation skips to the render
response phase.

At this point, if the application needs to redirect to a different web application
resource or generate a response that does not contain any JavaServer Faces com-
ponents, it can call FacesContext.responseComplete.

If events have been queued during this phase, the JavaServer Faces implementa-
tion broadcasts them to interested listeners.

In the case of the greeting.jsp page, the JavaServer Faces implementation pro-
cesses the standard validator registered on the userNo inputText tag. It verifies
that the data the user entered in the text field is an integer in the range 0 to 10. If
the data is invalid or if conversion errors occurred during the apply request val-
ues phase, processing jumps to the render response phase, during which the
greeting.jsp page is rendered again, with the validation and conversion error
messages displayed in the component associated with the message tag.

Update Model Values Phase
After the JavaServer Faces implementation determines that the data is valid, it
can walk the component tree and set the corresponding server-side object proper-
ties to the components’ local values. The JavaServer Faces implementation will
update only the bean properties pointed at by an input component’s value
attribute. If the local data cannot be converted to the types specified by the bean
properties, the life cycle advances directly to the render response phase so that
the page is rerendered with errors displayed. This is similar to what happens with
validation errors.

686
If any updateModels methods or any listeners called renderResponse on the
current FacesContext instance, the JavaServer Faces implementation skips to
the render response phase.

At this point, if the application needs to redirect to a different web application
resource or generate a response that does not contain any JavaServer Faces com-
ponents, it can call FacesContext.responseComplete.

If events have been queued during this phase, the JavaServer Faces implementa-
tion broadcasts them to interested listeners.

At this stage, the userNo property of the UserNumberBean is set to the local
value of the userNumber component.

Invoke Application Phase
During this phase, the JavaServer Faces implementation handles any application-
level events, such as submitting a form or linking to another page.

At this point, if the application needs to redirect to a different web application
resource or generate a response that does not contain any JavaServer Faces com-
ponents, it can call FacesContext.responseComplete.

If the view being processed was reconstructed from state information from a pre-
vious request and if a component has fired an event, these events are broadcast to
interested listeners.

The greeting.jsp page from the guessNumber example has one application-
level event associated with the UICommand component. When processing this
event, a default ActionListener implementation retrieves the outcome, suc-
cess, from the component’s action attribute. The listener passes the outcome to
the default NavigationHandler. The NavigationHandler matches the outcome
to the proper navigation rule defined in the application’s application configura-
tion resource file to determine which page needs to be displayed next. See Con-
figuring Navigation Rules (page 829) for more information on managing page
navigation. The JavaServer Faces implementation then sets the response view to
that of the new page. Finally, the JavaServer Faces implementation transfers con-
trol to the render response phase.

Render Response Phase
During this phase, the JavaServer Faces implementation delegates authority for
rendering the page to the JSP container if the application is using JSP pages. If

FURTHER INFORMATION 687
this is an initial request, the components represented on the page will be added to
the component tree as the JSP container executes the page. If this is not an initial
request, the components are already added to the tree so they needn’t be added
again. In either case, the components will render themselves as the JSP container
traverses the tags in the page.

If the request is a postback and errors were encountered during the apply request
values phase, process validations phase, or update model values phase, the origi-
nal page is rendered during this phase. If the pages contain message or messages
tags, any queued error messages are displayed on the page.

After the content of the view is rendered, the state of the response is saved so that
subsequent requests can access it and it is available to the restore view phase.

In the case of the guessNumber example, if a request for the greeting.jsp page
is an initial request, the view representing this page is built and saved in Faces-

Context during the restore view phase and then rendered during this phase. If a
request for the page is a postback (such as when the user enters some invalid data
and clicks Submit), the tree is rebuilt during the restore view phase and continues
through the request processing life cycle phases.

Further Information
For further information on the technologies discussed in this tutorial see the fol-
lowing web sites:

• The JavaServer Faces 1.1 TLD documentation:
http://java.sun.com/j2ee/javaserverfaces/1.1/docs/tlddocs/
index.html

• The JavaServer Faces 1.1 standard RenderKit documentation:
http://java.sun.com/j2ee/javaserverfaces/1.1/docs/render-
kitdocs/index.html

• The JavaServer Faces 1.1 API Specification:
http://java.sun.com/j2ee/javaserverfaces/1.1/docs/api/
index.html

• The JavaServer Faces 1.1 Specification:
http://java.sun.com/j2ee/javaserverfaces/download.html

• The JavaServer Faces web site:
http://java.sun.com/j2ee/javaserverfaces

http://java.sun.com/j2ee/javaserverfaces
http://java.sun.com/j2ee/javaserverfaces/download.html
http://java.sun.com/j2ee/javaserverfaces/1.1/docs/renderkitdocs/index.html
http://java.sun.com/j2ee/javaserverfaces/1.1/docs/api/index.html
http://java.sun.com/j2ee/javaserverfaces/1.1/docs/tlddocs/index.html

688

18
689
Using JavaServer
Faces Technology in

JSP Pages

THE page author’s responsibility is to design the pages of a JavaServer Faces
application. This includes laying out the components on the page and wiring
them to backing beans, validators, converters, and other back-end objects associ-
ated with the page. This chapter uses the Duke’s Bookstore application and the
Coffee Break application (see Chapter 35) to describe how page authors use the
JavaServer Faces tags to

• Layout standard UI components on a page

• Reference localized messages

• Register converters, validators, and listeners on components

• Bind components and their values to back-end objects

• Reference backing bean methods that perform navigation processing, han-
dle events, and perform validation

This chapter also describes how to include custom objects created by application
developers and component writers on a JSP page.

690
The Example JavaServer Faces
Application

The JavaServer Faces technology chapters of this tutorial primarily use a rewrit-
ten version of the Duke’s Bookstore example to illustrate the basic concepts of
JavaServer Faces technology. This version of the Duke’s Bookstore example
includes several JavaServer Faces technology features:

• The JavaServer Faces implementation provides FacesServlet, whose
instances accept incoming requests and pass them to the implementation
for processing. Therefore, the application does not need to include a servlet
(such as the Dispatcher servlet) that processes request parameters and
dispatches to application logic, as do the other versions of Duke's Book-
store.

• A custom image map component that allows you to select the locale for the
application.

• Navigation configured in a centralized application configuration resource
file. This eliminates the need to calculate URLs, as other versions of the
Duke’s Bookstore application must do.

• Backing beans associated with the pages. These beans hold the component
data and perform other processing associated with the components. This
processing includes handling the event generated when a user clicks a but-
ton or a hyperlink.

• Tables that display the books from the database and the shopping cart are
rendered with the dataTable tag, which is used to dynamically render data
in a table. The dataTable tag on bookshowcart.jsp also includes input
components.

• A custom validator and a custom converter are registered on the credit card
field of the bookcashier.jsp page.

• A value-change listener is registered on the Name field of bookcash-

ier.jsp. This listener saves the name in a parameter so that bookre-

ceipt.jsp can access it.

This version of Duke’s Bookstore includes the same pages listed in Table 12–1.
It also includes the chooselocale.jsp page, which displays the custom image
map that allows you to select the locale of the application. This page is displayed
first and advances directly to the bookstore.jsp page after the locale is
selected.

../examples/web/bookstore6/web/bookshowcart.txt
../examples/web/bookstore6/web/bookreceipt.txt
../examples/web/bookstore6/web/bookreceipt.txt
../examples/web/bookstore6/web/chooselocale.txt

THE EXAMPLE JAVASERVER FACES APPLICATION 691
The packages of the Duke’s Bookstore application are:

• backing: Includes the backing bean classes

• components: Includes the custom UI component classes

• converters: Includes the custom converter class

• listeners: Includes the event handler and event listener classes

• model: Includes a model bean class

• renderers: Includes the custom renderers

• resources: Includes custom error messages for the custom converter and
validator

• taglib: Includes custom tag handler classes

• util: Includes a message factory class

• validators: Includes a custom validator class

Chapter 19 describes how to program backing beans, custom converters and val-
idators, and event listeners. Chapter 20 describes how to program event handlers,
custom components, renderers, and tag handlers.

The source code for the application is located in the <INSTALL>/

j2eetutorial14/examples/web/bookstore6/ directory. A sample
bookstore6.war is provided in <INSTALL>/j2eetutorial14/examples/web/

provided-wars/. To build the example, follow these steps:

1. Build and package the bookstore common files as described in Duke’s
Bookstore Examples (page 103).

2. Go to <INSTALL>/j2eetutorial14/examples/web/bookstore6/ and
run asant build.

3. Start the Application Server.

4. Perform all the operations described in Accessing Databases from Web
Applications, page 104.

To package and deploy the example using asant:

1. Run asant create-bookstore-war.

2. Run asant deploy-war.

To learn how to configure the example, use deploytool to package and deploy
it:

1. Start deploytool.

2. Create a web application called bookstore6 by running the New Web
Component Wizard. Select File→New→Web Component.

692
3. In the New Web Component wizard:

a. Select the Create New Stand-Alone WAR Module radio button.

b. In the WAR File field, enter <INSTALL>/j2eetutorial14/examples/
web/bookstore6.war.

c. The WAR Display Name field will show bookstore6.

d. In the Context Root field, enter /bookstore6.

e. Click Edit Contents.

f. In the Edit Contents dialog box, navigate to <INSTALL>/

j2eetutorial14/examples/web/bookstore6/build/. Select every-
thing in the build directory and click Add.

g. In the Contents tree, drag the resources package to the WEB-INF/

classes directory.

h. In the Edit Contents dialog, go back to the <INSTALL>/

j2eetutorial14/examples/web/bookstore6/ directory. Select
faces-config.xml and click Add.

i. In the Contents tree, drag faces-config.xml to the WEB-INF directory.

j. In the Edit Contents dialog, navigate to <INSTALL>/j2eetutorial14/

examples/web/bookstore/dist/. Select bookstore.jar and click
Add.

k. In the Edit Contents dialog box, navigate to <J2EE_HOME>/lib/ and
select the jsf-api.jar. Click Add, and then Click OK.

l. Click Next.

m.Select the Servlet radio button.

n. Click Next.

o. Select javax.faces.webapp.FacesServlet from the Servlet Class
combo box.

p. In the Startup Load Sequence Position combo box, enter 1.

q. Click Finish.

4. Provide a mapping for the FacesServlet.

a. Select the FacesServlet web component that is contained in the
bookstore6 web application from the tree.

b. Select the Aliases tab.

c. Click Add and enter *.faces in the Aliases field.

5. Specify where state is saved.

d. Select the bookstore6 WAR from the tree.

THE EXAMPLE JAVASERVER FACES APPLICATION 693
e. Select the Context tabbed pane and click Add.

f. Enter javax.faces.STATE_SAVING_METHOD in the Coded Parameter
field.

g. Enter client in the Value field.

6. Set preludes and codas for all JSP pages.

a. Select the JSP Properties tab.

b. Click Add.

c. Enter bookstore6 in the Name field.

d. Click Add URL.

e. Enter *.jsp in the URL Patterns field.

f. Click Edit Preludes.

g. Click Add.

h. Enter /template/prelude.jspf.

i. Click OK.

j. Click Edit Codas.

k. Click Add.

l. Enter /template/coda.jspf.

m.Click OK.

7. Add the listener class listeners.ContextListener (described in Han-
dling Servlet Life-Cycle Events, page 450).

a. Select the Event Listeners tab.

b. Click Add.

c. Select the listeners.ContextListener class from the drop-down
menu in the Event Listener Classes pane.

8. Add a resource reference for the database.

a. Select the Resource Ref’s tab.

b. Click Add.

c. Enter jdbc/BookDB in the Coded Name field.

d. Accept the default type javax.sql.DataSource.

e. Accept the default authorization Container.

f. Accept the default selected Shareable.

g. Enter jdbc/BookDB in the JNDI Name field of the Sun-specific Settings
frame.

694
9. Select File→Save.

10.Deploy the application.

11.Select Tools→Deploy.

12.In the Connection Settings frame, enter the user name and password you
specified when you installed the Application Server.

13.Click OK.

14.A pop-up dialog box will display the results of the deployment. Click
Close.

To run the example, open the URL http://localhost:8080/bookstore6 in a
browser.

Setting Up a Page
To use the JavaServer Faces UI components in your JSP page, you need to give
the page access to the two standard tag libraries: the JavaServer Faces HTML
render kit tag library and the JavaServer Faces core tag library. The JavaServer
Faces standard HTML render kit tag library defines tags that represent common
HTML user interface components. The JavaServer Faces core tag library defines
tags that perform core actions and are independent of a particular render kit.

Using these tag libraries is similar to using any other custom tag library. This
chapter assumes that you are familiar with the basics of using custom tags in JSP
pages (see Using Custom Tags, page 513).

As is the case with any tag library, each JavaServer Faces tag library must have a
TLD that describes it. The html_basic TLD describes the The JavaServer Faces
standard HTML render kit tag library. The jsf_core TLD describes the JavaSer-
ver Faces core tag library.

Please refer to the TLD documentation at http://java.sun.com/j2ee/jav-

aserverfaces/1.1/docs/tlddocs/index.html for a complete list of the Jav-
aServer Faces tags and their attributes.

Your application needs access to these TLDs in order for your pages to use them.
The Application Server includes these TLDs in jsf-impl.jar, located in
<J2EE_HOME>/lib.

http://java.sun.com/j2ee/javaserverfaces/1.1/docs/tlddocs/index.html

SETTING UP A PAGE 695
To use any of the JavaServer Faces tags, you need to include these taglib direc-
tives at the top of each page containing the tags defined by these tag libraries:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

The uri attribute value uniquely identifies the TLD. The prefix attribute value
is used to distinguish tags belonging to the tag library. You can use other prefixes
rather than the h or f prefixes. However, you must use the prefix you have chosen
when including the tag in the page. For example, the form tag must be refer-
enced in the page via the h prefix because the preceding tag library directive uses
the h prefix to distinguish the tags defined in html_basic.tld:

<h:form ...>

A page containing JavaServer Faces tags is represented by a tree of components.
At the root of the tree is the UIViewRoot component. The view tag represents
this component on the page. Thus, all component tags on the page must be
enclosed in the view tag, which is defined in the jsf_core TLD:

<f:view>
... other JavaServer Faces tags, possibly mixed with other
content ...

</f:view>

You can enclose other content, including HTML and other JSP tags, within the
view tag, but all JavaServer Faces tags must be enclosed within the view tag.

The view tag has an optional locale attribute. If this attribute is present, its
value overrides the Locale stored in the UIViewRoot component. This value is
specified as a String and must be of this form:

:language:[{-,_}:country:[{-,_}:variant]

The :language:, :country:, and :variant: parts of the expression are as
specified in java.util.Locale.

A typical JSP page includes a form, which is submitted when a button or hyper-
link on the page is clicked. For the data of other components on the page to be
submitted with the form, the tags representing the components must be nested
inside the form tag. See The UIForm Component (page 703) for more details on
using the form tag.

696
If you want to include a page containing JavaServer Faces tags within another
JSP page (which could also contain JavaServer Faces tags), you must enclose the
entire nested page in a subview tag. You can add the subview tag on the parent
page and nest a jsp:include inside it to include the page:

<f:subview id="myNestedPage">
<jsp:include page="theNestedPage.jsp" />

</f:subview>

You can also include the subview tag inside the nested page, but it must enclose
all the JavaServer Faces tags on the nested page.

In summary, a typical JSP page that uses JavaServer Faces tags will look some-
what like this:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<f:view>
<h:form>

other JavaServer Faces tags and core tags,
including one or more button or hyperlink components for
submitting the form

</h:form>
</f:view>

The sections Using the Core Tags (page 697) and Using the HTML Component
Tags (page 699) describe how to use the core tags from the JavaServer Faces
core tag library and the component tags from the JavaServer Faces standard
HTML render kit tag library.

USING THE CORE TAGS 697
Using the Core Tags
The tags included in the JavaServer Faces core tag library are used to perform
core actions that are independent of a particular render kit. These tags are listed
in Table 18–1.

Table 18–1 The jsf_core Tags

Tag Categories Tags Functions

Event-handling
tags

actionListener
Registers an action listener on a par-
ent component

valueChangeListener
Registers a value-change listener on a
parent component

Attribute
configuration tag

attribute
Adds configurable attributes to a par-
ent component

Data conversion tags

converter
Registers an arbitrary converter on
the parent component

convertDateTime
Registers a DateTime converter
instance on the parent component

convertNumber
Registers a Number converter
instance on the parent component

Facet tag facet
Signifies a nested component that has
a special relationship to its enclosing
tag

Localization tag loadBundle
Specifies a ResourceBundle that is
exposed as a Map

Parameter
substitution tag

param

Substitutes parameters into a Mes-
sageFormat instance and adds
query string name-value pairs to a
URL

698
Tags for representing
items in a list

selectItem
Represents one item in a list of items
in a UISelectOne or UISelect-
Many component

selectItems
Represents a set of items in a UISe-
lectOne or UISelectMany compo-
nent

Container tag subview

Contains all JavaServer Faces tags in
a page that is included in another JSP
page containing JavaServer Faces
tags

Validator tags

validateDoubleRange
Registers a DoubleRangeValida-
tor on a component

validateLength
Registers a LengthValidator on a
component

validateLongRange
Registers a LongRangeValidator
on a component

validator
Registers a custom validator on a
component

Output tag verbatim
Generates a UIOutput component
that gets its content from the body of
this tag

Container
for form
tags

view
Encloses all JavaServer Faces tags on
the page

Table 18–1 The jsf_core Tags (Continued)

Tag Categories Tags Functions

USING THE HTML COMPONENT TAGS 699
These tags are used in conjunction with component tags and are therefore
explained in other sections of this tutorial. Table 18–2 lists the sections that
explain how to use specific jsf_core tags.

Using the HTML Component Tags
The tags defined by the JavaServer Faces standard HTML render kit tag library
represent HTML form controls and other basic HTML elements. These controls
display data or accept data from the user. This data is collected as part of a form
and is submitted to the server, usually when the user clicks a button. This section
explains how to use each of the component tags shown in Table 17–2, and is
organized according to the UIComponent classes from which the tags are
derived.

The next section explains the more important tag attributes that are common to
most component tags. Please refer to the TLD documentation at http://

Table 18–2 Where the jsf_core Tags Are Explained

Tags Where Explained

Event-handling tags Registering Listeners on Components (page 731)

Data conversion tags Using the Standard Converters (page 726)

facet
The UIData Component (page 706) and The UIPanel
Component (page 714)

loadBundle Using Localized Messages (page 724)

param Using the outputFormat Tag (page 713) and

selectItem and selectItems
The UISelectItem, UISelectItems, and UISelectItem-
Group Components (page 720)

subview Setting Up a Page (page 694)

verbatim Using the outputLink Tag (page 713)

view Setting Up a Page (page 694)

Validator tags
Using the Standard Validators (page 732) and Creating
a Custom Validator (page 770)

http://java.sun.com/j2ee/javaserverfaces/1.1/docs/tlddocs/index.html

700
java.sun.com/j2ee/javaserverfaces/1.1/docs/tlddocs/index.html for a
complete list of tags and their attributes.

For each of the components discussed in the following sections, Writing Compo-
nent Properties (page 750) explains how to write a bean property bound to a par-
ticular UI component or its value.

UI Component Tag Attributes
In general, most of the component tags support these attributes:

• id: Uniquely identifies the component

• immediate: If set to true, indicates that any events, validation, and con-
version associated with the component should happen in the apply request
values phase rather than a later phase.

• rendered: Specifies a condition in which the component should be ren-
dered. If the condition is not satisfied, the component is not rendered.

• style: Specifies a Cascading Style Sheet (CSS) style for the tag.

• styleClass: Specifies a CSS stylesheet class that contains definitions of
the styles.

• value: Identifies an external data source and binds the component’s value
to it.

• binding: Identifies a bean property and binds the component instance to it.

All of the UI component tag attributes (except id and var) are value-binding-
enabled, which means that they accept JavaServer Faces EL expressions. These
expressions allow you to use mixed literals and JSP 2.0 expression language syn-
tax and operators. See Expression Language (page 499) for more information
about the JSP 2.0 expression language.

The id Attribute
The id attribute is not required for a component tag except in these situations:

• Another component or a server-side class must refer to the component.

• The component tag is impacted by a JSTL conditional or iterator tag (for
more information, see Flow Control Tags, page 555).

If you don’t include an id attribute, the JavaServer Faces implementation auto-
matically generates a component ID.

USING THE HTML COMPONENT TAGS 701
The immediate Attribute
UIInput components and command components (those that implement Action-
Source, such as buttons and hyperlinks) can set the immediate attribute to true

to force events, validations, and conversions to be processed during the apply
request values phase of the life cycle. Page authors need to carefully consider
how the combination of an input component’s immediate value and a command
component’s immediate value determines what happens when the command
component is activated.

Assume that you have a page with a button and a field for entering the quantity
of a book in a shopping cart. If both the button’s and the field’s immediate

attributes are set to true, the new value of the field will be available for any pro-
cessing associated with the event that is generated when the button is clicked.
The event associated with the button and the event, validation, and conversion
associated with the field are all handled during the apply request values phase.

If the button’s immediate attribute is set to true but the field’s immediate

attribute is set to false, the event associated with the button is processed without
updating the field’s local value to the model layer. This is because any events,
conversion, or validation associated with the field occurs during its usual phases
of the life cycle, which come after the apply request values phase.

The bookshowcart.jsp page of the Duke’s Bookstore application has examples
of components using the immediate attribute to control which component’s data
is updated when certain buttons are clicked. The quantity field for each book
has its immediate attribute set to false. (The quantity fields are generated by
the UIData component. See The UIData Component, page 706, for more infor-
mation.) The immediate attribute of the Continue Shopping hyperlink is set to
true. The immediate attribute of the Update Quantities hyperlink is set to
false.

If you click the Continue Shopping hyperlink, none of the changes entered into
the quantity input fields will be processed. If you click the Update Quantities
hyperlink, the values in the quantity fields will be updated in the shopping cart.

The rendered Attribute
A component tag uses a Boolean JavaServer Faces expression language (EL)
expression, along with the rendered attribute, to determine whether or not the

702
component will be rendered. For example, the check commandLink component
on the bookcatalog.jsp page is not rendered if the cart contains no items:

<h:commandLink id="check"
...
rendered="#{cart.numberOfItems > 0}">
<h:outputText

value="#{bundle.CartCheck}"/>
</h:commandLink>

The style and styleClass Attributes
The style and styleClass attributes allow you to specify Cascading Style
Sheets (CSS) styles for the rendered output of your component tags. The UIMes-
sage and UIMessages Components (page 718) describes an example of using the
style attribute to specify styles directly in the attribute. A component tag can
instead refer to a CSS stylesheet class. The dataTable tag on the bookcata-

log.jsp page of the Duke’s Bookstore application references the style class
list-background:

<h:dataTable id="books"
...
styleClass="list-background"
value="#{bookDBAO.books}"
var="book">

The stylesheet that defines this class is stylesheet.css, which is included in
the application. For more information on defining styles, please the see Cascad-
ing Style Sheets Specification at http://www.w3.org/Style/CSS/.

The value and binding Attributes
A tag representing a component defined by UIOutput or a subclass of UIOutput
uses value and binding attributes to bind its component’s value or instance
respectively to an external data source. Binding Component Values and
Instances to External Data Sources (page 735) explains how to use these
attributes.

http://www.w3.org/Style/CSS/
http://www.w3.org/Style/CSS/

USING THE HTML COMPONENT TAGS 703
The UIForm Component
A UIForm component represents an input form that has child components repre-
senting data that is either presented to the user or submitted with the form. The
form tag encloses all the controls that display or collect data from the user. Here
is an example:

<h:form>
... other JavaServer Faces tags and other content...
</h:form>

The form tag can also include HTML markup to lay out the controls on the page.
The form tag itself does not perform any layout; its purpose is to collect data and
to declare attributes that can be used by other components in the form. A page
can include multiple form tags, but only the values from the form that the user
submits will be included in the postback.

The UIColumn Component
The UIColumn component represents a column of data in a UIData component.
While the UIData component is iterating over the rows of data, it processes the
UIColumn component for each row. UIColumn has no renderer associated with it
and is represented on the page with a column tag. Here is an example column tag
from the bookshowcart.jsp page of the Duke’s Bookstore example:

<h:dataTable id="items"
...
value="#{cart.items}"
var="item">
...
<h:column>

<f:facet name="header">
<h:outputText value="#{bundle.ItemQuantity}"/>

</f:facet>
<h:inputText

...
value="#{item.quantity}">
<f:validateLongRange minimum="1"/>

</h:inputText>
</h:column>
...

</h:dataTable>

704
The UIData component in this example iterates through the list of books
(cart.items) in the shopping cart and displays their titles, authors, and prices.
The column tag shown in the example renders the column that displays text
fields that allow customers to change the quantity of each book in the shopping
cart. Each time UIData iterates through the list of books, it renders one cell in
each column.

The UICommand Component
The UICommand component performs an action when it is activated. The most
common example of such a component is the button. This release supports
Button and Link as UICommand component renderers.

In addition to the tag attributes listed in Using the HTML Component
Tags (page 699), the commandButton and commandLink tags can use these
attributes:

• action, which is either a logical outcome String or a method-binding
expression that points to a bean method that returns a logical outcome
String. In either case, the logical outcome String is used by the default
NavigationHandler instance to determine what page to access when the
UICommand component is activated.

• actionListener, which is a method-binding expression that points to a
bean method that processes an action event fired by the UICommand com-
ponent.

See Referencing a Method That Performs Navigation (page 741) for more infor-
mation on using the action attribute.

See Referencing a Method That Handles an Action Event (page 742) for details
on using the actionListener attribute.

Using the commandButton Tag
The bookcashier.jsp page of the Duke’s Bookstore application includes a
commandButton tag. When a user clicks the button, the data from the current
page is processed, and the next page is opened. Here is the commandButton tag
from bookcashier.jsp:

<h:commandButton value="#{bundle.Submit}"
action="#{cashier.submit}"/>

USING THE HTML COMPONENT TAGS 705
Clicking the button will cause the submit method of CashierBean to be invoked
because the action attribute references the submit method of the CashierBean

backing bean. The submit method performs some processing and returns a logi-
cal outcome. This is passed to the default NavigationHandler, which matches
the outcome against a set of navigation rules defined in the application configu-
ration resource file.

The value attribute of the preceding example commandButton tag references the
localized message for the button’s label. The bundle part of the expression refers
to the ResourceBundle that contains a set of localized messages. The Submit

part of the expression is the key that corresponds to the message that is displayed
on the button. For more information on referencing localized messages, see
Using Localized Messages (page 724). See Referencing a Method That Per-
forms Navigation (page 741) for information on how to use the action attribute.

Using the commandLink Tag
The commandLink tag represents an HTML hyperlink and is rendered as an
HTML <a> element. The commandLink tag is used to submit an action event to
the application. See Implementing Action Listeners (page 769) for more infor-
mation on action events.

A commandLink tag must include a nested outputText tag, which represents the
text the user clicks to generate the event. The following tag is from the choose-

locale.jsp page from the Duke’s Bookstore application.

<h:commandLink id="NAmerica" action="bookstore"
actionListener="#{localeBean.chooseLocaleFromLink}">
<h:outputText value="#{bundle.English}" />

</h:commandLink>

This tag will render the following HTML:

<a id="_id3:NAmerica" href="#"
onclick="document.forms['_id3']['_id3:NAmerica'].
value='_id3:NAmerica';
document.forms['_id3'].submit();
return false;">English

Note: Notice that the commandLink tag will render JavaScript. If you use this tag,
make sure your browser is JavaScript-enabled.

706
The UIData Component
The UIData component supports data binding to a collection of data objects. It
does the work of iterating over each record in the data source. The standard
Table renderer displays the data as an HTML table. The UIColumn component
represents a column of data within the table. Here is a portion of the dataTable

tag used by the bookshowcart.jsp page of the Duke’s Bookstore example:

<h:dataTable id="items"
columnClasses="list-column-center, list-column-left,

list-column-right, list-column-center"
footerClass="list-footer"
headerClass="list-header"
rowClasses="list-row-even, list-row-odd"
styleClass="list-background"
value="#{cart.items}"
var="item">
<h:column >

<f:facet name="header">
<h:outputText value="#{bundle.ItemQuantity}" />

</f:facet>
<h:inputText id="quantity" size="4"

value="#{item.quantity}" >
...

</h:inputText>
...

</h:column>
<h:column>

<f:facet name="header">
<h:outputText value="#{bundle.ItemTitle}"/>

</f:facet>
<h:commandLink action="#{showcart.details}">

<h:outputText value="#{item.item.title}"/>
</h:commandLink>

</h:column>
...
<f:facet name="footer"

<h:panelGroup>
<h:outputText value="#{bundle.Subtotal}"/>
<h:outputText value="#{cart.total}" />

<f:convertNumber type="currency" />
</h:outputText>

</h:panelGroup>
</f:facet>

</h:dataTable>

Figure 18–1 shows a data grid that this dataTable tag can display.

USING THE HTML COMPONENT TAGS 707
Figure 18–1 Table on the bookshowcart.jsp Page

The example dataTable tag displays the books in the shopping cart as well as
the quantity of each book in the shopping cart, the prices, and a set of buttons,
which the user can click to remove books from the shopping cart.

The facet tag inside the first column tag renders a header for that column. The
other column tags also contain facet tags. Facets can have only one child, and
so a panelGroup tag is needed if you want to group more than one component
within a facet. Because the facet tag representing the footer includes more than
one tag, the panelGroup is needed to group those tags.

A facet tag is usually used to represent headers and footers. In general, a facet
is used to represent a component that is independent of the parent-child relation-
ship of the page’s component tree. In the case of a data grid, header and footer
data is not repeated like the other rows in the table, and therefore, the elements
representing headers and footers are not updated as are the other components in
the tree.

This table is a classic use case for a UIData component because the number of
books might not be known to the application developer or the page author at the
time the application is developed. The UIData component can dynamically
adjust the number of rows of the table to accommodate the underlying data.

708
The value attribute of a dataTable tag references the data to be included in the
table. This data can take the form of

• A list of beans

• An array of beans

• A single bean

• A javax.faces.model.DataModel

• A java.sql.ResultSet

• A javax.servlet.jsp.jstl.sql.ResultSet

• A javax.sql.RowSet

All data sources for UIData components have a DataModel wrapper. Unless you
explicitly construct a DataModel wrapper, the JavaServer Faces implementation
will create one around data of any of the other acceptable types. See Writing
Component Properties (page 750) for more information on how to write proper-
ties for use with a UIData component.

The var attribute specifies a name that is used by the components within the
dataTable tag as an alias to the data referenced in the value attribute of dataT-
able.

In the dataTable tag from the bookshowcart.jsp page, the value attribute
points to a list of books. The var attribute points to a single book in that list. As
the UIData component iterates through the list, each reference to item points to
the current book in the list.

The UIData component also has the ability to display only a subset of the under-
lying data. This is not shown in the preceding example. To display a subset of the
data, you use the optional first and rows attributes.

The first attribute specifies the first row to be displayed. The rows attribute
specifies the number of rows—starting with the first row—to be displayed. For
example, if you wanted to display records 2 through 10 of the underlying data,
you would set first to 2 and rows to 9. When you display a subset of the data in
your pages, you might want to consider including a link or button that causes
subsequent rows to display when clicked. By default, both first and rows are
set to zero, and this causes all the rows of the underlying data to display.

USING THE HTML COMPONENT TAGS 709
The dataTable tag also has a set of optional attributes for adding styles to the
table:

• columnClasses: Defines styles for all the columns

• footerClass: Defines styles for the footer

• headerClass: Defines styles for the header

• rowClasses: Defines styles for the rows

• styleClass: Defines styles for the entire table

Each of these attributes can specify more than one style. If columnClasses or
rowClasses specifies more than one style, the styles are applied to the columns
or rows in the order that the styles are listed in the attribute. For example, if col-
umnClasses specifies styles list-column-center and list-column-right and
if there are two columns in the table, the first column will have style list-col-

umn-center, and the second column will have style list-column-right.

If the style attribute specifies more styles than there are columns or rows, the
remaining styles will be assigned to columns or rows starting from the first col-
umn or row. Similarly, if the style attribute specifies fewer styles than there are
columns or rows, the remaining columns or rows will be assigned styles starting
from the first style.

The UIGraphic Component
The UIGraphic component displays an image. The Duke’s Bookstore applica-
tion uses a graphicImage tag to display the map image on the
chooselocale.jsp page:

<h:graphicImage id="mapImage" url="/template/world.jpg"
alt="#{bundle.chooseLocale}" usemap="#worldMap" />

The url attribute specifies the path to the image. It also corresponds to the local
value of the UIGraphic component so that the URL can be retrieved, possibly
from a backing bean. The URL of the example tag begins with a /, which adds
the relative context path of the web application to the beginning of the path to the
image.

The alt attribute specifies the alternative text displayed when the user mouses
over the image. In this example, the alt attribute refers to a localized message.
See Performing Localization (page 761) for details on how to localize your Jav-
aServer Faces application.

710
The usemap attribute refers to the image map defined by the custom component,
MapComponent, which is on the same page. See Chapter 20 for more information
on the image map.

The UIInput and UIOutput Components
The UIInput component displays a value to the user and allows the user to mod-
ify this data. The most common example is a text field. The UIOutput compo-
nent displays data that cannot be modified. The most common example is a
label.

The UIInput and UIOutput components can each be rendered in four ways.
Table 18–3 lists the renderers of UIInput and UIOutput. Recall from Compo-
nent Rendering Model (page 664) that the tags are composed of the component
and the renderer. For example, the inputText tag refers to a UIInput component
that is rendered with the Text renderer.

Table 18–3 UIInput and UIOutput Renderers

Component Renderer Tag Function

UIInput

Hidden inputHidden
Allows a page author to include a
hidden variable in a page

Secret inputSecret
Accepts one line of text with no
spaces and displays it as a set of
asterisks as it is typed

Text inputText Accepts a text string of one line

TextArea inputTextarea Accepts multiple lines of text

UIOutput

Label outputLabel
Displays a nested component as a
label for a specified input field

Link outputLink
Displays an <a href> tag that
links to another page without gen-
erating an action event

OutputMessage outputFormat Displays a localized message

Text outputText Displays a text string of one line

USING THE HTML COMPONENT TAGS 711
The UIInput component supports the following tag attributes in addition to the
tag attributes described at the beginning of Using the HTML Component
Tags (page 699). The UIOutput component supports the first of the following tag
attributes in addition to those listed in Using the HTML Component
Tags (page 699).

• converter: Identifies a converter that will be used to convert the compo-
nent’s local data. See Using the Standard Converters (page 726) for more
information on how to use this attribute.

• validator: Identifies a method-binding expression pointing to a backing
bean method that performs validation on the component’s data. See Refer-
encing a Method That Performs Validation (page 743) for an example of
using the validator tag.

• valueChangeListener: Identifies a method-binding expression that
points to a backing bean method that handles the event of entering a value
in this component. See Referencing a Method That Handles a Value-
change Event (page 743) for an example of using valueChangeListener.

The rest of this section explains how to use selected tags listed in Table 18–3.
The other tags are written in a similar way.

Using the outputText and inputText Tags
The Text renderer can render both UIInput and UIOutput components. The
inputText tag displays and accepts a single-line string. The outputText tag
displays a single-line string. This section shows you how to use the inputText

tag. The outputText tag is written in a similar way.

Here is an example of an inputText tag from the bookcashier.jsp page:

<h:inputText id="name" size="50"
value="#{cashier.name}"
required="true">
<f:valueChangeListener type="listeners.NameChanged" />

</h:inputText>

The value attribute refers to the name property of CashierBean. This property
holds the data for the name component. After the user submits the form, the value
of the name property in CashierBean will be set to the text entered in the field
corresponding to this tag.

712
The required attribute causes the page to reload with errors displayed if the user
does not enter a value in the name text field. See Requiring a Value (page 734)
for more information on requiring input for a component.

Using the outputLabel Tag
The outputLabel tag is used to attach a label to a specified input field for acces-
sibility purposes. The bookcashier.jsp page uses an outputLabel tag to ren-
der the label of a checkbox:

<h:selectBooleanCheckbox
id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />

<h:outputLabel for="fanClub"
rendered="false"
binding="#{cashier.specialOfferText}" >
<h:outputText id="fanClubLabel"

value="#{bundle.DukeFanClub}" />
</h:outputLabel>
...

The for attribute of the outputLabel tag maps to the id of the input field to
which the label is attached. The outputText tag nested inside the outputLabel

tag represents the actual label component. The value attribute on the
outputText tag indicates the text that is displayed next to the input field.

Instead of using an outputText tag for the text displayed as a label, you can
simply use the outputLabel tag's value attribute. The following code snippet
shows what the previous code snippet would look like if it used the value

attribute of the outputLabel tag to specify the text of the label.

<h:selectBooleanCheckbox
id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />
<h:outputLabel for="fanClub"

rendered="false"
binding="#{cashier.specialOfferText}"
value="#{bundle.DukeFanClub}" />

</h:outputLabel>
...

USING THE HTML COMPONENT TAGS 713
Using the outputLink Tag
The outputLink tag is used to render a hyperlink that, when clicked, loads
another page but does not generate an action event. You should use this tag
instead of the commandLink tag if you always want the URL—specified by the
outputLink tag’s value attribute—to open and do not have to perform any pro-
cessing when the user clicks on the link. The Duke’s Bookstore application does
not utilize this tag, but here is an example of it:

<h:outputLink value="javadocs">
<f:verbatim>Documentation for this demo</f:verbatim>

</h:outputLink>

As shown in this example, the outputLink tag requires a nested verbatim tag,
which identifies the text the user clicks to get to the next page.

You can use the verbatim tag on its own when you want to simply output some
text on the page.

Using the outputFormat Tag
The outputFormat tag allows a page author to display concatenated messages as
a MessageFormat pattern, as described in the API documentation for
java.text.MessageFormat (see http://java.sun.com/j2se/1.4.2/docs/

api/java/text/MessageFormat.html). Here is an example of an
outputFormat tag from the bookshowcart.jsp page of the Duke’s Bookstore
application:

<h:outputFormat value="#{bundle.CartItemCount}">
<f:param value="#{cart.numberOfItems}"/>

</h:outputFormat>

The value attribute specifies the MessageFormat pattern. The param tag speci-
fies the substitution parameters for the message.

In the example outputFormat tag, the value for the parameter maps to the num-
ber of items in the shopping cart. When the message is displayed on the page, the
number of items in the cart replaces the {0} in the message corresponding to the
CartItemCount key in the bundle resource bundle:

Your shopping cart contains " + "{0,choice,0#no items|1#one
item|1< {0} items

http://java.sun.com/j2se/1.4.2/docs/api/java/text/MessageFormat.html

714
This message represents three possibilities:

• Your shopping cart contains no items.

• Your shopping cart contains one item.

• Your shopping cart contains {0} items.

The value of the parameter replaces the {0} from the message in the sentence in
the third bullet. This is an example of a value-binding-enabled tag attribute
accepting a complex JSP 2.0 EL expression.

An outputFormat tag can include more than one param tag for those messages
that have more than one parameter that must be concatenated into the message.
If you have more than one parameter for one message, make sure that you put
the param tags in the proper order so that the data is inserted in the correct place
in the message.

A page author can also hardcode the data to be substituted in the message by
using a literal value with the value attribute on the param tag.

Using the inputSecret Tag
The inputSecret tag renders an <input type="password"> HTML tag. When
the user types a string into this field, a row of asterisks is displayed instead of the
text the user types. The Duke’s Bookstore application does not include this tag,
but here is an example of one:

<h:inputSecret redisplay="false"
value="#{LoginBean.password}" />

In this example, the redisplay attribute is set to false. This will prevent the
password from being displayed in a query string or in the source file of the
resulting HTML page.

The UIPanel Component
The UIPanel component is used as a layout container for its children. When you
use the renderers from the HTML render kit, UIPanel is rendered as an HTML
table. This component differs from UIData in that UIData can dynamically add
or delete rows to accommodate the underlying data source, whereas UIPanel

USING THE HTML COMPONENT TAGS 715
must have the number of rows predetermined. Table 18–4 lists all the renderers
and tags corresponding to the UIPanel component.

The panelGrid tag is used to represent an entire table. The panelGroup tag is
used to represent rows in a table. Other UI component tags are used to represent
individual cells in the rows.

The panelGrid tag has a set of attributes that specify CSS stylesheet classes:
columnClasses, footerClass, headerClass, panelClass, and rowClasses.
These stylesheet attributes are not required. It also has a columns attribute. The
columns attribute is required if you want your table to have more than one col-
umn because the columns attribute tells the renderer how to group the data in the
table.

If a headerClass is specified, the panelGrid must have a header as its first
child. Similarly, if a footerClass is specified, the panelGrid must have a footer
as its last child.

The Duke’s Bookstore application includes three panelGrid tags on the
bookcashier.jsp page. Here is a portion of one of them:

<h:panelGrid columns="3" headerClass="list-header"
rowClasses="list-row-even, list-row-odd"
styleClass="list-background"
title="#{bundle.Checkout}">
<f:facet name="header">

<h:outputText value="#{bundle.Checkout}"/>
</f:facet>
<h:outputText value="#{bundle.Name}" />

Table 18–4 UIPanel Renderers and Tags

Renderer Tag
Renderer
Attributes Function

Grid panelGrid

columnClasses,
columns, foot-
erClass, head-
erClass,
panelClass,
rowClasses

Displays a table

Group panelGroup
Groups a set of components under
one parent

716
<h:inputText id="name" size="50"
value="#{cashier.name}"
required="true">
<f:valueChangeListener

type="listeners.NameChanged" />
</h:inputText>
<h:message styleClass="validationMessage" for="name"/>
<h:outputText value="#{bundle.CCNumber}"/>
<h:inputText id="ccno" size="19"

converter="CreditCardConverter" required="true">
<bookstore:formatValidator

formatPatterns="9999999999999999|
9999 9999 9999 9999|9999-9999-9999-9999"/>

</h:inputText>
<h:message styleClass="validationMessage" for="ccno"/>
...

</h:panelGrid>

This panelGrid tag is rendered to a table that contains controls for the customer
of the bookstore to input personal information. This panelGrid tag uses
stylesheet classes to format the table. The CSS classes are defined in the
stylesheet.css file in the <INSTALL>/j2eetutorial14/examples/web/

bookstore6/web/ directory. The list-header definition is

.list-header {
background-color: #ffffff;
color: #000000;
text-align: center;

}

Because the panelGrid tag specifies a headerClass, the panelGrid must con-
tain a header. The example panelGrid tag uses a facet tag for the header. Facets
can have only one child, and so a panelGroup tag is needed if you want to group
more than one component within a facet. Because the example panelGrid tag
has only one cell of data, a panelGroup tag is not needed.

A panelGroup tag can also be used to encapsulate a nested tree of components
so that the tree of components appears as a single component to the parent com-
ponent.

The data represented by the nested component tags is grouped into rows accord-
ing to the value of the columns attribute of the panelGrid tag. The columns

attribute in the example is set to "3", and therefore the table will have three col-
umns. In which column each component is displayed is determined by the order
that the component is listed on the page modulo 3. So if a component is the fifth

USING THE HTML COMPONENT TAGS 717
one in the list of components, that component will be in the 5 modulo 3 column,
or column 2.

The UISelectBoolean Component
The UISelectBoolean class defines components that have a boolean value. The
selectBooleanCheckbox tag is the only tag that JavaServer Faces technology
provides for representing boolean state. The Duke’s Bookstore application
includes a selectBooleanCheckbox tag on the bookcashier.jsp page:

<h:selectBooleanCheckbox
id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />

<h:outputLabel
for="fanClub"
rendered="false"
binding="#{cashier.specialOfferText}">
<h:outputText

id="fanClubLabel"
value="#{bundle.DukeFanClub}" />

</h:outputLabel>

This example tag displays a checkbox to allow users to indicate whether they
want to join the Duke Fan Club. The label for the checkbox is rendered by the
outputLabel tag. The actual text is represented by the nested outputText tag.
Binding a Component Instance to a Bean Property (page 739) discusses this
example in more detail.

The UISelectMany Component
The UISelectMany class defines a component that allows the user to select zero
or more values from a set of values. This component can be rendered as a set of
checkboxes, a list box, or a menu. This section explains the selectManyCheck-

box tag. The selectManyListbox tag and selectManyMenu tag are written in a
similar way.

A list box differs from a menu in that it displays a subset of items in a box,
whereas a menu displays only one item at a time until you select the menu. The
size attribute of the selectManyListbox tag determines the number of items
displayed at one time. The list box includes a scrollbar for scrolling through any
remaining items in the list.

718
Using the selectManyCheckbox Tag
The selectManyCheckbox tag renders a set of checkboxes, with each checkbox
representing one value that can be selected. Duke’s Bookstore uses a select-

ManyCheckbox tag on the bookcashier.jsp page to allow the user to subscribe
to one or more newsletters:

<h:selectManyCheckbox
id="newsletters"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems

value="#{newsletters}"/>
</h:selectManyCheckbox>

The value attribute of the selectManyCheckbox tag identifies the CashierBean

backing bean property, newsletters, for the current set of newsletters. This
property holds the values of the currently selected items from the set of check-
boxes. You are not required to provide a value for the currently selected items. If
you don't provide a value, the first item in the list is selected by default.

The layout attribute indicates how the set of checkboxes are arranged on the
page. Because layout is set to pageDirection, the checkboxes are arranged ver-
tically. The default is lineDirection, which aligns the checkboxes horizontally.

The selectManyCheckbox tag must also contain a tag or set of tags representing
the set of checkboxes. To represent a set of items, you use the selectItems tag.
To represent each item individually, you use a selectItem tag for each item.
The UISelectItem, UISelectItems, and UISelectItemGroup
Components (page 720) explains these two tags in more detail.

The UIMessage and UIMessages
Components
The UIMessage and UIMessages components are used to display error messages.
Here is an example message tag from the guessNumber application, discussed in
Steps in the Development Process (page 652):

<h:inputText id="userNo" value="#{UserNumberBean.userNumber}">
<f:validateLongRange minimum="0" maximum="10" />

...
<h:message

USING THE HTML COMPONENT TAGS 719
style="color: red;
font-family: 'New Century Schoolbook', serif;
font-style: oblique;
text-decoration: overline" id="errors1" for="userNo"/>

The for attribute refers to the ID of the component that generated the error mes-
sage. The message tag will display the error message wherever it appears on the
page.

The style attribute allows you to specify the style of the text of the message. In
the example in this section, the text will be red, New Century Schoolbook, serif
font family, and oblique style, and a line will appear over the text.

If you use the messages tag instead of the message tag, all error messages will
display.

The UISelectOne Component
A UISelectOne component allows the user to select one value from a set of val-
ues. This component can be rendered as a list box, a set of radio buttons, or a
menu. This section explains the selectOneMenu tag. The selectOneRadio and
selectOneListbox tags are written in a similar way. The selectOneListbox

tag is similar to the selectOneMenu tag except that selectOneListbox defines a
size attribute that determines how many of the items are displayed at once.

Using the selectOneMenu Tag
The selectOneMenu tag represents a component that contains a list of items,
from which a user can choose one item. The menu is also commonly known as a
drop-down list or a combo box. The following code snippet shows the selec-

tOneMenu tag from the bookcashier.jsp page of the Duke’s Bookstore applica-
tion. This tag allows the user to select a shipping method:

<h:selectOneMenu id="shippingOption"
required="true"
value="#{cashier.shippingOption}">
<f:selectItem

itemValue="2"
itemLabel="#{bundle.QuickShip}"/>

<f:selectItem
itemValue="5"
itemLabel="#{bundle.NormalShip}"/>

720
<f:selectItem
itemValue="7"
itemLabel="#{bundle.SaverShip}"/>

</h:selectOneMenu>

The value attribute of the selectOneMenu tag maps to the property that holds
the currently selected item’s value. You are not required to provide a value for
the currently selected item. If you don't provide a value, the first item in the list
is selected by default.

Like the selectOneRadio tag, the selectOneMenu tag must contain either a
selectItems tag or a set of selectItem tags for representing the items in the
list. The next section explains these two tags.

The UISelectItem, UISelectItems, and
UISelectItemGroup Components
UISelectItem and UISelectItems represent components that can be nested
inside a UISelectOne or a UISelectMany component. UISelectItem is associ-
ated with a SelectItem instance, which contains the value, label, and descrip-
tion of a single item in the UISelectOne or UISelectMany component.

The UISelectItems instance represents either of the following:

• A set of SelectItem instances, containing the values, labels, and descrip-
tions of the entire list of items

• A set of SelectItemGroup instances, each of which represents a set of
SelectItem instances

Figure 18–2 shows an example of a list box constructed with a SelectItems

component representing two SelectItemGroup instances, each of which repre-
sents two categories of beans. Each category is an array of SelectItem

instances.

USING THE HTML COMPONENT TAGS 721
Figure 18–2 An Example List Box Created Using SelectItemGroup Instances

The selectItem tag represents a UISelectItem component. The selectItems

tag represents a UISelectItems component. You can use either a set of selec-
tItem tags or a single selectItems tag within your selectOne or selectMany
tag.

The advantages of using the selectItems tag are as follows:

• You can represent the items using different data structures, including
Array, Map and Collection. The data structure is composed of Selec-

tItem instances or SelectItemGroup instances.

• You can concatenate different lists together into a single UISelectMany or
UISelectOne component and group the lists within the component, as
shown in Figure 18–2.

• You can dynamically generate values at runtime.

The advantages of using selectItem are as follows:

• The page author can define the items in the list from the page.

• You have less code to write in the bean for the selectItem properties.

For more information on writing component properties for the UISelectItems

components, see Writing Component Properties (page 750). The rest of this sec-
tion shows you how to use the selectItems and selectItem tags.

722
Using the selectItems Tag
Here is the selectManyCheckbox tag from the section The UISelectMany
Component (page 717):

<h:selectManyCheckbox
id="newsletters"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems

value="#{newsletters}"/>
</h:selectManyCheckbox>

The value attribute of the selectItems tag is bound to the newsletters man-
aged bean, which is configured in the application configuration resource file. The
newsletters managed bean is configured as a list:

<managed-bean>
<managed-bean-name>newsletters</managed-bean-name>
<managed-bean-class>

java.util.ArrayList</managed-bean-class>
<managed-bean-scope>application</managed-bean-scope>
<list-entries>

<value-class>javax.faces.model.SelectItem</value-class>
<value>#{newsletter0}</value>
<value>#{newsletter1}</value>
<value>#{newsletter2}</value>
<value>#{newsletter3}</value>

</list-entries>
</managed-bean>
<managed-bean>
<managed-bean-name>newsletter0</managed-bean-name>
<managed-bean-class>

javax.faces.model.SelectItem</managed-bean-class>
<managed-bean-scope>none</managed-bean-scope>
<managed-property>

<property-name>label</property-name>
<value>Duke's Quarterly</value>

</managed-property>
<managed-property>

<property-name>value</property-name>
<value>200</value>

</managed-property>
</managed-bean>
...

USING THE HTML COMPONENT TAGS 723
As shown in the managed-bean element, the UISelectItems component is a
collection of SelectItem instances. See Initializing Array and List
Properties (page 823) for more information on configuring collections as beans.

You can also create the list corresponding to a UISelectMany or UISelectOne
component programmatically in the backing bean. See Writing Component
Properties (page 750) for information on how to write a backing bean property
corresponding to a UISelectMany or UISelectOne component.

The arguments to the SelectItem constructor are:

• An Object representing the value of the item

• A String representing the label that displays in the UISelectMany com-
ponent on the page

• A String representing the description of the item

UISelectItems Properties (page 757) describes in more detail how to write a
backing bean property for a UISelectItems component.

Using the selectItem Tag
The selectItem tag represents a single item in a list of items. Here is the exam-
ple from Using the selectOneMenu Tag (page 719):

<h:selectOneMenu
id="shippingOption" required="true"
value="#{cashier.shippingOption}">
<f:selectItem

itemValue="2"
itemLabel="#{bundle.QuickShip}"/>

<f:selectItem
itemValue="5"
itemLabel="#{bundle.NormalShip}"/>

<f:selectItem
itemValue="7"
itemLabel="#{bundle.SaverShip}"/>

</h:selectOneMenu>

The itemValue attribute represents the default value of the SelectItem

instance. The itemLabel attribute represents the String that appears in the
drop-down menu component on the page.

The itemValue and itemLabel attributes are value-binding-enabled, meaning
that they can use value-binding expressions to refer to values in external objects.
They can also define literal values, as shown in the example selectOneMenu tag.

724
Using Localized Messages
All data and messages in the Duke’s Bookstore application have been localized
for Spanish, French, German, and American English. Performing
Localization (page 761) explains how to produce the localized messages as well
as how to localize dynamic data and messages.

The image map on the first page allows you to select your preferred locale. See
Chapter 20 for information on how the image map custom component was cre-
ated.

This section explains how to use localized static data and messages for JavaSer-
ver Faces applications. If you are not familiar with the basics of localizing web
applications, see Chapter 22. Localized static data can be included in a page by
using the loadBundle tag, defined in jsf_core.tld. Follow these steps:

1. Reference a ResourceBundle from the page.

2. Reference the localized message located within the bundle.

A ResourceBundle contains a set of localized messages. For more information
about resource bundles, see

http://java.sun.com/docs/books/tutorial/i18n/index.html

After the application developer has produced a ResourceBundle, the application
architect puts it in the same directory as the application classes. Much of the data
for the Duke’s Bookstore application is stored in a ResourceBundle called
BookstoreMessages.

Referencing a ResourceBundle from a
Page
For a page with JavaServer Faces tags to use the localized messages contained in
a ResourceBundle, the page must reference the ResourceBundle using a load-

Bundle tag.

The loadBundle tag from bookstore.jsp is

<f:loadBundle var="bundle"
basename="messages.BookstoreMessages" />

http://java.sun.com/docs/books/tutorial/i18n/index.html

USING LOCALIZED MESSAGES 725
The basename attribute value refers to the ResourceBundle, located in the mes-

sages package of the bookstore application. Make sure that the basename

attribute specifies the fully qualified class name of the file.

The var attribute is an alias to the ResourceBundle. This alias can be used by
other tags in the page in order to access the localized messages.

Referencing a Localized Message
To reference a localized message from a ResourceBundle, you use a value-bind-
ing expression from an attribute of the component tag that will display the local-
ized data. You can reference the message from any component tag attribute that
is value-binding-enabled.

The value-binding expression has the notation "var.message", in which var

matches the var attribute of the loadBundle tag, and message matches the key
of the message contained in the ResourceBundle referred to by the var attribute.
Here is an example from bookstore.jsp:

<h:outputText value="#{bundle.Talk}"/>

Notice that bundle matches the var attribute from the loadBundle tag and that
Talk matches the key in the ResourceBundle.

Another example is the graphicImage tag from chooselocale.jsp:

<h:graphicImage id="mapImage" url="/template/world.jpg"
alt="#{bundle.ChooseLocale}"
usemap="#worldMap" />

The alt attribute is value-binding-enabled, and this means that it can use value-
binding expressions. In this case, the alt attribute refers to localized text, which
will be included in the alternative text of the image rendered by this tag.

See Creating the Component Tag Handler (page 795) and Enabling Value-Bind-
ing of Component Properties (page 807) for information on how to enable value
binding on your custom component’s attributes.

726
Using the Standard Converters
The JavaServer Faces implementation provides a set of Converter implementa-
tions that you can use to convert component data. For more information on the
conceptual details of the conversion model, see Conversion Model (page 669).

The standard Converter implementations, located in the javax.faces.convert
package, are as follows:

• BigDecimalConverter

• BigIntegerConverter

• BooleanConverter

• ByteConverter

• CharacterConverter

• DateTimeConverter

• DoubleConverter

• FloatConverter

• IntegerConverter

• LongConverter

• NumberConverter

• ShortConverter

Two of these standard converters (DateTimeConverter and NumberConverter)
have their own tags, which allow you to configure the format of the component
data by configuring the tag attributes. Using DateTimeConverter (page 727) dis-
cusses using DateTimeConverter. Using NumberConverter (page 729) dis-
cusses using NumberConverter.

You can use the other standard converters in one of three ways:

• You can make sure that the component that uses the converter has its value
bound to a backing bean property of the same type as the converter.

• You can refer to the converter by class or by its ID using the component
tag’s converter attribute. The ID is defined in the application configura-
tion resource file (see Application Configuration Resource File, page 816).

• You can refer to the converter by its ID using the converterId attribute of
the converter tag.

The latter two will convert the component’s local value. The first method will
convert the model value of the component. For example, if you want a compo-

USING THE STANDARD CONVERTERS 727
nent’s data to be converted to an Integer, you can bind the component to a prop-
erty similar to this:

Integer age = 0;
public Integer getAge(){ return age;}
public void setAge(Integer age) {this.age = age;}

Alternatively, if the component is not bound to a bean property, you can use the
converter attribute on the component tag:

<h:inputText
converter="javax.faces.convert.IntegerConverter" />

The data corresponding to this tag will be converted to a java.lang.Integer.
Notice that the Integer type is already a supported type of the NumberCon-

verter. If you don’t need to specify any formatting instructions using the con-

vertNumber tag attributes, and if one of the other converters will suffice, you can
simply reference that converter using the component tag’s converter attribute.

Finally, you can nest a converter tag within the component tag and refer to the
converter’s ID via the converter tag’s converterId attribute. If the tag is refer-
ring to a custom converter, the value of converterID must match the ID in the
application configuration resource file. Here is an example:

<h:inputText value="#{LoginBean.Age}" />
<f:converter converterId="Integer" />

</h:inputText>

Using DateTimeConverter
You can convert a component’s data to a java.util.Date by nesting the con-

vertDateTime tag inside the component tag. The convertDateTime tag has sev-
eral attributes that allow you to specify the format and type of the data. Table 18–
5 lists the attributes.

Here is a simple example of a convertDateTime tag from the bookreceipt.jsp

page:

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full" />

</h:outputText>

728
Here is an example of a date and time that this tag can display:

Saturday, Feb 22, 2003

You can also display the same date and time using this tag:

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime

pattern="EEEEEEEE, MMM dd, yyyy" />
</h:outputText>

If you want to display the example date in Spanish, you can use the locale

attribute:

<h:inputText value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full"

locale="Locale.SPAIN"
timeStyle="long" type="both" />

</h:inputText>

This tag would display

Sabado, Feb 22, 2003

Please refer to the Customizing Formats lesson of the Java Tutorial at
http://java.sun.com/docs/books/tutorial/i18n/format/simpleDate-

Format.html for more information on how to format the output using the pat-

tern attribute of the convertDateTime tag.

Table 18–5 convertDateTime Tag Attributes

Attribute Type Description

dateStyle String

Defines the format, as specified by java.text.DateFormat,
of a date or the date part of a date string. Applied only if type
is date (or both) and pattern is not defined. Valid values:
default, short, medium, long, and full. If no value is
specified, default is used.

locale
String or
Locale

Locale whose predefined styles for dates and times are used
during formatting or parsing. If not specified, the Locale
returned by FacesContext.getLocale will be used.

http://java.sun.com/docs/books/tutorial/i18n/format/simpleDateFormat.html

USING THE STANDARD CONVERTERS 729
Using NumberConverter
You can convert a component’s data to a java.lang.Number by nesting the con-

vertNumber tag inside the component tag. The convertNumber tag has several
attributes that allow you to specify the format and type of the data. Table 18–6
lists the attributes.

The bookcashier.jsp page of Duke’s Bookstore uses a convertNumber tag to
display the total prices of the books in the shopping cart:

<h:outputText value="#{cart.total}" >
<f:convertNumber type="currency"

</h:outputText>

Here is an example of a number this tag can display

$934

pattern String

Custom formatting pattern that determines how the date/time
string should be formatted and parsed. If this attribute is speci-
fied, dateStyle, timeStyle, and type attributes are
ignored.

timeStyle String

Defines the format, as specified by java.text.DateFormat,
of a time or the time part of a date string. Applied only if
type is time and pattern is not defined. Valid values:
default, short, medium, long, and full. If no value is
specified, default is used.

timeZone
String or
TimeZone

Time zone in which to interpret any time information in the
date string.

type String
Specifies whether the string value will contain a date, a time,
or both. Valid values are date, time, or both. If no value is
specified, date is used.

Table 18–5 convertDateTime Tag Attributes (Continued)

Attribute Type Description

730
This number can also be displayed using this tag:

<h:outputText id="cartTotal"
value="#{cart.Total}" >
<f:convertNumber pattern="$####" />

</h:outputText>

Please refer to the Customizing Formats lesson of the Java Tutorial at
http://java.sun.com/docs/books/tutorial/i18n/format/decimalFor-

mat.html for more information on how to format the output using the pattern
attribute of the convertNumber tag.

Table 18–6 convertNumber Attributes

Attribute Type Description

currencyCode String
ISO4217 currency code, used only when formatting cur-
rencies.

currencySymbol String
Currency symbol, applied only when formatting curren-
cies.

groupingUsed
bool-
ean

Specifies whether formatted output contains grouping sep-
arators.

integerOnly
bool-
ean

Specifies whether only the integer part of the value will be
parsed.

maxFraction-
Digits

int
Maximum number of digits formatted in the fractional part
of the output.

maxIntegerDig-
its

int
Maximum number of digits formatted in the integer part of
the output.

minFraction-
Digits

int
Minimum number of digits formatted in the fractional part
of the output.

minIntegerDig-
its

int
Minimum number of digits formatted in the integer part of
the output.

locale
String
or
Locale

Locale whose number styles are used to format or parse
data.

pattern String
Custom formatting pattern that determines how the number
string is formatted and parsed.

http://java.sun.com/docs/books/tutorial/i18n/format/decimalFormat.html

REGISTERING LISTENERS ON COMPONENTS 731
Registering Listeners on Components
A page author can register a listener implementation class on a component by
nesting either a valuechangeListener tag or an actionListener tag within the
component’s tag on the page.

An application developer can instead implement these listeners as backing bean
methods. To reference these methods, a page author uses the component tag’s
valueChangeListener and actionListener attributes, as described in Refer-
encing a Method That Handles an Action Event (page 742) and Referencing a
Method That Handles a Value-change Event (page 743).

The Duke’s Bookstore application includes a ValueChangeListener implemen-
tation class but does not use an ActionListener implementation class. This sec-
tion explains how to register the NameChanged value-change listener and a
hypothetical LocaleChange action listener implementation on components.
Implementing Value-Change Listeners (page 768) explains how to implement
NameChanged. Implementing Action Listeners (page 769) explains how to
implement the hypothetical LocaleChange.

Registering a Value-Change Listener on
a Component
A page author can register a ValueChangeListener implementation on a
UIInput component or a component represented by one of the subclasses of
UIInput by nesting a valueChangeListener tag within the component’s tag on

type String
Specifies whether the string value is parsed and formatted
as a number, currency, or percentage. If not specified,
number is used.

Table 18–6 convertNumber Attributes (Continued)

Attribute Type Description

732
the page. Here is the tag corresponding to the name component from the book-

cashier.jsp page:

<h:inputText id="name" size="50" value="#{cashier.name}"
required="true">
<f:valueChangeListener type="listeners.NameChanged" />

</h:inputText>

The type attribute of the valueChangeListener tag specifies the fully qualified
class name of the ValueChangeListener implementation.

After this component tag is processed and local values have been validated, its
corresponding component instance will queue the ValueChangeEvent associated
with the specified ValueChangeListener to the component.

Registering an Action Listener on a
Component
A page author can register an ActionListener implementation on a UICommand

component by nesting an actionListener tag within the component’s tag on
the page. Duke’s Bookstore does not use any ActionListener implementations.
Here is one of the commandLink tags on the chooselocale.jsp page, changed
to reference an ActionListener implementation rather than a backing bean
method:

<h:commandLink id="NAmerica" action="bookstore">
 <f:actionListener type="listeners.LocaleChange" />

</h:commandLink>

The type attribute of the actionListener tag specifies the fully qualified class
name of the ActionListener implementation.

When this tag’s component is activated, the component’s decode method (or its
associated Renderer) automatically queues the ActionEvent implementation
associated with the specified ActionListener implementation onto the compo-
nent.

Using the Standard Validators
JavaServer Faces technology provides a set of standard classes and associated
tags that page authors and application developers can use to validate a compo-

USING THE STANDARD VALIDATORS 733
nent’s data. Table 18–7 lists all the standard validator classes and the tags that
allow you to use the validators from the page.

All these validator classes implement the Validator interface. Component writ-
ers and application developers can also implement this interface to define their
own set of constraints for a component’s value.

When using the standard Validator implementations, you don’t need to write
any code to perform validation. You simply nest the standard validator tag of
your choice inside a tag that represents a component of type UIInput (or a sub-
class of UIInput) and provide the necessary constraints, if the tag requires it.
Validation can be performed only on UIInput components or components whose
classes extend UIInput because these components accept values that can be val-
idated.

This section shows you how to use the standard Validator implementations.

See The UIMessage and UIMessages Components (page 718) for information
on how to display validation error messages on the page.

Table 18–7 The Validator Classes

Validator Class Tag Function

DoubleRangeValidator validateDoubleRange

Checks whether the local value
of a component is within a cer-
tain range. The value must be
floating-point or convertible to
floating-point.

LengthValidator validateLength

Checks whether the length of a
component’s local value is
within a certain range. The value
must be a java.lang.String.

LongRangeValidator validateLongRange

Checks whether the local value
of a component is within a cer-
tain range. The value must be
any numeric type or String that
can be converted to a long.

734
Requiring a Value
The name inputText tag on the bookcashier.jsp page has a required

attribute, which is set to true. Because of this, the JavaServer Faces implemen-
tation checks whether the value of the component is null or is an empty String.

If your component must have a non-null value or a String value at least one
character in length, you should add a required attribute to your component tag
and set it to true. If your tag does have a required attribute that is set to true

and the value is null or a zero-length string, no other validators registered on the
tag are called. If your tag does not have a required attribute set to true, other
validators registered on the tag are called, but those validators must handle the
possibility of a null or zero-length string.

Here is the name inputText tag:

<h:inputText id="name" size="50"
value="#{cashier.name}" required="true">
...

</h:inputText>

Using the LongRangeValidator
The Duke’s Bookstore application uses a validateLongRange tag on the quan-

tity input field of the bookshowcart.jsp page:

<h:inputText id="quantity" size="4"
value="#{item.quantity}" >
<f:validateLongRange minimum="1"/>

</h:inputText>
<h:message for="quantity"/>

This tag requires that the user enter a number that is at least 1. The size attribute
specifies that the number can have no more than four digits. The validateLon-

gRange tag also has a maximum attribute, with which you can set a maximum
value of the input.

The attributes of all the standard validator tags are value-binding-enabled. This
means that the attributes can reference backing bean properties rather than spec-
ify literal values. For example, the validateLongRange tag in the preceding

BINDING COMPONENT VALUES AND INSTANCES TO EXTERNAL DATA SOURCES 735
example can reference a backing bean property called minimum to get the mini-
mum value acceptable to the validator implementation:

<f:validateLongRange minimum="#{ShowCartBean.minimum}" />

Binding Component Values and
Instances to External Data Sources

As explained in Backing Bean Management (page 674), a component tag can
wire its component’s data to a back-end data object by doing one of the follow-
ing:

• Binding its component’s value to a bean property or other external data
source

• Binding its component’s instance to a bean property

A component tag’s value attribute uses a value-binding expression to bind a
component’s value to an external data source, such as a bean property. A compo-
nent tag’s binding attribute uses a value-binding expression to bind a compo-
nent instance to a bean property.

When referencing the property using the component tag’s value attribute, you
need to use the proper syntax. For example, suppose a backing bean called
MyBean has this int property:

int currentOption = null;
int getCurrentOption(){...}
void setCurrentOption(int option){...}

The value attribute that references this property must have this value-binding
expression:

#{MyBean.currentOption}

In addition to binding a component’s value to a bean property, the value

attribute can specify a literal value or can map the component’s data to any prim-
itive (such as int), structure (such as an array), or collection (such as a list),

736
independent of a JavaBeans component. Table 18–8 lists some example value-
binding expressions that you can use with the value attribute.

The next two sections explain in more detail how to use the value attribute to
bind a component’s value to a bean property or other external data sources and
how to use the binding attribute to bind a component instance to a bean property

Binding a Component Value to a
Property
To bind a component’s value to a bean property, you specify the name of the
bean and the property using the value attribute. As explained in Backing Bean
Management (page 674), the value-binding expression of the component tag’s
value attribute must match the corresponding managed bean declaration in the
application configuration resource file.

This means that the name of the bean in the value-binding expression must
match the managed-bean-name element of the managed bean declaration up to
the first . in the expression. Similarly, the part of the value-binding expression
after the . must match the name specified in the corresponding property-name

element in the application configuration resource file.

Table 18–8 Example Value-binding Expressions

Value Expression

A Boolean cart.numberOfItems > 0

A property initialized from a
context init parameter

initParam.quantity

A bean property CashierBean.name

Value in an array books[3]

Value in a collection books["fiction"]

Property of an object in an
array of objects

books[3].price

BINDING COMPONENT VALUES AND INSTANCES TO EXTERNAL DATA SOURCES 737
For example, consider this managed bean configuration, which configures the
ImageArea bean corresponding to the North America part of the image map on
the chooselocale.jsp page of the Duke’s Bookstore application:

<managed-bean>
<managed-bean-name> NA </managed-bean-name>
<managed-bean-class> model.ImageArea </managed-bean-class>
<managed-bean-scope> application </managed-bean-scope>
<managed-property>

<property-name>shape</property-name>
<value>poly</value>

</managed-property>
<managed-property>

<property-name>alt</property-name>
<value>NAmerica</value>

</managed-property>
...

</managed-bean>

This example configures a bean called NA, which has several properties, one of
which is called shape.

Although the area tags on the chooselocale.jsp page do not bind to an
ImageArea property (they bind to the bean itself), to do this, you refer to the
property using a value-binding expression from the value attribute of the com-
ponent’s tag:

<h:outputText value="#{NA.shape}" />

Much of the time you will not include definitions for a managed bean’s proper-
ties when configuring it. You need to define a property and its value only when
you want the property to be initialized with a value when the bean is initialized.

If a component tag’s value attribute must refer to a property that is not initial-
ized in the managed-bean configuration, the part of the value-binding expression
after the . must match the property name as it is defined in the backing bean.

See Application Configuration Resource File (page 816) for information on how
to configure beans in the application configuration resource file.

Writing Component Properties (page 750) explains in more detail how to write
the backing bean properties for each of the component types.

738
Binding a Component Value to an
Implicit Object
One external data source that a value attribute can refer to is an implicit object.

The bookreceipt.jsp page of the Duke’s Bookstore application includes a ref-
erence to an implicit object from a parameter substitution tag:

<h:outputFormat title="thanks"
value="#{bundle.ThankYouParam}">

<f:param value="#{sessionScope.name}"/>
</h:outputFormat>

This tag gets the name of the customer from the session scope and inserts it into
the parameterized message at the key ThankYouParam from the resource bundle.
For example, if the name of the customer is Gwen Canigetit, this tag will render:

Thank you, Gwen Canigetit, for purchasing your books from us.

The name tag on the bookcashier.jsp page has the NameChanged listener
implementation registered on it. This listener saves the customer’s name in the
session scope when the bookcashier.jsp page is submitted. See Implementing
Value-Change Listeners (page 768) for more information on how this listener
works. See Registering a Value-Change Listener on a Component (page 731) to
learn how the listener is registered on the tag.

Retrieving values from other implicit objects is done in a similar way to the
example shown in this section. Table 18–9 lists the implicit objects that a value
attribute can refer to. All of the implicit objects except for the scope objects are
read-only and therefore should not be used as a value for a UIInput component.

Table 18–9 Implicit Objects

Implicit Object What It Is

applicationScope
A Map of the application scope attribute values, keyed by attribute
name

cookie
A Map of the cookie values for the current request, keyed by cookie
name

facesContext The FacesContext instance for the current request

BINDING COMPONENT VALUES AND INSTANCES TO EXTERNAL DATA SOURCES 739
Binding a Component Instance to a
Bean Property
A component instance can be bound to a bean property using a value-binding
expression with the binding attribute of the component’s tag. You usually bind a
component instance rather than its value to a bean property if the bean must
dynamically change the component’s attributes.

Here are two tags from the bookcashier.jsp page that bind components to
bean properties:

<h:selectBooleanCheckbox
id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />

<h:outputLabel for="fanClub"
rendered="false"

header
A Map of HTTP header values for the current request, keyed by
header name

headerValues
A Map of String arrays containing all the header values for HTTP
headers in the current request, keyed by header name

initParam
A Map of the context initialization parameters for this web applica-
tion

param
A Map of the request parameters for this request, keyed by parame-
ter name

paramValues
A Map of String arrays containing all the parameter values for
request parameters in the current request, keyed by parameter name

requestScope
A Map of the request attributes for this request, keyed by attribute
name

sessionScope
A Map of the session attributes for this request, keyed by attribute
name

view
The root UIComponent in the current component tree stored in the
FacesRequest for this request

Table 18–9 Implicit Objects (Continued)

Implicit Object What It Is

740
binding="#{cashier.specialOfferText}" >
<h:outputText id="fanClubLabel"

value="#{bundle.DukeFanClub}"
/>

</h:outputLabel>

The selectBooleanCheckbox tag renders a checkbox and binds the fanClub

UISelectBoolean component to the specialOffer property of CashierBean.
The outputLabel tag binds the component representing the checkbox’s label to
the specialOfferText property of CashierBean. If the application’s locale is
English, the outputLabel tag renders:

I'd like to join the Duke Fan Club, free with my purchase of
over $100

The rendered attributes of both tags are set to false, which prevents the check-
box and its label from being rendered. If the customer orders more than $100 (or
100 euros) worth of books and clicks the Submit button, the submit method of
CashierBean sets both components’ rendered properties to true, causing the
checkbox and its label to be rendered.

These tags use component bindings rather than value bindings because the back-
ing bean must dynamically set the values of the components’ rendered proper-
ties.

If the tags were to use value bindings instead of component bindings, the back-
ing bean would not have direct access to the components, and would therefore
require additional code to access the components from the FacesContext

instance to change the components’ rendered properties.

Writing Properties Bound to Component Instances (page 759) explains how to
write the bean properties bound to the example components and also discusses
how the submit method sets the rendered properties of the components.

REFERENCING A BACKING BEAN METHOD 741
Referencing a Backing Bean Method
A component tag has a set of attributes for referencing backing bean methods
that can perform certain functions for the component associated with the tag.
These attributes are summarized in Table 18–10.

Only components that implement ActionSource can use the action and
actionListener attributes. Only UIInput components or components that
extend UIInput can use the validator or valueChangeListener attributes.

The component tag refers to a backing bean method using a method-binding
expression as a value of one of the attributes. The following four sections give
examples of how to use the four different attributes.

Referencing a Method That Performs
Navigation
If your page includes a component (such as a button or hyperlink) that causes the
application to navigate to another page when the component is activated, the tag
corresponding to this component must include an action attribute. This attribute
does one of the following

• Specifies a logical outcome String that tells the application which page to
access next

Table 18–10 Component Tag Attributes that Reference Backing Bean Methods

Attribute Function

action
Refers to a backing bean method that performs navigation pro-
cessing for the component and returns a logical outcome
String

actionListener Refers to a backing bean method that handles action events

validator
Refers to a backing bean method that performs validation on the
component’s value

valueChangeListener
Refers to a backing bean method that handles value-change
events

742
• References a backing bean method that performs some processing and
returns a logical outcome String

The bookcashier.jsp page of the Duke’s Bookstore application has a com-

mandButton tag that refers to a backing bean method that calculates the shipping
date. If the customer has ordered more than $100 (or 100 euros) worth of books,
this method also sets the rendered properties of some of the components to
true and returns null; otherwise it returns receipt, which causes the bookre-

ceipt.jsp page to display. Here is the commandButton tag from the bookcash-

ier.jsp page:

<h:commandButton
value="#{bundle.Submit}"
action="#{cashier.submit}" />

The action attribute uses a method-binding expression to refer to the submit

method of CashierBean. This method will process the event fired by the compo-
nent corresponding to this tag.

Writing a Method to Handle Navigation (page 777) describes how to implement
the submit method of CashierBean.

The application architect must configure a navigation rule that determines which
page to access given the current page and the logical outcome, which is either
returned from the backing bean method or specified in the tag. See Configuring
Navigation Rules (page 829) for information on how to define navigation rules
in the application configuration resource file.

Referencing a Method That Handles an
Action Event
If a component on your page generates an action event, and if that event is han-
dled by a backing bean method, you refer to the method by using the compo-
nent’s actionListener attribute.

The chooselocale.jsp page of the Duke’s Bookstore application includes
some components that generate action events. One of them is the NAmerica com-
ponent:

<h:commandLink id="NAmerica" action="bookstore"
actionListener="#{localeBean.chooseLocaleFromLink}">

REFERENCING A BACKING BEAN METHOD 743
The actionListener attribute of this component tag references the chooseLo-

caleFromLink method using a method-binding expression. The chooseLocale-

FromLink method handles the event of a user clicking on the hyperlink rendered
by this component.

The actionListener attribute can be used only with the tags of components
that implement ActionSource. These include UICommand components.

Writing a Method to Handle an Action Event (page 779) describes how to imple-
ment a method that handles an action event.

Referencing a Method That Performs
Validation
If the input of one of the components on your page is validated by a backing
bean method, you refer to the method from the component’s tag using the vali-

dator attribute.

The Coffee Break application includes a method that performs validation of the
email input component on the checkoutForm.jsp page. Here is the tag corre-
sponding to this component:

<h:inputText id="email" value="#{checkoutFormBean.email}"
size="25" maxlength="125"
validator="#{checkoutFormBean.validateEmail}"/>

This tag references the validate method described in Writing a Method to Per-
form Validation (page 779) using a method-binding expression.

The validator attribute can be used only with UIInput components or those
components whose classes extend UIInput.

Writing a Method to Perform Validation (page 779) describes how to implement
a method that performs validation.

Referencing a Method That Handles a
Value-change Event
If you want a component on your page to generate a value-change event and you
want that event to be handled by a backing bean method, you refer to the method
using the component’s valueChangeListener attribute.

744
The name component on the bookcashier.jsp page of the Duke’s Bookstore
application references a ValueChangeListener implementation that handles the
event of a user entering a name in the name input field:

<h:inputText
id="name"
size="50"
value="#{cashier.name}"
required="true">
<f:valueChangeListener type="listeners.NameChanged" />

</h:inputText>

For illustration, Writing a Method to Handle a Value-Change Event (page 780)
describes how to implement this listener with a backing bean method instead of a
listener implementation class. To refer to this backing bean method, the tag uses
the valueChangeListener attribute:

<h:inputText
id="name"
size="50"
value="#{cashier.name}"
required="true"
valueChangeListener="#{cashier.processValueChange}" />

</h:inputText>

The valueChangeListener attribute of this component tag references the pro-

cessValueChange method of CashierBean using a method-binding expression.
The processValueChange method handles the event of a user entering his name
in the input field rendered by this component.

The valueChangeListener attribute can be used only with the tags of UIInput
components and components whose classes extend UIInput.

Writing a Method to Handle a Value-Change Event (page 780) describes how to
implement a method that handles a ValueChangeEvent.

Using Custom Objects
As a page author, you might need to use custom converters, validators, or com-
ponents packaged with the application on your JSP pages.

USING CUSTOM OBJECTS 745
A custom converter is applied to a component either by using the component
tag’s converter attribute or by nesting a converter tag inside the component’s
tag.

A custom validator is applied to a component by nesting either a validator tag
or the validator’s custom tag inside the component’s tag.

To use a custom component, you use the custom tag associated with the compo-
nent.

As explained in Setting Up a Page (page 694), you must ensure that the TLD that
defines the custom tags is packaged in the application. TLD files are stored in the
WEB-INF directory or subdirectory of the WAR file or in the META-INF/ directory
or subdirectory of a tag library packaged in a JAR.

Next, you include a taglib declaration in the page so that the page has access to
the tags. All custom objects for the Duke’s Bookstore application are defined in
bookstore.tld. Here is the taglib declaration that you would include on your
page so that you can use the tags from this TLD:

<%@ taglib uri="/WEB-INF/bookstore.tld" prefix="bookstore" %>

When including the custom tag in the page, you can consult the TLD to deter-
mine which attributes the tag supports and how they are used.

The next three sections describe how to use the custom converter, validator, and
UI components included in the Duke’s Bookstore application.

Using a Custom Converter
To apply the data conversion performed by a custom converter to a particular
component’s value, you must either set the converter attribute of the compo-
nent’s tag to the Converter implementation’s identifier or set the nested con-

verter tag’s converterId attribute to the Converter implementation’s
identifier. The application architect provides this identifier when registering the
Converter implementation with the application, as explained in Registering a
Custom Converter (page 828). Creating a Custom Converter (page 764) explains
how a custom converter is implemented.

746
The identifier for the credit card converter is CreditCardConverter. The Cred-

itCardConverter instance is registered on the ccno component, as shown in
this tag from the bookcashier.jsp page:

<h:inputText id="ccno"
size="19"
converter="CreditCardConverter"
required="true">
...

</h:inputText>

By setting the converter attribute of a component’s tag to the converter’s identi-
fier, you cause that component’s local value to be automatically converted
according to the rules specified in the Converter implementation.

A page author can use the same custom converter with any similar component by
simply supplying the Converter implementation’s identifier to the converter

attribute of the component’s tag or to the convertId attribute of a nested con-

verter tag.

Using a Custom Validator
To use a custom validator in a JSP page, you must either

• Nest the validator’s custom tag inside the tag of the component whose
value you want to be validated by the custom validator.

• Nest a validator tag within the tag of the component and reference the
Validator implementation from the validator tag.

Here is the custom formatValidator tag from the ccno field on the
bookcashier.jsp page of the Duke’s Bookstore application:

<h:inputText id="ccno" size="19"
...
required="true">
<bookstore:formatValidator

formatPatterns="9999999999999999|9999 9999 9999 9999|
9999-9999-9999-9999" />

</h:inputText>
<h:message styleClass="validationMessage" for="ccno"/>

This tag validates the input of the ccno field against the patterns defined by the
page author in the formatPatterns attribute.

USING CUSTOM OBJECTS 747
You can use the same custom validator for any similar component by simply
nesting the custom validator tag within the component tag.

Creating a Custom Validator (page 770) describes how to create the custom vali-
dator and its custom tag.

If the application developer who created the custom validator prefers to config-
ure the attributes in the Validator implementation rather than allow the page
author to configure the attributes from the page, the developer will not create a
custom tag for use with the validator. Instead, the page author must follow these
steps:

1. Nest the validator tag inside the tag of the component whose data needs
to be validated.

2. Set the validator tag’s validatorId attribute to the ID of the validator
that is defined in the application configuration resource file. Registering a
Custom Validator (page 828) explains how to configure the validator in the
application configuration resource file.

The following tag registers a hypothetical validator on a component using a val-
idator tag and referencing the ID of the validator:

<h:inputText id="name" value="#{CustomerBean.name}"
size="10" ... >

<f:validator validatorId="customValidator" />
...

</h:inputText>

Using a Custom Component
In order to use a custom component in a page, you need to declare the tag library
that defines the custom tag that renders the custom component. This is explained
in Using Custom Objects (page 744).

The Duke’s Bookstore application includes a custom image map component on
the chooselocale.jsp page. This component allows you to select the locale for
the application by clicking on a region of the image map:

...
<h:graphicImage id="mapImage" url="/template/world.jpg"

alt="#{bundle.chooseLocale}"
usemap="#worldMap" />
<bookstore:map id="worldMap" current="NAmericas"

immediate="true"

748
action="bookstore"
actionListener="#{localeBean.chooseLocaleFromMap}">
<bookstore:area id="NAmerica" value="#{NA}"

onmouseover="/template/world_namer.jpg"
onmouseout="/template/world.jpg"
targetImage="mapImage" />

...
<bookstore:area id="France" value="#{fraA}"

onmouseover="/template/world_france.jpg"
onmouseout="/template/world.jpg"
targetImage="mapImage" />

</bookstore:map>

The graphicImage tag associates an image (world.jpg) with an image map that
is referenced in the usemap attribute value.

The custom map tag that represents the custom component, MapComponent, spec-
ifies the image map, and contains a set of area tags. Each custom area tag repre-
sents a custom AreaComponent and specifies a region of the image map.

On the page, the onmouseover and onmouseout attributes define the image that
is displayed when the user performs the actions described by the attributes. The
page author defines what these images are. The custom renderer also renders an
onclick attribute.

In the rendered HTML page, the onmouseover, onmouseout, and onclick

attributes define which JavaScript code is executed when these events occur.
When the user moves the mouse over a region, the onmouseover function associ-
ated with the region displays the map with that region highlighted. When the
user moves the mouse out of a region, the onmouseout function redisplays the
original image. When the user clicks a region, the onclick function sets the
value of a hidden input tag to the ID of the selected area and submits the page.

When the custom renderer renders these attributes in HTML, it also renders the
JavaScript code. The custom renderer also renders the entire onclick attribute
rather than let the page author set it.

The custom renderer that renders the map tag also renders a hidden input com-
ponent that holds the current area. The server-side objects retrieve the value of
the hidden input field and set the locale in the FacesContext instance according
to which region was selected.

Chapter 20 describes the custom tags in more detail and also explains how to
create the custom image map components, renderers, and tags.

19
749
Developing with
JavaServer Faces

Technology

CHAPTER 18 shows how the page author can bind components to back-end
objects by using the component tags and core tags on the JSP page. The applica-
tion developer’s responsibility is to program the back-end objects of a JavaServer
Faces application. These objects include backing beans, converters, event han-
dlers, and validators. This chapter uses the Duke’s Bookstore application (see
The Example JavaServer Faces Application, page 690) to explain all of the
application developer’s responsibilities, including

• Programming properties and methods of a backing bean

• Localizing an application

• Creating custom converters and validators

• Implementing event listeners

• Writing backing bean methods to perform navigation processing and vali-
dation and handle events

750
Writing Component Properties
As explained in Backing Bean Management (page 674), there are two kinds of
backing bean properties: those that are bound to a component’s value and those
that are bound to a component instance. These properties follow JavaBeans com-
ponent conventions (see JavaBeans Components, page 507).

The component tag binds the component’s value to a property using its value

attribute. The component tag binds the component instance to a property using
its binding attribute. Using the attributes to bind components and their values to
properties is discussed in Binding Component Values and Instances to External
Data Sources (page 735).

To bind a component’s value to a backing bean property, the type of the property
must match the type of the component’s value to which it is bound. For example,
if a backing bean property is bound to a UISelectBoolean component’s value,
the property should accept and return a boolean value or a Boolean wrapper
Object instance.

To bind a component instance, the property must match the component type. For
example, if a backing bean property is bound to a UISelectBoolean instance,
the property should accept and return UISelectBoolean.

The rest of this section explains how to write properties that can be bound to
component values and component instances for the component objects described
in Using the HTML Component Tags (page 699).

Writing Properties Bound to Component
Values
To write a backing bean property bound to a component’s value, you must know
the types that the component’s value can be so that you can make the property
match the type of the component’s value.

Table 19–1 lists all the component classes described in Using the HTML Com-
ponent Tags (page 699) and the acceptable types of their values.

WRITING COMPONENT PROPERTIES 751
When page authors bind components to properties using the value attributes of
the component tags, they need to ensure that the corresponding properties match
the types of the components’ values.

UIInput and UIOutput Properties
The following tag binds the name component to the name property of Cashier-
Bean.

<h:inputText id="name" size="50"
value="#{cashier.name}"
required="true">
<f:valueChangeListener type="listeners.NameChanged" />

</h:inputText>

Table 19–1 Acceptable Types of Component Values

Component Acceptable Types of Component Values

UIInput, UIOutput, UISelec-
tItem, UISelectOne

Any of the basic primitive and numeric types or
any Java programming language object type for
which an appropriate Converter implementa-
tion is available.

UIData

array of beans, List of beans, single bean,
java.sql.ResultSet, javax.serv-
let.jsp.jstl.sql.Result,
javax.sql.RowSet.

UISelectBoolean boolean or Boolean.

UISelectItems
java.lang.String, Collection, Array,
Map.

UISelectMany
array or List. Elements of the array or List
can be any of the standard types.

752
Here is the bean property bound to the name component:

protected String name = null;
public void setName(String name) {

this.name = name;
}
public String getName() {

return this.name;
}

As Using the Standard Converters (page 726) describes, to convert the value of a
UIInput or UIOutput component, you can either apply a converter or create the
bean property bound to the component with the desired type. Here is the example
tag explained in Using DateTimeConverter (page 727) that displays the date
books will be shipped:

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full" />

</h:outputText>

The application developer must ensure that the property bound to the component
represented by this tag has a type of java.util.Date. Here is the shipDate

property in CashierBean:

protected Date shipDate;
public Date getShipDate() {

return this.shipDate;
}
public void setShipDate(Date shipDate) {

this.shipDate = shipDate;
}

See Binding Component Values and Instances to External Data
Sources (page 735) for more information on applying a Converter implementa-
tion.

UIData Properties
UIData components must be bound to one of the types listed in Table 19–1. The
UIData component from the bookshowcart.jsp page of the Duke’s Bookstore

WRITING COMPONENT PROPERTIES 753
example is discussed in the section The UIData Component (page 706). Here is
part of the start tag of dataTable from that section:

<h:dataTable id="items"
...
value="#{cart.items}"
var="item" >

The value-binding expression points to the items property of the ShoppingCart

bean. The ShoppingCart bean maintains a map of ShoppingCartItem beans.

The getItems method from ShoppingCart populates a List with Shopping-

CartItem instances that are saved in the items map from when the customer adds
books to the cart:

public synchronized List getItems() {
List results = new ArrayList();
results.addAll(this.items.values());
return results;

}

All the components contained in the UIData component are bound to the proper-
ties of the ShoppingCart bean that is bound to the entire UIData component. For
example, here is the outputText tag that displays the book title in the table:

<h:commandLink action="#{showcart.details}">
<h:outputText value="#{item.item.title}"/>

</h:commandLink>

The book title is actually a hyperlink to the bookdetails.jsp page. The out-

putText tag uses the value-binding expression #{item.item.title} to bind its
UIOutput component to the title property of the BookDetails bean. The first
item in the expression is the ShoppingCartItem instance that the dataTable tag
is referencing while rendering the current row. The second item in the expres-
sion refers to the item property of ShoppingCartItem, which returns a BookDe-

tails bean. The title part of the expression refers to the title property of

754
BookDetails. The value of the UIOutput component corresponding to this tag is
bound to the title property of the BookDetails bean:

private String title = null;

public String getTitle() {
return this.title;

}
public void setTitle(String title) {

this.title=title;
}

UISelectBoolean Properties
Properties that hold the UISelectBoolean component’s data must be of boolean
or Boolean type. The example selectBooleanCheckbox tag from the section
The UISelectBoolean Component (page 717) binds a component to a property.
Here is an example that binds a component value to a property:

<h:selectBooleanCheckbox title="#{bundle.receiveEmails}"
value="#{custFormBean.receiveEmails}" >

</h:selectBooleanCheckbox>
<h:outputText value="#{bundle.receiveEmails}">

Here is an example property that can be bound to the component represented by
the example tag:

protected boolean receiveEmails = false;
...

public void setReceiveEmails(boolean receiveEmails) {
this.receiveEmails = receiveEmails;

}
public boolean getReceiveEmails() {

return receiveEmails;
}

UISelectMany Properties
Because a UISelectMany component allows a user to select one or more items
from a list of items, this component must map to a bean property of type List or
array. This bean property represents the set of currently selected items from the
list of available items.

WRITING COMPONENT PROPERTIES 755
Here is the example selectManyCheckbox tag from Using the selectMany-
Checkbox Tag (page 718):

<h:selectManyCheckbox
id="newsletters"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems value="#{newsletters}"/>

</h:selectManyCheckbox>

Here is a bean property that maps to the value of this selectManyCheckbox

example:

protected String newsletters[] = new String[0];

public void setNewsletters(String newsletters[]) {
this.newsletters = newsletters;

}
public String[] getNewsletters() {

return this.newsletters;
}

As explained in the section The UISelectMany Component (page 717), the
UISelectItem and UISelectItems components are used to represent all the val-
ues in a UISelectMany component. See UISelectItem Properties (page 756) and
UISelectItems Properties (page 757) for information on how to write the bean
properties for the UISelectItem and UISelectItems components.

UISelectOne Properties
UISelectOne properties accept the same types as UIInput and UIOutput proper-
ties. This is because a UISelectOne component represents the single selected
item from a set of items. This item can be any of the primitive types and anything
else for which you can apply a converter.

Here is the example selectOneMenu tag from Using the selectOneMenu
Tag (page 719):

<h:selectOneMenu id="shippingOption"
required="true"
value="#{cashier.shippingOption}">
<f:selectItem

itemValue="2"
itemLabel="#{bundle.QuickShip}"/>

756
<f:selectItem
itemValue="5"
itemLabel="#{bundle.NormalShip}"/>

<f:selectItem
itemValue="7"
itemLabel="#{bundle.SaverShip}"/>

</h:selectOneMenu>

Here is the property corresponding to this tag:

protected String shippingOption = "2";

public void setShippingOption(String shippingOption) {
this.shippingOption = shippingOption;

}
public String getShippingOption() {

return this.shippingOption;
}

Note that shippingOption represents the currently selected item from the list of
items in the UISelectOne component.

As explained in the section The UISelectOne Component (page 719), the
UISelectItem and UISelectItems components are used to represent all the val-
ues in a UISelectOne component. See UISelectItem Properties (page 756) and
UISelectItems Properties (page 757) for information on how to write the backing
bean properties for the UISelectItem and UISelectItems components.

UISelectItem Properties
A UISelectItem component represents one value in a set of values in a
UISelectMany or UISelectOne component. The backing bean property that a
UISelectItem component is bound to must be of type SelectItem. A
SelectItem object is composed of an Object representing the value, along with
two Strings representing the label and description of the SelectItem object.

The Duke’s Bookstore application does not use any UISelectItem components
whose values are bound to backing beans. The example selectOneMenu tag
from Using the selectOneMenu Tag (page 719) contains selectItem tags that

WRITING COMPONENT PROPERTIES 757
set the values of the list of items in the page. Here is an example bean property
that can set the values for this list in the bean:

SelectItem itemOne = null;

SelectItem getItemOne(){
return itemOne;

}

void setItemOne(SelectItem item) {
itemOne = item;

}

UISelectItems Properties
UISelectItems components are children of UISelectMany and UISelectOne

components. Each UISelectItems component is composed of either a set of
SelectItem instances or a set of SelectItemGroup instances. As described in
Using the selectItems Tag (page 722), a SelectItemGroup is composed of a set
of SelectItem instances. This section describes how to write the properties for
selectItems tags containing SelectItem instances and for selectItems tags
containing SelectItemGroup instances.

Properties for SelectItems Composed of SelectItem
Instances
Using the selectItems Tag (page 722) describes how the newsletters list of the
Duke’s Bookstore application is populated using the application configuration
resource file. You can also populate the SelectItems with SelectItem

instances programmatically in the backing bean. This section explains how to do
this.

In your backing bean, you create a list that is bound to the SelectItem compo-
nent. Then you define a set of SelectItem objects, set their values, and populate
the list with the SelectItem objects. Here is an example code snippet that shows
how to create a SelectItems property:

import javax.faces.component.SelectItem;
...
protected ArrayList options = null;
protected SelectItem newsletter0 =

new SelectItem("200", "Duke’s Quarterly", "");
...

758
//in constructor, populate the list
options.add(newsletter0);
options.add(newsletter1);
options.add(newsletter2);
...
public SelectItem getNewsletter0(){

return newsletter0;
}

void setNewsletter0(SelectItem firstNL) {
newsletter0 = firstNL;

}
// Other SelectItem properties

public Collection[] getOptions(){
return options;

}
public void setOptions(Collection[] options){

this.options = new ArrayList(options);
}

The code first initializes options as a list. Each newsletter property is defined
with values. Then, each newsletter SelectItem is added to the list. Finally, the
code includes the obligatory setOptions and getOptions accessor methods.

Properties for SelectItems Composed of
SelectItemGroup Instances
The preceding section explains how to write the bean property for a Selec-

tItems component composed of SelectItem instances. This section explains
how to change the example property from the preceding section so that the
SelectItems is composed of SelectItemGroup instances.

Let’s separate the newsletters into two groups: One group includes Duke’s news-
letters, and the other group includes the Innovator’s Almanac and Random Ram-
blings newsletters.

In your backing bean, you need a list that contains two SelectItemGroup

instances. Each SelectItemGroup instance contains two SelectItem instances,
each representing a newsletter:

import javax.faces.model.SelectItemGroup;
...
private ArrayList optionsGroup = null;

optionsGroup = new ArrayList(2);

WRITING COMPONENT PROPERTIES 759
private static final SelectItem options1[] = {
new SelectItem("200", "Duke’s Quarterly", "");
new SelectItem("202",

"Duke’s Diet and Exercise Journal", "");
};
private static final SelectItem options2[] = {

new SelectItem("201", "Innovator’s Almanac", "");
new SelectItem("203", "Random Ramblings", "");

};

SelectItemGroup group1 =
new SelectItemGroup("Duke’s", null, true, options1);

SelectItemGroup group2 =
new SelectItemGroup("General Interest", null, true,

options2);

optionsGroup.add(group1);
optionsGroup.add(group2);
...
public Collection getOptionsGroup() {

return optionsGroup;
}
public void setOptionsGroup(Collection newGroupOptions) {

optionsGroup = new ArrayList(newGroupOptions);
}

The code first initializes optionsGroup as a list. The optionsGroup list contains
two SelectItemGroup objects. Each object is initialized with the label of the
group appearing in the list or menu; a value; a Boolean indicating whether or not
the label is disabled; and an array containing two SelectItem instances. Then
each SelectItemGroup is added to the list. Finally, the code includes the setOp-
tionsGroup and getOptionsGroup accessor methods so that the tag can access
the values. The selectItems tag references the optionsGroup property to get
the SelectItemGroup objects for populating the list or menu on the page.

Writing Properties Bound to Component
Instances
A property bound to a component instance returns and accepts a component
instance rather than a component value. Here are the tags described in Binding a

760
Component Instance to a Bean Property (page 739) that bind components to
backing bean properties:

<h:selectBooleanCheckbox
id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />

<h:outputLabel for="fanClub"
rendered="false"
binding="#{cashier.specialOfferText}" >
<h:outputText id="fanClubLabel"

value="#{bundle.DukeFanClub}" />
</h:outputLabel>

As Binding a Component Instance to a Bean Property (page 739) explains, the
selectBooleanCheckbox tag renders a checkbox and binds the fanClub UISe-

lectBoolean component to the specialOffer property of CashierBean. The
outputLabel tag binds the fanClubLabel component (which represents the
checkbox’s label) to the specialOfferText property of CashierBean. If the
user orders more than $100 (or 100 euros) worth of books and clicks the Submit
button, the submit method of CashierBean sets both components’ rendered

properties to true, causing the checkbox and label to display when the page is
rerendered.

Because the components corresponding to the example tags are bound to the
backing bean properties, these properties must match the components’ types.
This means that the specialOfferText property must be of UIOutput type, and
the specialOffer property must be of UISelectBoolean type:

UIOutput specialOfferText = null;

public UIOutput getSpecialOfferText() {
return this.specialOfferText;

}
public void setSpecialOfferText(UIOutput specialOfferText) {

this.specialOfferText = specialOfferText;
}

UISelectBoolean specialOffer = null;

public UISelectBoolean getSpecialOffer() {
return this.specialOffer;

}
public void setSpecialOffer(UISelectBoolean specialOffer) {

this.specialOffer = specialOffer;
}

PERFORMING LOCALIZATION 761
See Backing Bean Management (page 674) for more general information on
component binding.

See Referencing a Method That Performs Navigation (page 741) for information
on how to reference a backing bean method that performs navigation when a but-
ton is clicked.

See Writing a Method to Handle Navigation (page 777) for more information on
writing backing bean methods that handle navigation.

Performing Localization
As mentioned in Using Localized Messages (page 724), data and messages in
the Duke’s Bookstore application have been localized for French, German,
Spanish, and American English.

This section explains how to produce the localized messages as well as how to
localize dynamic data and messages.

Using Localized Messages (page 724) describes how page authors access local-
ized data from the page using the loadBundle tag.

If you are not familiar with the basics of localizing web applications, see
Chapter 22.

Creating a Resource Bundle
A ResourceBundle contains a set of localized messages. To learn how to create
a ResourceBundle, see

http://java.sun.com/docs/books/tutorial/i18n/index.html

After you create the ResourceBundle, put it in the same directory as your
classes. Much of the data for the Duke’s Bookstore application is stored in a
ResourceBundle called BookstoreMessages, located in <INSTALL>/

j2eetutorial14/examples/web/bookstore/src/messages/.

http://java.sun.com/docs/books/tutorial/i18n/index.html

762
Localizing Dynamic Data
The Duke’s Bookstore application has some data that is set dynamically in back-
ing beans. Because of this, the beans must load the localized data themselves; the
data can’t be loaded from the page.

The message method in AbstractBean is a general-purpose method that looks
up localized messages used in the backing beans:

protected void message(String clientId, String key) {
// Look up the requested message text
String text = null;
try {

ResourceBundle bundle =
ResourceBundle.getBundle("messages.BookstoreMessages",

context().getViewRoot().getLocale());
text = bundle.getString(key);

} catch (Exception e) {
text = "???" + key + "???";

}
// Construct and add a FacesMessage containing it
context().addMessage(clientId, new FacesMessage(text));

}

This method gets the current locale from the UIViewRoot instance of the current
request and loads the localized data for the messages using the getBundle

method, passing in the path to the ResourceBundle and the current locale.

The other backing beans call this method by using the key to the message that
they are trying to retrieve from the resource bundle. Here is a call to the message

method from ShowCartBean:

message(null, "Quantities Updated");

Localizing Messages
The JavaServer Faces API provides two ways to create messages from a Resour-
ceBundle:

• You can register the ResourceBundle with the application configuration
resource file and use a message factory pattern to examine the Resouce-

Bundle and to generate localized FacesMessage instances, which repre-
sent single localized messages. The message factory pattern is required to
access messages that are registered with the Application instance.

../examples/web/bookstore6/src/backing/AbstractBean.java
../examples/web/bookstore6/src/backing/ShowCartBean.java

PERFORMING LOCALIZATION 763
Instead of writing your own message factory pattern, you can use the one
included with the Duke’s Bookstore application. It is called MessageFac-

tory and is located in <INSTALL>/j2eetutorial14/examples/web/

bookstore6/src/util/.

• You can use the FacesMessage class to get the localized string directly
from the ResourceBundle.

Registering Messages (page 827) includes an example of registering a Resour-

ceBundle in the application configuration resource file.

Creating a Message with a Message Factory
To use a message factory to create a message, follow these steps:

1. Register the ResourceBundle with the application. This is explained in
Registering Messages (page 827).

2. Create a message factory implementation. You can simply copy the Mes-

sageFactory class included with the Duke’s Bookstore application to your
application.

3. Access a message from your application by calling the getMessage(Fac-

esContext, String, Object) method of the MessageFactory class. The
MessageFactory class uses the FacesContext to access the Application
instance on which the messages are registered. The String argument is the
key that corresponds to the message in the ResourceBundle. The Object

instance typically contains the substitution parameters that are embedded
in the message. For example, the custom validator described in Implement-
ing the Validator Interface (page 771) will substitute the format pattern for
the {0} in this error message:

Input must match one of the following patterns {0}

Implementing the Validator Interface (page 771) gives an example of accessing
messages.

764
Using FacesMessage to Create a Message
Instead of registering messages in the application configuration resource file,
you can access the ResourceBundle directly from the code. The validateEmail
method from the Coffee Break example does this:

...
String message = "";
...
message = CoffeeBreakBean.loadErrorMessage(context,

CoffeeBreakBean.CB_RESOURCE_BUNDLE_NAME,
"EMailError");

context.addMessage(toValidate.getClientId(context),
new FacesMessage(message));

...

These lines also call the loadErrorMessage to get the message from the
ResourceBundle. Here is the loadErrorMessage method from CoffeeBreak-

Bean:

public static String loadErrorMessage(FacesContext context,
String basename, String key) {
if (bundle == null) {

try {
bundle = ResourceBundle.getBundle(basename,

context.getViewRoot().getLocale());
} catch (Exception e) {

return null;
}

}
return bundle.getString(key);

}

Creating a Custom Converter
As explained in Conversion Model (page 669), if the standard converters
included with JavaServer Faces technology don’t perform the data conversion
that you need, you can easily create a custom converter to perform this special-
ized conversion.

All custom converters must implement the Converter interface. This implemen-
tation, at a minimum, must define how to convert data both ways between the
two views of the data described in Conversion Model (page 669).

CREATING A CUSTOM CONVERTER 765
This section explains how to implement the Converter interface to perform a
custom data conversion. To make this implementation available to the applica-
tion, the application architect registers it with the application, as explained in
Registering a Custom Converter (page 828). To use the implementation, the page
author must register it on a component, as explained in Using a Custom
Converter (page 745).

The Duke’s Bookstore application uses a custom Converter implementation,
called CreditCardConverter, to convert the data entered in the Credit Card
Number field on the bookcashier.jsp page. It strips blanks and hyphens from
the text string and formats it so that a blank space separates every four charac-
ters.

To define how the data is converted from the presentation view to the model
view, the Converter implementation must implement the getAsObject(Faces-

Context, UIComponent, String) method from the Converter interface. Here
is the implementation of this method from CreditCardConverter:

public Object getAsObject(FacesContext context,
UIComponent component, String newValue)

throws ConverterException {

String convertedValue = null;
if (newValue == null) {

return newValue;
}
// Since this is only a String to String conversion,
// this conversion does not throw ConverterException.

convertedValue = newValue.trim();
if (((convertedValue.indexOf("-")) != -1) ||

((convertedValue.indexOf(" ")) != -1)) {
char[] input = convertedValue.toCharArray();
StringBuffer buffer = new StringBuffer(50);
for (int i = 0; i < input.length; ++i) {

if (input[i] == '-' || input[i] == ' ') {
continue;

} else {
buffer.append(input[i]);

}
}
convertedValue = buffer.toString();

}
return convertedValue;

}

../examples/web/bookstore6/src/converters/CreditCardConverter.java

766
During the apply request values phase, when the components’ decode methods
are processed, the JavaServer Faces implementation looks up the component’s
local value in the request and calls the getAsObject method. When calling this
method, the JavaServer Faces implementation passes in the current FacesCon-
text instance, the component whose data needs conversion, and the local value
as a String. The method then writes the local value to a character array, trims
the hyphens and blanks, adds the rest of the characters to a String, and returns
the String.

To define how the data is converted from the model view to the presentation
view, the Converter implementation must implement the getAsString(Faces-

Context, UIComponent, Object) method from the Converter interface. Here
is the implementation of this method from CreditCardConverter:

public String getAsString(FacesContext context,
UIComponent component, Object value)
throws ConverterException {

String inputVal = null;
if (value == null) {

return null;
}
// value must be of the type that can be cast to a String.
try {

inputVal = (String)value;
} catch (ClassCastException ce) {

FacesMessage errMsg = MessageFactory.getMessage(
CONVERSION_ERROR_MESSAGE_ID,
(new Object[] { value, inputVal }));
throw new ConverterException(errMsg.getSummary());

}
// insert spaces after every four characters for better
// readability if it doesn't already exist.
char[] input = inputVal.toCharArray();
StringBuffer buffer = new StringBuffer(50);
for (int i = 0; i < input.length; ++i) {

if ((i % 4) == 0 && i != 0) {
if (input[i] != ' ' || input[i] != '-'){

buffer.append(" ");
// if there are any "-"'s convert them to blanks.

} else if (input[i] == '-') {
buffer.append(" ");

}
}
buffer.append(input[i]);

IMPLEMENTING AN EVENT LISTENER 767
}
String convertedValue = buffer.toString();
return convertedValue;

}

During the render response phase, in which the components’ encode methods
are called, the JavaServer Faces implementation calls the getAsString method
in order to generate the appropriate output. When the JavaServer Faces imple-
mentation calls this method, it passes in the current FacesContext, the UICom-

ponent whose value needs to be converted, and the bean value to be converted.
Because this converter does a String-to-String conversion, this method can
cast the bean value to a String.

If the value cannot be converted to a String, the method throws an exception,
passing the error message from the ResourceBundle, which is registered with
the application. Registering Messages (page 827) explains how to register the
error messages with the application. Performing Localization (page 761)
explains more about working with localized messages.

If the value can be converted to a String, the method reads the String to a char-
acter array and loops through the array, adding a space after every four charac-
ters.

Implementing an Event Listener
As explained in Event and Listener Model (page 670), JavaServer Faces technol-
ogy supports action events and value-change events.

Action events occur when the user activates a component that implements
ActionSource. These events are represented by the
javax.faces.event.ActionEvent class.

Value-change events occur when the user changes the value of a UIInput com-
ponent or a component whose class extends UIInput. These events are repre-
sented by the javax.faces.event.ValueChangeEvent class.

One way to handle these events is to implement the appropriate listener classes.
Listener classes that handle the action events in an application must implement
javax.faces.event.ActionListener. Similarly, listeners that handle the
value-change events must implement
javax.faces.event.ValueChangeListener.

This section explains how to implement the two listener classes.

768
If you need to handle events generated by custom components, you must imple-
ment an event handler and manually queue the event on the component as well as
implement an event listener. See Handling Events for Custom
Components (page 812) for more information.

Note: You need not create an ActionListener implementation to handle an event
that results solely in navigating to a page and does not perform any other applica-
tion-specific processing. See Writing a Method to Handle Navigation (page 777)
for information on how to manage page navigation.

Implementing Value-Change Listeners
A ValueChangeListener implementation must include a
processValueChange(ValueChangeEvent) method. This method processes the
specified value-change event and is invoked by the JavaServer Faces implemen-
tation when the value-change event occurs. The ValueChangeEvent instance
stores the old and the new values of the component that fired the event.

The NameChanged listener implementation is registered on the name UIInput

component on the bookcashier.jsp page. This listener stores into session scope
the name the user entered in the text field corresponding to the name component.
When the bookreceipt.jsp page is loaded, it displays the first name inside the
message:

"Thank you, {0} for purchasing your books from us."

Here is part of the NameChanged listener implementation:

...
public class NameChanged extends Object implements

ValueChangeListener {

 public void processValueChange(ValueChangeEvent event)
throws AbortProcessingException {

if (null != event.getNewValue()) {
 FacesContext.getCurrentInstance().

getExternalContext().getSessionMap().
put("name", event.getNewValue());

}
}

}

IMPLEMENTING AN EVENT LISTENER 769
When the user enters the name in the text field, a value-change event is gener-
ated, and the processValueChange(ValueChangeEvent) method of the
NameChanged listener implementation is invoked. This method first gets the ID
of the component that fired the event from the ValueChangeEvent object. Next,
it puts the value, along with an attribute name, into the session map of the Fac-

esContext instance.

Registering a Value-Change Listener on a Component (page 731) explains how
to register this listener onto a component.

Implementing Action Listeners
An ActionListener implementation must include a
processAction(ActionEvent) method. The processAction(ActionEvent)

method processes the specified action event. The JavaServer Faces implementa-
tion invokes the processAction(ActionEvent) method when the ActionEvent

occurs.

The Duke’s Bookstore application does not use any ActionListener implemen-
tations. Instead, it uses method-binding expressions from actionListener

attributes to refer to backing bean methods that handle events. This section
explains how to turn one of these methods into an ActionListener implementa-
tion.

The chooselocale.jsp page allows the user to select a locale for the application
by clicking on one of a set of hyperlinks. When the user clicks one of the hyper-
links, an action event is generated, and the
chooseLocaleFromLink(ActionEvent) method of LocaleBean is invoked.
Instead of implementing a bean method to handle this event, you can create a lis-
tener implementation to handle it. To do this, you do the following:

• Move the chooseLocaleFromLink(ActionEvent) method to a class that
implements ActionListener

• Rename the method to processAction(ActionEvent)

The listener implementation would look something like this:

...
public class LocaleChangeListener extends Object implements

ActionListener {

private Map locales = null;

../examples/web/bookstore6/src/listeners/NameChanged.java
../examples/web/bookstore6/src/backing/LocaleBean.java

770
public LocaleChangeListener() {
locales = new HashMap();
locales.put("NAmerica", new Locale("en", "US"));
locales.put("SAmerica", new Locale("es", "MX"));
locales.put("Germany", new Locale("de", "DE"));
locales.put("France", new Locale("fr", "FR"));

}

public void processAction(ActionEvent event)
throws AbortProcessingException {

String current = event.getComponent().getId();
FacesContext context = FacesContext.getCurrentInstance();
context.getViewRoot().setLocale((Locale)
locales.get(current));

}
}

Registering an Action Listener on a Component (page 732) explains how to reg-
ister this listener onto a component.

Creating a Custom Validator
If the standard validators don’t perform the validation checking you need, you
can easily create a custom validator to validate user input. As explained in Vali-
dation Model (page 671), there are two ways to implement validation code:

• Implement a backing bean method that performs the validation.

• Provide an implementation of the Validator interface to perform the val-
idation.

Writing a Method to Perform Validation (page 779) explains how to implement a
backing bean method to perform validation. The rest of this section explains how
to implement the Validator interface.

If you choose to implement the Validator interface and you want to allow the
page author to configure the validator’s attributes from the page, you also must
create a custom tag for registering the validator on a component.

If you prefer to configure the attributes in the implementation, you can forgo cre-
ating a custom tag and instead let the page author register the validator on a com-
ponent using a validator tag. This tag simply refers to the Validator

implementation, which handles the configuration of the validator’s attributes.

CREATING A CUSTOM VALIDATOR 771
See Using a Custom Validator (page 746) for information on how the page
author uses a custom validator in the page.

Usually, you will want to display an error message when data fails validation.
You need to store these error messages in a ResourceBundle. For more informa-
tion on creating a ResourceBundle, see Creating a Resource Bundle (page 761).

When validation fails, you can queue the error messages onto the FacesContext

programmatically. Alternatively, you can have the application architect register
the error messages using the application configuration resource file. Registering
Messages (page 827) explains how to register error messages with the applica-
tion.

The Duke’s Bookstore application uses a general-purpose custom validator
(called FormatValidator) that validates input data against a format pattern that
is specified in the custom validator tag. This validator is used with the Credit
Card Number field on the bookcashier.jsp page. Here is the custom validator
tag:

<bookstore:formatValidator
formatPatterns="9999999999999999|9999 9999 9999 9999|

9999-9999-9999-9999"/>

According to this validator, the data entered in the field must be either:

• A 16-digit number with no spaces

• A 16-digit number with a space between every four digits

• A 16-digit number with hyphens between every four digits

The rest of this section describes how this validator is implemented and how to
create a custom tag so that the page author can register the validator on a compo-
nent.

Implementing the Validator Interface
A Validator implementation must contain a constructor, a set of accessor meth-
ods for any attributes on the tag, and a validate method, which overrides the
validate method of the Validator interface.

The FormatValidator class also defines accessor methods for setting the
attribute formatPatterns, which specifies the acceptable format patterns for
input into the fields. In addition, the class overrides the validate method of the

../examples/web/bookstore6/src/validators/FormatValidator

772
Validator interface. This method validates the input and also accesses the cus-
tom error messages to be displayed when the String is invalid.

The validate method performs the actual validation of the data. It takes the
FacesContext instance, the component whose data needs to be validated, and
the value that needs to be validated. A validator can validate only data of a UIIn-
put component or a component that extends UIInput.

Here is the validate method from FormatValidator:

public void validate(FacesContext context, UIComponent
component, Object toValidate) {

boolean valid = false;
String value = null;
if ((context == null) || (component == null)) {

throw new NullPointerException();
}
if (!(component instanceof UIInput)) {

return;
}
if (null == formatPatternsList || null == toValidate) {

return;
}
value = toValidate.toString();
//validate the value against the list of valid patterns.
Iterator patternIt = formatPatternsList.iterator();
while (patternIt.hasNext()) {

valid = isFormatValid(
((String)patternIt.next()), value);

if (valid) {
break;

}
}
if (!valid) {

FacesMessage errMsg =
MessageFactory.getMessage(context,

FORMAT_INVALID_MESSAGE_ID,
(new Object[] {formatPatterns}));

throw new ValidatorException(errMsg);
}

}

This method gets the local value of the component and converts it to a String. It
then iterates over the formatPatternsList list, which is the list of acceptable
patterns as specified in the formatPatterns attribute of the custom validator tag.

CREATING A CUSTOM VALIDATOR 773
While iterating over the list, this method checks the pattern of the component’s
local value against the patterns in the list. If the pattern of the local value does
not match any pattern in the list, this method generates an error message. It then
passes the message to the constructor of ValidatorException. Eventually the
message is queued onto the FacesContext instance so that the message is dis-
played on the page during the render response phase.

The error messages are retrieved from the Application instance by Message-

Factory. An application that creates its own custom messages must provide a
class, such as MessageFactory, that retrieves the messages from the Applica-

tion instance. When creating your own application, you can simply copy the
MessageFactory class from the Duke’s Bookstore application to your applica-
tion.

The getMessage(FacesContext, String, Object) method of MessageFac-
tory takes a FacesContext, a static String that represents the key into the
Properties file, and the format pattern as an Object. The key corresponds to
the static message ID in the FormatValidator class:

public static final String FORMAT_INVALID_MESSAGE_ID =
"FormatInvalid";

}

When the error message is displayed, the format pattern will be substituted for
the {0} in the error message, which, in English, is

Input must match one of the following patterns {0}

JavaServer Faces applications can save the state of validators and components on
either the client or the server. Specifying Where State Is Saved (page 840)
explains how to configure your application to save state on either the client or the
server.

If your JavaServer Faces application saves state on the client (which is the
default), you need to make the Validator implementation implement State-
Holder as well as Validator. In addition to implementing StateHolder, the
Validator implementation needs to implement the saveState(FacesContext)

and restoreState(FacesContext, Object) methods of StateHolder. With
these methods, the Validator implementation tells the JavaServer Faces imple-
mentation which attributes of the Validator implementation to save and restore
across multiple requests.

To save a set of values, you must implement the saveState(FacesContext)

method. This method is called during the render response phase, during which

774
the state of the response is saved for processing on subsequent requests. When
implementing the saveState(FacesContext) method, you need to create an
array of objects and add the values of the attributes you want to save to the array.
Here is the saveState(FacesContext) method from FormatValidator:

public Object saveState(FacesContext context) {
Object values[] = new Object[2];
values[0] = formatPatterns;
values[1] = formatPatternsList;
return (values);

}

To restore the state saved with the saveState(FacesContext) method in prepa-
ration for the next postback, the Validator implementation implements
restoreState(FacesContext, Object). The restoreState(FacesContext,

Object) method takes the FacesContext instance and an Object instance,
which represents the array that is holding the state for the Validator implemen-
tation. This method sets the Validator implementation’s properties to the values
saved in the Object array. Here is the restoreState(FacesContext, Object)

method from FormatValidator:

public void restoreState(FacesContext context, Object state) {
Object values[] = (Object[]) state;
formatPatterns = (String) values[0];
formatPatternsList = (ArrayList) values[1];

}

As part of implementing StateHolder, the custom Validator implementation
must also override the isTransient and setTransient(boolean) methods of
StateHolder. By default, transientValue is false, which means that the Vali-

dator implementation will have its state information saved and restored. Here
are the isTransient and setTransient(boolean) methods of FormatValida-
tor:

private boolean transientValue = false;

public boolean isTransient() {
return (this.transientValue);

}

public void setTransient(boolean transientValue) {
this.transientValue = transientValue;

}

CREATING A CUSTOM VALIDATOR 775
Saving and Restoring State (page 808) describes how a custom component must
implement the saveState(FacesContext) and restoreState(FacesCon-

text, Object) methods.

Creating a Custom Tag
If you implemented a Validator interface rather than implementing a backing
bean method that performs the validation, you need to do one of the following:

• Allow the page author to specify the Validator implementation to use
with the validator tag. In this case, the Validator implementation must
define its own properties. Using a Custom Validator (page 746) explains
how to use the validator tag.

• Create a custom tag that provides attributes for configuring the properties
of the validator from the page. Because the Validator implementation
from the preceding section does not define its attributes, the application
developer must create a custom tag so that the page author can define the
format patterns in the tag.

To create a custom tag, you need to do two things:

• Write a tag handler to create and register the Validator implementation
on the component.

• Write a TLD to define the tag and its attributes.

Using a Custom Validator (page 746) explains how to use the custom validator
tag on the page.

Writing the Tag Handler
The tag handler associated with a custom validator tag must extend the
ValidatorTag class. This class is the base class for all custom tag handlers that
create Validator instances and register them on UI components. The
FormatValidatorTag is the class that registers the FormatValidator instance
onto the component.

The FormatValidatorTag tag handler class does the following:

• Sets the ID of the Validator by calling
super.setValidatorId("FormatValidator").

• Provides a set of accessor methods for each attribute defined on the tag.

../examples/web/bookstore6/src/taglib/FormatValidatorTag.java

776
• Implements the createValidator method of the ValidatorTag class.
This method creates an instance of the validator and sets the range of val-
ues accepted by the validator.

 Here is the createValidator method from FormatValidatorTag:

protected Validator createValidator() throws JspException {
FormatValidator result = null;
result = (FormatValidator) super.createValidator();
result.setFormatPatterns(formatPatterns);
return result;

}

This method first calls super.createValidator to get a new Validator

instance and casts it to FormatValidator.

Next, the tag handler sets the Validator instance’s attribute values to those sup-
plied as the values of the formatPatterns tag attribute. The handler gets the
attribute values from the page via the accessor methods that correspond to the
attributes.

Writing the Tag Library Descriptor
To define a tag, you declare it in a tag library descriptor (TLD), which is an XML
document that describes a tag library. A TLD contains information about a
library and each tag contained in it. See Tag Library Descriptors (page 602) for
more information about TLDs.

The custom validator tag is defined in bookstore.tld, located in <INSTALL>/

j2eetutorial14/examples/web/bookstore6/web/ directory. It contains a tag
definition for formatValidator:

<tag>
<name>formatValidator</name>
...
<tag-class>taglib.FormatValidatorTag</tag-class>
<attribute>

<name>formatPatterns</name>
<required>true</required>
<rtexprvalue>false</rtexprvalue>
<type>String</type>

</attribute>
</tag>

WRITING BACKING BEAN METHODS 777
The name element defines the name of the tag as it must be used in the page. The
tag-class element defines the tag handler class. The attribute elements define
each of the tag’s attributes.

Writing Backing Bean Methods
Methods of a backing bean perform application-specific functions for compo-
nents on the page. These functions include performing validation on the compo-
nent’s value, handling action events, handling value-change events, and
performing processing associated with navigation.

By using a backing bean to perform these functions, you eliminate the need to
implement the Validator interface to handle the validation or the Listener

interface to handle events. Also, by using a backing bean instead of a Validator

implementation to perform validation, you eliminate the need to create a custom
tag for the Validator implementation. Creating a Custom Validator (page 770)
describes implementing a custom validator. Implementing an Event
Listener (page 767) describes implementing a listener class.

In general, it’s good practice to include these methods in the same backing bean
that defines the properties for the components referencing these methods. The
reason is that the methods might need to access the component’s data to deter-
mine how to handle the event or to perform the validation associated with the
component.

This section describes the requirements for writing the backing bean methods.

Writing a Method to Handle Navigation
A backing bean method that handles navigation processing—called an action
method—must be a public method that takes no parameters and returns a
String, which is the logical outcome string that the navigation system uses to
determine what page to display next. This method is referenced using the com-
ponent tag’s action attribute.

The following action method in CashierBean is invoked when a user clicks the
Submit button on the bookcashier.jsp page. If the user has ordered more than
$100 (or 100 euros) worth of books, this method sets the rendered properties of
the fanClub and specialOffer components to true. This causes them to be dis-
played on the page the next time the page is rendered.

778
After setting the components’ rendered properties to true, this method returns
the logical outcome null. This causes the JavaServer Faces implementation to
rerender the bookcashier.jsp page without creating a new view of the page. If
this method were to return purchase (which is the logical outcome to use to
advance to bookcashier.jsp, as defined by the application configuration
resource file), the bookcashier.jsp page would rerender without retaining the
customer’s input. In this case, we want to rerender the page without clearing the
data.

If the user does not purchase more than $100 (or 100 euros) worth of books or
the thankYou component has already been rendered, the method returns
receipt.

The default NavigationHandler provided by the JavaServer Faces implementa-
tion matches the logical outcome, as well as the starting page (bookcash-
ier.jsp) against the navigation rules in the application configuration resource
file to determine which page to access next. In this case, the JavaServer Faces
implementation loads the bookreceipt.jsp page after this method returns.

public String submit() {
...
if(cart().getTotal() > 100.00 &&

!specialOffer.isRendered())
{

specialOfferText.setRendered(true);
specialOffer.setRendered(true);
return null;

} else if (specialOffer.isRendered() &&
!thankYou.isRendered()){
thankYou.setRendered(true);
return null;

} else {
clear();
return ("receipt");

}
}

How the Pieces Fit Together (page 677) provides more detail on this example.
Referencing a Method That Performs Navigation (page 741) explains how a
component tag references this method. Binding a Component Instance to a Bean
Property (page 739) discusses how the page author can bind these components to
bean properties. Writing Properties Bound to Component Instances (page 759)
discusses how to write the bean properties to which the components are bound.
Configuring Navigation Rules (page 829) provides more information on config-
uring navigation rules.

WRITING BACKING BEAN METHODS 779
Writing a Method to Handle an Action
Event
A backing bean method that handles an action event must be a public method
that accepts an action event and returns void. This method is referenced using
the component tag’s actionListener attribute. Only components that imple-
ment ActionSource can refer to this method.

The following backing bean method from LocaleBean of the Duke’s Bookstore
application processes the event of a user clicking one of the hyperlinks on the
chooselocale.jsp page:

public void chooseLocaleFromLink(ActionEvent event) {
String current = event.getComponent().getId();
FacesContext context = FacesContext.getCurrentInstance();
context.getViewRoot().setLocale((Locale)

locales.get(current));
}

This method gets the component that generated the event from the event object.
Then it gets the component’s ID. The ID indicates a region of the world. The
method matches the ID against a HashMap object that contains the locales avail-
able for the application. Finally, it sets the locale using the selected value from
the HashMap object.

Referencing a Method That Handles an Action Event (page 742) explains how a
component tag references this method.

Writing a Method to Perform Validation
Rather than implement the Validator interface to perform validation for a com-
ponent, you can include a method in a backing bean to take care of validating
input for the component.

A backing bean method that performs validation must accept a FacesContext,
the component whose data must be validated, and the data to be validated, just as
the validate method of the Validator interface does. A component refers to
the backing bean method via its validator attribute. Only values of UIInput

components or values of components that extend UIInput can be validated.

780
Here is the backing bean method of CheckoutFormBean from the Coffee Break
example:

public void validateEmail(FacesContext context,
UIComponent toValidate, Object value) {

String message = "";
String email = (String) value;
if (email.indexOf('@') == -1) {

((UIInput)toValidate).setValid(false);
message = CoffeeBreakBean.loadErrorMessage(context,

CoffeeBreakBean.CB_RESOURCE_BUNDLE_NAME,
"EMailError");

context.addMessage(toValidate.getClientId(context),
new FacesMessage(message));

}
}

The validateEmail method first gets the local value of the component. It then
checks whether the @ character is contained in the value. If it isn’t, the method
sets the component’s valid property to false. The method then loads the error
message and queues it onto the FacesContext instance, associating the message
with the component ID.

See Referencing a Method That Performs Validation (page 743) for information
on how a component tag references this method.

Writing a Method to Handle a Value-
Change Event
A backing bean that handles a value-change event must be a public method that
accepts a value-change event and returns void. This method is referenced using
the component’s valueChangeListener attribute.

The Duke’s Bookstore application does not have any backing bean methods that
handle value-change events. It does have a ValueChangeListener implementa-
tion, as explained in the Implementing Value-Change Listeners (page 768) sec-
tion.

For illustration, this section explains how to write a backing bean method that
can replace the ValueChangeListener implementation.

As explained in Registering a Value-Change Listener on a
Component (page 731), the name component of the bookcashier.jsp page has

WRITING BACKING BEAN METHODS 781
a ValueChangeListener instance registered on it. This ValueChangeListener

instance handles the event of entering a value in the field corresponding to the
component. When the user enters a value, a value-change event is generated, and
the processValueChange(ValueChangeEvent) method of the
ValueChangeListener class is invoked.

Instead of implementing ValueChangeListener, you can write a backing bean
method to handle this event. To do this, you move the processVal-

ueChange(ValueChangeEvent) method from the ValueChangeListener class,
called NameChanged, to your backing bean.

Here is the backing bean method that processes the event of entering a value in
the name field on the bookcashier.jsp page:

public void processValueChange(ValueChangeEvent event)
throws AbortProcessingException {
if (null != event.getNewValue()) {

FacesContext.getCurrentInstance().
getExternalContext().getSessionMap().

put("name", event.getNewValue());
}

}

The page author can make this method handle the ValueChangeEvent object
emitted by a UIInput component by referencing this method from the compo-
nent tag’s valueChangeListener attribute. See Referencing a Method That
Handles a Value-change Event (page 743) for more information.

782

20
783
Creating Custom UI
Components

JAVASERVER Faces technology offers a rich set of standard, reusable UI com-
ponents that enable page authors and application developers to quickly and eas-
ily construct UIs for web applications. But often an application requires a
component that has additional functionality or requires a completely new com-
ponent. JavaServer Faces technology allows a component writer to extend the
standard components to enhance their functionality or create custom compo-
nents.

In addition to extending the functionality of standard components, a component
writer might want to give a page author the ability to change the appearance of
the component on the page. Or the component writer might want to render a
component to a different client. Enabled by the flexible JavaServer Faces archi-
tecture, a component writer can separate the definition of the component behav-
ior from its appearance by delegating the rendering of the component to a
separate renderer. In this way, a component writer can define the behavior of a
custom component once but create multiple renderers, each of which defines a
different way to render the component.

As well as providing a means to easily create custom components and renderers,
the JavaServer Faces design also makes it easy to reference them from the page
through JSP custom tag library technology.

This chapter uses the image map custom component from the Duke’s Bookstore
application (see The Example JavaServer Faces Application, page 690) to

784
explain how a component writer can create simple custom components, custom
renderers, and associated custom tags, and take care of all the other details asso-
ciated with using the components and renderers in an application.

Determining Whether You Need a
Custom Component or Renderer

The JavaServer Faces implementation supports a rich set of components and
associated renderers, which are enough for most simple applications. This sec-
tion helps you decide whether you need a custom component or custom renderer
or instead can use a standard component and renderer.

When to Use a Custom Component
A component class defines the state and behavior of a UI component. This
behavior includes converting the value of a component to the appropriate
markup, queuing events on components, performing validation, and other func-
tionality.

You need to create a custom component in these situations:

• You need to add new behavior to a standard component, such as generating
an additional type of event.

• You need to aggregate components to create a new component that has its
own unique behavior. The new component must be a custom component.
One example is a date chooser component consisting of three drop-down
lists.

• You need a component that is supported by an HTML client but is not cur-
rently implemented by JavaServer Faces technology. The current release
does not contain standard components for complex HTML components,
such as frames; however, because of the extensibility of the component
architecture, you can use JavaServer Faces technology to create compo-
nents like these.

• You need to render to a non-HTML client that requires extra components
not supported by HTML. Eventually, the standard HTML render kit will
provide support for all standard HTML components. However, if you are
rendering to a different client, such as a phone, you might need to create
custom components to represent the controls uniquely supported by the

DETERMINING WHETHER YOU NEED A CUSTOM COMPONENT OR RENDERER 785
client. For example, some component architectures for wireless clients
include support for tickers and progress bars, which are not available on an
HTML client. In this case, you might also need a custom renderer along
with the component; or you might need only a custom renderer.

You do not need to create a custom component in these cases:

• You simply need to manipulate data on the component or add application-
specific functionality to it. In this situation, you should create a backing
bean for this purpose and bind it to the standard component rather than cre-
ate a custom component. See Backing Bean Management (page 674) for
more information on backing beans.

• You need to convert a component’s data to a type not supported by its ren-
derer. See Using the Standard Converters (page 726) for more information
about converting a component’s data.

• You need to perform validation on the component data. Standard validators
and custom validators can be added to a component by using the validator
tags from the page. See Using the Standard Validators (page 732) and Cre-
ating a Custom Validator (page 770) for more information about validating
a component’s data.

• You need to register event listeners on components. You can either register
event listeners on components using the valueChangeListener and
actionListener tags, or you can point at an event-processing method on
a backing bean using the component’s actionListener or valueChange-
Listener attributes. See Implementing an Event Listener (page 767) and
Writing Backing Bean Methods (page 777) for more information.

When to Use a Custom Renderer
If you are creating a custom component, you need to ensure, among other things,
that your component class performs these operations:

• Decoding: Converting the incoming request parameters to the local value
of the component

• Encoding: Converting the current local value of the component into the
corresponding markup that represents it in the response

786
The JavaServer Faces specification supports two programming models for han-
dling encoding and decoding:

• Direct implementation: The component class itself implements the decod-
ing and encoding.

• Delegated implementation: The component class delegates the implemen-
tation of encoding and decoding to a separate renderer.

By delegating the operations to the renderer, you have the option of associating
your custom component with different renderers so that you can represent the
component in different ways on the page. If you don’t plan to render a particular
component in different ways, it’s simpler to let the component class handle the
rendering.

If you aren’t sure whether you will need the flexibility offered by separate ren-
derers but you want to use the simpler direct-implementation approach, you can
actually use both models. Your component class can include some default ren-
dering code, but it can delegate rendering to a renderer if there is one.

Component, Renderer, and Tag
Combinations
When you create a custom component, you will usually create a custom renderer
to go with it. You will also need a custom tag to associate the component with
the renderer and to reference the component from the page.

In rare situations, however, you might use a custom renderer with a standard
component rather than a custom component. Or you might use a custom tag
without a renderer or a component. This section gives examples of these situa-
tions and summarizes what’s required for a custom component, renderer, and
tag.

You would use a custom renderer without a custom component if you wanted to
add some client-side validation on a standard component. You would implement
the validation code with a client-side scripting language, such as JavaScript, and
then render the JavaScript with the custom renderer. In this situation, you need a
custom tag to go with the renderer so that its tag handler can register the renderer
on the standard component.

Custom components as well as custom renderers need custom tags associated
with them. However, you can have a custom tag without a custom renderer or
custom component. For example, suppose that you need to create a custom vali-

UNDERSTANDING THE IMAGE MAP EXAMPLE 787
dator that requires extra attributes on the validator tag. In this case, the custom
tag corresponds to a custom validator and not to a custom component or custom
renderer. In any case, you still need to associate the custom tag with a server-side
object.

Table 20–1 summarizes what you must or can associate with a custom compo-
nent, custom renderer, or custom tag.

Understanding the Image Map
Example

Duke’s Bookstore includes a custom image map component on the
chooselocale.jsp page. This image map displays a map of the world. When
the user clicks on one of a particular set of regions in the map, the application
sets the locale on the UIViewRoot component of the current FacesContext to
the language spoken in the selected region. The hotspots of the map are the
United States, Spanish-speaking Central and South America, France, and Ger-
many.

Table 20–1 Requirements for Custom Components, Custom Renderers, and Custom
Tags

Custom Item Must Have Can Have

Custom component Custom tag
Custom renderer or standard ren-
derer

Custom renderer Custom tag
Custom component or standard
component

Custom JavaSer-
ver Faces tag

Some server-side object, like
a component, a custom ren-
derer, or custom validator

Custom component or standard
component associated with a custom
renderer

788
Why Use JavaServer Faces Technology
to Implement an Image Map?
JavaServer Faces technology is an ideal framework to use for implementing this
kind of image map because it can perform the work that must be done on the
server without requiring you to create a server-side image map.

In general, client-side image maps are preferred over server-side image maps for
several reasons. One reason is that the client-side image map allows the browser
to provide immediate feedback when a user positions the mouse over a hotspot.
Another reason is that client-side image maps perform better because they don’t
require round-trips to the server. However, in some situations, your image map
might need to access the server to retrieve data or to change the appearance of
nonform controls, tasks that a client-side image map cannot do.

Because the image map custom component uses JavaServer Faces technology, it
has the best of both styles of image maps: It can handle the parts of the applica-
tion that need to be performed on the server, while allowing the other parts of the
application to be performed on the client side.

Understanding the Rendered HTML
Here is an abbreviated version of the form part of the HTML page that the appli-
cation needs to render:

<form id="_id0" method="post"
action="/bookstore6/chooselocale.faces" ... >
...
<img id="_id0:mapImage" src="/bookstore6/template/world.jpg"

alt="Choose Your Preferred Locale from the Map"
usemap="#worldMap" />
<map name="worldMap">

<area alt="NAmerica"
coords="53,109,1,110,2,167,,..."
shape="poly"
onmouseout=

"document.forms[0]['_id0:mapImage'].src=
'/bookstore6/template/world.jpg'"

onmouseover=
"document.forms[0]['_id0:mapImage'].src=

'/bookstore6/template/world_namer.jpg'"
onclick=

"document.forms[0]['worldMap_current'].

UNDERSTANDING THE IMAGE MAP EXAMPLE 789
value=
'NAmerica';document.forms[0].submit()"

/>
<input type="hidden" name="worldMap_current">

</map>
...

</form>

The img tag associates an image (world.jpg) with the image map referenced in
the usemap attribute value.

The map tag specifies the image map and contains a set of area tags.

Each area tag specifies a region of the image map. The onmouseover,
onmouseout, and onclick attributes define which JavaScript code is executed
when these events occur. When the user moves the mouse over a region, the
onmouseover function associated with the region displays the map with that
region highlighted. When the user moves the mouse out of a region, the
onmouseout function redisplays the original image. If the user clicks on a region,
the onclick function sets the value of the input tag to the ID of the selected
area and submits the page.

The input tag represents a hidden control that stores the value of the currently
selected area between client-server exchanges so that the server-side component
classes can retrieve the value.

The server-side objects retrieve the value of worldMap_current and set the
locale in the FacesContext instance according to the region that was selected.

Understanding the JSP Page
Here is an abbreviated form of the JSP page that the image map component will
use to generate the HTML page shown in the preceding section:

<f:view>
<f:loadBundle basename="messages.BookstoreMessages"

var="bundle"/>
<h:form>

...
<h:graphicImage id="mapImage" url="/template/world.jpg"

alt="#{bundle.ChooseLocale}"
usemap="#worldMap" />

<bookstore:map id="worldMap" current="NAmericas"
immediate="true" action="bookstore"

790
actionListener="#{localeBean.chooseLocaleFromMap}">
<bookstore:area id="NAmerica" value="#{NA}"

onmouseover="/template/world_namer.jpg"
onmouseout="/template/world.jpg"
targetImage="mapImage" />

<bookstore:area id="SAmerica" value="#{SA}"
onmouseover="/template/world_samer.jpg"
onmouseout="/template/world.jpg"
targetImage="mapImage" />

<bookstore:area id="Germany" value="#{gerA}"
onmouseover="/template/world_germany.jpg"
onmouseout="/template/world.jpg"
targetImage="mapImage" />

<bookstore:area id="France" value="#{fraA}"
onmouseover="/template/world_france.jpg"
onmouseout="/template/world.jpg"
targetImage="mapImage" />

</bookstore:map>
...

</h:form>
</f:view>

The alt attribute of graphicImage maps to the localized string "Choose Your

Locale from the Map".

The actionListener attribute of the map tag points at a method in LocaleBean

that accepts an action event. This method changes the locale according to the
area selected from the image map. The way this event is handled is explained
more in Handling Events for Custom Components (page 812).

The action attribute specifies a logical outcome String, which is matched
against the navigation rules in the application configuration resource file. For
more information on navigation, see the section Configuring Navigation
Rules (page 829).

The immediate attribute of the map tag is set to true, which indicates that the
default ActionListener implementation should execute during the apply
request values phase of the request-processing life cycle, instead of waiting for
the invoke application phase. Because the request resulting from clicking the
map does not require any validation, data conversion, or server-side object
updates, it makes sense to skip directly to the invoke application phase.

The current attribute of the map tag is set to the default area, which is NAmer-

ica.

Notice that the area tags do not contain any of the JavaScript, coordinate, or
shape data that is displayed on the HTML page. The JavaScript is generated by

UNDERSTANDING THE IMAGE MAP EXAMPLE 791
the AreaRenderer class. The onmouseover and onmouseout attribute values
indicate the image to be loaded when these events occur. How the JavaScript is
generated is explained more in Performing Encoding (page 804).

The coordinate, shape, and alternate text data are obtained through the value

attribute, whose value refers to an attribute in application scope. The value of
this attribute is a bean, which stores the coordinate, shape, and alt data. How
these beans are stored in the application scope is explained more in the next sec-
tion.

Configuring Model Data
In a JavaServer Faces application, data such as the coordinates of a hotspot of an
image map is retrieved from the value attribute via a bean. However, the shape
and coordinates of a hotspot should be defined together because the coordinates
are interpreted differently depending on what shape the hotspot is. Because a
component’s value can be bound only to one property, the value attribute cannot
refer to both the shape and the coordinates.

To solve this problem, the application encapsulates all of this information in a set
of ImageArea objects. These objects are initialized into application scope by the
managed bean creation facility (see Backing Bean Management, page 674).
Here is part of the managed bean declaration for the ImageArea bean corre-
sponding to the South America hotspot:

<managed-bean>
...
<managed-bean-name>SA</managed-bean-name>
<managed-bean-class>

components.model.ImageArea
</managed-bean-class>
<managed-bean-scope>application</managed-bean-scope>
<managed-property>

<property-name>shape</property-name>
<value>poly</value>

</managed-property>
<managed-property>

<property-name>alt</property-name>
<value>SAmerica</value>

</managed-property>
<managed-property>

../examples/web/bookstore6/src/model/ImageArea.java

792
<property-name>coords</property-name>
<value>89,217,95,100...</value>

</managed-property>
</managed-bean>

For more information on initializing managed beans with the managed bean cre-
ation facility, see the section Application Configuration Resource
File (page 816).

The value attributes of the area tags refer to the beans in the application scope,
as shown in this area tag from chooselocale.jsp:

<bookstore:area id="NAmerica"
value="#{NA}"
onmouseover="/template/world_namer.jpg"
onmouseout="/template/world.jpg" />

To reference the ImageArea model object bean values from the component class,
you implement a getValue method in the component class. This method calls
super.getValue. The superclass of AreaComponent, UIOutput, has a getValue

method that does the work of finding the ImageArea object associated with
AreaComponent. The AreaRenderer class, which needs to render the alt, shape,
and coords values from the ImageArea object, calls the getValue method of
AreaComponent to retrieve the ImageArea object.

ImageArea iarea = (ImageArea) area.getValue();

ImageArea is only a simple bean, so you can access the shape, coordinates, and
alternative text values by calling the appropriate accessor methods of ImageA-
rea. Creating the Renderer Class (page 810) explains how to do this in the
AreaRenderer class.

../examples/web/bookstore6/src/components/AreaComponent.java

UNDERSTANDING THE IMAGE MAP EXAMPLE 793
Summary of the Application Classes
Table 20–2 summarizes all the classes needed to implement the image map com-
ponent.

AreaSelectedEvent and AreaSelectedListener are located in <INSTALL>/

j2eetutorial14/examples/web/bookstore6/src/listeners. AreaTag and
MapTag are located in <INSTALL>/j2eetutorial14/examples/web/

bookstore6/src/taglib/. AreaComponent and MapComponent are located in
<INSTALL>/j2eetutorial14/examples/web/bookstore6/src/components/.
AreaRenderer is located in <INSTALL>/j2eetutorial14/examples/web/

bookstore6/src/renderers/. ImageArea is located in <INSTALL>/

j2eetutorial14/examples/web/bookstore6/src/model/. LocaleBean is

Table 20–2 Image Map Classes

Class Function

AreaSelectedEvent
The ActionEvent indicating that an AreaCom-
ponent from the MapComponent has been
selected.

AreaTag
The tag handler that implements the area custom
tag.

MapTag
The tag handler that implements the map custom
tag.

AreaComponent
The class that defines AreaComponent, which
corresponds to the area custom tag.

MapComponent
The class that defines MapComponent, which cor-
responds to the map custom tag.

AreaRenderer
This Renderer performs the delegated rendering
for AreaComponent.

ImageArea
The bean that stores the shape and coordinates of
the hotspots.

LocaleBean
The backing bean for the chooselocale.jsp
page.

794
located in <INSTALL>/j2eetutorial14/examples/web/bookstore6/src/

backing/.

Steps for Creating a Custom
Component

Before we describe how the image map works, it helps to summarize the basic
steps for creating custom components. You can apply the following steps while
developing your own custom component.

1. Write a tag handler class that extends
javax.faces.webapp.UIComponentTag. In this class, you need a
getRendererType method, which returns the type of your custom renderer
if you are using one (explained in step 4); a getComponentType method,
which returns the type of the custom component; and a setProperties

method, in which you set all the new attributes of your component

2. Create a tag library descriptor (TLD) that defines the custom tag.

3. Create a custom component class that

a. Overrides the getFamily method to return the component family, which
is used to look up renderers that can render the component.

b. Includes the rendering code or delegates it to a renderer (explained in
step 4).

c. Enables value-binding.

d. Queues an event on the component if the component generates events.

e. Saves and restores the component state.

4. Delegate rendering to a renderer if your component does not handle the
rendering. To do this:

a. Create a custom renderer class by extending
javax.faces.render.Renderer.

b. Register the renderer to a render kit.

c. Identify the renderer type in the component tag handler.

5. Register the component.

6. Create an event handler if your component generates events.

The application architect does the work of registering the custom component and
the renderer. See Registering a Custom Converter (page 828) and Registering a

CREATING THE COMPONENT TAG HANDLER 795
Custom Renderer with a Render Kit (page 833) for more information. Using a
Custom Component (page 747) discusses how to use the custom component in a
JavaServer Faces page.

Creating the Component Tag Handler
If you’ve created your own JSP custom tags before, creating a component tag
and tag handler should be easy for you.

In JavaServer Faces applications, the tag handler class associated with a compo-
nent drives the render response phase of the JavaServer Faces life cycle. For
more information on the JavaServer Faces life cycle, see The Life Cycle of a Jav-
aServer Faces Page (page 680).

The first thing that the tag handler does is to retrieve the type of the component
associated with the tag. Next, it sets the component’s attributes to the values
given in the page. Finally, it returns the type of the renderer (if there is one) to
the JavaServer Faces implementation so that the component’s encoding can be
performed when the tag is processed.

The image map custom component includes two tag handlers: AreaTag and
MapTag. To see how the operations on a JavaServer Faces tag handler are imple-
mented, let’s take a look at MapTag:

public class MapTag extends UIComponentTag {
private String current = null;
public void setCurrent(String current) {

this.current = current;
}
private String actionListener = null;
public void setActionListener(String actionListener) {

this.actionListener = actionListener;
}
private String action = null;
public void setAction(String action) {

this.action = action;
}
private String immediate = null;
public void setImmediate(String immediate) {

this.immediate = immediate;
}
private String styleClass = null;
public void setStyleClass(String styleClass) {

this.styleClass = styleClass;

../examples/web/bookstore6/src/taglib/MapTag.java

796
}
public String getComponentType() {

return ("DemoMap");
}
public String getRendererType() {

return ("DemoMap");
}
public void release() {

super.release();
current = null;
styleClass = null;
actionListener = null;
action = null;
immediate = null;

}
protected void setProperties(UIComponent component) {

super.setProperties(component);
MapComponent map = (MapComponent) component;
if (styleClass != null) {

if (isValueReference(styleClass)) {
ValueBinding vb =

FacesContext.getCurrentInstance().
getApplication().

createValueBinding(styleClass);
map.setValueBinding("styleClass", vb);

} else {
map.getAttributes().put("styleClass", styleClass);

}
}
if(actionListener != null) {

if(isValueReference(actionListener)) {
Class args[] = {ActionEvent.class};
MethodBinding mb =

FacesContext.getCurrentInstance().
getApplication().

createMethodBinding(actionListener, args);
map.setActionListener(mb);

} else {
Object params[] = {actionListener};
throw new javax.faces.FacesException();

}
}
if (action != null) {

if (isValueReference(action)) {
MethodBinding vb = FacesContext.

getCurrentInstance().getApplication().
createMethodBinding(action, null);

map.setAction(vb);

CREATING THE COMPONENT TAG HANDLER 797
} else {
map.setAction(

Util.createConstantMethodBinding(action));
}

}
if (immediate != null) {

if (isValueReference(immediate)) {
ValueBinding vb = FacesContext.

getCurrentInstance().getApplication().
createValueBinding(immediate);

map.setValueBinding("immediate", vb);
} else {

boolean _immediate =
new Boolean(immediate).booleanValue();

map.setImmediate(_immediate);
}

}
}

The first thing to notice is that MapTag extends UIComponentTag, which supports
jsp.tagext.Tag functionality as well as JavaServer Faces-specific functional-
ity. UIComponentTag is the base class for all JavaServer Faces tags that corre-
spond to a component. Tags that need to process their tag bodies should instead
subclass UIComponentBodyTag.

As explained earlier, the first thing MapTag does is to retrieve the type of the
component. It uses the getComponentType operation to do this:

public String getComponentType() {
return ("DemoMap");

}

The value returned from getComponentType must match the value configured
for the component with the component-type element of the application’s appli-
cation configuration resource file. Registering a Custom Component (page 835)
explains how to configure a component.

Next, the tag handler sets the component’s attribute values to those supplied as
tag attributes in the page. The MapTag handler gets the attribute values from the
page via JavaBeans properties that correspond to the attributes. MapComponent

798
has several attributes. Here is the property that is used to access the value of
immediate:

private String immediate = null;
public void setImmediate(String immediate) {

this.immediate = immediate;
}

To pass the value of the tag attributes to MapComponent, the tag handler imple-
ments the setProperties method.

Some tag attributes can refer to literal values or use value-binding expressions,
which point to values typically stored in a bean. It is recommended that you
enable your component attributes to accept value-binding expressions because
this is what a page author expects.

If you do make your tag attributes accept value-binding expressions then the
component property must also be enabled for value-binding expressions. See
Enabling Value-Binding of Component Properties (page 807) for more informa-
tion. In addition, an attribute that accepts a value-binding expression must be of
type String. This is why immediate is of type String, as shown in the preced-
ing code snippet.

For each MapComponent attribute that accepts a JavaServer Faces EL expression,
the setProperties method must get either a MethodBinding or a ValueBind-

ing for it from the Application instance. A ValueBinding object is used to
evaluate value-binding expressions that refer to backing bean properties. A
MethodBinding object is used to evaluate method-binding expressions that refer
to backing bean methods.

For example, the value of the actionListener attribute must be a method-bind-
ing expression that points to a method on a backing bean that takes an Action-

Event object as its argument. The setProperties method of MapTag creates a
MethodBinding for the actionListener attribute, passing in the signature that
this method must have, and it sets the MethodBinding object as the value of the
actionListener attribute of MapComponent.

The action attribute can take a literal String or a method-binding expression
that points to a backing bean method that takes no parameters and returns a lit-
eral String. To handle the case of the literal String, the setProperties

method creates a special constant method binding around the literal String in
order to satisfy the requirement that the argument to the action attribute of Map-
Component be a MethodBinding instance. To handle the method-binding expres-

../examples/web/bookstore6/src/components/MapComponent.java

CREATING THE COMPONENT TAG HANDLER 799
sion, setProperties creates the MethodBinding object as it does for the
actionListener attribute.

The MapComponent object’s immediate attribute value is a value-binding expres-
sion. This expression points to a backing bean property. Therefore, setProper-
ties must obtain a ValueBinding instance for it. After obtaining the
ValueBinding instance, the setProperties method sets the value of the prop-
erty on MapComponent by calling the MapComponent class’s setValueBinding

method, passing in the ValueBinding instance obtained from the Application

and the name of the attribute.

The following piece of setProperties sets the immediate property of MapCom-
ponent:

...
if (immediate != null) {

if (isValueReference(immediate)) {
ValueBinding vb = FacesContext.

getCurrentInstance().getApplication().
createValueBinding(immediate);

map.setValueBinding("immediate", vb);
} else {

boolean _immediate =
new Boolean(immediate).booleanValue();

map.setImmediate(_immediate);
}

}

Finally, the tag handler provides a renderer type—if there is a renderer associ-
ated with the component—to the JavaServer Faces implementation. It does this
using the getRendererType method:

public String getRendererType() {return "DemoMap";}

The renderer type that is returned is the name under which the renderer is regis-
tered with the application. See Delegating Rendering to a Renderer (page 810)
for more information. If your component does not have a renderer associated
with it, getRendererType should return null.

800
It’s recommended practice that all tag handlers implement a release method,
which releases resources allocated during the execution of the tag handler. The
release method of MapTag as follows:

public void release() {
super.release();
current = null;
styleClass = null;
actionListener = null;
immediate = null;
action = null;

}

This method first calls the UIComponentTag.release method to release
resources associated with UIComponentTag. Next, the method sets all attribute
values to null.

Defining the Custom Component Tag
in a Tag Library Descriptor

To define a tag, you declare it in a TLD. The web container uses the TLD to val-
idate the tag. The set of tags that are part of the HTML render kit are defined in
the html_basic TLD.

The custom tags area and map are defined in bookstore.tld. The book-

store.tld file defines tags for all the custom components and the custom vali-
dator tag described in Creating a Custom Tag (page 775).

All tag definitions must be nested inside the taglib element in the TLD. Each
tag is defined by a tag element. Here is part of the tag definition of the map tag:

<tag>
<name>map</name>
<tag-class>taglib.MapTag</tag-class>
<attribute>

<name>binding</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<type>String</type>

</attribute>
<attribute>

<name>current</name>
<required>false</required>

CREATING CUSTOM COMPONENT CLASSES 801
<rtexprvalue>false</rtexprvalue>
<type>String</type>

</attribute>
<attribute>

<name>id</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<type>String</type>

</attribute>
...

</tag>

At a minimum, each tag must have a name (the name of the tag) and a tag-class
(the tag handler) attribute. For more information on defining tags in a TLD,
please consult the Tag Library Descriptors (page 602) section of this tutorial.

Creating Custom Component Classes
As explained in When to Use a Custom Component (page 784), a component
class defines the state and behavior of a UI component. The state information
includes the component’s type, identifier, and local value. The behavior defined
by the component class includes the following:

• Decoding (converting the request parameter to the component’s local
value)

• Encoding (converting the local value into the corresponding markup)

• Saving the state of the component

• Updating the bean value with the local value

• Processing validation on the local value

• Queueing events

The UIComponentBase class defines the default behavior of a component class.
All the classes representing the standard components extend from
UIComponentBase. These classes add their own behavior definitions, as your
custom component class will do.

Your custom component class must either extend UIComponentBase directly or
extend a class representing one of the standard components. These classes are
located in the javax.faces.component package and their names begin with UI.

If your custom component serves the same purpose as a standard component,
you should extend that standard component rather than directly extend

802
UIComponentBase. For example, suppose you want to create an editable menu
component. It makes sense to have this component extend UISelectOne rather
than UIComponentBase because you can reuse the behavior already defined in
UISelectOne. The only new functionality you need to define is to make the
menu editable.

Whether you decide to have your component extend UIComponentBase or a
standard component, you might also want your component to implement one or
more of these behavioral interfaces:

• ActionSource: Indicates that the component can fire an ActionEvent

• EditableValueHolder: Extends ValueHolder and specifies additional
features for editable components, such as validation and emitting value-
change events

• NamingContainer: Mandates that each component rooted at this compo-
nent have a unique ID

• StateHolder: Denotes that a component has state that must be saved
between requests

• ValueHolder: Indicates that the component maintains a local value as well
as the option of accessing data in the model tier

If your component extends UICommand, it automatically implements Action-

Source and StateHolder. If your component extends UIOutput or one of the
component classes that extend UIOutput, it automatically implements State-

Holder and ValueHolder. If your component extends UIInput, it automatically
implements EditableValueHolder, StateHolder, and ValueHolder. If your
component extends UIComponentBase, it automatically implements only State-

Holder. See the JavaServer Faces API Javadoc to find out what the other compo-
nent classes implement.

If you want your custom component to exhibit the behavior of one of these inter-
faces, it must either explicitly implement the interface or extend a standard com-
ponent class that implements the interface. For example, if you have a
component that extends UIInput and you want it to fire action events, it must
also implement ActionSource.

The image map example has two component classes: AreaComponent and Map-

Component. The MapComponent class extends UICommand and therefore imple-
ments ActionSource, which means it can fire action events when a user clicks
on the map. The AreaComponent class extends the standard component
UIOutput.

CREATING CUSTOM COMPONENT CLASSES 803
The MapComponent class represents the component corresponding to the map tag:

<bookstore:map id="worldMap" current="NAmericas"
immediate="true"
action="bookstore"
actionListener="#{localeBean.chooseLocaleFromMap}">

The AreaComponent class represents the component corresponding to the area

tag:

<bookstore:area id="NAmerica" value="#{NA}"
onmouseover="/template/world_namer.jpg"
onmouseout="/template/world.jpg"
targetImage="mapImage" />

MapComponent has one or more AreaComponent instances as children. Its behav-
ior consists of the following

• Retrieving the value of the currently selected area

• Defining the properties corresponding to the component’s values

• Generating an event when the user clicks on the image map

• Queuing the event

• Saving its state

• Rendering the map tag and the input tag

The rendering of the map and input tags is performed by MapRenderer, but Map-
Component delegates this rendering to MapRenderer.

AreaComponent is bound to a bean that stores the shape and coordinates of the
region of the image map. You’ll see how all this data is accessed through the
value expression in Creating the Renderer Class (page 810). The behavior of
AreaComponent consists of the following

• Retrieving the shape and coordinate data from the bean

• Setting the value of the hidden tag to the id of this component

• Rendering the area tag, including the JavaScript for the onmouseover,
onmouseout, and onclick functions

Although these tasks are actually performed by AreaRenderer, AreaComponent
must delegate the tasks to AreaRenderer. See Delegating Rendering to a
Renderer (page 810) for more information.

The rest of this section details how MapRenderer performs encoding and decod-
ing, how it defines properties for the component’s local values, and how it saves

../examples/web/bookstore6/src/renderers/MapRenderer.java
../examples/web/bookstore6/src/renderers/AreaRenderer.java

804
the state of MapComponent. Handling Events for Custom Components (page 812)
details how MapComponent handles events.

Specifying the Component Family
If your custom component class delegates rendering, it needs to override the get-
Family method of UIComponent to return the identifier of a component family,
which is used to refer to a component or set of components that can be rendered
by a renderer or set of renderers. The component family is used along with the
renderer type to look up renderers that can render the component.

Because MapComponent delegates its rendering, it overrides the getFamily

method:

public String getFamily() {
return ("Map");

}

The component family identifier, Map, must match that defined by the compo-

nent-family elements included in the component and renderer configurations in
the application configuration resource file. Registering a Custom Renderer with
a Render Kit (page 833) explains how to define the component family in the ren-
derer configuration. Registering a Custom Component (page 835) explains how
to define the component family in the component configuration.

Performing Encoding
During the render response phase, the JavaServer Faces implementation pro-
cesses the encoding methods of all components and their associated renderers in
the view. The encoding methods convert the current local value of the compo-
nent into the corresponding markup that represents it in the response.

The UIComponentBase class defines a set of methods for rendering markup:
encodeBegin, encodeChildren, and encodeEnd. If the component has child
components, you might need to use more than one of these methods to render the
component; otherwise, all rendering should be done in encodeEnd.

Because MapComponent is a parent component of AreaComponent, the area tags
must be rendered after the beginning map tag and before the ending map tag. To
accomplish this, the MapRenderer class renders the beginning map tag in
encodeBegin and the rest of the map tag in encodeEnd.

CREATING CUSTOM COMPONENT CLASSES 805
The JavaServer Faces implementation automatically invokes the encodeEnd

method of AreaComponent’s renderer after it invokes MapRenderer’s
encodeBegin method and before it invokes MapRenderer’s encodeEnd method.
If a component needs to perform the rendering for its children, it does this in the
encodeChildren method.

Here are the encodeBegin and encodeEnd methods of MapRenderer:

public void encodeBegin(FacesContext context,
UIComponent component) throws IOException {
if ((context == null)|| (component == null)){

throw new NullPointerException();
}
MapComponent map=(MapComponent) component;
ResponseWriter writer = context.getResponseWriter();
writer.startElement("map", map);
writer.writeAttribute("name", map.getId(),"id");

}

public void encodeEnd(FacesContext context) throws IOException
{

if ((context == null) || (component == null)){
throw new NullPointerException();

}
MapComponent map = (MapComponent) component;
ResponseWriter writer = context.getResponseWriter();
writer.startElement("input", map);
writer.writeAttribute("type", "hidden", null);
writer.writeAttribute("name",

getName(context,map), "clientId");(
writer.endElement("input");
writer.endElement("map");

}

Notice that encodeBegin renders only the beginning map tag. The encodeEnd

method renders the input tag and the ending map tag.

The encoding methods accept a UIComponent argument and a FacesContext

argument. The FacesContext instance contains all the information associated
with the current request. The UIComponent argument is the component that
needs to be rendered.

The rest of the method renders the markup to the ResponseWriter instance,
which writes out the markup to the current response. This basically involves
passing the HTML tag names and attribute names to the ResponseWriter

806
instance as strings, retrieving the values of the component attributes, and passing
these values to the ResponseWriter instance.

The startElement method takes a String (the name of the tag) and the compo-
nent to which the tag corresponds (in this case, map). (Passing this information to
the ResponseWriter instance helps design-time tools know which portions of
the generated markup are related to which components.)

After calling startElement, you can call writeAttribute to render the tag’s
attributes. The writeAttribute method takes the name of the attribute, its
value, and the name of a property or attribute of the containing component corre-
sponding to the attribute. The last parameter can be null, and it won’t be ren-
dered.

The name attribute value of the map tag is retrieved using the getId method of
UIComponent, which returns the component’s unique identifier. The name

attribute value of the input tag is retrieved using the getName(FacesContext,

UIComponent) method of MapRenderer.

If you want your component to perform its own rendering but delegate to a ren-
derer if there is one, include the following lines in the encoding method to check
whether there is a renderer associated with this component.

if (getRendererType() != null) {
super.encodeEnd(context);
return;

}

If there is a renderer available, this method invokes the superclass’s encodeEnd

method, which does the work of finding the renderer. The MapComponent class
delegates all rendering to MapRenderer, so it does not need to check for available
renderers.

In some custom component classes that extend standard components, you might
need to implement other methods in addition to encodeEnd. For example, if you
need to retrieve the component’s value from the request parameters—to, for
example, update a bean’s values—you must also implement the decode method.

Performing Decoding
During the apply request values phase, the JavaServer Faces implementation
processes the decode methods of all components in the tree. The decode method

CREATING CUSTOM COMPONENT CLASSES 807
extracts a component’s local value from incoming request parameters and con-
verts the value to a type that is acceptable to the component class.

A custom component class or its renderer must implement the decode method
only if it must retrieve the local value or if it needs to queue events. The
MapRenderer instance retrieves the local value of the hidden input field and sets
the current attribute to this value by using its decode method. The setCurrent

method of MapComponent queues the event by calling queueEvent, passing in
the AreaSelectedEvent instance generated by MapComponent.

Here is the decode method of MapRenderer:

public void decode(FacesContext context, UIComponent component)
{

if ((context == null) || (component == null)) {
throw new NullPointerException();

}
MapComponent map = (MapComponent) component;
String key = getName(context, map);
String value = (String)context.getExternalContext().

getRequestParameterMap().get(key);
if (value != null)

map.setCurrent(value);
}

}

The decode method first gets the name of the hidden input field by calling get-

Name(FacesContext, UIComponent). It then uses that name as the key to the
request parameter map to retrieve the current value of the input field. This value
represents the currently selected area. Finally, it sets the value of the MapCompo-

nent class’s current attribute to the value of the input field.

Enabling Value-Binding of Component
Properties
Creating the Component Tag Handler (page 795) describes how MapTag sets the
component’s values when processing the tag. For those component attributes that
take value-binding expressions that point to a backing bean property, MapTag
uses a ValueBinding instance to evaluate the expression.

To get the value of a component attribute that accepts a value-binding expression
pointing to a backing bean property, the component class must get the Value-

Binding instance associated with the attribute. Because MapComponent extends

808
UICommand, the UICommand class already does the work of getting the Value-

Binding instance associated with each of the attributes that it supports. However,
if you have a custom component class that extends UIComponentBase, you will
need to get the ValueBinding instance associated with those attributes that are
value-binding enabled. For example, if MapComponent extended UIComponent-

Base instead of UICommand, it would need to include a method that gets the Val-

ueBinding instance for the immediate attribute:

public boolean isImmediate() {
if (this.immediateSet) {
 return (this.immediate);
}
ValueBinding vb = getValueBinding("immediate");
if (vb != null) {

Boolean value = (Boolean) vb.getValue(getFacesContext());
return (value.booleanValue());

} else {
 return (this.immediate);
}

}

The properties corresponding to the component attribute that accepts a method-
binding expression pointing to a backing bean method must accept and return a
MethodBinding object. For example, if MapComponent extended UIComponent-

Base instead of UICommand, it would need to provide an action property that
returns and accepts a MethodBinding object:

public MethodBinding getAction() {
return (this.action);

}
public void setAction(MethodBinding action) {

this.action = action;
}

Saving and Restoring State
Because component classes implement StateHolder, they must implement the
saveState(FacesContext) and restoreState(FacesContext, Object)

methods to help the JavaServer Faces implementation save and restore the state
of components across multiple requests.

To save a set of values, you must implement the saveState(FacesContext)

method. This method is called during the render response phase, during which

CREATING CUSTOM COMPONENT CLASSES 809
the state of the response is saved for processing on subsequent requests. Here is
the method from MapComponent:

public Object saveState(FacesContext context) {
Object values[] = new Object[2];
values[0] = super.saveState(context);
values[1] = current;
return (values);

}

This method initializes an array, which will hold the saved state. It next saves all
of the state associated with MapComponent.

A component that implements StateHolder must also provide an implementa-
tion for restoreState(FacesContext, Object), which restores the state of the
component to that saved with the saveState(FacesContext) method. The
restoreState(FacesContext, Object) method is called during the restore
view phase, during which the JavaServer Faces implementation checks whether
there is any state that was saved during the last render response phase and needs
to be restored in preparation for the next postback. Here is the restor-

eState(FacesContext, Object) method from MapComponent:

public void restoreState(FacesContext context, Object state) {
Object values[] = (Object[]) state;
super.restoreState(context, values[0]);
current = (String) values[1];

}

This method takes a FacesContext and an Object instance, representing the
array that is holding the state for the component. This method sets the compo-
nent’s properties to the values saved in the Object array.

When you implement these methods in your component class, be sure to specify
in the deployment descriptor where you want the state to be saved: either client
or server. If state is saved on the client, the state of the entire view is rendered to
a hidden field on the page.

To specify where state is saved for a particular web application, you need to
launch deploytool, select the web application from the tree, and set its
javax.faces.STATE_SAVING_METHOD context parameter to either client or
server. See Specifying Where State Is Saved (page 840) for more information on
specifying where state is saved using deploytool.

810
Delegating Rendering to a Renderer
Both MapComponent and AreaComponent delegate all of their rendering to a sep-
arate renderer. The section Performing Encoding (page 804) explains how
MapRenderer performs the encoding for MapComponent. This section explains in
detail the process of delegating rendering to a renderer using AreaRenderer,
which performs the rendering for AreaComponent.

To delegate rendering, you perform these tasks:

• Create the Renderer class

• Register the renderer with a render kit (explained in Registering a Custom
Renderer with a Render Kit, page 833)

• Identify the renderer type in the component’s tag handler

Creating the Renderer Class
When delegating rendering to a renderer, you can delegate all encoding and
decoding to the renderer, or you can choose to do part of it in the component
class. The AreaComponent class delegates encoding to the AreaRenderer class.

To perform the rendering for AreaComponent, AreaRenderer must implement
an encodeEnd method. The encodeEnd method of AreaRenderer retrieves the
shape, coordinates, and alternative text values stored in the ImageArea bean that
is bound to AreaComponent. Suppose that the area tag currently being rendered
has a value attribute value of "fraA". The following line from encodeEnd gets
the value of the attribute "fraA" from the FacesContext instance.

ImageArea ia = (ImageArea)area.getValue();

The attribute value is the ImageArea bean instance, which contains the shape,
coordinates, and alt values associated with the fraA AreaComponent instance.
Configuring Model Data (page 791) describes how the application stores these
values.

After retrieving the ImageArea object, it renders the values for shape, coords,
and alt by simply calling the associated accessor methods and passing the

DELEGATING RENDERING TO A RENDERER 811
returned values to the ResponseWriter instance, as shown by these lines of
code, which write out the shape and coordinates:

writer.startElement("area", area);
writer.writeAttribute("alt", iarea.getAlt(), "alt");
writer.writeAttribute("coords", iarea.getCoords(), "coords");
writer.writeAttribute("shape", iarea.getShape(), "shape");

The encodeEnd method also renders the JavaScript for the onmouseout,
onmouseover, and onclick attributes. The page author need only provide the
path to the images that are to be loaded during an onmouseover or onmouseout
action:

<d:area id="France" value="#{fraA}"
onmouseover="/template/world_france.jpg"
onmouseout="/template/world.jpg" targetImage="mapImage" />

The AreaRenderer class takes care of generating the JavaScript for these
actions, as shown in the following code from encodeEnd. The JavaScript that
AreaRenderer generates for the onclick action sets the value of the hidden field
to the value of the current area’s component ID and submits the page.

sb = new StringBuffer("document.forms[0]['").
append(targetImageId).append("'].src='");

sb.append(getURI(context,
(String) area.getAttributes().get("onmouseout")));

sb.append("'");
writer.writeAttribute("onmouseout", sb.toString(),

"onmouseout");
sb = new StringBuffer("document.forms[0]['").

append(targetImageId).append("'].src='");
sb.append(getURI(context,

(String) area.getAttributes().get("onmouseover")));
sb.append("'");
writer.writeAttribute("onmouseover", sb.toString(),

"onmouseover");
sb = new StringBuffer("document.forms[0]['");
sb.append(getName(context, area));
sb.append("'].value='");
sb.append(iarea.getAlt());
sb.append("'; document.forms[0].submit()");
writer.writeAttribute("onclick", sb.toString(), "value");
writer.endElement("area");

By submitting the page, this code causes the JavaServer Faces life cycle to return
back to the restore view phase. This phase saves any state information—includ-

812
ing the value of the hidden field—so that a new request component tree is con-
structed. This value is retrieved by the decode method of the MapComponent

class. This decode method is called by the JavaServer Faces implementation
during the apply request values phase, which follows the restore view phase.

In addition to the encodeEnd method, AreaRenderer contains an empty con-
structor. This is used to create an instance of AreaRenderer so that it can be
added to the render kit.

Note that AreaRenderer extends BaseRenderer, which in turn extends
Renderer. It contains definitions of the Renderer class methods so that you
don’t have to include them in your renderer class.

Identifying the Renderer Type
During the render response phase, the JavaServer Faces implementation calls the
getRendererType method of the component’s tag to determine which renderer
to invoke, if there is one.

The getRendererType method of AreaTag must return the type associated with
AreaRenderer. You identify this type when you register AreaRenderer with the
render kit, as described in Registering a Custom Renderer with a Render
Kit (page 833). Here is the getRendererType method from the AreaTag class:

public String getRendererType() { return ("DemoArea");}

Handling Events for Custom
Components

As explained in Implementing an Event Listener (page 767), events are automat-
ically queued on standard components that fire events. A custom component, on
the other hand, must manually queue events from its decode method if it fires
events.

Performing Decoding (page 806) explains how to queue an event on MapCompo-

nent using its decode method. This section explains how to write the class rep-
resenting the event of clicking on the map and how to write the method that
processes this event.

As explained in Understanding the JSP Page (page 789), the actionListener

attribute of the map tag points to the chooseLocaleFromMap method of the bean

../examples/web/bookstore6/src/taglib/AreaTag.java

HANDLING EVENTS FOR CUSTOM COMPONENTS 813
LocaleBean. This method processes the event of clicking the image map. Here is
the chooseLocaleFromMap method of LocaleBean:

public void chooseLocaleFromMap(ActionEvent actionEvent) {
AreaSelectedEvent event = (AreaSelectedEvent) actionEvent;
String current = event.getMapComponent().getCurrent();
FacesContext context = FacesContext.getCurrentInstance();
context.getViewRoot().setLocale((Locale)

locales.get(current));
}

When the JavaServer Faces implementation calls this method, it passes in an
ActionEvent object that represents the event generated by clicking on the image
map. Next, it casts it to an AreaSelectedEvent object. Then this method gets
the MapComponent associated with the event. It then gets the value of the Map-

Component object’s current attribute, which indicates the currently selected
area. The method then uses the value of the current property to get the Locale

object from a HashMap object, which is constructed elsewhere in the LocaleBean

class. Finally the method sets the locale of the FacesContext instance to the
Locale obtained from the HashMap object.

In addition to the method that processes the event, you need the event class itself.
This class is very simple to write: You have it extend ActionEvent and provide a
constructor that takes the component on which the event is queued and a method
that returns the component. Here is the AreaSelectedEvent class used with the
image map:

public class AreaSelectedEvent extends ActionEvent {
...
public AreaSelectedEvent(MapComponent map) {

super(map);
}
public MapComponent getMapComponent() {

return ((MapComponent) getComponent());
}

}

As explained in the section Creating Custom Component Classes (page 801), in
order for MapComponent to fire events in the first place, it must implement
ActionSource. Because MapComponent extends UICommand, it also implements
ActionSource.

../examples/web/bookstore6/src/listeners/AreaSelectedEvent.java

814

21
815
Configuring
JavaServer Faces

Applications

THE responsibilities of the application architect include the following

• Registering back-end objects with the application so that all parts of the
application have access to them.

• Configuring backing beans and model beans so that they are instantiated
with the proper values when a page makes reference to them.

• Defining navigation rules for each of the pages in the application so that
the application has a smooth page flow.

• Packaging the application to include all the pages, objects, and other files
so that the application can be deployed on any compliant container.

This chapter explains how to perform all the responsibilities of the application
architect.

816
Application Configuration Resource
File

JavaServer Faces technology provides a portable configuration format (as an
XML document) for configuring resources. An application architect creates one
or more files, called application configuration resource files, that use this format
to register and configure objects and to define navigation rules. An application
configuration resource file is usually called faces-config.xml.

The application configuration resource file must be valid against the DTD
located at http://java.sun.com/dtd/web-facesconfig_1_0.dtd. In addi-
tion, each file must include the following, in this order:

• The XML version number:
<?xml version="1.0"?>

• This DOCTYPE declaration:
<!DOCTYPE faces-config PUBLIC

"-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.0/

/EN"

"http://java.sun.com/dtd/web-facesconfig_1_0.dtd">

• A faces-config tag enclosing all the other declarations:
<faces-config>

...

</faces-config>

You can have more than one application configuration resource file. The Jav-
aServer Faces implementation finds the file or files by looking for the following:

• A resource named /META-INF/faces-config.xml in any of the JAR files
in the web application’s /WEB-INF/lib/ directory and in parent class load-
ers. If a resource with this name exists, it is loaded as a configuration
resource. This method is practical for a packaged library containing some
components and renderers.

• A context initialization parameter, javax.faces.applica-

tion.CONFIG_FILES, that specifies one or more (comma-delimited) paths
to multiple configuration files for your web application. This method will
most likely be used for enterprise-scale applications that delegate to sepa-
rate groups the responsibility for maintaining the file for each portion of a
big application.

CONFIGURING BEANS 817
• A resource named faces-config.xml in the /WEB-INF/ directory of your
application. This is the way most simple applications will make their con-
figuration files available.

To access resources registered with the application, an application developer
uses an instance of the Application class, which is automatically created for
each application. The Application instance acts as a centralized factory for
resources that are defined in the XML file.

When an application starts up, the JavaServer Faces implementation creates a
single instance of the Application class and configures it with the information
you configure in the application configuration resource file.

Configuring Beans
To instantiate backing beans used in a JavaServer Faces application and store
them in scope, you use the managed bean creation facility. This facility is config-
ured in the application configuration resource file using managed-bean XML
elements to define each bean. This file is processed at application startup time.
When a page references a bean, the JavaServer Faces implementation initializes
it according to its configuration in the application configuration resource file.

With the managed bean creation facility, you can:

• Create beans in one centralized file that is available to the entire applica-
tion, rather than conditionally instantiate beans throughout the application.

• Customize the bean’s properties without any additional code.

• When a managed bean is created, customize the bean’s property values
directly from within the configuration file.

• Using value elements, set the property of one managed bean to be the
result of evaluating another value-binding expression.

This section shows you how to initialize backing beans using the managed bean
creation facility. Writing Component Properties (page 750) explains how to
write backing bean properties. Writing Backing Bean Methods (page 777)
explains how to write backing bean methods. Binding Component Values and
Instances to External Data Sources (page 735) explains how to reference a man-
aged bean from the component tags.

818
Using the managed-bean Element
You create a backing bean using a managed-bean element, which represents an
instance of a bean class that must exist in the application. At runtime, the Jav-
aServer Faces implementation processes the managed-bean element. If a page
references the bean, the JavaServer Faces implementation instantiates the bean
as specified by the element configuration if no instance exists.

Here is an example managed bean configuration from the Duke’s Bookstore
application:

<managed-bean>
<managed-bean-name> NA </managed-bean-name>

<managed-bean-class>
model.ImageArea

</managed-bean-class>
<managed-bean-scope> application </managed-bean-scope>
<managed-property>

<property-name>shape</property-name>
<value>poly</value>

</managed-property>
...

</managed-bean-name>
</managed-bean>

The managed-bean-name element defines the key under which the bean will be
stored in a scope. For a component to map to this bean, the component tag’s
value attribute must match the managed-bean-name up to the first period. For
example, this value expression maps to the shape property of the ImageArea

instance, NA:

value="#{NA.shape}"

The part before the . matches the managed-bean-name of ImageArea. Using the
HTML Component Tags (page 699) has more examples of using value to bind
components to bean properties.

The managed-bean-class element defines the fully qualified name of the Java-
Beans component class used to instantiate the bean. It is the application devel-
oper’s responsibility to ensure that the class complies with the configuration of
the bean in the application configuration resource file. For example, the property
definitions must match those configured for the bean.

The managed-bean-scope element defines the scope in which the bean will be
stored. The four acceptable scopes are none, request, session, or applica-

CONFIGURING BEANS 819
tion. If you define the bean with a none scope, the bean is instantiated anew
each time it is referenced, and so it does not get saved in any scope. One reason
to use a scope of none is that a managed bean references another managed bean.
The second bean should be in none scope if it is supposed to be created only
when it is referenced. See Initializing Managed Bean Properties (page 824) for
an example of initializing a managed bean property.

If you are configuring a backing bean that is referenced by a component tag’s
binding attribute, you should define the bean with a request scope. If you placed
the bean in session or application scope instead, the bean would need to take pre-
cautions to ensure thread safety because UIComponent instances depend on run-
ning inside of a single thread.

The managed-bean element can contain zero or more managed-property ele-
ments, each corresponding to a property defined in the bean class. These ele-
ments are used to initialize the values of the bean properties. If you don’t want a
particular property initialized with a value when the bean is instantiated, do not
include a managed-property definition for it in your application configuration
resource file.

If a managed-bean element does not contain other managed-bean elements, it
can contain one map-entries element or list-entries element. The map-

entries element configures a set of beans that are instances of Map. The list-

entries element configures a set of beans that are instances of List.

To map to a property defined by a managed-property element, you must ensure
that the part of a component tag’s value expression after the . matches the man-

aged-property element’s property-name element. In the earlier example, the
shape property is initialized with the value poly. The next section explains in
more detail how to use the managed-property element.

Initializing Properties using the
managed-property Element
A managed-property element must contain a property-name element, which
must match the name of the corresponding property in the bean. A managed-

property element must also contain one of a set of elements (listed in Table 21–
1) that defines the value of the property. This value must be of the same type as
that defined for the property in the corresponding bean. Which element you use

820
to define the value depends on the type of the property defined in the bean. Table
21–1 lists all the elements used to initialize a value.

Using the managed-bean Element (page 818) includes an example of initializing
String properties using the value subelement. You also use the value subele-
ment to initialize primitive and other reference types. The rest of this section
describes how to use the value subelement and other subelements to initialize
properties of type java.util.Map, array, and Collection, as well as initializa-
tion parameters.

Referencing an Initialization Parameter
Another powerful feature of the managed bean creation facility is the ability to
reference implicit objects from a managed bean property.

Suppose that you have a page that accepts data from a customer, including the
customer’s address. Suppose also that most of your customers live in a particular
area code. You can make the area code component render this area code by sav-
ing it in an implicit object and referencing it when the page is rendered.

You can save the area code as an initial default value in the context initParam
implicit object by adding a context parameter to your web application and setting
its value using deploytool. For example, to set a context parameter called
defaultAreaCode to 650, launch deploytool, open the web application, select
the web application from the tree, select the Context tab, add a new context
parameter, and enter defaultAreaCode in the Coded Parameter field and 650 in
the Value field.

Table 21–1 Subelements of managed-property Elements That Define Property Values

Element ValueThat it Defines

list-entries Defines the values in a list

map-entries Defines the values of a map

null-value Explicitly sets the property to null

value
Defines a single value, such as a String or int, or a
JavaServer Faces EL expression

CONFIGURING BEANS 821
Next, you write a managed-bean declaration that configures a property that ref-
erences the parameter:

<managed-bean>
<managed-bean-name>customer</managed-bean-name>

<managed-bean-class>CustomerBean</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>
<managed-property>

<property-name>areaCode</property-name>
<value>#{initParam.defaultAreaCode}</value>

</managed-property>
...

</managed-bean>

To access the area code at the time the page is rendered, refer to the property
from the area component tag’s value attribute:

<h:inputText id=area value="#{customer.areaCode}"

Retrieving values from other implicit objects is done in a similar way. See Table
18–9 for a list of implicit objects.

Initializing Map Properties
The map-entries element is used to initialize the values of a bean property with
a type of java.util.Map if the map-entries element is used within a managed-

property element. Here is the definition of map-entries from the web-

facesconfig_1_0.dtd, located at http://java.sun.com/dtd/web-

facesconfig_1_0.dtd that defines the application configuration resource file:

<!ELEMENT map-entries (key-class?, value-class?, map-entry*) >

As this definition shows, a map-entries element contains an optional key-

class element, an optional value-class element, and zero or more map-entry

elements.

Here is the definition of map-entry from the DTD:

<!ELEMENT map-entry (key, (null-value|value)) >

http://java.sun.com/dtd/web-facesconfig_1_0.dtd
http://java.sun.com/dtd/web-facesconfig_1_0.dtd

822
According to this definition, each of the map-entry elements must contain a key

element and either a null-value or value element. Here is an example that uses
the map-entries element:

<managed-bean>
...
<managed-property>

<property-name>prices</property-name>
<map-entries>

<map-entry>
<key>My Early Years: Growing Up on *7</key>
<value>30.75</value>

</map-entry>
<map-entry>

<key>Web Servers for Fun and Profit</key>
<value>40.75</value>

</map-entry>
</map-entries>

</managed-property>
</managed-bean>

The map that is created from this map-entries tag contains two entries. By
default, all the keys and values are converted to java.lang.String. If you want
to specify a different type for the keys in the map, embed the key-class element
just inside the map-entries element:

<map-entries>
<key-class>java.math.BigDecimal</key-class>
...

</map-entries>

This declaration will convert all the keys into java.math.BigDecimal. Of
course, you must make sure that the keys can be converted to the type that you
specify. The key from the example in this section cannot be converted to a
java.math.BigDecimal because it is a String.

If you also want to specify a different type for all the values in the map, include
the value-class element after the key-class element:

<map-entries>
<key-class>int</key-class>
<value-class>java.math.BigDecimal</value-class>
...

</map-entries>

Note that this tag sets only the type of all the value subelements.

CONFIGURING BEANS 823
The first map-entry in the preceding example includes a value subelement. The
value subelement defines a single value, which will be converted to the type
specified in the bean.

The second map-entry defines a value element, which references a property on
another bean. Referencing another bean from within a bean property is useful for
building a system from fine-grained objects. For example, a request-scoped
form-handling object might have a pointer to an application-scoped database
mapping object. Together the two can perform a form-handling task. Note that
including a reference to another bean will initialize the bean if it does not already
exist.

Instead of using a map-entries element, it is also possible to assign the entire
map using a value element that specifies a map-typed expression.

Initializing Array and List Properties
The values element is used to initialize the values of an array or List property.
Each individual value of the array or List is initialized using a value or null-
value element. Here is an example:

<managed-bean>
...
<managed-property>

<property-name>books</property-name>
<values>

<value-type>java.lang.String</value-type>
<value>Web Servers for Fun and Profit</value>
<value>#{myBooks.bookId[3]}</value>
<null-value/>

</values>
</managed-property>

</managed-bean>

This example initializes an array or a List. The type of the corresponding prop-
erty in the bean determines which data structure is created. The values element
defines the list of values in the array or List. The value element specifies a sin-
gle value in the array or List and can reference a property in another bean. The
null-value element will cause the setBooks method to be called with an argu-
ment of null. A null property cannot be specified for a property whose data
type is a Java primitive, such as int or boolean.

824
Initializing Managed Bean Properties
Sometimes you might want to create a bean that also references other managed
beans so that you can construct a graph or a tree of beans. For example, suppose
that you want to create a bean representing a customer’s information, including
the mailing address and street address, each of which is also a bean. The follow-
ing managed-bean declarations create a CustomerBean instance that has two
AddressBean properties: one representing the mailing address, and the other rep-
resenting the street address. This declaration results in a tree of beans with Cus-

tomerBean as its root and the two AddressBean objects as children.

<managed-bean>
<managed-bean-name>customer</managed-bean-name>
<managed-bean-class>

com.mycompany.mybeans.CustomerBean
</managed-bean-class>
<managed-bean-scope> request </managed-bean-scope>
<managed-property>

<property-name>mailingAddress</property-name>
<value>#{addressBean}</value>

</managed-property>
<managed-property>

<property-name>streetAddress</property-name>
<value>#{addressBean}</value>

</managed-property>
<managed-property>

<property-name>customerType</property-name>
<value>New</value>

</managed-property>
</managed-bean>
<managed-bean>

<managed-bean-name>addressBean</managed-bean-name>
<managed-bean-class>

com.mycompany.mybeans.AddressBean
</managed-bean-class>
<managed-bean-scope> none </managed-bean-scope>
<managed-property>

<property-name>street</property-name>
<null-value/>

<managed-property>
...

</managed-bean>

The first CustomerBean declaration (with the managed-bean-name of customer)
creates a CustomerBean in request scope. This bean has two properties: mailin-

CONFIGURING BEANS 825
gAddress and streetAddress. These properties use the value element to refer-
ence a bean named addressBean.

The second managed bean declaration defines an AddressBean but does not cre-
ate it because its managed-bean-scope element defines a scope of none. Recall
that a scope of none means that the bean is created only when something else
references it. Because both the mailingAddress and the streetAddress proper-
ties reference addressBean using the value element, two instances of Address-
Bean are created when CustomerBean is created.

When you create an object that points to other objects, do not try to point to an
object with a shorter life span because it might be impossible to recover that
scope’s resources when it goes away. A session-scoped object, for example, can-
not point to a request-scoped object. And objects with none scope have no effec-
tive life span managed by the framework, so they can point only to other none
scoped objects. Table 21–2 outlines all of the allowed connections.

You should also not allow cyclical references between objects. For example, nei-
ther of the AddressBean objects in the preceding example should point back to
the CustomerBean object because CustomerBean already points to the Address-

Bean objects.

Initializing Maps and Lists
In addition to configuring Map and List properties, you can also configure a Map

and a List directly so that you can reference them from a tag rather than refer-
encing a property that wraps a Map or a List.

Table 21–2 Allowable Connections Between Scoped Objects

An Object of This Scope May Point to an Object of This Scope

none none

application none, application

session none, application, session

request none, application, session, request

826
The Duke’s Bookstore application configures a List to initialize the list of free
newsletters, from which users can choose a set of newsletters to subscribe to on
the bookcashier.jsp page:

<managed-bean>
...

<managed-bean-name>newsletters</managed-bean-name>
<managed-bean-class>

java.util.ArrayList
</managed-bean-class>
<managed-bean-scope>application</managed-bean-scope>
<list-entries>

<value-class>javax.faces.model.SelectItem</value-class>
<value>#{newsletter0}</value>
<value>#{newsletter1}</value>
<value>#{newsletter2}</value>
<value>#{newsletter3}</value>

</list-entries>
</managed-bean>
<managed-bean>

<managed-bean-name>newsletter0</managed-bean-name>
<managed-bean-class>

javax.faces.model.SelectItem
</managed-bean-class>
<managed-bean-scope>none</managed-bean-scope>
<managed-property>

<property-name>label</property-name>
<value>Duke's Quarterly</value>

</managed-property>
<managed-property>

<property-name>value</property-name>
<value>200</value>

</managed-property>
</managed-bean>
...

This configuration initializes a List called newsletters. This list is composed
of SelectItem instances, which are also managed beans. See The UISelectItem,
UISelectItems, and UISelectItemGroup Components (page 720) for more infor-
mation on SelectItem. Note that, unlike the example in Initializing Map
Properties (page 821), the newsletters list is not a property on a managed bean.
(It is not wrapped with a managed-property element.) Instead, the list is the
managed bean.

REGISTERING MESSAGES 827
Registering Messages
If you create custom messages, you must make them available at application
startup time. You do this in one of two ways: by queuing the message onto the
FacesContext instance programmatically (as described in Performing
Localization, page 761) or by registering the messages with your application
using the application configuration resource file.

Here is the part of the file that registers the messages for the Duke’s Bookstore
application:

<application>
<message-bundle>

resources.ApplicationMessages
</message-bundle>
<locale-config>

<default-locale>en</default-locale>
<supported-locale>es</supported-locale>
<supported-locale>de</supported-locale>
<supported-locale>fr</supported-locale>

</locale-config>
</application>

This set of elements will cause your Application instance to be populated with
the messages contained in the specified ResourceBundle.

The message-bundle element represents a set of localized messages. It must
contain the fully qualified path to the ResourceBundle containing the localized
messages—in this case, resources.ApplicationMessages.

The locale-config element lists the default locale and the other supported
locales. The locale-config element enables the system to find the correct
locale based on the browser's language settings. Duke’s Bookstore manually sets
the locale and so it overrides these settings. Therefore, it’s not necessary to use
locale-config to specify the default or supported locales in Duke’s Bookstore.

The supported-locale and default-locale tags accept the lower-case, two-
character codes as defined by ISO-639 (see http://www.ics.uci.edu/pub/

ietf/http/related/iso639.txt). Make sure that your ResourceBundle actu-
ally contains the messages for the locales that you specify with these tags.

To access the localized message, the application developer merely references the
key of the message from the resource bundle. See Performing
Localization (page 761) for more information.

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

828
Registering a Custom Validator
If the application developer provides an implementation of the Validator inter-
face to perform the validation, you must register this custom validator in the
application configuration resource file by using the validator XML element:

<validator>
...
<validator-id>FormatValidator</validator-id>
<validator-class>

validators.FormatValidator
</validator-class>
<attribute>

...
<attribute-name>formatPatterns</attribute-name>
<attribute-class>java.lang.String</attribute-class>

</attribute>
</validator>

The validator-id and validator-class elements are required subelements.
The validator-id element represents the identifier under which the Validator

class should be registered. This ID is used by the tag class corresponding to the
custom validator tag.

The validator-class element represents the fully qualified class name of the
Validator class.

The attribute element identifies an attribute associated with the Validator

implementation. It has required attribute-name and attribute-class subele-
ments. The attribute-name element refers to the name of the attribute as it
appears in the validator tag. The attribute-class element identifies the Java
type of the value associated with the attribute.

Creating a Custom Validator (page 770) explains how to implement the Valida-

tor interface.

Using a Custom Validator (page 746) explains how to reference the validator
from the page.

Registering a Custom Converter
As is the case with a custom validator, if the application developer creates a cus-
tom converter, you must register it with the application. Here is the converter

CONFIGURING NAVIGATION RULES 829
configuration for CreditCardConverter from the Duke’s Bookstore applica-
tion:

<converter>
<description>

Converter for credit card
numbers that normalizes
the input to a standard format

</description>
<converter-id>CreditCardConverter</converter-id>
<converter-class>

converters.CreditCardConverter
</converter-class>

</converter>

The converter element represents a Converter implementation and contains
required converter-id and converter-class elements.

The converter-id element identifies an ID that is used by the converter

attribute of a UI component tag to apply the converter to the component’s data.
Using a Custom Converter (page 745) includes an example of referencing the
custom converter from a component tag.

The converter-class element identifies the Converter implementation.

Creating a Custom Converter (page 764) explains how to create a custom con-
verter.

Configuring Navigation Rules
As explained in Navigation Model (page 672), navigation is a set of rules for
choosing the next page to be displayed after a button or hyperlink component is
clicked. Navigation rules are defined in the application configuration resource
file.

Each navigation rule specifies how to navigate from one page to a set of other
pages. The JavaServer Faces implementation chooses the proper navigation rule
according to which page is currently displayed.

After the proper navigation rule is selected, the choice of which page to access
next from the current page depends on the action method that was invoked when
the component was clicked and the logical outcome that is referenced by the
component’s tag or was returned from the action method.

830
The outcome can be anything the developer chooses, but Table 21–3 lists some
outcomes commonly used in web applications.

Usually, the action method performs some processing on the form data of the
current page. For example, the method might check whether the user name and
password entered in the form match the user name and password on file. If they
match, the method returns the outcome success. Otherwise, it returns the out-
come failure. As this example demonstrates, both the method used to process
the action and the outcome returned are necessary to determine the proper page
to access.

Here is a navigation rule that could be used with the example just described:

<navigation-rule>
<from-view-id>/logon.jsp</from-view-id>
<navigation-case>

<from-action>#{LogonForm.logon}</from-action>
<from-outcome>success</from-outcome>
<to-view-id>/storefront.jsp</to-view-id>

</navigation-case>
<navigation-case>

<from-action>#{LogonForm.logon}</from-action>
<from-outcome>failure</from-outcome>
<to-view-id>/logon.jsp</to-view-id>
</navigation-case>

</navigation-rule>

This navigation rule defines the possible ways to navigate from logon.jsp. Each
navigation-case element defines one possible navigation path from
logon.jsp. The first navigation-case says that if LogonForm.logon returns an
outcome of success, then storefront.jsp will be accessed. The second navi-

Table 21–3 Common Outcome Strings

Outcome What It Means

success Everything worked. Go on to the next page.

failure Something is wrong. Go on to an error page.

logon The user needs to log on first. Go on to the logon page.

no results The search did not find anything. Go to the search page again.

CONFIGURING NAVIGATION RULES 831
gation-case says that logon.jsp will be rerendered if LogonForm.logon

returns failure.

An application’s navigation configuration consists of a set of navigation rules.
Each rule is defined by the navigation-rule element in the faces-config.xml

file.

The navigation rules of the Duke’s Bookstore application are very simple. Here
are two complex navigation rules that could be used with the Duke’s Bookstore
application:

<navigation-rule>
<from-view-id>/catalog.jsp</from-view-id>
<navigation-case>

<from-outcome>success</from-outcome>
<to-view-id>/bookcashier.jsp</to-view-id>

</navigation-case>
<navigation-case>

<from-outcome>out of stock</from-outcome>
<from-action>

#{catalog.buy}
</from-action>
<to-view-id>/outofstock.jsp</to-view-id>

</navigation-case>
<navigation-case>

<from-outcome>error</from-outcome>
<to-view-id>/error.jsp</to-view-id>

</navigation-case>
</navigation-rule>

The first navigation rule in this example says that the application will navigate
from catalog.jsp to

• bookcashier.jsp if the item ordered is in stock

• outofstock.jsp if the item is out of stock

The second navigation rule says that the application will navigate from any page
to error.jsp if the application encountered an error.

Each navigation-rule element corresponds to one component tree identifier
defined by the optional from-view-id element. This means that each rule
defines all the possible ways to navigate from one particular page in the applica-
tion. If there is no from-view-id element, the navigation rules defined in the
navigation-rule element apply to all the pages in the application. The from-

view-id element also allows wildcard matching patterns. For example, this

832
from-view-id element says that the navigation rule applies to all the pages in
the books directory:

<from-view-id>/books/*</from-view-id>

As shown in the example navigation rule, a navigation-rule element can con-
tain zero or more navigation-case elements. The navigation-case element
defines a set of matching criteria. When these criteria are satisfied, the applica-
tion will navigate to the page defined by the to-view-id element contained in
the same navigation-case element.

The navigation criteria are defined by optional from-outcome and from-action

elements. The from-outcome element defines a logical outcome, such as suc-

cess. The from-action element uses a method-binding expression to refer to an
action method that returns a String, which is the logical outcome. The method
performs some logic to determine the outcome and returns the outcome.

The navigation-case elements are checked against the outcome and the
method-binding expression in this order:

• Cases specifying both a from-outcome value and a from-action value.
Both of these elements can be used if the action method returns different
outcomes depending on the result of the processing it performs.

• Cases specifying only a from-outcome value. The from-outcome element
must match either the outcome defined by the action attribute of the
UICommand component or the outcome returned by the method referred to
by the UICommand component.

• Cases specifying only a from-action value. This value must match the
action expression specified by the component tag.

When any of these cases is matched, the component tree defined by the to-

view-id element will be selected for rendering.

Referencing a Method That Performs Navigation (page 741) explains how to use
a component tag’s action attribute to point to an action method. Writing a
Method to Handle Navigation (page 777) explains how to write an action
method.

REGISTERING A CUSTOM RENDERER WITH A RENDER KIT 833
Registering a Custom Renderer with a
Render Kit

For every UI component that a render kit supports, the render kit defines a set of
Renderer objects that can render the component in different ways to the client
supported by the render kit. For example, the standard UISelectOne component
class defines a component that allows a user to select one item from a group of
items. This component can be rendered using the Listbox renderer, the Menu

renderer, or the Radio renderer. Each renderer produces a different appearance
for the component. The Listbox renderer renders a menu that can display an
entire set of values. The Menu renderer renders a subset of all possible values.
The Radio renderer renders a set of radio buttons.

When the application developer creates a custom renderer, as described in Dele-
gating Rendering to a Renderer (page 810), you must register it using the appro-
priate render kit. Because the image map application implements an HTML
image map, AreaRenderer (as well as MapRenderer) should be registered using
the HTML render kit.

You register the renderer using the render-kit element of the application con-
figuration resource file. Here is the configuration of AreaRenderer from the
Duke’s Bookstore application:

<render-kit>
<renderer>

<component-family>Area</component-family>
<renderer-type>DemoArea</renderer-type>
<renderer-class>

renderers.AreaRenderer
</renderer-class>
<attribute>

<attribute-name>onmouseout</attribute-name>
<attribute-class>java.lang.String</attribute-class>

</attribute>
<attribute>

<attribute-name>onmouseover</attribute-name>
<attribute-class>java.lang.String</attribute-class>

</attribute>
<attribute>

<attribute-name>styleClass</attribute-name>
<attribute-class>java.lang.String</attribute-class>

</attribute>
</renderer>
...

834
The render-kit element represents a RenderKit implementation. If no
render-kit-id is specified, the default HTML render kit is assumed. The ren-

derer element represents a Renderer implementation. By nesting the renderer

element inside the render-kit element, you are registering the renderer with the
RenderKit associated with the render-kit element.

The renderer-class is the fully qualified class name of the Renderer.

The component-family and renderer-type elements are used by a component
to find renderers that can render it. The component-family identifier must
match that returned by the component class’s getFamily method. The ren-

derer-type identifier must match that returned by the getRendererType

method of the tag handler class. The component’s configuration also needs to
specify the component family and renderer type, which the next section explains.

Each of the attribute tags specifies a render-dependent attribute and its type.
The attribute element doesn’t affect the runtime execution of your application.
Instead, it provides information to tools about the attributes the Renderer sup-
ports.

The object that is responsible for rendering a component (be it the component
itself or a renderer to which the component delegates the rendering) can use fac-
ets to aid in the rendering process. These facets allow the custom component
developer to control some aspects of rendering the component. Consider this
custom component tag example:

<d:dataScroller>
<f:facet name="header">

<h:panelGroup>
<h:outputText value="Account Id"/>
<h:outputText value="Customer Name"/>
<h:outputText value="Total Sales"/>

</h:panelGroup>
</f:facet>
<f:facet name="next">

<h:panelGroup>
<h:outputText value="Next"/>
<h:graphicImage url="/images/arrow-right.gif" />

</h:panelGroup>
</f:facet>

...
</d:dataScroller>

The dataScroller component tag includes a component that will render the
header and a component that will render the Next button. If the renderer associ-

REGISTERING A CUSTOM COMPONENT 835
ated with this component renders the facets you can include the following facet

elements in the renderer element:

<facet>
<description>This facet renders as the

header of the table. It should be a panelGroup
with the same number of columns as the data

</description>
<display-name>header</display-name>
<facet-name>header</facet-name>

</facet>
<facet>

<description>This facet renders as the content
of the "next" button in the scroller. It should be a
panelGroup that includes an outputText tag that
has the text "Next" and a right arrow icon.

</description>
<display-name>Next</display-name>
<facet-name>next</facet-name>

</facet>

If a component that supports facets provides its own rendering and you want to
include facet elements in the application configuration resource file, you need
to put them in the component’s configuration rather than the renderer’s configu-
ration.

Registering a Custom Component
In addition to registering custom renderers (as explained in the preceding sec-
tion), you also must register the custom components that are usually associated
with the custom renderers.

Here is the component element from the application configuration resource file
that registers AreaComponent:

<component>
<component-type>DemoArea</component-type>
<component-class>

components.AreaComponent
</component-class>
<property>

<property-name>alt</property-name>
<property-class>java.lang.String</property-class>

</property>

836
<property>
<property-name>coords</property-name>
<property-class>java.lang.String</property-class>

</property>
<property>

<property-name>shape</property-name>
<property-class>java.lang.String</property-class>

</property>

<component-extension>
<component-family>Area</component-family>
<renderer-type>DemoArea</renderer-type>

</component-extension>

</component>

The component-type element indicates the name under which the component
should be registered. Other objects referring to this component use this name.
For example, the component-type element in the configuration for AreaCompo-
nent defines a value of DemoArea, which matches the value returned by the
AreaTag class’s getComponentType method.

The component-class element indicates the fully qualified class name of the
component. The property elements specify the component properties and their
types.

If the custom component can include facets, you can configure the facets in the
component configuration using facet elements, which are allowed after the
component-class elements. See Registering a Custom Renderer with a Render
Kit (page 833) for further details on configuring facets.

The component-extension element identifies a component family and a ren-
derer type. The component family represents a component or set of components
that a renderer can render. The renderer type specifies the renderer that can ren-
der the components included in the component family.

The component family specified by the component-family element must match
that returned by the components' getFamily methods. The renderer-type must
match that returned by the tag handler's getRendererType method. By using the
component family and renderer type to look up renderers for components, the
JavaServer Faces implementation allows a component to be rendered by multiple
renderers and allows a renderer to render multiple components.

BASIC REQUIREMENTS OF A JAVASERVER FACES APPLICATION 837
Basic Requirements of a JavaServer
Faces Application

In addition to configuring your application, you must satisfy other requirements
of JavaServer Faces applications, including properly packaging all the necessary
files and providing a deployment descriptor. This section describes how to per-
form these administrative tasks.

JavaServer Faces applications must be compliant with the Servlet specification,
version 2.3 (or later) and the JavaServer Pages specification, version 1.2 (or
later). All applications compliant with these specifications are packaged in a
WAR file, which must conform to specific requirements in order to execute
across different containers. At a minimum, a WAR file for a JavaServer Faces
application must contain the following:

• A web application deployment descriptor, called web.xml, to configure
resources required by a web application

• A specific set of JAR files containing essential classes

• A set of application classes, JavaServer Faces pages, and other required
resources, such as image files

• An application configuration resource file, which configures application
resources

The WAR file typically has this directory structure:

index.html
JSP pages
WEB-INF/
 web.xml
 faces-config.xml
 tag library descriptors (optional)
 classes/
 class files

 Properties files
 lib/
 JAR files

The web.xml file (or deployment descriptor), the set of JAR files, and the set of
application files must be contained in the WEB-INF directory of the WAR file.
Usually, you will want to use the asant build tool to compile the classes. You
will use deploytool to package the necessary files into the WAR and deploy the
WAR file.

838
The asant tool and deploytool are included in the Application Server. You
configure how the asant build tool builds your WAR file via a build.xml file.
Each example in the tutorial has its own build file, to which you can refer when
creating your own build file.

Configuring an Application Using
deploytool
Web applications are configured via elements contained in the web application
deployment descriptor. The deploytool utility generates the descriptor when
you create a WAR and adds elements when you create web components and
associated classes. You can modify the elements via the inspectors associated
with the WAR.

The deployment descriptor for a JavaServer Faces application must specify cer-
tain configurations, which include the following:

• The servlet used to process JavaServer Faces requests

• The servlet mapping for the processing servlet

• The path to the configuration resource file if it is not located in a default
location

The deployment descriptor can also specify other, optional configurations,
including:

• Specifying where component state is saved

• Restricting Access to pages containing JavaServer Faces tags

• Turning on XML validation

• Verifying custom objects

This section gives more details on these configurations and explains how to con-
figure them in deploytool.

Identifying the Servlet for Life Cycle
Processing
One requirement of a JavaServer Faces application is that all requests to the
application that reference previously saved JavaServer Faces components must
go through FacesServlet. A FacesServlet instance manages the request pro-
cessing life cycle for web applications and initializes the resources required by

BASIC REQUIREMENTS OF A JAVASERVER FACES APPLICATION 839
JavaServer Faces technology. To comply with this requirement, follow these
steps.

1. While using the Edit Contents dialog box from the Web Component wiz-
ard, add the jsf-api.jar file from <J2EE_HOME>/lib/ to your WAR file.
This JAR file is needed so that you have access to the FacesServlet

instance when configuring your application with deploytool.

2. In the Choose Component Type dialog box of the Web Component wizard,
select the Servlet radio button and click Next.

3. Select FacesServlet from the Servlet Class combo box.

4. In the Startup Load Sequence Position combo box, enter 1, indicating that
the FacesServlet should be loaded when the application starts. Click Fin-
ish.

5. Select the FacesServlet web component from the tree.

6. Select the Aliases tab and click Add.

7. Enter a path in the Aliases field. This path will be the path to FacesServ-

let. Users of the application will include this path in the URL when they
access the application. For the guessNumber application, the path is /

guess/*.

Before a JavaServer Faces application can launch the first JSP page, the web
container must invoke the FacesServlet instance in order for the application
life cycle process to start. The application life cycle is described in the section
The Life Cycle of a JavaServer Faces Page (page 680).

To make sure that the FacesServlet instance is invoked, you provide a mapping
to it using the Aliases tab, as described in steps 5 through 7 above.

The mapping to FacesServlet described in the foregoing steps uses a prefix
mapping to identify a JSP page as having JavaServer Faces content. Because of
this, the URL to the first JSP page of the application must include the mapping.
There are two ways to accomplish this:

• The page author can include an HTML page in the application that has the
URL to the first JSP page. This URL must include the path to FacesServ-

let, as shown by this tag, which uses the mapping defined in the guess-

Number application:

• Users of the application can include the path to FacesServlet in the URL
to the first page when they enter it in their browser, as shown by this URL
that accesses the guessNumber application:

840
http://localhost:8080/guessNumber/guess/greeting.jsp

The second method allows users to start the application from the first JSP page,
rather than start it from an HTML page. However, the second method requires
users to identify the first JSP page. When you use the first method, users need
only enter

http://localhost:8080/guessNumber

You could define an extension mapping, such as *.faces, instead of the prefix
mapping /guess/*. If a request comes to the server for a JSP page with a .faces
extension, the container will send the request to the FacesServlet instance,
which will expect a corresponding JSP page of the same name to exist contain-
ing the content. For example, if the request URL is http://localhost/

bookstore6/bookstore.faces, FacesServlet will map it to the book-

store.jsp page.

Specifying a Path to an Application
Configuration Resource File
As explained in Application Configuration Resource File (page 816), an applica-
tion can have multiple application configuration resource files. If these files are
not located in the directories that the implementation searches by default or the
files are not named faces-config.xml, you need to specify paths to these files.
To specify paths to the files using deploytool follow these steps:

1. Select the WAR from the tree.

2. Select the Context tabbed pane and click Add.

3. Enter javax.faces.application.CONFIG_FILES in the Coded Parameter
field.

4. Enter the path to your application configuration resource file in the Value
field. For example, the path to the guessNumber application’s application
configuration resource file is /WEB-INF/faces-config.xml

5. Repeat steps 2 through 4 for each application configuration resource file
that your application contains.

Specifying Where State Is Saved
When implementing the state-holder methods (described in Saving and Restor-
ing State, page 808), you specify in your deployment descriptor where you want

BASIC REQUIREMENTS OF A JAVASERVER FACES APPLICATION 841
the state to be saved, either client or server. You do this by setting a context
parameter with deploytool:

1. While running deploytool, select the web application from the tree.

2. Select the Context tabbed pane and click Add.

3. Enter javax.faces.STATE_SAVING_METHOD in the Coded Parameter field.

4. Enter either client or server in the Value field, depending on whether
you want state saved in the client or the server.

If state is saved on the client, the state of the entire view is rendered to a hidden
field on the page. The JavaServer Faces implementation saves the state on the
client by default. Duke’s Bookstore saves its state in the client.

Restricting Access to JavaServer Faces
Components
In addition to identifying the FacesServlet instance and providing a mapping to
it, you should also ensure that all applications use FacesServlet to process Jav-
aServer Faces components. You do this by setting a security constraint:

1. Select your WAR file from the tree.

2. Select the Security tabbed pane.

3. Click Add Constraints and enter Restricts Access to JSP Pages in the
Security Constraints field.

4. Click Add Collections and enter Restricts Access to JSP Pages in the
Web Resource Collections field.

5. Click Edit Collections.

6. In the Edit Collections of Web Resource Collections dialog box, click Add
URL Pattern and enter the path to a JSP page to which you want to restrict
access, such as /response.jsp.

7. Continue to click Add URL Pattern again, and enter paths to all the JSP
pages in your application and click OK.

842
Turning On Validation of XML Files
Your application contains one or more application configuration resource files
written in XML. You can force the JavaServer Faces implementation to validate
the XML of these files by setting the validateXML flag to true:

1. Select your WAR file from the tree.

2. Select the Context tabbed pane and click Add.

3. Enter com.sun.faces.validateXml in the Coded Parameter field.

4. Enter true in the Value field. The default value is false.

Verifying Custom Objects
If your application includes custom objects, such as components, converters, val-
idators, and renderers, you can verify when the application starts that they can be
created. To do this, you set the verifyObjects flag to true:

1. Select your WAR file from the tree

2. Select the Context tabbed pane and click Add.

3. Enter com.sun.faces.verifyObjects in the Coded Parameter field.

4. Enter true in the Value field. The default value is false.

Normally, this flag should be set to false during development because it takes
extra time to check the objects.

BASIC REQUIREMENTS OF A JAVASERVER FACES APPLICATION 843
Including the Required JAR Files
JavaServer Faces applications require several JAR files to run properly. These
JAR files are as follows:

• jsf-api.jar (contains the javax.faces.* API classes)

• jsf-impl.jar (contains the implementation classes of the JavaServer
Faces implementation)

• jstl.jar (required to use JSTL tags and referenced by JavaServer Faces
implementation classes)

• standard.jar (required to use JSTL tags and referenced by JavaServer
Faces reference implementation classes)

• commons-beanutils.jar (utilities for defining and accessing JavaBeans
component properties)

• commons-digester.jar (for processing XML documents)

• commons-collections.jar (extensions of the Java 2 SDK Collections
Framework)

• commons-logging.jar (a general-purpose, flexible logging facility to
allow developers to instrument their code with logging statements)

The jsf-api.jar and the jsf-impl.jar files are located in <J2EE_HOME>/lib.
The jstl.jar file is bundled in appserv-jstl.jar. The other JAR files are
bundled in the appserv-rt.jar, also located in <J2EE_HOME>/lib/.

When packaging and deploying your JavaServer Faces application with deploy-

tool, you do not need to package any of the JAR files, except the jsf-api.jar

file, with your application. The jsf-api.jar file must be packaged with your
application so that you have access to the FacesServlet instance and can con-
figure the mapping for it.

Including the Classes, Pages, and Other
Resources
When packaging web applications using deploytool, you’ll notice that deploy-
tool automatically packages many of your web application’s files in the appro-
priate directories in the WAR file. All JSP pages are placed at the top level of the
WAR file. The TLD files and the web.xml that deploytool creates are packaged
in the WEB-INF directory. All packages are stored in the WEB-INF/classes direc-
tory. All JAR files are packaged in the WEB-INF/lib directory. However,

844
deploytool does not copy faces-config.xml to the WEB-INF directory as it
should. Therefore, when packaging your web applications, you need to drag
faces-config.xml to the WEB-INF directory.

22
845
Internationalizing and
Localizing Web

Applications

Internationalization is the process of preparing an application to support more
than one language and data format. Localization is the process of adapting an
internationalized application to support a specific region or locale. Examples of
locale-dependent information include messages and user interface labels, charac-
ter sets and encoding, and date and currency formats. Although all client user
interfaces should be internationalized and localized, it is particularly important
for web applications because of the global nature of the web.

Java Platform Localization Classes
In the Java 2 platform, java.util.Locale represents a specific geographical,
political, or cultural region. The string representation of a locale consists of the
international standard two-character abbreviation for language and country and
an optional variant, all separated by underscore (_) characters. Examples of
locale strings include fr (French), de_CH (Swiss German), and en_US_POSIX

(English on a POSIX-compliant platform).

http://java.sun.com/j2se/1.4.1/docs/api/java/util/Locale.html

846
Locale-sensitive data is stored in a java.util.ResourceBundle. A resource
bundle contains key-value pairs, where the keys uniquely identify a locale-spe-
cific object in the bundle. A resource bundle can be backed by a text file (proper-
ties resource bundle) or a class (list resource bundle) containing the pairs. You
construct resource bundle instance by appending a locale string representation to
a base name.

For more details on internationalization and localization in the Java 2 platform,
see

http://java.sun.com/docs/books/tutorial/i18n/index.html

In the web technology chapters, the Duke’s Bookstore applications contain
resource bundles with the base name messages.BookstoreMessages for the
locales en_US, fr_FR, de_DE, and es_MX.

Providing Localized Messages and
Labels

Messages and labels should be tailored according to the conventions of a user’s
language and region. There are two approaches to providing localized messages
and labels in a web application:

• Provide a version of the JSP page in each of the target locales and have a
controller servlet dispatch the request to the appropriate page depending on
the requested locale. This approach is useful if large amounts of data on a
page or an entire web application need to be internationalized.

• Isolate any locale-sensitive data on a page into resource bundles, and
access the data so that the corresponding translated message is fetched
automatically and inserted into the page. Thus, instead of creating strings
directly in your code, you create a resource bundle that contains transla-
tions and read the translations from that bundle using the corresponding
key.

The Duke’s Bookstore applications follow the second approach. Here are a few
lines from the default resource bundle messages.BookstoreMessages.java:

{"TitleCashier", "Cashier"},
{"TitleBookDescription", "Book Description"},
{"Visitor", "You are visitor number "},
{"What", "What We're Reading"},

http://java.sun.com/docs/books/tutorial/i18n/index.html
http://java.sun.com/j2se/1.4.1/docs/api/java/util/ResourceBundle.html

PROVIDING LOCALIZED MESSAGES AND LABELS 847
{"Talk", " talks about how Web components can transform the way
you develop applications for the Web. This is a must read for
any self respecting Web developer!"},
{"Start", "Start Shopping"},

Establishing the Locale
To get the correct strings for a given user, a web application either retrieves the
locale (set by a browser language preference) from the request using the getLo-

cale method, or allows the user to explicitly select the locale.

The JSTL versions of Duke’s Bookstore automatically retrieve the locale from
the request and store it in a localization context (see Internationalization Tag
Library, page 564). It is also possible for a component to explicitly set the locale
via the fmt:setLocale tag.

The JavaServer Faces version of Duke’s Bookstore allows the user to explicitly
select the locale. The user selection triggers a method that stores the locale in the
FacesContext object. The locale is then used in resource bundle selection and is
available for localizing dynamic data and messages (see Localizing Dynamic
Data, page 762):

<h:commandLink id="NAmerica" action="storeFront"
actionListener="#{localeBean.chooseLocaleFromLink}">
<h:outputText value="#{bundle.english}" />

</h:commandLink>

public void chooseLocaleFromLink(ActionEvent event) {
String current = event.getComponent().getId();
FacesContext context = FacesContext.getCurrentInstance();
context.getViewRoot().setLocale((Locale)

locales.get(current));
}

Setting the Resource Bundle
After the locale is set, the controller of a web application typically retrieves the
resource bundle for that locale and saves it as a session attribute (see Associating
Objects with a Session, page 474) for use by other components:

messages = ResourceBundle.
getBundle("messages.BookstoreMessages", locale);

session.setAttribute("messages", messages);

848
The resource bundle base name for the JSTL versions of Duke’s Bookstore is set
at deployment time through a context parameter. When a session is initiated, the
resource bundle for the user’s locale is stored in the localization context. It is also
possible to override the resource bundle at runtime for a given scope using the
fmt:setBundle tag and for a tag body using the fmt:bundle tag.

In the JavaServer Faces version of Duke’s Bookstore, the JSP pages set the
resource bundle using the f:loadBundle tag. This tag loads the correct resource
bundle according to the locale stored in FacesContext.

<f:loadBundle basename="messages.BookstoreMessages"
var="bundle"/>

For information on this tag, see Referencing a ResourceBundle from a
Page (page 724).

Retrieving Localized Messages
A web component written in the Java programming language retrieves the
resource bundle from the session:

ResourceBundle messages =
(ResourceBundle)session.getAttribute("messages");

Then it looks up the string associated with the key Talk as follows:

messages.getString("Talk");

The JSP versions of the Duke’s Bookstore application uses the fmt:message tag
to provide localized strings for messages, HTML link text, button labels, and
error messages:

<fmt:message key="Talk"/>

For information on the JSTL messaging tags, see Messaging Tags (page 566).

The JavaServer Faces version of Duke’s Bookstore retrieves messages from the
bundle variable (created in the preceding section) by using the following tag:

<h:outputText value="#{bundle.Talk}"/>

For information on creating localized messages in JavaServer Faces, see Refer-
encing a Localized Message (page 725).

DATE AND NUMBER FORMATTING 849
Date and Number Formatting
Java programs use the DateFormat.getDateInstance(int, locale) to parse
and format dates in a locale-sensitive manner. Java programs use the Number-

Format.getXXXInstance(locale) method, where XXX can be Currency, Num-
ber, or Percent, to parse and format numerical values in a locale-sensitive
manner. The servlet version of Duke’s Bookstore uses the currency version of
this method to format book prices.

JSTL applications use the fmt:formatDate and fmt:parseDate tags to handle
localized dates and use the fmt:formatNumber and fmt:parseNumber tags to
handle localized numbers, including currency values. For information on the
JSTL formatting tags, see Formatting Tags (page 566). The JSTL version of
Duke’s bookstore uses the fmt:formatNumber tag to format book prices and the
fmt:formatDate tag to format the ship date for an order:

<fmt:formatDate value="${shipDate}" type="date"
dateStyle="full"/>.

The JavaServer Faces version of Duke’s Bookstore uses date/time and number
converters to format dates and numbers in a locale-sensitive manner. For exam-
ple, the same shipping date is converted in the JavaServer Faces version as fol-
lows:

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full"/>

</h:outputText>

For information on JavaServer Faces converters, see Using the Standard
Converters (page 726).

Character Sets and Encodings

Character Sets
A character set is a set of textual and graphic symbols, each of which is mapped
to a set of nonnegative integers.

The first character set used in computing was US-ASCII. It is limited in that it
can represent only American English. US-ASCII contains upper- and lower-case

850
Latin alphabets, numerals, punctuation, a set of control codes, and a few miscel-
laneous symbols.

Unicode defines a standardized, universal character set that can be extended to
accommodate additions. When the Java program source file encoding doesn’t
support Unicode, you can represent Unicode characters as escape sequences by
using the notation \uXXXX, where XXXX is the character’s 16-bit representation in
hexadecimal. For example, the Spanish version of the Duke’s Bookstore mes-
sage file uses Unicode for non-ASCII characters:

{"TitleCashier", "Cajero"},
{"TitleBookDescription", "Descripci" + "\u00f3" + "n del
Libro"},
{"Visitor", "Es visitanten" + "\u00fa" + "mero "},
{"What", "Qu" + "\u00e9" + " libros leemos"},
{"Talk", " describe como componentes de software de web pueden
transformar la manera en que desrrollamos aplicaciones para el
web. Este libro es obligatorio para cualquier programador de
respeto!"},
{"Start", "Empezar a Comprar"},

Character Encoding
A character encoding maps a character set to units of a specific width and
defines byte serialization and ordering rules. Many character sets have more than
one encoding. For example, Java programs can represent Japanese character sets
using the EUC-JP or Shift-JIS encodings, among others. Each encoding has rules
for representing and serializing a character set.

The ISO 8859 series defines 13 character encodings that can represent texts in
dozens of languages. Each ISO 8859 character encoding can have up to 256
characters. ISO 8859-1 (Latin-1) comprises the ASCII character set, characters
with diacritics (accents, diaereses, cedillas, circumflexes, and so on), and addi-
tional symbols.

UTF-8 (Unicode Transformation Format, 8-bit form) is a variable-width charac-
ter encoding that encodes 16-bit Unicode characters as one to four bytes. A byte
in UTF-8 is equivalent to 7-bit ASCII if its high-order bit is zero; otherwise, the
character comprises a variable number of bytes.

UTF-8 is compatible with the majority of existing web content and provides
access to the Unicode character set. Current versions of browsers and email cli-
ents support UTF-8. In addition, many new web standards specify UTF-8 as

CHARACTER SETS AND ENCODINGS 851
their character encoding. For example, UTF-8 is one of the two required encod-
ings for XML documents (the other is UTF-16).

See Appendix A for more information on character encodings in the Java 2 plat-
form.

Web components usually use PrintWriter to produce responses; PrintWriter
automatically encodes using ISO 8859-1. Servlets can also output binary data
using OutputStream classes, which perform no encoding. An application that
uses a character set that cannot use the default encoding must explicitly set a dif-
ferent encoding.

For web components, three encodings must be considered:

• Request

• Page (JSP pages)

• Response

Request Encoding
The request encoding is the character encoding in which parameters in an incom-
ing request are interpreted. Currently, many browsers do not send a request
encoding qualifier with the Content-Type header. In such cases, a web con-
tainer will use the default encoding—ISO-8859-1—to parse request data.

If the client hasn’t set character encoding and the request data is encoded with a
different encoding from the default, the data won’t be interpreted correctly. To
remedy this situation, you can use the ServletRequest.setCharacterEncod-

ing(String enc) method to override the character encoding supplied by the
container. To control the request encoding from JSP pages, you can use the JSTL
fmt:requestEncoding tag. You must call the method or tag before parsing any
request parameters or reading any input from the request. Calling the method or
tag once data has been read will not affect the encoding.

Page Encoding
For JSP pages, the page encoding is the character encoding in which the file is
encoded.

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequest.html#setCharacterEncoding(java.lang.String)
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletRequest.html#setCharacterEncoding(java.lang.String)

852
For JSP pages in standard syntax, the page encoding is determined from the fol-
lowing sources:

• The page encoding value of a JSP property group (see Setting Properties
for Groups of JSP Pages, page 521) whose URL pattern matches the page.

• The pageEncoding attribute of the page directive of the page. It is a trans-
lation-time error to name different encodings in the pageEncoding

attribute of the page directive of a JSP page and in a JSP property group.

• The CHARSET value of the contentType attribute of the page directive.

If none of these is provided, ISO-8859-1 is used as the default page encoding.

For JSP pages in XML syntax (JSP documents), the page encoding is determined
as described in section 4.3.3 and appendix F.1 of the XML specification.

The pageEncoding and contentType attributes determine the page character
encoding of only the file that physically contains the page directive. A web con-
tainer raises a translation-time error if an unsupported page encoding is speci-
fied.

Response Encoding
The response encoding is the character encoding of the textual response gener-
ated by a web component. The response encoding must be set appropriately so
that the characters are rendered correctly for a given locale. A web container sets
an initial response encoding for a JSP page from the following sources:

• The CHARSET value of the contentType attribute of the page directive

• The encoding specified by the pageEncoding attribute of the page direc-
tive

• The page encoding value of a JSP property group whose URL pattern
matches the page

If none of these is provided, ISO-8859-1 is used as the default response encod-
ing.

The setCharacterEncoding, setContentType, and setLocale methods can be
called repeatedly to change the character encoding. Calls made after the servlet
response’s getWriter method has been called or after the response is committed
have no effect on the character encoding. Data is sent to the response stream on
buffer flushes (for buffered pages) or on encountering the first content on unbuf-
fered pages.

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletResponse.html#setCharacterEncoding(java.lang.String)
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletResponse.html#setContentType(java.lang.String)
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletResponse.html#setLocale(java.util.Locale)

FURTHER INFORMATION 853
Calls to setContentType set the character encoding only if the given content
type string provides a value for the charset attribute. Calls to setLocale set the
character encoding only if neither setCharacterEncoding nor setContentType
has set the character encoding before. To control the response encoding from JSP
pages, you can use the JSTL fmt.setLocale tag.

To obtain the character encoding for a locale, the setLocale method checks the
locale encoding mapping for the web application. For example, to map Japanese
to the Japanese-specific encoding Shift_JIS, follow these steps:

1. Select the WAR.

2. Click the Advanced Settings button.

3. In the Locale Character Encoding table, Click the Add button.

4. Enter ja in the Extension column.

5. Enter Shift_JIS in the Character Encoding column.

If a mapping is not set for the web application, setLocale uses a Application
Server mapping.

The first application in Chapter 12 allows a user to choose an English string rep-
resentation of a locale from all the locales available to the Java 2 platform and
then outputs a date localized for that locale. To ensure that the characters in the
date can be rendered correctly for a wide variety of character sets, the JSP page
that generates the date sets the response encoding to UTF-8 by using the follow-
ing directive:

<%@ page contentType="text/html; charset=UTF-8" %>

Further Information
For a detailed discussion on internationalizing web applications, see the Java
BluePrints for the Enterprise:

http://java.sun.com/blueprints/enterprise

http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/i18n/i18n.html#1076131

854

23
855
Enterprise Beans

ENTERPRISE beans are the J2EE components that implement Enterprise Java-
Beans (EJB) technology. Enterprise beans run in the EJB container, a runtime
environment within the Application Server (see Figure 1–5, page 10). Although
transparent to the application developer, the EJB container provides system-level
services such as transactions and security to its enterprise beans. These services
enable you to quickly build and deploy enterprise beans, which form the core of
transactional J2EE applications.

What Is an Enterprise Bean?
Written in the Java programming language, an enterprise bean is a server-side
component that encapsulates the business logic of an application. The business
logic is the code that fulfills the purpose of the application. In an inventory con-
trol application, for example, the enterprise beans might implement the business
logic in methods called checkInventoryLevel and orderProduct. By invoking
these methods, remote clients can access the inventory services provided by the
application.

Benefits of Enterprise Beans
For several reasons, enterprise beans simplify the development of large, distrib-
uted applications. First, because the EJB container provides system-level ser-
vices to enterprise beans, the bean developer can concentrate on solving business

856
problems. The EJB container—and not the bean developer—is responsible for
system-level services such as transaction management and security authoriza-
tion.

Second, because the beans—and not the clients—contain the application’s busi-
ness logic, the client developer can focus on the presentation of the client. The
client developer does not have to code the routines that implement business rules
or access databases. As a result, the clients are thinner, a benefit that is particu-
larly important for clients that run on small devices.

Third, because enterprise beans are portable components, the application assem-
bler can build new applications from existing beans. These applications can run
on any compliant J2EE server provided that they use the standard APIs.

When to Use Enterprise Beans
You should consider using enterprise beans if your application has any of the fol-
lowing requirements:

• The application must be scalable. To accommodate a growing number of
users, you may need to distribute an application’s components across mul-
tiple machines. Not only can the enterprise beans of an application run on
different machines, but also their location will remain transparent to the
clients.

• Transactions must ensure data integrity. Enterprise beans support transac-
tions, the mechanisms that manage the concurrent access of shared objects.

• The application will have a variety of clients. With only a few lines of code,
remote clients can easily locate enterprise beans. These clients can be thin,
various, and numerous.

WHAT IS A SESSION BEAN? 857
Types of Enterprise Beans
Table 23–1 summarizes the three types of enterprise beans. The following sec-
tions discuss each type in more detail.

What Is a Session Bean?
A session bean represents a single client inside the Application Server. To access
an application that is deployed on the server, the client invokes the session bean’s
methods. The session bean performs work for its client, shielding the client from
complexity by executing business tasks inside the server.

As its name suggests, a session bean is similar to an interactive session. A ses-
sion bean is not shared; it can have only one client, in the same way that an inter-
active session can have only one user. Like an interactive session, a session bean
is not persistent. (That is, its data is not saved to a database.) When the client ter-
minates, its session bean appears to terminate and is no longer associated with
the client.

For code samples, see Chapter 25.

State Management Modes
There are two types of session beans: stateless and stateful.

Table 23–1 Enterprise Bean Types

Enterprise Bean Type Purpose

Session Performs a task for a client; implements a web service

Entity Represents a business entity object that exists in persistent storage

Message-Driven
Acts as a listener for the Java Message Service API, processing
messages asynchronously

858
Stateless Session Beans
A stateless session bean does not maintain a conversational state for the client.
When a client invokes the method of a stateless bean, the bean’s instance vari-
ables may contain a state, but only for the duration of the invocation. When the
method is finished, the state is no longer retained. Except during method invoca-
tion, all instances of a stateless bean are equivalent, allowing the EJB container
to assign an instance to any client.

Because stateless session beans can support multiple clients, they can offer better
scalability for applications that require large numbers of clients. Typically, an
application requires fewer stateless session beans than stateful session beans to
support the same number of clients.

At times, the EJB container may write a stateful session bean to secondary stor-
age. However, stateless session beans are never written to secondary storage.
Therefore, stateless beans may offer better performance than stateful beans.

A stateless session bean can implement a web service, but other types of enter-
prise beans cannot.

Stateful Session Beans
The state of an object consists of the values of its instance variables. In a stateful
session bean, the instance variables represent the state of a unique client-bean
session. Because the client interacts (“talks”) with its bean, this state is often
called the conversational state.

The state is retained for the duration of the client-bean session. If the client
removes the bean or terminates, the session ends and the state disappears. This
transient nature of the state is not a problem, however, because when the conver-
sation between the client and the bean ends there is no need to retain the state.

When to Use Session Beans
In general, you should use a session bean if the following circumstances hold:

• At any given time, only one client has access to the bean instance.

• The state of the bean is not persistent, existing only for a short period (per-
haps a few hours).

• The bean implements a web service.

WHAT IS AN ENTITY BEAN? 859
Stateful session beans are appropriate if any of the following conditions are true:

• The bean’s state represents the interaction between the bean and a specific
client.

• The bean needs to hold information about the client across method invoca-
tions.

• The bean mediates between the client and the other components of the
application, presenting a simplified view to the client.

• Behind the scenes, the bean manages the work flow of several enterprise
beans. For an example, see the AccountControllerBean session bean in
Chapter 36.

To improve performance, you might choose a stateless session bean if it has any
of these traits:

• The bean’s state has no data for a specific client.

• In a single method invocation, the bean performs a generic task for all cli-
ents. For example, you might use a stateless session bean to send an email
that confirms an online order.

• The bean fetches from a database a set of read-only data that is often used
by clients. Such a bean, for example, could retrieve the table rows that rep-
resent the products that are on sale this month.

What Is an Entity Bean?
An entity bean represents a business object in a persistent storage mechanism.
Some examples of business objects are customers, orders, and products. In the
Application Server, the persistent storage mechanism is a relational database.
Typically, each entity bean has an underlying table in a relational database, and
each instance of the bean corresponds to a row in that table. For code examples
of entity beans, please refer to Chapters 26 and 27.

What Makes Entity Beans Different from
Session Beans?
Entity beans differ from session beans in several ways. Entity beans are persis-
tent, allow shared access, have primary keys, and can participate in relationships
with other entity beans.

860
Persistence
Because the state of an entity bean is saved in a storage mechanism, it is persis-
tent. Persistence means that the entity bean’s state exists beyond the lifetime of
the application or the Application Server process. If you’ve worked with data-
bases, you’re familiar with persistent data. The data in a database is persistent
because it still exists even after you shut down the database server or the applica-
tions it services.

There are two types of persistence for entity beans: bean-managed and container-
managed. With bean-managed persistence, the entity bean code that you write
contains the calls that access the database. If your bean has container-managed
persistence, the EJB container automatically generates the necessary database
access calls. The code that you write for the entity bean does not include these
calls. For additional information, see the section Container-Managed
Persistence (page 861).

Shared Access
Entity beans can be shared by multiple clients. Because the clients might want to
change the same data, it’s important that entity beans work within transactions.
Typically, the EJB container provides transaction management. In this case, you
specify the transaction attributes in the bean’s deployment descriptor. You do not
have to code the transaction boundaries in the bean; the container marks the
boundaries for you. See Chapter 30 for more information.

Primary Key
Each entity bean has a unique object identifier. A customer entity bean, for
example, might be identified by a customer number. The unique identifier, or
primary key, enables the client to locate a particular entity bean. For more infor-
mation, see the section Primary Keys for Bean-Managed Persistence (page 962).

Relationships
Like a table in a relational database, an entity bean may be related to other entity
beans. For example, in a college enrollment application, StudentBean and
CourseBean would be related because students enroll in classes.

You implement relationships differently for entity beans with bean-managed per-
sistence than those with container-managed persistence. With bean-managed

WHAT IS AN ENTITY BEAN? 861
persistence, the code that you write implements the relationships. But with con-
tainer-managed persistence, the EJB container takes care of the relationships for
you. For this reason, relationships in entity beans with container-managed persis-
tence are often referred to as container-managed relationships.

Container-Managed Persistence
The term container-managed persistence means that the EJB container handles
all database access required by the entity bean. The bean’s code contains no
database access (SQL) calls. As a result, the bean’s code is not tied to a specific
persistent storage mechanism (database). Because of this flexibility, even if you
redeploy the same entity bean on different J2EE servers that use different data-
bases, you won’t need to modify or recompile the bean’s code. In short, your
entity beans are more portable if you use container-managed persistence than if
they use bean-managed persistence.

To generate the data access calls, the container needs information that you pro-
vide in the entity bean’s abstract schema.

Abstract Schema
Part of an entity bean’s deployment descriptor, the abstract schema defines the
bean’s persistent fields and relationships. The term abstract distinguishes this
schema from the physical schema of the underlying data store. In a relational
database, for example, the physical schema is made up of structures such as
tables and columns.

You specify the name of an abstract schema in the deployment descriptor. This
name is referenced by queries written in the Enterprise JavaBeans Query Lan-
guage (EJB QL). For an entity bean with container-managed persistence, you
must define an EJB QL query for every finder method (except findByPrima-
ryKey). The EJB QL query determines the query that is executed by the EJB
container when the finder method is invoked. To learn more about EJB QL, see
Chapter 29.

862
You’ll probably find it helpful to sketch the abstract schema before writing any
code. Figure 23–1 represents a simple abstract schema that describes the
relationships between three entity beans. These relationships are discussed
further in the sections that follow.

Figure 23–1 A High-Level View of an Abstract Schema

Persistent Fields
The persistent fields of an entity bean are stored in the underlying data store.
Collectively, these fields constitute the state of the bean. At runtime, the EJB
container automatically synchronizes this state with the database. During
deployment, the container typically maps the entity bean to a database table and
maps the persistent fields to the table’s columns.

A CustomerBean entity bean, for example, might have persistent fields such as
firstName, lastName, phone, and emailAddress. In container-managed persis-
tence, these fields are virtual. You declare them in the abstract schema, but you
do not code them as instance variables in the entity bean class. Instead, the per-
sistent fields are identified in the code by access methods (getters and setters).

WHAT IS AN ENTITY BEAN? 863
Relationship Fields
A relationship field is like a foreign key in a database table: it identifies a related
bean. Like a persistent field, a relationship field is virtual and is defined in the
enterprise bean class via access methods. But unlike a persistent field, a relation-
ship field does not represent the bean’s state. Relationship fields are discussed
further in Direction in Container-Managed Relationships (page 863).

Multiplicity in Container-Managed
Relationships
There are four types of multiplicities: one-to-one, one-to-many, many-to-one,
and many-to-many.

One-to-one: Each entity bean instance is related to a single instance of another
entity bean. For example, to model a physical warehouse in which each storage
bin contains a single widget, StorageBinBean and WidgetBean would have a
one-to-one relationship.

One-to-many: An entity bean instance can be related to multiple instances of the
other entity bean. A sales order, for example, can have multiple line items. In the
order application, OrderBean would have a one-to-many relationship with
LineItemBean.

Many-to-one: Multiple instances of an entity bean can be related to a single
instance of the other entity bean. This multiplicity is the opposite of a one-to-
many relationship. In the example just mentioned, from the perspective of
LineItemBean the relationship to OrderBean is many-to-one.

Many-to-many: The entity bean instances can be related to multiple instances of
each other. For example, in college each course has many students, and every
student may take several courses. Therefore, in an enrollment application,
CourseBean and StudentBean would have a many-to-many relationship.

Direction in Container-Managed
Relationships
The direction of a relationship can be either bidirectional or unidirectional. In a
bidirectional relationship, each entity bean has a relationship field that refers to
the other bean. Through the relationship field, an entity bean’s code can access
its related object. If an entity bean has a relative field, then we often say that it
“knows” about its related object. For example, if OrderBean knows what

864
LineItemBean instances it has and if LineItemBean knows what OrderBean it
belongs to, then they have a bidirectional relationship.

In a unidirectional relationship, only one entity bean has a relationship field that
refers to the other. For example, LineItemBean would have a relationship field
that identifies ProductBean, but ProductBean would not have a relationship
field for LineItemBean. In other words, LineItemBean knows about Product-
Bean, but ProductBean doesn’t know which LineItemBean instances refer to it.

EJB QL queries often navigate across relationships. The direction of a relation-
ship determines whether a query can navigate from one bean to another. For
example, a query can navigate from LineItemBean to ProductBean but cannot
navigate in the opposite direction. For OrderBean and LineItemBean, a query
could navigate in both directions, because these two beans have a bidirectional
relationship.

When to Use Entity Beans
You should probably use an entity bean under the following conditions:

• The bean represents a business entity and not a procedure. For example,
CreditCardBean would be an entity bean, but CreditCardVerifierBean
would be a session bean.

• The bean’s state must be persistent. If the bean instance terminates or if the
Application Server is shut down, the bean’s state still exists in persistent
storage (a database).

What Is a Message-Driven Bean?
A message-driven bean is an enterprise bean that allows J2EE applications to
process messages asynchronously. It normally acts as a JMS message listener,
which is similar to an event listener except that it receives JMS messages instead
of events. The messages can be sent by any J2EE component—an application
client, another enterprise bean, or a web component—or by a JMS application or
system that does not use J2EE technology. Message-driven beans can process
either JMS messages or other kinds of messages.

For a simple code sample, see Chapter 28. For more information about using
message-driven beans, see Using the JMS API in a J2EE
Application (page 1248) and Chapter 34.

WHAT IS A MESSAGE-DRIVEN BEAN? 865
What Makes Message-Driven Beans
Different from Session and Entity Beans?
The most visible difference between message-driven beans and session and
entity beans is that clients do not access message-driven beans through inter-
faces. Interfaces are described in the section Defining Client Access with
Interfaces (page 866). Unlike a session or entity bean, a message-driven bean has
only a bean class.

In several respects, a message-driven bean resembles a stateless session bean.

• A message-driven bean’s instances retain no data or conversational state
for a specific client.

• All instances of a message-driven bean are equivalent, allowing the EJB
container to assign a message to any message-driven bean instance. The
container can pool these instances to allow streams of messages to be pro-
cessed concurrently.

• A single message-driven bean can process messages from multiple clients.

The instance variables of the message-driven bean instance can contain some
state across the handling of client messages—for example, a JMS API connec-
tion, an open database connection, or an object reference to an enterprise bean
object.

Client components do not locate message-driven beans and invoke methods
directly on them. Instead, a client accesses a message-driven bean through JMS
by sending messages to the message destination for which the message-driven
bean class is the MessageListener. You assign a message-driven bean’s destina-
tion during deployment by using Application Server resources.

Message-driven beans have the following characteristics:

• They execute upon receipt of a single client message.

• They are invoked asynchronously.

• They are relatively short-lived.

• They do not represent directly shared data in the database, but they can
access and update this data.

• They can be transaction-aware.

• They are stateless.

When a message arrives, the container calls the message-driven bean’s onMes-

sage method to process the message. The onMessage method normally casts the

866
message to one of the five JMS message types and handles it in accordance with
the application’s business logic. The onMessage method can call helper methods,
or it can invoke a session or entity bean to process the information in the mes-
sage or to store it in a database.

A message can be delivered to a message-driven bean within a transaction con-
text, so all operations within the onMessage method are part of a single transac-
tion. If message processing is rolled back, the message will be redelivered. For
more information, see Chapter 28.

When to Use Message-Driven Beans
Session beans and entity beans allow you to send JMS messages and to receive
them synchronously, but not asynchronously. To avoid tying up server resources,
you may prefer not to use blocking synchronous receives in a server-side compo-
nent. To receive messages asynchronously, use a message-driven bean.

Defining Client Access with Interfaces
The material in this section applies only to session and entity beans and not to
message-driven beans. Because they have a different programming model, mes-
sage-driven beans do not have interfaces that define client access.

A client can access a session or an entity bean only through the methods defined
in the bean’s interfaces. These interfaces define the client’s view of a bean. All
other aspects of the bean—method implementations, deployment descriptor set-
tings, abstract schemas, and database access calls—are hidden from the client.

Well-designed interfaces simplify the development and maintenance of J2EE
applications. Not only do clean interfaces shield the clients from any complexi-
ties in the EJB tier, but they also allow the beans to change internally without
affecting the clients. For example, even if you change your entity beans from
bean-managed to container-managed persistence, you won’t have to alter the cli-
ent code. But if you were to change the method definitions in the interfaces, then
you might have to modify the client code as well. Therefore, to isolate your cli-
ents from possible changes in the beans, it is important that you design the inter-
faces carefully.

When you design a J2EE application, one of the first decisions you make is the
type of client access allowed by the enterprise beans: remote, local, or web ser-
vice.

DEFINING CLIENT ACCESS WITH INTERFACES 867
Remote Clients
A remote client of an enterprise bean has the following traits:

• It can run on a different machine and a different Java virtual machine
(JVM) than the enterprise bean it accesses. (It is not required to run on a
different JVM.)

• It can be a web component, an application client, or another enterprise
bean.

• To a remote client, the location of the enterprise bean is transparent.

To create an enterprise bean that has remote access, you must code a remote
interface and a home interface. The remote interface defines the business meth-
ods that are specific to the bean. For example, the remote interface of a bean
named BankAccountBean might have business methods named deposit and
credit. The home interface defines the bean’s life-cycle methods: create and
remove. For entity beans, the home interface also defines finder methods and
home methods. Finder methods are used to locate entity beans. Home methods
are business methods that are invoked on all instances of an entity bean class.
Figure 23–2 shows how the interfaces control the client’s view of an enterprise
bean.

Figure 23–2 Interfaces for an Enterprise Bean with Remote Access

868
Local Clients
A local client has these characteristics:

• It must run in the same JVM as the enterprise bean it accesses.

• It can be a web component or another enterprise bean.

• To the local client, the location of the enterprise bean it accesses is not
transparent.

• It is often an entity bean that has a container-managed relationship with
another entity bean.

To build an enterprise bean that allows local access, you must code the local
interface and the local home interface. The local interface defines the bean’s
business methods, and the local home interface defines its life-cycle and finder
methods.

Local Interfaces and Container-
Managed Relationships
If an entity bean is the target of a container-managed relationship, then it must
have local interfaces. The direction of the relationship determines whether or not
a bean is the target. In Figure 23–1, for example, ProductBean is the target of a
unidirectional relationship with LineItemBean. Because LineItemBean

accesses ProductBean locally, ProductBean must have the local interfaces.
LineItemBean also needs local interfaces, not because of its relationship with
ProductBean, but because it is the target of a relationship with OrderBean. And
because the relationship between LineItemBean and OrderBean is bidirectional,
both beans must have local interfaces.

Because they require local access, entity beans that participate in a container-
managed relationship must reside in the same EJB JAR file. The primary benefit
of this locality is increased performance: local calls are usually faster than
remote calls.

DEFINING CLIENT ACCESS WITH INTERFACES 869
Deciding on Remote or Local Access
Whether to allow local or remote access depends on the following factors.

• Container-managed relationships: If an entity bean is the target of a con-
tainer-managed relationship, it must use local access.

• Tight or loose coupling of related beans: Tightly coupled beans depend on
one another. For example, a completed sales order must have one or more
line items, which cannot exist without the order to which they belong. The
OrderBean and LineItemBean entity beans that model this relationship are
tightly coupled. Tightly coupled beans are good candidates for local
access. Because they fit together as a logical unit, they probably call each
other often and would benefit from the increased performance that is pos-
sible with local access.

• Type of client: If an enterprise bean is accessed by application clients, then
it should allow remote access. In a production environment, these clients
almost always run on different machines than the Application Server does.
If an enterprise bean’s clients are web components or other enterprise
beans, then the type of access depends on how you want to distribute your
components.

• Component distribution: J2EE applications are scalable because their
server-side components can be distributed across multiple machines. In a
distributed application, for example, the web components may run on a
different server than do the enterprise beans they access. In this distributed
scenario, the enterprise beans should allow remote access.

• Performance: Because of factors such as network latency, remote calls
may be slower than local calls. On the other hand, if you distribute compo-
nents among different servers, you might improve the application’s overall
performance. Both of these statements are generalizations; actual perfor-
mance can vary in different operational environments. Nevertheless, you
should keep in mind how your application design might affect perfor-
mance.

If you aren’t sure which type of access an enterprise bean should have, then
choose remote access. This decision gives you more flexibility. In the future you
can distribute your components to accommodate growing demands on your
application.

Although it is uncommon, it is possible for an enterprise bean to allow both
remote and local access. Such a bean would require both remote and local inter-
faces.

870
Web Service Clients
A web service client can access a J2EE application in two ways. First, the client
can access a web service created with JAX-RPC. (For more information on JAX-
RPC, see Chapter 8, Building Web Services with JAX-RPC, page 319.) Second,
a web service client can invoke the business methods of a stateless session bean.
Other types of enterprise beans cannot be accessed by web service clients.

Provided that it uses the correct protocols (SOAP, HTTP, WSDL), any web ser-
vice client can access a stateless session bean, whether or not the client is written
in the Java programming language. The client doesn’t even “know” what tech-
nology implements the service—stateless session bean, JAX-RPC, or some other
technology. In addition, enterprise beans and web components can be clients of
web services. This flexibility enables you to integrate J2EE applications with
web services.

A web service client accesses a stateless session bean through the bean’s web
service endpoint interface. Like a remote interface, a web service endpoint inter-
face defines the business methods of the bean. In contrast to a remote interface, a
web service endpoint interface is not accompanied by a home interface, which
defines the bean’s life-cycle methods. The only methods of the bean that may be
invoked by a web service client are the business methods that are defined in the
web service endpoint interface.

For a code sample, see A Web Service Example: HelloServiceBean (page 911).

Method Parameters and Access
The type of access affects the parameters of the bean methods that are called by
clients. The following topics apply not only to method parameters but also to
method return values.

Isolation
The parameters of remote calls are more isolated than those of local calls. With
remote calls, the client and bean operate on different copies of a parameter
object. If the client changes the value of the object, the value of the copy in the
bean does not change. This layer of isolation can help protect the bean if the cli-
ent accidentally modifies the data.

THE CONTENTS OF AN ENTERPRISE BEAN 871
In a local call, both the client and the bean can modify the same parameter
object. In general, you should not rely on this side effect of local calls. Perhaps
someday you will want to distribute your components, replacing the local calls
with remote ones.

As with remote clients, web service clients operate on different copies of param-
eters than does the bean that implements the web service.

Granularity of Accessed Data
Because remote calls are likely to be slower than local calls, the parameters in
remote methods should be relatively coarse-grained. A coarse-grained object
contains more data than a fine-grained one, so fewer access calls are required.
For the same reason, the parameters of the methods called by web service clients
should also be coarse-grained.

For example, suppose that a CustomerBean entity bean is accessed remotely.
This bean would have a single getter method that returns a CustomerDetails

object, which encapsulates all of the customer’s information. But if Customer-
Bean is to be accessed locally, it could have a getter method for each instance
variable: getFirstName, getLastName, getPhoneNumber, and so forth. Because
local calls are fast, the multiple calls to these finer-grained getter methods would
not significantly degrade performance.

The Contents of an Enterprise Bean
To develop an enterprise bean, you must provide the following files:

• Deployment descriptor: An XML file that specifies information about the
bean such as its persistence type and transaction attributes. The deploy-

tool utility creates the deployment descriptor when you step through the
New Enterprise Bean wizard.

• Enterprise bean class: Implements the methods defined in the following
interfaces.

• Interfaces: The remote and home interfaces are required for remote access.
For local access, the local and local home interfaces are required. For
access by web service clients, the web service endpoint interface is
required. See the section Defining Client Access with
Interfaces (page 866). (Please note that these interfaces are not used by
message-driven beans.)

872
• Helper classes: Other classes needed by the enterprise bean class, such as
exception and utility classes.

You package the files in the preceding list into an EJB JAR file, the module that
stores the enterprise bean. An EJB JAR file is portable and can be used for differ-
ent applications. To assemble a J2EE application, you package one or more mod-
ules—such as EJB JAR files—into an EAR file, the archive file that holds the
application. When you deploy the EAR file that contains the bean’s EJB JAR
file, you also deploy the enterprise bean onto the Application Server. You can
also deploy an EJB JAR that is not contained in an EAR file.

Figure 23–3 Structure of an Enterprise Bean JAR

Naming Conventions for Enterprise
Beans

Because enterprise beans are composed of multiple parts, it’s useful to follow a
naming convention for your applications. Table 23–2 summarizes the conven-
tions for the example beans in this tutorial.

THE LIFE CYCLES OF ENTERPRISE BEANS 873
The Life Cycles of Enterprise Beans
An enterprise bean goes through various stages during its lifetime, or life cycle.
Each type of enterprise bean—session, entity, or message-driven—has a differ-
ent life cycle.

The descriptions that follow refer to methods that are explained along with the
code examples in the next two chapters. If you are new to enterprise beans, you
should skip this section and try out the code examples first.

The Life Cycle of a Stateful Session Bean
Figure 23–4 illustrates the stages that a session bean passes through during its
lifetime. The client initiates the life cycle by invoking the create method. The
EJB container instantiates the bean and then invokes the setSessionContext

and ejbCreate methods in the session bean. The bean is now ready to have its
business methods invoked.

Table 23–2 Naming Conventions for Enterprise Beans

Item Syntax Example

Enterprise bean name (DDa)

a.DD means that the item is an element in the bean’s deployment descriptor.

<name>Bean AccountBean

EJB JAR display name (DD) <name>JAR AccountJAR

Enterprise bean class <name>Bean AccountBean

Home interface <name>Home AccountHome

Remote interface <name> Account

Local home interface <name>LocalHome AccountLocalHome

Local interface <name>Local AccountLocal

Abstract schema (DD) <name> Account

874
Figure 23–4 Life Cycle of a Stateful Session Bean

While in the ready stage, the EJB container may decide to deactivate, or passi-
vate, the bean by moving it from memory to secondary storage. (Typically, the
EJB container uses a least-recently-used algorithm to select a bean for passiva-
tion.) The EJB container invokes the bean’s ejbPassivate method immediately
before passivating it. If a client invokes a business method on the bean while it is
in the passive stage, the EJB container activates the bean, calls the bean’s ejbAc-
tivate method, and then moves it to the ready stage.

At the end of the life cycle, the client invokes the remove method, and the EJB
container calls the bean’s ejbRemove method. The bean’s instance is ready for
garbage collection.

Your code controls the invocation of only two life-cycle methods: the create

and remove methods in the client. All other methods in Figure 23–4 are invoked
by the EJB container. The ejbCreate method, for example, is inside the bean
class, allowing you to perform certain operations right after the bean is instanti-
ated. For example, you might wish to connect to a database in the ejbCreate

method. See Chapter 31 for more information.

THE LIFE CYCLES OF ENTERPRISE BEANS 875
The Life Cycle of a Stateless Session
Bean
Because a stateless session bean is never passivated, its life cycle has only two
stages: nonexistent and ready for the invocation of business methods. Figure 23–
5 illustrates the stages of a stateless session bean.

Figure 23–5 Life Cycle of a Stateless Session Bean

The Life Cycle of an Entity Bean
Figure 23–6 shows the stages that an entity bean passes through during its life-
time. After the EJB container creates the instance, it calls the setEntityCon-

text method of the entity bean class. The setEntityContext method passes the
entity context to the bean.

After instantiation, the entity bean moves to a pool of available instances. While
in the pooled stage, the instance is not associated with any particular EJB object
identity. All instances in the pool are identical. The EJB container assigns an
identity to an instance when moving it to the ready stage.

There are two paths from the pooled stage to the ready stage. On the first path,
the client invokes the create method, causing the EJB container to call the ejb-

Create and ejbPostCreate methods. On the second path, the EJB container

876
invokes the ejbActivate method. While an entity bean is in the ready stage, an
it’s business methods can be invoked.

There are also two paths from the ready stage to the pooled stage. First, a client
can invoke the remove method, which causes the EJB container to call the
ejbRemove method. Second, the EJB container can invoke the ejbPassivate

method.

Figure 23–6 Life Cycle of an Entity Bean

At the end of the life cycle, the EJB container removes the instance from the pool
and invokes the unsetEntityContext method.

In the pooled state, an instance is not associated with any particular EJB object
identity. With bean-managed persistence, when the EJB container moves an
instance from the pooled state to the ready state, it does not automatically set the
primary key. Therefore, the ejbCreate and ejbActivate methods must assign a

THE LIFE CYCLES OF ENTERPRISE BEANS 877
value to the primary key. If the primary key is incorrect, the ejbLoad and ejb-

Store methods cannot synchronize the instance variables with the database. In
the section The SavingsAccountBean Example (page 931), the ejbCreate

method assigns the primary key from one of the input parameters. The ejbActi-

vate method sets the primary key (id) as follows:

id = (String)context.getPrimaryKey();

In the pooled state, the values of the instance variables are not needed. You can
make these instance variables eligible for garbage collection by setting them to
null in the ejbPassivate method.

The Life Cycle of a Message-Driven
Bean
Figure 23–7 illustrates the stages in the life cycle of a message-driven bean.

The EJB container usually creates a pool of message-driven bean instances. For
each instance, the EJB container instantiates the bean and performs these tasks:

1. It calls the setMessageDrivenContext method to pass the context object
to the instance.

2. It calls the instance’s ejbCreate method.

Figure 23–7 Life Cycle of a Message-Driven Bean

878
Like a stateless session bean, a message-driven bean is never passivated, and it
has only two states: nonexistent and ready to receive messages.

At the end of the life cycle, the container calls the ejbRemove method. The
bean’s instance is then ready for garbage collection.

Further Information
For further information on Enterprise JavaBeans technology, see the following:

• Enterprise JavaBeans 2.1 specification:
http://java.sun.com/products/ejb/docs.html

• The Enterprise JavaBeans web site:
http://java.sun.com/products/ejb

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb

24
879
Getting Started with
Enterprise Beans

THIS chapter shows how to develop, deploy, and run a simple J2EE applica-
tion named ConverterApp. The purpose of ConverterApp is to calculate cur-
rency conversions between yen and eurodollars. ConverterApp consists of an
enterprise bean, which performs the calculations, and two types of clients: an
application client and a web client.

Here’s an overview of the steps you’ll follow in this chapter:

1. Create the J2EE application: ConverterApp.

2. Create the enterprise bean: ConverterBean.

3. Create the application client: ConverterClient.

4. Create the web client in ConverterWAR.

5. Deploy ConverterApp onto the server.

6. From a terminal window, run ConverterClient.

7. Using a browser, run the web client.

880
Before proceeding, make sure that you’ve done the following:

• Read Chapter 1.

• Become familiar with enterprise beans (see Chapter 23).

• Started the server (see Starting and Stopping the Application
Server, page 27).

• Launched deploytool (see Starting the deploytool Utility, page 29)

Creating the J2EE Application
In this section, you’ll create a J2EE application named ConverterApp, storing it
in the file ConverterApp.ear.

1. In deploytool, select File→New→Application.

2. Click Browse.

3. In the file chooser, navigate to this directory:

<INSTALL>/j2eetutorial14/examples/ejb/converter/

4. In the File Name field, enter ConverterApp.ear.

5. Click New Application.

6. Click OK.

7. Verify that the ConverterApp.ear file resides in the directory specified in
step 3.

At this point, the application contains no J2EE components and cannot be
deployed. In the sections that follow, when you run the deploytool wizards to
create the components, deploytool will add the components to the Converter-

App.ear file.

Creating the Enterprise Bean
The enterprise bean in our example is a stateless session bean called Converter-

Bean. The source code for ConverterBean is in the
<INSTALL>/j2eetutorial14/examples/ejb/converter/src/ directory.

Creating ConverterBean requires these steps:

1. Coding the bean’s interfaces and class (the source code is provided)

2. Compiling the source code with asant

CREATING THE ENTERPRISE BEAN 881
3. With deploytool, packaging the bean into an EJB JAR file and inserting
the EJB JAR file into the application’s ConverterApp.ear file

Coding the Enterprise Bean
The enterprise bean in this example needs the following code:

• Remote interface

• Home interface

• Enterprise bean class

Coding the Remote Interface
A remote interface defines the business methods that a client can call. The busi-
ness methods are implemented in the enterprise bean code. The source code for
the Converter remote interface follows.

import javax.ejb.EJBObject;
import java.rmi.RemoteException;
import java.math.*;

public interface Converter extends EJBObject {
 public BigDecimal dollarToYen(BigDecimal dollars)
 throws RemoteException;
 public BigDecimal yenToEuro(BigDecimal yen)
 throws RemoteException;
}

Coding the Home Interface
A home interface defines the methods that allow a client to create, find, or
remove an enterprise bean. The ConverterHome interface contains a single cre-
ate method, which returns an object of the remote interface type. Here is the
source code for the ConverterHome interface:

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface ConverterHome extends EJBHome {
Converter create() throws RemoteException, CreateException;

}

882
Coding the Enterprise Bean Class
The enterprise bean class for this example is called ConverterBean. This class
implements the two business methods (dollarToYen and yenToEuro) that the
Converter remote interface defines. The source code for the ConverterBean

class follows.

import java.rmi.RemoteException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import java.math.*;

public class ConverterBean implements SessionBean {

BigDecimal yenRate = new BigDecimal("121.6000");
BigDecimal euroRate = new BigDecimal("0.0077");

public BigDecimal dollarToYen(BigDecimal dollars) {
BigDecimal result = dollars.multiply(yenRate);
return result.setScale(2,BigDecimal.ROUND_UP);

}

 public BigDecimal yenToEuro(BigDecimal yen) {
 BigDecimal result = yen.multiply(euroRate);
 return result.setScale(2,BigDecimal.ROUND_UP);
 }

 public ConverterBean() {}
 public void ejbCreate() {}
 public void ejbRemove() {}
 public void ejbActivate() {}
 public void ejbPassivate() {}
 public void setSessionContext(SessionContext sc) {}
}

Compiling the Source Files
Now you are ready to compile the remote interface (Converter.java), the home
interface (ConverterHome.java), and the enterprise bean class (Converter-
Bean.java).

1. In a terminal window, go to this directory:

<INSTALL>/j2eetutorial14/examples/ejb/converter/

2. Type the following command:

CREATING THE ENTERPRISE BEAN 883
asant build

This command compiles the source files for the enterprise bean and the applica-
tion client, placing the class files in the converter/build subdirectory (not the
src directory). The web client in this example requires no compilation. For more
information about asant, see Building the Examples (page xxxvii).

Note: When compiling the code, the preceding asant task includes the j2ee.jar

file in the classpath. This file resides in the lib directory of your Application Server
installation. If you plan to use other tools to compile the source code for J2EE com-
ponents, make sure that the classpath includes the j2ee.jar file.

Packaging the Enterprise Bean
To package an enterprise bean, you run the Edit Enterprise Bean wizard of the
deploytool utility. During this process, the wizard performs the following tasks:

• Creates the bean’s deployment descriptor

• Packages the deployment descriptor and the bean’s classes in an EJB JAR
file

• Inserts the EJB JAR file into the ConverterApp.ear file

To start the Edit Enterprise Bean wizard, select File→New→Enterprise Bean. The
wizard displays the following dialog boxes.

1. Introduction dialog box

a. Read the explanatory text for an overview of the wizard’s features.

b. Click Next.

2. EJB JAR dialog box

a. Select the button labeled Create New JAR Module in Application.

b. In the combo box below this button, select ConverterApp.

c. In the JAR Display Name field, enter ConverterJAR.

d. Click Edit Contents.

e. In the tree under Available Files, locate the build/converter subdirec-
tory. (If the target directory is many levels down in the tree, you can sim-
plify the tree view by entering all or part of the directory’s path name in
the Starting Directory field.)

884
f. In the Available Files tree select these classes: Converter.class, Con-
verterBean.class, and ConverterHome.class. (You can also drag
and drop these class files to the Contents text area.)

g. Click Add.

h. Click OK.

i. Click Next.

3. General dialog box

a. Under Bean Type, select the Stateless Session.

b. In the Enterprise Bean Class combo box, select converter.Convert-
erBean.

c. In the Enterprise Bean Name field, enter ConverterBean.

d. In the Remote Home Interface combo box, select converter.Convert-
erHome.

e. In the Remote Interface combo box, select converter.Converter.

f. Click Next.

4. In the Expose as Web Service Endpoint dialog box, select No and click
Next.

5. Click Finish.

Creating the Application Client
An application client is a program written in the Java programming language. At
runtime, the client program executes in a different virtual machine than the
Application Server. For detailed information on the appclient command-line
tool, see the man page at http://java.sun.com/j2ee/1.4/docs/rel-

notes/cliref/index.html.

The application client in this example requires two JAR files. The first JAR file is
for the J2EE component of the client. This JAR file contains the client’s deploy-
ment descriptor and class files; it is created when you run the New Application
Client wizard. Defined by the J2EE Specification, this JAR file is portable across
all compliant application servers.

The second JAR file contains stub classes that are required by the client program
at runtime. These stub classes enable the client to access the enterprise beans that
are running in the Application Server. The JAR file for the stubs is created by
deploytool when you deploy the application. Because this JAR file is not cov-

http://java.sun.com/j2ee/1.4/docs/relnotes/cliref/index.html
http://java.sun.com/j2ee/1.4/docs/relnotes/cliref/index.html

CREATING THE APPLICATION CLIENT 885
ered by the J2EE specification, it is implementation-specific, intended only for
the Application Server.

The application client source code is in the ConverterClient.java file, which
is in this directory:

<INSTALL>/j2eetutorial14/examples/ejb/converter/src/

You compiled this code along with the enterprise bean code in the section Com-
piling the Source Files (page 882).

Coding the Application Client
The ConverterClient.java source code illustrates the basic tasks performed
by the client of an enterprise bean:

• Locating the home interface

• Creating an enterprise bean instance

• Invoking a business method

Locating the Home Interface
The ConverterHome interface defines life-cycle methods such as create and
remove. Before the ConverterClient can invoke the create method, it must
locate and instantiate an object whose type is ConverterHome. This is a four-step
process.

1. Create an initial naming context.

Context initial = new InitialContext();

The Context interface is part of the Java Naming and Directory Interface
(JNDI). A naming context is a set of name-to-object bindings. A name
that is bound within a context is the JNDI name of the object.

An InitialContext object, which implements the Context interface,
provides the starting point for the resolution of names. All naming opera-
tions are relative to a context.

2. Obtain the environment naming context of the application client.

Context myEnv = (Context)initial.lookup("java:comp/env");

The java:comp/env name is bound to the environment naming context of
the ConverterClient component.

886
3. Retrieve the object bound to the name ejb/SimpleConverter.

Object objref = myEnv.lookup("ejb/SimpleConverter");

The ejb/SimpleConverter name is bound to an enterprise bean refer-
ence, a logical name for the home of an enterprise bean. In this case, the
ejb/SimpleConverter name refers to the ConverterHome object. The
names of enterprise beans should reside in the java:comp/env/ejb sub-
context.

4. Narrow the reference to a ConverterHome object.

ConverterHome home =

(ConverterHome) PortableRemoteObject.narrow(objref,

ConverterHome.class);

Creating an Enterprise Bean Instance
To create the bean instance, the client invokes the create method on the Con-

verterHome object. The create method returns an object whose type is Con-

verter. The remote Converter interface defines the business methods of the
bean that the client can call. When the client invokes the create method, the
EJB container instantiates the bean and then invokes the ConverterBean.ejb-

Create method. The client invokes the create method as follows:

Converter currencyConverter = home.create();

Invoking a Business Method
Calling a business method is easy: you simply invoke the method on the Con-

verter object. The EJB container will invoke the corresponding method on the
ConverterBean instance that is running on the server. The client invokes the
dollarToYen business method in the following lines of code.

BigDecimal param = new BigDecimal ("100.00");
BigDecimal amount = currencyConverter.dollarToYen(param);

CREATING THE APPLICATION CLIENT 887
ConverterClient Source Code
The full source code for the ConverterClient program follows.

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;
import java.math.BigDecimal;

public class ConverterClient {

public static void main(String[] args) {

try {
Context initial = new InitialContext();
Context myEnv =

(Context)initial.lookup("java:comp/env");
Object objref = myEnv.lookup("ejb/SimpleConverter");

ConverterHome home =
(ConverterHome)PortableRemoteObject.narrow(objref,

ConverterHome.class);

Converter currencyConverter = home.create();

BigDecimal param = new BigDecimal ("100.00");
BigDecimal amount =

currencyConverter.dollarToYen(param);
System.out.println(amount);
amount = currencyConverter.yenToEuro(param);
System.out.println(amount);

System.exit(0);

} catch (Exception ex) {
System.err.println("Caught an unexpected exception!");
ex.printStackTrace();

}
}

}

Compiling the Application Client
The application client files are compiled at the same time as the enterprise bean
files, as described in Compiling the Source Files (page 882).

888
Packaging the Application Client
To package an application client component, you run the New Application Client
wizard of deploytool. During this process the wizard performs the following
tasks.

• Creates the application client’s deployment descriptor

• Puts the deployment descriptor and client files into a JAR file

• Adds the JAR file to the application’s ConverterApp.ear file

To start the New Application Client wizard, select File→New→Application Cli-
ent. The wizard displays the following dialog boxes.

1. Introduction dialog box

a. Read the explanatory text for an overview of the wizard’s features.

b. Click Next.

2. JAR File Contents dialog box

a. Select the button labeled Create New AppClient Module in Application.

b. In the combo box below this button, select ConverterApp.

c. In the AppClient Display Name field, enter ConverterClient.

d. Click Edit Contents.

e. In the tree under Available Files, locate this directory:

<INSTALL>/j2eetutorial14/examples/ejb/converter/build/

f. Select the ConverterClient.class file.

g. Click Add.

h. Click OK.

i. Click Next.

3. General dialog box

a. In the Main Class combo box, select ConverterClient.

b. Click Next.

c. Click Finish.

CREATING THE WEB CLIENT 889
Specifying the Application Client’s
Enterprise Bean Reference
When it invokes the lookup method, the ConverterClient refers to the home of
an enterprise bean:

Object objref = myEnv.lookup("ejb/SimpleConverter");

You specify this reference in deploytool as follows.

1. In the tree, select ConverterClient.

2. Select the EJB Ref’s tab.

3. Click Add.

4. In the Coded Name field, enter ejb/SimpleConverter.

5. In the EJB Type field, select Session.

6. In the Interfaces field, select Remote.

7. In the Home Interface field enter, converter.ConverterHome.

8. In the Local/Remote Interface field, enter converter.Converter.

9. In the JNDI Name field, select ConverterBean.

10.Click OK.

Creating the Web Client
The web client is contained in the JSP page
<INSTALL>/j2eetutorial14/examples/ejb/converter/web/index.jsp. A
JSP page is a text-based document that contains JSP elements, which construct
dynamic content, and static template data, which can be expressed in any text-
based format such as HTML, WML, and XML.

Coding the Web Client
The statements (in bold in the following code) for locating the home interface,
creating an enterprise bean instance, and invoking a business method are nearly
identical to those of the application client. The parameter of the lookup method
is the only difference; the motivation for using a different name is discussed in
Mapping the Enterprise Bean References (page 893).

890
The classes needed by the client are declared using a JSP page directive
(enclosed within the <%@ %> characters). Because locating the home interface
and creating the enterprise bean are performed only once, this code appears in a
JSP declaration (enclosed within the <%! %> characters) that contains the initial-
ization method, jspInit, of the JSP page. The declaration is followed by stan-
dard HTML markup for creating a form that contains an input field. A scriptlet
(enclosed within the <% %> characters) retrieves a parameter from the request
and converts it to a BigDecimal object. Finally, JSP expressions (enclosed within
<%= %> characters) invoke the enterprise bean’s business methods and insert the
result into the stream of data returned to the client.

<%@ page import="converter.Converter, converter.ConverterHome,
java.math.*, javax.ejb.*, javax.naming.*,
javax.rmi.PortableRemoteObject, java.rmi.RemoteException" %>
<%!

private Converter converter = null;
public void jspInit() {

try {
InitialContext ic = new InitialContext();
Object objRef = ic.lookup("

java:comp/env/ejb/TheConverter");
ConverterHome home =
(ConverterHome)PortableRemoteObject.narrow(
objRef, ConverterHome.class);
converter = home.create();

} catch (RemoteException ex) {
...

}
}
...

%>
<html>
<head>

 <title>Converter</title>
</head>

<body bgcolor="white">
<h1><center>Converter</center></h1>
<hr>
<p>Enter an amount to convert:</p>
<form method="get">
<input type="text" name="amount" size="25">

<p>
<input type="submit" value="Submit">
<input type="reset" value="Reset">

CREATING THE WEB CLIENT 891
</form>
<%

String amount = request.getParameter("amount");
if (amount != null && amount.length() > 0) {

BigDecimal d = new BigDecimal (amount);
%>

<p><%= amount %> dollars are
<%= converter.dollarToYen(d) %> Yen.

<p><%= amount %> Yen are
<%= converter.yenToEuro(d) %> Euro.

<%
 }

%>
</body>
</html>

Compiling the Web Client
The Application Server automatically compiles web clients that are JSP pages. If
the web client were a servlet, you would have to compile it.

Packaging the Web Client
To package a web client, you run the New Web Component wizard of the
deploytool utility. During this process the wizard performs the following tasks.

• Creates the web application deployment descriptor

• Adds the component files to a WAR file

• Adds the WAR file to the application’s ConverterApp.ear file

To start the New Web Component wizard, select File→New→Web Component.
The wizard displays the following dialog boxes.

1. Introduction dialog box

a. Read the explanatory text for an overview of the wizard’s features.

b. Click Next.

2. WAR File dialog box

a. Select the button labeled Create New WAR Module in Application.

b. In the combo box below this button, select ConverterApp.

c. In the WAR Name field, enter ConverterWAR.

d. Click Edit Contents.

892
e. In the tree under Available Files, locate this directory:

<INSTALL>/j2eetutorial14/examples/ejb/converter/web/

f. Select index.jsp.

g. Click Add.

h. Click OK.

i. Click Next.

3. Choose Component Type dialog box

a. Select the JSP Page button.

b. Click Next.

4. Component General Properties dialog box

a. In the JSP Filename combo box, select index.jsp.

b. Click Finish.

Specifying the Web Client’s Enterprise
Bean Reference
When it invokes the lookup method, the web client refers to the home of an
enterprise bean:

Object objRef = ic.lookup("java:comp/env/ejb/TheConverter");

You specify this reference as follows:

1. In the tree, select ConverterWAR.

2. Select the EJB Ref’s tab.

3. Click Add.

4. In the Coded Name field, enter ejb/TheConverter.

5. In the EJB Type field, select Session.

6. In the Interfaces field, select Remote.

7. In the Home Interface field, enter converter.ConverterHome.

8. In the Local/Remote Interface field, enter converter.Converter.

9. In the JNDI Name field, select ConverterBean.

10.Click OK.

MAPPING THE ENTERPRISE BEAN REFERENCES 893
Mapping the Enterprise Bean
References

Although the application client and the web client access the same enterprise
bean, their code refers to the bean’s home by different names. The application
client refers to the bean’s home as ejb/SimpleConverter, but the web client
refers to it as ejb/TheConverter. These references are in the parameters of the
lookup calls. For the lookup method to retrieve the home object, you must map
the references in the code to the enterprise bean’s JNDI name. Although this
mapping adds a level of indirection, it decouples the clients from the beans, mak-
ing it easier to assemble applications from J2EE components.

To map the enterprise bean references in the clients to the JNDI name of the
bean, follow these steps.

1. In the tree, select ConverterApp.

2. Click the Sun-specific Settings button.

3. Select the JNDI Names in the View field.

4. In the Application table, note that the JNDI name for the enterprise bean is
ConverterBean.

5. In the References table, enter ConverterBean in the JNDI Name column
for each row.

Figure 24–1 shows what the JNDI Names tab should look like after you’ve per-
formed the preceding steps.

894
Figure 24–1 ConverterApp JNDI Names

Specifying the Web Client’s Context
Root

The context root identifies the web application. To set the context root, follow
these steps:

1. In the tree, select ConverterApp.

2. Select the Web Context tab.

3. In the Context Root field, enter /converter.

DEPLOYING THE J2EE APPLICATION 895
For more information, see Setting the Context Root (page 92).

Deploying the J2EE Application
Now that the J2EE application contains the components, it is ready for deploy-
ment.

1. Select the ConverterApp application.

2. Select Tools→Deploy.

3. Under Connection Settings, enter the user name and password for the
Application Server.

4. Tell deploytool to create a JAR file that contains the client stubs. (For
more information on client JAR files, see the description under Creating
the Application Client, page 884.)

a. Select the Return Client JAR checkbox.

b. In the field below the checkbox, enter
<INSTALL>/j2eetutorial14/examples/ejb/converter.

5. Click OK.

6. In the Distribute Module dialog box, click Close when the deployment
completes.

7. Verify the deployment.

a. In the tree, expand the Servers node and select the host that is running
the Application Server.

b. In the Deployed Objects table, make sure that the ConverterApp is
listed and its status is Running.

8. Verify that a stub client JAR named ConverterAppClient.jar resides in
<INSTALL>/j2eetutorial14/examples/ejb/converter.

Running the Application Client
To run the application client, perform the following steps.

1. In a terminal window, go to this directory:

<INSTALL>/j2eetutorial14/examples/ejb/converter/

2. Type the following command:

appclient -client ConverterAppClient.jar

896
3. In the terminal window, the client displays these lines:

...

12160.00

0.77

...

Running the Web Client
To run the web client, point your browser at the following URL. Replace <host>

with the name of the host running the Application Server. If your browser is run-
ning on the same host as the Application Server, you can replace <host> with
localhost.

http://<host>:8080/converter

After entering 100 in the input field and clicking Submit, you should see the
screen shown in Figure 24–2.

Figure 24–2 ConverterApp Web Client

MODIFYING THE J2EE APPLICATION 897
Modifying the J2EE Application
The Application Server and deploytool support iterative development. When-
ever you make a change to a J2EE application, you must redeploy the applica-
tion.

Modifying a Class File
To modify a class file in an enterprise bean, you change the source code, recom-
pile it, and redeploy the application. For example, if you want to change the
exchange rate in the dollarToYen business method of the ConverterBean class,
you would follow these steps.

1. Edit ConverterBean.java.

2. Recompile ConverterBean.java.

a. In a terminal window, go to the
<INSTALL>/j2eetutorial14/examples/ejb/converter/ subdirec-
tory.

b. Type asant build.

3. In deploytool, select Tools→Update Module Files.

4. The Update Files dialog box appears. If the modified files are listed at the
top of the dialog, click OK and go to step 6. If the files are listed at the bot-
tom, they have not been found. Select one of those files and click Edit
Search Paths.

5. In the Edit Search Paths dialog box, specify the directories where the
Update Files dialog will search for modified files.

a. In the Search Root field, enter the fully qualified name of the directory
from which the search will start.

b. In the Path Directory list, add a row for each directory that you want
searched. Unless fully qualified, these directory names are relative to
the Search Root field.

c. Click OK.

6. Select Tools→Deploy. Make sure that the checkbox labeled Save Object
Before Deploying is checked. If you do not want to deploy at this time,
select Tools→Save to save the search paths specified in step 5.

To modify the contents of a WAR file, you follow the preceding steps. The
Update Files operation checks to see whether any files have changed, including

898
HTML files and JSP pages. If you change the index.jsp file of ConverterApp,
be sure to type asant. This task copies the index.jsp file from the web directory
to the build directory.

Adding a File
To add a file to the EJB JAR or WAR of the application, perform these steps.

1. In deploytool, select the JAR or WAR in the tree.

2. Select the General tab.

3. Click Edit Contents.

4. In the tree of the Available Files field, locate the file and click Add.

5. Click OK.

6. From the main toolbar, select Tools→Update Module Files.

7. Select Tools→Deploy.

Modifying a Deployment Setting
To modify a deployment setting of ConverterApp, you edit the appropriate field
in a tabbed pane and redeploy the application. For example, to change a JNDI
name from ATypo to ConverterBean, you would follow these steps.

1. In deploytool, select ConverterApp in the tree.

2. Select the JNDI Names tab.

3. In the JNDI Name field, enter MyConverter.

4. From the main toolbar, select File→Save.

5. Select Tools→Update Module Files.

6. Select Tools→Deploy.

25
899
Session Bean
Examples

SESSION beans are powerful because they extend the reach of your clients into
remote servers yet are easy to build. In Chapter 24, you built a stateless session
bean named ConverterBean. This chapter examines the source code of three
more session beans:

• CartBean: a stateful session bean that is accessed by a remote client

• HelloServiceBean: a stateless session bean that implements a web ser-
vice

• TimerSessionBean: a stateless session bean that sets a timer

The CartBean Example
The CartBean session bean represents a shopping cart in an online bookstore.
The bean’s client can add a book to the cart, remove a book, or retrieve the cart’s
contents. To construct CartBean, you need the following code:

• Session bean class (CartBean)

• Home interface (CartHome)

• Remote interface (Cart)

900
All session beans require a session bean class. All enterprise beans that permit
remote access must have a home and a remote interface. To meet the needs of a
specific application, an enterprise bean may also need some helper classes. The
CartBean session bean uses two helper classes (BookException and IdVeri-

fier) which are discussed in the section Helper Classes (page 906).

The source code for this example is in the
<INSTALL>/j2eetutorial14/examples/ejb/cart/ directory.

Session Bean Class
The session bean class for this example is called CartBean. Like any session
bean, the CartBean class must meet these requirements:

• It implements the SessionBean interface.

• The class is defined as public.

• The class cannot be defined as abstract or final.

• It implements one or more ejbCreate methods.

• It implements the business methods.

• It contains a public constructor with no parameters.

• It must not define the finalize method.

 The source code for the CartBean class follows.

import java.util.*;
import javax.ejb.*;

public class CartBean implements SessionBean {

String customerName;
String customerId;
Vector contents;

public void ejbCreate(String person)
throws CreateException {

if (person == null) {
throw new CreateException("Null person not allowed.");

}
else {

customerName = person;
}

THE CARTBEAN EXAMPLE 901
customerId = "0";
contents = new Vector();

}

public void ejbCreate(String person, String id)
throws CreateException {

if (person == null) {
throw new CreateException("Null person not allowed.");

}
else {

customerName = person;
}

IdVerifier idChecker = new IdVerifier();
if (idChecker.validate(id)) {

customerId = id;
}
else {

throw new CreateException("Invalid id: "+ id);
}

contents = new Vector();
}

public void addBook(String title) {
contents.addElement(title);

}

public void removeBook(String title) throws BookException {

boolean result = contents.removeElement(title);
if (result == false) {

throw new BookException(title + "not in cart.");
}

 }

 public Vector getContents() {
 return contents;
 }

 public CartBean() {}
 public void ejbRemove() {}
 public void ejbActivate() {}
 public void ejbPassivate() {}
 public void setSessionContext(SessionContext sc) {}

}

902
The SessionBean Interface
The SessionBean interface extends the EnterpriseBean interface, which in turn
extends the Serializable interface. The SessionBean interface declares the
ejbRemove, ejbActivate, ejbPassivate, and setSessionContext methods.
The CartBean class doesn’t use these methods, but it must implement them
because they’re declared in the SessionBean interface. Consequently, these
methods are empty in the CartBean class. Later sections explain when you might
use these methods.

The ejbCreate Methods
Because an enterprise bean runs inside an EJB container, a client cannot directly
instantiate the bean. Only the EJB container can instantiate an enterprise bean.
During instantiation, the example program performs the following steps.

1. The client invokes a create method on the home object:
Cart shoppingCart = home.create("Duke DeEarl","123");

2. The EJB container instantiates the enterprise bean.

3. The EJB container invokes the appropriate ejbCreate method in Cart-

Bean:

public void ejbCreate(String person, String id)
throws CreateException {

if (person == null) {
throw new CreateException("Null person not allowed.");

}
else {

customerName = person;
}

IdVerifier idChecker = new IdVerifier();
if (idChecker.validate(id)) {

customerId = id;
}
else {

throw new CreateException("Invalid id: "+ id);
}

contents = new Vector();
}

http://java.sun.com/j2ee/tutorial/api/javax/ejb/SessionBean.html
http://java.sun.com/j2ee/tutorial/api/javax/ejb/EnterpriseBean.html

THE CARTBEAN EXAMPLE 903
Typically, an ejbCreate method initializes the state of the enterprise bean. The
preceding ejbCreate method, for example, initializes the customerName and
customerId variables by using the arguments passed by the create method.

An enterprise bean must have one or more ejbCreate methods. The signatures
of the methods must meet the following requirements:

• The access control modifier must be public.

• The return type must be void.

• If the bean allows remote access, the arguments must be legal types for the
Java Remote Method Invocation (Java RMI) API.

• The modifier cannot be static or final.

The throws clause can include the javax.ejb.CreateException and other
exceptions that are specific to your application. The ejbCreate method usually
throws a CreateException if an input parameter is invalid.

Business Methods
The primary purpose of a session bean is to run business tasks for the client. The
client invokes business methods on the remote object reference that is returned
by the create method. From the client’s perspective, the business methods
appear to run locally, but they actually run remotely in the session bean. The fol-
lowing code snippet shows how the CartClient program invokes the business
methods:

Cart shoppingCart = home.create("Duke DeEarl", "123");
...
shoppingCart.addBook("The Martian Chronicles");
shoppingCart.removeBook("Alice In Wonderland");
bookList = shoppingCart.getContents();

The CartBean class implements the business methods in the following code:

public void addBook(String title) {
 contents.addElement(title);
}

public void removeBook(String title) throws BookException {
 boolean result = contents.removeElement(title);
 if (result == false) {
 throw new BookException(title + "not in cart.");
 }
}

904
public Vector getContents() {
 return contents;
}

The signature of a business method must conform to these rules:

• The method name must not conflict with one defined by the EJB architec-
ture. For example, you cannot call a business method ejbCreate or
ejbActivate.

• The access control modifier must be public.

• If the bean allows remote access, the arguments and return types must be
legal types for the Java RMI API.

• The modifier must not be static or final.

The throws clause can include exceptions that you define for your application.
The removeBook method, for example, throws the BookException if the book is
not in the cart.

To indicate a system-level problem, such as the inability to connect to a database,
a business method should throw the javax.ejb.EJBException. When a busi-
ness method throws an EJBException, the container wraps it in a RemoteExcep-

tion, which is caught by the client. The container will not wrap application
exceptions such as BookException. Because EJBException is a subclass of
RuntimeException, you do not need to include it in the throws clause of the
business method.

Home Interface
A home interface extends the javax.ejb.EJBHome interface. For a session bean,
the purpose of the home interface is to define the create methods that a remote
client can invoke. The CartClient program, for example, invokes this create

method:

Cart shoppingCart = home.create("Duke DeEarl", "123");

THE CARTBEAN EXAMPLE 905
Every create method in the home interface corresponds to an ejbCreate

method in the bean class. The signatures of the ejbCreate methods in the Cart-

Bean class follow:

public void ejbCreate(String person) throws CreateException
...
public void ejbCreate(String person, String id)
 throws CreateException

Compare the ejbCreate signatures with those of the create methods in the
CartHome interface:

import java.io.Serializable;
import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface CartHome extends EJBHome {
Cart create(String person) throws

RemoteException, CreateException;
Cart create(String person, String id) throws

RemoteException, CreateException;
}

The signatures of the ejbCreate and create methods are similar, but they differ
in important ways. The rules for defining the signatures of the create methods
of a home interface follow.

• The number and types of arguments in a create method must match those
of its corresponding ejbCreate method.

• The arguments and return type of the create method must be valid RMI
types.

• A create method returns the remote interface type of the enterprise bean.
(But an ejbCreate method returns void.)

• The throws clause of the create method must include the
java.rmi.RemoteException and the javax.ejb.CreateException.

906
Remote Interface
The remote interface, which extends javax.ejb.EJBObject, defines the busi-
ness methods that a remote client can invoke. Here is the source code for the
Cart remote interface:

import java.util.*;
import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Cart extends EJBObject {

 public void addBook(String title) throws RemoteException;
 public void removeBook(String title) throws

BookException, RemoteException;
 public Vector getContents() throws RemoteException;
}

The method definitions in a remote interface must follow these rules:

• Each method in the remote interface must match a method implemented in
the enterprise bean class.

• The signatures of the methods in the remote interface must be identical to
the signatures of the corresponding methods in the enterprise bean class.

• The arguments and return values must be valid RMI types.

• The throws clause must include the java.rmi.RemoteException.

Helper Classes
The CartBean session bean has two helper classes: BookException and IdVeri-

fier. The BookException is thrown by the removeBook method, and the IdVer-
ifier validates the customerId in one of the ejbCreate methods. Helper
classes must reside in the EJB JAR file that contains the enterprise bean class.

Building the CartBean Example
Now you are ready to compile the remote interface (Cart.java), the home inter-
face (CartHome.java), the enterprise bean class (CartBean.java), the client

THE CARTBEAN EXAMPLE 907
class (CartClient.java), and the helper classes (BookException.java and
IdVerifier.java).

1. In a terminal window, go to this directory:

<INSTALL>/j2eetutorial14/examples/ejb/cart/

2. Type the following command:

asant build

Creating the Application
In this section, you’ll create a J2EE application named CartApp, storing it in the
file CartApp.ear.

1. In deploytool, select File→New→Application.

2. Click Browse.

3. In the file chooser, navigate to <INSTALL>/j2eetutorial14/exam-

ples/ejb/cart/.

4. In the File Name field, enter CartApp.

5. Click New Application.

6. Click OK.

7. Verify that the CartApp.ear file resides in
<INSTALL>/j2eetutorial14/examples/ejb/cart/.

Packaging the Enterprise Bean
1. In deploytool, select File→New→Enterprise Bean.

2. In the EJB JAR screen:

a. Select Create New JAR Module in Application.

b. In the Create New JAR Module in Application field, select CartApp.

c. In the JAR Name field, enter CartJAR.

d. Click Choose Module File.

e. Click Edit Contents.

f. Locate the <INSTALL>/j2eetutorial14/exam-

ples/ejb/cart/build/ directory.

g. Select BookException.class, Cart.class, CartBean.class,
CartHome.class, and IdVerifier.class.

908
h. Click Add.

i. Click OK.

j. Click Next.

3. In the General screen:

a. In the Enterprise Bean Class field, select CartBean.

b. In the Enterprise Bean Name field, enter CartBean.

c. In the Enterprise Bean Type field, select Stateful Session.

d. In the Remote Home Interface field, select CartHome.

e. In the Remote Interface field, select Cart.

f. Click Next.

4. Click Finish.

Packaging the Application Client
To package an application client component, you run the New Application Client
wizard of deploytool. During this process the wizard performs the following
tasks.

• Creates the application client’s deployment descriptor

• Puts the deployment descriptor and client files into a JAR file

• Adds the JAR file to the application’s CartApp.ear file

To start the New Application Client wizard, select File→New→Application Cli-
ent. The wizard displays the following dialog boxes.

1. Introduction dialog box

a. Read the explanatory text for an overview of the wizard’s features.

b. Click Next.

2. JAR File Contents dialog box

a. Select the button labeled Create New AppClient Module in Application.

b. In the combo box below this button, select CartApp.

c. In the AppClient Display Name field, enter CartClient.

d. Click Edit Contents.

e. In the tree under Available Files, locate the
<INSTALL>/j2eetutorial14/examples/ejb/cart/build directory.

f. Select CartClient.class.

THE CARTBEAN EXAMPLE 909
g. Click Add.

h. Click OK.

i. Click Next.

3. General dialog box

a. In the Main Class combo box, select CartClient.

b. Click Next.

c. Click Finish.

Specifying the Application Client’s Enterprise
Bean Reference
When it invokes the lookup method, the CartClient refers to the home of an
enterprise bean:

Object objref =
initial.lookup("java:comp/env/ejb/SimpleCart");

You specify this reference as follows.

1. In the tree, select CartClient.

2. Select the EJB Ref’s tab.

3. Click Add.

4. In the Coded Name field, enter ejb/SimpleCart.

5. In the EJB Type field, select Session.

6. In the Interfaces field, select Remote.

7. In the Home Interface field, enter CartHome.

8. In the Local/Remote Interface field, enter Cart.

9. In the JNDI Name field, select CartBean.

10.Click OK.

Deploying the Enterprise Application
Now that the J2EE application contains the components, it is ready for deploy-
ment.

1. Select CartApp.

910
2. Select Tools→Deploy.

3. Under Connection Settings, enter the user name and password for the
Application Server.

4. Under Application Client Stub Directory, check Return Client Jar.

5. In the field below the checkbox enter
<INSTALL>/j2eetutorial14/examples/ejb/cart/.

6. Click OK.

7. In the Distribute Module dialog box, click Close when the deployment
completes.

8. Verify the deployment.

a. In the tree, expand the Servers node and select the host that is running
the Application Server.

b. In the Deployed Objects table, make sure that CartApp is listed and that
its status is Running.

c. Verify that CartAppClient.jar is in
<INSTALL>/j2eetutorial14/examples/ejb/cart/.

Running the Application Client
To run the application client, perform the following steps.

1. In a terminal window, go to the <INSTALL>/j2eetutorial14/

examples/ejb/cart/ directory.

2. Type the following command:
appclient -client CartAppClient.jar

3. In the terminal window, the client displays these lines:

The Martian Chronicles

2001 A Space Odyssey

The Left Hand of Darkness

Caught a BookException: Alice in Wonderland not in cart.

A WEB SERVICE EXAMPLE: HELLOSERVICEBEAN 911
A Web Service Example:
HelloServiceBean

This example demonstrates a simple web service that generates a response based
on information received from the client. HelloServiceBean is a stateless session
bean that implements a single method, sayHello. This method matches the say-

Hello method invoked by the clients described in Static Stub Client (page 327).
Later in this section, you’ll test the HelloServiceBean by running one of these
JAX-RPC clients.

Web Service Endpoint Interface
HelloService is the bean’s web service endpoint interface. It provides the cli-
ent’s view of the web service, hiding the stateless session bean from the client. A
web service endpoint interface must conform to the rules of a JAX-RPC service
definition interface. For a summary of these rules, see Coding the Service End-
point Interface and Implementation Class (page 322). Here is the source code for
the HelloService interface:

package helloservice;
import java.rmi.RemoteException;
import java.rmi.Remote;

public interface HelloService extends Remote {

 public String sayHello(String name) throws RemoteException;
}

Stateless Session Bean Implementation
Class
The HelloServiceBean class implements the sayHello method defined by the
HelloService interface. The interface decouples the implementation class from
the type of client access. For example, if you added remote and home interfaces
to HelloServiceBean, the methods of the HelloServiceBean class could also

912
be accessed by remote clients. No changes to the HelloServiceBean class
would be necessary. The source code for the HelloServiceBean class follows:

package helloservice;
import java.rmi.RemoteException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

public class HelloServiceBean implements SessionBean {

 public String sayHello(String name) {

 return "Hello "+ name + " from HelloServiceBean";
 }

 public HelloServiceBean() {}
 public void ejbCreate() {}
 public void ejbRemove() {}
 public void ejbActivate() {}
 public void ejbPassivate() {}
 public void setSessionContext(SessionContext sc) {}
}

Building HelloServiceBean
In a terminal window, go to the <INSTALL>/j2eetutorial14/exam-

ples/ejb/helloservice/ directory. To build HelloServiceBean, type the fol-
lowing command:

asant build-service

This command performs the following tasks:

• Compiles the bean’s source code files

• Creates the MyHelloService.wsdl file by running the following wscom-

pile command:

wscompile -define -d build/output -nd build -classpath build

-mapping build/mapping.xml config-interface.xml

The wscompile tool writes the MyHelloService.wsdl file to the
<INSTALL>/j2eetutorial14/examples/ejb/helloservice/build/ subdirec-
tory. For more information about the wscompile tool, see Chapter 8.

Use deploytool to package and deploy this example.

A WEB SERVICE EXAMPLE: HELLOSERVICEBEAN 913
Creating the Application
In this section, you’ll create a J2EE application named HelloService, storing it
in the file HelloService.ear.

1. In deploytool, select File→New→Application.

2. Click Browse.

3. In the file chooser, navigate to <INSTALL>/j2eetutorial14/exam-

ples/ejb/helloservice/.

4. In the File Name field, enter HelloServiceApp.

5. Click New Application.

6. Click OK.

7. Verify that the HelloServiceApp.ear file resides in
<INSTALL>/j2eetutorial14/examples/ejb/helloservice/.

Packaging the Enterprise Bean
Start the Edit Enterprise Bean wizard by selecting File→New→Enterprise Bean.
The wizard displays the following dialog boxes.

1. Introduction dialog box

a. Read the explanatory text for an overview of the wizard’s features.

b. Click Next.

2. EJB JAR dialog box

a. Select the button labeled Create New JAR Module in Application.

b. In the combo box below this button, select HelloService.

c. In the JAR Display Name field, enter HelloServiceJAR.

d. Click Edit Contents.

e. In the tree under Available Files, locate the
<INSTALL>/j2eetutorial14/examples/ejb/helloservice/build/

directory.

f. In the Available Files tree select the helloservice directory and map-

ping.xml and MyHelloService.wsdl.

g. Click Add.

h. Click OK.

i. Click Next.

914
3. General dialog box

a. In the Enterprise Bean Class combo box, select helloservice.Hel-
loServiceBean.

b. Under Enterprise Bean Type, select Stateless Session.

c. In the Enterprise Bean Name field, enter HelloServiceBean.

d. Click Next.

4. In the Configuration Options dialog box, click Next. The wizard will auto-
matically select the Yes button for Expose Bean as Web Service Endpoint.

5. In the Choose Service dialog box:

a. Select META-INF/wsdl/MyHelloService.wsdl in the WSDL File
combo box.

b. Select mapping.xml from the Mapping File combo box.

c. Make sure that MyHelloService is in the Service Name and Service
Display Name edit boxes.

6. In the Web Service Endpoint dialog box:

a. Select helloservice.HelloIF in the Service Endpoint Interface
combo box.

b. In the WSDL Port section, set the Namespace to urn:Foo, and the Local
Part to HelloIFPort.

c. In the Sun-specific Settings section, set the Endpoint Address to hello-

ejb/hello.

d. Click Next.

7. Click Finish.

8. Select File→Save.

Deploying the Enterprise Application
Now that the J2EE application contains the enterprise bean, it is ready for
deployment.

1. Select the HelloService application.

2. Select Tools→Deploy.

3. Under Connection Settings, enter the user name and password for the
Application Server.

4. Click OK.

A WEB SERVICE EXAMPLE: HELLOSERVICEBEAN 915
5. In the Distribute Module dialog box, click Close when the deployment
completes.

6. Verify the deployment.

a. In the tree, expand the Servers node and select the host that is running
the Application Server.

b. In the Deployed Objects table, make sure that HelloService is listed
and that its status is Running.

Building the Web Service Client
In the next section, to test the web service implemented by HelloServiceBean,
you will run the JAX-RPC client described in Chapter 8.

To verify that HelloServiceBean has been deployed, click on the target Appli-
cation Server in the Servers tree in deploytool. In the Deployed Objects tree
you should see HelloServiceApp.

To build the static stub client, perform these steps:

1. In a terminal go to the <INSTALL>/j2eetutorial14/exam-

ples/jaxrpc/helloservice/ directory and type

asant build

2. In a terminal go to the <INSTALL>/j2eetutorial14/exam-

ples/jaxrpc/staticstub/ directory.

3. Open config-wsdl.xml in a text editor and change the line that reads

<wsdl location="http://localhost:8080/hello-

jaxrpc/hello?WSDL"

to

<wsdl location="http://localhost:8080/hello-ejb/hello?WSDL"

4. Type

asant build

5. Edit the build.properties file and change the endpoint.address prop-
erty to

http://localhost:8080/hello-ejb/hello

For details about creating the JAX-RPC service and client, see these sections:
Creating a Simple Web Service and Client with JAX-RPC (page 320) and Static
Stub Client (page 327).

916
Running the Web Service Client
To run the client, go to the <INSTALL>/j2eetutorial14/exam-

ples/jaxrpc/staticstub/ directory and enter

asant run

The client should display the following line:

Hello Duke! (from HelloServiceBean)

Other Enterprise Bean Features
The topics that follow apply to session beans and entity beans.

Accessing Environment Entries
Stored in an enterprise bean’s deployment descriptor, an environment entry is a
name-value pair that allows you to customize the bean’s business logic without
changing its source code. An enterprise bean that calculates discounts, for exam-
ple, might have an environment entry named Discount Percent. Before deploy-
ing the bean’s application, you could run a development tool to assign Discount

Percent a value of 0.05 in the bean’s deployment descriptor. When you run the
application, the bean fetches the 0.05 value from its environment.

In the following code example, the applyDiscount method uses environment
entries to calculate a discount based on the purchase amount. First, the method
locates the environment naming context by invoking lookup using the
java:comp/env parameter. Then it calls lookup on the environment to get the
values for the Discount Level and Discount Percent names. For example, if
you assign a value of 0.05 to the Discount Percent entry, the code will assign
0.05 to the discountPercent variable. The applyDiscount method, which fol-
lows, is in the CheckerBean class. The source code for this example is in
<INSTALL>/j2eetutorial14/examples/ejb/checker.

public double applyDiscount(double amount) {

try {

double discount;

OTHER ENTERPRISE BEAN FEATURES 917
Context initial = new InitialContext();
Context environment =

(Context)initial.lookup("java:comp/env");

Double discountLevel =
(Double)environment.lookup("Discount Level");

Double discountPercent =
(Double)environment.lookup("Discount Percent");

if (amount >= discountLevel.doubleValue()) {
discount = discountPercent.doubleValue();

}
else {

discount = 0.00;
}

return amount * (1.00 - discount);

} catch (NamingException ex) {
throw new EJBException("NamingException: "+

ex.getMessage());
}

}

Comparing Enterprise Beans
A client can determine whether two stateful session beans are identical by invok-
ing the isIdentical method:

bookCart = home.create("Bill Shakespeare");
videoCart = home.create("Lefty Lee");
...
if (bookCart.isIdentical(bookCart)) {
 // true ... }
if (bookCart.isIdentical(videoCart)) {
 // false ... }

Because stateless session beans have the same object identity, the isIdentical

method always returns true when used to compare them.

918
To determine whether two entity beans are identical, the client can invoke the
isIdentical method, or it can fetch and compare the beans’s primary keys:

String key1 = (String)accta.getPrimaryKey();
String key2 = (String)acctb.getPrimaryKey();

if (key1.compareTo(key2) == 0)
 System.out.println("equal");

Passing an Enterprise Bean’s Object
Reference
Suppose that your enterprise bean needs to pass a reference to itself to another
bean. You might want to pass the reference, for example, so that the second bean
can call the first bean’s methods. You can’t pass the this reference because it
points to the bean’s instance, which is running in the EJB container. Only the
container can directly invoke methods on the bean’s instance. Clients access the
instance indirectly by invoking methods on the object whose type is the bean’s
remote interface. It is the reference to this object (the bean’s remote reference)
that the first bean would pass to the second bean.

A session bean obtains its remote reference by calling the getEJBObject method
of the SessionContext interface. An entity bean would call the getEJBObject

method of the EntityContext interface. These interfaces provide beans with
access to the instance contexts maintained by the EJB container. Typically, the
bean saves the context in the setSessionContext method. The following code
fragment shows how a session bean might use these methods.

public class WagonBean implements SessionBean {

 SessionContext context;
 ...
 public void setSessionContext(SessionContext sc) {
 this.context = sc;
 }
 ...
 public void passItOn(Basket basket) {

...
 basket.copyItems(context.getEJBObject());
 }

USING THE TIMER SERVICE 919
Using the Timer Service
Applications that model business work flows often rely on timed notifications.
The timer service of the enterprise bean container enables you to schedule timed
notifications for all types of enterprise beans except for stateful session beans.
You can schedule a timed notification to occur at a specific time, after a duration
of time, or at timed intervals. For example, you could set timers to go off at 10:30
AM on May 23, in 30 days, or every 12 hours.

When a timer expires (goes off), the container calls the ejbTimeout method of
the bean’s implementation class. The ejbTimeout method contains the business
logic that handles the timed event. Because ejbTimeout is defined by the
javax.ejb.TimedObject interface, the bean class must implement TimedOb-

ject.

There are four interfaces in the javax.ejb package that are related to timers:

• TimedObject

• Timer

• TimerHandle

• TimerService

Creating Timers
To create a timer, the bean invokes one of the createTimer methods of the Tim-

erService interface. (For details on the method signatures, see the TimerSer-

vice API documentation.) When the bean invokes createTimer, the timer
service begins to count down the timer duration.

The bean described in The TimerSessionBean Example (page 921) creates a
timer as follows:

TimerService timerService = context.getTimerService();
Timer timer = timerService.createTimer(intervalDuration,

"created timer");

In the TimerSessionBean example, createTimer is invoked in a business
method, which is called by a client. An entity bean can also create a timer in a
business method. If you want to create a timer for each instance of an entity
bean, you can code the createTimer call in the bean’s ejbCreate method.

920
Timers are persistent. If the server is shut down (or even crashes), timers are
saved and will become active again when the server is restarted. If a timer
expires while the server is down, the container will call ejbTimeout when the
server is restarted.

A timer for an entity bean is associated with the bean’s identity—that is, with a
particular instance of the bean. If an entity bean sets a timer in ejbCreate, for
example, each bean instance will have its own timer. In contrast, stateless session
and message-driven beans do not have unique timers for each instance.

The Date and long parameters of the createTimer methods represent time with
the resolution of milliseconds. However, because the timer service is not
intended for real-time applications, a callback to ejbTimeout might not occur
with millisecond precision. The timer service is for business applications, which
typically measure time in hours, days, or longer durations.

Canceling and Saving Timers
Timers can be canceled by the following events:

• When a single-event timer expires, the EJB container calls ejbTimeout

and then cancels the timer.

• When an entity bean instance is removed, the container cancels the timers
associated with the instance.

• When the bean invokes the cancel method of the Timer interface, the con-
tainer cancels the timer.

If a method is invoked on a canceled timer, the container throws the
javax.ejb.NoSuchObjectLocalException.

To save a Timer object for future reference, invoke its getHandle method and
store the TimerHandle object in a database. (A TimerHandle object is serializ-
able.) To reinstantiate the Timer object, retrieve the handle from the database and
invoke getTimer on the handle. A TimerHandle object cannot be passed as an
argument of a method defined in a remote or web service interface. In other
words, remote clients and web service clients cannot access a bean’s TimerHan-
dle object. Local clients, however, do not have this restriction.

USING THE TIMER SERVICE 921
Getting Timer Information
In addition to defining the cancel and getHandle methods, the Timer interface
defines methods for obtaining information about timers:

public long getTimeRemaining();
public java.util.Date getNextTimeout();
public java.io.Serializable getInfo();

The getInfo method returns the object that was the last parameter of the cre-

ateTimer invocation. For example, in the createTimer code snippet of the pre-
ceding section, this information parameter is a String object with the value
created timer.

To retrieve all of a bean’s active timers, call the getTimers method of the Tim-

erService interface. The getTimers method returns a collection of Timer

objects.

Transactions and Timers
An enterprise bean usually creates a timer within a transaction. If this transaction
is rolled back, the timer creation is also rolled back. Similarly, if a bean cancels a
timer within a transaction that gets rolled back, the timer cancellation is rolled
back. In this case, the timer’s duration is reset as if the cancellation had never
occurred.

In beans that use container-managed transactions, the ejbTimeout method usu-
ally has the RequiresNew transaction attribute to preserve transaction integrity.
With this attribute, the EJB container begins the new transaction before calling
ejbTimeout. If the transaction is rolled back, the container will try to call ejb-
Timeout at least one more time.

The TimerSessionBean Example
The source code for this example is in the <INSTALL>/j2eetutorial14/exam-

ples/ejb/timersession/src/ directory.

TimerSessionBean is a stateless session bean that shows how to set a timer. The
implementation class for TimerSessionBean is called TimerSessionBean. In
the source code listing of TimerSessionBean that follows, note the myCre-

ateTimer and ejbTimeout methods. Because it’s a business method, myCre-

922
ateTimer is defined in the bean’s remote interface (TimerSession) and can be
invoked by the client. In this example, the client invokes myCreateTimer with an
interval duration of 30,000 milliseconds. The myCreateTimer method fetches a
TimerService object from the bean’s SessionContext. Then it creates a new
timer by invoking the createTimer method of TimerService. Now that the
timer is set, the EJB container will invoke the ejbTimer method of TimerSes-
sionBean when the timer expires—in about 30 seconds. Here’s the source code
for the TimerSessionBean class:

import javax.ejb.*;

public class TimerSessionBean implements SessionBean,
 TimedObject {

 private SessionContext context;

 public TimerHandle myCreateTimer(long intervalDuration) {

 System.out.println
 ("TimerSessionBean: start createTimer ");
 TimerService timerService =
 context.getTimerService();
 Timer timer =
 timerService.createTimer(intervalDuration,

"created timer");
}

 public void ejbTimeout(Timer timer) {

 System.out.println("TimerSessionBean: ejbTimeout ");
 }

 public void setSessionContext(SessionContext sc) {
 System.out.println("TimerSessionBean:
 setSessionContext");
 context = sc;
 }

 public void ejbCreate() {
 System.out.println("TimerSessionBean: ejbCreate");
 }

 public TimerSessionBean() {}
 public void ejbRemove() {}

USING THE TIMER SERVICE 923
 public void ejbActivate() {}
 public void ejbPassivate() {}

}

Building TimerSessionBean
In a terminal window, go to the <INSTALL>/j2eetutorial14/exam-

ples/ejb/timersession/ directory. To build TimerSessionBean, type the fol-
lowing command:

asant build

Use deploytool to package and deploy this example.

Creating the Application
In this section, you’ll create a J2EE application named TimerSessionApp, stor-
ing it in the file TimerSessionApp.ear.

1. In deploytool, select File→New→Application.

2. Click Browse.

3. In the file chooser, navigate to <INSTALL>/j2eetutorial14/exam-

ples/ejb/timersession/.

4. In the File Name field, enter TimerSessionApp.ear.

5. Click New Application.

6. Click OK.

7. Verify that the TimerSessonApp.ear file resides in
<INSTALL>/j2eetutorial14/examples/ejb/timersession/.

Packaging the Enterprise Bean
Start the Edit Enterprise Bean wizard by selecting File→New→Enterprise Java-
Bean. The wizard displays the following dialog boxes.

1. In the Introduction dialog box:

a. Read the explanatory text for an overview of the wizard’s features.

b. Click Next.

924
2. In the EJB JAR dialog box:

a. Select the button labeled Create New JAR Module in Application.

b. In the combo box below this button, select TimerSessionApp.

c. In the JAR Display Name field, enter TimerSessionJAR.

d. Click Edit Contents.

e. In the tree under Available Files, locate the
<INSTALL>/j2eetutorial14/examples/ejb/timersession/build/

directory.

f. Select these classes: TimerSession.class, TimerSession-

Bean.class, and TimerSessionHome.class.

g. Click Add.

h. Click OK.

i. Click Next.

3. In the General dialog box:

a. In the Enterprise Bean Class combo box, select TimerSessionBean.

b. In the Enterprise Bean Name field, enter TimerSessionBean.

c. Under Bean Type, select Stateless Session.

d. In the Remote Interfaces section, select TimerSessionHome for the
Remote Home Interface, and TimerSession for the Remote Interface.

e. Click Next.

4. In the Expose as Web Service Endpoint dialog box:

a. Select No for Expose Bean as Web Service Endpoint.

b. Click Next.

5. Click Finish.

Compiling the Application Client
The application client files are compiled at the same time as the enterprise bean
files.

USING THE TIMER SERVICE 925
Packaging the Application Client
To package an application client component, you run the New Application Client
wizard of deploytool. During this process the wizard performs the following
tasks.

• Creates the application client’s deployment descriptor

• Puts the deployment descriptor and client files into a JAR file

• Adds the JAR file to the application’s TimerSessionApp.ear file

To start the New Application Client wizard, select File→New→Application Cli-
ent. The wizard displays the following dialog boxes.

1. Introduction dialog box

a. Read the explanatory text for an overview of the wizard’s features.

b. Click Next.

2. JAR File Contents dialog box

a. Select the button labeled Create New AppClient Module in Application.

b. In the combo box below this button, select TimerSessionApp.

c. In the AppClient Display Name field, enter TimerSessionClient.

d. Click Edit Contents.

e. In the tree under Available Files, locate the
<INSTALL>/j2eetutorial14/examples/ejb/timersession/build

directory.

f. Select the TimerSessionClient.class file.

g. Click Add.

h. Click OK.

i. Click Next.

3. General dialog box

a. In the Main Class combo box, select TimerSessionClient.

b. Click Next.

c. Click Finish.

926
Specifying the Application Client’s Enterprise
Bean Reference
When it invokes the lookup method, the TimerSessionClient refers to the
home of an enterprise bean:

Object objref =
initial.lookup("java:comp/env/ejb/SimpleTimerSession");

You specify this reference as follows.

1. In the tree, select TimerSessionClient.

2. Select the EJB Ref’s tab.

3. Click Add.

4. In the Coded Name field, enter ejb/SimpleTimerSession.

5. In the EJB Type field, select Session.

6. In the Interfaces field, select Remote.

7. In the Home Interface field, enter TimerSessionHome.

8. In the Local/Remote Interface field, enter TimerSession.

9. In the JNDI Name field, select TimerSessionBean.

10.Click OK.

Deploying the Enterprise Application
Now that the J2EE application contains the components, it is ready for deploy-
ment.

1. Select TimerSessionApp.

2. Select Tools→Deploy.

3. Under Connection Settings, enter the user name and password for the
Application Server.

4. Under Application Client Stub Directory, check Return Client Jar.

5. In the field below the checkbox, enter
<INSTALL>/j2eetutorial14/examples/ejb/timersession/.

6. Click OK.

7. In the Distribute Module dialog box, click Close when the deployment
completes.

USING THE TIMER SERVICE 927
8. Verify the deployment.

a. In the tree, expand the Servers node and select the host that is running
the Application Server.

b. In the Deployed Objects table, make sure that TimerSessionApp is
listed and that its status is Running.

c. Verify that TimerSessionAppClient.jar is in
<INSTALL>/j2eetutorial14/examples/ejb/timersession/.

Running the Application Client
To run the application client, perform the following steps.

1. In a terminal window, go to the <INSTALL>/j2eetutorial14/

examples/ejb/timersession/ directory.

2. Type the following command:

appclient -client TimerSessionAppClient.jar

3. In the terminal window, the client displays these lines:

Creating a timer with an interval duration of 30000 ms.

The output from the timer is sent to the server.log file located in the
<J2EE_HOME>/domains/domain1/server/logs/ directory.

View the output in the Admin Console:

1. Open the Admin Console by opening a web browser window to
http://localhost:4848/asadmin/admingui

2. Click the Logging tab.

3. Click Open Log Viewer.

4. At the top of the page, you’ll see these four lines in the Message column:
ejbTimeout
start createTimer
ejbCreate
setSessionContext

Alternatively, you can look at the log file directly. After about 30 seconds, open
server.log in a text editor and you will see the following lines:

TimerSessionBean: setSessionContext
TimerSessionBean: ejbCreate
TimerSessionBean: start createTimer
TimerSessionBean: ejbTimeout

928
Handling Exceptions
The exceptions thrown by enterprise beans fall into two categories: system and
application.

A system exception indicates a problem with the services that support an applica-
tion. Examples of these problems include the following: a database connection
cannot be obtained, an SQL insert fails because the database is full, or a lookup

method cannot find the desired object. If your enterprise bean encounters a sys-
tem-level problem, it should throw a javax.ejb.EJBException. The container
will wrap the EJBException in a RemoteException, which it passes back to the
client. Because the EJBException is a subclass of the RuntimeException, you
do not have to specify it in the throws clause of the method declaration. If a sys-
tem exception is thrown, the EJB container might destroy the bean instance.
Therefore, a system exception cannot be handled by the bean’s client program; it
requires intervention by a system administrator.

An application exception signals an error in the business logic of an enterprise
bean. There are two types of application exceptions: customized and predefined.
A customized exception is one that you’ve coded yourself, such as the Insuffi-

centBalanceException thrown by the debit business method of the Sav-

ingsAccountBean example. The javax.ejb package includes several
predefined exceptions that are designed to handle common problems. For exam-
ple, an ejbCreate method should throw a CreateException to indicate an
invalid input parameter. When an enterprise bean throws an application excep-
tion, the container does not wrap it in another exception. The client should be
able to handle any application exception it receives.

If a system exception occurs within a transaction, the EJB container rolls back
the transaction. However, if an application exception is thrown within a transac-
tion, the container does not roll back the transaction.

Table 25–1 summarizes the exceptions of the javax.ejb package. All of these
exceptions are application exceptions, except for the NoSuchEntityException

and the EJBException, which are system exceptions.

Table 25–1 Exceptions

Method Name Exception It Throws Reason for Throwing

ejbCreate CreateException
An input parameter is
invalid.

HANDLING EXCEPTIONS 929
ejbFindByPrimaryKey
(and other finder methods
that return a single object)

ObjectNotFoundException
(subclass of FinderException)

The database row for the
requested entity bean
cannot be found.

ejbRemove RemoveException
The entity bean’s row
cannot be deleted from
the database.

ejbLoad NoSuchEntityException
The database row to be
loaded into the entity
bean cannot be found.

ejbStore NoSuchEntityException
The database row to be
updated cannot be found.

(all methods) EJBException
A system problem has
been encountered.

Table 25–1 Exceptions (Continued)

Method Name Exception It Throws Reason for Throwing

930

26
931
Bean-Managed
Persistence Examples

DATA is at the heart of most business applications. In J2EE applications,
entity beans represent the business objects that are stored in a database. For
entity beans with bean-managed persistence, you must write the code for the
database access calls. Although writing this code is an additional responsibility,
you will have more control over how the entity bean accesses a database.

This chapter discusses the coding techniques for entity beans with bean-man-
aged persistence. For conceptual information on entity beans, please see What Is
an Entity Bean? (page 859).

The SavingsAccountBean Example
The entity bean illustrated in this section represents a simple bank account. The
state of SavingsAccountBean is stored in the savingsaccount table of a rela-

932
tional database. The savingsaccount table is created by the following SQL
statement:

CREATE TABLE savingsaccount
(id VARCHAR(3)
CONSTRAINT pk_savingsaccount PRIMARY KEY,
firstname VARCHAR(24),
lastname VARCHAR(24),
balance NUMERIC(10,2));

The SavingsAccountBean example requires the following code:

• Entity bean class (SavingsAccountBean)

• Home interface (SavingsAccountHome)

• Remote interface (SavingsAccount)

This example also uses the following classes:

• A utility class named InsufficientBalanceException

• A client class called SavingsAccountClient

The source code for this example is in this directory:

<INSTALL>/j2eetutorial14/ejb/savingsaccount/src/

Entity Bean Class
The sample entity bean class is called SavingsAccountBean. As you look
through its code, note that it meets the requirements of any entity bean that uses
bean-managed persistence. First, it implements the following:

• EntityBean interface

• Zero or more ejbCreate and ejbPostCreate methods

• Finder methods

• Business methods

• Home methods

In addition, an entity bean class with bean-managed persistence has these
requirements:

• The class is defined as public.

• The class cannot be defined as abstract or final.

• It contains an empty constructor.

THE SAVINGSACCOUNTBEAN EXAMPLE 933
• It does not implement the finalize method.

The EntityBean Interface
The EntityBean interface extends the EnterpriseBean interface, which extends
the Serializable interface. The EntityBean interface declares a number of
methods, such as ejbActivate and ejbLoad, which you must implement in your
entity bean class. These methods are discussed in later sections.

The ejbCreate Method
When the client invokes a create method, the EJB container invokes the corre-
sponding ejbCreate method. Typically, an ejbCreate method in an entity bean
performs the following tasks:

• Inserts the entity state into the database

• Initializes the instance variables

• Returns the primary key

The ejbCreate method of SavingsAccountBean inserts the entity state into the
database by invoking the private insertRow method, which issues the SQL
INSERT statement. Here is the source code for the ejbCreate method:

public String ejbCreate(String id, String firstName,
 String lastName, BigDecimal balance)
 throws CreateException {

 if (balance.signum() == -1) {
 throw new CreateException
 ("A negative initial balance is not allowed.");
 }

 try {
 insertRow(id, firstName, lastName, balance);
 } catch (Exception ex) {
 throw new EJBException("ejbCreate: " +
 ex.getMessage());
 }

 this.id = id;
 this.firstName = firstName;
 this.lastName = lastName;

http://java.sun.com/j2ee/tutorial/api/javax/ejb/EntityBean.html
http://java.sun.com/j2ee/tutorial/api/javax/ejb/EnterpriseBean.html

934
 this.balance = balance;

 return id;
}

Although the SavingsAccountBean class has only one ejbCreate method, an
enterprise bean can contain multiple ejbCreate methods. For an example, see
the CartBean.java source code in this directory:

<INSTALL>/j2eetutorial14/examples/ejb/cart/src/

When you write an ejbCreate method for an entity bean, be sure to follow these
rules:

• The access control modifier must be public.

• The return type must be the primary key.

• The arguments must be legal types for the Java RMI API.

• The method modifier cannot be final or static.

The throws clause can include the javax.ejb.CreateException and excep-
tions that are specific to your application. An ejbCreate method usually throws
a CreateException if an input parameter is invalid. If an ejbCreate method
cannot create an entity because another entity with the same primary key already
exists, it should throw a javax.ejb.DuplicateKeyException (a subclass of
CreateException). If a client receives a CreateException or a Dupli-

cateKeyException, it should assume that the entity was not created.

The state of an entity bean can be directly inserted into the database by an appli-
cation that is unknown to the Application Server. For example, an SQL script
might insert a row into the savingsaccount table. Although the entity bean for
this row was not created by an ejbCreate method, the bean can be located by a
client program.

The ejbPostCreate Method
For each ejbCreate method, you must write an ejbPostCreate method in the
entity bean class. The EJB container invokes ejbPostCreate immediately after
it calls ejbCreate. Unlike the ejbCreate method, the ejbPostCreate method
can invoke the getPrimaryKey and getEJBObject methods of the EntityCon-

text interface. For more information on the getEJBObject method, see the sec-
tion Passing an Enterprise Bean’s Object Reference (page 918). Often, your
ejbPostCreate methods will be empty.

THE SAVINGSACCOUNTBEAN EXAMPLE 935
The signature of an ejbPostCreate method must meet the following require-
ments:

• The number and types of arguments must match a corresponding ejbCre-

ate method.

• The access control modifier must be public.

• The method modifier cannot be final or static.

• The return type must be void.

The throws clause can include the javax.ejb.CreateException and excep-
tions that are specific to your application.

The ejbRemove Method
A client deletes an entity bean by invoking the remove method. This invocation
causes the EJB container to call the ejbRemove method, which deletes the entity
state from the database. In the SavingsAccountBean class, the ejbRemove

method invokes a private method named deleteRow, which issues an SQL
DELETE statement. The ejbRemove method is short:

public void ejbRemove() {
 try {
 deleteRow(id);
 catch (Exception ex) {
 throw new EJBException("ejbRemove: " +
 ex.getMessage());
 }
 }
}

If the ejbRemove method encounters a system problem, it should throw the
javax.ejb.EJBException. If it encounters an application error, it should throw
a javax.ejb.RemoveException. For a comparison of system and application
exceptions, see the section deploytool Tips for Entity Beans with Bean-Managed
Persistence (page 965).

An entity bean can also be removed directly by a database deletion. For example,
if an SQL script deletes a row that contains an entity bean state, then that entity
bean is removed.

936
The ejbLoad and ejbStore Methods
If the EJB container needs to synchronize the instance variables of an entity bean
with the corresponding values stored in a database, it invokes the ejbLoad and
ejbStore methods. The ejbLoad method refreshes the instance variables from
the database, and the ejbStore method writes the variables to the database. The
client cannot call ejbLoad and ejbStore.

If a business method is associated with a transaction, the container invokes ejb-
Load before the business method executes. Immediately after the business
method executes, the container calls ejbStore. Because the container invokes
ejbLoad and ejbStore, you do not have to refresh and store the instance vari-
ables in your business methods. The SavingsAccountBean class relies on the
container to synchronize the instance variables with the database. Therefore, the
business methods of SavingsAccountBean should be associated with transac-
tions.

If the ejbLoad and ejbStore methods cannot locate an entity in the underlying
database, they should throw the javax.ejb.NoSuchEntityException. This
exception is a subclass of EJBException. Because EJBException is a subclass
of RuntimeException, you do not have to include it in the throws clause. When
NoSuchEntityException is thrown, the EJB container wraps it in a RemoteEx-

ception before returning it to the client.

In the SavingsAccountBean class, ejbLoad invokes the loadRow method, which
issues an SQL SELECT statement and assigns the retrieved data to the instance
variables. The ejbStore method calls the storeRow method, which stores the
instance variables in the database using an SQL UPDATE statement. Here is the
code for the ejbLoad and ejbStore methods:

public void ejbLoad() {

try {
loadRow();

} catch (Exception ex) {
throw new EJBException("ejbLoad: " +

ex.getMessage());
}

}

public void ejbStore() {

try {
storeRow();

} catch (Exception ex) {

THE SAVINGSACCOUNTBEAN EXAMPLE 937
throw new EJBException("ejbStore: " +
ex.getMessage());

}
}

The Finder Methods
The finder methods allow clients to locate entity beans. The SavingsAccount-

Client program locates entity beans using three finder methods:

SavingsAccount jones = home.findByPrimaryKey("836");
...
Collection c = home.findByLastName("Smith");
...
Collection c = home.findInRange(20.00, 99.00);

For every finder method available to a client, the entity bean class must imple-
ment a corresponding method that begins with the prefix ejbFind. The Sav-

ingsAccountBean class, for example, implements the ejbFindByLastName

method as follows:

public Collection ejbFindByLastName(String lastName)
throws FinderException {

Collection result;

try {
result = selectByLastName(lastName);

} catch (Exception ex) {
throw new EJBException("ejbFindByLastName " +

ex.getMessage());
}
return result;

}

The finder methods that are specific to your application, such as ejbFindBy-

LastName and ejbFindInRange, are optional, but the ejbFindByPrimaryKey

method is required. As its name implies, the ejbFindByPrimaryKey method
accepts as an argument the primary key, which it uses to locate an entity bean. In

938
the SavingsAccountBean class, the primary key is the id variable. Here is the
code for the ejbFindByPrimaryKey method:

public String ejbFindByPrimaryKey(String primaryKey)
throws FinderException {

boolean result;

try {
result = selectByPrimaryKey(primaryKey);

} catch (Exception ex) {
throw new EJBException("ejbFindByPrimaryKey: " +

ex.getMessage());
}

if (result) {
return primaryKey;

}
else {

throw new ObjectNotFoundException
("Row for id " + primaryKey + " not found.");

}
}

The ejbFindByPrimaryKey method may look strange to you, because it uses a
primary key for both the method argument and the return value. However,
remember that the client does not call ejbFindByPrimaryKey directly. It is the
EJB container that calls the ejbFindByPrimaryKey method. The client invokes
the findByPrimaryKey method, which is defined in the home interface.

The following list summarizes the rules for the finder methods that you imple-
ment in an entity bean class with bean-managed persistence:

• The ejbFindByPrimaryKey method must be implemented.

• A finder method name must start with the prefix ejbFind.

• The access control modifier must be public.

• The method modifier cannot be final or static.

• The arguments and return type must be legal types for the Java RMI API.
(This requirement applies only to methods defined in a remote—and not a
local—home interface.)

• The return type must be the primary key or a collection of primary keys.

The throws clause can include the javax.ejb.FinderException and excep-
tions that are specific to your application. If a finder method returns a single pri-

THE SAVINGSACCOUNTBEAN EXAMPLE 939
mary key and the requested entity does not exist, the method should throw the
javax.ejb.ObjectNotFoundException (a subclass of FinderException). If a
finder method returns a collection of primary keys and it does not find any
objects, it should return an empty collection.

The Business Methods
The business methods contain the business logic that you want to encapsulate
within the entity bean. Usually, the business methods do not access the database,
and this allows you to separate the business logic from the database access code.
The SavingsAccountBean class contains the following business methods:

public void debit(BigDecimal amount)
 throws InsufficientBalanceException {

 if (balance.compareTo(amount) == -1) {
 throw new InsufficientBalanceException();
 }
 balance = balance.subtract(amount);
}

public void credit(BigDecimal amount) {

 balance = balance.add(amount);
}

public String getFirstName() {

 return firstName;
}

public String getLastName() {

 return lastName;
}

public BigDecimal getBalance() {

 return balance;
}

940
The SavingsAccountClient program invokes the business methods as follows:

BigDecimal zeroAmount = new BigDecimal("0.00");
SavingsAccount duke = home.create("123", "Duke", "Earl",
 zeroAmount);
...
duke.credit(new BigDecimal("88.50"));
duke.debit(new BigDecimal("20.25"));
BigDecimal balance = duke.getBalance();

The requirements for the signature of a business method are the same for session
beans and entity beans:

• The method name must not conflict with a method name defined by the
EJB architecture. For example, you cannot call a business method ejbCre-

ate or ejbActivate.

• The access control modifier must be public.

• The method modifier cannot be final or static.

• The arguments and return types must be legal types for the Java RMI API.
This requirement applies only to methods defined in a remote—and not a
local—home interface.

The throws clause can include the exceptions that you define for your applica-
tion. The debit method, for example, throws the InsufficientBalanceExcep-

tion. To indicate a system-level problem, a business method should throw the
javax.ejb.EJBException.

The Home Methods
A home method contains the business logic that applies to all entity beans of a
particular class. In contrast, the logic in a business method applies to a single
entity bean, an instance with a unique identity. During a home method invoca-
tion, the instance has neither a unique identity nor a state that represents a busi-
ness object. Consequently, a home method must not access the bean’s
persistence state (instance variables). (For container-managed persistence, a
home method also must not access relationships.)

Typically, a home method locates a collection of bean instances and invokes
business methods as it iterates through the collection. This approach is taken by
the ejbHomeChargeForLowBalance method of the SavingsAccountBean class.
The ejbHomeChargeForLowBalance method applies a service charge to all sav-
ings accounts that have balances less than a specified amount. The method

THE SAVINGSACCOUNTBEAN EXAMPLE 941
locates these accounts by invoking the findInRange method. As it iterates
through the collection of SavingsAccount instances, the ejbHomeChargeFor-

LowBalance method checks the balance and invokes the debit business method.
Here is the source code of the ejbHomeChargeForLowBalance method:

public void ejbHomeChargeForLowBalance(
 BigDecimal minimumBalance, BigDecimal charge)
 throws InsufficientBalanceException {

 try {
 SavingsAccountHome home =
 (SavingsAccountHome)context.getEJBHome();
 Collection c = home.findInRange(new BigDecimal("0.00"),
 minimumBalance.subtract(new BigDecimal("0.01")));

 Iterator i = c.iterator();

 while (i.hasNext()) {
 SavingsAccount account = (SavingsAccount)i.next();
 if (account.getBalance().compareTo(charge) == 1) {
 account.debit(charge);
 }
 }

 } catch (Exception ex) {
 throw new EJBException("ejbHomeChargeForLowBalance: "
 + ex.getMessage());
 }
}

The home interface defines a corresponding method named chargeForLowBal-

ance (see Home Method Definitions, page 944). Because the interface provides
the client view, the SavingsAccountClient program invokes the home method
as follows:

SavingsAccountHome home;
...
home.chargeForLowBalance(new BigDecimal("10.00"),

new BigDecimal("1.00"));

In the entity bean class, the implementation of a home method must adhere to
these rules:

• A home method name must start with the prefix ejbHome.

• The access control modifier must be public.

942
• The method modifier cannot be static.

The throws clause can include exceptions that are specific to your application; it
must not throw the java.rmi.RemoteException.

Database Calls
Table 26–1 summarizes the database access calls in the SavingsAccountBean

class. The business methods of the SavingsAccountBean class are absent from
the preceding table because they do not access the database. Instead, these busi-
ness methods update the instance variables, which are written to the database
when the EJB container calls ejbStore. Another developer might have chosen to
access the database in the business methods of the SavingsAccountBean class.
This choice is one of those design decisions that depend on the specific needs of
your application.

Before accessing a database, you must connect to it. For more information, see
Chapter 31.

Table 26–1 SQL Statements in SavingsAccountBean

Method SQL Statement

ejbCreate INSERT

ejbFindByPrimaryKey SELECT

ejbFindByLastName SELECT

ejbFindInRange SELECT

ejbLoad SELECT

ejbRemove DELETE

ejbStore UPDATE

THE SAVINGSACCOUNTBEAN EXAMPLE 943
Home Interface
The home interface defines the create, finder, and home methods. The Sav-

ingsAccountHome interface follows:

import java.util.Collection;
import java.math.BigDecimal;
import java.rmi.RemoteException;
import javax.ejb.*;

public interface SavingsAccountHome extends EJBHome {

 public SavingsAccount create(String id, String firstName,
 String lastName, BigDecimal balance)
 throws RemoteException, CreateException;

 public SavingsAccount findByPrimaryKey(String id)
 throws FinderException, RemoteException;

 public Collection findByLastName(String lastName)
 throws FinderException, RemoteException;

 public Collection findInRange(BigDecimal low,
 BigDecimal high)
 throws FinderException, RemoteException;

public void chargeForLowBalance(BigDecimal minimumBalance,
 BigDecimal charge)
 throws InsufficientBalanceException, RemoteException;
}

create Method Definitions
Each create method in the home interface must conform to the following
requirements:

• It must have the same number and types of arguments as its matching ejb-

Create method in the enterprise bean class.

• It must return the remote interface type of the enterprise bean.

• The throws clause must include the exceptions specified by the throws

clause of the corresponding ejbCreate and ejbPostCreate methods.

• The throws clause must include the javax.ejb.CreateException.

• If the method is defined in a remote—and not a local—home interface,
then the throws clause must include the java.rmi.RemoteException.

944
Finder Method Definitions
Every finder method in the home interface corresponds to a finder method in the
entity bean class. The name of a finder method in the home interface begins with
find, whereas the corresponding name in the entity bean class begins with
ejbFind. For example, the SavingsAccountHome class defines the
findByLastName method, and the SavingsAccountBean class implements the
ejbFindByLastName method. The rules for defining the signatures of the finder
methods of a home interface follow.

• The number and types of arguments must match those of the corresponding
method in the entity bean class.

• The return type must be the entity bean’s remote interface type or a collec-
tion of those types.

• The exceptions in the throws clause must include those of the correspond-
ing method in the entity bean class.

• The throws clause must contain the javax.ejb.FinderException.

• If the method is defined in a remote—and not a local—home interface,
then the throws clause must include the java.rmi.RemoteException.

Home Method Definitions
Each home method definition in the home interface corresponds to a method in
the entity bean class. In the home interface, the method name is arbitrary, pro-
vided that it does not begin with create or find. In the bean class, the matching
method name begins with ejbHome. For example, in the SavingsAccountBean

class the name is ejbHomeChargeForLowBalance, but in the SavingsAccount

Home interface the name is chargeForLowBalance.

The home method signature must follow the same rules specified for finder
methods in the preceding section (except that a home method does not throw a
FinderException).

THE SAVINGSACCOUNTBEAN EXAMPLE 945
Remote Interface
The remote interface extends javax.ejb.EJBObject and defines the business
methods that a remote client can invoke. Here is the SavingsAccount remote
interface:

import javax.ejb.EJBObject;
import java.rmi.RemoteException;
import java.math.BigDecimal;

public interface SavingsAccount extends EJBObject {

 public void debit(BigDecimal amount)
 throws InsufficientBalanceException, RemoteException;

 public void credit(BigDecimal amount)
 throws RemoteException;

 public String getFirstName()
 throws RemoteException;

 public String getLastName()
 throws RemoteException;

 public BigDecimal getBalance()
 throws RemoteException;
}

The requirements for the method definitions in a remote interface are the same
for session beans and entity beans:

• Each method in the remote interface must match a method in the enterprise
bean class.

• The signatures of the methods in the remote interface must be identical to
the signatures of the corresponding methods in the enterprise bean class.

• The arguments and return values must be valid RMI types.

• The throws clause must include java.rmi.RemoteException.

A local interface has the same requirements, with the following exceptions:

• The arguments and return values are not required to be valid RMI types.

• The throws clause does not include java.rmi.RemoteException.

946
Running the SavingsAccountBean
Example
Before you run this example, you must define the data source, create the data-
base, and deploy the SavingsAccountApp.ear file.

Defining the Data Source
Follow the instructions in Creating a Data Source (page 1112). This data source
is a factory for database connections. For more information, see DataSource
Objects and Connection Pools (page 1109).

Creating the Database Table
The instructions that follow explain how to use the SavingsAccountBean exam-
ple with Derby, the database software that is included in the Application Server
bundle.

Note: Application Server 8.2 includes a copy of the open source Derby data-
base server. Application Server 8.0/8.1 includes the PointBase database server. If
you are using Application Server 8.0/8.1, either follow the instructions in the J2EE
Tutorial at http://java.sun.com/j2ee/1.4/docs/tutorial-
update6/doc/index.html that works with Application Server 8.0/8.1 or
upgrade to Application Server 8.2 (see
http://java.sun.com/j2ee/1.4/download.html#appserv to download).

Create the savingsaccount database table by running the create.sql script:

1. In a terminal window, go to this directory:
<INSTALL>/j2eetutorial14/examples/ejb/savingsaccount/

2. Type the following command, which runs the create.sql script:

asant create-db_common

Deploying the Application
1. In deploytool, open the SavingsAccountApp.ear file, which resides in

this directory:
<INSTALL>/j2eetutorial14/examples/ejb/provided-ears/

http://java.sun.com/j2ee/1.4/docs/tutorial-update6/doc/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial-update6/doc/index.html
http://java.sun.com/j2ee/1.4/download.html#appserv

MAPPING TABLE RELATIONSHIPS FOR BEAN-MANAGED PERSISTENCE 947
2. Deploy the SavingsAccountApp application.

3. In the Deploy Module dialog box, do the following:

a. Select the Return Client JAR checkbox.

b. In the field below the check box, enter the following:

<INSTALL>/j2eetutorial14/examples/ejb/savingsaccount

For detailed instructions, see Deploying the J2EE Application (page 895).

Running the Client
To run the SavingsAccountClient program, do the following:

1. In a terminal window, go to this directory:
<INSTALL>/j2eetutorial14/examples/ejb/savingsaccount/

2. Type the following command on a single line:
appclient -client SavingsAccountAppClient.jar

3. The client should display the following lines:

balance = 68.25
balance = 32.55
456: 44.77
730: 19.54
268: 100.07
836: 32.55
456: 44.77
4.00
7.00

To modify this example, see the instructions in Modifying the J2EE
Application (page 897).

Mapping Table Relationships for Bean-
Managed Persistence

In a relational database, tables can be related by common columns. The relation-
ships between the tables affect the design of their corresponding entity beans.

948
The entity beans discussed in this section are backed up by tables with the fol-
lowing types of relationships:

• One-to-one

• One-to-many

• Many-to-many

One-to-One Relationships
In a one-to-one relationship, each row in a table is related to a single row in
another table. For example, in a warehouse application, a storagebin table
might have a one-to-one relationship with a widget table. This application
would model a physical warehouse in which each storage bin contains one type
of widget and each widget resides in one storage bin.

Figure 26–1 illustrates the storagebin and widget tables. Because the stor-

agebinid uniquely identifies a row in the storagebin table, it is that table’s pri-
mary key. The widgetid is the primary key of the widget table. The two tables
are related because the widgetid is also a column in the storagebin table. By
referring to the primary key of the widget table, the widgetid in the storage-

bin table identifies which widget resides in a particular storage bin in the ware-
house. Because the widgetid of the storagebin table refers to the primary key
of another table, it is called a foreign key. (The figures in this chapter denote a
primary key with PK and a foreign key with FK.)

Figure 26–1 One-to-One Table Relationship

A dependent (child) table includes a foreign key that matches the primary key of
the referenced (parent) table. The values of the foreign keys in the storagebin

(child) table depend on the primary keys in the widget (parent) table. For exam-
ple, if the storagebin table has a row with a widgetid of 344, then the widget
table should also have a row whose widgetid is 344.

MAPPING TABLE RELATIONSHIPS FOR BEAN-MANAGED PERSISTENCE 949
When designing a database application, you can choose to enforce the depen-
dency between the parent and child tables. There are two ways to enforce such a
dependency: by defining a referential constraint in the database or by performing
checks in the application code. The storagebin table has a referential constraint
named fk_widgetid:

CREATE TABLE storagebin
 (storagebinid VARCHAR(3)
 CONSTRAINT pk_storagebin PRIMARY KEY,
 widgetid VARCHAR(3),
 quantity INTEGER,
 CONSTRAINT fk_widgetid
 FOREIGN KEY (widgetid)
 REFERENCES widget(widgetid));

The source code for the following example is in this directory:

<INSTALL>/j2eetutorial14/examples/ejb/storagebin/src/

The StorageBinBean and WidgetBean classes illustrate the one-to-one relation-
ship of the storagebin and widget tables. The StorageBinBean class contains
variables for each column in the storagebin table, including the foreign key,
widgetId:

private String storageBinId;
private String widgetId;
private int quantity;

The ejbFindByWidgetId method of the StorageBinBean class returns the
storageBinId that matches a given widgetId:

public String ejbFindByWidgetId(String widgetId)
 throws FinderException {

 String storageBinId;

 try {
 storageBinId = selectByWidgetId(widgetId);
 } catch (Exception ex) {
 throw new EJBException("ejbFindByWidgetId: " +
 ex.getMessage());
 }

 if (storageBinId == null) {
 throw new ObjectNotFoundException

950
 ("Row for widgetId " + widgetId + " not found.");
 }
 else {
 return storageBinId;
 }
}

The ejbFindByWidgetId method locates the widgetId by querying the database
in the selectByWidgetId method:

private String selectByWidgetId(String widgetId)
 throws SQLException {

 String storageBinId;

 makeConnection();
 String selectStatement =
 "select storagebinid " +
 "from storagebin where widgetid = ? ";
 PreparedStatement prepStmt =
 con.prepareStatement(selectStatement);
 prepStmt.setString(1, widgetId);

 ResultSet rs = prepStmt.executeQuery();

 if (rs.next()) {
 storageBinId = rs.getString(1);
 }
 else {
 storageBinId = null;
 }

 prepStmt.close();
 releaseConnection();
 return storageBinId;
}

To find out in which storage bin a widget resides, the StorageBinClient pro-
gram calls the findByWidgetId method:

String widgetId = "777";
StorageBin storageBin =
 storageBinHome.findByWidgetId(widgetId);
String storageBinId = (String)storageBin.getPrimaryKey();
int quantity = storageBin.getQuantity();

MAPPING TABLE RELATIONSHIPS FOR BEAN-MANAGED PERSISTENCE 951
Running the StorageBinBean Example
1. Create the storagebin database table.

a. In a terminal window, go to this directory:
<INSTALL>/j2eetutorial14/examples/ejb/storagebin/

b. Type this command:

asant create-db_common

2. In deploytool, deploy the StorageBinApp.ear file, which is in this direc-
tory:
<INSTALL>/j2eetutorial14/examples/ejb/provided-ears/

3. Run the client.

a. In a terminal window, go to this directory:
<INSTALL>/j2eetutorial14/examples/ejb/storagebin/

b. Type the following command on a single line:
appclient -client StorageBinAppClient.jar

c. The client should display the following:

777 388 500 1.0 Duct Tape

One-to-Many Relationships
If the primary key in a parent table matches multiple foreign keys in a child
table, then the relationship is one-to-many. This relationship is common in data-
base applications. For example, an application for a sports league might access a
team table and a player table. Each team has multiple players, and each player
belongs to a single team. Every row in the child table (player) has a foreign key
identifying the player’s team. This foreign key matches the team table’s primary
key.

The sections that follow describe how you might implement one-to-many rela-
tionships in entity beans. When designing such entity beans, you must decide
whether both tables are represented by entity beans, or only one.

A Helper Class for the Child Table
Not every database table needs to be mapped to an entity bean. If a database
table doesn’t represent a business entity, or if it stores information that is con-
tained in another entity, then you should use a helper class to represent the table.

952
In an online shopping application, for example, each order submitted by a cus-
tomer can have multiple line items. The application stores the information in the
database tables shown by Figure 26–2.

Figure 26–2 One-to-Many Relationship: Order and Line Items

Not only does a line item belong to an order, but it also does not exist without the
order. Therefore, the lineitems table should be represented with a helper class
and not with an entity bean. Using a helper class in this case is not required, but
doing so might improve performance because a helper class uses fewer system
resources than does an entity bean.

The source code for the following example is in this directory:

<INSTALL>/j2eetutorial14/examples/ejb/order/src/

The LineItem and OrderBean classes show how to implement a one-to-many
relationship using a helper class (LineItem). The instance variables in the
LineItem class correspond to the columns in the lineitems table. The itemNo

variable matches the primary key for the lineitems table, and the orderId vari-
able represents the table’s foreign key. Here is the source code for the LineItem

class:

public class LineItem implements java.io.Serializable {

 String productId;
 int quantity;
 double unitPrice;
 int itemNo;
 String orderId;

 public LineItem(String productId, int quantity,
 double unitPrice, int itemNo, String orderId) {

MAPPING TABLE RELATIONSHIPS FOR BEAN-MANAGED PERSISTENCE 953
 this.productId = productId;
 this.quantity = quantity;
 this.unitPrice = unitPrice;
 this.itemNo = itemNo;
 this.orderId = orderId;
 }

 public String getProductId() {
 return productId;
 }

 public int getQuantity() {
 return quantity;
 }

 public double getUnitPrice() {
 return unitPrice;
 }

 public int getItemNo() {
 return itemNo;
 }

 public String getOrderId() {
 return orderId;
 }
}

The OrderBean class contains an ArrayList variable named lineItems. Each
element in the lineItems variable is a LineItem object. The lineItems variable
is passed to the OrderBean class in the ejbCreate method. For every LineItem

object in the lineItems variable, the ejbCreate method inserts a row into the
lineitems table. It also inserts a single row into the orders table. The code for
the ejbCreate method follows:

public String ejbCreate(String orderId, String customerId,
 String status, double totalPrice, ArrayList lineItems)
 throws CreateException {

 try {
 insertOrder(orderId, customerId, status, totalPrice);
 for (int i = 0; i < lineItems.size(); i++) {
 LineItem item = (LineItem)lineItems.get(i);
 insertItem(item);
 }
 } catch (Exception ex) {
 throw new EJBException("ejbCreate: " +

954
 ex.getMessage());
 }

 this.orderId = orderId;
 this.customerId = customerId;
 this.status = status;
 this.totalPrice = totalPrice;
 this.lineItems = lineItems ;

 return orderId;
}

The OrderClient program creates and loads an ArrayList of LineItem objects.
The program passes this ArrayList to the entity bean when it invokes the cre-

ate method:

ArrayList lineItems = new ArrayList();
lineItems.add(new LineItem("p23", 13, 12.00, 1, "123"));
lineItems.add(new LineItem("p67", 47, 89.00, 2, "123"));
lineItems.add(new LineItem("p11", 28, 41.00, 3, "123"));
...
Order duke = home.create("123", "c44", "open",
 totalItems(lineItems), lineItems);

Other methods in the OrderBean class also access both database tables. The
ejbRemove method, for example, not only deletes a row from the orders table
but also deletes all corresponding rows in the lineitems table. The ejbLoad and
ejbStore methods synchronize the state of an OrderBean instance, including the
lineItems ArrayList, with the orders and lineitems tables.

The ejbFindByProductId method enables clients to locate all orders that have a
particular product. This method queries the lineitems table for all rows with a
specific productId. The method returns a Collection of Order objects. The
OrderClient program iterates through the Collection and prints the primary
key of each order:

Collection c = home.findByProductId("p67");
Iterator i=c.iterator();
while (i.hasNext()) {
 Order order = (Order)i.next();
 String id = (String)order.getPrimaryKey();
 System.out.println(id);
}

MAPPING TABLE RELATIONSHIPS FOR BEAN-MANAGED PERSISTENCE 955
Running the OrderBean Example
1. Create the order database table.

a. In a terminal window, go to this directory:
<INSTALL>/j2eetutorial14/examples/ejb/order/

b. Type this command:

asant create-db_common

2. In deploytool, deploy the OrderBean.ear file, which is in this directory:
<INSTALL>/j2eetutorial14/examples/ejb/provided-ears/

3. Run the client.

a. In a terminal window, go to this directory:
<INSTALL>/j2eetutorial14/examples/ejb/order/

b. Type the following command on a single line:
appclient -client OrderBeanClient.jar

c. The client should display the following lines:

123 1 p23 12.0
123 2 p67 89.0
123 3 p11 41.0

123
456

An Entity Bean for the Child Table
You should consider building an entity bean for a child table under the following
conditions:

• The information in the child table is not dependent on the parent table.

• The business entity of the child table could exist without that of the parent
table.

• The child table might be accessed by another application that does not
access the parent table.

These conditions exist in the following scenario. Suppose that each sales repre-
sentative in a company has multiple customers and that each customer has only
one sales representative. The company tracks its sales force using a database
application. In the database, each row in the salesrep table (parent) matches

956
multiple rows in the customer table (child). Figure 26–3 illustrates this relation-
ship.

Figure 26–3 One-to-Many Relationship: Sales Representative and Customers

The SalesRepBean and CustomerBean entity bean classes implement the one-to-
many relationship of the sales and customer tables.

The source code for this example is in this directory:

<INSTALL>/j2eetutorial14/examples/ejb/salesrep/src/

The SalesRepBean class contains a variable named customerIds, which is an
ArrayList of String elements. These String elements identify which custom-
ers belong to the sales representative. Because the customerIds variable reflects
this relationship, the SalesRepBean class must keep the variable up-to-date.

The SalesRepBean class instantiates the customerIds variable in the setEnti-

tyContext method and not in ejbCreate. The container invokes setEntity-

Context only once—when it creates the bean instance—thereby ensuring that
customerIds is instantiated only once. Because the same bean instance can
assume different identities during its life cycle, instantiating customerIds in
ejbCreate might cause multiple and unnecessary instantiations. Therefore, the
SalesRepBean class instantiates the customerIds variable in setEntityCon-

text:

public void setEntityContext(EntityContext context) {

this.context = context;
customerIds = new ArrayList();

try {
Context initial = new InitialContext();
Object objref =

initial.lookup("java:comp/env/ejb/Customer");

MAPPING TABLE RELATIONSHIPS FOR BEAN-MANAGED PERSISTENCE 957
customerHome =
(CustomerHome)PortableRemoteObject.narrow(objref,

CustomerHome.class);
} catch (Exception ex) {

throw new EJBException("setEntityContext: " +
ex.getMessage());

}
}

Invoked by the ejbLoad method, loadCustomerIds is a private method that
refreshes the customerIds variable. There are two approaches to coding a
method such as loadCustomerIds: fetch the identifiers from the customer data-
base table, or get them from the CustomerBean entity bean. Fetching the identifi-
ers from the database might be faster, but it exposes the code in the
SalesRepBean class to the CustomerBean bean’s underlying database table. In
the future, if you were to change the CustomerBean bean’s table (or move the
bean to a different Application Server), you might need to change the SalesRep-
Bean code. But if the SalesRepBean class gets the identifiers from the Custom-

erBean entity bean, no coding changes would be required. The two approaches
present a trade-off: performance versus flexibility. The SalesRepBean example
opts for flexibility, loading the customerIds variable by calling the find-

BySalesRep and getPrimaryKey methods of CustomerBean. Here is the code
for the loadCustomerIds method:

private void loadCustomerIds() {

 customerIds.clear();

 try {
 Collection c = customerHome.findBySalesRep(salesRepId);
 Iterator i=c.iterator();

 while (i.hasNext()) {
 Customer customer = (Customer)i.next();
 String id = (String)customer.getPrimaryKey();
 customerIds.add(id);
 }

} catch (Exception ex) {
throw new EJBException("Exception in loadCustomerIds: " +

 ex.getMessage());
}

}

958
If a customer’s sales representative changes, the client program updates the data-
base by calling the setSalesRepId method of the CustomerBean class. The next
time a business method of the SalesRepBean class is called, the ejbLoad method
invokes loadCustomerIds, which refreshes the customerIds variable. (To
ensure that ejbLoad is invoked before each business method, set the transaction
attributes of the business methods to Required.) For example, the SalesRepCli-
ent program changes the salesRepId for a customer named Mary Jackson as
follows:

Customer mary = customerHome.findByPrimaryKey("987");
mary.setSalesRepId("543");

The salesRepId value 543 identifies a sales representative named Janice Martin.
To list all of Janice’s customers, the SalesRepClient program invokes the
getCustomerIds method, iterates through the ArrayList of identifiers, and
locates each CustomerBean entity bean by calling its findByPrimaryKey

method:

SalesRep janice = salesHome.findByPrimaryKey("543");
ArrayList a = janice.getCustomerIds();
i = a.iterator();

while (i.hasNext()) {
 String customerId = (String)i.next();
 Customer customer =
customerHome.findByPrimaryKey(customerId);
 String name = customer.getName();
 System.out.println(customerId + ": " + name);
}

Running the SalesRepBean Example
1. Create the salesrep database table.

a. In a terminal window, go to this directory:
<INSTALL>/j2eetutorial14/examples/ejb/salesrep/

b. Type this command:

asant create-db_common

2. In deploytool, deploy the SalesRepApp.ear file, which is in this direc-
tory:
<INSTALL>/j2eetutorial14/examples/ejb/provided-ears/

MAPPING TABLE RELATIONSHIPS FOR BEAN-MANAGED PERSISTENCE 959
3. Run the client.

a. In a terminal window, go to this directory:
<INSTALL>/j2eetutorial14/examples/ejb/salesrep/

b. Type the following command on a single line:
appclient -client SalesRepAppClient.jar

c. The client should display the following lines:

customerId = 221
customerId = 388
customerId = 456
customerId = 844

987: Mary Jackson
221: Alice Smith
388: Bill Williamson
456: Joe Smith
844: Buzz Murphy

Many-to-Many Relationships
In a many-to-many relationship, each entity can be related to multiple occur-
rences of the other entity. For example, a college course has many students and
each student may take several courses. In a database, this relationship is repre-
sented by a cross-reference table containing the foreign keys. In Figure 26–4, the
cross-reference table is the enrollment table. These tables are accessed by the
StudentBean, CourseBean, and EnrollerBean classes.

960
Figure 26–4 Many-to-Many Relationship: Students and Courses

The source code for this example is in this directory:

<INSTALL>/j2eetutorial14/examples/ejb/enroller/src/

The StudentBean and CourseBean classes are complementary. Each class con-
tains an ArrayList of foreign keys. The StudentBean class contains an ArrayL-

ist named courseIds, which identifies the courses the student is enrolled in.
Similarly, the CourseBean class contains an ArrayList named studentIds.

The ejbLoad method of the StudentBean class adds elements to the courseIds

ArrayList by calling loadCourseIds, a private method. The loadCourseIds

method gets the course identifiers from the EnrollerBean session bean. The
source code for the loadCourseIds method follows:

private void loadCourseIds() {

 courseIds.clear();

 try {
 Enroller enroller = enrollerHome.create();
 ArrayList a = enroller.getCourseIds(studentId);
 courseIds.addAll(a);

} catch (Exception ex) {

MAPPING TABLE RELATIONSHIPS FOR BEAN-MANAGED PERSISTENCE 961
 throw new EJBException("Exception in loadCourseIds: " +
 ex.getMessage());

}
}

Invoked by the loadCourseIds method, the getCourseIds method of the
EnrollerBean class queries the enrollment table:

select courseid from enrollment
where studentid = ?

Only the EnrollerBean class accesses the enrollment table. Therefore, the
EnrollerBean class manages the student-course relationship represented in the
enrollment table. If a student enrolls in a course, for example, the client calls
the enroll business method, which inserts a row:

insert into enrollment
values (studentid, courseid)

If a student drops a course, the unEnroll method deletes a row:

delete from enrollment
where studentid = ? and courseid = ?

And if a student leaves the school, the deleteStudent method deletes all rows
in the table for that student:

delete from enrollment
where student = ?

The EnrollerBean class does not delete the matching row from the student

table. That action is performed by the ejbRemove method of the StudentBean

class. To ensure that both deletes are executed as a single operation, you must
ensure that they belong to the same transaction. See Chapter 30 for more infor-
mation.

Running the EnrollerBean Example
1. Create the enroller database table.

a. In a terminal window, go to this directory:

<INSTALL>/j2eetutorial14/examples/ejb/enroller/

b. Type this command:

962
asant create-db_common

2. In deploytool, deploy the EnrollerApp.ear file, which is in this direc-
tory:

<INSTALL>/j2eetutorial14/examples/ejb/provided-ears/

3. Run the client.

a. In a terminal window, go to this directory:

<INSTALL>/j2eetutorial14/examples/ejb/enroller/

b. Type the following command on a single line:

appclient -client EnrollerAppClient.jar

c. The client should display the following lines:

Denise Smith:

220 Power J2EE Programming

333 XML Made Easy

777 An Introduction to Java Programming

An Introduction to Java Programming:

823 Denise Smith

456 Joe Smith

388 Elizabeth Willis

Primary Keys for Bean-Managed
Persistence

You specify the primary key class in the entity bean’s deployment descriptor. In
most cases, your primary key class will be a String, an Integer, or some other
class that belongs to the J2SE or J2EE standard libraries. For some entity beans,
you will need to define your own primary key class. For example, if the bean has
a composite primary key (that is, one composed of multiple fields), then you
must create a primary key class.

PRIMARY KEYS FOR BEAN-MANAGED PERSISTENCE 963
The Primary Key Class
The following primary key class is a composite key, the productId and ven-

dorId fields together uniquely identify an entity bean.

public class ItemKey implements java.io.Serializable {

 public String productId;
 public String vendorId;

 public ItemKey() { };

 public ItemKey(String productId, String vendorId) {

 this.productId = productId;
 this.vendorId = vendorId;
 }

 public String getProductId() {

 return productId;
 }

 public String getVendorId() {

 return vendorId;
 }

 public boolean equals(Object other) {

 if (other instanceof ItemKey) {
 return (productId.equals(((ItemKey)other).productId)

&& vendorId.equals(((ItemKey)other).vendorId));
 }
 return false;
 }

 public int hashCode() {

 return productId.concat(vendorId).hashCode();
 }
}

964
For bean-managed persistence, a primary key class must meet these require-
ments:

• The access control modifier of the class must be public.

• All fields must be declared as public.

• The class must have a public default constructor.

• The class must implement the hashCode() and equals(Object other)

methods.

• The class must be serializable.

Primary Keys in the Entity Bean Class
With bean-managed persistence, the ejbCreate method assigns the input param-
eters to instance variables and then returns the primary key class:

public ItemKey ejbCreate(String productId, String vendorId,
 String description) throws CreateException {

 if (productId == null || vendorId == null) {
 throw new CreateException(
 "The productId and vendorId are required.");
 }

 this.productId = productId;
 this.vendorId = vendorId;
 this.description = description;

 return new ItemKey(productId, vendorId);
}

The ejbFindByPrimaryKey verifies the existence of the database row for the
given primary key:

public ItemKey ejbFindByPrimaryKey(ItemKey primaryKey)
 throws FinderException {

 try {
 if (selectByPrimaryKey(primaryKey))
 return primaryKey;
 ...
}

private boolean selectByPrimaryKey(ItemKey primaryKey)
 throws SQLException {

DEPLOYTOOL TIPS FOR ENTITY BEANS WITH BEAN-MANAGED PERSISTENCE 965
 String selectStatement =
 "select productid " +
 "from item where productid = ? and vendorid = ?";
 PreparedStatement prepStmt =
 con.prepareStatement(selectStatement);
 prepStmt.setString(1, primaryKey.getProductId());
 prepStmt.setString(2, primaryKey.getVendorId());
 ResultSet rs = prepStmt.executeQuery();
 boolean result = rs.next();
 prepStmt.close();
 return result;
}

Getting the Primary Key
A client can fetch the primary key of an entity bean by invoking the getPrima-

ryKey method of the EJBObject class:

SavingsAccount account;
...
String id = (String)account.getPrimaryKey();

The entity bean retrieves its own primary key by calling the getPrimaryKey

method of the EntityContext class:

EntityContext context;
...
String id = (String) context.getPrimaryKey();

deploytool Tips for Entity Beans with
Bean-Managed Persistence

Chapter 25 gives step-by-step instructions for creating and packaging a session
bean. To build an entity bean, you follow the same procedures, but with the fol-
lowing exceptions.

1. In the New Enterprise Bean wizard, specify the bean’s type and persistent
management.

a. In the General dialog box, select the Entity radio button.

b. In the Entity Settings dialog box, select Bean-Managed Persistence.

966
2. In the Resource Ref’s tab, specify the resource factories referenced by the
bean. These settings enable the bean to connect to the database. For more
information on resource references, see Database
Connections (page 1110).

3. Before you deploy the bean, verify that the JNDI names are correct.

a. Select the application from the tree.

b. Click the Sun-specific Settings button.

c. Select JNDI Names in the View combo-box.

27
967
Container-Managed
Persistence Examples

AN entity bean with container-managed persistence (CMP) offers important
advantages to the bean developer. First, the EJB container handles all database
storage and retrieval calls. Second, the container manages the relationships
between the entity beans. Because of these services, you don’t have to code the
database access calls in the entity bean. Instead, you specify settings in the
bean’s deployment descriptor. Not only does this approach save you time, but
also it makes the bean portable across various database servers.

This chapter focuses on the source code and deployment settings for an example
called RosterApp, an application that features entity beans with container-man-
aged persistence. If you are unfamiliar with the terms and concepts mentioned in
this chapter, please consult the section Container-Managed
Persistence (page 861).

Overview of the RosterApp Application
The RosterApp application maintains the team rosters for players in sports
leagues. The application has five components. The RosterAppClient compo-
nent is a application client that accesses the RosterBean session bean through
the bean’s remote interfaces. RosterBean accesses three entity beans—Player-

Bean, TeamBean, and LeagueBean—through their local interfaces.

968
The entity beans use container-managed persistence and relationships. The
TeamBean and PlayerBean entity beans have a bidirectional, many-to-many rela-
tionship. In a bidirectional relationship, each bean has a relationship field whose
value identifies the related bean instance. The multiplicity of the TeamBean-

PlayerBean relationship is many-to-many: Players who participate in more than
one sport belong to multiple teams, and each team has multiple players. The
LeagueBean and TeamBean entity beans also have a bidirectional relationship,
but the multiplicity is one-to-many: A league has many teams, but a team can
belong to only one league.

Figure 27–1 shows the components and relationships of the RosterApp applica-
tion. The dotted lines represent the access gained through invocations of the
JNDI lookup method. The solid lines represent the container-managed relation-
ships.

Figure 27–1 RosterApp J2EE Application

THE PLAYERBEAN CODE 969
The PlayerBean Code
The PlayerBean entity bean represents a player in a sports league. Like any
local entity bean with container-managed persistence, PlayerBean needs the fol-
lowing code:

• Entity bean class (PlayerBean)

• Local home interface (LocalPlayerHome)

• Local interface (LocalPlayer)

The source code for this example is in the
<INSTALL>/j2eetutorial14/examples/ejb/cmproster directory.

Entity Bean Class
The code of the entity bean class must meet the container-managed persistence
syntax requirements. First, the class must be defined as public and abstract.
Second, the class must implement the following:

• The EntityBean interface

• Zero or more ejbCreate and ejbPostCreate methods

• The get and set access methods, defined as abstract, for the persistent
and relationship fields

• Any select methods, defining them as abstract

• The home methods

• The business methods

The entity bean class must not implement these methods:

• The finder methods

• The finalize method

Differences between Container-Managed
and Bean-Managed Code
Because it contains no calls to access the database, an entity bean with container-
managed persistence requires a lot less code than one with bean-managed persis-
tence. For example, the PlayerBean.java source file discussed in this chapter is

970
much smaller than the SavingsAccountBean.java code documented in
Chapter 26. Table 27–1 compares the code of the two types of entity beans.

Note that for both types of persistence, the rules for implementing business and
home methods are the same. See the sections The Business Methods (page 939)
and The Home Methods (page 940) in Chapter 26.

Access Methods
An entity bean with container-managed persistence has persistent and relation-
ship fields. These fields are virtual, so you do not code them in the class as
instance variables. Instead, you specify them in the bean’s deployment descrip-
tor. To permit access to the fields, you define abstract get and set methods in the
entity bean class.

Table 27–1 Coding Differences between Persistent Types

Difference Container-Managed Bean-Managed

Class definition Abstract Not abstract

Database access calls Handled by container Coded by developers

Persistent state
Represented by virtual persis-
tent fields

Coded as instance variables

Access methods for persis-
tent and relationship fields

Required None

findByPrimaryKey
method

Handled by container Coded by developers

Customized finder methods
Handled by container, but the
developer must define the
EJB QL) queries

Coded by developers

Select methods Handled by container None

Return value of ejbCreate null Must be the primary key

THE PLAYERBEAN CODE 971
Access Methods for Persistent Fields
The EJB container automatically performs the database storage and retrieval of
the bean’s persistent fields. The deployment descriptor of PlayerBean specifies
the following persistent fields:

• playerId (primary key)
• name

• position

• salary

The PlayerBean class defines the access methods for the persistent fields as fol-
lows:

public abstract String getPlayerId();
public abstract void setPlayerId(String id);

public abstract String getName();
public abstract void setName(String name);

public abstract String getPosition();
public abstract void setPosition(String position);

public abstract double getSalary();
public abstract void setSalary(double salary);

The name of an access method begins with get or set, followed by the capital-
ized name of the persistent or relationship field. For example, the accessor meth-
ods for the salary field are getSalary and setSalary. This naming convention
is similar to that of JavaBeans components.

Access Methods for Relationship Fields
In the RosterApp application, a player can belong to multiple teams, so a Play-

erBean instance may be related to many TeamBean instances. To specify this
relationship, the deployment descriptor of PlayerBean defines a relationship
field named teams. In the PlayerBean class, the access methods for the teams

relationship field are as follows:

public abstract Collection getTeams();
public abstract void setTeams(Collection teams);

972
Finder and Select Methods
Finder and select methods use EJB QL queries to return objects and state infor-
mation of entity beans using container-managed persistence.

A select method is similar to a finder method in the following ways:

• A select method can return a local or remote interface (or a collection of
interfaces).

• A select method queries a database.

• The deployment descriptor specifies an EJB QL query for a select method.

• The entity bean class does not implement the select method.

However, a select method differs significantly from a finder method:

• A select method can return a persistent field (or a collection thereof) of a
related entity bean. A finder method can return only a local or remote inter-
face (or a collection of interfaces).

• Because it is not exposed in any of the local or remote interfaces, a select
method cannot be invoked by a client. It can be invoked only by the meth-
ods implemented within the entity bean class. A select method is usually
invoked by either a business or a home method.

• A select method is defined in the entity bean class. For bean-managed per-
sistence, a finder method is defined in the entity bean class, but for con-
tainer-managed persistence it is not.

The PlayerBean class defines these select methods:

public abstract Collection ejbSelectLeagues(LocalPlayer player)
throws FinderException;

public abstract Collection ejbSelectSports(LocalPlayer player)
throws FinderException;

The signature for a select method must follow these rules:

• The prefix of the method name must be ejbSelect.

• The access control modifier must be public.

• The method must be declared as abstract.

• The throws clause must include the javax.ejb.FinderException.

THE PLAYERBEAN CODE 973
Business Methods
Because clients cannot invoke select methods, the PlayerBean class wraps them
in the getLeagues and getSports business methods:

public Collection getLeagues() throws FinderException {

LocalPlayer player =
(team.LocalPlayer)context.getEJBLocalObject();

return ejbSelectLeagues(player);
}

public Collection getSports() throws FinderException {

LocalPlayer player =
(team.LocalPlayer)context.getEJBLocalObject();

return ejbSelectSports(player);
}

Entity Bean Methods
Because the container handles persistence, the life-cycle methods in the Player-
Bean class are nearly empty.

The ejbCreate method initializes the bean instance by assigning the input argu-
ments to the persistent fields. At the end of the transaction that contains the cre-
ate call, the container inserts a row into the database. Here is the source code for
the ejbCreate method:

public String ejbCreate (String id, String name,
 String position, double salary) throws CreateException {

 setPlayerId(id);
 setName(name);
 setPosition(position);
 setSalary(salary);
 return null;
}

The ejbPostCreate method returns void, and it has the same input parameters
as the ejbCreate method. If you want to set a relationship field to initialize the
bean instance, you should do so in the ejbPostCreate method. You cannot set a
relationship field in the ejbCreate method.

974
Except for a debug statement, the ejbRemove method in the PlayerBean class is
empty. The container invokes ejbRemove before removing the entity object.

The container automatically synchronizes the state of the entity bean with the
database. After the container loads the bean’s state from the database, it invokes
the ejbLoad method. In like manner, before storing the state in the database, the
container invokes the ejbStore method.

Local Home Interface
The local home interface defines the create, finder, and home methods that can
be invoked by local clients.

The syntax rules for a create method follow:

• The name must begin with create.

• It must have the same number and types of arguments as its matching ejb-

Create method in the entity bean class.

• It must return the local interface type of the entity bean.

• The throws clause must include the exceptions specified by the throws

clause of the corresponding ejbCreate method.

• The throws clause must contain the javax.ejb.CreateException.

These rules apply for a finder method:

• The name must begin with find.

• The return type must be the entity bean’s local interface type or a collection
of those types.

• The throws clause must contain the javax.ejb.FinderException.

• The findByPrimaryKey method must be defined.

An excerpt of the LocalPlayerHome interface follows.

package team;

import java.util.*;
import javax.ejb.*;

public interface LocalPlayerHome extends EJBLocalHome {

 public LocalPlayer create (String id, String name,
 String position, double salary)
 throws CreateException;

METHOD INVOCATIONS IN ROSTERAPP 975
 public LocalPlayer findByPrimaryKey (String id)
 throws FinderException;

 public Collection findByPosition(String position)
 throws FinderException;
 ...
 public Collection findByLeague(LocalLeague league)
 throws FinderException;
 ...
 }

Local Interface
This interface defines the business and access methods that a local client can
invoke. The PlayerBean class implements two business methods: getLeagues
and getSports. It also defines several get and set access methods for the
persistent and relationship fields. The set methods are hidden from the bean’s
clients because they are not defined in the LocalPlayer interface. However, the
get methods are exposed to the clients by the interface:

package team;

import java.util.*;
import javax.ejb.*;

public interface LocalPlayer extends EJBLocalObject {

 public String getPlayerId();
 public String getName();
 public String getPosition();
 public double getSalary();
 public Collection getTeams();

 public Collection getLeagues() throws FinderException;
 public Collection getSports() throws FinderException;
}

Method Invocations in RosterApp
To show how the various components interact, this section describes the
sequence of method invocations that occur for particular functions. The source

976
code for the components is in the
<INSTALL>/j2eetutorial14/examples/ejb/cmproster directory.

Creating a Player

1. RosterClient
The RosterClient invokes the createPlayer business method of the Roster-

Bean session bean to create a new player. In the following line of code, the type
of the myRoster object is Roster, the remote interface of RosterBean. The argu-
ment of the createPlayer method is a PlayerDetails object, which encapsu-
lates information about a particular player.

myRoster.createPlayer(new PlayerDetails("P1", "Phil Jones",
"goalkeeper", 100.00));

2. RosterBean
The createPlayer method of the RosterBean session bean creates a new
instance of the PlayerBean entity bean. Because the access of PlayerBean is
local, the create method is defined in the local home interface, LocalPlayer-
Home. The type of the playerHome object is LocalPlayerHome. Here is the
source code for the createPlayer method:

public void createPlayer(PlayerDetails details) {

try {
LocalPlayer player = playerHome.create(details.getId(),

details.getName(), details.getPosition(),
details.getSalary());

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}
}

3. PlayerBean
The ejbCreate method assigns the input arguments to the bean’s persistent
fields by calling the set access methods. At the end of the transaction that con-

METHOD INVOCATIONS IN ROSTERAPP 977
tains the create call, the container saves the persistent fields in the database by
issuing an SQL INSERT statement. The code for the ejbCreate method follows.

public String ejbCreate (String id, String name,
String position, double salary) throws CreateException {

setPlayerId(id);
setName(name);
setPosition(position);
setSalary(salary);
return null;

}

Adding a Player to a Team

1. RosterClient
The RosterClient calls the addPlayer business method of the RosterBean ses-
sion bean to add player P1 to team T1. The P1 and T1 parameters are the primary
keys of the PlayerBean and TeamBean instances, respectively.

 myRoster.addPlayer("P1", "T1");

2. RosterBean
The addPlayer method performs two steps. First, it calls findByPrimaryKey to
locate the PlayerBean and TeamBean instances. Second, it invokes the
addPlayer business method of the TeamBean entity bean. Here is the source
code for the addPlayer method of the RosterBean session bean:

public void addPlayer(String playerId, String teamId) {

try {
LocalTeam team = teamHome.findByPrimaryKey(teamId);
LocalPlayer player =

playerHome.findByPrimaryKey(playerId);
team.addPlayer(player);

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}
}

978
3. TeamBean
The TeamBean entity bean has a relationship field named players, a Collection
that represents the players that belong to the team. The access methods for the
players relationship field are as follows:

public abstract Collection getPlayers();
public abstract void setPlayers(Collection players);

The addPlayer method of TeamBean invokes the getPlayers access method to
fetch the Collection of related LocalPlayer objects. Next, the addPlayer

method invokes the add method of the Collection interface. Here is the source
code for the addPlayer method:

public void addPlayer(LocalPlayer player) {
try {

Collection players = getPlayers();
players.add(player);

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}
}

Removing a Player

1. RosterClient
To remove player P4, the client would invoke the removePlayer method of the
RosterBean session bean:

myRoster.removePlayer("P4");

2. RosterBean
The removePlayer method locates the PlayerBean instance by calling findBy-

PrimaryKey and then invokes the remove method on the instance. This invoca-
tion signals the container to delete the row in the database that corresponds to the
PlayerBean instance. The container also removes the item for this instance from
the players relationship field in the TeamBean entity bean. By this removal, the

METHOD INVOCATIONS IN ROSTERAPP 979
container automatically updates the TeamBean-PlayerBean relationship. Here is
the removePlayer method of the RosterBean session bean:

public void removePlayer(String playerId) {
try {

LocalPlayer player =
playerHome.findByPrimaryKey(playerId);

player.remove();
} catch (Exception ex) {

throw new EJBException(ex.getMessage());
}

}

Dropping a Player from a Team

1. RosterClient
To drop player P2 from team T1, the client would call the dropPlayer method of
the RosterBean session bean:

myRoster.dropPlayer("P2", "T1");

2. RosterBean
The dropPlayer method retrieves the PlayerBean and TeamBean instances by
calling their findByPrimaryKey methods. Next, it invokes the dropPlayer busi-
ness method of the TeamBean entity bean. The dropPlayer method of the Ros-

terBean session bean follows:

public void dropPlayer(String playerId, String teamId) {

try {
LocalPlayer player =

playerHome.findByPrimaryKey(playerId);
LocalTeam team = teamHome.findByPrimaryKey(teamId);
team.dropPlayer(player);

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}
}

980
3. TeamBean
The dropPlayer method updates the TeamBean-PlayerBean relationship. First,
the method retrieves the Collection of LocalPlayer objects that correspond to
the players relationship field. Next, it drops the target player by calling the
remove method of the Collection interface. Here is the dropPlayer method of
the TeamBean entity bean:

public void dropPlayer(LocalPlayer player) {

try {
Collection players = getPlayers();
players.remove(player);

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}
}

Getting the Players of a Team

1. RosterClient
The client can fetch a team’s players by calling the getPlayersOfTeam method
of the RosterBean session bean. This method returns an ArrayList of Player-
Details objects. A PlayerDetail object contains four variables—playerId,
name, position, and salary—which are copies of the PlayerBean persistent
fields. The RosterClient calls the getPlayersOfTeam method as follows:

playerList = myRoster.getPlayersOfTeam("T2");

2. RosterBean
The getPlayersOfTeam method of the RosterBean session bean locates the
LocalTeam object of the target team by invoking the findByPrimaryKey

method. Next, the getPlayersOfTeam method calls the getPlayers method of

METHOD INVOCATIONS IN ROSTERAPP 981
the TeamBean entity bean. Here is the source code for the getPlayersOfTeam

method:

public ArrayList getPlayersOfTeam(String teamId) {

Collection players = null;

try {
LocalTeam team = teamHome.findByPrimaryKey(teamId);
players = team.getPlayers();

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}

return copyPlayersToDetails(players);
}

The getPlayersOfTeam method returns the ArrayList of PlayerDetails

objects that is generated by the copyPlayersToDetails method:

private ArrayList copyPlayersToDetails(Collection players) {

ArrayList detailsList = new ArrayList();
Iterator i = players.iterator();

while (i.hasNext()) {
LocalPlayer player = (LocalPlayer) i.next();
PlayerDetails details =

new PlayerDetails(player.getPlayerId(),
player.getName(), player.getPosition(),
player.getSalary());

detailsList.add(details);
}

return detailsList;
}

3. TeamBean
The getPlayers method of the TeamBean entity bean is an access method of the
players relationship field:

public abstract Collection getPlayers();

982
This method is exposed to local clients because it is defined in the local inter-
face, LocalTeam:

public Collection getPlayers();

When invoked by a local client, a get access method returns a reference to the
relationship field. If the local client alters the object returned by a get access
method, it also alters the value of the relationship field inside the entity bean. For
example, a local client of the TeamBean entity bean could drop a player from a
team as follows:

LocalTeam team = teamHome.findByPrimaryKey(teamId);
Collection players = team.getPlayers();
players.remove(player);

If you want to prevent a local client from modifying a relationship field in this
manner, you should take the approach described in the next section.

Getting a Copy of a Team’s Players
In contrast to the methods discussed in the preceding section, the methods in this
section demonstrate the following techniques:

• Filtering the information passed back to the remote client

• Preventing the local client from directly modifying a relationship field

1. RosterClient
If you wanted to hide the salary of a player from a remote client, you would
require the client to call the getPlayersOfTeamCopy method of the RosterBean

session bean. Like the getPlayersOfTeam method, the getPlayersOfTeamCopy

method returns an ArrayList of PlayerDetails objects. However, the objects
returned by getPlayersOfTeamCopy are different: their salary variables have
been set to zero. The RosterClient calls the getPlayersOfTeamCopy method as
follows:

playerList = myRoster.getPlayersOfTeamCopy("T5");

METHOD INVOCATIONS IN ROSTERAPP 983
2. RosterBean
Unlike the getPlayersOfTeam method, the getPlayersOfTeamCopy method
does not invoke the getPlayers access method that is exposed in the LocalTeam

interface. Instead, the getPlayersOfTeamCopy method retrieves a copy of the
player information by invoking the getCopyOfPlayers business method that is
defined in the LocalTeam interface. As a result, the getPlayersOfTeamCopy

method cannot modify the players relationship field of TeamBean. Here is the
source code for the getPlayersOfTeamCopy method of RosterBean:

public ArrayList getPlayersOfTeamCopy(String teamId) {

ArrayList playersList = null;

try {
LocalTeam team = teamHome.findByPrimaryKey(teamId);
playersList = team.getCopyOfPlayers();

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}

return playersList;
}

3. TeamBean
The getCopyOfPlayers method of TeamBean returns an ArrayList of Player-
Details objects. To create this ArrayList, the method iterates through the Col-

lection of related LocalPlayer objects and copies information to the variables
of the PlayerDetails objects. The method copies the values of PlayerBean

persistent fields—except for the salary field, which it sets to zero. As a result, a
player’s salary is hidden from a client that invokes the getPlayersOfTeamCopy

method. The source code for the getCopyOfPlayers method of TeamBean fol-
lows.

public ArrayList getCopyOfPlayers() {

ArrayList playerList = new ArrayList();
Collection players = getPlayers();

Iterator i = players.iterator();
while (i.hasNext()) {

LocalPlayer player = (LocalPlayer) i.next();
PlayerDetails details =

984
new PlayerDetails(player.getPlayerId(),
player.getName(), player.getPosition(), 0.00);

playerList.add(details);
}

return playerList;
}

Finding the Players by Position

1. RosterClient
The client starts the procedure by invoking the getPlayersByPosition method
of the RosterBean session bean:

playerList = myRoster.getPlayersByPosition("defender");

2. RosterBean
The getPlayersByPosition method retrieves the players list by invoking the
findByPosition method of the PlayerBean entity bean:

public ArrayList getPlayersByPosition(String position) {

Collection players = null;

try {
players = playerHome.findByPosition(position);

} catch (Exception ex) {
throw new EJBException(ex.getMessage());

}

return copyPlayersToDetails(players);
}

3. PlayerBean
The LocalPlayerHome interface defines the findByPosition method:

public Collection findByPosition(String position)
throws FinderException;

METHOD INVOCATIONS IN ROSTERAPP 985
Because the PlayerBean entity bean uses container-managed persistence, the
entity bean class (PlayerBean) does not implement its finder methods. To spec-
ify the queries associated with the finder methods, EJB QL queries must be
defined in the bean’s deployment descriptor. For example, the findByPosition

method has this EJB QL query:

SELECT DISTINCT OBJECT(p) FROM Player p
WHERE p.position = ?1

At runtime, when the container invokes the findByPosition method, it will exe-
cute the corresponding SQL SELECT statement.

For details about EJB QL, please refer to Chapter 29. To learn how to view and
edit an EJB QL query in deploytool, see the section Finder/Select Methods
Dialog Box (PlayerBean) (page 1008).

Getting the Sports of a Player

1. RosterClient
The client invokes the getSportsOfPlayer method of the RosterBean session
bean:

sportList = myRoster.getSportsOfPlayer("P28");

2. RosterBean
The getSportsOfPlayer method returns an ArrayList of String objects that
represent the sports of the specified player. It constructs the ArrayList from a
Collection returned by the getSports business method of the PlayerBean

entity bean. Here is the source code for the getSportsOfPlayer method of the
RosterBean session bean:

public ArrayList getSportsOfPlayer(String playerId) {

ArrayList sportsList = new ArrayList();
Collection sports = null;

try {
LocalPlayer player =

playerHome.findByPrimaryKey(playerId);

986
sports = player.getSports();
} catch (Exception ex) {

throw new EJBException(ex.getMessage());
}

Iterator i = sports.iterator();
while (i.hasNext()) {

String sport = (String) i.next();
sportsList.add(sport);

}
return sportsList;

}

3. PlayerBean
The getSports method is a wrapper for the ejbSelectSports method. Because
the parameter of the ejbSelectSports method is of type LocalPlayer, the
getSports method passes along a reference to the entity bean instance. The
PlayerBean class implements the getSports method as follows:

public Collection getSports() throws FinderException {

LocalPlayer player =
(team.LocalPlayer)context.getEJBLocalObject();

return ejbSelectSports(player);
}

The PlayerBean class defines the ejbSelectSports method:

public abstract Collection ejbSelectSports(LocalPlayer player)
throws FinderException;

The bean’s deployment descriptor specifies the following EJB QL query for the
ejbSelectSports method:

SELECT DISTINCT t.league.sport
FROM Player p, IN (p.teams) AS t
WHERE p = ?1

Because PlayerBean uses container-managed persistence, when the ejbSe-

lectSports method is invoked the EJB container will execute its corresponding
SQL SELECT statement.

BUILDING AND RUNNING THE ROSTERAPP EXAMPLE 987
Building and Running the RosterApp
Example

Now that you understand the structure of the RosterApp example EAR file, you
will assemble the enterprise application and the application client and then run
the example. This section gives detailed instructions on how to build and run the
RosterApp example, which is located at
<INSTALL>/j2eetutorial14/examples/ejb/cmproster/.

Creating the Database Tables
The RosterApp application uses the database tables shown in Figure 27–2.

Figure 27–2 Database Tables in RosterApp

988
The instructions that follow explain how to use the RosterApp example with
Derby, the database software that is included in the Application Server bundle.

1. Create the database tables by running the create.sql script.

a. In a terminal window, go to this directory:

<INSTALL>/j2eetutorial14/examples/ejb/cmproster/

b. Type the following command, which runs the create.sql script:

asant create-db_common

Note: Application Server 8.2 includes a copy of the open source Derby database
server. Application Server 8.0/8.1 includes the PointBase database server. If you are
using Application Server 8.0/8.1, either follow the instructions in the J2EE Tutorial
at http://java.sun.com/j2ee/1.4/docs/tutorial-
update6/doc/index.html that works with Application Server 8.0/8.1 or
upgrade to Application Server 8.2 (see
http://java.sun.com/j2ee/1.4/download.html#appserv to download).

Creating the Data Source
You must create the jdbc/ejbTutorialDB data source. For instructions on creat-
ing this resource in the Admin Console, see Creating a Data Source (page 1112).

Capturing the Table Schema
You will now create a database schema file, which will allow you to map fields
from the enterprise beans to columns in the database tables created earlier.

1. Make sure that the Derby server is running.

2. In a terminal window, go to
<INSTALL>/j2eetutorial14/examples/ejb/cmproster/

3. Type the following command to create the database schema file, named
cmproster.dbschema, in the ./build/ directory:
asant capture-db-schema

The capture-db-schema task calls the capture-schema utility to output an
XML file, cmproster.dbschema, which represents the structure of the database
tables you created in Creating the Database Tables. The cmproster.dbschema

http://java.sun.com/j2ee/1.4/docs/tutorial-update6/doc/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial-update6/doc/index.html
http://java.sun.com/j2ee/1.4/download.html#appserv

BUILDING AND RUNNING THE ROSTERAPP EXAMPLE 989
file will be used to automatically map the enterprise bean fields to database col-
umns.

The command that’s called when you run the capture-db-schema task is as fol-
lows:

capture-schema
-dburl jdbc:derby://localhost:1527/sun-appserv-samples
-username APP -password APP-table LEAGUE
-table PLAYER -table TEAM -table TEAM_PLAYER
-schemaname APP
-driver org.apache.derby.jdbc.ClientDriver
-out build/cmproster.dbschema

Building the Enterprise Beans
You will now build the enterprise beans.

1. In a terminal window, go to this directory:

<INSTALL>/j2eetutorial14/examples/ejb/cmproster/

2. Type the following command:

asant build

Creating the Enterprise Application
Create a new application in deploytool called RosterApp.

1. In deploytool select File→New→Application.

2. In the Application File Name field, click Browse.

3. Navigate to <INSTALL>/j2eetutorial14/examples/ejb/cmproster/.

4. In the File Name field enter RosterApp.

5. Click New Application.

6. Click OK.

Packaging the Enterprise Beans
You will now package the four enterprise beans: RosterBean, LeagueBean,
PlayerBean, and TeamBean. Note that RosterBean, a stateful session bean, will
be packaged in RosterJAR. The others (LeagueBean, PlayerBean, and Team-

990
Bean) are entity beans using container-managed persistence, and will be pack-
aged in TeamJAR.

Packaging RosterBean
RosterBean is a stateful session bean that accesses the data in the entity beans.
Clients will access and manipulate that data through RosterBean.

1. Create a new enterprise bean inRosterAppby selecting File→New→Enter-
prise Bean.

2. In the EJB JAR screen:

a. Select Create New JAR Module in Application.

b. Enter RosterJAR under JAR Name.

c. Click Edit Contents.

d. Navigate to <INSTALL>/j2eetutorial14/exam-

ples/ejb/cmproster/build/.

e. Select the roster and util directories.

f. Click Add.

g. Click OK.

h. Click Next.

3. In the General screen:

a. Select roster.RosterBean under Enterprise Bean Class.

b. Enter RosterBean under Enterprise Bean Name.

c. Select Stateful Session under Enterprise Bean Type.

d. Select roster.RosterHome under Remote Home Interface.

e. Select roster.Roster under Remote Interface.

f. Select Next.

4. Click Finish.

Packaging LeagueBean, PlayerBean, and
TeamBean
To package LeagueBean, PlayerBean, and TeamBean, follow these steps:

1. Create a new enterprise bean inRosterAppby selecting File→New→Enter-
prise Bean.

BUILDING AND RUNNING THE ROSTERAPP EXAMPLE 991
2. In the EJB JAR screen:

a. Select Create New JAR Module in Application.

b. Enter TeamJAR under JAR Name.

c. Click Edit Contents.

d. Navigate to <INSTALL>/j2eetutorial14/exam-

ples/ejb/cmproster/build/.

e. Select the team and util directories, and the cmproster.dbschema file.

f. Click Add.

g. Click OK.

h. Click Next.

3. In the General screen:

a. Select team.LeagueBean under Enterprise Bean Class.

b. Enter LeagueBean under Enterprise Bean Name.

c. Select team.LocalLeagueHome under Local Home Interface.

d. Select team.LocalLeague under Local Interface.

e. Click Next.

Note: Be sure to enter the correct name in the Enterprise Bean Name field for
LeagueBean, PlayerBean, and TeamBean to allow the automatic mapping of
persistent fields and relationships.

4. In the Entity Settings screen:

a. In the Persistence Management Type field, select Container-Managed
Persistence (2.0).

b. In the Fields To Be Persisted frame, check name, leagueId, and sport.

c. In the Abstract Schema Name field, enter League.

d. In the Primary Key Class field, choose Select an Existing Field.

e. Select leagueId [java.lang.String].

f. Click Next.

5. Click Finish.

Now we’ll add PlayerBean to TeamJAR.

1. Create a new enterprise bean in TeamJAR by selecting File→New→Enter-
prise Bean.

992
2. In the EJB JAR screen:

a. Select Add To Existing JAR Module.

b. Select TeamJAR (RosterApp) under Add To Existing JAR Module.

c. Click Next.

3. In the General screen:

a. Select team.PlayerBean under Enterprise Bean Class.

b. Enter PlayerBean under Enterprise Bean Name.

c. Select team.LocalPlayerHome under Local Home Interface.

d. Select team.LocalPlayer under Local Interface.

e. Click Next.

4. In the Entity Settings screen:

a. In the Persistence Management Type field, select Container-Managed
Persistence (2.0).

b. In the Fields To Be Persisted frame, check name, position, playerId,
and salary.

c. In the Abstract Schema Name field, enter Player.

d. In the Primary Key Class field choose Select an Existing Field.

e. Select playerId [java.lang.String].

f. Click Next.

5. Click Finish.

Now we’ll add TeamBean to TeamJAR.

1. Create a new enterprise bean in TeamJAR by selecting File→New→Enter-
prise Bean.

2. In the EJB JAR screen:

a. Select Add To Existing JAR Module.

b. Select TeamJAR (RosterApp) under Add To Existing JAR Module.

c. Click Next.

3. In the General screen:

a. Select team.TeamBean under Enterprise Bean Class.

b. Enter TeamBean under Enterprise Bean Name.

c. Select team.LocalTeamHome under Local Home Interface.

d. Select team.LocalTeam under Local Interface.

e. Click Next.

BUILDING AND RUNNING THE ROSTERAPP EXAMPLE 993
4. In the Entity Settings screen:

a. In the Persistence Management Type field, select Container-Managed
Persistence (2.0).

b. In the Fields To Be Persisted frame, check name, teamId, and city.

c. In the Abstract Schema Name field, enter Team.

d. In the Primary Key Class field, choose Select an Existing Field.

e. Select teamId [java.lang.String].

f. Click Next.

5. Click Finish.

Adding EJB QL Queries to PlayerBean
PlayerBean contains finder and selector methods that use EJB QL queries.
These steps will add the appropriate EJB QL queries to the methods. See Chap-
ter 29 for more details.

1. Select PlayerBean in the tree in deploytool.

2. Select the Entity tabbed pane.

3. Click Find/Select Queries.

4. In Show Local Finders:

a. For the findAll method, enter

select object(p) from Player p

b. For the findByCity method, enter

select distinct object(p) from Player p,

in (p.teams) as t

where t.city = ?1

c. For the findByHigherSalary method, enter

select distinct object(p1)

from Player p1, Player p2

where p1.salary > p2.salary and

p2.name = ?1

d. For the findByLeague method, enter

select distinct object(p) from Player p,

in (p.teams) as t

where t.league = ?1

e. For the findByPosition method, enter

994
select distinct object(p) from Player p

where p.position = ?1

f. For the findByPositionAndName method, enter

select distinct object(p) from Player p

where p.position = ?1 and p.name = ?2

g. For the findBySalaryRange method, enter

select distinct object(p) from Player p

where p.salary between ?1 and ?2

h. For the findBySport method, enter

select distinct object(p) from Player p,

in (p.teams) as t

where t.league.sport = ?1

i. For the findByTest method, enter

select distinct object(p) from Player p

where p.name = ?1

j. For the findNotOnTeam method, enter

select object(p) from Player p

where p.teams is empty

5. In Show Select Methods:

a. For the ejbSelectLeagues method, enter

select distinct t.league

from Player p, in (p.teams) as t

where p = ?1

b. For the ejbSelectSports method, enter

select distinct t.league.sport

from Player p, in (p.teams) as t

where p = ?1

c. Under Return EJBs of Type, select None for ejbSelectSports.

6. Click OK.

7. Select File→Save.

BUILDING AND RUNNING THE ROSTERAPP EXAMPLE 995
Establishing Relationships between Enterprise
Beans
TeamJAR has the relationships shown in Figure 27–3.

Figure 27–3 Relationships between Enterprise Beans in TeamJAR

Relationships should always be mapped to the primary key field(s) of the related
table.

To create the container-managed relationships between the enterprise beans, do
the following:

1. Select TeamJAR in the tree in deploytool.

2. Select the Relationships tabbed pane.

3. Click Add.

4. In the Add Relationship dialog box:

a. In the Multiplicity field, select Many to Many (*:*).

b. In the Enterprise Bean A section:

1.In the Enterprise Bean Name field, select TeamBean.

996
2.In the Field Referencing Bean B field, select players.

3.In the Field Type field, select java.util.Collection.

c. In the Enterprise Bean B section:

1.In the Enterprise Bean Name field, select PlayerBean.

2.In the Field Referencing Bean A field, select teams.

3.In the Field Type field, select java.util.Collection.

d. Click OK.

5. Click Add.

6. In the Add Relationship dialog box:

a. In the Multiplicity field, select One to Many (1:*).

b. In the Enterprise Bean A section:

1.In the Enterprise Bean Name field, select LeagueBean.

2.In the Field Referencing Bean B field, select teams.

3.In the Field Type field, select java.util.Collection.

c. In the Enterprise Bean B section:

1.In the Enterprise Bean Name field, select TeamBean.

2.In the Field Referencing Bean A field, select league.

3.Check Delete When Bean A Is Deleted.

d. Click OK.

Creating the Field and Relationship Mappings
To set the container-managed fields and relationships, do the following:

1. Select TeamJAR from the tree in deploytool.

2. Select the General tabbed pane.

3. Click Sun-specific Settings.

4. In the Sun-specific Settings dialog box:

a. In the JNDI Name field, enter jdbc/ejbTutorialDB.

b. Click Create Database Mappings.

5. In the Create Database Mappings dialog box:

a. Select Map to Tables in Database Schema File.

b. Select cmproster.dbschema under Database Schema Files in Module.

BUILDING AND RUNNING THE ROSTERAPP EXAMPLE 997
c. Click OK.

6. Confirm that all the fields and relationships have been mapped.

7. Click Close.

Setting RosterBean’s Transaction Attributes
1. Select RosterBean in deploytool’s tree.

2. Click the Transactions tabbed pane.

3. In the Transaction Management field click, Container-Managed.

Setting the Enterprise Bean References
First, you’ll set the enterprise bean reference for ejb/SimpleLeague.

1. Select RosterBean in deploytool’s tree.

2. Click the EJB Ref’s tabbed pane.

3. Click Add.

4. In the Add Enterprise Bean Reference dialog box:

a. In the Coded Name field, enter ejb/SimpleLeague.

b. In the EJB Type field, select Entity.

c. In the Interfaces field, select Local.

d. In the Home Interface field, enter team.LocalLeagueHome.

e. In the Local/Remote Interface field, enter team.LocalLeague.

f. Under Target EJB, select ejb-jar-ic1.jar#LeagueBean in the Enter-
prise Bean Name drop-down list.

g. Click OK.

Next, you’ll set the enterprise bean reference for ejb/SimplePlayer.

1. Click Add.

2. In the Add Enterprise Bean Reference dialog box:

a. In the Coded Name field, enter ejb/SimplePlayer.

b. In the EJB Type field, select Entity.

c. In the Interfaces field, select Local.

d. In the Home Interface field, enter team.LocalPlayerHome.

e. In the Local/Remote Interface field, enter team.LocalPlayer.

998
f. Under Target EJB, select ejb-jar-ic1.jar#PlayerBean in the Enter-
prise Bean Name drop-down list.

g. Click OK.

Finally, you’ll set the enterprise bean reference for ejb/SimpleTeam.

1. Click Add.

2. In the Add Enterprise Bean Reference dialog box:

a. In the Coded Name field, enter ejb/SimpleTeam.

b. In the EJB Type field, select Entity.

c. In the Interfaces field, select Local.

d. In the Home Interface field, enter team.LocalTeamHome.

e. In the Local/Remote Interface field, enter team.LocalTeam.

f. Under Target EJB, select ejb-jar-ic1.jar#TeamBean in the Enter-
prise Bean Name drop-down list.

g. Click OK.

3. Select File→Save.

Packaging the Enterprise Application
Client
To package the application client, do the following:

1. Create a new application client in RosterApp by selecting File→New→Ap-
plication Client.

2. In the JAR File Contents screen:

a. Select RosterApp under Create New AppClient Module in Application.

b. Enter RosterClient under AppClient Name.

c. Click Edit Contents.

d. Navigate to <INSTALL>/j2eetutorial14/exam-

ples/ejb/cmproster/build/.

e. Select the client directory.

f. Click Add.

g. Click OK.

h. Click Next.

BUILDING AND RUNNING THE ROSTERAPP EXAMPLE 999
3. In the General screen:

a. Select client.RosterClient under Main Class.

b. Select (Use container-managed authentication) under Callback
Handler Class.

c. Click Next.

4. Click Finish.

Setting the Enterprise Bean Reference
You must map the coded JNDI name in the client to the RosterBean stateful ses-
sion bean. To do this, follow these steps:

1. Select RosterClient in deploytool’s tree.

2. Select the EJB Ref’s tabbed pane.

3. Click Add.

4. In the Add Enterprise Bean Reference dialog box:

a. In the Coded Name field enter ejb/SimpleRoster.

b. In the EJB Type field, select Session.

c. In the Interfaces field, select Remote.

d. In the Home Interface field, enter roster.RosterHome.

e. In the Local/Remote Interface field, enter roster.Roster.

f. Under Target EJB, select JNDI Name.

g. Select RosterBean under JNDI Name.

h. Click OK.

5. Select File→Save.

Deploying the Enterprise Application
You can now deploy the enterprise application by following these steps:

1. Select Tools→Deploy.

2. In the Deploy Module RosterApp dialog box enter the user name and pass-
word.

3. Under Application Client Stub Directory, check Return Client Jar.

4. Confirm that the path in the field below the checkbox is
<INSTALL>/j2eetutorial14/examples/ejb/cmproster/. If it isn’t,

1000
click Browse and navigate to
<INSTALL>/j2eetutorial14/examples/ejb/cmproster/build/.

5. Click OK.

6. Confirm that the application deployed and started correctly and that the cli-
ent stub JAR was created at
<INSTALL>/j2eetutorial14/examples/ejb/cmproster/build/.

7. Click Close.

Running the Client Application
To run the client, follow these steps:

1. In a terminal, go to <INSTALL>/j2eetutorial14/exam-

ples/ejb/cmproster/.

2. Type the following command:

appclient -client RosterAppClient.jar

3. In the terminal window, the client displays the following output:

P7 Rebecca Struthers midfielder 777.0

P6 Ian Carlyle goalkeeper 555.0

P9 Jan Wesley defender 100.0

P10 Terry Smithson midfielder 100.0

P8 Anne Anderson forward 65.0

T2 Gophers Manteca

T5 Crows Orland

T1 Honey Bees Visalia

P2 Alice Smith defender 505.0

P5 Barney Bold defender 100.0

P25 Frank Fletcher defender 399.0

P9 Jan Wesley defender 100.0

P22 Janice Walker defender 857.0

L1 Mountain Soccer

L2 Valley Basketball

A GUIDED TOUR OF THE ROSTERAPP SETTINGS 1001
Note: Re-create the database tables using the create-db_common task before re-
running the client.

A Guided Tour of the RosterApp
Settings

This section introduces you to the settings of the deployment descriptors for
entity beans with container-managed persistence and relationships. As this tour
guides you through the deploytool screens, it discusses the highlights of the
tabs and dialog boxes that appear.

To begin our tour, please run deploytool and open the RosterApp.ear file,
which is in the <INSTALL>/j2eetutorial14/examples/ejb/provided-ears/

directory.

RosterApp
To view the deployment settings for the application, select the RosterApp node
in the tree view.

General Tab (RosterApp)
The Contents field displays the files contained in the RosterApp.ear file,
including the two EJB JAR files (ejb-jar-ic.jar and ejb-jar-ic1.jar) and
the application client JAR file (app-client-ic.jar). See Figure 27–4.

1002
Figure 27–4 General Tab of RosterApp

JNDI Names Tab (RosterApp)
The Application table lists the JNDI names for the enterprise beans in the Ros-

terApp application.

The References table has one entry. The EJB Ref entry maps the coded name
(ejb/SimpleRoster) in the RosterClient to the JNDI name of the RosterBean

session bean.

A GUIDED TOUR OF THE ROSTERAPP SETTINGS 1003
RosterClient
To view this client, expand the RosterApp node by clicking its adjacent key icon
in the tree view. Next, select RosterClient.

JAR File Tab (RosterClient)
The Contents field shows the files contained by the app-client-ic.jar file:
two XML files (the deployment descriptors) and the class files (RosterCli-
ent.class, Debug.class, LeagueDetails.class, PlayerDetails.class, and
TeamDetails.class).

EJB Ref’s Tab (RosterClient)
The RosterClient accesses a single bean, the RosterBean session bean.
Because this access is remote, the value in the Interfaces column is Remote and
the value for the Local/Remote Interface column is the bean’s remote interface
(roster.Roster).

RosterJAR
In the tree view, select RosterJAR. This JAR file contains the RosterBean ses-
sion bean.

General Tab (RosterJAR)
The Contents field lists three packages of class files. The roster package con-
tains the class files required for RosterBean: the session bean class, remote
interface, and home interface. The team package includes the local interfaces for
the entity beans accessed by the RosterBean session bean. The util package
holds the utility classes for this application.

RosterBean
In the tree view, expand the RosterJAR node and select RosterBean.

1004
General Tab (RosterBean)
This tab shows that RosterBean is a stateful session bean with remote access.
Because it allows no local access, the Local Interfaces fields are empty.

EJB Ref’s Tab (RosterBean)
The RosterBean session bean accesses three entity beans: PlayerBean, Team-
Bean, and LeagueBean. Because this access is local, the entries in the Interfaces
columns are defined as Local. The Home Interface column lists the local home
interfaces of the entity beans. The Local/Remote Interfaces column displays the
local interfaces of the entity beans.

To view the runtime deployment settings, select a row in the table. For example,
when you select the row with the Coded Name of ejb/SimpleLeague, the
LeagueBean name appears in the Enterprise Bean Name field. If a component
references a local entity bean, then you must enter the name of the referenced
bean in the Enterprise Bean Name field.

TeamJAR
In the tree view, select the TeamJAR node. This JAR file contains the three related
entity beans: LeagueBean, TeamBean, and PlayerBean.

General Tab (TeamJAR)
The Contents field shows two packages of class files: team and util. The team

package has the entity bean classes, local interfaces, and local home interfaces
for all three entity beans. The util package contains utility classes. It also shows
the database schema file that is used to map the enterprise bean’s fields to the
database.

Relationships Tab (TeamJAR)
On this tab (Figure 27–5) you define the relationships between entity beans that
use container-managed persistence.

A GUIDED TOUR OF THE ROSTERAPP SETTINGS 1005
Figure 27–5 Relationships Tab of TeamJAR

The Container Managed Relationships table summarizes two relationships:
TeamBean-PlayerBean and LeagueBean-TeamBean. In the TeamBean-Player-

Bean relationship, TeamBean is designated as EJB A and PlayerBean as EJB B.
(This designation is arbitrary. We could have assigned PlayerBean to EJB A,
and assigned TeamBean to EJB B.)

Edit Relationship Dialog Box (TeamJAR)
To view the Edit Relationship dialog box (Figure 27–6), on the Relationships tab
select a row and click Edit. For example, to view the TeamBean-PlayerBean

relationship, select the row in which the EJB A value is Team and then click Edit.

TeamBean-PlayerBean Relationship

The Multiplicity combo box offers four choices. For this relationship, the Many
To Many choice should be selected because a team has many players and a
player can belong to more than one team.

The information in the Enterprise Bean A box defines the TeamBean side of the
relationship. The Field Referencing Bean B combo box displays the relationship

1006
field (players) in TeamBean. This field corresponds to the relationship access
methods in the TeamBean.java source code:

public abstract Collection getPlayers();
public abstract void setPlayers(Collection players);

Figure 27–6 Edit Relationship Dialog Box of TeamJAR

The selection of the Field Type combo box is java.util.Collection, which
matches the players type in the access methods. The players type is a multi-
valued object (Collection) because on the TeamBean side of the relationship the
multiplicity is many.

The TeamBean-PlayerBean relationship is bidirectional: each bean has a rela-
tionship field that identifies the related bean. If this relationship were unidirec-
tional, then one of the beans would not have a relationship field identifying the
other bean. For the bean without the relationship field, the value of the Field Ref-
erencing combo box would be <none>.

LeagueBean-TeamBean Relationship

In the Edit Relationship dialog box, the Multiplicity choice should be One To
Many. This choice indicates that a single league has multiple teams.

For LeagueBean, the relationship field is teams, and for TeamBean it is league.
Because TeamBean is on the multiple side of the relationship, the teams field is a
Collection. In contrast, because LeagueBean is on the single side of the rela-
tionship, the league field is a single-valued object, a LocalLeague. The Team-

Bean.java code defines the league relationship field with these access methods:

public abstract LocalLeague getLeague();
public abstract void setLeague(LocalLeague league);

A GUIDED TOUR OF THE ROSTERAPP SETTINGS 1007
For TeamBean (Enterprise Bean B), the Delete When Bean A Is Deleted check-
box is selected. Because of this selection, when a LeagueBean instance is deleted
the related TeamBean instances are automatically deleted. This type of deletion,
in which one deletion triggers another, is called a cascade delete. For League-
Bean, the corresponding checkbox is disabled: If you delete a team, you don’t
want to automatically delete the league, because there may be other teams in that
league. In general, if a bean is on the multiple side of a relationship, the other
bean cannot be automatically deleted.

PlayerBean
In the tree view, expand the TeamJAR node and select the PlayerBean entity
bean.

General Tab (PlayerBean)
This tab shows the enterprise bean class and interfaces. Because the PlayerBean

entity bean uses container-managed persistence, it has local interfaces. It does
not have remote interfaces because it does not allow remote access.

Entity Tab (PlayerBean)
The field at the top of the tabbed page define’s the bean’s persistence type (Fig-
ure 27–7). For PlayerBean, this type is Container-Managed Persistence, version
2.0. (Because version 1.1 did not support relationships, it is not recommended.
These version numbers identify a particular release of the Enterprise JavaBeans
specification, not the Application Server software.)

The Fields To Be Persisted box lists the persistent and relationship fields defined
by the access methods in the PlayerBean.java code. The checkboxes for the
persistent fields must be selected, but those for the relationship fields must not be
selected. The PlayerBean entity bean has one relationship field: teams.

The abstract schema name is Player, a name that represents the relationships
and persistent fields of the PlayerBean entity bean. This abstract name is refer-
enced in the PlayerBean EJB QL queries. For more information on EJB QL, see
Chapter 29.

1008
Figure 27–7 Entity Tab of PlayerBean

Finder/Select Methods Dialog Box (PlayerBean)
To open this dialog box, click Finder/Select Methods on the Entity tab. This dia-
log box (Figure 27–8) enables you to view and edit the EJB QL queries for a
bean’s finder and select methods. For example, to list the finder methods defined
in the LocalPlayerHome interface, select the Local Finders radio button. When
you select the finder method, its EJB QL query appears in an editable text field.

A GUIDED TOUR OF THE ROSTERAPP SETTINGS 1009
Figure 27–8 Finder/Select Methods Dialog Box of PlayerBean

Sun-Specific CMP Settings Dialog Box (PlayerBean)
To view this dialog box, click Sun-specific CMP Settings in the Entity tab. In this
dialog box, you define the runtime settings of an entity bean that uses container-
managed persistence. These runtime settings are specific to the Application
Server; other implementations of the J2EE platform may take a different
approach.

In the Application Server, the bean’s persistent fields are stored in a relational
database table. In the checkboxes of the Database Table box, you specify
whether or not the server automatically creates or drops the table. If you want to
save the data in your table between deployments, then make sure that the Delete
Table checkbox is not selected. Otherwise, every time you undeploy the bean,
the table will be deleted.

The Application Server accesses the database by issuing SQL calls. In an entity
bean with container-managed persistence, you do not code these calls. The con-
tainer creates the SQL calls automatically when you access the persistent fields
and relationships.

In the Persistent Field Mapping section (see Figure 27–9), the mappings and
relationships for all the entity beans in TeamJAR are listed. For example, to see
the mappings and relationships for PlayerBean, select it from the Enterprise
Bean field.

1010
Figure 27–9 CMP Settings for PlayerBean

Primary Keys for Container-Managed
Persistence

Sometimes you must implement the class and package it along with the entity
bean. For example, if your entity bean requires a composite primary key (which
is made up of multiple fields) or if a primary key field is a Java programming
language primitive type, then you must provide a customized primary key class.

PRIMARY KEYS FOR CONTAINER-MANAGED PERSISTENCE 1011
The Primary Key Class
For container-managed persistence, a primary key class must meet the following
requirements:

• The access control modifier of the class must be public.

• All fields must be declared as public.

• The fields must be a subset of the bean’s persistent fields.

• The class must have a public default constructor.

• The class must implement the hashCode() and equals(Object other)

methods.

• The class must be serializable.

In the following example, the PurchaseOrderKey class implements a composite
key for the PurchaseOrderBean entity bean. The key is composed of two
fields—productModel and vendorId—whose names must match two of the per-
sistent fields in the entity bean class.

public class PurchaseOrderKey implements java.io.Serializable {

public String productModel;
public String vendorId;

public PurchaseOrderKey() { };

public boolean equals(Object other) {

if (other instanceof PurchaseOrderKey) {
return (productModel.equals(

((PurchaseOrderKey)other).productModel) &&
vendorId.equals(
((PurchaseOrderKey)other).vendorId));

}
return false;

}

public int hashCode() {

return productModel.concat(vendorId).hashCode();
}

}

1012
Primary Keys in the Entity Bean Class
In the PurchaseOrderBean class, the following access methods define the per-
sistent fields (vendorId and productModel) that make up the primary key:

public abstract String getVendorId();
public abstract void setVendorId(String id);

public abstract String getProductModel();
public abstract void setProductModel(String name);

The next code sample shows the ejbCreate method of the PurchaseOrderBean

class. The return type of the ejbCreate method is the primary key, but the return
value is null. Although it is not required, the null return value is recommended
for container-managed persistence. This approach saves overhead because the
bean does not have to instantiate the primary key class for the return value.

public PurchaseOrderKey ejbCreate (String vendorId,
 String productModel, String productName)
 throws CreateException {

setVendorId(vendorId);
 setProductModel(productModel);
 setProductName(productName);

 return null;
}

Generating Primary Key Values
For some entity beans, the value of a primary key has a meaning for the business
entity. For example, in an entity bean that represents a player on a sports team,
the primary key might be the player’s driver’s license number. But for other
beans, the key’s value is arbitrary, provided that it’s unique. With container-man-
aged persistence, these key values can be generated automatically by the EJB
container. To take advantage of this feature, an entity bean must meet these
requirements:

• In the deployment descriptor, the primary key class must be defined as a
java.lang.Object. The primary key field is not specified.

• In the home interface, the argument of the findByPrimaryKey method
must be a java.lang.Object.

ADVANCED CMP TOPICS: THE ORDERAPP EXAMPLE 1013
• In the entity bean class, the return type of the ejbCreate method must be
a java.lang.Object.

In these entity beans, the primary key values are in an internal field that only the
EJB container can access. You cannot associate the primary key with a persistent
field or any other instance variable. However, you can fetch the bean’s primary
key by invoking the getPrimaryKey method on the bean reference, and you can
locate the bean by invoking its findByPrimaryKey method.

If you use deploytool to create the database tables, the SQL type of the table
column will be set for you. If you create the tables, set the SQL type for the pri-
mary key column to NUMERIC (19) or BIGINT.

Advanced CMP Topics: The OrderApp
Example

The OrderApp application is an advanced CMP example. It contains entity beans
that have self-referential relationships, one-to-one relationships, unidirectional
relationships, unknown primary keys, primitive primary key types, and compos-
ite primary keys.

Structure of OrderApp
OrderApp is a simple inventory and ordering application for maintaining a cata-
log of parts and placing an itemized order of those parts. It has entity beans that
represent parts, vendors, orders, and line items. These entity beans are accessed
using a stateful session bean that holds the business logic of the application. A
simple command-line client adds data to the entity beans, manipulates the data,
and displays data from the catalog.

The information contained in an order can be divided into different elements.
What is the order number? What parts are included in the order? What parts
make up that part? Who makes the part? What are the specifications for the part?
Are there any schematics for the part? OrderApp is a simplified version of an
ordering system that has all these elements.

This example assumes that you have successfully built, assembled, and deployed
the RosterApp example application and that you are familiar with assembling
entity beans in deploytool.

1014
OrderApp consists of three modules: DataRegistryJAR, an enterprise bean JAR
file containing the entity beans, the support classes, and the database schema file;
RequestJAR, an enterprise bean JAR containing a stateful session bean that
accesses the data in the entity beans; and OrderAppClient, the application client
that populates the entity beans with data and manipulates the data, displaying the
results in a terminal.

Figure 27–10 shows OrderApp’s database tables.

Figure 27–10 Database Tables in OrderApp

Bean Relationships in OrderApp
The RosterApp example application shows how to set up one-to-many and
many-to-many relationships between entity beans. OrderApp demonstrates two
additional types of entity bean relationships (see Figure 27–11): one-to-one and
self-referential relationships.

ADVANCED CMP TOPICS: THE ORDERAPP EXAMPLE 1015
Figure 27–11 Relationships between Entity Beans in OrderApp

Self-Referential Relationships
A self-referential relationship is a relationship between container-managed rela-
tionship fields (CMR) in the same entity bean. PartBean has a CMR field bom-

Part that has a one-to-many relationship with the CMR field parts, which is
also in PartBean. That is, a part can be made up of many parts, and each of those
parts has exactly one bill-of-material part.

The primary key for PartBean is a compound primary key, a combination of the
partNumber and revision fields. It is mapped to the PART_NUMBER and REVI-

SION columns in the PART table.

1016
One-to-One Relationships
PartBean has a CMR field, vendorPart, that has a one-to-one relationship with
VendorPartBean’s CMR field part. That is, each part has exactly one vendor
part, and vice versa.

One-to-Many Relationship Mapped to
Overlapping Primary and Foreign Keys
OrderBean has a CMR field, lineItems, that has a one-to-many relationship
with LineItemBean’s CMR field order. That is, each order has one or more line
item.

LineItemBean uses a compound primary key that is made up of the orderId and
itemId fields. This compound primary key maps to the ORDER_ID and ITEM_ID

columns in the LINEITEM database table. ORDER_ID is a foreign key to the
ORDER_ID column in the ORDERS table. This means that the ORDER_ID column is
mapped twice: once as a primary key field, orderId; and again as a relationship
field, order.

Unidirectional Relationships
LineItemBean has a CMR field, vendorPart, that has a unidirectional many-to-
one relationship with VendorPartBean. That is, there is no CMR field in the tar-
get entity bean in this relationship.

Primary Keys in OrderApp’s Entity Beans
The OrderApp example uses more complicated primary keys than does Roster-
App.

Unknown Primary Keys
In OrderApp, VendorPartBean uses an unknown primary key. That is, the enter-
prise bean does not specify a primary key field, and uses java.lang.Object as
the primary key class.

ADVANCED CMP TOPICS: THE ORDERAPP EXAMPLE 1017
The LocalVendorPartHome interface’s findByPrimaryKey method is defined as
follows:

public LocalVendorPart findByPrimaryKey(Object aKey)
throws FinderException;

When you package OrderApp in deploytool, you will set the primary key class
for VendorPartBean to Unknown Primary Key. deploytool will create the
proper entry in the enterprise bean deployment descriptor.

See Generating Primary Key Values (page 1012) for more information on
unkown primary keys.

Primitive Type Primary Keys
VendorBean uses a primary key that is a Java programming language primitive
type, an int. To use a primitive type as the primary key, you must create a wrap-
per class. VendorKey is the wrapper class for VendorBean.

The wrapper primary key class has the same requirements as described in The
Primary Key Class (page 1011). This is the VendorKey wrapper class:

package dataregistry;
public final class VendorKey implements java.io.Serializable {

public int vendorId;

public boolean equals(Object otherOb) {

if (this == otherOb) {
return true;

}
if (!(otherOb instanceof VendorKey)) {

return false;
}
VendorKey other = (VendorKey) otherOb;
return (vendorId == other.vendorId);

}
public int hashCode() {

return vendorId;
}
public String toString() {

return "" + vendorId;
}

}

1018
Compound Primary Keys
A compound primary key is made up of multiple fields and follows the require-
ments described in The Primary Key Class (page 1011). To use a compound pri-
mary key, you must create a wrapper class.

In OrderApp, two entity beans use compound primary keys: PartBean and
LineItemBean.

PartBean uses the PartKey wrapper class. PartBean’s primary key is a combi-
nation of the part number and the revision number. PartKey encapsulates this
primary key.

LineItemBean uses the LineItemKey class. LineItemBean’s primary key is a
combination of the order number and the item number. LineItemKey encapsu-
lates this primary key. This is the LineItemKey compound primary key wrapper
class:

package dataregistry;

public final class LineItemKey implements
java.io.Serializable {

public Integer orderId;
public int itemId;

public boolean equals(Object otherOb) {
if (this == otherOb) {

return true;
}
if (!(otherOb instanceof LineItemKey)) {

return false;
}
LineItemKey other = (LineItemKey) otherOb;
return ((orderId==null?other.orderId==null:orderId.equals

(other.orderId)) && (itemId == other.itemId));
}

public int hashCode() {
return ((orderId==null?0:orderId.hashCode())

^ ((int) itemId));
}

public String toString() {
return "" + orderId + "-" + itemId;

}
}

ADVANCED CMP TOPICS: THE ORDERAPP EXAMPLE 1019
Entity Bean Mapped to More Than One
Database Table
PartBean’s fields map to more than one database table: PART and PART_DETAIL.
The PART_DETAIL table holds the specification and schematics for the part.
When you set up the container-managed fields and relationships in deploytool,
you will add PART_DETAIL as a secondary table for PartBean.

Finder and Selector Methods
VendorBean has two finder methods: findByPartialName and findByOrder.
The findByPartialName method searches through the vendor list for matches to
a partial name. findByOrder finds all vendors for a particular order.

LineItemBean has one finder method, findAll, which finds all line items.

OrderBean has one selector method, ejbSelectAll, which returns all orders.

VendorPartBean has two selector methods. ejbSelectAvgPrice returns the
average price of all parts from a vendor. ejbSelectTotalPricePerVendor

returns the price of all the parts from a particular vendor.

Selector methods cannot be accessed outside a bean instance because the selec-
tor methods are not defined in the bean interface. If you are using a selector
method to return data to a caller, the selector method must be called from a home
or business method. In OrderApp, the LocalVendorPartHome.getAvgPrice

method returns the result of the ejbSelectAvgPrice method in VendorPart-

Bean.

The return type of a selector query is usually defined by the return type of the
ejbSelect methods. You must specify the return type as Remote if the method
returns a remote interface or a java.util.Collection of remote interfaces. If
the return type is a local interface or a java.util.Collection of local inter-
faces, set the return type to Local. If the return type is neither a local nor a
remote interface, nor a collection of local or remote interfaces, do not set the
return type (in deploytool, set the return type to None). The OrderBean.ejbSe-

lectAll method returns a collection of local interfaces. VendorPartBean.ejb-
SelectAvgPrice and VendorPartBean.ejbSelectTotalPricePerVendor

return a Double, so the return type is set to None.

1020
Using Home Methods
Home methods are defined in the home interface of a bean and correspond to
methods named ejbHome<METHOD> in the bean class. For example, a method
getValue, defined in the LocalExampleHome interface, corresponds to the ejb-

HomeGetValue method implemented in ExampleBean. The ejbHome<METHOD>

methods are implemented by the bean developer.

OrderApp uses three home methods: LocalOrderHome.adjustDiscount,
LocalVendorPartHome.getAvgPrice, and LocalVendorPartHome.getTotal-

PricePerVendor. Home methods operate on all instances of a bean rather than
on any particular bean instance. That is, home methods cannot access the con-
tainer-managed fields and relationships of a bean instance on which the method
is called.

For example, LocalOrderHome.adjustDiscount is used to increase or decrease
the discount on all orders.

Cascade Deletes in OrderApp
Entity beans that use container-managed relationships often have dependencies
on the existence of the other bean in the relationship. For example, a line item is
part of an order, and if the order is deleted, then the line item should also be
deleted. This is called a cascade delete relationship.

In OrderApp, there are two cascade delete dependencies in the bean relation-
ships. If the OrderBean to which a LineItemBean is related is deleted, then the
LineItemBean should also be deleted. If the VendorBean to which a Vendor-

PartBean is related is deleted, then the VendorPartBean should also be deleted.

BLOB and CLOB Database Types in
OrderApp
The PART_DETAIL table in the database has a column, DRAWING, of type BLOB.
BLOB stands for binary large objects, which are used for storing binary data such
as an image. The DRAWING column is mapped to the container-managed field
PartBean. drawing of type java.io.Serializable.

PART_DETAIL also has a column, SPECIFICATION, of type CLOB. CLOB stands for
character large objects, which are used to store string data too large to be stored

ADVANCED CMP TOPICS: THE ORDERAPP EXAMPLE 1021
in a VARCHAR column. SPECIFICATION is mapped to the container-managed field
PartBean.specification of type java.lang.String.

Note: You cannot use a BLOB or CLOB column in the WHERE clause of a finder or
selector EJB QL query.

Building and Running the OrderApp
Example
This section assumes that you are familiar with how to package entity beans in
deploytool as described in Building and Running the RosterApp
Example (page 987) and have created the JDBC resource.

Note: Application Server 8.2 includes a copy of the open source Derby data-
base server. Application Server 8.0/8.1 includes the PointBase database server. If
you are using Application Server 8.0/8.1, either follow the instructions in the J2EE
Tutorial at http://java.sun.com/j2ee/1.4/docs/tutorial-
update6/doc/index.html that works with Application Server 8.0/8.1 or
upgrade to Application Server 8.2 (see
http://java.sun.com/j2ee/1.4/download.html#appserv to download).

Create the Database Tables
To create the database tables, do the following:

1. In a terminal navigate to
<INSTALL>/j2eetutorial14/examples/ejb/cmporder/

2. Enter the following command:
asant create-db_common

Capture the Database Schema
To capture the database schema, do the following:

1. In a terminal navigate to
<INSTALL>/j2eetutorial14/examples/ejb/cmporder/

2. Enter the following command:

http://java.sun.com/j2ee/1.4/docs/tutorial-update6/doc/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial-update6/doc/index.html
http://java.sun.com/j2ee/1.4/download.html#appserv

1022
asant capture-db-schema

Build the Application
To build the application components of OrderApp, do the following:

1. Navigate to
<INSTALL>/j2eetutorial14/examples/ejb/cmporder/

2. Enter the following command:
asant build

Package the Application
You will now package the enterprise beans, support classes, database schema,
and client class in deploytool. This section assumes that you are familiar with
how to package these application modules in deploytool.

Create the Application Modules
1. Create a new application in deploytool named OrderApp in

<INSTALL>/j2eetutorial14/examples/ejb/cmporder/

2. Create an enterprise bean JAR named RequestJAR that contains the files in
<INSTALL>/j2eetutorial14/examples/ejb/cmporder/build/
request/

3. Set up a stateful session bean, RequestBean, in RequestJAR with a remote
home interface of request.RequestHome and a remote interface of
request.Request.

4. Create an enterprise bean JAR named DataRegistryJAR that contains the
files in
<INSTALL>/j2eetutorial14/examples/ejb/cmporder/build/
dataregistry

And the database schema file:

<INSTALL>/j2eetutorial14/examples/ejb/cmporder/build/
cmporder.dbschema

ADVANCED CMP TOPICS: THE ORDERAPP EXAMPLE 1023
5. Set up the entity beans (LineItemBean, OrderBean, PartBean, Vendor-
Bean, and VendorPartBean) according to Table 27–2 through Table 27–6.

Table 27–2 Settings for LineItemBean

Setting Value

Local Home Interface dataregistry.LocalLineItemHome

Local Interface dataregistry.LocalLineItem

Persistent Fields orderId, itemId, quantity

Abstract Schema Name LineItem

Primary Key Class User-defined class dataregistry.LineItemKey

Table 27–3 Settings for OrderBean

Setting Value

Local Home Interface dataregistry.LocalOrderHome

Local Interface dataregistry.LocalOrder

Persistent Fields
status, orderId, discount, lastUpdate, ship-
mentInfo

Abstract Schema Name Order

Primary Key Class Existing field orderId

Table 27–4 Settings for PartBean

Setting Value

Local Home Interface dataregistry.LocalPartHome

Local Interface dataregistry.LocalPart

Persistent Fields
description, partNumber, revision, revisionDate,
drawing, specification

1024
Abstract Schema Name Part

Primary Key Class User-defined class dataregistry.PartKey

Table 27–5 Settings for VendorBean

Setting Value

Local Home Interface dataregistry.LocalVendorHome

Local Interface dataregistry.LocalVendor

Persistent Fields address, name, vendorId, contact, phone

Abstract Schema Name Vendor

Primary Key Class User-defined class dataregistry.VendorKey

Table 27–6 Settings for VendorPartBean

Setting Value

Local Home Interface dataregistry.LocalVendorPartHome

Local Interface dataregistry.LocalVendorPart

Persistent Fields description, price

Abstract Schema Name VendorPart

Primary Key Class Unknown Primary Key Class

Table 27–4 Settings for PartBean

Setting Value

ADVANCED CMP TOPICS: THE ORDERAPP EXAMPLE 1025
Configure the Entity Bean Relationships
Now we’ll configure the relationships of the entity beans and map the fields and
relationships to the database tables.

1. Set up the bean relationships according to Table 27–7:

2. Set the JNDI Name of the CMP Resource to jdbc/ejbTutorialDB.

3. Create the database mappings using the cmporder.dbschema file in the
Sun-specific Settings dialog box, CMP Database view.

4. Manually map OrderBean to the ORDERS database table in the Sun-specific
Settings dialog box, CMP Database view:

a. Select OrderBean in the Enterprise Bean field under Persistent Field
Mappings.

Table 27–7 OrderApp Bean Relationships

Multi-
plicity Bean A

Field
Referencing
Bean B and
Field Type

Delete
When
Bean B
Is
Deleted? Bean B

Field
Referencing
Bean A and
Field Type

Delete
When
Bean A
Is
Deleted?

*:1
Part-
Bean

bomPart
Part-
Bean

parts,
java.util.
Collection

1:*
Order-
Bean

lineItems,
java.util.
Collection

Line
Item-
Bean

order Yes

*:1
Vendor
Part-
Bean

vendor Yes
Vendor
Bean

vendor-
Parts,
java.util.
Collection

1:1
Vendor
Part-
Bean

part
Part-
Bean

vendorPart

*:1
Line
Item-
Bean

vendorPart
Vendor
Part-
Bean

<none>

1026
b. Select ORDERS in the Primary Table drop-down.

ORDER is a reserved keyword in SQL, so the table name is ORDERS.

5. Map PartBean to the PART and PART_DETAIL database tables:

a. Select PartBean in the Enterprise Bean field under Persistent Field
Mappings.

b. Click Advanced Settings under Mappings for Bean PartBean.

c. Click Add.

d. In the Secondary Table field select PART_DETAIL.

e. Select PART_NUMBER in the Primary Table Column.

f. Select PART_NUMBER in the Secondary Table Column.

g. Click Add Pair.

h. Select REVISION in the Primary Table Column.

i. Select REVISION in the Secondary Table Column.

j. Click OK.

k. Click OK.

6. Set the Fetch group of the drawing and specification fields to None.

7. Click Automap All to automatically map the fields and relationships to the
database tables. Repeat this step for all the entity beans until all the rela-
tionships and fields are mapped.

8. Click Close.

Add the Finder and Selector Queries
Add the finder and selector queries to the entity beans as listed in Table 27–8 and
Table 27–9:

Table 27–8 Finder Queries in OrderApp

Enterprise Bean Method EJB QL Query

VendorBean findByOrder

SELECT DISTINCT
l.vendorPart.vendor
FROM Order o, IN(o.lineItems)
AS l
WHERE o.orderId = ?1 ORDER BY
l.vendorPart.vendor.name

ADVANCED CMP TOPICS: THE ORDERAPP EXAMPLE 1027
Note: The queries are included in the cmporderQueries.txt file, located in
<INSTALL>/j2eetutorial14/examples/ejb/cmporder/ to make it easier to enter
the queries.

Set the Transaction Attributes
The transactions for all our enterprise beans (RequestBean, LineItemBean,
OrderBean, PartBean, VendorBean, and VendorPartBean) must be managed by
the container.

1. Select the enterprise bean in deploytool.

2. Select the Transactions tab.

3. Select Container-Managed under Transaction Management. All transac-
tion attributes for the bean’s methods will automatically be set to
Required.

VendorBean findByPartialName
SELECT OBJECT(v) FROM Vendor v
WHERE LOCATE(?1, v.name) > 0

LineItemBean findAll
SELECT OBJECT(l)
FROM LineItem l

Table 27–9 Selector Queries in OrderApp

Enterprise
Bean Method EJB QL Query

Return
EJB
Type

OrderBean ejbSelectAll
SELECT OBJECT(o)
FROM Order o

Local

VendorPart-
Bean

ejbSelectAvgPrice
SELECT AVG(vp.price)
FROM VendorPart vp

None

VendorPart-
Bean

ejbSelectTotal
PricePerVendor

SELECT SUM(vp.price)
FROM VendorPart vp
WHERE vp.vendor.vendorId =
?1

None

Table 27–8 Finder Queries in OrderApp

Enterprise Bean Method EJB QL Query

1028
Set RequestBean’s Enterprise Bean References
RequestBean accesses the local entity beans contained in DataRegistryJAR.
You must set the references to the entity beans in RequestBean.

1. Select RequestBean in RequestJAR.

2. Click the EJB Ref’s tab.

3. Enter the references according to Table 27–10. All the references are to
local entity beans.

Package the Application Client
Now we’ll add the application client to the EAR.

1. Create a new application client in OrderApp named OrderAppClient.

2. Add the contents of the following directory:
<INSTALL>/j2eetutorial14/examples/ejb/cmporder/build/
client/

3. Set the main class of the client to client.Client.

4. Set the enterprise bean reference for the client:

a. Set the Coded Name to ejb/Request.

Table 27–10 Enterprise Bean References in RequestBean

Coded Name Home Interface Local Interface

Target
Enterprise
Bean Name

ejb/SimpleLineItem
dataregistry.
LocalLineItem-
Home

dataregistry.
LocalLineItem

LineItemBean

ejb/SimpleVendorPart
dataregistry.
LocalVendorPart
Home

dataregistry.
LocalVendorPart

VendorPart-
Bean

ejb/SimpleOrder
dataregistry.
LocalOrderHome

dataregistry.
LocalOrder

OrderBean

ejb/SimplePart
dataregistry.
LocalPartHome

dataregistry.
LocalPart

PartBean

ejb/SimpleVendor
dataregistry.
LocalVendorHome

dataregistry.
LocalVendor

VendorBean

ADVANCED CMP TOPICS: THE ORDERAPP EXAMPLE 1029
b. Set the EJB Type to Session.

c. Set the Interfaces to Remote.

d. Set the Home Interface to request.RequestHome.

e. Set the Remote Interface to request.Request.

f. Enter RequestBean in the JNDI Name field under Target EJB.

g. Click OK.

Deploy the Enterprise Application
OrderApp is now ready to be deployed:

1. Select File→Save.

2. Select OrderApp in deploytool.

3. Select Tools→Deploy.

4. Check Return Client Jar in the Deploy Module dialog box.

Run the Client Application
The client application accesses the RequestBean session bean, which in turn
manipulates data in OrderApp’s entity beans.

Note: This example will perform poorly compared with a well-designed CMP
application. OrderApp is designed primarily for instructional purposes, and does not
follow the best practices recommendations as outlined in the book Designing
Enterprise Applications with the J2EE™ Platform, Second Edition, Inder-
jeet Singh et al., (Addison-Wesley, 2002).

To run the client, follow these steps:

1. In a terminal, go to
<INSTALL>/j2eetutorial14/examples/ejb/cmporder/

2. Enter the following command:
appclient -client OrderAppClient.jar

3. You will see the following output in the terminal:

Cost of Bill of Material for PN SDFG-ERTY-BN Rev: 7:
$241.86
Cost of Order 1111: $664.68
Cost of Order 4312: $2,011.44

1030
Adding 5% discount
Cost of Order 1111: $627.75
Cost of Order 4312: $1,910.87

Removing 7% discount
Cost of Order 1111: $679.45
Cost of Order 4312: $2,011.44

Average price of all parts: $117.55

Total price of parts for Vendor 100: $501.06

Ordered list of vendors for order 1111
200 Gadget, Inc. Mrs. Smith
100 WidgetCorp Mr. Jones

Counting all line items
Found 6 line items

Removing Order
Found 3 line items

Found 1 out of 2 vendors with 'I' in the name:
Gadget, Inc.

Note: Re-create the database tables using the create-db_common task before re-
running the client.

deploytool Tips for Entity Beans with
Container-Managed Persistence

Chapter 24 covers the basic steps for building and packaging enterprise beans.
This section highlights the tasks in deploytool that are needed for entity beans
with container-managed persistence. The examples referenced in this section are
from A Guided Tour of the RosterApp Settings (page 1001).

DEPLOYTOOL TIPS FOR ENTITY BEANS WITH CONTAINER-MANAGED PERSISTENCE 1031
Selecting the Persistent Fields and
Abstract Schema Name
In the Entity tab of the enterprise bean, enter the field information and the
abstract schema name.

1. In the Fields To Be Persisted list, select the fields that will be saved in the
database. The names of the persistent fields are determined by the access
methods defined in the entity bean code. Be sure not to select container-
managed relationship fields.

2. Enter values in the Primary Key Class and Primary Key Field Name fields.
The primary key uniquely identifies the entity bean.

3. In the Abstract Schema Name field, enter a name that represents the entity
bean. This name will be referenced in the EJB QL queries.

An example is shown in the section Entity Tab (PlayerBean) (page 1007).

Defining EJB QL Queries for Finder and
Select Methods
You specify these settings in the Finder/Select Methods dialog box.

1. To open the Finder/Select Methods dialog box, go to the Entity tab and
click Finder/Select Methods.

2. To display a set of finder or select methods, click one of the radio buttons
under the Show label.

3. To specify an EJB QL query, choose the name of the finder or select
method from the Method list, and then enter the query in the field labeled
EJB QL Query.

An example is shown in the section Finder/Select Methods Dialog Box
(PlayerBean) (page 1008).

1032
Defining Relationships
The Relationships tab enables you to define relationships between entity beans
that reside in the same EJB JAR file.

1. Before you create a relationship between two entity beans, you must first
create both beans using the New Enterprise Bean wizard.

2. To display the Relationships tab, select the EJB JAR in the tree view and
then select the Relationships tab.

3. To add or edit a relationship, go to the Relationships tab and click the
appropriate button.

4. The Add (or Edit) Relationship dialog box appears. (The Add Relationship
and Edit Relationship dialog boxes are identical.)

An example is shown in the section Edit Relationship Dialog Box
(TeamJAR) (page 1005).

Creating the Database Tables at Deploy
Time in deploytool
The RosterApp example uses a database schema file to map database tables to
enterprise bean fields. Alternatively, you can have the container create the data-
base tables at deploy time by setting some options in deploytool.

1. Select TeamJAR in the tree in deploytool.

2. Select the Relationships tabbed pane.

3. Click Sun-specific Settings.

4. Click Create Database Mappings.

5. Select Automatically Generate Necessary Tables.

6. Click OK.

When you deploy RosterApp, the tables will be created and named according to
the values in the Persistent Field Mappings table.

28
1033
A Message-Driven
Bean Example

BECAUSE message-driven beans are based on the Java Message Service (JMS)
technology, to understand the example in this chapter you should be familiar
with basic JMS concepts such as queues and messages. To learn about these con-
cepts, see Chapter 33.

This chapter describes the source code of a simple message-driven bean exam-
ple. Before proceeding, you should read the basic conceptual information in the
section What Is a Message-Driven Bean? (page 864) as well as Using Message-
Driven Beans (page 1250) in Chapter 33.

Example Application Overview
The SimpleMessageApp application has the following components:

• SimpleMessageClient: An application client that sends several messages
to a queue

• SimpleMessageEJB: A message-driven bean that asynchronously receives
and processes the messages that are sent to the queue

Figure 28–1 illustrates the structure of this application. The application client
sends messages to the queue, which was created administratively using the
Admin Console. The JMS provider (in this case, the Application Server) delivers

1034
the messages to the instances of the message-driven bean, which then processes
the messages.

Figure 28–1 The SimpleMessageApp Application

The source code for this application is in the <INSTALL>/j2eetutorial14/

examples/ejb/simplemessage/ directory.

The Application Client
The SimpleMessageClient sends messages to the queue that the SimpleMes-

sageBean listens to. The client starts by locating the connection factory and
queue:

connectionFactory =
(ConnectionFactory) jndiContext.lookup(

"java:comp/env/jms/MyConnectionFactory");
destination =

(Queue) jndiContext.lookup("java:comp/env/jms/QueueName");

Next, the client creates the queue connection, session, and sender:

connection = connectionFactory.createConnection();
session = connection.createSession(false,

Session.AUTO_ACKNOWLEDGE);
messageProducer = session.createProducer(destination);

THE MESSAGE-DRIVEN BEAN CLASS 1035
Finally, the client sends several messages to the queue:

message = session.createTextMessage();

for (int i = 0; i < NUM_MSGS; i++) {
message.setText("This is message " + (i + 1));
System.out.println("Sending message: " +

message.getText());
messageProducer.send(message);

}

The Message-Driven Bean Class
The code for the SimpleMessageBean class illustrates the requirements of a mes-
sage-driven bean class:

• It must implement the MessageDrivenBean and MessageListener inter-
faces.

• The class must be defined as public.

• The class cannot be defined as abstract or final.

• It must implement one onMessage method.

• It must implement one ejbCreate method and one ejbRemove method.

• It must contain a public constructor with no arguments.

• It must not define the finalize method.

Unlike session and entity beans, message-driven beans do not have the remote or
local interfaces that define client access. Client components do not locate mes-
sage-driven beans and invoke methods on them. Although message-driven beans
do not have business methods, they may contain helper methods that are invoked
internally by the onMessage method.

The onMessage Method
When the queue receives a message, the EJB container invokes the onMessage

method of the message-driven bean.

The onMessage method is called by the bean’s container when a message has
arrived for the bean to service. This method contains the business logic that han-
dles the processing of the message. It is the message-driven bean’s responsibility
to parse the message and perform the necessary business logic.

1036
The onMessage method has a single argument: the incoming message.

The message-driven bean class defines one onMessage method, whose signature
must follow these rules:

• The method must be declared as public and must not be declared as final
or static.

• The return type must be void.

• The method must have a single argument of type javax.jms.Message.

• The throws clause must not define any application exceptions.

• The onMessage method must be invoked in the scope of a transaction that
is determined by the transaction attribute specified in the deployment
descriptor.

In the SimpleMessageBean class, the onMessage method casts the incoming
message to a TextMessage and displays the text:

public void onMessage(Message inMessage) {
TextMessage msg = null;

try {
if (inMessage instanceof TextMessage) {

msg = (TextMessage) inMessage;
logger.info("MESSAGE BEAN: Message received: " +

msg.getText());
} else {

logger.warning("Message of wrong type: " +
inMessage.getClass().getName());

}
} catch (JMSException e) {

e.printStackTrace();
mdc.setRollbackOnly();

} catch (Throwable te) {
te.printStackTrace();

}
}

DEPLOYING AND RUNNING SIMPLEMESSAGEAPP 1037
The ejbCreate and ejbRemove Methods
The signatures of these methods have the following requirements:

• The access control modifier must be public.

• The return type must be void.

• The modifier cannot be static or final.

• The throws clause must not define any application exceptions.

• The method has no arguments.

In the SimpleMessageBean class, the ejbCreate and ejbRemove methods are
empty.

Deploying and Running
SimpleMessageApp

To deploy and run this example, go to the <INSTALL>/j2eetutorial14/exam-

ples/ejb/simplemessage directory.

Creating the Administered Objects
This example requires the following:

• A JMS connection factory resource

• A JMS destination resource

• A physical destination to which the destination resource refers

If you have run the simple JMS examples in Chapter 33 and have not deleted the
resources, you already have these resources and do not need to perform these
steps.

To start the Admin Console, follow the instructions in Starting the Admin
Console (page 28).

To create the connection factory, perform the following steps:

1. In the tree component, expand the Resources node, then expand the JMS
Resources node.

1038
2. Select the Connection Factories node.

3. On the JMS Connection Factories page, click New. The Create JMS Con-
nection Factory page appears.

4. In the JNDI Name field, type jms/ConnectionFactory.

5. Choose javax.jms.ConnectionFactory from the Type combo box.

6. Select the Enabled checkbox.

7. Click OK.

To create the physical destination, perform the following steps:

1. In the tree component, expand the Resources node, then expand the JMS
Resources node.

2. Select the Physical Destinations node.

3. On the Physical Destinations page, click New. The Create Physical Desti-
nation page appears.

4. In the Physical Destination Name field, type PhysicalQueue.

5. Choose queue from the Type combo box.

6. Click OK.

To create the destination resource and link it to the physical destination, perform
the following steps:

1. In the tree component, expand the Resources node, then expand the JMS
Resources node.

2. Select the Destination Resources node.

3. On the JMS Destination Resources page, click New. The Create JMS Des-
tination Resource page appears.

4. In the JNDI Name field, type jms/Queue.

5. Choose javax.jms.Queue from the Type combo box.

6. Select the Enabled checkbox.

7. In the Additional Properties area, type PhysicalQueue in the Value field
for the Name property.

8. Click OK.

Deploying the Application
1. In deploytool, open the SimpleMessageApp.ear file, which resides in

this directory:

DEPLOYING AND RUNNING SIMPLEMESSAGEAPP 1039
<INSTALL>/j2eetutorial14/examples/ejb/provided-ears/

2. Deploy the SimpleMessageApp application.

3. In the Deploy Module dialog box:

a. Select the Return Client JAR checkbox.

b. In the field below the checkbox, enter the following:
<INSTALL>/j2eetutorial14/examples/ejb/simplemessage

Running the Client
After you deploy the application, you run the client as follows:

1. In the directory <INSTALL>/j2eetutorial14/examples/ejb/simple-

message, type the following command on a single line:
appclient -client SimpleMessageAppClient.jar

2. The client displays these lines:
Sending message: This is message 1
Sending message: This is message 2
Sending message: This is message 3
To see if the bean received the messages,
 check <install_dir>/domains/domain1/logs/server.log.

3. In the server log file, the following lines should be displayed, wrapped in
logging information:
MESSAGE BEAN: Message received: This is message 1
MESSAGE BEAN: Message received: This is message 2
MESSAGE BEAN: Message received: This is message 3

Undeploy the application after you finish running the client.

Removing the Administered Objects
After you run the example, you can use the Admin Console to delete the connec-
tion factory and queue. These resources are needed for the JMS examples in
Chapters 33 and 34, however, so if you plan to run those examples, do not delete
the resources.

1040
deploytool Tips for Message-Driven
Beans

Chapter 24 covers the basic steps for building and packaging enterprise beans.
This section describes the tasks in deploytool that are necessary for message-
driven beans. To view this example in deploytool, expand the SimpleMessage-

App node in the tree view, and then expand the MDBJAR node and select Simple-
MessageBean.

Specifying the Bean’s Type
You specify the type when you create the bean using the New Enterprise Bean
wizard.

1. To start the wizard, select File→New→Enterprise Bean.

2. In the General dialog box of the wizard, choose the enterprise bean class
of the bean, and accept the bean class name (the default) as the display
name. The Enterprise Bean Type appears as Message-Driven by default.

Setting the Message-Driven Bean’s
Characteristics
You can specify these settings in two places:

• The Message-Driven Bean Settings dialog box of the New Enterprise Bean
wizard

• The Message-Driven tab of the bean

These settings are as follows:

1. For the Messaging Service, accept the default, JMS.

2. For the Destination Type, choose either javax.jms.Queue or
javax.jms.Topic. A queue uses the point-to-point messaging domain and
can have at most one consumer. A topic uses the publish/subscribe messag-
ing domain; it can have zero, one, or many consumers. For this example,
you would select javax.jms.Queue.

3. For the Target Message Destination, type the name of the physical destina-
tion that you created administratively. For an example, see the section Cre-

DEPLOYTOOL TIPS FOR COMPONENTS THAT SEND MESSAGES 1041
ating the Administered Objects (page 1037). The destination is either a
queue or a topic object; it represents the source of incoming messages and
the target of outgoing messages. For this example, you would type Phys-

icalQueue.

4. If your bean will be a durable subscriber to a topic, select the Durable Sub-
scription checkbox and enter a subscription name. If the bean uses a mes-
sage selector, enter the value in the Message Selector text area. For an
example that uses these features, see A J2EE Application That Uses the
JMS API with a Session Bean (page 1258). You normally leave the
Acknowledgement Mode set to Auto-Acknowledge.

For information on durable subscriptions, see Creating Durable
Subscriptions (page 1236). For information on message selectors, see
Message Selectors (page 1203). For information on message acknowledg-
ment, see Controlling Message Acknowledgment (page 1229).

5. In the Connection Factory JNDI Name (Sun-specific) field, type the JNDI
name of the connection factory the bean will use. For this example, you
would type jms/ConnectionFactory.

Use the tabbed panes as follows:

1. In the Transactions tab of the bean:

a. Select the Container-Managed radio button.

b. Verify that the onMessage method has the Required attribute.

2. In the Message Destinations tab of the bean JAR file:

a. Click Add.

b. Type the physical destination name (for this example, PhysicalQueue)
in the Destination Name field, and press Enter.

c. Type the JNDI name of the destination resource (for this example, jms/
Queue) in the JNDI Name field.

deploytool Tips for Components That
Send Messages

You set resource references and message destination references for any compo-
nent that sends messages: a client, a session or entity bean, or even another mes-
sage-driven bean. For examples, see Chapter 34. In this application, the client is
the sending component. To view this example in deploytool, expand the Sim-

1042
pleMessageApp node, and then select SimpleMessageClient from the tree
view.

Setting the Resource References
You use the Resource Ref’s tabbed pane to specify the connection factory refer-
ences for the component.

1. In the tree view, select the component node.

2. Select the Resource Ref’s tab.

3. Click Add.

4. In the Coded Name field, enter the name that matches the parameter of the
lookup method in the component code. For example, because the lookup

parameter is java:comp/env/jms/MyConnectionFactory, the coded
name should be jms/MyConnectionFactory.

5. In the Type field, select the connection factory class that matches the des-
tination type. The destination class in the code is javax.jms.Connec-

tionFactory, so select that class.

6. In the Authentication field, in most cases you will select Container. You
would select Application if your code explicitly logged on to the messag-
ing service.

7. In the Sharable field, make sure that the checkbox is selected. This choice
allows the container to optimize connections.

8. In the Sun-specific Settings area, enter the name of the connection factory
(in this case, jms/ConnectionFactory) in the JNDI Name field. Enter
guest in both the User Name and the Password fields.

Setting the Message Destination
References
For any new application, you use the Msg Dest Ref’s tab to specify the destina-
tion of messages. The Resource Env Ref’s tab provides similar information, but
it is available primarily for backward compatibility.

1. Select the Msg Dest Ref’s tab.

2. Click Add.

DEPLOYTOOL TIPS FOR COMPONENTS THAT SEND MESSAGES 1043
3. In the Coded Name field of the dialog box that appears, type a name that
matches the parameter of the lookup call that locates the queue or topic. In
this example, the lookup parameter is java:comp/env/jms/QueueName,
so the coded name is jms/QueueName.

4. In the Destination Type combo box, choose the class that matches the des-
tination type (in this case, javax.jms.Queue).

5. From the Usage combo box, choose either Produces or ConsumesPro-
duces, depending on whether this component sends messages or both
sends and receives messages. For this example, choose Produces.

6. In the Destination Name field, type the name of the physical destination
you created (in this case, PhysicalQueue).

Setting the Message Destinations
When you use the Msg Dest Ref’s tab, you also use the Message Destinations
tab of the component JAR file to link the destination to its JNDI name.

1. Select the Message Destinations tab.

2. Click Add.

3. In the Destination Name field, type the name of the destination (in this
case, PhysicalQueue) and press Return. The name also appears in the Dis-
play Name field. The names of the components that consume and produce
messages for the destination appear in the Producers and Consumers areas.

4. In the JNDI Name field, type the name of the JMS resource you created (in
this case, jms/Queue).

Specifying the JNDI Names
The JNDI name for a message-driven bean is the name of the destination
resource.

1. In the tree view, select the application’s node.

2. Click Sun-specific Settings on the General screen.

3. On the JNDI Names screen, enter the appropriate names. For example, the
SimpleMessageApp discussed in this chapter uses the JNDI names shown
in Table 28–1.

1044
Table 28–1 JNDI Names for the SimpleMessageApp Application

Component or Reference Name JNDI Name

SimpleMessageBean jms/Queue

jms/MyConnectionFactory jms/ConnectionFactory

29
104
Enterprise JavaBeans
Query Language

THE Enterprise JavaBeans Query Language (EJB QL) defines the queries for
the finder and select methods of an entity bean that uses container-managed per-
sistence. A subset of SQL92, EJB QL has extensions that allow navigation over
the relationships defined in an entity bean’s abstract schema. The scope of an
EJB QL query spans the abstract schemas of related entity beans that are pack-
aged in the same EJB JAR file.

You define EJB QL queries in the deployment descriptor of the entity bean. Typ-
ically, a tool will translate these queries into the target language of the underly-
ing data store. Because of this translation, entity beans with container-managed
persistence are portable; their code is not tied to a specific type of data store.

This chapter relies on the material presented in earlier chapters. For conceptual
information, see the section Container-Managed Persistence (page 861). For
code examples, see Chapter 27.

1046
Terminology
The following list defines some of the terms referred to in this chapter.

• Abstract schema: The part of an entity bean’s deployment descriptor that
defines the bean’s persistent fields and relationships.

• Abstract schema name: A logical name that is referenced in EJB QL que-
ries. You specify an abstract schema name for each entity bean that uses
container-managed persistence.

• Abstract schema type: All EJB QL expressions evaluate to a type. If the
expression is an abstract schema name, by default its type is the local inter-
face of the entity bean for which the abstract schema name is defined.

• Backus-Naur Form (BNF): A notation that describes the syntax of high-
level languages. The syntax diagrams in this chapter are in BNF notation.

• Navigation: The traversal of relationships in an EJB QL expression. The
navigation operator is a period.

• Path expression: An expression that navigates to a related entity bean.

• Persistent field: A virtual field of an entity bean with container-managed
persistence; it is stored in a database.

• Relationship field: A virtual field of an entity bean with container-managed
persistence; it identifies a related entity bean.

Simplified Syntax
This section briefly describes the syntax of EJB QL so that you can quickly
move on to the next section, Example Queries. When you are ready to learn
about the syntax in more detail, see the section Full Syntax (page 1052).

An EJB QL query has four clauses: SELECT, FROM, WHERE, and ORDER BY. The
SELECT and FROM clauses are required, but the WHERE and ORDER BY clauses are
optional. Here is the high-level BNF syntax of an EJB QL query:

EJB QL ::= select_clause from_clause
[where_clause][orderby_clause]

The SELECT clause defines the types of the objects or values returned by the
query. A return type is either a local interface, a remote interface, or a persistent
field.

EXAMPLE QUERIES 1047
The FROM clause defines the scope of the query by declaring one or more identifi-
cation variables, which can be referenced in the SELECT and WHERE clauses. An
identification variable represents one of the following elements:

• The abstract schema name of an entity bean

• A member of a collection that is the multiple side of a one-to-many rela-
tionship

The WHERE clause is a conditional expression that restricts the objects or values
retrieved by the query. Although it is optional, most queries have a WHERE clause.

The ORDER BY clause sorts the objects or values returned by the query into a
specified order.

Example Queries
The following queries are from the PlayerBean entity bean of the RosterApp

J2EE application, which is documented in Chapter 27. To see the relationships
between the beans of the RosterApp, see Figure 27–3 (page 995).

Simple Finder Queries
If you are unfamiliar with EJB QL, these simple queries are a good place to start.

Example 1

SELECT OBJECT(p)
FROM Player p

Data retrieved: All players.

Finder method: findall()

Description: The FROM clause declares an identification variable named p, omit-
ting the optional keyword AS. If the AS keyword were included, the clause would
be written as follows:

FROM Player AS p

The Player element is the abstract schema name of the PlayerBean entity bean.
Because the bean defines the findall method in the LocalPlayerHome inter-
face, the objects returned by the query have the LocalPlayer type.

1048
See also: Identification Variables (page 1058)

Example 2

SELECT DISTINCT OBJECT(p)
FROM Player p
WHERE p.position = ?1

Data retrieved: The players with the position specified by the finder method’s
parameter.

Finder method: findByPosition(String position)

Description: In a SELECT clause, the OBJECT keyword must precede a stand-
alone identification variable such as p. (A stand-alone identification variable is
not part of a path expression.) The DISTINCT keyword eliminates duplicate val-
ues.

The WHERE clause restricts the players retrieved by checking their position, a
persistent field of the PlayerBean entity bean. The ?1 element denotes the input
parameter of the findByPosition method.

See also: Input Parameters (page 1063), DISTINCT and OBJECT
Keywords (page 1073)

Example 3

SELECT DISTINCT OBJECT(p)
FROM Player p
WHERE p.position = ?1 AND p.name = ?2

Data retrieved: The players having the specified positions and names.

Finder method: findByPositionAndName(String position, String name)

Description: The position and name elements are persistent fields of the Play-

erBean entity bean. The WHERE clause compares the values of these fields with
the parameters of the findByPositionAndName method. EJB QL denotes an
input parameter using a question mark followed by an integer. The first input
parameter is ?1, the second is ?2, and so forth.

EXAMPLE QUERIES 1049
Finder Queries That Navigate to Related
Beans
In EJB QL, an expression can traverse (or navigate) to related beans. These
expressions are the primary difference between EJB QL and SQL. EJB QL navi-
gates to related beans, whereas SQL joins tables.

Example 4

SELECT DISTINCT OBJECT(p)
FROM Player p, IN (p.teams) AS t
WHERE t.city = ?1

Data retrieved: The players whose teams belong to the specified city.

Finder method: findByCity(String city)

Description: The FROM clause declares two identification variables: p and t. The
p variable represents the PlayerBean entity bean, and the t variable represents
the related TeamBean beans. The declaration for t references the previously
declared p variable. The IN keyword signifies that teams is a collection of related
beans. The p.teams expression navigates from a PlayerBean bean to its related
TeamBean beans. The period in the p.teams expression is the navigation opera-
tor.

In the WHERE clause, the period preceding the persistent variable city is a delim-
iter, not a navigation operator. Strictly speaking, expressions can navigate to
relationship fields (related beans), but not to persistent fields. To access a persis-
tent field, an expression uses the period as a delimiter.

Expressions cannot navigate beyond (or further qualify) relationship fields that
are collections. In the syntax of an expression, a collection-valued field is a ter-
minal symbol. Because the teams field is a collection, the WHERE clause cannot
specify p.teams.city—an illegal expression.

See also: Path Expressions (page 1060)

Example 5

SELECT DISTINCT OBJECT(p)
FROM Player p, IN (p.teams) AS t
WHERE t.league = ?1

Data retrieved: The players that belong to the specified league.

1050
Finder method: findByLeague(LocalLeague league)

Description: The expressions in this query navigate over two relationships. The
p.teams expression navigates the PlayerBean-TeamBean relationship, and the
t.league expression navigates the TeamBean-LeagueBean relationship.

In the other examples, the input parameters are String objects, but in this exam-
ple the parameter is an object whose type is a LocalLeague interface. This type
matches the league relationship field in the comparison expression of the WHERE

clause.

Example 6

SELECT DISTINCT OBJECT(p)
FROM Player p, IN (p.teams) AS t
WHERE t.league.sport = ?1

Data retrieved: The players who participate in the specified sport.

Finder method: findBySport(String sport)

Description: The sport persistent field belongs to the LeagueBean bean. To
reach the sport field, the query must first navigate from the PlayerBean bean to
the TeamBean bean (p.teams) and then from the TeamBean bean to the League-

Bean bean (t.league). Because the league relationship field is not a collection,
it can be followed by the sport persistent field.

Finder Queries with Other Conditional
Expressions
Every WHERE clause must specify a conditional expression, of which there are
several kinds. In the previous examples, the conditional expressions are compar-
ison expressions that test for equality. The following examples demonstrate some
of the other kinds of conditional expressions. For descriptions of all conditional
expressions, see the section WHERE Clause (page 1062).

Example 7

SELECT OBJECT(p)
FROM Player p
WHERE p.teams IS EMPTY

Data retrieved: All players who do not belong to a team.

EXAMPLE QUERIES 1051
Finder method: findNotOnTeam()

Description: The teams relationship field of the PlayerBean bean is a collec-
tion. If a player does not belong to a team, then the teams collection is empty
and the conditional expression is TRUE.

See also: Empty Collection Comparison Expressions (page 1067)

Example 8

SELECT DISTINCT OBJECT(p)
FROM Player p
WHERE p.salary BETWEEN ?1 AND ?2

Data retrieved: The players whose salaries fall within the range of the specified
salaries.

Finder method: findBySalaryRange(double low, double high)

Description: This BETWEEN expression has three arithmetic expressions: a persis-
tent field (p.salary) and the two input parameters (?1 and ?2). The following
expression is equivalent to the BETWEEN expression:

p.salary >= ?1 AND p.salary <= ?2

See also: BETWEEN Expressions (page 1065)

Example 9

SELECT DISTINCT OBJECT(p1)
FROM Player p1, Player p2
WHERE p1.salary > p2.salary AND p2.name = ?1

Data retrieved: All players whose salaries are higher than the salary of the player
with the specified name.

Finder method: findByHigherSalary(String name)

Description: The FROM clause declares two identification variables (p1 and p2) of
the same type (Player). Two identification variables are needed because the
WHERE clause compares the salary of one player (p2) with that of the other play-
ers (p1).

See also: Identification Variables (page 1058)

1052
Select Queries
The queries in this section are for select methods. Unlike finder methods, a select
method can return persistent fields or other entity beans.

Example 10

SELECT DISTINCT t.league
FROM Player p, IN (p.teams) AS t
WHERE p = ?1

Data retrieved: The leagues to which the specified player belongs.

Select method: ejbSelectLeagues(LocalPlayer player)

Description: The return type of this query is the abstract schema type of the
LeagueBean entity bean. This abstract schema type maps to the LocalLeague-

Home interface. Because the expression t.league is not a stand-alone identifica-
tion variable, the OBJECT keyword is omitted.

See also: SELECT Clause (page 1071)

Example 11

SELECT DISTINCT t.league.sport
FROM Player p, IN (p.teams) AS t
WHERE p = ?1

Data retrieved: The sports that the specified player participates in.

Select method: ejbSelectSports(LocalPlayer player)

Description: This query returns a String named sport, which is a persistent
field of the LeagueBean entity bean.

Full Syntax
This section discusses the EJB QL syntax, as defined in the Enterprise JavaBeans
specification. Much of the following material paraphrases or directly quotes the
specification.

FULL SYNTAX 1053
BNF Symbols
Table 29–1 describes the BNF symbols used in this chapter.

BNF Grammar of EJB QL
Here is the entire BNF diagram for EJB QL:

EJB QL ::= select_clause from_clause [where_clause]
[orderby_clause]

from_clause ::=FROM identification_variable_declaration
 [, identification_variable_declaration]*

identification_variable_declaration ::=
collection_member_declaration |
 range_variable_declaration

collection_member_declaration ::= IN (
collection_valued_path_expression) [AS] identifier

range_variable_declaration ::=
 abstract_schema_name [AS] identifier

Table 29–1 BNF Symbol Summary

Symbol Description

::=
The element to the left of the symbol is defined by the con-
structs on the right.

* The preceding construct may occur zero or more times.

{...} The constructs within the curly braces are grouped together.

[...] The constructs within the square brackets are optional.

| An exclusive OR.

BOLDFACE
A keyword (although capitalized in the BNF diagram, key-
words are not case-sensitive).

Whitespace
A whitespace character can be a space, a horizontal tab, or a
linefeed.

1054
cmp_path_expression ::=
 {identification_variable |
 single_valued_cmr_path_expression}.cmp_field

single_valued_cmr_path_expression ::=
 identification_variable.[single_valued_cmr_field.]*
 single_valued_cmr_field

single_valued_path_expression ::=
 cmp_path_expression | single_valued_cmr_path_expression

collection_valued_path_expression ::=
 identification_variable.[single_valued_cmr_field.]
 *collection_valued_cmr_field

select_clause ::= SELECT [DISTINCT] {select_expression
 |OBJECT(identification_variable) }

select_expression ::= single_valued_path_expression |
aggregate_select_expression

aggregate_select_expression ::=
 {AVG |MAX |MIN |SUM |COUNT }([DISTINCT]
 cmp_path_expression) |

COUNT ([DISTINCT] identification_variable |
 single_valued_cmr_path_expression)

where_clause ::= WHERE conditional_expression

conditional_expression ::= conditional_term |
 conditional_expression OR conditional_term

conditional_term ::= conditional_factor |
 conditional_term AND conditional_factor

conditional_factor ::= [NOT] conditional_primary

conditional_primary ::= simple_cond_expression |
 (conditional_expression)

simple_cond_expression ::=
 comparison_expression | between_expression |
 like_expression | in_expression |
 null_comparison_expression |
 empty_collection_comparison_expression |
 collection_member_expression

FULL SYNTAX 1055
between_expression ::=
 arithmetic_expression [NOT]BETWEEN
 arithmetic_expression AND arithmetic_expression

in_expression ::=
 cmp_path_expression [NOT] IN
 ({literal | input_parameter}
 [, { literal | input_parameter}]*)

like_expression ::=
 cmp_path_expression [NOT] LIKE
 pattern_value [ESCAPE escape_character]

null_comparison_expression ::=
 {single_valued_path_expression |
 input_parameter}IS [NOT] NULL

empty_collection_comparison_expression ::=
 collection_valued_path_expression IS [NOT] EMPTY

collection_member_expression ::=
 {single_valued_cmr_path_expression |
 identification_variable | input_parameter}
 [NOT] MEMBER [OF] collection_valued_path_expression

comparison_expression ::=
 string_value comparison_operator string_expression |
 boolean_value {= |<> } boolean_expression} |
 datetime_value comparison_operator datetime_expression |
 entity_bean_value {= |<> } entity_bean_expression |
 arithmetic_value comparison_operator arithmetic_expression

arithmetic_value ::= cmp_path_expression |
 functions_returning_numerics

comparison_operator ::=
 = |> |>= |< |<= |<>

arithmetic_expression ::= arithmetic_term |
 arithmetic_expression {+ |- } arithmetic_term

arithmetic_term ::= arithmetic_factor |
 arithmetic_term {* |/ } arithmetic_factor

arithmetic_factor ::= [{+ |- }] arithmetic_primary

arithmetic_primary ::= cmp_path_expression | literal |
 (arithmetic_expression) | input_parameter |

1056
 functions_returning_numerics

string_value ::= cmp_path_expression |
 functions_returning_strings

string_expression ::= string_primary | input_parameter

string_primary ::= cmp_path_expression | literal |
 (string_expression) | functions_returning_strings

datetime_value ::= cmp_path_expression

datetime_expression ::= datetime_value | input_parameter

boolean_value ::= cmp_path_expression

boolean_expression ::= cmp_path_expression | literal |
 input_parameter

entity_bean_value ::= single_valued_cmr_path_expression |
 identification_variable

entity_bean_expression ::= entity_bean_value | input_parameter

functions_returning_strings ::=
CONCAT(string_expression, string_expression) |
SUBSTRING(string_expression, arithmetic_expression,

 arithmetic_expression)

functions_returning_numerics ::=
LENGTH(string_expression) |
LOCATE(string_expression, string_expression

 [, arithmetic_expression]) |
ABS(arithmetic_expression) |
SQRT(arithmetic_expression) |
MOD(arithmetic_expression, arithmetic_expression)

orderby_clause ::= ORDER BY orderby_item [, orderby_item]*

orderby_item ::= cmp_path_expression [ASC |DESC]

FULL SYNTAX 1057
FROM Clause
The FROM clause defines the domain of the query by declaring identification vari-
ables. Here is the syntax of the FROM clause:

from_clause ::= FROM identification_variable_declaration
 [, identification_variable_declaration]*

identification_variable_declaration ::=
 collection_member_declaration |
 range_variable_declaration

collection_member_declaration ::=
 IN (collection_valued_path_expression) [AS] identifier

range_variable_declaration ::=
 abstract_schema_name [AS] identifier

Identifiers
An identifier is a sequence of one or more characters. The first character must be
a valid first character (letter, $, _) in an identifier of the Java programming lan-
guage (hereafter in this chapter called simply “Java”). Each subsequent character
in the sequence must be a valid nonfirst character (letter, digit, $, _) in a Java
identifier. (For details, see the J2SE API documentation of the isJavaIdentifi-
erStart and isJavaIdentifierPart methods of the Character class.) The
question mark (?) is a reserved character in EJB QL and cannot be used in an
identifier. Unlike a Java variable, an EJB QL identifier is not case-sensitive.

An identifier cannot be the same as an EJB QL keyword:

EJB QL keywords are also reserved words in SQL. In the future, the list of EJB
QL keywords may expand to include other reserved SQL words. The Enterprise

AND
AS
ASC
AVG
BETWEEN
BY
COUNT
DESC
DISTINCT
EMPTY

FALSE
FROM
IN
IS
LIKE
MAX
MEMBER
MIN
MOD
NOT

NULL
OBJECT
OF
OR
ORDER
SELECT
SUM
TRUE
UNKNOWN
WHERE

1058
JavaBeans specification recommends that you not use other reserved SQL words
for EJB QL identifiers.

Identification Variables
An identification variable is an identifier declared in the FROM clause. Although
the SELECT and WHERE clauses can reference identification variables, they cannot
declare them. All identification variables must be declared in the FROM clause.

Because an identification variable is an identifier, it has the same naming con-
ventions and restrictions as an identifier. For example, an identification variable
is not case-sensitive, and it cannot be the same as an EJB QL keyword. (See the
preceding section for more naming rules.) Also, within a given EJB JAR file, an
identifier name must not match the name of any entity bean or abstract schema.

The FROM clause can contain multiple declarations, separated by commas. A dec-
laration can reference another identification variable that has been previously
declared (to the left). In the following FROM clause, the variable t references the
previously declared variable p:

FROM Player p, IN (p.teams) AS t

Even if an identification variable is not used in the WHERE clause, its declaration
can affect the results of the query. For an example, compare the next two queries.
The following query returns all players, whether or not they belong to a team:

SELECT OBJECT(p)
FROM Player p

In contrast, because the next query declares the t identification variable, it
fetches all players that belong to a team:

SELECT OBJECT(p)
FROM Player p, IN (p.teams) AS t

The following query returns the same results as the preceding query, but the
WHERE clause makes it easier to read:

SELECT OBJECT(p)
FROM Player p
WHERE p.teams IS NOT EMPTY

FULL SYNTAX 1059
An identification variable always designates a reference to a single value whose
type is that of the expression used in the declaration. There are two kinds of dec-
larations: range variable and collection member.

Range Variable Declarations
To declare an identification variable as an abstract schema type, you specify a
range variable declaration. In other words, an identification variable can range
over the abstract schema type of an entity bean. In the following example, an
identification variable named p represents the abstract schema named Player:

FROM Player p

A range variable declaration can include the optional AS operator:

FROM Player AS p

In most cases, to obtain objects a query uses path expressions to navigate
through the relationships. But for those objects that cannot be obtained by navi-
gation, you can use a range variable declaration to designate a starting point (or
root).

If the query compares multiple values of the same abstract schema type, then the
FROM clause must declare multiple identification variables for the abstract
schema:

FROM Player p1, Player p2

For a sample of such a query, see Example 9 (page 1051).

Collection Member Declarations
In a one-to-many relationship, the multiple side consists of a collection of entity
beans. An identification variable can represent a member of this collection. To
access a collection member, the path expression in the variable’s declaration nav-
igates through the relationships in the abstract schema. (For more information on
path expressions, see the following section.) Because a path expression can be
based on another path expression, the navigation can traverse several relation-
ships. See Example 6 (page 1050).

A collection member declaration must include the IN operator, but it can omit the
optional AS operator.

1060
In the following example, the entity bean represented by the abstract schema
named Player has a relationship field called teams. The identification variable
called t represents a single member of the teams collection.

FROM Player p, IN (p.teams) AS t

Path Expressions
Path expressions are important constructs in the syntax of EJB QL, for several
reasons. First, they define navigation paths through the relationships in the
abstract schema. These path definitions affect both the scope and the results of a
query. Second, they can appear in any of the three main clauses of an EJB QL
query (SELECT, WHERE, FROM). Finally, although much of EJB QL is a subset of
SQL, path expressions are extensions not found in SQL.

Syntax
Here is the syntax for path expressions:

cmp_path_expression ::=
 {identification_variable |
 single_valued_cmr_path_expression}.cmp_field

single_valued_cmr_path_expression ::=
 identification_variable.[single_valued_cmr_field.]*
 single_valued_cmr_field

single_valued_path_expression ::=
 cmp_path_expression | single_valued_cmr_path_expression

collection_valued_path_expression ::=
 identification_variable.[single_valued_cmr_field.]
 *collection_valued_cmr_field

In the preceding diagram, the cmp_field element represents a persistent field,
and the cmr_field element designates a relationship field. The term
single_valued qualifies the relationship field as the single side of a one-to-one
or one-to-many relationship; the term collection_valued designates it as the
multiple (collection) side of a relationship. The
single_valued_cmr_path_expression is the abstract schema type of the
related entity bean.

FULL SYNTAX 1061
The period (.) in a path expression serves two functions. If a period precedes a
persistent field, it is a delimiter between the field and the identification variable.
If a period precedes a relationship field, it is a navigation operator.

Examples
In the following query, the WHERE clause contains a cmp_path_expression. The
p is an identification variable, and salary is a persistent field of Player.

SELECT DISTINCT OBJECT(p)
FROM Player p
WHERE p.salary BETWEEN ?1 AND ?2

The WHERE clause of the next example also contains a cmp_path_expression.
The t is an identification variable, league is a single-valued relationship field,
and sport is a persistent field of league.

SELECT DISTINCT OBJECT(p)
FROM Player p, IN (p.teams) AS t
WHERE t.league.sport = ?1

In the next query, the WHERE clause contains a
collection_valued_path_expression. The p is an identification variable, and
teams designates a collection-valued relationship field.

SELECT DISTINCT OBJECT(p)
FROM Player p
WHERE p.teams IS EMPTY

Expression Types
The type of an expression is the type of the object represented by the ending ele-
ment, which can be one of the following:

• Persistent field

• Single-valued relationship field

• Collection-valued relationship field

For example, the type of the expression p.salary is double because the termi-
nating persistent field (salary) is a double.

In the expression p.teams, the terminating element is a collection-valued rela-
tionship field (teams). This expression’s type is a collection of the abstract

1062
schema type named Team. Because Team is the abstract schema name for the
TeamBean entity bean, this type maps to the bean’s local interface, LocalTeam.
For more information on the type mapping of abstract schemas, see the section
Return Types (page 1071).

Navigation
A path expression enables the query to navigate to related entity beans. The ter-
minating elements of an expression determine whether navigation is allowed. If
an expression contains a single-valued relationship field, the navigation can con-
tinue to an object that is related to the field. However, an expression cannot navi-
gate beyond a persistent field or a collection-valued relationship field. For
example, the expression p.teams.league.sport is illegal, because teams is a
collection-valued relationship field. To reach the sport field, the FROM clause
could define an identification variable named t for the teams field:

FROM Player AS p, IN (p.teams) t
WHERE t.league.sport = 'soccer'

WHERE Clause
The WHERE clause specifies a conditional expression that limits the values
returned by the query. The query returns all corresponding values in the data
store for which the conditional expression is TRUE. Although usually specified,
the WHERE clause is optional. If the WHERE clause is omitted, then the query
returns all values. The high-level syntax for the WHERE clause follows:

where_clause ::= WHERE conditional_expression

Literals
There are three kinds of literals: string, numeric, and Boolean.

String Literals
A string literal is enclosed in single quotes:

'Duke'

FULL SYNTAX 1063
If a string literal contains a single quote, you indicate the quote by using two sin-
gle quotes:

'Duke''s'

Like a Java String, a string literal in EJB QL uses the Unicode character encod-
ing.

Numeric Literals
There are two types of numeric literals: exact and approximate.

An exact numeric literal is a numeric value without a decimal point, such as 65, -
233, and +12. Using the Java integer syntax, exact numeric literals support num-
bers in the range of a Java long.

An approximate numeric literal is a numeric value in scientific notation, such as
57., -85.7, and +2.1. Using the syntax of the Java floating-point literal, approxi-
mate numeric literals support numbers in the range of a Java double.

Boolean Literals
A Boolean literal is either TRUE or FALSE. These keywords are not case-sensitive.

Input Parameters
An input parameter is designated by a question mark (?) followed by an integer.
For example, the first input parameter is ?1, the second is ?2, and so forth.

The following rules apply to input parameters:

• They can be used only in a WHERE clause.

• Their use is restricted to a single-valued path expression within a condi-
tional expression.

• They must be numbered, starting with the integer 1.

• The number of input parameters in the WHERE clause must not exceed the
number of input parameters in the corresponding finder or select method.

• The type of an input parameter in the WHERE clause must match the type of
the corresponding argument in the finder or select method.

1064
Conditional Expressions
A WHERE clause consists of a conditional expression, which is evaluated from left
to right within a precedence level. You can change the order of evaluation by
using parentheses.

Here is the syntax of a conditional expression:

conditional_expression ::= conditional_term |
 conditional_expression OR conditional_term

conditional_term ::= conditional_factor |
 conditional_term AND conditional_factor

conditional_factor ::= [NOT] conditional_primary

conditional_primary ::= simple_cond_expression |
 (conditional_expression)

simple_cond_expression ::=
 comparison_expression | between_expression |
 like_expression | in_expression |
 null_comparison_expression |
 empty_collection_comparison_expression |
 collection_member_expression

Operators and Their Precedence
Table 29–2 lists the EJB QL operators in order of decreasing precedence.

Table 29–2 EJB QL Operator Precedence

 Type Precedence Order

Navigation . (a period)

Arithmetic + - (unary)
* / (multiplication and division)
+ - (addition and subtraction)

FULL SYNTAX 1065
BETWEEN Expressions
A BETWEEN expression determines whether an arithmetic expression falls within
a range of values. The syntax of the BETWEEN expression follows:

between_expression ::=
arithmetic_expression [NOT] BETWEEN
arithmetic_expression AND arithmetic_expression

These two expressions are equivalent:

p.age BETWEEN 15 AND 19
p.age >= 15 AND p.age <= 19

The following two expressions are also equivalent:

p.age NOT BETWEEN 15 AND 19
p.age < 15 OR p.age > 19

If an arithmetic expression has a NULL value, then the value of the BETWEEN

expression is unknown.

Comparison =
>
>=
<
<=
<> (not equal)

Logical NOT
AND
OR

Table 29–2 EJB QL Operator Precedence

 Type Precedence Order

1066
IN Expressions
An IN expression determines whether or not a string belongs to a set of string lit-
erals. Here is the syntax of the IN expression:

in_expression ::=
 cmp_path_expression [NOT] IN
 ({literal | input_parameter}
 [, { literal | input_parameter}]*)

The path expression must have a string or numeric value. If the path expression
has a NULL value, then the value of the IN expression is unknown.

In the following example, if the country is UK the expression is TRUE. If the coun-
try is Peru it is FALSE.

o.country IN ('UK', 'US', 'France')

LIKE Expressions
A LIKE expression determines whether a wildcard pattern matches a string. Here
is the syntax:

like_expression ::=
 cmp_path_expression [NOT] LIKE
 pattern_value [ESCAPE escape_character]

The path expression must have a string or numeric value. If this value is NULL,
then the value of the LIKE expression is unknown. The pattern value is a string
literal that can contain wildcard characters. The underscore (_) wildcard charac-
ter represents any single character. The percent (%) wildcard character represents
zero or more characters. The ESCAPE clause specifies an escape character for the
wildcard characters in the pattern value. Table 29–3 shows some sample LIKE

expressions.

Table 29–3 LIKE Expression Examples

 Expression TRUE FALSE

address.phone LIKE '12%3'
'123'
'12993'

'1234'

FULL SYNTAX 1067
NULL Comparison Expressions
A NULL comparison expression tests whether a single-valued path expression or
an input parameter has a NULL value. Usually, the NULL comparison expression is
used to test whether or not a single-valued relationship has been set. Here is the
syntax of a NULL comparison expression:

null_comparison_expression ::=
 {single_valued_path_expression |

 input_parameter}IS [NOT] NULL

Empty Collection Comparison Expressions
An empty collection comparison expression tests whether a collection-valued
path expression has no elements. In other words, it tests whether or not a collec-
tion-valued relationship has been set. Here is the syntax:

empty_collection_comparison_expression ::=
 collection_valued_path_expression IS [NOT] EMPTY

If the collection-valued path expression is NULL, then the empty collection com-
parison expression has a NULL value.

asentence.word LIKE 'l_se' 'lose' 'loose'

aword.underscored LIKE '_%’ ESCAPE '\' '_foo' 'bar'

address.phone NOT LIKE '12%3' '1234'
'123'
'12993'

Table 29–3 LIKE Expression Examples

 Expression TRUE FALSE

1068
Collection Member Expressions
The collection member expression determines whether a value is a member of a
collection. The value and the collection members must have the same type. The
expression syntax follows:

collection_member_expression ::=
 {single_valued_cmr_path_expression |
 identification_variable | input_parameter}
 [NOT] MEMBER [OF] collection_valued_path_expression

If either the collection-valued or single-valued path expression is unknown, then
the collection member expression is unknown. If the collection-valued path
expression designates an empty collection, then the collection member expres-
sion is FALSE.

Functional Expressions
EJB QL includes several string and arithmetic functions, which are listed in the
following tables. In Table 29–4, the start and length arguments are of type
int. They designate positions in the String argument. The first position in a
string is designated by 1. In Table 29–5, the number argument can be either an
int, a float, or a double.

Table 29–4 String Expressions

Function Syntax Return Type

CONCAT(String, String) String

LENGTH(String) int

LOCATE(String, String [, start]) int

SUBSTRING(String, start, length) String

Table 29–5 Arithmetic Expressions

Function Syntax Return Type

ABS(number) int, float, or double

FULL SYNTAX 1069
NULL Values
If the target of a reference is not in the persistent store, then the target is NULL.
For conditional expressions containing NULL, EJB QL uses the semantics defined
by SQL92. Briefly, these semantics are as follows:

• If a comparison or arithmetic operation has an unknown value, it yields a
NULL value.

• Two NULL values are not equal. Comparing two NULL values yields an
unknown value.

• The IS NULL test converts a NULL persistent field or a single-valued rela-
tionship field to TRUE. The IS NOT NULL test converts them to FALSE.

• Boolean operators and conditional tests use the three-valued logic defined
by Table 29–6 and Table 29–7. (In these tables, T stands for TRUE, F for
FALSE, and U for unknown.)

MOD(int, int) int

SQRT(double) double

Table 29–6 AND Operator Logic

AND T F U

T T F U

F F F F

U U F U

Table 29–7 OR Operator Logic

OR T F U

T T T T

Table 29–5 Arithmetic Expressions (Continued)

Function Syntax Return Type

1070
Equality Semantics
In EJB QL, only values of the same type can be compared. However, this rule
has one exception: Exact and approximate numeric values can be compared. In
such a comparison, the required type conversion adheres to the rules of Java
numeric promotion.

EJB QL treats compared values as if they were Java types and not as if they rep-
resented types in the underlying data store. For example, if a persistent field
could be either an integer or a NULL, then it must be designated as an Integer

object and not as an int primitive. This designation is required because a Java
object can be NULL but a primitive cannot.

Two strings are equal only if they contain the same sequence of characters. Trail-
ing blanks are significant; for example, the strings 'abc' and 'abc ' are not
equal.

Two entity beans of the same abstract schema type are equal only if their primary
keys have the same value. Table 29–8 shows the operator logic of a negation, and
Table 29–9 shows the truth values of conditional tests.

F T F U

U T U U

Table 29–8 NOT Operator Logic

NOT
Value Value

T F

F T

U U

Table 29–7 OR Operator Logic (Continued)

OR T F U

FULL SYNTAX 1071
SELECT Clause
The SELECT clause defines the types of the objects or values returned by the
query. The SELECT clause has the following syntax:

select_clause ::= SELECT [DISTINCT] {select_expression
 |OBJECT(identification_variable) }

select_expression ::= single_valued_path_expression |
 aggregate_select_expression

aggregate_select_expression ::=
 {AVG |MAX |MIN |SUM |COUNT }([DISTINCT]
 cmp_path_expression) |

COUNT ([DISTINCT] identification_variable |
 single_valued_cmr_path_expression)

Return Types
The return type defined by the SELECT clause must match that of the finder or
select method for which the query is defined.

For finder method queries, the return type of the SELECT clause is the abstract
schema type of the entity bean that defines the finder method. This abstract
schema type maps to either a remote or a local interface. If the bean’s remote
home interface defines the finder method, then the return type is the remote
interface (or a collection of remote interfaces). Similarly, if the local home inter-
face defines the finder method, the return type is the local interface (or a collec-
tion). For example, the LocalPlayerHome interface of the PlayerBean entity
bean defines the findall method:

public Collection findAll() throws FinderException;

Table 29–9 Conditional Test

Conditional Test T F U

Expression IS TRUE T F F

Expression IS FALSE F T F

Expression is unknown F F T

1072
The EJB QL query of the findall method returns a collection of LocalPlayer
interface types:

SELECT OBJECT(p)
FROM Player p

For select method queries (except for aggregate function queries), the return type
of the SELECT clause can be one of the following:

• The abstract schema of the entity bean that contains the select method.

• The abstract schema of a related entity bean. (By default, each of these
abstract schema types maps to the local interface of the entity bean.
Although it is uncommon, in the deployment descriptor you can override
the default mapping by specifying a remote interface.)

• A persistent field.

The PlayerBean entity bean, for example, implements the ejbSelectSports

method, which returns a collection of String objects for sport. The sport is a
persistent field of the LeagueBean entity bean. See Example 11 (page 1052).

A SELECT clause cannot specify a collection-valued expression. For example, the
SELECT clause p.teams is invalid because teams is a collection. However, the
clause in the following query is valid because the t is a single element of the
teams collection:

SELECT t
FROM Player p, IN (p.teams) AS t

For select method queries with an aggregate function (AVG, COUNT, MAX, MIN, or
SUM) in the SELECT clause, the following rules apply:

• The select method must return a single object, primitive, or wrapper type
that is compatible with the standard JDBC conversion mappings for the
persistent field type.

• For the AVG, MAX, MIN, and SUM functions, if the select method return type
is an object and the function returns no values, then the select method
returns null. In this case, if the select method return type is a primitive,
then the container throws the ObjectNotFoundException.

• For the COUNT function, the result of the select method must be an exact
numeric type. If the function returns no values, the select method returns 0.

FULL SYNTAX 1073
DISTINCT and OBJECT Keywords
The DISTINCT keyword eliminates duplicate return values. If the method of the
query returns a java.util.Collection—which allows duplicates—then you
must specify the DISTINCT keyword to eliminate duplicates. However, if the
method returns a java.util.Set, the DISTINCT keyword is redundant because a
java.util.Set cannot contain duplicates.

The OBJECT keyword must precede a stand-alone identification variable, but it
must not precede a single-valued path expression. If an identification variable is
part of a single-valued path expression, it is not stand-alone.

Aggregate Functions
The SELECT clause can contain an aggregate function with the following syntax:

aggregate_select_expression ::=
 {AVG |MAX |MIN |SUM |COUNT }([DISTINCT]
 cmp_path_expression) |

COUNT ([DISTINCT] identification_variable |
 single_valued_cmr_path_expression)

Except for the COUNT function, the path expression argument for an aggregate
function must terminate in a persistent field. For the COUNT function, the path
expression argument can terminate in a persistent field, a relationship field, or an
identification variable.

The arguments of the SUM and AVG functions must be numeric. The arguments of
the MAX and MIN functions must be orderable: numeric, string, character, or date.

If the argument is empty, the COUNT function returns 0 and the other aggregate
functions return NULL.

If the DISTINCT keyword is specified, duplicate values are eliminated before the
aggregate function is applied. NULL values are always eliminated before the func-
tion is applied, whether or not the DISTINCT keyword is used.

1074
ORDER BY Clause
As its name suggests, the ORDER BY clause orders the values or objects returned
by the query. The syntax of the clause follows:

orderby_clause ::= ORDER BY orderby_item [, orderby_item]*

orderby_item ::= cmp_path_expression [ASC |DESC]

If the ORDER BY clause contains multiple orderby_item elements, the left-to-
right sequence of the elements determines the high-to-low precedence.

The ASC keyword specifies ascending order (the default), and the DESC keyword
indicates descending order.

If the ORDER BY clause is used, then the SELECT clause must be one of the follow-
ing:

• An identification variable x, denoted as OBJECT(x)

• A single_valued_cmr_path_expression

• A cmp_path_expression

If the SELECT clause is an identification variable or a
single_valued_cmr_path_expression, then the orderby_item must be an
orderable persistent field of the entity bean returned by the SELECT clause. If the
SELECT clause is a cmp_path_expression, then the cmp_path_expression and
the orderby_item must evaluate to the same persistent field of the same entity
bean.

EJB QL RESTRICTIONS 1075
EJB QL Restrictions
EJB QL has a few restrictions:

• Comments are not allowed.

• To compare date and time values in an EJB QL query, use long primitives
to represent the values as milliseconds. Do not use the java.util.Date

and java.sql.Time objects in EJB QL comparisons.

• Because support for BigDecimal and BigInteger types is optional for
EJB 2.1 containers, applications that use these types in EJB QL queries
may not be portable.

• Currently, container-managed persistence does not support inheritance.
For this reason, two entity beans of different types cannot be compared.

1076

30
107
Transactions

A typical enterprise application accesses and stores information in one or more
databases. Because this information is critical for business operations, it must be
accurate, current, and reliable. Data integrity would be lost if multiple programs
were allowed to update the same information simultaneously. It would also be
lost if a system that failed while processing a business transaction were to leave
the affected data only partially updated. By preventing both of these scenarios,
software transactions ensure data integrity. Transactions control the concurrent
access of data by multiple programs. In the event of a system failure, transactions
make sure that after recovery the data will be in a consistent state.

What Is a Transaction?
To emulate a business transaction, a program may need to perform several steps.
A financial program, for example, might transfer funds from a checking account
to a savings account using the steps listed in the following pseudocode:

begin transaction
 debit checking account
 credit savings account
 update history log
commit transaction

Either all three of these steps must complete, or none of them at all. Otherwise,
data integrity is lost. Because the steps within a transaction are a unified whole, a
transaction is often defined as an indivisible unit of work.

1078
A transaction can end in two ways: with a commit or with a rollback. When a
transaction commits, the data modifications made by its statements are saved. If
a statement within a transaction fails, the transaction rolls back, undoing the
effects of all statements in the transaction. In the pseudocode, for example, if a
disk drive were to crash during the credit step, the transaction would roll back
and undo the data modifications made by the debit statement. Although the
transaction fails, data integrity would be intact because the accounts still balance.

In the preceding pseudocode, the begin and commit statements mark the bound-
aries of the transaction. When designing an enterprise bean, you determine how
the boundaries are set by specifying either container-managed or bean-managed
transactions.

Container-Managed Transactions
In an enterprise bean with container-managed transactions, the EJB container
sets the boundaries of the transactions. You can use container-managed transac-
tions with any type of enterprise bean: session, entity, or message-driven. Con-
tainer-managed transactions simplify development because the enterprise bean
code does not explicitly mark the transaction’s boundaries. The code does not
include statements that begin and end the transaction.

Typically, the container begins a transaction immediately before an enterprise
bean method starts. It commits the transaction just before the method exits. Each
method can be associated with a single transaction. Nested or multiple transac-
tions are not allowed within a method.

Container-managed transactions do not require all methods to be associated with
transactions. When deploying a bean, you specify which of the bean’s methods
are associated with transactions by setting the transaction attributes.

Transaction Attributes
A transaction attribute controls the scope of a transaction. Figure 30–1 illus-
trates why controlling the scope is important. In the diagram, method-A begins a
transaction and then invokes method-B of Bean-2. When method-B executes,
does it run within the scope of the transaction started by method-A, or does it
execute with a new transaction? The answer depends on the transaction attribute
of method-B.

CONTAINER-MANAGED TRANSACTIONS 1079
Figure 30–1 Transaction Scope

A transaction attribute can have one of the following values:

• Required

• RequiresNew

• Mandatory

• NotSupported

• Supports

• Never

Required
If the client is running within a transaction and invokes the enterprise bean’s
method, the method executes within the client’s transaction. If the client is not
associated with a transaction, the container starts a new transaction before run-
ning the method.

The Required attribute will work for most transactions. Therefore, you may
want to use it as a default, at least in the early phases of development. Because
transaction attributes are declarative, you can easily change them later.

RequiresNew
If the client is running within a transaction and invokes the enterprise bean’s
method, the container takes the following steps:

1. Suspends the client’s transaction

2. Starts a new transaction

3. Delegates the call to the method

1080
4. Resumes the client’s transaction after the method completes

If the client is not associated with a transaction, the container starts a new trans-
action before running the method.

You should use the RequiresNew attribute when you want to ensure that the
method always runs within a new transaction.

Mandatory
If the client is running within a transaction and invokes the enterprise bean’s
method, the method executes within the client’s transaction. If the client is not
associated with a transaction, the container throws the TransactionRequire-

dException.

Use the Mandatory attribute if the enterprise bean’s method must use the transac-
tion of the client.

NotSupported
If the client is running within a transaction and invokes the enterprise bean’s
method, the container suspends the client’s transaction before invoking the
method. After the method has completed, the container resumes the client’s
transaction.

If the client is not associated with a transaction, the container does not start a
new transaction before running the method.

Use the NotSupported attribute for methods that don’t need transactions.
Because transactions involve overhead, this attribute may improve performance.

Supports
If the client is running within a transaction and invokes the enterprise bean’s
method, the method executes within the client’s transaction. If the client is not
associated with a transaction, the container does not start a new transaction
before running the method.

Because the transactional behavior of the method may vary, you should use the
Supports attribute with caution.

CONTAINER-MANAGED TRANSACTIONS 1081
Never
If the client is running within a transaction and invokes the enterprise bean’s
method, the container throws a RemoteException. If the client is not associated
with a transaction, the container does not start a new transaction before running
the method.

Summary of Transaction Attributes
Table 30–1 summarizes the effects of the transaction attributes. Both the T1 and
the T2 transactions are controlled by the container. A T1 transaction is associ-
ated with the client that calls a method in the enterprise bean. In most cases, the
client is another enterprise bean. A T2 transaction is started by the container just
before the method executes.

In the last column of Table 30–1, the word None means that the business method
does not execute within a transaction controlled by the container. However, the
database calls in such a business method might be controlled by the transaction
manager of the DBMS.

Setting Transaction Attributes
Because transaction attributes are stored in the deployment descriptor, they can
be changed during several phases of J2EE application development: enterprise
bean creation, application assembly, and deployment. However, it is the respon-
sibility of an enterprise bean developer to specify the attributes when creating the
bean. The attributes should be modified only by an application developer who is
assembling components into larger applications. Do not expect the person
deploying the J2EE application to specify the transaction attributes.

Table 30–1 Transaction Attributes and Scope

Transaction
Attribute

Client’s
Transaction

Business Method’s
Transaction

Required None T2

T1 T1

1082
You can specify the transaction attributes for the entire enterprise bean or for
individual methods. If you’ve specified one attribute for a method and another
for the bean, the attribute for the method takes precedence. When you specify
attributes for individual methods, the requirements differ with the type of bean.
Session beans need the attributes defined for business methods but do not allow
them for the create methods. Entity beans require transaction attributes for the
business, create, remove, and finder methods. Message-driven beans require
transaction attributes (either Required or NotSupported) for the onMessage

method.

Rolling Back a Container-Managed
Transaction
There are two ways to roll back a container-managed transaction. First, if a sys-
tem exception is thrown, the container will automatically roll back the transac-
tion. Second, by invoking the setRollbackOnly method of the EJBContext

interface, the bean method instructs the container to roll back the transaction. If

RequiresNew None T2

T1 T2

Mandatory None error

T1 T1

NotSupported None None

T1 None

Supports None None

T1 T1

Never None None

T1 Error

Table 30–1 Transaction Attributes and Scope (Continued)

Transaction
Attribute

Client’s
Transaction

Business Method’s
Transaction

CONTAINER-MANAGED TRANSACTIONS 1083
the bean throws an application exception, the rollback is not automatic but can be
initiated by a call to setRollbackOnly. For a description of system and applica-
tion exceptions, see deploytool Tips for Entity Beans with Bean-Managed
Persistence (page 965).

The source code for the following example is in the
<INSTALL>/j2eetutorial14/examples/ejb/bank directory.

The transferToSaving method of the BankBean example illustrates the set-

RollbackOnly method. If a negative checking balance occurs, transferToSav-
ing invokes setRollBackOnly and throws an application exception
(InsufficientBalanceException). The updateChecking and updateSaving

methods update database tables. If the updates fail, these methods throw an
SQLException and the transferToSaving method throws an EJBException.
Because the EJBException is a system exception, it causes the container to auto-
matically roll back the transaction. Here is the code for the transferToSaving

method:

public void transferToSaving(double amount) throws
 InsufficientBalanceException {

 checkingBalance -= amount;
 savingBalance += amount;

 try {
 updateChecking(checkingBalance);
 if (checkingBalance < 0.00) {
 context.setRollbackOnly();
 throw new InsufficientBalanceException();
 }
 updateSaving(savingBalance);
 } catch (SQLException ex) {
 throw new EJBException
 ("Transaction failed due to SQLException: "
 + ex.getMessage());
 }
}

When the container rolls back a transaction, it always undoes the changes to data
made by SQL calls within the transaction. However, only in entity beans will the
container undo changes made to instance variables. (It does so by automatically
invoking the entity bean’s ejbLoad method, which loads the instance variables
from the database.) When a rollback occurs, a session bean must explicitly reset
any instance variables changed within the transaction. The easiest way to reset a

1084
session bean’s instance variables is by implementing the SessionSynchroniza-

tion interface.

Synchronizing a Session Bean’s Instance
Variables
The SessionSynchronization interface, which is optional, allows you to syn-
chronize the instance variables with their corresponding values in the database.
The container invokes the SessionSynchronization methods—afterBegin,
beforeCompletion, and afterCompletion—at each of the main stages of a
transaction.

The afterBegin method informs the instance that a new transaction has begun.
The container invokes afterBegin immediately before it invokes the business
method. The afterBegin method is a good place to load the instance variables
from the database. The BankBean class, for example, loads the checkingBal-

ance and savingBalance variables in the afterBegin method:

public void afterBegin() {

 System.out.println("afterBegin()");
 try {
 checkingBalance = selectChecking();
 savingBalance = selectSaving();
 } catch (SQLException ex) {
 throw new EJBException("afterBegin Exception: " +
 ex.getMessage());
 }
}

The container invokes the beforeCompletion method after the business method
has finished, but just before the transaction commits. The beforeCompletion

method is the last opportunity for the session bean to roll back the transaction
(by calling setRollbackOnly). If it hasn’t already updated the database with the
values of the instance variables, the session bean can do so in the beforeCom-

pletion method.

The afterCompletion method indicates that the transaction has completed. It
has a single boolean parameter whose value is true if the transaction was com-
mitted and false if it was rolled back. If a rollback occurred, the session bean

CONTAINER-MANAGED TRANSACTIONS 1085
can refresh its instance variables from the database in the afterCompletion

method:

public void afterCompletion(boolean committed) {

 System.out.println("afterCompletion: " + committed);
 if (committed == false) {
 try {
 checkingBalance = selectChecking();
 savingBalance = selectSaving();
 } catch (SQLException ex) {

throw new EJBException("afterCompletion SQLException:
" + ex.getMessage());

 }
 }
}

Compiling the BankBean Example
To compile the classes and interfaces in the BankBean example, follow these
steps:

1. In a terminal window, go to this directory:
<INSTALL>/j2eetutorial14/examples/ejb/bank/

2. Create the database tables and data by typing

asant create-db_common

Note: Application Server 8.2 includes a copy of the open source Derby database
server. Application Server 8.0/8.1 includes the PointBase database server. If you are
using Application Server 8.0/8.1, either follow the instructions in the J2EE Tutorial
at http://java.sun.com/j2ee/1.4/docs/tutorial-
update6/doc/index.html that works with Application Server 8.0/8.1 or
upgrade to Application Server 8.2 (see
http://java.sun.com/j2ee/1.4/download.html#appserv to download).

3. Type the following command to build the enterprise bean’s classes and
interfaces:

asant build

http://java.sun.com/j2ee/1.4/docs/tutorial-update6/doc/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial-update6/doc/index.html
http://java.sun.com/j2ee/1.4/download.html#appserv

1086
Packaging the BankBean Example
The BankBean session bean uses container-managed transactions. These steps
assume that you are familiar with the steps needed to create and deploy an enter-
prise application using deploytool, as described in Chapter 24.

Creating the J2EE Application
Create a new application named BankApp in:

<INSTALL>/j2eetutorial14/examples/ejb/bank/

Packaging the Enterprise Bean
1. Create a new enterprise bean in BankApp by selecting File→New→Enter-

prise Bean.

2. In the EJB JAR screen:

a. Select Create New JAR Module in Application.

b. Enter BankJAR under JAR Name.

c. Click Edit.

d. Navigate to <INSTALL>/j2eetutorial14/exam-

ples/ejb/bank/build/.

e. Select Bank.class, BankBean.class, BankHome.class, and Insuffi-

cientBalanceException.class.

f. Click Add.

g. Click OK.

h. Click Next.

3. In the General screen:

a. Select BankBean under Enterprise Bean Class.

b. Enter BankBean under Enterprise Bean Name.

c. Select Stateful Session under Enterprise Bean Type.

d. Select BankHome under Remote Home Interface.

e. Select Bank under Remote Interface.

f. Select Next.

4. Click Finish.

CONTAINER-MANAGED TRANSACTIONS 1087
5. Select BankBean in deploytool’s tree.

6. In the Resource Ref’s tab:

a. Click Add.

b. Set the Coded Name to jdbc/BankDB.

c. Set the JNDI Name to jdbc/ejbTutorialDB.

7. In the Transactions tab:

a. Select Container-Managed under Transaction Management.

b. Verify that getCheckingBalance(), getSavingBalance(), and
transferToSaving() have the Required transaction attribute.

Packaging the Application Client
1. Create a new application client inBankAppby selecting File→New→Appli-

cation Client.

2. In the JAR File Contents screen:

a. Select BankApp under Create New AppClient Module in Application.

b. Enter BankClient under AppClient Name.

c. Click Edit.

d. Navigate to <INSTALL>/j2eetutorial14/exam-

ples/ejb/bank/build/.

e. Select BankClient.class.

f. Click Add.

g. Click OK.

h. Click Next.

3. In the General screen:

a. Select BankClient under Main Class.

b. Select (Use container-managed authentication) under Callback
Handler Class.

c. Click Next.

4. Click Finish.

1088
Specifying the Application Client’s Enterprise
Bean Reference
When it invokes the lookup method, BankClient refers to the home of an enter-
prise bean:

Object objref =
initial.lookup("java:comp/env/ejb/SimpleBank");

You specify this reference as follows:

1. In the tree, select BankClient.

2. Select the EJB Refs tab.

3. Click Add.

4. In the Coded Name field, enter ejb/SimpleBank.

5. In the EJB Type field, select Session.

6. In the Interfaces field, select Remote.

7. In the Home Interface field, enter BankHome.

8. In the Local/Remote Interface field, enter Bank.

9. Click OK.

10.Select the line you just added.

11.Under Sun-specific Settings for ejb/SimpleBank, select JNDI Name.

12.In the JNDI Name field select, BankBean.

13.Select File→Save.

Deploying the J2EE Application
1. Select BankApp in deploytool.

2. Select Tools→Deploy.

3. Under Connection Settings, enter the user name and password for the
Application Server.

4. Tell deploytool to create a JAR file that contains the client stubs:

a. Check the Return Client JAR box.

b. In the field below the checkbox, enter
<INSTALL>/j2eetutorial14/examples/ejb/bank/.

5. Click OK.

BEAN-MANAGED TRANSACTIONS 1089
6. In the Distribute Module dialog box, click Close when the deployment
completes successfully.

Running the Application Client
1. In a terminal window, go to the <INSTALL>/j2eetutorial14/

examples/ejb/bank/ directory.

2. Type the following command:
appclient -client BankAppClient.jar

In the terminal window, the client displays these lines:

checking: 60.0
saving: 540.0

Methods Not Allowed in Container-
Managed Transactions
You should not invoke any method that might interfere with the transaction
boundaries set by the container. The list of prohibited methods follows:

• The commit, setAutoCommit, and rollback methods of java.sql.Con-
nection

• The getUserTransaction method of javax.ejb.EJBContext

• Any method of javax.transaction.UserTransaction

You can, however, use these methods to set boundaries in bean-managed transac-
tions.

Bean-Managed Transactions
In a bean-managed transaction, the code in the session or message-driven bean
explicitly marks the boundaries of the transaction. An entity bean cannot have
bean-managed transactions; it must use container-managed transactions instead.
Although beans with container-managed transactions require less coding, they
have one limitation: When a method is executing, it can be associated with either
a single transaction or no transaction at all. If this limitation will make coding
your bean difficult, you should consider using bean-managed transactions.

1090
The following pseudocode illustrates the kind of fine-grained control you can
obtain with bean-managed transactions. By checking various conditions, the
pseudocode decides whether to start or stop different transactions within the
business method.

begin transaction
...
update table-a
...
if (condition-x)
 commit transaction
else if (condition-y)
 update table-b
 commit transaction
else
 rollback transaction
 begin transaction
 update table-c
 commit transaction

When coding a bean-managed transaction for session or message-driven beans,
you must decide whether to use JDBC or JTA transactions. The sections that fol-
low discuss both types of transactions.

JDBC Transactions
A JDBC transaction is controlled by the transaction manager of the DBMS. You
may want to use JDBC transactions when wrapping legacy code inside a session
bean. To code a JDBC transaction, you invoke the commit and rollback meth-
ods of the java.sql.Connection interface. The beginning of a transaction is
implicit. A transaction begins with the first SQL statement that follows the most
recent commit, rollback, or connect statement. (This rule is generally true but
may vary with DBMS vendor.)

The source code for the following example is in the
<INSTALL>/j2eetutorial14/examples/ejb/warehouse/ directory.

The following code is from the WarehouseBean example, a session bean that
uses the Connection interface’s methods to delimit bean-managed transactions.
The ship method starts by invoking setAutoCommit on the Connection object
named con. This invocation tells the DBMS not to automatically commit every
SQL statement. Next, the ship method calls routines that update the order_item

BEAN-MANAGED TRANSACTIONS 1091
and inventory database tables. If the updates succeed, the transaction is com-
mitted. If an exception is thrown, however, the transaction is rolled back.

public void ship (String productId, String orderId, int
quantity) {

 try {
 makeConnection();
 con.setAutoCommit(false);
 updateOrderItem(productId, orderId);
 updateInventory(productId, quantity);
 con.commit();
 } catch (Exception ex) {
 try {
 con.rollback();
 throw new EJBException("Transaction failed: " +
 ex.getMessage());
 } catch (SQLException sqx) {
 throw new EJBException("Rollback failed: " +
 sqx.getMessage());
 }
 } finally {
 releaseConnection();
 }
}

Deploying and Running the
WarehouseBean Example
WarehouseBean is a session bean that uses bean-managed, JDBC transactions.
These steps assume that you are familiar with the steps needed to create and
deploy an enterprise application using deploytool, as described in Chapter 25.
To deploy and run the example, do the following.

Compiling the WarehouseBean Example
To compile the classes and interfaces in the WarehouseBean example, follow
these steps:

1. In a terminal window, go to this directory:

<INSTALL>/j2eetutorial14/examples/ejb/warehouse/

2. Create the database tables and data by typing

1092
asant create-db_common

Note: Application Server 8.2 includes a copy of the open source Derby database
server. Application Server 8.0/8.1 includes the PointBase database server. If you are
using Application Server 8.0/8.1, either follow the instructions in the J2EE Tutorial
at http://java.sun.com/j2ee/1.4/docs/tutorial-
update6/doc/index.html that works with Application Server 8.0/8.1 or
upgrade to Application Server 8.2 (see
http://java.sun.com/j2ee/1.4/download.html#appserv to download).

3. Type the following command to build the enterprise bean’s classes and
interfaces:

asant build

Packaging the WarehouseBean
Example
The WarehouseBean session bean uses bean-managed transactions. These steps
assume that you are familiar with the steps needed to create and deploy an enter-
prise application using deploytool, as described in Chapter 24.

Creating the J2EE Application
Create a new application named WarehouseApp in:

<INSTALL>/j2eetutorial14/examples/ejb/warehouse/

Packaging the Enterprise Bean
1. Create a new enterprise bean in WarehouseApp by selecting File→New→

Enterprise Bean.

2. In the EJB JAR screen:

a. Select Create New JAR Module in Application.

b. Enter WarehouseJAR under JAR Name.

c. Click Edit.

d. Navigate to <INSTALL>/j2eetutorial14/exam-

ples/ejb/warehouse/.

http://java.sun.com/j2ee/1.4/docs/tutorial-update6/doc/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial-update6/doc/index.html
http://java.sun.com/j2ee/1.4/download.html#appserv

BEAN-MANAGED TRANSACTIONS 1093
e. Select Warehouse.class, WarehouseBean.class, and Warehouse-

Home.class.

f. Click Add.

g. Click OK.

h. Click Next.

3. In the General screen:

a. Select WarehouseBean under Enterprise Bean Class.

b. Enter WarehouseBean under Enterprise Bean Name.

c. Select Stateful Session under Enterprise Bean Type.

d. Select WarehouseHome under Remote Home Interface.

e. Select Warehouse under Remote Interface.

f. Select Next.

4. Click Finish.

5. Select WarehouseBean in deploytool’s tree.

6. In the Transactions tab select Bean-Managed under Transaction Manage-
ment.

7. In the Resource Ref’s tab:

a. Click Add.

b. Double-click the Coded Name column for the row that was just created.

c. Enter jdbc/WarehouseDB.

d. Under Sun-specific Settings for jdbc/WarehouseDB in the JNDI Name
field, select jdbc/ejbTutorialDB.

Packaging the Application Client
1. Create a new application client in WarehouseApp by selecting

File→New→Application Client.

2. In the JAR File Contents screen:

a. Select WarehouseApp under Create New AppClient Module in Applica-
tion.

b. Enter WarehouseClient under AppClient Name.

c. Click Edit.

d. Navigate to <INSTALL>/j2eetutorial14/exam-

ples/ejb/warehouse/.

1094
e. Select WarehouseClient.class.

f. Click Add.

g. Click OK.

h. Click Next.

3. In the General screen:

a. Select WarehouseClient under Main Class.

b. Select (Use container-managed authentication) under Callback
Handler Class.

c. Click Next.

4. Click Finish.

Specifying the Application Client’s Enterprise
Bean Reference
When it invokes the lookup method, WarehouseClient refers to the home of an
enterprise bean:

Object objref =
initial.lookup("java:comp/env/ejb/SimpleWarehouse");

You specify this reference as follows:

1. In the tree, select WarehouseClient.

2. Select the EJB Ref’s tab.

3. Click Add.

4. In the Coded Name field, enter ejb/SimpleWarehouse.

5. In the EJB Type field, select Session.

6. In the Interfaces field, select Remote.

7. In the Home Interface field, enter WarehouseHome.

8. In the Local/Remote Interface field, enter Warehouse.

9. Click OK.

10.Select the line you just added.

11.Under Sun-specific Settings for ejb/SimpleWarehouse, select JNDI
Name.

12.In the JNDI Name field, select WarehouseBean.

13.Select File→Save.

BEAN-MANAGED TRANSACTIONS 1095
Deploying the J2EE Application
1. Select WarehouseApp in deploytool.

2. Select Tools→Deploy.

3. Under Connection Settings, enter the user name and password for the
Application Server.

4. Tell deploytool to create a JAR file that contains the client stubs:

a. Check the Return Client JAR box.

b. In the field below the checkbox, enter
<INSTALL>/j2eetutorial14/examples/ejb/warehouse/.

5. Click OK.

6. In the Distribute Module dialog box, click Close when the deployment
completes successfully.

Running the Application Client
1. In a terminal window, go to the <INSTALL>/j2eetutorial14/

examples/ejb/warehouse/ directory.

2. Type the following command:
appclient -client WarehouseAppClient.jar

In the terminal window, the client displays these lines:

status = shipped

JTA Transactions
JTA is the abbreviation for the Java Transaction API. This API allows you to
demarcate transactions in a manner that is independent of the transaction man-
ager implementation. The Application Server implements the transaction man-
ager with the Java Transaction Service (JTS). But your code doesn’t call the JTS
methods directly. Instead, it invokes the JTA methods, which then call the lower-
level JTS routines.

A JTA transaction is controlled by the J2EE transaction manager. You may want
to use a JTA transaction because it can span updates to multiple databases from
different vendors. A particular DBMS’s transaction manager may not work with
heterogeneous databases. However, the J2EE transaction manager does have one

1096
limitation: it does not support nested transactions. In other words, it cannot start
a transaction for an instance until the preceding transaction has ended.

The source code for the following example is in the
<INSTALL>/j2eetutorial14/examples/ejb/teller/ directory.

To demarcate a JTA transaction, you invoke the begin, commit, and rollback

methods of the javax.transaction.UserTransaction interface. The following
code, taken from the TellerBean class, demonstrates the UserTransaction

methods. The begin and commit invocations delimit the updates to the database.
If the updates fail, the code invokes the rollback method and throws an EJBEx-

ception.

public void withdrawCash(double amount) {

 UserTransaction ut = context.getUserTransaction();

 try {
 ut.begin();
 updateChecking(amount);
 machineBalance -= amount;
 insertMachine(machineBalance);
 ut.commit();
 } catch (Exception ex) {
 try {
 ut.rollback();
 } catch (SystemException syex) {
 throw new EJBException
 ("Rollback failed: " + syex.getMessage());
 }
 throw new EJBException
 ("Transaction failed: " + ex.getMessage());
 }
}

Deploying and Running the TellerBean
Example
The TellerBean session bean uses bean-managed JTA transactions. These steps
assume that you are familiar with the steps needed to create and deploy an enter-
prise application using deploytool, as described in Chapter 25. To deploy and
run the TellerBean example, perform these steps.

BEAN-MANAGED TRANSACTIONS 1097
Compiling the TellerBean Example
To compile the classes and interfaces in the TellerBean example, follow these
steps:

1. In a terminal window, go to this directory:

<INSTALL>/j2eetutorial14/examples/ejb/teller/

2. Create the database tables and data by typing

asant create-db_common

Note: Application Server 8.2 includes a copy of the open source Derby database
server. Application Server 8.0/8.1 includes the PointBase database server. If you are
using Application Server 8.0/8.1, either follow the instructions in the J2EE Tutorial
at http://java.sun.com/j2ee/1.4/docs/tutorial-
update6/doc/index.html that works with Application Server 8.0/8.1 or
upgrade to Application Server 8.2 (see
http://java.sun.com/j2ee/1.4/download.html#appserv to download).

3. Type the following command to build the enterprise bean’s classes and
interfaces:

asant build

Packaging the TellerBean Example
The TellerBean session bean uses JTA transactions. These steps assume that
you are familiar with the steps needed to create and deploy an enterprise applica-
tion using deploytool, as described in Chapter 24.

Creating the J2EE Application
Create a new application named TellerApp in

<INSTALL>/j2eetutorial14/examples/ejb/teller/

Packaging the Enterprise Bean
1. Create a new enterprise bean inTellerAppby selecting File→New→Enter-

prise Bean.

http://java.sun.com/j2ee/1.4/docs/tutorial-update6/doc/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial-update6/doc/index.html
http://java.sun.com/j2ee/1.4/download.html#appserv

1098
2. In the EJB JAR screen:

a. Select Create New JAR Module in Application.

b. Enter TellerJAR under JAR Name.

c. Click Edit.

d. Navigate to <INSTALL>/j2eetutorial14/examples/ejb/teller/.

e. Select Teller.class, TellerBean.class, and TellerHome.class.

f. Click Add.

g. Click OK.

h. Click Next.

3. In the General screen:

a. Select TellerBean under Enterprise Bean Class.

b. Enter TellerBean under Enterprise Bean Name.

c. Select Stateful Session under Enterprise Bean Type.

d. Select TellerHome under Remote Home Interface.

e. Select Teller under Remote Interface.

f. Select Next.

4. Click Finish.

5. Select TellerBean in deploytool’s tree.

6. In the Transactions tab select Bean-Managed under Transaction Manage-
ment.

7. In the Resource Ref’s tab:

a. Click Add.

b. Double-click the Coded Name column for the row that was just created.

c. Enter jdbc/TellerDB.

d. Under Sun-specific Settings for jdbc/TellerDB in the JNDI Name
field, select jdbc/ejbTutorialDB.

Packaging the Application Client
1. Create a new application client in TellerApp by selecting File→New→Ap-

plication Client.

2. In the JAR File Contents screen:

a. Select TellerApp under Create New AppClient Module in Application.

b. Enter TellerClient under AppClient Name.

BEAN-MANAGED TRANSACTIONS 1099
c. Click Edit.

d. Navigate to <INSTALL>/j2eetutorial14/examples/ejb/teller/.

e. Select TellerClient.class.

f. Click Add.

g. Click OK.

h. Click Next.

3. In the General screen:

a. Select TellerClient under Main Class.

b. Select (Use container-managed authentication) under Callback
Handler Class.

c. Click Next.

4. Click Finish.

Specifying the Application Client’s Enterprise
Bean Reference
When it invokes the lookup method, TellerClient refers to the home of an
enterprise bean:

Object objref =
initial.lookup("java:comp/env/ejb/SimpleTeller");

You specify this reference as follows:

1. In the tree, select TellerClient.

2. Select the EJB Ref’s tab.

3. Click Add.

4. In the Coded Name field, enter ejb/SimpleTeller.

5. In the EJB Type field, select Session.

6. In the Interfaces field, select Remote.

7. In the Home Interface field, enter TellerHome.

8. In the Local/Remote Interface field, enter Teller.

9. Click OK.

10.Select the line you just added.

11.Under Sun-specific Settings for ejb/SimpleTeller, select JNDI Name.

1100
12.In the JNDI Name field, select TellerBean.

13.Select File→Save.

Deploying the J2EE Application
1. Select TellerApp in deploytool.

2. Select Tools→Deploy.

3. Under Connection Settings, enter the user name and password for the
Application Server.

4. Tell deploytool to create a JAR file that contains the client stubs:

a. Check the Return Client JAR box.

b. In the field below the checkbox, enter
<INSTALL>/j2eetutorial14/examples/ejb/teller/.

5. Click OK.

6. In the Distribute Module dialog box, click Close when the deployment
completes successfully.

Running the Application Client
1. In a terminal window, go to the <INSTALL>/j2eetutorial14/

examples/ejb/teller/ directory.

2. Type the following command:
appclient -client TellerAppClient.jar

In the terminal window, the client displays these lines:

checking = 500.0
checking = 440.0

Returning without Committing
In a stateless session bean with bean-managed transactions, a business method
must commit or roll back a transaction before returning. However, a stateful ses-
sion bean does not have this restriction.

In a stateful session bean with a JTA transaction, the association between the
bean instance and the transaction is retained across multiple client calls. Even if

SUMMARY OF TRANSACTION OPTIONS FOR ENTERPRISE BEANS 1101
each business method called by the client opens and closes the database connec-
tion, the association is retained until the instance completes the transaction.

In a stateful session bean with a JDBC transaction, the JDBC connection retains
the association between the bean instance and the transaction across multiple
calls. If the connection is closed, the association is not retained.

Methods Not Allowed in Bean-Managed
Transactions
Do not invoke the getRollbackOnly and setRollbackOnly methods of the
EJBContext interface in bean-managed transactions. These methods should be
used only in container-managed transactions. For bean-managed transactions,
invoke the getStatus and rollback methods of the UserTransaction inter-
face.

Summary of Transaction Options for
Enterprise Beans

If you’re unsure about how to set up transactions in an enterprise bean, here’s a
tip: In the bean’s deployment descriptor, specify container-managed transac-
tions. Then set the Required transaction attribute for the entire bean. This
approach will work most of the time.

Table 30–2 lists the types of transactions that are allowed for the different types
of enterprise beans. An entity bean must use container-managed transactions.
With container-managed transactions, you specify the transaction attributes in
the deployment descriptor and you roll back a transaction by calling the set-

RollbackOnly method of the EJBContext interface or when a system-level
exception is thrown.

Table 30–2 Allowed Transaction Types for Enterprise Beans

Bean Type Container-Managed

Bean-Managed

JTA JDBC

Entity Y N N

1102
A session bean can have either container-managed or bean-managed transac-
tions. There are two types of bean-managed transactions: JDBC and JTA trans-
actions. You delimit JDBC transactions using the commit and rollback methods
of the Connection interface. To demarcate JTA transactions, you invoke the
begin, commit, and rollback methods of the UserTransaction interface.

In a session bean with bean-managed transactions, it is possible to mix JDBC
and JTA transactions. This practice is not recommended, however, because it can
make your code difficult to debug and maintain.

Like a session bean, a message-driven bean can have either container-managed
or bean-managed transactions.

Transaction Timeouts
For container-managed transactions, you control the transaction timeout interval
by setting the value of the timeout-in-seconds property in the domain.xml

file, which is in the config directory of your Application Server installation. For
example, you would set the timeout value to 5 seconds as follows:

timeout-in-seconds=5

With this setting, if the transaction has not completed within 5 seconds, the EJB
container rolls it back.

When the Application Server is first installed, the timeout value is set to 0:

timeout-in-seconds=0

If the value is 0, the transaction will not time out.

Session Y Y Y

Message-driven Y Y Y

Table 30–2 Allowed Transaction Types for Enterprise Beans

Bean Type Container-Managed

Bean-Managed

JTA JDBC

ISOLATION LEVELS 1103
Only enterprise beans with container-managed transactions are affected by the
timeout-in-seconds property. For enterprise beans with bean-managed JTA
transactions, you invoke the setTransactionTimeout method of the User-

Transaction interface.

Isolation Levels
Transactions not only ensure the full completion (or rollback) of the statements
that they enclose but also isolate the data modified by the statements. The
isolation level describes the degree to which the data being updated is visible to
other transactions.

Suppose that a transaction in one program updates a customer’s phone number,
but before the transaction commits, another program reads the same phone num-
ber. Will the second program read the updated and uncommitted phone number,
or will it read the old one? The answer depends on the isolation level of the trans-
action. If the transaction allows other programs to read uncommitted data, per-
formance may improve because the other programs don’t have to wait until the
transaction ends. But there’s a trade-off: if the transaction rolls back, another
program might read the wrong data.

For entity beans with container-managed persistence, you can change the isola-
tion level by editing the consistency element in the sun-cmp-mapping.xml file.
These beans use the default isolation level of the DBMS, which is usually
READ_COMMITTED.

For entity beans with bean-managed persistence and for all session beans, you
can set the isolation level programmatically by using the API provided by the
underlying DBMS. A DBMS, for example, might allow you to permit uncom-
mitted reads by invoking the setTransactionIsolation method:

Connection con;
...
con.setTransactionIsolation(TRANSACTION_READ_UNCOMMITTED);

Do not change the isolation level in the middle of a transaction. Usually, such a
change causes the DBMS software to issue an implicit commit. Because the iso-
lation levels offered by DBMS vendors may vary, you should check the DBMS
documentation for more information. Isolation levels are not standardized for the
J2EE platform.

1104
Updating Multiple Databases
The J2EE transaction manager controls all enterprise bean transactions except
for bean-managed JDBC transactions. The J2EE transaction manager allows an
enterprise bean to update multiple databases within a transaction. The figures
that follow show two scenarios for updating multiple databases in a single trans-
action.

In Figure 30–2, the client invokes a business method in Bean-A. The business
method begins a transaction, updates Database X, updates Database Y, and
invokes a business method in Bean-B. The second business method updates
Database Z and returns control to the business method in Bean-A, which com-
mits the transaction. All three database updates occur in the same transaction.

Figure 30–2 Updating Multiple Databases

In Figure 30–3, the client calls a business method in Bean-A, which begins a
transaction and updates Database X. Then Bean-A invokes a method in Bean-B,
which resides in a remote J2EE server. The method in Bean-B updates Database
Y. The transaction managers of the J2EE servers ensure that both databases are
updated in the same transaction.

TRANSACTIONS IN WEB COMPONENTS 1105
Figure 30–3 Updating Multiple Databases across J2EE Servers

Transactions in Web Components
You can demarcate a transaction in a web component by using either the
java.sql.Connection or javax.transaction.UserTransaction interface.
These are the same interfaces that a session bean with bean-managed transac-
tions can use. Transactions demarcated with the Connection interface are dis-
cussed in the section JDBC Transactions (page 1090), and those with the
UserTransaction interface are discussed in the section JTA
Transactions (page 1095). For an example of a web component using transac-
tions, see Accessing Databases (page 455).

1106

31
110
Resource
Connections

J2EE components can access a wide variety of resources, including databases,
mail sessions, Java Message Service objects, JAXR connection factories, and
URLs. The J2EE platform provides mechanisms that allow you to access all
these resources in a similar manner. This chapter describes how to get connec-
tions to several types of resources. Although the code samples in this chapter are
from enterprise beans, they will also work in web components.

JNDI Naming
In a distributed application, components need to access other components and
resources such as databases. For example, a servlet might invoke remote meth-
ods on an enterprise bean that retrieves information from a database. In the J2EE
platform, the Java Naming and Directory Interface (JNDI) naming service
enables components to locate other components and resources. To locate a JDBC
resource, for example, an enterprise bean invokes the JNDI lookup method. The
JNDI naming service maintains a set of bindings that relate names to objects.
The lookup method passes a JNDI name parameter and returns the related
object.

JNDI provides a naming context, which is a a set of name-to-object bindings. All
naming operations are relative to a context. A name that is bound within a con-

1108
text is the JNDI name of the object. In Specifying a Resource
Reference (page 1111), for example, the JNDI name for the JDBC resource (or
data source) is jdbc/ejbTutorialDB. A Context object provides the methods
for binding names to objects, unbinding names from objects, renaming objects,
and listing the bindings. JNDI also provides subcontext functionality. Much like
a directory in a file system, a subcontext is a context within a context. This hier-
archical structure permits better organization of information. For naming ser-
vices that support subcontexts, the Context class also provides methods for
creating and destroying subcontexts.

For detailed information about JNDI, see The JNDI Tutorial:

http://java.sun.com/products/jndi/tutorial

Table 31–1 describes JNDI subcontexts for connection factories in the Applica-
tion Server.

Note: To avoid collisions with names of other enterprise resources in the JNDI
namespace, and to avoid portability problems, all names in a J2EE application
should begin with the string java:comp/env.

Table 31–1 JNDI Subcontexts for Connection Factories

Resource
Manager
Type Connection Factory Type JNDI Subcontext

JDBC javax.sql.DataSource java:comp/env/jdbc

JMS
javax.jms.TopicConnectionFactory
javax.jms.QueueConnectionFactory

java:comp/env/jms

JavaMail javax.mail.Session java:comp/env/mail

URL java.net.URL java:comp/env/url

Connector javax.resource.cci.ConnectionFactory java:comp/env/eis

JAXR
Resource
Adapter

javax.xml.registry.ConnectionFactory
java:comp/env/eis/
JAXR

http://java.sun.com/products/jndi/tutorial

DATASOURCE OBJECTS AND CONNECTION POOLS 1109
DataSource Objects and Connection
Pools

To store, organize, and retrieve data, most applications use a relational database.
J2EE components access relational databases through the JDBC API. For infor-
mation on this API, see:

http://java.sun.com/docs/books/tutorial/jdbc

In the JDBC API, databases are accessed via DataSource objects. A Data-

Source has a set of properties that identify and describe the real world data
source that it represents. These properties include information such as the loca-
tion of the database server, the name of the database, the network protocol to use
to communicate with the server, and so on. In the Application Server, a data
source is called a JDBC resource.

Applications access a data source using a connection, and a DataSource object
can be thought of as a factory for connections to the particular data source that
the DataSource instance represents. In a basic DataSource implementation, a
call to the getConnection method returns a connection object that is a physical
connection to the data source.

If a DataSource object is registered with a JNDI naming service, an application
can use the JNDI API to access that DataSource object, which can then be used
to connect to the data source it represents.

DataSource objects that implement connection pooling also produce a connec-
tion to the particular data source that the DataSource class represents. The con-
nection object that the getConnection method returns is a handle to a
PooledConnection object rather than being a physical connection. An applica-
tion uses the connection object in the same way that it uses a connection. Con-
nection pooling has no effect on application code except that a pooled
connection, like all connections, should always be explicitly closed. When an
application closes a connection that is pooled, the connection is returned to a
pool of reusable connections. The next time getConnection is called, a handle
to one of these pooled connections will be returned if one is available. Because
connection pooling avoids creating a new physical connection every time one is
requested, it can help applications run significantly faster.

The Application Server is distributed with a connection pool named DerbyPool,
which handles connections to the Derby database server. In this book, all the

http://java.sun.com/docs/books/tutorial/jdbc

1110
code examples that access a database use DataSource objects that are mapped to
DerbyPool.

Database Connections
The Application Server ships with a relational database product named Derby.

Note: Application Server 8.2 includes a copy of the open source Derby data-
base server. Application Server 8.0/ 8.1 includes the PointBase database server. If
you are using Application Server 8.0/8.1, either follow the instructions in the J2EE
Tutorial at http://java.sun.com/j2ee/1.4/docs/tutorial-
update6/doc/index.html that works with Application Server 8.0/8.1 or
upgrade to Application Server 8.2 (see
http://java.sun.com/j2ee/1.4/download.html#appserv to download).

The following material shows how the SavingsAccountBean example of Chap-
ter 26 accesses a Derby database. The SavingsAccountBean component is an
entity bean with bean-managed persistence.

Session beans and web components will use the same approach as SavingsAc-

countBean to access a database. (Entity beans with container-managed persis-
tence are different. See Chapter 27.)

Coding a Database Connection
For the SavingsAccountBean example, the code that connects to the database is
in the entity bean implementation class SavingsAccountBean. The source code
for this class is in this directory:

<INSTALL>/j2eetutorial14/ejb/savingsaccount/src/

The bean connects to the database in three steps:

1. Specify the logical name of the database.
private String dbName

= "java:comp/env/jdbc/SavingsAccountDB";

The java:comp/env portion of the logical name is the environment nam-
ing context of the component. The jdbc/SavingsAccountDB string is the
resource reference name (sometimes referred to as the coded name). In

http://java.sun.com/j2ee/1.4/docs/tutorial-update6/doc/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial-update6/doc/index.html
http://java.sun.com/j2ee/1.4/download.html#appserv

DATABASE CONNECTIONS 1111
deploytool, you specify the resource reference name and then map it to
the JNDI name of the DataSource object.

2. Obtain the DataSource object associated with the logical name.
InitialContext ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup(dbName);

Given the logical name for the resource, the lookup method returns the
DataSource object that is bound to the JNDI name in the directory.

3. Get the Connection object from the DataSource object.
Connection con = ds.getConnection();

Specifying a Resource Reference
The application for the SavingAccountBean example is in the SavingsAccoun-

tApp.ear file, which is in this directory:

<INSTALL>/j2eetutorial14/examples/ejb/provided-ears/

For your convenience, the resource reference and JNDI names in SavingsAc-

countApp.ear have already been configured in deploytool. However, you may
find it instructive to open SavingsAccountApp.ear in deploytool and follow
these steps for specifying the resource reference.

1. In deploytool, select SavingsAccountBean from the tree.

2. Select the Resource Ref’s tab.

3. Click Add.

4. In the Coded Name field, enter jdbc/SavingsAccountDB.

5. In the Type combo box, select javax.sql.DataSource.

6. In the Authentication combo box, select Container.

7. If you want other enterprise beans to share the connections acquired from
the DataSource, select the Sharable checkbox.

8. To map the resource reference to the data source, enter jdbc/ejbTutori-
alDB in the JNDI Name field.

If the preceding steps are followed, the Resource Ref’s tab will appear as shown
in Figure 31–1.

1112
Figure 31–1 Resource Ref’s Tabbed Pane of SavingsAccountBean

Creating a Data Source
In the preceding section, you map the resource reference to the JNDI name of the
data source. The deploytool utility stores this mapping information in a deploy-
ment descriptor of SavingsAccountBean. In addition to setting the bean’s
deployment descriptor, you also must define the data source in the Application
Server. You define a data source by using the Admin Console. To create the data
source with the Admin Console, follow this procedure:

1. Open the URL http://localhost:4848/asadmin in a browser.

2. Expand the JDBC node.

3. Select the JDBC Resources node.

4. Click New.

MAIL SESSION CONNECTIONS 1113
5. Type jdbc/ejbTutorialDB in the JNDI Name field.

6. Choose DerbyPool from the Pool Name combo box.

7. Click OK.

8. Note that jdbc/ejbTutorialDB is listed under the JDBC Resources node.

Mail Session Connections
If you’ve ever ordered a product from a web site, you’ve probably received an
email confirming your order. The ConfirmerBean class demonstrates how to
send email from an enterprise bean.

Note: The source code for this example is in this directory:
<INSTALL>/j2eetutorial14/ejb/confirmer/src/.

In the sendNotice method of the ConfirmerBean class, the lookup method
returns a Session object, which represents a mail session. Like a database con-
nection, a mail session is a resource. In the Application Server, a mail session is
called a JavaMail resource. As with any resource, you must link the coded name
(mail/TheMailSession) with a JNDI name. Using the Session object as an
argument, the sendNotice method creates an empty Message object. After call-
ing several set methods on the Message object, sendNotice invokes the send

method of the Transport class to send the message on its way. The source code
for the sendNotice method follows.

public void sendNotice(String recipient) {

 try {
 Context initial = new InitialContext();
 Session session =
 (Session) initial.lookup(
 "java:comp/env/mail/TheMailSession");

 Message msg = new MimeMessage(session);
 msg.setFrom();

 msg.setRecipients(Message.RecipientType.TO,
 InternetAddress.parse(recipient, false));

 msg.setSubject("Test Message from ConfirmerBean");

 DateFormat dateFormatter =

1114
 DateFormat.getDateTimeInstance(
 DateFormat.LONG, DateFormat.SHORT);

 Date timeStamp = new Date();

String messageText = "Thank you for your order." + '\n' +
 "We received your order on " +
 dateFormatter.format(timeStamp) + ".";

 msg.setText(messageText);
 msg.setHeader("X-Mailer", mailer);
 msg.setSentDate(timeStamp);

 Transport.send(msg);

 } catch(Exception e) {
 throw new EJBException(e.getMessage());
 }
}

Running the ConfirmerBean Example

Creating a Mail Session
To create a mail session in the Application Server using the Admin Console, fol-
low these steps:

1. Open the URL http://localhost:4848/asadmin in a browser.

2. Select the JavaMail Sessions node.

3. Click New.

4. Type mail/MySession in the JNDI Name field.

5. Type the name of the host running your mail server in the Mail Host field.

6. Type the destination email address in the Default User field.

7. Type your email address in the Default Return Address field.

8. Click OK.

9. Note that mail/MySession is listed under the JavaMail Sessions node.

MAIL SESSION CONNECTIONS 1115
Deploying the Application
1. In deploytool, open the ConfirmerApp.ear file, which resides in this

directory:
<INSTALL>/j2eetutorial14/examples/ejb/provided-ears/

2. Verify the resource reference.

a. In the tree, expand the ConfirmerApp node.

b. Select the ConfirmerBean node.

c. Select the Resource Ref’s tab.

d. Note the JavaMail resource reference for mail/TheMailSession.

3. Verify the mapping of the reference to the JNDI name.

a. In the tree, select the ConfirmerApp node.

b. Click the Sun-specific Settings button.

c. Note the mapping of mail/TheMailSession (coded in Confirmer-

Bean.java) to mail/MySession.

4. Deploy the ConfirmerApp application.

5. In the Deploy Module dialog box, do the following:

a. Select the Return Client JAR checkbox.

b. In the field below the check box, enter the following:

<INSTALL>/j2eetutorial14/examples/ejb/confirmer

Running the Client
To run the SavingsAccountClient program, do the following:

1. In a terminal window, go to this directory:
<INSTALL>/j2eetutorial14/examples/ejb/confirmer/

2. Type the following command on a single line:
appclient -client ConfirmerAppClient.jar your_email_address

3. The client should display the following lines:

...
Sending email to...
...

To modify this example, see the instructions in Modifying the J2EE
Application (page 897).

1116
URL Connections
A uniform resource locator (URL) specifies the location of a resource on the
web. The HTMLReaderBean class shows how to connect to a URL from within an
enterprise bean.

Note: The source code for this example is in this directory:
<INSTALL>/j2eetutorial14/ejb/htmlreader/src/.

The getContents method of the HTMLReaderBean class returns a String that
contains the contents of an HTML file. This method looks up the java.net.URL

object associated with a coded name (url/MyURL), opens a connection to it, and
then reads its contents from an InputStream. Here is the source code for the
getContents method.

public StringBuffer getContents() throws HTTPResponseException
{

 Context context;
 URL url;
 StringBuffer buffer;
 String line;
 int responseCode;
 HttpURLConnection connection;
 InputStream input;
 BufferedReader dataInput;

 try {
 context = new InitialContext();
 url = (URL)context.lookup("java:comp/env/url/MyURL");
 connection = (HttpURLConnection)url.openConnection();
 responseCode = connection.getResponseCode();
 } catch (Exception ex) {
 throw new EJBException(ex.getMessage());
 }

 if (responseCode != HttpURLConnection.HTTP_OK) {
throw new HTTPResponseException("HTTP response code: " +

 String.valueOf(responseCode));
 }

 try {
 buffer = new StringBuffer();
 input = connection.getInputStream();

URL CONNECTIONS 1117
 dataInput =
new BufferedReader(new InputStreamReader(input));

 while ((line = dataInput.readLine()) != null) {
 buffer.append(line);
 buffer.append('\n’);
 }
 } catch (Exception ex) {
 throw new EJBException(ex.getMessage());
 }
 return buffer;
}

Running the HTMLReaderBean Example
The coded name (url/MyURL) must be mapped to a JNDI name (a URL string).
In the provided HTMLReaderApp application, the mapping has already been spec-
ified. The next section shows you how to verify the mapping in deploytool.

Deploying the Application
1. In deploytool, open the HTMLReaderApp.ear file, which resides in this

directory:
<INSTALL>/j2eetutorial14/examples/ejb/provided-ears/

2. Verify the resource reference.

a. In the tree, expand the HTMLReaderApp node.

b. Select the HTMLReaderBean node.

c. Select the Resource Ref’s tab.

d. Note the URL resource reference for url/MyURL.

3. Verify the mapping of the reference to the JNDI name.

a. In the tree, select the HTMLReaderApp node.

b. Click the Sun-specific Settings button.

c. Note the mapping of url/MyURL (coded in HTMLReaderBean.java) to
this URL:

http://localhost:8080/index.html

4. Deploy the HTMLReaderApp application.

5. In the Deploy Module dialog box, do the following:

a. Select the Return Client JAR checkbox.

1118
b. In the field below the check box, enter the following:

<INSTALL>/j2eetutorial14/examples/ejb/htmlreader

Running the Client
To run the HTMLReaderClient program, do the following:

1. In a terminal window, go to this directory:
<INSTALL>/j2eetutorial14/examples/ejb/htmlreader/

2. Type the following command on a single line:
appclient -client HTMLReaderAppClient.jar

3. The client should display the source of the HTML file at this URL:

http://localhost:8080/index.html

Further Information
For information on creating JMS resources, see Creating JMS Administered
Objects (page 1212). For information on creating JAXR resources, see Creating
JAXR Resources (page 436).

32
1119
Security

THE J2EE application programming model insulates developers from mecha-
nism-specific implementation details of application security. The J2EE platform
provides this insulation in a way that enhances the portability of applications,
allowing them to be deployed in diverse security environments.

Some of the material in this chapter assumes that you understand basic security
concepts. To learn more about these concepts, we recommend that you explore
http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html

before you begin this chapter.

If you need to make changes to the Application Server, and have administrator
privileges, read the Application Server’s Administration Guide.

If you are a developer who wants to add security to existing J2EE and web ser-
vices applications, you are in the right place.

Overview
J2EE and web services applications are made up of components that can be
deployed into different containers. These components are used to build a multi-
tier enterprise application. Security for components is provided by their contain-
ers. A container provides two kinds of security: declarative and programmatic
security.

Declarative security expresses an application’s security structure, including
security roles, access control, and authentication requirements, in a form external

http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html

1120
to the application (in a deployment descriptor). Programmatic security is embed-
ded in an application and is used to make security decisions. Programmatic secu-
rity is useful when declarative security alone is not sufficient to express the
security model of an application.

J2EE applications consist of components that can contain both protected and
unprotected resources. Often, you need to protect resources to ensure that only
authorized users have access. Authorization provides controlled access to pro-
tected resources. Authorization is based on identification and authentication.
Identification is a process that enables recognition of an entity by a system, and
authentication is a process that verifies the identity of a user, device, or other
entity in a computer system, usually as a prerequisite to allowing access to
resources in a system.

Authorization and authentication are not required for an entity to access unpro-
tected resources. Accessing a resource without authentication is referred to as
unauthenticated or anonymous access.

Realms, Users, Groups, and Roles
A J2EE user is similar to an operating system user. Typically, both types of users
represent people. However, these two types of users are not the same. The J2EE
server authentication service has no knowledge of the user name and password
you provide when you log on to the operating system. The J2EE server authenti-
cation service is not connected to the security mechanism of the operating sys-
tem. The two security services manage users that belong to different realms.

The J2EE server’s authentication service includes and interacts with the follow-
ing components:

• Realm: A collection of users and groups that are controlled by the same
authentication policy.

• User: An individual (or application program) identity that has been defined
in the Application Server. Users can be associated with a group.

• Group: A set of authenticated users, classified by common traits, defined
in the Application Server.

• Role: An abstract name for the permission to access a particular set of
resources in an application. A role can be compared to a key that can open
a lock. Many people might have a copy of the key. The lock doesn’t care
who you are, only that you have the right key.

REALMS, USERS, GROUPS, AND ROLES 1121
The J2EE server authentication service can govern users in multiple realms. In
this release of the Application Server, the file, admin-realm, and certificate

realms come preconfigured for the Application Server.

In the file realm, the server stores user credentials locally in a file named
keyfile. You can use the Admin Console to manage users in the file realm.

When using the file realm, the server authentication service verifies user iden-
tity by checking the file realm. This realm is used for the authentication of all
clients except for web browser clients that use the HTTPS protocol and certifi-
cates.

A J2EE user of the file realm can belong to a J2EE group. (A user in the cer-

tificate realm cannot.) A J2EE group is a category of users classified by com-
mon traits, such as job title or customer profile. For example, most customers of
an e-commerce application might belong to the CUSTOMER group, but the big
spenders would belong to the PREFERRED group. Categorizing users into groups
makes it easier to control the access of large numbers of users. The section EJB-
Tier Security (page 1175) explains how to control user access to enterprise
beans.

In the certificate realm, the server stores user credentials in a certificate data-
base. When using the certificate realm, the server uses certificates with the
HTTPS protocol to authenticate web clients. To verify the identity of a user in
the certificate realm, the authentication service verifies an X.509 certificate.
For step-by-step instructions for creating this type of certificate, see Understand-
ing Digital Certificates (page 1149). The common name field of the X.509 certif-
icate is used as the principal name.

The admin-realm is also a FileRealm and stores administrator user credentials
locally in a file named admin-keyfile. You can use the Admin Console to man-
age users in this realm in the same way you manage users in the file realm. For
more information, see Managing Users, page 1121.

Managing Users
To add authorized users to the Application Server, follow these steps:

1. Start the Application Server if you haven’t already done so. Information on
starting the Application Server is available in Starting and Stopping the
Application Server (page 27).

2. Start the Admin Console if you haven’t already done so. You can start the
Admin Console by starting a web browser and browsing to http://

1122
localhost:4848/asadmin. If you changed the default Admin port during
installation, enter the correct port number in place of 4848.

3. To log in to the Admin Console, enter the user name and password of a user
in the admin-realm who belongs to the asadmin group. The name and
password entered during installation will work, as will any users added to
this realm and group subsequent to installation.

4. Expand the Configuration node in the Admin Console tree.

5. Expand the Security node in the Admin Console tree.

6. Expand the Realms node.

• Select the file realm to add users you want to enable to access applica-
tions running in this realm.

• Select the admin-realm to add users you want to enable as system
administrators of the Application Server.

7. Click the Manage Users button.

8. Click New to add a new user to the realm.

9. Enter the correct information into the User ID, Password, and Group(s)
fields.

• If you are adding a user to the file realm, enter the name to identify the
user, a password to allow the user access to the realm, and a group to
which this user belongs. For more information on these properties, read
Realms, Users, Groups, and Roles (page 1120).

• If you are adding a user to the admin-realm, enter the name to identify
the user, a password to allow the user access to the Application Server,
and enter asadmin in the Group field.

10.Click OK to add this user to the list of users in the realm.

11.Click Logout when you have completed this task.

Setting Up Security Roles
When you design an enterprise bean or web component, you should always think
about the kinds of users who will access the component. For example, a web
application for a human resources department might have a different request
URL for someone who has been assigned the role of admin than for someone
who has been assigned the role of director. The admin role may let you view
some employee data, but the director role enables you to view salary informa-
tion. Each of these security roles is an abstract logical grouping of users that is
defined by the person who assembles the application. When an application is

REALMS, USERS, GROUPS, AND ROLES 1123
deployed, the deployer will map the roles to security identities in the operational
environment, as shown in Figure 32–1.

A J2EE group also represents a category of users, but it has a different scope
from a role. A J2EE group is designated for the entire Application Server,
whereas a role is associated only with a specific application in the Application
Server.

To create a role for a web application, see Setting Security Requirements Using
deploytool (page 1128).

To create a role for a J2EE application, declare it for the application EAR file.
For example, you could use the following procedure to create a role using
deploytool:

1. Select an application.

2. In the Roles tabbed pane, click Add to add a row to the table.

3. In the Name column, enter the security role name—for example, bankCus-
tomer.

4. Click the folded-paper icon to add a description of the security role—for
example, Customer-of-Bank.

5. Click OK.

Before you can map the role to users or groups (see Mapping Roles to Users and
Groups, page 1123), you must first create those users or groups (see Managing
Users, page 1121).

Mapping Roles to Users and Groups
When you are developing a J2EE application, you don’t need to know what cate-
gories of users have been defined for the realm in which the application will be
run. In the J2EE platform, the security architecture provides a mechanism for
automatically mapping the roles defined in the application to the users or groups
defined in the runtime realm. After your application has been deployed, the
administrator of the Application Server will map the roles of the application to
the users or groups of the file realm, as shown in Figure 32–1.

1124
Figure 32–1 Role Mapping

Use deploytool to map roles defined for an application to J2EE users, groups,
or both:

1. Add authorized users and groups to the file realm using the Admin Con-
sole as discussed in Managing Users (page 1121). You must define the
users and groups for the Application Server before you can map them to
application security roles.

2. Create or open the web application in deploytool. Creating an application
using deploytool is discussed in Packaging Web Modules (page 90).

3. Select the web application in the deploytool tree. Select the Security
tabbed pane. We use the Security tabbed pane to add a security constraint
to the web application. If you would like more information on security con-
straints, read Protecting Web Resources (page 1127). Click Add Con-
straints to add a security constraint to this application.

4. Click Add Collections to add a web resource collection to this application.

5. Click Edit Collections to specify a URL pattern and/or to specify which
HTTP methods to protect.

6. Click Edit Roles to select which roles are authorized to access restricted
parts of this application.

7. Click Edit Roles in the Authorized Roles for Security Constraint dialog
box.

WEB-TIER SECURITY 1125
8. Click Add to add a new role. Click in the cell that is created under Name.
For this example, add the roles of CUSTOMER and MANAGER. Click OK to exit
this dialog box.

9. Add both roles to the list of authorized roles by selecting each in turn and
clicking Add.

10.Click OK to close this dialog.

11.Click OK to exit the Authorized Roles dialog box.

12.Select the General tabbed pane.

13.Select Sun-specific Settings.

14.To map the users defined for the Application Server to roles defined for
this application, select User to Role Mapping from the View list.

15.Select a role name—for example, MANAGER—in the Roles pane. These are
the role names you defined in the Authorized Roles for Security Constraint
dialog box.

16.Click the Edit button under either Users or Groups. (If you do not see the
users or groups that you defined for the Application Server, you may need
to log on to the Admin Server before continuing.) Use this dialog box to
select a specific user or group to map to the MANAGER role. Then click Add.
If you selected a user, the name of the user will display in the Users pane
when the MANAGER role is selected in the Role Name pane. If you selected
a group, the name of the group will display in the Groups pane when the
MANAGER role is selected. When you defined users using the Admin Con-
sole, you provided them with a name, password, and group. Any users
assigned to the group selected in this step will have access to the restricted
web application.

17.Click Close.

Web-Tier Security
Security in a web application is configured in the web application deployment
descriptor using deploytool. When the settings are entered in deploytool, they
are saved to the deployment descriptor contained in the WAR. To view the gener-
ated deployment descriptor, select Tools→Descriptor Viewer→Descriptor
Viewer from the deploytool menu. For more information on deployment
descriptors, see Chapter 3.

1126
After a WAR is created, select the Security tabbed pane to configure its security
elements. See Setting Security Requirements Using deploytool (page 1128) for
more information on using deploytool to accomplish these tasks:

• User authentication method: The User Authentication Method box on the
Security tab of deploytool enables you to specify how the user is
prompted to log in. If specified, the user must be authenticated before it can
access any resource that is constrained by a security constraint. The User
Authentication Method options are discussed in Understanding Login
Authentication (page 1133).

• Security constraints: The Security Constraint option is used to define the
access privileges to a collection of resources using their URL mapping.
Security constraints are discussed in Protecting Web
Resources (page 1127).

• Web resource collections: The Web Resource Collections option is part of
a security constraint and describes a URL pattern and HTTP method pair
that refer to resources that need to be protected. Web resource collections
are discussed in Protecting Web Resources (page 1127).

• Network security requirement: The Network Security Requirement option
is used to configure HTTP basic or form-based authentication over SSL.
Select a network security requirement for each security constraint. Net-
work security requirements are discussed in What Is Secure Socket Layer
Technology? (page 1148).

• Authorized roles: The Authorized Roles section is used to specify which
roles that have been defined for an application are authorized to access this
web resource collection. The roles defined for the application must be
mapped to users and groups defined on the server. Authorized roles are dis-
cussed in Setting Up Security Roles (page 1122).

These elements of the deployment descriptor can be entered directly into the
web.xml file or can be created using an application deployment tool, such as
deploytool. This section describes how to create the deployment descriptor
using deploytool.

Depending on the web server, some of the elements of web application security
must be addressed in web server configuration files rather than in the deploy-
ment descriptor for the web application. This information is discussed in Install-
ing and Configuring SSL Support (page 1148), Using Programmatic Security in
the Web Tier (page 1131), and Setting Up Security Roles (page 1122).

WEB-TIER SECURITY 1127
Protecting Web Resources
You protect web resources by specifying a security constraint. A security con-
straint determines who is authorized to access a web resource collection, which
is a list of URL patterns and HTTP methods that describe a set of resources to be
protected. Security constraints are defined using an application deployment tool,
such as deploytool, as discussed in Setting Security Requirements Using
deploytool (page 1128) or in a deployment descriptor.

If you try to access a protected web resource as an unauthenticated user, the web
container will try to authenticate you. The container will accept the request only
after you have proven your identity to the container and have been granted per-
mission to access the resource.

Security constraints work only on the original request URI and not on calls made
via a RequestDispatcher (which include <jsp:include> and <jsp:forward>).
Inside the application, it is assumed that the application itself has complete
access to all resources and would not forward a user request unless it had
decided that the requesting user also had access.

Many applications feature unprotected web content, which any caller can access
without authentication. In the web tier, you provide unrestricted access simply
by not configuring a security constraint for that particular request URI. It is com-
mon to have some unprotected resources and some protected resources. In this
case, you will define security constraints and a login method, but they will not be
used to control access to the unprotected resources. Users won’t be asked to log
on until the first time they enter a protected request URI.

In the Java Servlet specification, the request URI is the part of a URL after the
host name and port. For example, let’s say you have an e-commerce site with a
browsable catalog that you would want anyone to be able to access, and a shop-
ping cart area for customers only. You could set up the paths for your web appli-
cation so that the pattern /cart/* is protected but nothing else is protected.
Assuming that the application is installed at context path /myapp, the following
are true:

• http://localhost:8080/myapp/index.jsp is not protected.

• http://localhost:8080/myapp/cart/index.jsp is protected.

A user will not be prompted to log in until the first time that user accesses a
resource in the cart/ subdirectory.

To set up a security constraint, see the section Setting Security Requirements
Using deploytool (page 1128).

1128
Setting Security Requirements Using
deploytool
To set security requirements for a WAR, select the WAR in the deploytool tree,
and then select the Security tabbed pane. In the Security tabbed pane, you can
define how users are authenticated to the server and which users have access to
particular resources. Follow these steps:

1. Choose the authentication method. Authentication refers to the method by
which a client verifies the identity of a user to a server. The authentication
methods supported in this release are shown next and are discussed in more
detail in Understanding Login Authentication (page 1133). Select one of
the following authentication methods from the Authentication Method list:

• None

• Basic

• Client Certificate

• Digest

• Form Based

If you selected Basic or Digest from the list, click Settings to go to the
User Authentication Settings dialog box and enter the realm name in the
Realm Name field (valid choices include file and certificate). If you
selected Form Based, click Settings to go to the User Authentication Set-
tings dialog box and enter or select the values for Realm Name, Login
Page, and Error Page.

2. Define a security constraint. In the Security Constraints section of the
screen, you can define the security constraints for accessing the content of
your WAR file. Click the Add Constraints button adjacent to the Security
Constraints field to add a security constraint. Double-click the cell contain-
ing the security constraint to change its name. Each security constraint
consists of the following pieces:

a. A web resource collection, which describes a URL pattern and HTTP
method pair that refer to resources that need to be protected.

b. An authorization constraint, which is a set of roles that are defined to
have access to the web resource collection.

c. A user data constraint, which defines whether a resource is accessed
with confidentiality protection, integrity protection, or no protection.

WEB-TIER SECURITY 1129
3. Define a web resource collection for this security constraint. With the secu-
rity constraint selected, click the Add Collections button adjacent to the
Web Resource Collections field to add a web resource collection to the
security constraint. A web resource collection is part of a security con-
straint and describes a URL pattern and HTTP method pair that refer to
resources that need to be protected. Double-click the cell containing the
web resource collection to edit its name.

4. Edit the contents of the web resource collection by selecting it in the list
and then clicking the Edit Collections button. The Edit Contents dialog box
displays. Use it to add individual files or whole directories to the web
resource collection, to add a URL pattern, or to specify which HTTP meth-
ods will be governed by this web resource collection.

a. Select the files and directories that you want to add to the web resource
collection in the top text field, and then click the Add button to add them
to the web resource collection.

b. Add URL patterns to the web resource collection by clicking Add URL
Pattern and entering the URL pattern in the edit field. For example,
specify /* to protect all resources.

c. Select the options from the HTTP Methods list that need to be added to
the web application. The options are Delete, Get, Head, Options, Post,
Put, and Trace.

d. Click OK to return to the Security tabbed pane. The contents of the web
resource collection display in the box beside the Edit Contents button.

5. Select the proper option from the Network Security Requirement list for
this security constraint. The choices are None, Integral, and Confiden-

tial.

a. Specify NONE when the application does not require a security con-
straint.

b. Specify CONFIDENTIAL when the application requires that data be trans-
mitted so as to prevent other entities from observing the contents of the
transmission.

c. Specify INTEGRAL when the application requires that the data be sent
between client and server in such a way that it cannot be changed in
transit.

If you specify CONFIDENTIAL or INTEGRAL as a security constraint, that
type of security constraint applies to all requests that match the URL pat-
terns in the web resource collection and not just to the login dialog box.

1130
For further discussion on network security requirements, see What Is
Secure Socket Layer Technology? (page 1148).

6. Select which roles are authorized to access the secure application. In the
Authorized Roles pane, click Edit Roles to specify which defined roles are
authorized to access this secure application.

Select the role for which you want to authorize access from the list of
Roles, and click the Add button to add it to the list of Authorized Roles.

If roles have not been defined for this application, click the Edit Roles
button and add the roles for this application. If you add roles in this fash-
ion, make sure to map the roles to the appropriate users and groups. For
more information on role mapping, see Mapping Roles to Users and
Groups (page 1123).

7. Click OK.

8. View the resulting deployment descriptor by selecting the WAR file in the
deploytool tree and then selecting Tools→Descriptor Viewer→Descrip-
tor Viewer from the deploytool menu.

To add security specifically to a JSP page or to a servlet in the application, select
the JSP page or servlet in the deploytool tree and select the Security tab. For
more information on the options displayed on this page, see Declaring and Link-
ing Role References (page 1131).

Specifying a Secure Connection
When the login authentication method is set to BASIC or FORM, passwords are not
protected, meaning that passwords sent between a client and a server on an
unprotected session can be viewed and intercepted by third parties.

To configure HTTP basic or form-based authentication over SSL, specify CON-

FIDENTIAL or INTEGRAL as the network security requirement on the WAR’s
Security page in deploytool. Specify CONFIDENTIAL when the application
requires that data be transmitted so as to prevent other entities from observing
the contents of the transmission. Specify INTEGRAL when the application requires
that the data be sent between client and server in such a way that it cannot be
changed in transit.

If you specify CONFIDENTIAL or INTEGRAL as a security constraint, that type of
security constraint applies to all requests that match the URL patterns in the web
resource collection and not just to the login dialog box.

WEB-TIER SECURITY 1131
If the default configuration of your server does not support SSL, you must con-
figure it using an SSL connector to make this work. By default, this release of the
Application Server is configured with an SSL connector. To set up an SSL con-
nector on other servers, see Installing and Configuring SSL Support (page 1148).

Note: Good Security Practice: If you are using sessions, after you switch to SSL
you should never accept any further requests for that session that are non-SSL. For
example, a shopping site might not use SSL until the checkout page, and then it may
switch to using SSL in order to accept your card number. After switching to SSL,
you should stop listening to non-SSL requests for this session. The reason for this
practice is that the session ID itself was not encrypted on the earlier communica-
tions. This is not so bad when you’re only doing your shopping, but after the credit
card information is stored in the session, you don’t want a bad guy trying to fake the
purchase transaction against your credit card. This practice could be easily imple-
mented using a filter.

Using Programmatic Security in the Web
Tier
Web-tier programmatic security consists of the following methods of the HttpS-

ervletRequest interface:

• getRemoteUser: Determines the user name with which the client authen-
ticated.

• isUserInRole: Determines whether a user is in a specific security role.

• getUserPrincipal: Returns a java.security.Principal object.

Your application can make security decisions based on the output of these APIs.

Declaring and Linking Role References
A security role reference allows a web component to reference an existing secu-
rity role. A security role is an application-specific logical grouping of users, clas-
sified by common traits such as customer profile or job title. When an
application is deployed, roles are mapped to security identities, such as princi-
pals (identities assigned to users as a result of authentication) or groups, in the
operational environment. Based on this, a user with a certain security role has
associated access rights to a web application. The link is the actual name of the
security role that is being referenced.

1132
During application assembly, the assembler creates security roles for the applica-
tion and associates these roles with available security mechanisms. The assem-
bler then resolves the security role references in individual servlets and JSP
pages by linking them to roles defined for the application.

The security role reference defines a mapping between the name of a role that is
called from a web component using isUserInRole(String name) and the name
of a security role that has been defined for the application. For example, the map-
ping of the security role reference cust to the security role with the role name
bankCustomer is shown in the following example.

1. Select the web component WAR in the deploytool tree.

2. Select the Security tab.

3. Select Add Constraints and Add Collections to add a security constraint
and web resource collection. Adding a security constraint enables the Edit
Roles button.

4. Select the Edit Roles button to open the Authorized Roles dialog box.
Click the Edit Roles button to open the Edit Roles dialog box. Click Add
to add an authorized role to this application.

5. Click in the edit box and enter a role—for example, admin or loginUser.
If you haven’t added any users, refer to Managing Users (page 1121) for
information on how to do so. Select OK to close this dialog box.

6. Select the role you just added in the left pane, and click Add to add it to the
list of authorized roles for this application. Click OK to close this dialog
box. The role you added displays in the list of Authorized Roles on the
Security tabbed pane.

Now that you’ve set up a role for this application, you map it to the list of users
and groups set up for the Application Server. To do this, follow these steps:

1. Ensure you are logged on to localhost:4848 by double-clicking it in the
deploytool tree. If you skip this step, the roles defined for the Application
Server will not be displayed in subsequent steps.

2. Select the Web WAR in the deploytool tree.

3. Select the General tabbed pane.

4. Click the Sun-specific Settings button.

5. Select User to Role Mappings from the View list to map the users defined
for the Application Server to roles defined for this application.

6. Select a role name in the Roles pane. These are the role names currently
defined in the Authorized Roles for Security Constraint dialog box.

UNDERSTANDING LOGIN AUTHENTICATION 1133
7. Click the Edit button under either Users or Groups. Use this dialog box to
select a specific user or group to map to this role. Then click Add. If you
selected a user, the name of the user will display in the Users pane when
the role is selected in the Roles pane. If you selected a group, the name of
the group will display in the Groups pane when that role is selected. When
you defined users using the Admin Console, you provided them with a
name, password, and group. Any users assigned to the group selected in
this step will have access to the restricted web application.

8. Select OK and then Close.

9. Select Save from the File menu to save these changes.

When you use the isUserInRole(String role) method, the String role is
mapped to the role name defined in the Authorized Roles section of the WAR
file’s Security tabbed pane.

Understanding Login Authentication
When you try to access a protected web resource, the web container activates the
authentication mechanism that has been configured for that resource. You can
specify the following authentication mechanisms:

• HTTP basic authentication

• Form-based login authentication

• Client certificate authentication

• Mutual authentication

• Digest authentication

If you do not specify one of these mechanisms, the user will not be authenti-
cated.

Using HTTP Basic Authentication
Figure 32–2 shows what happens if you specify HTTP basic authentication.

1134
Figure 32–2 HTTP Basic Authentication

With basic authentication, the following things occur:

1. A client requests access to a protected resource.

2. The web server returns a dialog box that requests the user name and pass-
word.

3. The client submits the user name and password to the server.

4. The server validates the credentials and, if successful, returns the requested
resource.

HTTP basic authentication is not particularly secure. Basic authentication sends
user names and passwords over the Internet as text that is uu-encoded (Unix-to-
Unix encoded) but not encrypted. This form of authentication, which uses
Base64 encoding, can expose your user names and passwords unless all connec-
tions are over SSL. If someone can intercept the transmission, the user name and
password information can easily be decoded.

Example: Basic Authentication with JAX-RPC (page 1161) is an example appli-
cation that uses HTTP basic authentication in a JAX-RPC service.

Using Form-Based Authentication
Figure 32–3 shows what happens if you specify form-based authentication, in
which you can customize the login screen and error pages that an HTTP browser
presents to the end user.

UNDERSTANDING LOGIN AUTHENTICATION 1135
Figure 32–3 Form-Based Authentication

With form-based authentication, the following things occur:

1. A client requests access to a protected resource.

2. If the client is unauthenticated, the server redirects the client to a login
page.

3. The client submits the login form to the server.

4. If the login succeeds, the server redirects the client to the resource. If the
login fails, the client is redirected to an error page.

Form-based authentication is not particularly secure. In form-based authentica-
tion, the content of the user dialog box is sent as plain text, and the target server
is not authenticated. This form of authentication can expose your user names and
passwords unless all connections are over SSL. If someone can intercept the
transmission, the user name and password information can easily be decoded.

Example: Using Form-Based Authentication (page 1139) is an example applica-
tion that uses form-based authentication.

Using Client-Certificate Authentication
Client-certificate authentication is a more secure method of authentication than
either basic or form-based authentication. It uses HTTP over SSL, in which the

1136
server and, optionally, the client authenticate one another using public key certif-
icates. Secure Socket Layer (SSL) provides data encryption, server authentica-
tion, message integrity, and optional client authentication for a TCP/IP
connection. You can think of a public key certificate as the digital equivalent of a
passport. It is issued by a trusted organization, which is called a certificate
authority (CA), and provides identification for the bearer.

If you specify client-certificate authentication, the web server will authenticate
the client using the client’s X.509 certificate, a public key certificate that con-
forms to a standard that is defined by X.509 Public Key Infrastructure (PKI).
Before running an application that uses SSL, you must configure SSL support on
the server (see Installing and Configuring SSL Support, page 1148) and set up
the public key certificate (see Understanding Digital Certificates, page 1149).

Example: Client-Certificate Authentication over HTTP/SSL with
JAX-RPC (page 1167) describes an example application that uses client-certifi-
cate authentication.

Using Mutual Authentication
With mutual authentication, the server and the client authenticate each other.
There are two types of mutual authentication:

• Certificate-based mutual authentication (see Figure 32–4)

• User name- and password-based mutual authentication (see Figure 32–5)

Figure 32–4 shows what occurs during certificate-based mutual authentication.

UNDERSTANDING LOGIN AUTHENTICATION 1137
Figure 32–4 Certificate-Based Mutual Authentication

In certificate-based mutual authentication, the following things occur:

1. A client requests access to a protected resource.

2. The web server presents its certificate to the client.

3. The client verifies the server’s certificate.

4. If successful, the client sends its certificate to the server.

5. The server verifies the client’s credentials.

6. If successful, the server grants access to the protected resource requested
by the client.

Example: Client-Certificate Authentication over HTTP/SSL with
JAX-RPC (page 1167) describes an example application that uses certificate-
based mutual authentication.

Figure 32–5 shows what occurs during user name- and password-based mutual
authentication.

1138
Figure 32–5 User Name- and Password-Based Mutual Authentication

In user name- and password-based mutual authentication, the following things
occur:

1. A client requests access to a protected resource.

2. The web server presents its certificate to the client.

3. The client verifies the server’s certificate.

4. If successful, the client sends its user name and password to the server,
which verifies the client’s credentials.

5. If the verification is successful, the server grants access to the protected
resource requested by the client.

Using Digest Authentication
Like HTTP basic authentication, HTTP digest authentication authenticates a user
based on a user name and a password. However, the authentication is performed
by transmitting the password in an encrypted form which is much more secure
than the simple base64 encoding used by basic authentication. Digest authentica-
tion is not currently in widespread use, therefore, there is no further discussion of
it in this document.

UNDERSTANDING LOGIN AUTHENTICATION 1139
Configuring Authentication
To configure the authentication mechanism that the web resources in a WAR will
use, select the WAR in the deploytool tree. Select the Security tabbed pane, and
then proceed as follows:

1. Select one of the user authentication methods described earlier.

2. Specify a security realm. If omitted, the file realm is assumed. Select the
Settings button beside the User Authentication Mechanism field to specify
the realm.

3. If the authentication method is specified as form-based, specify a form
login page and form error page. Select the Settings button beside the User
Authentication Mechanism field to specify the login page and the error
page to be used for form-based authentication.

Example: Using Form-Based
Authentication
In this section, we discuss how to add form-based authentication to a basic JSP
page. With form-based authentication, you can customize the login screen and
error pages that are presented to the web client for authentication of their user
name and password. If the topic of authentication is new to you, please refer to
the section Understanding Login Authentication (page 1133).

The example application discussed in this tutorial can be found in <INSTALL>/

j2eetutorial14/examples/security/formbasedauth/. In general, the fol-
lowing steps are necessary to add form-based authentication to a web client. In
the example application included with this tutorial, most of these steps have been
completed for you and are listed here to show what needs to be done should you
wish to create a similar application.

1. Map the role name to the appropriate users and groups defined for the
Application Server. See Adding Authorized Users (page 1140) for more
information on needed modifications.

2. Edit the build.properties file. The build.properties file needs to be
modified because the properties in this file are specific to your installation
of the Application Server and J2EE 1.4 Tutorial. See Building the
Examples (page xxxvii) for information on which properties need to be
set.

1140
3. Create the web client. For this example, the web client, a very simple JSP
page, is already created. The client is discussed in Creating a Web Client
for Form-Based Authentication (page 1140).

4. Create the login form and login error form pages. For this example, these
files are already created. These pages are discussed in Creating the Login
Form and Error Page (page 1141).

5. Add the appropriate security elements using deploytool. See Specifying
Security Elements for Form–Based Authentication (page 1142) for infor-
mation on which settings need to be made.

6. Build, package, deploy, and run the web application (see Building, Pack-
aging, Deploying, and Running the Form-Based Authentication
Example, page 1143). You will use the asant tool to compile the example
application and to run the client. You will use deploytool to package and
deploy the server.

Adding Authorized Users
This example application will be configured to authorize access for users
assigned to the role of loginUser. To specify which users can assume that role
and can access the protected parts of the application, you must map this role to
users and groups defined for the Application Server.

When the Application Server is started, it reads the settings in its configuration
files. When a constrained resource is accessed, the Application Server verifies
that the user name and password are authorized to access that resource before
granting access to the requester. The roles that are authorized to access a
resource are specified in the security constraint for that application.

Information for adding users to the Application Server is provided in Managing
Users (page 1121). For this example, create a new user and assign that user to
the group loginUser. For information about the steps required to map the user
assigned to the group of loginUser as defined on the Application Server to the
role of loginUser authorized to access this application, see Mapping Roles to
Users and Groups (page 1123).

Creating a Web Client for Form-Based
Authentication
The web client is a standard JSP page. None of the code that adds form-based
authentication to the example is included in the web client. The information that

UNDERSTANDING LOGIN AUTHENTICATION 1141
adds the form-based authentication to this example is specified in the deploy-
ment descriptor, which is created with deploytool. The code for the JSP page
used in this example, formbasedauth/web/index.jsp, is listed next. The run-
ning application is shown later in Figure 32–7.

<html>
<head><title>Hello</title></head>
<body bgcolor="white">

<h2>My name is Duke.</h2>
<h2>Hello,

${pageContext.request.userPrincipal.name}!</h2>
</body>
</html>

Creating the Login Form and Error Page
When you create a form-based login mechanism, you must specify which JSP
page contains the form to obtain the user name and password to verify access.
You also must specify which page is displayed if login authentication fails. This
section discusses how to create the login form and error page. Packaging the
Web Application (page 1143) discusses how to specify these pages when you are
setting up form-based authentication.

The login page can be an HTML page, a JSP page, or a servlet, and it must return
an HTML page containing a form that conforms to specific naming conventions
(see the Java Servlet 2.4 specification for more information on these require-
ments). The content of the login form in an HTML page, JSP page, or servlet for
a login page should be coded as follows:

<form method=post action="j_security_check" >
 <input type="text" name= "j_username" >
 <input type="password" name= "j_password" >
</form>

The full code for the login page used in this example can be found at
<INSTALL>/j2eetutorial14/examples/security/formbasedauth/web/

logon.jsp. An example of the running login form page is shown later in Figure
32–6.

The login error page is displayed if the user enters a user name and password
combination that is not authorized to access the protected URI. For this example,
the login error page can be found at <INSTALL>/j2eetutorial14/examples/

1142
security/formbasedauth/web/logonError.jsp. Here is the code for this
page:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core"
prefix="c" %>

<html>
<head>
<title>

Login Error
</title>
</head>
<body>

<c:url var="url" value="/index.jsp"/>
<p>Try again.</p>

</body>
</html>

Specifying Security Elements for Form–Based
Authentication
To enable form-based authentication, you add the following elements to this
application using deploytool.

• A security constraint, which is used to define the access privileges to a col-
lection of resources using their URL mapping.

• A web resource collection, which is used to identify a subset of the
resources within a web application to which a security constraint applies.
In this example, by specifying a URL pattern of /*, we are specifying that
all resources in this application are protected.

• An authorized roles list, which indicates the user roles that should be per-
mitted access to this resource collection. In this example, it is users
assigned the role of loginUser. If no role name is provided, no user is
allowed to access the portion of the web application described by the secu-
rity constraint.

• A user authentication method, which is used to configure the authentica-
tion method used and the attributes needed by the form login mechanism.
The login page parameter provides the URI of a web resource relative to
the document root that will be used to authenticate the user. The error page
parameter requires a URI of a web resource relative to the document root
that sends a response when authentication has failed.

UNDERSTANDING LOGIN AUTHENTICATION 1143
In the Application Server, these security elements are added to the application
using deploytool, after the application has been packaged. Information on add-
ing the security elements to this application using deploytool is discussed in
Packaging the Web Application (page 1143).

Building, Packaging, Deploying, and Running
the Form-Based Authentication Example
To build, package, deploy, and run the security/formbasedauth example,
which uses form-based authentication, follow these steps.

Building the Form-Based Authentication Example
1. Follow the instructions in Building the Examples (page xxxvii).

2. Follow the instructions in Adding Authorized Users (page 1140).

3. Go to the <INSTALL>/j2eetutorial14/examples/security/form-

basedauth/ directory.

4. Build the web application by entering the following command at the termi-
nal window or command prompt:

asant build

Packaging the Web Application
You can package the form-based authentication example using asant or
deploytool, or you can just open the WAR file located in the <INSTALL>/

j2eetutorial14/examples/security/provided-wars/formbasedauth.war

file.

To package the example using asant, run the following command:

asant create-war

To package the example using deploytool, follow these steps:

1. Start the Application Server if you have not already done so. For informa-
tion on starting the Application Server, see Starting and Stopping the
Application Server (page 27).

2. Start deploytool. Information on starting deploytool can be found in
Starting the deploytool Utility (page 29).

1144
3. Package the formbasedauth example using deploytool following these
steps. More detail on packaging web applications can be found in Packag-
ing Web Modules (page 90).

a. Select File→New→Web Component from the deploytool menu.

b. Select Next from the Introduction page.

c. Select the Create New Stand-Alone WAR Module radio button.

d. In the WAR File field, browse to the <INSTALL>/j2eetutorial14/

examples/security/formbasedauth/ directory and create the file
formbasedauth.war.

e. Enter /formbasedauth in the Context Root field.

f. Click Edit Contents to add the contents of the application to the WAR
file. Select the formbasedauth/ directory from the Starting Directory
list. Select each of the files index.jsp, logon.jsp, logonError.jsp,
and duke.waving.gif from the build/ directory, and then click Add.
Click OK to close this dialog box.

g. Click Next.

h. Select JSP Page.

i. Click Next.

j. Select index.jsp in the JSP Filename field.

k. Click Next.

l. Click Finish. The FormBasedAuth example displays in the deploytool

tree.

m.Select Save from the File menu to save the web component.

To add form-based authentication to your application, select the formbasedauth

example in the deploytool tree and then follow these steps:

1. Select the Security tabbed pane.

2. Select Form Based in the User Authentication Method field.

3. Select the Settings button. Set the following properties in this dialog box:

a. Enter file for Realm Name.

b. Select logon.jsp from the Login Page list.

c. Select logonError.jsp from the Error Page list.

d. Click OK.

4. Select Add Constraints to add a security constraint to this example.

5. Select Add Collections to add a web resource collection to this example.

UNDERSTANDING LOGIN AUTHENTICATION 1145
6. With the security constraint and web resource collection selected, click the
Edit Collections button.

7. In the Edit Contents dialog box, select Add URL Pattern. In the edit box,
make sure that the URL pattern reads /*. Click OK to close this dialog box.
Using a URL pattern of /* and selecting no HTTP patterns means that all
files and methods in this application are protected and may be accessed
only by a user who provides an authorized login.

8. Click OK.

9. Click Edit Roles on the Security tabbed pane and then Edit Roles again in
the Authorized Roles dialog box. Click Add, and then enter the role log-

inUser in the Name column. This is the authorized role for this security
constraint. Click OK to close this dialog box.

10.Select loginUser in the left pane and click Add to add it to the list of
authorized roles for this application. Select OK to close this dialog box.

The next step is to map the authorized role of loginUser, as defined in the appli-
cation, to the group of loginUser that is defined for the Application Server. To
do this, follow these steps:

1. Select the General tabbed pane.

2. Click the Sun-specific Settings button.

3. In the Sun-specific Settings dialog box, select User to Role Mappings from
the View list.

4. Select loginUser from the list of roles.

5. Click the Edit button under the Groups box.

6. Connect to the Admin Server when prompted by entering your admin user
name and password if you have not already done so. Connecting to the
Admin Server will enable deploytool to read the names of the users and
groups that are currently defined in the file realm on the server.

7. Select loginUser from the Available Groups list, and then click the Add
button to map the role of loginUser (defined for the application) to the
group of loginUser (defined for the Application Server). Click OK.

8. Click Close to return to the General tabbed pane.

9. Select File→Save to save these changes.

After all the security elements have been added, view the generated deployment
descriptor by selecting Tools→Descriptor Viewer→Descriptor Viewer from the
deploytool menu.

1146
Deploying the Web Application
To deploy the example using asant, run the following command:

asant deploy-war

To deploy the example using deploytool, follow these steps:

1. Select the formbasedauth application in the deploytool tree.

2. Select Tools→Deploy.

3. Make sure the server is correct.

4. Enter your admin user name and password.

5. Click OK.

6. Click the Close button after the messages indicating successful completion
are finished.

Running the Web Application
Run the web client by entering the following URL in your web browser:

http://localhost:8080/formbasedauth

The login form displays in the browser, as shown in Figure 32–6. Enter a user
name and password combination that corresponds to the role of loginUser, and
then click the Submit button. Form-based authentication is case-sensitive for
both the user name and password.

Figure 32–6 Form-Based Login Page

UNDERSTANDING LOGIN AUTHENTICATION 1147
If you entered Debbie as the name and if there is a user defined for the Applica-
tion Server with the user name of Debbie that also matches the password you
entered and is assigned to the group of loginUser that we mapped to the role of
loginUser, the display will appear as in Figure 32–7.

Figure 32–7 The Running Form-Based Authentication Example

Note: For repetitive testing of this example, you may need to close and reopen your
browser.

Using Authentication with SSL
Passwords are not protected for confidentiality with HTTP basic or form-based
authentication, meaning that passwords sent between a client and a server on an
unprotected session can be viewed and intercepted by third parties. To overcome
this limitation, you can run these authentication protocols over an SSL-protected
session and ensure that all message content is protected for confidentiality. To
configure HTTP basic or form-based authentication over SSL, follow these
steps.

1. Select the WAR in the deploytool tree.

2. Select the Security tabbed pane.

3. Specify CONFIDENTIAL or INTEGRAL as the network security requirement
on the WAR’s Security pane in deploytool.

a. Specify NONE when the application does not require a security con-
straint.

1148
b. Specify CONFIDENTIAL when the application requires that data be trans-
mitted so as to prevent other entities from observing the contents of the
transmission.

c. Specify INTEGRAL when the application requires that the data be sent
between client and server in such a way that it cannot be changed in
transit.

Read the section Specifying a Secure Connection (page 1130) for more
information.

4. Select Save from the File menu to save the changes.

5. Select Deploy from the Tools menu and follow the steps to deploy the
application.

6. Load the application in a web browser using https for the protocol, the
HTTPS port that you specified during installation for the port (by default
this port is 8181), and the context name for the application you wish to run.
For the form-based authentication example, you could run the example
using the following URL:
https://localhost:8181/formbasedauth

Installing and Configuring SSL Support
What Is Secure Socket Layer
Technology?
Secure Socket Layer (SSL) technology allows web browsers and web servers to
communicate over a secure connection. In this secure connection, the data that is
being sent is encrypted before being sent and then is decrypted upon receipt and
before processing. Both the browser and the server encrypt all traffic before
sending any data. SSL addresses the following important security considerations.

• Authentication: During your initial attempt to communicate with a web
server over a secure connection, that server will present your web browser
with a set of credentials in the form of a server certificate. The purpose of
the certificate is to verify that the site is who and what it claims to be. In
some cases, the server may request a certificate that the client is who and
what it claims to be (which is known as client authentication).

• Confidentiality: When data is being passed between the client and the
server on a network, third parties can view and intercept this data. SSL

INSTALLING AND CONFIGURING SSL SUPPORT 1149
responses are encrypted so that the data cannot be deciphered by the third
party and the data remains confidential.

• Integrity: When data is being passed between the client and the server on
a network, third parties can view and intercept this data. SSL helps guar-
antee that the data will not be modified in transit by that third party.

To install and configure SSL support on your stand-alone web server, you need
the following components. SSL support is already provided if you are using the
Application Server. If you are using a different web server, consult the documen-
tation for your product.

• A server certificate keystore (see Understanding Digital
Certificates, page 1149).

• An HTTPS connector (see Using SSL, page 1156).

To verify that SSL support is enabled, see Verifying SSL Support (page 1156).

Understanding Digital Certificates

Note: Digital certificates for the Application Server have already been generated
and can be found in the directory <J2EE_HOME>/domains/domain1/config/.
These digital certificates are self-signed and are intended for use in a development
environment; they are not intended for production purposes. For production pur-
poses, generate your own certificates and have them signed by a CA.

To use SSL, an application server must have an associated certificate for each
external interface, or IP address, that accepts secure connections. The theory
behind this design is that a server should provide some kind of reasonable assur-
ance that its owner is who you think it is, particularly before receiving any sensi-
tive information. It may be useful to think of a certificate as a “digital driver’s
license” for an Internet address. It states with which company the site is associ-
ated, along with some basic contact information about the site owner or adminis-
trator.

The digital certificate is cryptographically signed by its owner and is difficult for
anyone else to forge. For sites involved in e-commerce or in any other business
transaction in which authentication of identity is important, a certificate can be
purchased from a well-known certificate authority (CA) such as VeriSign or
Thawte.

1150
Sometimes authentication is not really a concern—for example, an administrator
may simply want to ensure that data being transmitted and received by the server
is private and cannot be snooped by anyone eavesdropping on the connection. In
such cases, you can save the time and expense involved in obtaining a CA certif-
icate and simply use a self-signed certificate.

SSL uses public key cryptography, which is based on key pairs. Key pairs contain
one public key and one private key. If data is encrypted with one key, it can be
decrypted only with the other key of the pair. This property is fundamental to
establishing trust and privacy in transactions. For example, using SSL, the server
computes a value and encrypts the value using its private key. The encrypted
value is called a digital signature. The client decrypts the encrypted value using
the server’s public key and compares the value to its own computed value. If the
two values match, the client can trust that the signature is authentic, because only
the private key could have been used to produce such a signature.

Digital certificates are used with the HTTPS protocol to authenticate web clients.
The HTTPS service of most web servers will not run unless a digital certificate
has been installed. Use the procedure outlined later to set up a digital certificate
that can be used by your web server to enable SSL.

One tool that can be used to set up a digital certificate is keytool, a key and cer-
tificate management utility that ships with the J2SE SDK. It enables users to
administer their own public/private key pairs and associated certificates for use
in self-authentication (where the user authenticates himself or herself to other
users or services) or data integrity and authentication services, using digital sig-
natures. It also allows users to cache the public keys (in the form of certificates)
of their communicating peers. For a better understanding of keytool and public
key cryptography, read the keytool documentation at the following URL:

http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/key-
tool.html

Creating a Server Certificate
A server certificate has already been created for the Application Server. The cer-
tificate can be found in the <J2EE_HOME>/domains/domain1/config/ directory.
The server certificate is in keystore.jks. The cacerts.jks file contains all the
trusted certificates, including client certificates.

If necessary, you can use keytool to generate certificates. The keytool stores
the keys and certificates in a file termed a keystore, a repository of certificates
used for identifying a client or a server. Typically, a keystore contains one client

http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html

INSTALLING AND CONFIGURING SSL SUPPORT 1151
or one server’s identity. The default keystore implementation implements the
keystore as a file. It protects private keys by using a password.

The keystores are created in the directory from which you run keytool. This can
be the directory where the application resides, or it can be a directory common to
many applications. If you don’t specify the keystore file name, the keystores are
created in the user’s home directory.

To create a server certificate follow these steps:

1. Create the keystore.

2. Export the certificate from the keystore.

3. Sign the certificate.

4. Import the certificate into a trust-store: a repository of certificates used for
verifying the certificates. A trust-store typically contains more than one
certificate. An example using a trust-store for SSL-based mutual authenti-
cation is discussed in Example: Client-Certificate Authentication over
HTTP/SSL with JAX-RPC (page 1167).

Run keytool to generate the server keystore, which we will name key-

store.jks. This step uses the alias server-alias to generate a new public/pri-
vate key pair and wrap the public key into a self-signed certificate inside
keystore.jks. The key pair is generated using an algorithm of type RSA, with a
default password of changeit. For more information on keytool options, see its
online help at http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/
keytool.html.

Note: RSA is public-key encryption technology developed by RSA Data Security,
Inc. The acronym stands for Rivest, Shamir, and Adelman, the inventors of the tech-
nology.

From the directory in which you want to create the keystore, run keytool with
the following parameters.

1. Generate the server certificate.
<JAVA_HOME>\bin\keytool -genkey -alias server-alias
-keyalg RSA -keypass changeit -storepass changeit
-keystore keystore.jks

When you press Enter, keytool prompts you to enter the server name,
organizational unit, organization, locality, state, and country code. Note
that you must enter the server name in response to keytool’s first prompt,
in which it asks for first and last names. For testing purposes, this can be

http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html

1152
localhost. The host specified in the keystore must match the host identi-
fied in the host variable specified in the <INSTALL>/j2eetutorial14/

examples/common/build.properties when running the example appli-
cations.

2. Export the generated server certificate in keystore.jks into the file
server.cer.
<JAVA_HOME>\bin\keytool -export -alias server-alias
-storepass changeit -file server.cer -keystore keystore.jks

3. If you want to have the certificate signed by a CA, read Signing Digital
Certificates (page 1152) for more information.

4. To create the trust-store file cacerts.jks and add the server certificate to
the trust-store, run keytool from the directory where you created the key-
store and server certificate. Use the following parameters:
<JAVA_HOME>\bin\keytool -import -v -trustcacerts
-alias server-alias -file server.cer
-keystore cacerts.jks -keypass changeit
-storepass changeit

Information on the certificate, such as that shown next, will display.

<INSTALL>/j2eetutorial14/examples/gs 60% keytool -import
-v -trustcacerts -alias server-alias -file server.cer
-keystore cacerts.jks -keypass changeit -storepass changeit
Owner: CN=localhost, OU=Sun Micro, O=Docs, L=Santa Clara,
ST=CA, C=US
Issuer: CN=localhost, OU=Sun Micro, O=Docs, L=Santa Clara,
ST=CA, C=US
Serial number: 3e932169
Valid from: Tue Apr 08
Certificate fingerprints:
MD5: 52:9F:49:68:ED:78:6F:39:87:F3:98:B3:6A:6B:0F:90
SHA1: EE:2E:2A:A6:9E:03:9A:3A:1C:17:4A:28:5E:97:20:78:3F:
Trust this certificate? [no]:

5. Enter yes, and then press the Enter or Return key. The following infor-
mation displays:

Certificate was added to keystore
[Saving cacerts.jks]

Signing Digital Certificates
After you’ve created a digital certificate, you will want to have it signed by its
owner. After the digital certificate has been cryptographically signed by its
owner, it is difficult for anyone else to forge. For sites involved in e-commerce or

INSTALLING AND CONFIGURING SSL SUPPORT 1153
any other business transaction in which authentication of identity is important, a
certificate can be purchased from a well-known certificate authority such as
VeriSign or Thawte.

As mentioned earlier, if authentication is not really a concern, you can save the
time and expense involved in obtaining a CA certificate and simply use the self-
signed certificate.

Using a Different Server Certificate with the
Application Server
Follow the steps in Creating a Server Certificate, page 1150, to create your own
server certificate, have it signed by a CA, and import the certificate into key-

store.jks.

Make sure that when you create the certificate, you follow these rules:

• When you press create the server certificate, keytool prompts you to enter
your first and last name. In response to this prompt, you must enter the
name of your server. For testing purposes, this can be localhost.

• The server/host specified in the keystore must match the host identified in
the host variable specified in the <INSTALL>/j2eetutorial14/exam-

ples/common/build.properties file for running the example applica-
tions.

• Your key/certificate password in keystore.jks should match the password
of your keystore, keystore.jks. This is a bug. If there is a mismatch, the
Java SDK cannot read the certificate and you get a “tampered” message.

• If you want to replace the existing keystore.jks, you must either change
your keystore’s password to the default password (changeit) or change
the default password to your keystore’s password:

To specify that the Application Server should use the new keystore for authenti-
cation and authorization decisions, you must set the JVM options for the Appli-
cation Server so that they recognize the new keystore. To use a different keystore
than the one provided for development purposes, follow these steps.

1. Start the Application Server if you haven’t already done so. Information on
starting the Application Server can be found in Starting and Stopping the
Application Server (page 27).

2. Start the Admin Console. Information on starting the Admin Console can
be found in Starting the Admin Console (page 28).

1154
3. Select Application Server in the Admin Console tree.

4. Select the JVM Settings tab.

5. Select the JVM Options tab.

6. Change the following JVM options so that they point to the location and
name of the new keystore. There current settings are shown below:
-Djavax.net.ssl.keyStore=${com.sun.aas.instanceRoot}/con-
fig/keystore.jks
-Djavax.net.ssl.trustStore=${com.sun.aas.instanceRoot}/con-
fig/cacerts.jks

7. If you’ve changed the keystore password from its default value, you need
to add the password option as well:
-Djavax.net.ssl.keyStorePassword=your_new_password

8. Logout of the Admin Console and restart the Application Server.

Creating a Client Certificate for Mutual
Authentication
This section discusses setting up client-side authentication. When both server-
side and client-side authentication are enabled, it is called mutual, or two-way,
authentication. In client authentication, clients are required to submit certificates
that are issued by a certificate authority that you choose to accept. From the
directory where you want to create the client certificate, run keytool as outlined
here. When you press Enter, keytool prompts you to enter the server name,
organizational unit, organization, locality, state, and country code.

Note: You must enter the server name in response to keytool’s first prompt, in
which it asks for first and last names. For testing purposes, this can be localhost.
The host specified in the keystore must match the host identified in the host vari-
able specified in the <INSTALL>/j2eetutorial14/examples/common/
build.properties file. If this example is to verify mutual authentication and you
receive a runtime error stating that the HTTPS host name is wrong, re-create the cli-
ent certificate, being sure to use the same host name that you will use when running
the example. For example, if your machine name is duke, then enter duke as the cer-
tificate CN or when prompted for first and last names. When accessing the applica-
tion, enter a URL that points to the same location—for example, https://

duke:8181/mutualauth/hello. This is necessary because during SSL handshake,
the server verifies the client certificate by comparing the certificate name and the
host name from which it originates.

INSTALLING AND CONFIGURING SSL SUPPORT 1155
To create a keystore named client-keystore.jks that contains a client certifi-
cate named client.cer, follow these steps:

1. Generate the client certificate.
<JAVA_HOME>\bin\keytool -genkey -alias client-alias -keyalg
RSA -keypass changeit
-storepass changeit -keystore keystore.jks

2. Export the generated client certificate into the file client.cer.

<JAVA_HOME>\bin\keytool -export -alias client-alias
-storepass changeit -file client.cer -keystore keystore.jks

3. Add the certificate to the trust-store file <J2EE_HOME>/domains/domain1/
config/cacerts.jks. Run keytool from the directory where you created
the keystore and client certificate. Use the following parameters:

<JAVA_HOME>\bin\keytool -import -v -trustcacerts
-alias client-alias -file client.cer
-keystore <J2EE_HOME>/domains/domain1/config/cacerts.jks
-keypass changeit -storepass changeit

The keytool utility returns this message:

Owner: CN=J2EE Client, OU=Java Web Services, O=Sun, L=Santa
Clara, ST=CA, C=US
Issuer: CN=J2EE Client, OU=Java Web Services, O=Sun, L=Santa
Clara, ST=CA, C=US
Serial number: 3e39e66a
Valid from: Thu Jan 30 18:58:50 PST 2003 until: Wed Apr 30
19:58:50 PDT 2003
Certificate fingerprints:
MD5: 5A:B0:4C:88:4E:F8:EF:E9:E5:8B:53:BD:D0:AA:8E:5A
SHA1:90:00:36:5B:E0:A7:A2:BD:67:DB:EA:37:B9:61:3E:26:B3:89:
46:
32
Trust this certificate? [no]: yes
Certificate was added to keystore

For an example application that uses mutual authentication, see Example: Cli-
ent-Certificate Authentication over HTTP/SSL with JAX-RPC (page 1167). For
information on verifying that mutual authentication is running, see Verifying
That Mutual Authentication Is Running (page 1158).

Miscellaneous Commands for Certificates
To check the contents of a keystore that contains a certificate with an alias
server-alias, use this command:

1156
keytool -list -keystore keystore.jks -alias server-alias -v

To check the contents of the cacerts file, use this command:

keytool -list -keystore cacerts.jks

Using SSL
An SSL connector is preconfigured for the Application Server. You do not have
to configure anything. If you are working with another application server, see its
documentation for setting up its SSL connector.

Verifying SSL Support
For testing purposes, and to verify that SSL support has been correctly installed,
load the default introduction page with a URL that connects to the port defined
in the server deployment descriptor:

https://localhost:8181/

The https in this URL indicates that the browser should be using the SSL proto-
col. The localhost in this example assumes that you are running the example
on your local machine as part of the development process. The 8181 in this
example is the secure port that was specified where the SSL connector was cre-
ated in Using SSL (page 1156). If you are using a different server or port, mod-
ify this value accordingly.

The first time a user loads this application, the New Site Certificate or Security
Alert dialog box displays. Select Next to move through the series of dialog
boxes, and select Finish when you reach the last dialog box. The certificates will
display only the first time. When you accept the certificates, subsequent hits to
this site assume that you still trust the content.

Tips on Running SSL
The SSL protocol is designed to be as efficient as securely possible. However,
encryption and decryption are computationally expensive processes from a per-
formance standpoint. It is not strictly necessary to run an entire web application
over SSL, and it is customary for a developer to decide which pages require a
secure connection and which do not. Pages that might require a secure connec-
tion include login pages, personal information pages, shopping cart checkouts, or

INSTALLING AND CONFIGURING SSL SUPPORT 1157
any pages where credit card information could possibly be transmitted. Any page
within an application can be requested over a secure socket by simply prefixing
the address with https: instead of http:. Any pages that absolutely require a
secure connection should check the protocol type associated with the page
request and take the appropriate action if https: is not specified.

Using name-based virtual hosts on a secured connection can be problematic.
This is a design limitation of the SSL protocol itself. The SSL handshake, where
the client browser accepts the server certificate, must occur before the HTTP
request is accessed. As a result, the request information containing the virtual
host name cannot be determined before authentication, and it is therefore not
possible to assign multiple certificates to a single IP address. If all virtual hosts
on a single IP address need to authenticate against the same certificate, the addi-
tion of multiple virtual hosts should not interfere with normal SSL operations on
the server. Be aware, however, that most client browsers will compare the
server’s domain name against the domain name listed in the certificate, if any
(this is applicable primarily to official, CA-signed certificates). If the domain
names do not match, these browsers will display a warning to the client. In gen-
eral, only address-based virtual hosts are commonly used with SSL in a produc-
tion environment.

Enabling Mutual Authentication over SSL
This section discusses setting up client-side authentication. As mentioned earlier,
when both server-side and client-side authentication are enabled, it is called
mutual, or two-way, authentication. In client authentication, clients are required
to submit certificates that are issued by a certificate authority that you choose to
accept. If you regulate it through the application (via the Client-Certificate

authentication requirement), the check is performed when the application
requires client authentication. You must enter the keystore location and password
in the web server configuration file to enable SSL, as discussed in Using
SSL (page 1156).

Here are two ways to enable mutual authentication over SSL:

• PREFERRED: Set the method of authentication to Client-Certificate

using deploytool. This enforces mutual authentication by modifying the
deployment descriptor of the given application. By enabling client authen-
tication in this way, client authentication is enabled only for a specific
resource controlled by the security constraint. Setting client authentication

1158
in this way is discussed in Example: Client-Certificate Authentication over
HTTP/SSL with JAX-RPC (page 1167).

• RARELY: Set the clientAuth property in the certificate realm to true.
To do this, follow these steps:

a. Start the Application Server if you haven’t already done so. Information
on starting the Application Server can be found in Starting and Stopping
the Application Server (page 27).

b. Start the Admin Console. Information on starting the Admin Console
can be found in Starting the Admin Console (page 28).

c. In the Admin Console tree, expand Configuration, expand Security, then
expand Realms, and then select certificate. The certificate realm
is used for all transfers over HTTP with SSL.

d. Select Add to add the property of clientAuth to the server. Enter cli-
entAuth in the Name field, and enter true in the Value field.

e. Click Save to save these new properties.

f. Log out of the Admin Console.

When client authentication is enabled in both of these ways, client authentication
will be performed twice.

Verifying That Mutual Authentication Is Running
You can verify that mutual authentication is working by obtaining debug mes-
sages. This should be done at the client end, and this example shows how to pass
a system property in targets.xml so that targets.xml forks a client with
javax.net.debug in its system properties, which could be added in a file such
as <INSTALL>/j2eetutorial14/examples/security/common/targets.xml.

To enable debug messages for SSL mutual authentication, pass the system prop-
erty javax.net.debug=ssl,handshake, which will provide information on
whether or not mutual authentication is working. The following example modi-
fies the run-mutualauth-client target from the <INSTALL>/j2eetutorial14/

examples/security/common/targets.xml file by adding sysproperty as
shown in bold:

<target name="run-mutualauth-client"
description="Runs a client with mutual authentication over
SSL">

<java classname="${client.class}" fork="yes" >
<arg line="${key.store} ${key.store.password}

${trust.store} ${trust.store.password}

XML AND WEB SERVICES SECURITY 1159
${endpoint.address}" />
<sysproperty key="javax.net.debug" value="ssl,

handshake" />
<sysproperty key="javax.net.ssl.keyStore"

value="${key.store}" />
<sysproperty key="java.net.ssl.keyStorePassword"

value="${key.store.password}"/>
<classpath refid="run.classpath" />

</java>
</target>

XML and Web Services Security
Security can be applied to web services at both the transport-level and the mes-
sage-level.

In message security, security information travels along with the web services
message. WSS in the SOAP layer is the use of XML Encryption and XML Digi-
tal Signatures to secure SOAP messages. WSS profiles the use of various secu-
rity tokens including X.509 certificates, SAML assertions, and username/
password tokens to achieve this.

Message layer security differs from transport layer security in that message layer
security can be used to decouple message protection from message transport so
that messages remain protected after transmission, regardless of how many hops
they travel on.

Message-level security is discussed in the following documentation:

• Configuring Message Security chapter of the Application Server Adminis-
tration Guide. This chapter is for system administrators or others attempt-
ing to set up the Application Server for message security.

• Securing Applications chapter of the Application Server Developers’
Guide. This chapter is for developers, assemblers, and deployers attempt-
ing to implement message security at the application or method level.

Transport-level security is discussed in the following example sections:

• Transport-Level Security

• Example: Basic Authentication with JAX-RPC (page 1161)

• Example: Client-Certificate Authentication over HTTP/SSL with
JAX-RPC (page 1167)

http://docs.sun.com/source/819-0076/ws-security.html
http://docs.sun.com/source/819-0215/ws-security.html
http://docs.sun.com/source/819-0079/dgsecure.html

1160
Transport-Level Security
Authentication verifies the identity of a user, device, or other entity in a com-
puter system, usually as a prerequisite to allowing access to resources in a sys-
tem. There are several ways in which this can happen. The following ways are
discussed in this section:

One approach is that a user authentication method can be defined for an applica-
tion in its deployment descriptor. When a user authentication method is specified
for an application, the web container activates the specified authentication mech-
anism when you attempt to access a protected resource. The options for user
authentication methods are discussed in Understanding Login
Authentication (page 1133). The example application discussed in Example:
Basic Authentication with JAX-RPC (page 1161) shows how to add basic
authentication to a JAX-RPC application. The example discussed in Example:
Client-Certificate Authentication over HTTP/SSL with JAX-RPC (page 1167)
shows how to add client-certificate, or mutual, authentication to a JAX-RPC
application.

A second approach is that a transport guarantee can be defined for an application
in its deployment descriptor. Use this method to run over an SSL-protected ses-
sion and ensure that all message content is protected for confidentiality. The
options for transport guarantees are discussed in Specifying a Secure
Connection (page 1130). For an example application that demonstrates running
over an SSL-protected session, see Example: Client-Certificate Authentication
over HTTP/SSL with JAX-RPC (page 1167).

When running over an SSL-protected session, the server and client can authenti-
cate one another and negotiate an encryption algorithm and cryptographic keys
before the application protocol transmits or receives its first byte of data.

SSL technology allows web browsers and web servers to communicate over a
secure connection. In this secure connection, the data is encrypted before being
sent, and then is decrypted upon receipt and before processing. Both the browser
and the server encrypt all traffic before sending any data. For more information,
see What Is Secure Socket Layer Technology? (page 1148).

Digital certificates are necessary when running HTTP over SSL (HTTPS). The
HTTPS service of most web servers will not run unless a digital certificate has
been installed. Digital certificates have already been created for the Application
Server.

XML AND WEB SERVICES SECURITY 1161
Example: Basic Authentication with
JAX-RPC
In this section, we discuss how to configure JAX-RPC-based web service appli-
cations for HTTP basic authentication. With HTTP basic authentication, the web
server authenticates a user by using the user name and password obtained from
the web client. If the topic of authentication is new to you, please refer to the sec-
tion titled Understanding Login Authentication (page 1133). For an explanation
of how basic authentication works, see Figure 32–2.

For this tutorial, we begin with the example application in <INSTALL>/

j2eetutorial14/examples/jaxrpc/staticstub/ and <INSTALL>/

j2eetutorial14/examples/jaxrpc/helloservice/ and add user name and
password authentication. The resulting application can be found in the directo-
ries <INSTALL>/j2eetutorial14/examples/security/basicauth/ and
<INSTALL>/j2eetutorial14/examples/security/basicauthclient/.

In general, the following steps are necessary to add basic authentication to a
JAX-RPC application. In the example application included with this tutorial,
many of these steps have been completed for you and are listed here to show
what needs to be done should you wish to create a similar application.

1. Complete the JAX-RPC application as described in Creating a Simple Web
Service and Client with JAX-RPC (page 320).

2. If the default port value is changed from 8080, see Setting the
Port (page 320) for information on updating the example files to reflect
this change. The WAR files mentioned in this tutorial will not work if the
port has been changed.

3. Edit the <INSTALL>/j2eetutorial14/examples/common/build.prop-

erties file and the admin-password.txt file. These files need to be mod-
ified because the properties in these file are specific to your installation.
See Building the Examples (page xxxvii) for information on which prop-
erties need to be set in which files. While you are looking at these files,
note the value entered for admin.user and check the file admin-pass-

word.txt for the value of the admin password.

4. Add a user with the name that matches the value set in the build.proper-
ties file (admin) for the admin.user property and a password that
matches the value set in the admin-password.txt file for the
AS_ADMIN_PASSWORD property to the file realm. Refer to the section Man-
aging Users, page 1121, for instructions for doing this.

1162
5. Set security properties in the client code. For the example application, this
step has been completed. The code for this example is shown in Setting
Security Properties in the Client Code (page 1162).

6. Add the appropriate security elements using deploytool. For this exam-
ple, the security elements are added in the packaging and deployment
phase. Refer to Adding Basic Authentication Using
deploytool (page 1164) for more information.

7. Build, package, deploy, and run the web service. You will use the asant

tool to compile the client and service, and deploytool to package and
deploy the service. Instructions for this example can be found in Building,
Packaging, Deploying, and Running the Example for Basic
Authentication (page 1163).

Setting Security Properties in the Client Code
The source code for the client is in the HelloClient.java file of the
<INSTALL>/j2eetutorial14/examples/security/basicauthclient/src/

directory. For basic authentication, the client code must set username and pass-

word properties. The username and password properties correspond to the
admin group (which includes the user name and password combination entered
during installation) and the role of admin, which is provided in the application
deployment descriptor as an authorized role for secure transactions. (See Setting
Up Security Roles, page 1122.)

The client sets the aforementioned security properties as shown in the following
code. The code in bold is the code that has been added from the original version
of the jaxrpc/staticstub example application.

package basicauthclient;

import javax.xml.rpc.Stub;

public class HelloClient {

 public static void main(String[] args) {

 if (args.length !=3) {
System.out.println("HelloClient Error: Wrong

number of runtime arguments!");
System.exit(1);

 }

String username=args[0];

XML AND WEB SERVICES SECURITY 1163
 String password=args[1];
String endpointAddress=args[2];

// print to display for verification purposes
System.out.println("username: " + username);

 System.out.println("password: " + password);
System.out.println("Endpoint address = " +

endpointAddress);

try {
Stub stub = createProxy();

stub._setProperty(
javax.xml.rpc.Stub.USERNAME_PROPERTY,

username);
stub._setProperty(

javax.xml.rpc.Stub.PASSWORD_PROPERTY,
password);

stub._setProperty
(javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,
endpointAddress);

HelloIF hello = (HelloIF)stub;
System.out.println(hello.sayHello("Duke (secure)"));

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 private static Stub createProxy() {
// Note: MyHelloService_Impl is implementation-specific.

 return (Stub)(new
MyHelloService_Impl().getHelloIFPort());

 }
}

Read Static Stub Client (page 327) for more information about JAX-RPC static
stub clients.

Building, Packaging, Deploying, and Running
the Example for Basic Authentication
To build, package, deploy, and run the security/basicauth example using
basic authentication, follow these steps.

1164
Building the Basic Authentication Service
1. Set up your system for running the tutorial examples if you haven’t done

so already by following the instructions in Building the
Examples (page xxxvii).

2. From a terminal window or command prompt, go to the <INSTALL>/

j2eetutorial14/examples/security/basicauth/ directory.

3. Build the JAX-RPC service by entering the following at the terminal win-
dow or command prompt in the basicauth/ directory (this and the follow-
ing steps that use asant assume that you have the executable for asant in
your path; if not, you will need to provide the fully qualified path to the
executable). This command runs the target named build in the build.xml
file.

asant build

Packaging the Basic Authentication Service
You can package the basic authentication example using asant or deploytool,
or you can just open the WAR file located in the <INSTALL>/j2eetutorial14/

examples/security/provided-wars/basicauth.war file.

To package the example using asant, run the following command from the /

basicauth directory:

asant create-war

To package the example using deploytool, follow the steps described in Pack-
aging and Deploying the Service with deploytool (page 324) and Specifying the
Endpoint Address (page 326). When following these steps, replace the follow-
ing:

• The path to the example should be replaced with <INSTALL>/

j2eetutorial14/examples/security/basicauth/.

• Replace helloservice with basicauth throughout.

• Use /basicauth-jaxrpc for the Context Root field.

Adding Basic Authentication Using deploytool
For HTTP basic authentication, the application deployment descriptor, web.xml,
includes the information on who is authorized to access the application, which
URL patterns and HTTP methods are protected, and what type of user authenti-
cation method this application uses. This information is added to the deployment

XML AND WEB SERVICES SECURITY 1165
descriptor using deploytool. Its contents are discussed in more detail in Web-
Tier Security (page 1125) and in the Java Servlet specification, which can be
browsed or downloaded online at http://java.sun.com/products/servlet/.

1. If you packaged the example using deploytool, select the basic authenti-
cation example, BasicAuth, in the deploytool tree. If you packaged the
example using asant, open the generated WAR file (basicauth.war) in
deploytool and then select the basic authentication example.

2. Select the Security tabbed pane.

3. Select Basic in the User Authentication Method field.

4. Select Add Constraints to add a security constraint.

5. Select Add Collections to add a web resource collection.

6. Select the web resource collection from the list, and then select Edit Col-
lections.

7. Select Add URL Pattern. Enter /hello in the text field. Click OK.

8. Select the HTTP GET and POST methods.

9. Click OK to close the Edit Contents dialog box.

10.Select Edit Roles on the Security tabbed pane to specify an authorized role
for this application.

11.Click Edit Roles in the Authorized Roles dialog box to add an authorized
user to this application. Click Add in the Edit Roles dialog box and add the
Name of admin. Click OK to close this dialog box.

12.Select admin under the Roles In field, and then click Add to add it to the
list of authorized roles for this application. Click OK to close the dialog
box.

Note that the Authorized Roles list specifies admin, a group that was specified
during installation. To map this role to a user, follow these steps.

1. Select the General tabbed pane.

2. Click the Sun-specific Settings button.

3. In the Sun-specific Settings dialog box, select User to Role Mappings from
the View list.

4. Select admin from the list of roles.

5. Click the Edit button under the Users box.

6. Select admin from the Available Users list, and then click the Add button
to map the role of admin (defined for the application) to the user named
admin (defined for the Application Server). Click OK.

http://java.sun.com/products/servlet/

1166
Note: If you don’t see the list of users or groups that you defined using the Admin
Console, connect to the Admin Server by double-clicking localhost:4848 in the
deploytool tree and entering your admin user name and password. If this is not
the current target server, change to this server by selecting it and then selecting
File→Set Current Target Server.

7. Click Close to return to the General tabbed pane.

8. Select Save from the File menu to save these settings.

Deploying the Basic Authentication Service
To deploy the example using asant, run the following command:

asant deploy-war

To deploy the example using deploytool, follow these steps:

1. Select the BasicAuth application in the deploytool tree. Then select
Tools→Deploy.

2. Make sure the server is correct, localhost:4848 by default.

3. Enter your admin user name and password.

4. Click OK.

5. Click the Close button after the messages indicating successful completion
are finished.

You can view the WSDL file of the deployed service by requesting the URL
http://localhost:8080/basicauth-jaxrpc/hello?WSDL in a web browser.

Building and Running the Basic Authentication
Client
To build the JAX-RPC client, do the following:

1. Enter the following command at the terminal window or command prompt
in the basicauthclient/ directory:

asant build

2. Run the JAX-RPC client by entering the following at the terminal window
or command prompt in the basicauthclient/ directory:

asant run

XML AND WEB SERVICES SECURITY 1167
The client should display the following output:

Buildfile: build.xml

run-secure-client:
[java] username: your_name
[java] password: your_pwd
[java] Endpoint address = http://localhost:8080/basicauth-

jaxrpc/hello
[java] Hello Duke (secure)

BUILD SUCCESSFUL

Example: Client-Certificate
Authentication over HTTP/SSL with
JAX-RPC
In this section, we discuss how to configure a simple JAX-RPC-based web ser-
vice application for client-certificate authentication over HTTP/SSL. Client-cer-
tificate authentication uses HTTP over SSL, in which the server and, optionally,
the client authenticate one another using public key certificates. If the topic of
authentication is new to you, please refer to the section titled Understanding
Login Authentication (page 1133). For more information on how client-certifi-
cate authentication works, see Figure 32–4.

This example application starts with the example application in <INSTALL>/

j2eetutorial14/examples/jaxrpc/helloservice/ and adds both client and
server authentication to the example. In SSL certificate-based basic authentica-
tion, the server presents its certificate to the client, and the client authenticates
itself to the server by sending its user name and password. This type of authenti-
cation is sometimes called server authentication. Mutual authentication adds the
dimension of client authentication. For mutual authentication, we need both the
client’s identity, as contained in a client certificate, and the server’s identity, as
contained in a server certificate inside a keystore file (keystore.jks). We also
need both of these identities to be contained in a mutual trust-store (cac-
erts.jks) where they can be verified.

To add mutual authentication to a basic JAX-RPC service, complete the follow-
ing steps. In the example application included with this tutorial, many of these

1168
steps have been completed for you and are listed here to show what needs to be
done should you wish to create a similar application.

1. Complete the JAX-RPC application as described in Creating a Simple Web
Service and Client with JAX-RPC (page 320).

2. Create the appropriate certificates and keystores. For this example, the cer-
tificates and keystores are created for the server as a generic localhost

and are included with the Application Server. See the section Keystores
and Trust-Stores in the Mutual Authentication Example (page 1169) for a
discussion of how to create the client certificates for this example.

3. If the port value is changed from the default of localhost:8080, see Set-
ting the Port (page 320) for information on updating the example files to
reflect this change. The WAR files mentioned in this tutorial will not work
if the port has been changed.

4. Edit the build.properties files to add the location and password to the
trust-store, and other properties, as appropriate. For a discussion of the
modifications that need to be made to build.properties, see Modifying
the Build Properties (page 1169). While you are looking at this file, note
the value entered for admin.user. Also note the value for the admin pass-
word as specified in the file admin-password.txt in the field
AS_ADMIN_PASSWORD.

5. Add a user to the file realm with the name that matches the value set in
the build.properties file (admin) for the admin.user property and a
password that matches the value set in the admin-password.txt file for
the AS_ADMIN_PASSWORD property. Refer to the section Managing
Users, page 1121, for instructions for doing this.

6. Set security properties in the client code. For the example application, this
step has been completed. For a discussion of the security properties that
have been set in HelloClient, see Setting Security Properties in the Client
Code (page 1169).

7. Add the appropriate security elements using deploytool. The security ele-
ments are discussed in the section Enabling Client-Certificate Authentica-
tion for the Mutual Authentication Example (page 1171).

8. Build, package, and deploy the service, deploy the server, and then build
and run the client (see Building, Packaging, Deploying, and Running the
Mutual Authentication Example, page 1172). You will use the asant tool
to compile the client and service and to run the client. You will use
deploytool to package and deploy the service.

XML AND WEB SERVICES SECURITY 1169
Keystores and Trust-Stores in the Mutual
Authentication Example
In this example, the keystore file (keystore.jks) and the trust-store file (cac-
erts.jks) have been created for the server as a generic localhost and are
included with the Application Server in the directory <J2EE_HOME>/domains/

domain1/config/. You must follow the instructions in Creating a Client Certifi-
cate for Mutual Authentication (page 1154) to create a client certificate and add
it to the existing trust-store. You must create the client certificates in the direc-
tory <J2EE_HOME>/domains/domain1/config/, and you must restart the Appli-
cation Server for the client certificate to be accessed by the application.

Modifying the Build Properties
To build and run the application with mutual authentication, we have set up the
example so that some of the values are passed to the application from various
build.properties files.

To run any of the examples, you must modify the build.properties file located
in the <INSTALL>/j2eetutorial14/examples/common/ directory to provide
your admin password and the location where the Application Server is installed.
If you need more information, see Building the Examples (page xxxvii).

For this example, the build.properties file that is specific to this application,
<INSTALL>/j2eetutorial14/examples/security/common/build.proper-

ties, has been modified for you. This file provides specific information about
the JAX-RPC examples to the asant targets we will be running later. This infor-
mation concerns the location of the keystore and trust-store files and their associ-
ated passwords.

Make sure that the following properties exist and are correctly defined.

trust.store=${j2ee.home}/domains/domain1/config/cacerts.jks
trust.store.password=changeit
key.store=${j2ee.home}/domains/domain1/config/keystore.jks
key.store.password=changeit

Setting Security Properties in the Client Code
The source code for the client is in the HelloClient.java file of the
<INSTALL>/j2eetutorial14/examples/security/mutualauthclient/src/

directory. For mutual authentication, the client code must set several secu-

1170
rity-related properties. These values are passed into the client code when the
asant build and run tasks are executed.

• trustStore: The value of the trustStore property is the fully qualified
name of the trust-store file: <J2EE_HOME>/domains/domain1/config/

cacerts.jks.

• trustStorePassword: The trustStorePassword property is the pass-
word of the trust-store. The default value of this password is changeit.

• keyStore: The value of the keyStore property is the fully qualified name
of the keystore file: <J2EE_HOME>/domains/domain1/config/key-

store.jks

• keyStorePassword: The keyStorePassword property is the password of
the keystore. The default value of this password is changeit.

• ENDPOINT_ADDRESS_PROPERTY: The ENDPOINT_ADDRESS_PROPERTY prop-
erty sets the endpoint address that the stub uses to access the service.

The client sets the aforementioned security properties as shown in the following
code. The code in bold is the code that has been added from the original version
of the jaxrpc/staticstub example application.

package mutualauthclient;

import javax.xml.rpc.Stub;

public class HelloClient {

 public static void main(String[] args) {

 if (args.length !=5) {
System.out.println("HelloClient Error: Need 5
runtime arguments!");

System.exit(1);
 }

 String keyStore=args[0];
 String keyStorePassword=args[1];
 String trustStore=args[2];
 String trustStorePassword=args[3];

String endpointAddress=args[4];

// print to display for verification purposes
System.out.println("keystore: " + keyStore);
System.out.println("keystorePassword: " +
keyStorePassword);

XML AND WEB SERVICES SECURITY 1171
 System.out.println("trustStore: " + trustStore);
System.out.println("trustStorePassword: " +
trustStorePassword);

 System.out.println("Endpoint address: " +
endpointAddress);

try {
Stub stub = createProxy();
System.setProperty("javax.net.ssl.keyStore",

keyStore);
System.setProperty("javax.net.ssl.keyStorePassword",

keyStorePassword);
System.setProperty("javax.net.ssl.trustStore",

trustStore);
System.setProperty("javax.net.ssl.trustStorePassword",

trustStorePassword);
stub._setProperty(

javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,
endpointAddress);

HelloIF hello = (HelloIF)stub;
System.out.println(hello.sayHello("Duke! (secure!"));

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 private static Stub createProxy() {
// Note: MyHelloService_Impl is implementation-specific.

 return (Stub)(new
MySecureHelloService_Impl().getHelloIFPort());

 }
}

Enabling Client-Certificate Authentication for
the Mutual Authentication Example
The two ways of implementing client authentication are discussed in Enabling
Mutual Authentication over SSL (page 1157). You can set client authentication
for all applications (by specifying this in the deployment descriptor for the
server) or for only a single application (by specifying this in the deployment
descriptor for the application). For this example, we are enabling client authenti-
cation for this application only, so we specify the login authentication method as
being Client-Certificate. The steps for adding client-certificate authentica-

1172
tion are shown in Adding Client-Certificate Authentication Using
deploytool (page 1173).

For more information on login configuration options, read Understanding Login
Authentication (page 1133).

The user authentication method specifies a client-certificate method of authenti-
cation in this example. For this authentication to run over SSL, you must also
specify which type of transport guarantee to use. For this example, we have cho-
sen CONFIDENTIAL, which is specified in the Network Security Requirement
field on the Security tabbed pane in deploytool.

For more information on this type of constraint, read Specifying a Secure
Connection (page 1130).

Building, Packaging, Deploying, and Running
the Mutual Authentication Example
To build, deploy, and run the JAX-RPC service example with mutual authentica-
tion, follow these steps.

Building the Mutual Authentication Example
To compile the application files and copy them to the correct directories, run the
asant build task. More information on what happens when the build task is
called can be found in Building the Service (page 323).

1. If you haven’t already done so, follow these steps for setting up the exam-
ple.

• Using SSL (page 1156)

• Building the Examples (page xxxvii)

2. Go to the <INSTALL>/j2eetutorial14/examples/security/mutual-

auth/ directory.

3. Build the JAX-RPC service by entering the following at the terminal win-
dow or command prompt in the mutualauth/ directory (this and the fol-
lowing steps that use asant assume that you have the executable for asant
in your path; if not, you will need to provide the fully qualified path to the
asant executable):

asant build

4. Change to the directory <INSTALL>/j2eetutorial14/examples/secu-

rity/mutualauthclient/.

XML AND WEB SERVICES SECURITY 1173
5. Build the JAX-RPC client by entering the following at the terminal win-
dow or command prompt:

asant build

Packaging the Mutual Authentication Example
You can package the mutual authentication example using asant or deploytool,
or you can open the WAR file located in the <INSTALL>/j2eetutorial14/

examples/security/provided-wars/mutualauth.war file.

To package the example using asant, run the following command and then skip
to the section titled Deploying the Mutual Authentication Example (page 1174):

asant create-war

To package the example using deploytool, follow the steps described in Pack-
aging and Deploying the Service with deploytool (page 324) and Specifying the
Endpoint Address (page 326). When following these steps, replace the follow-
ing:

• The path to the example should be replaced with <INSTALL>/

j2eetutorial14/examples/security/mutualauth/.

• Replace helloservice with mutualauth throughout.

• Use /mutualauth-jaxrpc for the Context Root field.

Adding Client-Certificate Authentication Using
deploytool
For HTTP client-certificate authentication, the application deployment descrip-
tor, web.xml, includes the information on who is authorized to access the appli-
cation, which URL patterns and HTTP methods are protected, and what type of
user authentication method this application uses. This information is added to
the deployment descriptor using deploytool, and its contents are discussed in
more detail in Web-Tier Security (page 1125) and in the Java Servlet specifica-
tion, which can be browsed or downloaded online at http://java.sun.com/
products/servlet/.

1. If you packaged the example using deploytool, select the MutualAuth

example in the deploytool tree. If you packaged the example using
asant, you can ignore this section as these steps were completed by the
asant task.

http://java.sun.com/products/servlet/
http://java.sun.com/products/servlet/

1174
2. Select the Security tabbed pane.

3. Select Client Certificate in the User Authentication Method field.

4. Select Add Constraints to add a security constraint.

5. Select Add Collections to add a web resource collection.

6. Select the web resource collection from the list, and then select Edit Col-
lections.

7. Select Add URL Pattern. Enter /hello in the text field. Click OK.

8. Select the HTTP GET and POST methods.

9. Click OK to close the Edit Contents dialog box.

10.Select CONFIDENTIAL under Network Security Requirement so that the
application requires HTTP/SSL.

11.Select Save from the File menu to save these settings.

Deploying the Mutual Authentication Example
To deploy the example using asant, run the following command:

asant deploy-war

To deploy the application using deploytool, follow these steps:

1. Deploy the JAX-RPC service by selecting the MutualAuth example in the
deploytool tree. Then select Tools→Deploy.

2. Make sure the server is correct. By default, this will be localhost:4848.

3. Enter your admin user name and password.

4. Click OK.

5. Click the Close button after the messages indicating successful completion
are finished.

Running the Mutual Authentication Example
Enter the following command from the mutualauthclient/ directory at the ter-
minal window or command prompt to run the JAX-RPC client:

 asant run

EJB-TIER SECURITY 1175
The client should display the following output:

Buildfile: build.xml

run-mutualauth-client:
[java] keystore: <J2EE_HOME>/domains/domain1/config/

keystore.jks
[java] keystorePassword: changeit
[java] trustStore: <J2EE_HOME>/domains/domain1/config/

cacerts.jks
[java] trustStorePassword: changeit
[java] Endpoint address = https://localhost:8181/

mutualauth-jaxrpc/hello

[java] Hello Duke (secure)

run:

BUILD SUCCESSFUL

For information on verifying that mutual authentication is running, see Verifying
That Mutual Authentication Is Running (page 1158).

EJB-Tier Security
The following sections describe declarative and programmatic security mecha-
nisms that can be used to protect resources in the EJB tier. The protected
resources include methods of enterprise beans that are called from application
clients, web components, or other enterprise beans.

You can protect EJB tier resources by doing the following:

• Declaring method permissions

• Mapping roles to J2EE users and groups

For information about mapping roles to J2EE users and groups, see Mapping
Roles to Users and Groups (page 1123).

Declaring Method Permissions
After you’ve defined the roles (see Setting Up Security Roles, page 1122), you
can define the method permissions of an enterprise bean. Method permissions

1176
indicate which roles are allowed to invoke which methods. You can define
method permissions in various ways.

• You can apply method permissions to all the methods of the specified
enterprise bean’s home, component, and web service endpoint interfaces.

• You can apply method permissions to the specified method of the enter-
prise bean. If the enterprise bean contains multiple methods having the
same method name, the method permission applies to all the methods.

• If the enterprise bean contains multiple methods having the same method
name but the methods have different method parameters (such as cre-

ate(a,b) and create(a,b,c)), you can apply method permissions by
specifying the method parameters.

In general, use deploytool to specify method permissions by mapping roles to
methods:

1. Select the enterprise bean.

2. Select the Security tab.

3. Select the interface type (local, local home, remote, or remote home). The
table displays methods contained in the selected interface. If no interfaces
have been defined, the interface buttons will be disabled.

4. In the Method Permissions table, select the method for which you want to
specify permissions.

5. In the Availability column for that method, select Sel Roles from the drop-
down list for that method.

6. Select a role’s checkbox if that role should be allowed to invoke a method.

Configuring IOR Security
Enterprise beans that are deployed in one vendor’s server product are often
accessed from J2EE client components that are deployed in another vendor’s
product. Common Secure Interoperability version 2 (CSIv2), a CORBA/
IIOP-based standard interoperability protocol, addresses this situation by provid-
ing authentication, protection of integrity and confidentiality, and principal prop-
agation for invocations on enterprise beans, where the invocations take place
over an enterprise’s intranet.

CSIv2 configuration settings are specified in the Interoperable Object Reference
(IOR) of the target enterprise bean. In the IOR security configuration dialog box,
you can specify the security information for the IOR.

EJB-TIER SECURITY 1177
To get to the IOR security configuration dialog box, select the enterprise bean to
which you want to add the settings in the deploytool tree view. From the Gen-
eral tabbed pane, select Sun-specific Settings. In the General subpane of the EJB
Settings pane, press the IOR button.

In the Transport Configuration subpane are the following fields:

• The Integrity field specifies whether the target supports integrity-protected
messages for transport.

• The Confidentiality field specifies whether the target supports privacy-pro-
tected messages (SSL) for transport.

• The Establish Trust In Target field specifies whether or not the target com-
ponent is capable of authenticating to a client for transport. It is used for
mutual authentication (to validate the server’s identity).

• The Establish Trust In Client field specifies whether or not the target com-
ponent is capable of authenticating a client for transport (target asks the cli-
ent to authenticate itself).

In each of these fields, you can select whether the item is supported, required, or
not activated (none).

In the As Context subpane, do the following:

1. Use the Required drop-down list to identify whether the authentication
method specified is required to be used for client authentication. Setting
this field to true indicates that the authentication method specified is
required. Setting this field to false indicates that the method authentica-
tion is not required.

2. Use the Authorization Method drop-down list to authenticate the client.
The only supported value is USERNAME_PASSWORD.

3. Use the Realm field to identify the realm in which the user is authenticated.

In the Duke’s Bank example, the As Context setting is used to require client
authentication (with user name and password) when access to protected methods
in the AccountControllerBean and CustomerControllerBean components is
attempted.

In the Sas Context subpane, use the Caller Propagation drop-down list to identify
whether or not the target component will accept propagated caller identities.

In the Duke’s Bank example, the Sas Context setting is set to Supported for the
AccountBean, CustomerBean, and TxBean components, indicating that these tar-
get components will accept propagated caller identities.

1178
Using Programmatic Security in the EJB
Tier
Programmatic security in the EJB tier consists of the getCallerPrincipal and
the isCallerInRole methods. You can use the getCallerPrincipal method to
determine the caller of the enterprise bean and use the isCallerInRole method
to determine whether the caller has the specified role.

The getCallerPrincipal method of the EJBContext interface returns the
java.security.Principal object that identifies the caller of the enterprise
bean. (In this case, a principal is the same as a user.) In the following example,
the getUser method of an enterprise bean returns the name of the J2EE user that
invoked it:

public String getUser() {
 return context.getCallerPrincipal().getName();
}

You can determine whether an enterprise bean’s caller belongs to the Customer

role.

boolean result = context.isCallerInRole("Customer");

Unauthenticated User Name
Web applications accept unauthenticated web clients and allow these clients to
make calls to the EJB container. The EJB specification requires a security cre-
dential for accessing EJB methods. Typically, the credential will be that of a
generic unauthenticated user.

Application Client-Tier Security
Authentication requirements for J2EE application clients are the same as the
requirements for other J2EE components. Access to protected resources in either
the EJB tier or the web tier requires user authentication, whereas access to
unprotected resources does not.

An application client can use the Java Authentication and Authorization Service
(JAAS) for authentication. JAAS implements a Java version of the standard
Pluggable Authentication Module (PAM) framework, which permits applica-

EIS-TIER SECURITY 1179
tions to remain independent of underlying authentication technologies. You can
plug new or updated authentication technologies under an application without
making any modifications to the application itself. Applications enable the
authentication process by instantiating a LoginContext object, which, in turn,
references a configuration to determine the authentication technologies or login
modules that will be used to perform the authentication.

A typical login module can prompt for and verify a user name and password.
Other modules can read and verify a voice or fingerprint sample.

In some cases, a login module must communicate with the user to obtain authen-
tication information. Login modules use a javax.security.auth.call-

back.CallbackHandler for this purpose. Applications implement the
CallbackHandler interface and pass it to the login context, which forwards it
directly to the underlying login modules. A login module uses the callback han-
dler both to gather input (such as a password or smart card PIN) from users and
to supply information (such as status information) to users. Because the applica-
tion specifies the callback handler, an underlying login module can remain inde-
pendent of the various ways applications interact with users.

For example, the implementation of a callback handler for a GUI application
might display a window to solicit user input. Or the implementation of a callback
handler for a command-line tool might simply prompt the user for input directly
from the command line.

The login module passes an array of appropriate callbacks to the callback han-
dler’s handle method (for example, a NameCallback for the user name and a
PasswordCallback for the password); the callback handler performs the
requested user interaction and sets appropriate values in the callbacks. For exam-
ple, to process a NameCallback, the CallbackHandler might prompt for a name,
retrieve the value from the user, and call the setName method of the NameCall-

back to store the name.

EIS-Tier Security
In the EIS tier, an application component requests a connection to an EIS
resource. As part of this connection, the EIS may require a sign-on for the
requester to access the resource. The application component provider has two
choices for the design of the EIS sign-on:

• In the container-managed sign-on approach, the application component
lets the container take the responsibility of configuring and managing the

1180
EIS sign-on. The container determines the user name and password for
establishing a connection to an EIS instance.

• In the component-managed sign-on approach, the application component
code manages EIS sign-on by including code that performs the sign-on
process to an EIS.

Container-Managed Sign-On

In container-managed sign-on, an application component does not have to pass
any sign-on security information to the getConnection() method. The security
information is supplied by the container, as shown in the following example.

// Business method in an application component
Context initctx = new InitialContext();

// Perform JNDI lookup to obtain a connection factory
javax.resource.cci.ConnectionFactory cxf =
 (javax.resource.cci.ConnectionFactory)initctx.lookup(
 "java:comp/env/eis/MainframeCxFactory");

// Invoke factory to obtain a connection. The security
// information is not passed in the getConnection method
javax.resource.cci.Connection cx = cxf.getConnection();
...

Component-Managed Sign-On
In component-managed sign-on, an application component is responsible for
passing the needed sign-on security information to the resource to the getCon-

EIS-TIER SECURITY 1181
nection() method. For example, security information might be a user name and
password, as shown here:

// Method in an application component
Context initctx = new InitialContext();

// Perform JNDI lookup to obtain a connection factory
javax.resource.cci.ConnectionFactory cxf =
 (javax.resource.cci.ConnectionFactory)initctx.lookup(
 "java:comp/env/eis/MainframeCxFactory");

// Get a new ConnectionSpec
com.myeis.ConnectionSpecImpl properties = //..

// Invoke factory to obtain a connection
properties.setUserName("...");
properties.setPassword("...");
javax.resource.cci.Connection cx =
 cxf.getConnection(properties);
...

Configuring Resource Adapter Security
In addition to configuring the sign-on, you can configure the following security
settings for the resource adapter:

• Authentication mechanisms

• Reauthentication support

• Security permissions

To configure these settings using deploytool, do the following:

1. Select the resource adapter file.

2. Select the Security tabbed pane.

3. In the Authentication Mechanisms pane, specify the authentication mech-
anisms that are supported by this resource adapter:

a. Select Password to require a user name and password to connect to an
EIS.

b. Select Kerberos Version 5.0 to require the resource adapter to support
the Kerberos authentication mechanism.

1182
You can select more than one mechanism or no mechanism. If you do not
select one, no standard security authentication is supported as part of the
security contract.

4. Select Reauthentication Supported if the resource adapter implementation
supports performing reauthentication on an existing physical connection.
Reauthentication is performed when an application server calls the get-

Connection method with a security context that is different from the one
used to establish the connection. This information is for the resource
adapter implementation and not for the underlying EIS instance.

5. In the Security Permissions pane, click Add to enter a security permission
that the resource adapter needs to access system resources in the opera-
tional environment. You specify only those permissions that are not
included in the default set (see section 11.2 of the Connector specification).
For example, to allow the resource to look up the name of any remote host,
add the following security permission:

 permission java.net.SocketPermission *, "resolve";

For each security permission you add, click the column to the far right
(labeled with a folded paper) to enter a description for the permission. To
delete a security permission, select the permission in the table and click
Delete.

Propagating Security Identity
When you deploy an enterprise bean or web component, you can specify the
security identity that will be propagated (illustrated in Figure 32–8) to enterprise
beans invoked from within that component.

PROPAGATING SECURITY IDENTITY 1183
Figure 32–8 Security Identity Propagation

You can choose one of the following propagation styles:

• The caller identity of the intermediate component is propagated to the tar-
get enterprise bean. This technique is used when the target container trusts
the intermediate container.

• A specific identity is propagated to the target enterprise bean. This tech-
nique is used when the target container expects access via a specific iden-
tity.

Configuring a Component’s Propagated
Security Identity
To configure an enterprise bean’s propagated security identity, do the following:

1. Select the enterprise bean to configure.

2. In the Security Identity panel of the Security pane, select the security iden-
tity that will be propagated to the beans that this enterprise bean calls:

a. If you want the principal of this enterprise bean’s caller to be propagated
to other beans that it calls, choose Use Caller ID.

b. If you want a security identity other than the caller’s identity propagated
to other beans, choose Run As Role, select the role from the menu, and
then select the User In Role from the available users in the selected role.

3. If the role that you want to use as the security identity is not in the list, click
Edit Roles and add the role.

1184
To configure a web component’s propagated security identity, do the following:

1. Select the web component to configure.

2. In the Security Identity panel of the Security pane, select Use Caller ID if
the caller ID is to be propagated to methods of other components called
from this web component. Otherwise, select Run As Role, and select a role
from the list of known roles in the WAR file.

3. If the role that you want to use as the security identity is not in the list, click
Edit Roles and add it.

Configuring Client Authentication
If an application component in an application client container accesses a pro-
tected method on a bean, use client authentication.

Trust between Containers
When an enterprise bean is designed so that either the original caller identity or a
designated identity is used to call a target bean, the target bean will receive the
propagated identity only; it will not receive any authentication data.

There is no way for the target container to authenticate the propagated security
identity. However, because the security identity is used in authorization checks
(for example, method permissions or with the isCallerInRole() method), it is
vitally important that the security identity be authentic. Because there is no
authentication data available to authenticate the propagated identity, the target
must trust that the calling container has propagated an authenticated security
identity.

By default, the Application Server is configured to trust identities that are propa-
gated from different containers. Therefore, there are no special steps that you
need to take to set up a trust relationship.

What Is Java Authorization Contract for
Containers?

Java Authorization Contract for Containers (JACC) defines security contracts
between the Application Server and authorization policy modules. These con-

FURTHER INFORMATION 1185
tracts specify how the authorization providers are installed, configured, and used
in access decisions.

Further Information
• Java 2 Standard Edition, v.1.5.0 security information at http://

java.sun.com/j2se/1.5.0/docs/guide/security/index.html.

• Java Servlet specification, which can be browsed or downloaded online at
http://java.sun.com/products/servlet/.

• Information on SSL specifications is available at http://

wp.netscape.com/eng/security/.

• The API specification for Java Authorization Contract for Containers is
available at http://java.sun.com/j2ee/javaacc/.

• The Developer’s Guide for the Application Server includes security infor-
mation for application developers. As of this writing, this document is
available for viewing at http://docs.sun.com/app/docs/doc/819-0217.

• The Administration Guide for the Application Server includes information
on setting security settings for the Application Server. As of this writing,
this document was available for viewing at http://docs.sun.com/app/docs/
doc/819-0215.

http://docs.sun.com/app/docs/doc/819-0215
http://docs.sun.com/app/docs/doc/819-0215
http://docs.sun.com/app/docs/doc/819-0215
http://docs.sun.com/app/docs/doc/819-0217
http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html
http://java.sun.com/products/servlet/
http://wp.netscape.com/eng/security/
http://wp.netscape.com/eng/security/
http://java.sun.com/j2ee/javaacc/

1186

33
1187
The Java Message
Service API

THIS chapter provides an introduction to the Java Message Service (JMS) API,
a Java API that allows applications to create, send, receive, and read messages
using reliable, asynchronous, loosely coupled communication. It covers the fol-
lowing topics:

• Overview

• Basic JMS API Concepts

• The JMS API Programming Model

• Writing Simple JMS Client Applications

• Creating Robust JMS Applications

• Using the JMS API in a J2EE Application

• Further Information

1188
Overview
This overview of the JMS API answers the following questions.

• What Is Messaging?

• What Is the JMS API?

• When Can You Use the JMS API?

• How Does the JMS API Work with the J2EE Platform?

What Is Messaging?
Messaging is a method of communication between software components or
applications. A messaging system is a peer-to-peer facility: A messaging client
can send messages to, and receive messages from, any other client. Each client
connects to a messaging agent that provides facilities for creating, sending,
receiving, and reading messages.

Messaging enables distributed communication that is loosely coupled. A compo-
nent sends a message to a destination, and the recipient can retrieve the message
from the destination. However, the sender and the receiver do not have to be
available at the same time in order to communicate. In fact, the sender does not
need to know anything about the receiver; nor does the receiver need to know
anything about the sender. The sender and the receiver need to know only which
message format and which destination to use. In this respect, messaging differs
from tightly coupled technologies, such as Remote Method Invocation (RMI),
which require an application to know a remote application’s methods.

Messaging also differs from electronic mail (email), which is a method of com-
munication between people or between software applications and people. Mes-
saging is used for communication between software applications or software
components.

What Is the JMS API?
The Java Message Service is a Java API that allows applications to create, send,
receive, and read messages. Designed by Sun and several partner companies, the
JMS API defines a common set of interfaces and associated semantics that allow
programs written in the Java programming language to communicate with other
messaging implementations.

OVERVIEW 1189
The JMS API minimizes the set of concepts a programmer must learn in order to
use messaging products but provides enough features to support sophisticated
messaging applications. It also strives to maximize the portability of JMS appli-
cations across JMS providers in the same messaging domain.

The JMS API enables communication that is not only loosely coupled but also

• Asynchronous: A JMS provider can deliver messages to a client as they
arrive; a client does not have to request messages in order to receive them.

• Reliable: The JMS API can ensure that a message is delivered once and
only once. Lower levels of reliability are available for applications that can
afford to miss messages or to receive duplicate messages.

The JMS specification was first published in August 1998. The latest version is
Version 1.1, which was released in April 2002. You can download a copy of the
specification from the JMS web site: http://java.sun.com/products/jms/.

When Can You Use the JMS API?
An enterprise application provider is likely to choose a messaging API over a
tightly coupled API, such as remote procedure call (RPC), under the following
circumstances.

• The provider wants the components not to depend on information about
other components’ interfaces, so that components can be easily replaced.

• The provider wants the application to run whether or not all components
are up and running simultaneously.

• The application business model allows a component to send information to
another and to continue to operate without receiving an immediate
response.

http://java.sun.com/products/jms/

1190
For example, components of an enterprise application for an automobile manu-
facturer can use the JMS API in situations like these:

• The inventory component can send a message to the factory component
when the inventory level for a product goes below a certain level so that the
factory can make more cars.

• The factory component can send a message to the parts components so that
the factory can assemble the parts it needs.

• The parts components in turn can send messages to their own inventory
and order components to update their inventories and to order new parts
from suppliers.

• Both the factory and the parts components can send messages to the
accounting component to update their budget numbers.

• The business can publish updated catalog items to its sales force.

Using messaging for these tasks allows the various components to interact with
one another efficiently, without tying up network or other resources. Figure 33–1
illustrates how this simple example might work.

Figure 33–1 Messaging in an Enterprise Application

Manufacturing is only one example of how an enterprise can use the JMS API.
Retail applications, financial services applications, health services applications,
and many others can make use of messaging.

OVERVIEW 1191
How Does the JMS API Work with the
J2EE Platform?
When the JMS API was introduced in 1998, its most important purpose was to
allow Java applications to access existing messaging-oriented middleware
(MOM) systems, such as MQSeries from IBM. Since that time, many vendors
have adopted and implemented the JMS API, so a JMS product can now provide
a complete messaging capability for an enterprise.

Since the 1.3 release of the J2EE platform, the JMS API has been an integral part
of the platform, and application developers can use messaging with J2EE com-
ponents.

The JMS API in the J2EE platform has the following features.

• Application clients, Enterprise JavaBeans (EJB) components, and web
components can send or synchronously receive a JMS message. Applica-
tion clients can in addition receive JMS messages asynchronously.
(Applets, however, are not required to support the JMS API.)

• Message-driven beans, which are a kind of enterprise bean, enable the
asynchronous consumption of messages. A JMS provider can optionally
implement concurrent processing of messages by message-driven beans.

• Message send and receive operations can participate in distributed transac-
tions, which allow JMS operations and database accesses to take place
within a single transaction.

The JMS API enhances the J2EE platform by simplifying enterprise develop-
ment, allowing loosely coupled, reliable, asynchronous interactions among J2EE
components and legacy systems capable of messaging. A developer can easily
add new behavior to a J2EE application that has existing business events by add-
ing a new message-driven bean to operate on specific business events. The J2EE
platform, moreover, enhances the JMS API by providing support for distributed
transactions and allowing for the concurrent consumption of messages. For more
information, see the Enterprise JavaBeans specification, v2.1.

At the 1.4 release of the J2EE platform, the JMS provider can be integrated with
the application server using the J2EE Connector architecture. You access the
JMS provider through a resource adapter. This capability allows vendors to cre-
ate JMS providers that can be plugged in to multiple application servers, and it
allows application servers to support multiple JMS providers. For more informa-
tion, see the J2EE Connector architecture specification, v1.5.

1192
Basic JMS API Concepts
This section introduces the most basic JMS API concepts, the ones you must
know to get started writing simple JMS client applications:

• JMS API Architecture

• Messaging Domains

• Message Consumption

The next section introduces the JMS API programming model. Later sections
cover more advanced concepts, including the ones you need to write J2EE appli-
cations that use message-driven beans.

JMS API Architecture
A JMS application is composed of the following parts.

• A JMS provider is a messaging system that implements the JMS interfaces
and provides administrative and control features. An implementation of the
J2EE platform at release 1.3 and later includes a JMS provider.

• JMS clients are the programs or components, written in the Java program-
ming language, that produce and consume messages. Any J2EE applica-
tion component can act as a JMS client.

• Messages are the objects that communicate information between JMS cli-
ents.

• Administered objects are preconfigured JMS objects created by an admin-
istrator for the use of clients. The two kinds of JMS administered objects
are destinations and connection factories, which are described in Admin-
istered Objects (page 1197).

Figure 33–2 illustrates the way these parts interact. Administrative tools allow
you to bind destinations and connection factories into a JNDI namespace. A JMS
client can then look up the administered objects in the namespace and then estab-
lish a logical connection to the same objects through the JMS provider.

BASIC JMS API CONCEPTS 1193
Figure 33–2 JMS API Architecture

Messaging Domains
Before the JMS API existed, most messaging products supported either the
point-to-point or the publish/subscribe approach to messaging. The JMS specifi-
cation provides a separate domain for each approach and defines compliance for
each domain. A stand-alone JMS provider can implement one or both domains.
A J2EE provider must implement both domains.

In fact, most implementations of the JMS API support both the point-to-point
and the publish/subscribe domains, and some JMS clients combine the use of
both domains in a single application. In this way, the JMS API has extended the
power and flexibility of messaging products.

The JMS 1.1 specification goes one step further: It provides common interfaces
that enable you to use the JMS API in a way that is not specific to either domain.
The following subsections describe the two messaging domains and then
describe this new way of programming using common interfaces.

Point-to-Point Messaging Domain
A point-to-point (PTP) product or application is built on the concept of message
queues, senders, and receivers. Each message is addressed to a specific queue,
and receiving clients extract messages from the queues established to hold their
messages. Queues retain all messages sent to them until the messages are con-
sumed or until the messages expire.

1194
PTP messaging has the following characteristics and is illustrated in Figure 33–
3.

Figure 33–3 Point-to-Point Messaging

• Each message has only one consumer.

• A sender and a receiver of a message have no timing dependencies. The
receiver can fetch the message whether or not it was running when the cli-
ent sent the message.

• The receiver acknowledges the successful processing of a message.

Use PTP messaging when every message you send must be processed success-
fully by one consumer.

Publish/Subscribe Messaging Domain
In a publish/subscribe (pub/sub) product or application, clients address messages
to a topic, which functions somewhat like a bulletin board. Publishers and sub-
scribers are generally anonymous and can dynamically publish or subscribe to
the content hierarchy. The system takes care of distributing the messages arriving
from a topic’s multiple publishers to its multiple subscribers. Topics retain mes-
sages only as long as it takes to distribute them to current subscribers.

Pub/sub messaging has the following characteristics.

• Each message can have multiple consumers.

• Publishers and subscribers have a timing dependency. A client that sub-
scribes to a topic can consume only messages published after the client has
created a subscription, and the subscriber must continue to be active in
order for it to consume messages.

The JMS API relaxes this timing dependency to some extent by allowing sub-
scribers to create durable subscriptions, which receive messages sent while the
subscribers are not active. Durable subscriptions provide the flexibility and reli-

BASIC JMS API CONCEPTS 1195
ability of queues but still allow clients to send messages to many recipients. For
more information about durable subscriptions, see Creating Durable
Subscriptions (page 1236).

Use pub/sub messaging when each message can be processed by zero, one, or
many consumers. Figure 33–4 illustrates pub/sub messaging.

Figure 33–4 Publish/Subscribe Messaging

Programming with the Common Interfaces
Version 1.1 of the JMS API allows you to use the same code to send and receive
messages under either the PTP or the pub/sub domain. The destinations that you
use remain domain-specific, and the behavior of the application will depend in
part on whether you are using a queue or a topic. However, the code itself can be
common to both domains, making your applications flexible and reusable. This
tutorial describes and illustrates these common interfaces.

Message Consumption
Messaging products are inherently asynchronous: There is no fundamental tim-
ing dependency between the production and the consumption of a message.
However, the JMS specification uses this term in a more precise sense. Messages
can be consumed in either of two ways:

• Synchronously: A subscriber or a receiver explicitly fetches the message
from the destination by calling the receive method. The receive method

1196
can block until a message arrives or can time out if a message does not
arrive within a specified time limit.

• Asynchronously: A client can register a message listener with a consumer.
A message listener is similar to an event listener. Whenever a message
arrives at the destination, the JMS provider delivers the message by calling
the listener’s onMessage method, which acts on the contents of the mes-
sage.

The JMS API Programming Model
The basic building blocks of a JMS application consist of

• Administered Objects: connection factories and destinations

• Connections

• Sessions

• Message Producers

• Message Consumers

• Messages

Figure 33–5 shows how all these objects fit together in a JMS client application.

Figure 33–5 The JMS API Programming Model

THE JMS API PROGRAMMING MODEL 1197
This section describes all these objects briefly and provides sample commands
and code snippets that show how to create and use the objects. The last subsec-
tion briefly describes JMS API exception handling.

Examples that show how to combine all these objects in applications appear in
later sections. For more details, see the JMS API documentation, which is part of
the J2EE API documentation.

Administered Objects
Two parts of a JMS application—destinations and connection factories—are best
maintained administratively rather than programmatically. The technology
underlying these objects is likely to be very different from one implementation
of the JMS API to another. Therefore, the management of these objects belongs
with other administrative tasks that vary from provider to provider.

JMS clients access these objects through interfaces that are portable, so a client
application can run with little or no change on more than one implementation of
the JMS API. Ordinarily, an administrator configures administered objects in a
JNDI namespace, and JMS clients then look them up by using the JNDI API.
J2EE applications always use the JNDI API.

With the Application Server, you use the Admin Console to create JMS adminis-
tered objects in the form of resources. You can also use the asadmin command.

Connection Factories
A connection factory is the object a client uses to create a connection to a pro-
vider. A connection factory encapsulates a set of connection configuration
parameters that has been defined by an administrator. Each connection factory is
an instance of the ConnectionFactory, QueueConnectionFactory, or Topic-

ConnectionFactory interface.

To learn how to use the Admin Console to create connection factories, see Creat-
ing JMS Administered Objects (page 1212).

At the beginning of a JMS client program, you usually perform a JNDI lookup of
a connection factory, then cast and assign it to a ConnectionFactory object.

1198
For example, the following code fragment obtains an InitialContext object
and uses it to look up a ConnectionFactory by name. Then it assigns it to a
ConnectionFactory object:

Context ctx = new InitialContext();

ConnectionFactory connectionFactory = (ConnectionFactory)
ctx.lookup("jms/ConnectionFactory");

In a J2EE application, JMS administered objects are normally placed in the jms

naming subcontext.

Destinations
A destination is the object a client uses to specify the target of messages it pro-
duces and the source of messages it consumes. In the PTP messaging domain,
destinations are called queues. In the pub/sub messaging domain, destinations
are called topics.

Creating destinations using the Application Server is a two-step process. You
create a JMS destination resource that specifies the JNDI name of the destina-
tion. You also create a physical destination to which the JNDI name refers.

To learn how to use the Admin Console to create physical destinations and desti-
nation resources, see Creating JMS Administered Objects (page 1212).

A JMS application can use multiple queues or topics (or both).

In addition to looking up a connection factory in a client program, you usually
look up a destination. Unlike connection factories, destinations are specific to
one domain or the other. To create an application that allows you to use the same
code for both topics and queues, you cast and assign the destination to a Desti-

nation object. To preserve the semantics of queues and topics, however, you
cast and assign the object to a destination of the appropriate type.

For example, the following line of code performs a JNDI lookup of the previ-
ously created topic jms/MyTopic and casts and assigns it to a Destination

object:

Destination myDest = (Destination) ctx.lookup("jms/MyTopic");

THE JMS API PROGRAMMING MODEL 1199
The following line of code looks up a queue named jms/MyQueue and casts and
assigns it to a Queue object:

Queue myQueue = (Queue) ctx.lookup("jms/MyQueue");

With the common interfaces, you can mix or match connection factories and des-
tinations. That is, in addition to using the ConnectionFactory interface, you can
look up a QueueConnectionFactory and use it with a Topic, and you can look
up a TopicConnectionFactory and use it with a Queue. The behavior of the
application will depend on the kind of destination you use and not on the kind of
connection factory you use.

Connections
A connection encapsulates a virtual connection with a JMS provider. A connec-
tion could represent an open TCP/IP socket between a client and a provider ser-
vice daemon. You use a connection to create one or more sessions.

Connections implement the Connection interface. When you have a Connec-

tionFactory object, you can use it to create a Connection:

Connection connection = connectionFactory.createConnection();

Before an application completes, you must close any connections that you have
created. Failure to close a connection can cause resources not to be released by
the JMS provider. Closing a connection also closes its sessions and their message
producers and message consumers.

connection.close();

Before your application can consume messages, you must call the connection’s
start method; for details, see Message Consumers (page 1201). If you want to
stop message delivery temporarily without closing the connection, you call the
stop method.

Sessions
A session is a single-threaded context for producing and consuming messages.
You use sessions to create message producers, message consumers, and mes-

1200
sages. Sessions serialize the execution of message listeners; for details, see Mes-
sage Listeners (page 1202).

A session provides a transactional context with which to group a set of sends and
receives into an atomic unit of work. For details, see Using JMS API Local
Transactions (page 1240).

Sessions implement the Session interface. After you create a Connection

object, you use it to create a Session:

Session session = connection.createSession(false,
Session.AUTO_ACKNOWLEDGE);

The first argument means that the session is not transacted; the second means
that the session automatically acknowledges messages when they have been
received successfully. (For more information, see Controlling Message
Acknowledgment, page 1229.)

To create a transacted session, use the following code:

Session session = connection.createSession(true, 0);

Here, the first argument means that the session is transacted; the second indicates
that message acknowledgment is not specified for transacted sessions. For more
information on transactions, see Using JMS API Local
Transactions (page 1240). For information about the way JMS transactions work
in J2EE applications, see Using the JMS API in a J2EE Application (page 1248).

Message Producers
A message producer is an object that is created by a session and used for sending
messages to a destination. It implements the MessageProducer interface.

You use a Session to create a MessageProducer for a destination. Here, the first
example creates a producer for the destination myQueue, and the second for the
destination myTopic:

MessageProducer producer = session.createProducer(myQueue);

MessageProducer producer = session.createProducer(myTopic);

THE JMS API PROGRAMMING MODEL 1201
You can create an unidentified producer by specifying null as the argument to
createProducer. With an unidentified producer, you do not specify a destina-
tion until you send a message.

After you have created a message producer, you can use it to send messages by
using the send method:

producer.send(message);

You must first create the messages; see Messages (page 1204).

If you created an unidentified producer, use an overloaded send method that
specifies the destination as the first parameter. For example:

MessageProducer anon_prod = session.createProducer(null);

anon_prod.send(myQueue, message);

Message Consumers
A message consumer is an object that is created by a session and used for receiv-
ing messages sent to a destination. It implements the MessageConsumer inter-
face.

A message consumer allows a JMS client to register interest in a destination with
a JMS provider. The JMS provider manages the delivery of messages from a des-
tination to the registered consumers of the destination.

For example, you use a Session to create a MessageConsumer for either a queue
or a topic:

MessageConsumer consumer = session.createConsumer(myQueue);

MessageConsumer consumer = session.createConsumer(myTopic);

You use the Session.createDurableSubscriber method to create a durable
topic subscriber. This method is valid only if you are using a topic. For details,
see Creating Durable Subscriptions (page 1236).

After you have created a message consumer, it becomes active, and you can use
it to receive messages. You can use the close method for a MessageConsumer to
make the message consumer inactive. Message delivery does not begin until you
start the connection you created by calling its start method. (Remember always

1202
to call the start method; forgetting to start the connection is one of the most
common JMS programming errors.)

You use the receive method to consume a message synchronously. You can use
this method at any time after you call the start method:

connection.start();
Message m = consumer.receive();

connection.start();
Message m = consumer.receive(1000); // time out after a second

To consume a message asynchronously, you use a message listener, described in
Message Listeners (page 1202).

Message Listeners
A message listener is an object that acts as an asynchronous event handler for
messages. This object implements the MessageListener interface, which con-
tains one method, onMessage. In the onMessage method, you define the actions
to be taken when a message arrives.

You register the message listener with a specific MessageConsumer by using the
setMessageListener method. For example, if you define a class named Lis-

tener that implements the MessageListener interface, you can register the
message listener as follows:

Listener myListener = new Listener();
consumer.setMessageListener(myListener);

After you register the message listener, you call the start method on the Con-

nection to begin message delivery. (If you call start before you register the
message listener, you are likely to miss messages.)

When message delivery begins, the JMS provider automatically calls the mes-
sage listener’s onMessage method whenever a message is delivered. The onMes-

sage method takes one argument of type Message, which your implementation
of the method can cast to any of the other message types (see Message
Bodies, page 1205).

A message listener is not specific to a particular destination type. The same lis-
tener can obtain messages from either a queue or a topic, depending on the type
of destination for which the message consumer was created. A message listener
does, however, usually expect a specific message type and format. Moreover, if it

THE JMS API PROGRAMMING MODEL 1203
needs to reply to messages, a message listener must either assume a particular
destination type or obtain the destination type of the message and create a pro-
ducer for that destination type.

Your onMessage method should handle all exceptions. It must not throw checked
exceptions, and throwing a RuntimeException is considered a programming
error.

The session used to create the message consumer serializes the execution of all
message listeners registered with the session. At any time, only one of the ses-
sion’s message listeners is running.

In the J2EE platform, a message-driven bean is a special kind of message lis-
tener. For details, see Using Message-Driven Beans (page 1250).

Message Selectors
If your messaging application needs to filter the messages it receives, you can
use a JMS API message selector, which allows a message consumer to specify
the messages it is interested in. Message selectors assign the work of filtering
messages to the JMS provider rather than to the application. For an example of
an application that uses a message selector, see A J2EE Application That Uses
the JMS API with a Session Bean (page 1258).

A message selector is a String that contains an expression. The syntax of the
expression is based on a subset of the SQL92 conditional expression syntax. The
message selector in the example selects any message that has a NewsType prop-
erty that is set to the value ’Sports’ or ’Opinion’:

NewsType = ’Sports’ OR NewsType = ’Opinion’

The createConsumer and createDurableSubscriber methods allow you to
specify a message selector as an argument when you create a message consumer.

The message consumer then receives only messages whose headers and proper-
ties match the selector. (See Message Headers, page 1204, and Message
Properties, page 1205.) A message selector cannot select messages on the basis
of the content of the message body.

1204
Messages
The ultimate purpose of a JMS application is to produce and to consume mes-
sages that can then be used by other software applications. JMS messages have a
basic format that is simple but highly flexible, allowing you to create messages
that match formats used by non-JMS applications on heterogeneous platforms.

A JMS message has three parts: a header, properties, and a body. Only the header
is required. The following sections describe these parts:

• Message Headers

• Message Properties (optional)

• Message Bodies (optional)

For complete documentation of message headers, properties, and bodies, see the
documentation of the Message interface in the API documentation.

Message Headers
A JMS message header contains a number of predefined fields that contain val-
ues that both clients and providers use to identify and to route messages. Table
33–1 lists the JMS message header fields and indicates how their values are set.
For example, every message has a unique identifier, which is represented in the
header field JMSMessageID. The value of another header field, JMSDestination,
represents the queue or the topic to which the message is sent. Other fields
include a timestamp and a priority level.

Each header field has associated setter and getter methods, which are docu-
mented in the description of the Message interface. Some header fields are
intended to be set by a client, but many are set automatically by the send or the
publish method, which overrides any client-set values.

Table 33–1 How JMS Message Header Field Values Are Set

Header Field Set By

JMSDestination send or publish method

JMSDeliveryMode send or publish method

JMSExpiration send or publish method

THE JMS API PROGRAMMING MODEL 1205
Message Properties
You can create and set properties for messages if you need values in addition to
those provided by the header fields. You can use properties to provide compati-
bility with other messaging systems, or you can use them to create message
selectors (see Message Selectors, page 1203). For an example of setting a prop-
erty to be used as a message selector, see A J2EE Application That Uses the JMS
API with a Session Bean (page 1258).

The JMS API provides some predefined property names that a provider can sup-
port. The use either of these predefined properties or of user-defined properties is
optional.

Message Bodies
The JMS API defines five message body formats, also called message types,
which allow you to send and to receive data in many different forms and provide

JMSPriority send or publish method

JMSMessageID send or publish method

JMSTimestamp send or publish method

JMSCorrelationID Client

JMSReplyTo Client

JMSType Client

JMSRedelivered JMS provider

Table 33–1 How JMS Message Header Field Values Are Set (Continued)

Header Field Set By

1206
compatibility with existing messaging formats. Table 33–2 describes these mes-
sage types.

The JMS API provides methods for creating messages of each type and for fill-
ing in their contents. For example, to create and send a TextMessage, you might
use the following statements:

TextMessage message = session.createTextMessage();
message.setText(msg_text); // msg_text is a String
producer.send(message);

At the consuming end, a message arrives as a generic Message object and must
be cast to the appropriate message type. You can use one or more getter methods

Table 33–2 JMS Message Types

Message Type Body Contains

TextMessage
A java.lang.String object (for example, the contents of an Extensi-
ble Markup Language file).

MapMessage

A set of name-value pairs, with names as String objects and values as
primitive types in the Java programming language. The entries can be
accessed sequentially by enumerator or randomly by name. The order
of the entries is undefined.

BytesMessage
A stream of uninterpreted bytes. This message type is for literally
encoding a body to match an existing message format.

StreamMessage
A stream of primitive values in the Java programming language, filled
and read sequentially.

ObjectMessage A Serializable object in the Java programming language.

Message
Nothing. Composed of header fields and properties only. This message
type is useful when a message body is not required.

THE JMS API PROGRAMMING MODEL 1207
to extract the message contents. The following code fragment uses the getText

method:

Message m = consumer.receive();
if (m instanceof TextMessage) {

TextMessage message = (TextMessage) m;
System.out.println("Reading message: " + message.getText());

} else {
// Handle error

}

Exception Handling
The root class for exceptions thrown by JMS API methods is JMSException.
Catching JMSException provides a generic way of handling all exceptions
related to the JMS API. The JMSException class includes the following sub-
classes, which are described in the API documentation:

• IllegalStateException

• InvalidClientIDException

• InvalidDestinationException

• InvalidSelectorException

• JMSSecurityException

• MessageEOFException

• MessageFormatException

• MessageNotReadableException

• MessageNotWriteableException

• ResourceAllocationException

• TransactionInProgressException

• TransactionRolledBackException

All the examples in the tutorial catch and handle JMSException when it is appro-
priate to do so.

1208
Writing Simple JMS Client Applications
This section shows how to create, package, and run simple JMS client programs
packaged as stand-alone application clients. These clients access a J2EE server.
The clients demonstrate the basic tasks that a JMS application must perform:

• Creating a connection and a session

• Creating message producers and consumers

• Sending and receiving messages

In a J2EE application, some of these tasks are performed, in whole or in part, by
the container. If you learn about these tasks, you will have a good basis for
understanding how a JMS application works on the J2EE platform.

This section covers the following topics:

• An example that uses synchronous message receives

• An example that uses a message listener

• Running JMS clients on multiple systems

Each example uses two programs: one that sends messages and one that receives
them. You can run the programs in two terminal windows.

When you write a JMS application to run in a J2EE application, you use many of
the same methods in much the same sequence as you do for a stand-alone appli-
cation client. However, there are some significant differences. Using the JMS
API in a J2EE Application (page 1248) describes these differences, and Chapter
34 provides examples that illustrate them.

The examples for this section are in the following directory:

<INSTALL>/j2eetutorial14/examples/jms/simple/

A Simple Example of Synchronous
Message Receives
This section describes the sending and receiving programs in an example that
uses the receive method to consume messages synchronously. This section then
explains how to compile, package, and run the programs using the Application
Server.

WRITING SIMPLE JMS CLIENT APPLICATIONS 1209
The following sections describe the steps in creating and running the example:

• Writing the Client Programs

• Compiling the Clients

• Starting the JMS Provider

• Creating JMS Administered Objects

• Packaging the Clients

• Running the Clients

Writing the Client Programs
The sending program, src/SimpleProducer.java, performs the following
steps:

1. Retrieves command-line arguments that specify the destination name and
the number of arguments:
final int NUM_MSGS;
String destName = new String(args[0]);
System.out.println("Destination name is " + destName);
if (args.length == 2){

NUM_MSGS = (new Integer(args[1])).intValue();
} else {

NUM_MSGS = 1;
}

2. Performs a JNDI lookup of the ConnectionFactory and Destination:
/*
 * Create a JNDI API InitialContext object if none exists
 * yet.
 */
Context jndiContext = null;
try {

jndiContext = new InitialContext();
} catch (NamingException e) {

System.out.println("Could not create JNDI API " +
"context: " + e.toString());

System.exit(1);
}

/*
 * Look up connection factory and destination. If either
 * does not exist, exit. If you look up a
 * TopicConnectionFactory or a QueueConnectionFactory,

../examples/jms/simple/src/SimpleProducer.java

1210
 * program behavior is the same.
 */
ConnectionFactory connectionFactory = null;
Destination dest = null;
try {

connectionFactory = (ConnectionFactory)
jndiContext.lookup("jms/ConnectionFactory");

dest = (Destination) jndiContext.lookup(destName);
}

} catch (Exception e) {
System.out.println("JNDI API lookup failed: " +

e.toString());
e.printStackTrace();
System.exit(1);

}

3. Creates a Connection and a Session:
Connection connection =

connectionFactory.createConnection();
Session session = connection.createSession(false,

Session.AUTO_ACKNOWLEDGE);

4. Creates a MessageProducer and a TextMessage:
MessageProducer producer = session.createProducer(dest);
TextMessage message = session.createTextMessage();

5. Sends one or more messages to the destination:
for (int i = 0; i < NUM_MSGS; i++) {

message.setText("This is message " + (i + 1));
System.out.println("Sending message: " +

message.getText());
producer.send(message);

}

6. Sends an empty control message to indicate the end of the message stream:
producer.send(session.createMessage());

Sending an empty message of no specified type is a convenient way to
indicate to the consumer that the final message has arrived.

7. Closes the connection in a finally block, automatically closing the ses-
sion and MessageProducer:
} finally {

if (connection != null) {
try {

connection.close();
} catch (JMSException e) {}

}
}

WRITING SIMPLE JMS CLIENT APPLICATIONS 1211
The receiving program, src/SimpleSynchConsumer.java, performs the follow-
ing steps:

1. Performs a JNDI lookup of the ConnectionFactory and Destination.

2. Creates a Connection and a Session.

3. Creates a MessageConsumer:
consumer = session.createConsumer(dest);

4. Starts the connection, causing message delivery to begin:
connection.start();

5. Receives the messages sent to the destination until the end-of-message-
stream control message is received:
while (true) {

Message m = consumer.receive(1);
if (m != null) {

if (m instanceof TextMessage) {
message = (TextMessage) m;
System.out.println("Reading message: " +

message.getText());
} else {

break;
}

}
}

Because the control message is not a TextMessage, the receiving program
terminates the while loop and stops receiving messages after the control
message arrives.

6. Closes the connection in a finally block, automatically closing the ses-
sion and MessageConsumer.

The receive method can be used in several ways to perform a synchronous
receive. If you specify no arguments or an argument of 0, the method blocks
indefinitely until a message arrives:

Message m = consumer.receive();

Message m = consumer.receive(0);

../examples/jms/simple/src/SimpleSynchConsumer.java

1212
For a simple client program, this may not matter. But if you do not want your
program to consume system resources unnecessarily, use a timed synchronous
receive. Do one of the following:

• Call the receive method with a timeout argument greater than 0:
Message m = consumer.receive(1); // 1 millisecond

• Call the receiveNoWait method, which receives a message only if one is
available:
Message m = consumer.receiveNoWait();

The SimpleSynchConsumer program uses an indefinite while loop to receive
messages, calling receive with a timeout argument. Calling receiveNoWait

would have the same effect.

Compiling the Clients
You can compile the examples using the asant tool, as described in Building the
Examples (page xxxvii).

To compile the examples, do the following:

1. In a terminal window, go to the following directory:
<INSTALL>/j2eetutorial14/examples/jms/simple/

2. Type the following command:
asant build

This command uses the build.xml file in the simple directory to compile all the
source files in the directory. The class files are placed in the build directory.

Starting the JMS Provider
When you use the Application Server, your JMS provider is the Application
Server. Start the server as described in Starting and Stopping the Application
Server (page 27).

Creating JMS Administered Objects
Creating the JMS administered objects for this section involves the following:

• Starting the Admin Console

• Creating a connection factory

• Creating two physical destinations

WRITING SIMPLE JMS CLIENT APPLICATIONS 1213
• Creating two destination resources

If you built and ran the SimpleMessage example in Chapter 28 and did not delete
the resources afterward, you need to create only half of these resources: those
that involve topics.

To start the Admin Console, follow the instructions in Starting the Admin
Console (page 28).

To create the connection factory, perform the following steps:

1. In the tree component, expand the Resources node, then expand the JMS
Resources node.

2. Select the Connection Factories node.

3. On the JMS Connection Factories page, click New. The Create JMS Con-
nection Factory page appears.

4. In the JNDI Name field, type jms/ConnectionFactory.

5. Choose javax.jms.ConnectionFactory from the Type combo box.

6. Verify that the Enabled checkbox is selected. The Admin Console appears
as shown in Figure 33–6.

7. Click OK to save the connection factory.

1214
Figure 33–6 Creating a JMS Connection Factory

To create the physical destinations, perform the following steps:

1. In the tree component, expand the Configuration node, then expand the
Java Message Service node.

2. Select the Physical Destinations node.

3. On the Physical Destinations page, click New. The Create Physical Desti-
nation page appears.

4. In the Physical Destination Name field, type PhysicalQueue.

5. Choose queue from the Type combo box.

6. Click OK.

7. Click New again.

8. In the Physical Destination Name field, type PhysicalTopic.

WRITING SIMPLE JMS CLIENT APPLICATIONS 1215
9. Choose topic from the Type combo box.

10.Click OK.

To create the destination resources and link them to the physical destinations,
perform the following steps:

1. In the tree component, expand the Resources node, then expand the JMS
Resources node.

2. Select the Destination Resources node.

3. On the JMS Destination Resources page, click New. The Create JMS Des-
tination Resource page appears.

4. In the JNDI Name field, type jms/Queue.

5. Choose javax.jms.Queue from the Type combo box.

6. Verify that the Enabled checkbox is selected.

7. In the Additional Properties area, type PhysicalQueue in the Value field
for the Name property.

8. Click OK.

9. Click New again.

10.In the JNDI Name field, type jms/Topic.

11.Choose javax.jms.Topic from the Type combo box.

12.Verify that the Enabled checkbox is selected.

13.In the Additional Properties area, type PhysicalTopic in the Value field
for the Name property. The Admin Console appears as shown in Figure 33–
7.

14.Click OK to save the resource.

1216
Figure 33–7 Creating a JMS Destination Resource

Packaging the Clients
The simplest way to run these examples using the Application Server is to pack-
age each one in an application client JAR file.

First, start deploytool. For instructions, see Starting the deploytool
Utility (page 29).

Package the SimpleProducer example as follows:

1. Choose File→New→Application Client to start the Application Client wiz-
ard.

2. In the JAR File Contents screen, select the radio button labeled Create New
Stand-Alone AppClient Module.

WRITING SIMPLE JMS CLIENT APPLICATIONS 1217
3. Click Browse next to the AppClient File field and navigate to the
<INSTALL>/j2eetutorial14/examples/jms/simple/ directory.

4. Type SimpleProducer in the File Name field, and click Create Module
File.

5. Verify that SimpleProducer appears in the AppClient Display Name field.

6. Click the Edit Contents button.

7. In the dialog box, locate the build directory. Select SimplePro-

ducer.class from the Available Files tree. Click Add and then OK.

8. In the General screen, select SimpleProducer from the Main Class drop-
down menu.

9. Click Next.

10.Click Finish.

Package the SimpleSynchConsumer example in the same way, except for the val-
ues listed in Table 33–3.

Running the Clients
You run the sample programs using the appclient command. Each of the pro-
grams takes one or more command-line arguments: a destination name and, for
SimpleProducer, a number of messages.

Run the clients as follows.

1. Run the SimpleProducer program, sending three messages to the queue
jms/Queue:
appclient -client SimpleProducer.jar jms/Queue 3

The output of the program looks like this:

Table 33–3 Application Values for SimpleSynchConsumer

Wizard Field or Area Value

File Name SimpleSynchConsumer.jar

AppClient Display Name SimpleSynchConsumer

Available Files class build/SimpleSynchConsumer.class

Main Class SimpleSynchConsumer

1218
Destination name is jms/Queue
Sending message: This is message 1
Sending message: This is message 2
Sending message: This is message 3

The messages are now in the queue, waiting to be received.

2. In the same window, run the SimpleSynchConsumer program, specifying
the queue name:
appclient -client SimpleSynchConsumer.jar jms/Queue

The output of the program looks like this:

Destination name is jms/Queue
Reading message: This is message 1
Reading message: This is message 2
Reading message: This is message 3

3. Now try running the programs in the opposite order. Run the Simple-

SynchConsumer program. It displays the queue name and then appears to
hang, waiting for messages.

4. In a different terminal window, run the SimpleProducer program. When
the messages have been sent, the SimpleSynchConsumer program receives
them and exits.

5. Now run the SimpleProducer program using a topic instead of a queue:
appclient -client SimpleProducer.jar jms/Topic 3

The output of the program looks like this:

Destination name is jms/Topic
Sending message: This is message 1
Sending message: This is message 2
Sending message: This is message 3

6. Now run the SimpleSynchConsumer program using the topic:
appclient -client SimpleSynchConsumer.jar jms/Topic

The result, however, is different. Because you are using a topic, messages
that were sent before you started the consumer cannot be received. (See
Publish/Subscribe Messaging Domain, page 1194, for details.) Instead of
receiving the messages, the program appears to hang.

7. Run the SimpleProducer program again in another terminal window. Now
the SimpleSynchConsumer program receives the messages:
Destination name is jms/Topic
Reading message: This is message 1
Reading message: This is message 2
Reading message: This is message 3

WRITING SIMPLE JMS CLIENT APPLICATIONS 1219
Because the examples use the common interfaces, you can run them using either
a queue or a topic.

A Simple Example of Asynchronous
Message Consumption
This section describes the receiving programs in an example that uses a message
listener to consume messages asynchronously. This section then explains how to
compile and run the programs using the Application Server.

The following sections describe the steps in creating and running the example:

• Writing the Client Programs

• Compiling the Clients

• Starting the JMS Provider

• Packaging the SimpleAsynchConsumer Client

• Running the Clients

Writing the Client Programs
The sending program is src/SimpleProducer.java, the same program used in
the example in A Simple Example of Synchronous Message
Receives (page 1208). You may, however, want to comment out the following
line of code, where the producer sends a nontext control message to indicate the
end of the messages:

producer.send(session.createMessage());

An asynchronous consumer normally runs indefinitely. This one runs until the
user types the letter q or Q to stop the program, so it does not use the nontext con-
trol message.

The receiving program, src/SimpleAsynchConsumer.java, performs the fol-
lowing steps:

1. Performs a JNDI lookup of the ConnectionFactory and Destination.

2. Creates a Connection and a Session.

3. Creates a MessageConsumer.

4. Creates an instance of the TextListener class and registers it as the mes-
sage listener for the MessageConsumer:

../examples/jms/simple/src/SimpleProducer.java
../examples/jms/simple/src/SimpleAsynchConsumer.java

1220
listener = new TextListener();
consumer.setMessageListener(listener);

5. Starts the connection, causing message delivery to begin.

6. Listens for the messages published to the destination, stopping when the
user types the character q or Q:
System.out.println("To end program, type Q or q, " +

"then <return>");
inputStreamReader = new InputStreamReader(System.in);
while (!((answer == ’q’) || (answer == ’Q’))) {

try {
answer = (char) inputStreamReader.read();

} catch (IOException e) {
System.out.println("I/O exception: "

+ e.toString());
}

}

7. Closes the connection, which automatically closes the session and Mes-

sageConsumer.

The message listener, src/TextListener.java, follows these steps:

1. When a message arrives, the onMessage method is called automatically.

2. The onMessage method converts the incoming message to a TextMessage
and displays its content. If the message is not a text message, it reports this
fact:

public void onMessage(Message message) {
TextMessage msg = null;

try {
if (message instanceof TextMessage) {

msg = (TextMessage) message;
System.out.println("Reading message: " +

msg.getText());
} else {

System.out.println("Message is not a " +
"TextMessage");

}
} catch (JMSException e) {

System.out.println("JMSException in onMessage(): " +
e.toString());

} catch (Throwable t) {
System.out.println("Exception in onMessage():" +

t.getMessage());
}

}

../examples/jms/simple/src/TextListener.java

WRITING SIMPLE JMS CLIENT APPLICATIONS 1221
Compiling the Clients
Compile the programs if you did not do so before or if you edited SimplePro-

ducer.java as described in Writing the Client Programs (page 1219):

asant build

Starting the JMS Provider
If you did not do so before, start the Application Server.

You will use the connection factories and destinations you created in Creating
JMS Administered Objects (page 1212).

Packaging the SimpleAsynchConsumer
Client
If you did not do so before, start deploytool.

If you did not package the SimpleProducer example, follow the instructions in
Packaging the Clients (page 1216) to do so. If you edited the SimplePro-

ducer.java code as described in Writing the Client Programs (page 1219),
choose Tools→Update Module Files to add the recompiled source file to the
SimpleProducer.jar file, then save the SimpleProducer.jar file.

Package the SimpleAsynchConsumer example in the same way as Simple-

Producer, except for the values listed in Table 33–4.

Table 33–4 Application Values for SimpleAsynchConsumer

Wizard Field or Area Value

File Name SimpleAsynchConsumer.jar

AppClient Display Name SimpleAsynchConsumer

Available Files classes
build/SimpleAsynchConsumer.class
build/TextListener.class

Main Class SimpleAsynchConsumer

1222
Running the Clients
As before, you run the sample programs using the appclient command.

Run the clients as follows.

1. Run the SimpleAsynchConsumer program, specifying the topic jms/

Topic and its type.
appclient -client SimpleAsynchConsumer.jar jms/Topic

The program displays the following lines and appears to hang:

Destination name is jms/Topic
To end program, type Q or q, then <return>

2. In another terminal window, run the SimpleProducer program, sending
three messages. The commands look like this:
appclient -client SimpleProducer.jar jms/Topic 3

The output of the program looks like this:

Destination name is jms/Topic
Sending message: This is message 1
Sending message: This is message 2
Sending message: This is message 3

In the other window, the SimpleAsynchConsumer program displays the
following:

Destination name is jms/Topic
To end program, type Q or q, then <return>
Reading message: This is message 1
Reading message: This is message 2
Reading message: This is message 3

If you did not edit SimpleProducer.java, the following line also
appears:

Message is not a TextMessage

3. Type Q or q to stop the program.

4. Now run the programs using a queue. In this case, as with the synchronous
example, you can run the SimpleProducer program first, because there is
no timing dependency between the sender and receiver:
appclient -client SimpleProducer.jar jms/Queue 3

The output of the program looks like this:

Destination name is jms/Queue
Sending message: This is message 1

WRITING SIMPLE JMS CLIENT APPLICATIONS 1223
Sending message: This is message 2
Sending message: This is message 3

5. Run the SimpleAsynchConsumer program:
appclient -client SimpleAsynchConsumer.jar jms/Queue

The output of the program looks like this:

Destination name is jms/Queue
To end program, type Q or q, then <return>
Reading message: This is message 1
Reading message: This is message 2
Reading message: This is message 3

6. Type Q or q to stop the program.

Running JMS Client Programs on Multiple
Systems
JMS client programs using the Application Server can exchange messages with
each other when they are running on different systems in a network. The systems
must be visible to each other by name—the UNIX host name or the Microsoft
Windows computer name—and must both be running the Application Server.
You do not have to install the tutorial examples on both systems; you can use the
examples installed on one system if you can access its file system from the other
system.

Note: Any mechanism for exchanging messages between systems is specific to the
J2EE server implementation. This tutorial describes how to use the Application
Server for this purpose.

Suppose that you want to run the SimpleProducer program on one system,
earth, and the SimpleSynchConsumer program on another system, jupiter.
Before you can do so, you need to perform these tasks:

• Create two new connection factories

• Edit the source code

• Recompile the source code and update the client JAR files

Note: A limitation in the JMS provider in the Application Server may cause a run-
time failure to create a connection to systems that use the Dynamic Host Configu-
ration Protocol (DHCP) to obtain an IP address. You can, however, create a

1224
connection from a system that uses DHCP to a system that does not use DHCP. In
the examples in this tutorial, earth can be a system that uses DHCP, and jupiter

can be a system that does not use DHCP.

Before you begin, start the server on both systems:

1. Start the Application Server on earth and log in to the Admin Console.

2. Start the Application Server on jupiter and log in to the Admin Console.

Creating Administered Objects for Multiple
Systems
To run these programs, you must do the following:

• Create a new connection factory on both earth and jupiter

• Create a destination resource and physical destination on both earth and
jupiter

Create a new connection factory on jupiter as follows:

1. In the Admin Console, expand the Resources node, then expand the JMS
Resources node.

2. Select the Connection Factories node.

3. On the JMS Connection Factories page, click New. The Create JMS Con-
nection Factory page appears.

4. In the JNDI Name field, type jms/JupiterConnectionFactory.

5. Choose javax.jms.ConnectionFactory from the Type combo box.

6. Select the Enabled checkbox.

7. Click OK.

Create a new connection factory with the same name on earth as follows:

1. In the Admin Console, expand the Resources node, then expand the JMS
Resources node.

2. Select the Connection Factories node.

3. On the JMS Connection Factories page, click New. The Create JMS Con-
nection Factory page appears.

4. In the JNDI Name field, type jms/JupiterConnectionFactory.

5. Choose javax.jms.ConnectionFactory from the Type combo box.

6. Select the Enabled checkbox.

WRITING SIMPLE JMS CLIENT APPLICATIONS 1225
7. In the Additional Properties area, find the AddressList property. In the
Value field, replace the name of your current system with the name of the
remote system (whatever the real name of jupiter is), as follows:

mq://sysname:7676/,

If the JMS service on the remote system uses a port number other than the
default (7676), change the port number also.

8. Click OK.

If you have already been working on either earth or jupiter, you have the
queue on one system. On the system that does not have the queue, perform the
following steps:

1. Use the Admin Console to create a physical destination named Physical-

Queue, just as you did in Creating JMS Administered Objects (page 1212).

2. Use the Admin Console to create a destination resource named jms/Queue

and set its Name property to the value PhysicalQueue.

When you run the programs, they will work as shown in Figure 33–8. The pro-
gram run on earth needs the queue on earth only in order that the JNDI lookup
will succeed. The connection, session, and message producer are all created on
jupiter using the connection factory that points to jupiter. The messages sent
from earth will be received on jupiter.

1226
Figure 33–8 Sending Messages from One System to Another

Running the Programs
These steps assume that you have the tutorial installed on only one of the two
systems you are using.

To edit, update, and run the programs, perform the following steps on the system
where you first ran them:

1. In both SimpleProducer.java and SimpleSynchConsumer.java, change
the line that looks up the connection factory so that it refers to the new con-
nection factory:
connectionFactory = (ConnectionFactory)

jndiContext.lookup("jms/JupiterConnectionFactory");

2. Recompile the programs:
asant build

WRITING SIMPLE JMS CLIENT APPLICATIONS 1227
3. In deploytool, choose Tools→Update Module Files to add the recompiled
source files to the SimpleProducer.jar and SimpleSynchConsumer.jar

files.

4. Save the changed JAR files.

5. Run SimpleProducer on earth:
appclient -client SimpleProducer.jar jms/Queue 3

6. Run SimpleSynchConsumer on jupiter:
appclient -client SimpleSynchConsumer.jar jms/Queue

Because both connection factories have the same name, you can run either the
producer or the consumer on either system.

For examples showing how to deploy J2EE applications on two different sys-
tems, see An Application Example That Consumes Messages from a Remote
J2EE Server (page 1275) and An Application Example That Deploys a Message-
Driven Bean on Two J2EE Servers (page 1282).

Deleting the Connection Factory and
Stopping the Server
You will need the connection factory jms/JupiterConnectionFactory in
Chapter 34. However, if you wish to delete it, perform the following steps in the
Admin Console:

1. Expand the JMS Resources node and click Connection Factories.

2. Select the checkbox next to jms/JupiterConnectionFactory and click
Delete.

Remember to delete the connection factory on both systems.

You can also use the Admin Console to delete the destinations and connection
factories you created in Creating JMS Administered Objects (page 1212). How-
ever, we recommend that you keep them, because they will be used in most of
the examples in Chapter 34. After you have created them, they will be available
whenever you restart the Application Server.

Delete the class files for the programs as follows:

asant clean

If you wish, you can manually delete the client JAR files.

1228
You can also stop the Application Server, but you will need it to run the sample
programs in the next section.

Creating Robust JMS Applications
This section explains how to use features of the JMS API to achieve the level of
reliability and performance your application requires. Many people choose to
implement JMS applications because they cannot tolerate dropped or duplicate
messages and require that every message be received once and only once. The
JMS API provides this functionality.

The most reliable way to produce a message is to send a PERSISTENT message
within a transaction. JMS messages are PERSISTENT by default. A transaction is
a unit of work into which you can group a series of operations, such as message
sends and receives, so that the operations either all succeed or all fail. For details,
see Specifying Message Persistence (page 1233) and Using JMS API Local
Transactions (page 1240).

The most reliable way to consume a message is to do so within a transaction,
either from a queue or from a durable subscription to a topic. For details, see
Creating Temporary Destinations (page 1235), Creating Durable
Subscriptions (page 1236), and Using JMS API Local Transactions (page 1240).

For other applications, a lower level of reliability can reduce overhead and
improve performance. You can send messages with varying priority levels—see
Setting Message Priority Levels (page 1234)—and you can set them to expire
after a certain length of time (see Allowing Messages to Expire, page 1234).

The JMS API provides several ways to achieve various kinds and degrees of reli-
ability. This section divides them into two categories:

• Using Basic Reliability Mechanisms

• Using Advanced Reliability Mechanisms

The following sections describe these features as they apply to JMS clients.
Some of the features work differently in J2EE applications; in these cases, the
differences are noted here and are explained in detail in Using the JMS API in a
J2EE Application (page 1248).

This section includes three sample programs, which you can find in the directory
<INSTALL>/j2eetutorial14/examples/jms/advanced/src/, along with a
utility class called SampleUtilities.java.

../examples/jms/advanced/src/SampleUtilities.java

CREATING ROBUST JMS APPLICATIONS 1229
To compile the programs in advance, go to the <INSTALL>/j2eetutorial14/

examples/jms/advanced directory and use the following asant target:

asant build

Using Basic Reliability Mechanisms
The basic mechanisms for achieving or affecting reliable message delivery are as
follows:

• Controlling message acknowledgment: You can specify various levels of
control over message acknowledgment.

• Specifying message persistence: You can specify that messages are persis-
tent, meaning that they must not be lost in the event of a provider failure.

• Setting message priority levels: You can set various priority levels for mes-
sages, which can affect the order in which the messages are delivered.

• Allowing messages to expire: You can specify an expiration time for mes-
sages so that they will not be delivered if they are obsolete.

• Creating temporary destinations: You can create temporary destinations
that last only for the duration of the connection in which they are created.

Controlling Message Acknowledgment
Until a JMS message has been acknowledged, it is not considered to be success-
fully consumed. The successful consumption of a message ordinarily takes place
in three stages.

1. The client receives the message.

2. The client processes the message.

3. The message is acknowledged. Acknowledgment is initiated either by the
JMS provider or by the client, depending on the session acknowledgment
mode.

In transacted sessions (see Using JMS API Local Transactions, page 1240),
acknowledgment happens automatically when a transaction is committed. If a
transaction is rolled back, all consumed messages are redelivered.

1230
In nontransacted sessions, when and how a message is acknowledged depend on
the value specified as the second argument of the createSession method. The
three possible argument values are as follows:

• Session.AUTO_ACKNOWLEDGE: The session automatically acknowledges a
client’s receipt of a message either when the client has successfully
returned from a call to receive or when the MessageListener it has
called to process the message returns successfully. A synchronous receive
in an AUTO_ACKNOWLEDGE session is the one exception to the rule that mes-
sage consumption is a three-stage process as described earlier.

In this case, the receipt and acknowledgment take place in one step, fol-
lowed by the processing of the message.

• Session.CLIENT_ACKNOWLEDGE: A client acknowledges a message by
calling the message’s acknowledge method. In this mode, acknowledg-
ment takes place on the session level: Acknowledging a consumed mes-
sage automatically acknowledges the receipt of all messages that have
been consumed by its session. For example, if a message consumer con-
sumes ten messages and then acknowledges the fifth message delivered, all
ten messages are acknowledged.

• Session.DUPS_OK_ACKNOWLEDGE: This option instructs the session to
lazily acknowledge the delivery of messages. This is likely to result in the
delivery of some duplicate messages if the JMS provider fails, so it should
be used only by consumers that can tolerate duplicate messages. (If the
JMS provider redelivers a message, it must set the value of the JMSRede-

livered message header to true.) This option can reduce session over-
head by minimizing the work the session does to prevent duplicates.

If messages have been received from a queue but not acknowledged when a ses-
sion terminates, the JMS provider retains them and redelivers them when a con-
sumer next accesses the queue. The provider also retains unacknowledged
messages for a terminated session that has a durable TopicSubscriber. (See
Creating Durable Subscriptions, page 1236.) Unacknowledged messages for a
nondurable TopicSubscriber are dropped when the session is closed.

If you use a queue or a durable subscription, you can use the Session.recover

method to stop a nontransacted session and restart it with its first unacknowl-
edged message. In effect, the session’s series of delivered messages is reset to the
point after its last acknowledged message. The messages it now delivers may be
different from those that were originally delivered, if messages have expired or if
higher-priority messages have arrived. For a nondurable TopicSubscriber, the
provider may drop unacknowledged messages when its session is recovered.

CREATING ROBUST JMS APPLICATIONS 1231
The sample program in the next section demonstrates two ways to ensure that a
message will not be acknowledged until processing of the message is complete.

A Message Acknowledgment Example
The AckEquivExample.java program in the directory <INSTALL>/

j2eetutorial14/examples/jms/advanced/src/ shows how both of the fol-
lowing two scenarios ensure that a message will not be acknowledged until pro-
cessing of it is complete:

• Using an asynchronous message consumer—a message listener—in an
AUTO_ACKNOWLEDGE session

• Using a synchronous receiver in a CLIENT_ACKNOWLEDGE session

With a message listener, the automatic acknowledgment happens when the
onMessage method returns—that is, after message processing has finished. With
a synchronous receiver, the client acknowledges the message after processing is
complete. (If you use AUTO_ACKNOWLEDGE with a synchronous receive, the
acknowledgment happens immediately after the receive call; if any subsequent
processing steps fail, the message cannot be redelivered.)

The program contains a SynchSender class, a SynchReceiver class, an Asynch-

Subscriber class with a TextListener class, a MultiplePublisher class, a
main method, and a method that runs the other classes’ threads.

The program uses the following objects:

• jms/ConnectionFactory, jms/Queue, and jms/Topic: resources that you
created in Creating JMS Administered Objects (page 1212)

• jms/ControlQueue: an additional queue

• jms/DurableConnectionFactory: a connection factory with a client ID
(see Creating Durable Subscriptions, page 1236, for more information)

Use the Admin Console to create the new queue and connection factory as fol-
lows:

1. Create a physical destination of type queue with the name ControlQueueP.

2. Create a destination resource with the name jms/ControlQueue and type
javax.jms.Queue. Find the Name property and give it the value Control-

QueueP.

3. Create a connection factory with the name jms/DurableConnectionFac-

tory and the type javax.jms.ConnectionFactory. Find the property
named ClientId and give it the value MyID.

../examples/jms/advanced/src/AckEquivExample.java

1232
You can also create all the resources needed for these examples with the follow-
ing asant target:

asant add-objects

If you did not do so previously, compile the source file:

asant build

To package the program, follow the instructions in Packaging the
Clients (page 1216), except for the values listed in Table 33–5.

To run the program, use the following command:

appclient -client AckEquivExample.jar

The program output looks something like this:

Queue name is jms/ControlQueue
Queue name is jms/Queue
Topic name is jms/Topic
Connection factory name is jms/DurableConnectionFactory
 SENDER: Created client-acknowledge session
SENDER: Sending message: Here is a client-acknowledge message

 RECEIVER: Created client-acknowledge session
 RECEIVER: Processing message: Here is a client-acknowledge
message
 RECEIVER: Now I’ll acknowledge the message
PUBLISHER: Created auto-acknowledge session

Table 33–5 Application Values for AckEquivExample

Wizard Field or Area Value

AppClient File
<INSTALL>/j2eetutorial14/examples/jms/advanced/
AckEquivExample.jar

AppClient Display Name AckEquivExample

Available Files classes
build/AckEquivExample*.class (7 files)
build/SampleUtilities*.class (2 files)

Main Class AckEquivExample

CREATING ROBUST JMS APPLICATIONS 1233
SUBSCRIBER: Created auto-acknowledge session
PUBLISHER: Receiving synchronize messages from jms/
ControlQueue; count = 1
SUBSCRIBER: Sending synchronize message to jms/ControlQueue
PUBLISHER: Received synchronize message; expect 0 more
PUBLISHER: Publishing message: Here is an auto-acknowledge
message 1
PUBLISHER: Publishing message: Here is an auto-acknowledge
message 2
SUBSCRIBER: Processing message: Here is an auto-acknowledge
message 1
PUBLISHER: Publishing message: Here is an auto-acknowledge
message 3
SUBSCRIBER: Processing message: Here is an auto-acknowledge
message 2
SUBSCRIBER: Processing message: Here is an auto-acknowledge
message 3

After you run the program, you can delete the physical destination Control-

QueueP and the destination resource jms/ControlQueue.

Specifying Message Persistence
The JMS API supports two delivery modes for messages to specify whether mes-
sages are lost if the JMS provider fails. These delivery modes are fields of the
DeliveryMode interface.

• The PERSISTENT delivery mode, which is the default, instructs the JMS
provider to take extra care to ensure that a message is not lost in transit in
case of a JMS provider failure. A message sent with this delivery mode is
logged to stable storage when it is sent.

• The NON_PERSISTENT delivery mode does not require the JMS provider to
store the message or otherwise guarantee that it is not lost if the provider
fails.

You can specify the delivery mode in either of two ways.

• You can use the setDeliveryMode method of the MessageProducer inter-
face to set the delivery mode for all messages sent by that producer. For
example, the following call sets the delivery mode to NON_PERSISTENT for
a producer:
producer.setDeliveryMode(DeliveryMode.NON_PERSISTENT);

• You can use the long form of the send or the publish method to set the
delivery mode for a specific message. The second argument sets the deliv-

1234
ery mode. For example, the following send call sets the delivery mode for
message to NON_PERSISTENT:
producer.send(message, DeliveryMode.NON_PERSISTENT, 3,

10000);

The third and fourth arguments set the priority level and expiration time,
which are described in the next two subsections.

If you do not specify a delivery mode, the default is PERSISTENT. Using the
NON_PERSISTENT delivery mode may improve performance and reduce storage
overhead, but you should use it only if your application can afford to miss
messages.

Setting Message Priority Levels
You can use message priority levels to instruct the JMS provider to deliver urgent
messages first. You can set the priority level in either of two ways.

• You can use the setPriority method of the MessageProducer interface
to set the priority level for all messages sent by that producer. For example,
the following call sets a priority level of 7 for a producer:
producer.setPriority(7);

• You can use the long form of the send or the publish method to set the
priority level for a specific message. The third argument sets the priority
level. For example, the following send call sets the priority level for mes-
sage to 3:
producer.send(message, DeliveryMode.NON_PERSISTENT, 3,

10000);

The ten levels of priority range from 0 (lowest) to 9 (highest). If you do not spec-
ify a priority level, the default level is 4. A JMS provider tries to deliver higher-
priority messages before lower-priority ones but does not have to deliver mes-
sages in exact order of priority.

Allowing Messages to Expire
By default, a message never expires. If a message will become obsolete after a
certain period, however, you may want to set an expiration time. You can do this
in either of two ways.

• You can use the setTimeToLive method of the MessageProducer inter-
face to set a default expiration time for all messages sent by that producer.

CREATING ROBUST JMS APPLICATIONS 1235
For example, the following call sets a time to live of one minute for a pro-
ducer:
producer.setTimeToLive(60000);

• You can use the long form of the send or the publish method to set an
expiration time for a specific message. The fourth argument sets the expi-
ration time in milliseconds. For example, the following send call sets a
time to live of 10 seconds:
producer.send(message, DeliveryMode.NON_PERSISTENT, 3,

10000);

If the specified timeToLive value is 0, the message never expires.

When the message is sent, the specified timeToLive is added to the current time
to give the expiration time. Any message not delivered before the specified expi-
ration time is destroyed. The destruction of obsolete messages conserves storage
and computing resources.

Creating Temporary Destinations
Normally, you create JMS destinations—queues and topics—administratively
rather than programmatically. Your JMS provider includes a tool that you use to
create and remove destinations, and it is common for destinations to be long-
lasting.

The JMS API also enables you to create destinations—TemporaryQueue and
TemporaryTopic objects—that last only for the duration of the connection in
which they are created. You create these destinations dynamically using the Ses-
sion.createTemporaryQueue and the Session.createTemporaryTopic meth-
ods.

The only message consumers that can consume from a temporary destination are
those created by the same connection that created the destination. Any message
producer can send to the temporary destination. If you close the connection that
a temporary destination belongs to, the destination is closed and its contents are
lost.

You can use temporary destinations to implement a simple request/reply mecha-
nism. If you create a temporary destination and specify it as the value of the
JMSReplyTo message header field when you send a message, then the consumer
of the message can use the value of the JMSReplyTo field as the destination to
which it sends a reply. The consumer can also reference the original request by
setting the JMSCorrelationID header field of the reply message to the value of
the JMSMessageID header field of the request. For example, an onMessage

1236
method can create a session so that it can send a reply to the message it receives.
It can use code such as the following:

producer = session.createProducer(msg.getJMSReplyTo());
replyMsg = session.createTextMessage("Consumer " +

"processed message: " + msg.getText());
replyMsg.setJMSCorrelationID(msg.getJMSMessageID());
producer.send(replyMsg);

For more examples, see Chapter 34.

Using Advanced Reliability Mechanisms
The more advanced mechanisms for achieving reliable message delivery are the
following:

• Creating durable subscriptions: You can create durable topic subscrip-
tions, which receive messages published while the subscriber is not active.
Durable subscriptions offer the reliability of queues to the publish/sub-
scribe message domain.

• Using local transactions: You can use local transactions, which allow you
to group a series of sends and receives into an atomic unit of work. Trans-
actions are rolled back if they fail at any time.

Creating Durable Subscriptions
To ensure that a pub/sub application receives all published messages, use PER-

SISTENT delivery mode for the publishers. In addition, use durable subscriptions
for the subscribers.

The Session.createConsumer method creates a nondurable subscriber if a
topic is specified as the destination. A nondurable subscriber can receive only
messages that are published while it is active.

At the cost of higher overhead, you can use the Session.createDurableSub-

scriber method to create a durable subscriber. A durable subscription can have
only one active subscriber at a time.

A durable subscriber registers a durable subscription by specifying a unique
identity that is retained by the JMS provider. Subsequent subscriber objects that
have the same identity resume the subscription in the state in which it was left by
the preceding subscriber. If a durable subscription has no active subscriber, the

CREATING ROBUST JMS APPLICATIONS 1237
JMS provider retains the subscription’s messages until they are received by the
subscription or until they expire.

You establish the unique identity of a durable subscriber by setting the
following:

• A client ID for the connection

• A topic and a subscription name for the subscriber

You set the client ID administratively for a client-specific connection factory
using the Admin Console.

After using this connection factory to create the connection and the session, you
call the createDurableSubscriber method with two arguments: the topic and a
string that specifies the name of the subscription:

String subName = "MySub";
MessageConsumer topicSubscriber =

session.createDurableSubscriber(myTopic, subName);

The subscriber becomes active after you start the Connection or TopicConnec-
tion. Later, you might close the subscriber:

topicSubscriber.close();

The JMS provider stores the messages sent or published to the topic, as it would
store messages sent to a queue. If the program or another application calls cre-
ateDurableSubscriber using the same connection factory and its client ID, the
same topic, and the same subscription name, the subscription is reactivated, and
the JMS provider delivers the messages that were published while the subscriber
was inactive.

To delete a durable subscription, first close the subscriber, and then use the
unsubscribe method, with the subscription name as the argument:

topicSubscriber.close();
session.unsubscribe("MySub");

The unsubscribe method deletes the state that the provider maintains for the
subscriber.

Figures 33–9 and 33–10 show the difference between a nondurable and a durable
subscriber. With an ordinary, nondurable subscriber, the subscriber and the sub-
scription begin and end at the same point and are, in effect, identical. When a
subscriber is closed, the subscription also ends. Here, create stands for a call to

1238
Session.createConsumer with a Topic argument, and close stands for a call
to MessageConsumer.close. Any messages published to the topic between the
time of the first close and the time of the second create are not consumed by
the subscriber. In Figure 33–9, the subscriber consumes messages M1, M2, M5,
and M6, but messages M3 and M4 are lost.

Figure 33–9 Nondurable Subscribers and Subscriptions

With a durable subscriber, the subscriber can be closed and re-created, but the
subscription continues to exist and to hold messages until the application calls
the unsubscribe method. In Figure 33–10, create stands for a call to Ses-

sion.createDurableSubscriber, close stands for a call to MessageCon-

sumer.close, and unsubscribe stands for a call to Session.unsubscribe.
Messages published while the subscriber is closed are received when the sub-
scriber is created again. So even though messages M2, M4, and M5 arrive while
the subscriber is closed, they are not lost.

Figure 33–10 A Durable Subscriber and Subscription

See A J2EE Application That Uses the JMS API with a Session
Bean (page 1258) for an example of a J2EE application that uses durable sub-
scriptions. See A Message Acknowledgment Example (page 1231) and the next
section for examples of client applications that use durable subscriptions.

CREATING ROBUST JMS APPLICATIONS 1239
A Durable Subscription Example
The DurableSubscriberExample.java program in the directory <INSTALL>/

j2eetutorial14/examples/jms/advanced/src/ shows how durable subscrip-
tions work. It demonstrates that a durable subscription is active even when the
subscriber is not active. The program contains a DurableSubscriber class, a
MultiplePublisher class, a main method, and a method that instantiates the
classes and calls their methods in sequence.

The program begins in the same way as any publish/subscribe program: The sub-
scriber starts, the publisher publishes some messages, and the subscriber receives
them. At this point, the subscriber closes itself. The publisher then publishes
some messages while the subscriber is not active. The subscriber then restarts
and receives the messages.

Before you run this program, compile the source file and create a connection fac-
tory that has a client ID. If you did not already do so in A Message Acknowledg-
ment Example (page 1231), perform the following steps:

1. Compile the source code as follows:
asant build

2. Create a connection factory with the name jms/DurableConnectionFac-

tory and the type javax.jms.ConnectionFactory. Find the property
named ClientId and give it the value MyID.

To package the program, follow the instructions in Packaging the
Clients (page 1216), except for the values listed in Table 33–6.

Table 33–6 Application Values for DurableSubscriberExample

Wizard Field or Area Value

AppClient File
<INSTALL>/j2eetutorial14/examples/jms/advanced/
DurableSubscriberExample.jar

AppClient Display Name DurableSubscriberExample

Available Files classes
build/DurableSubscriberExample*.class (5 files)
build/SampleUtilities*.class (2 files)

Main Class DurableSubscriberExample

../examples/jms/advanced/src/DurableSubscriberExample.java

1240
Use the following command to run the program. The destination is jms/Topic:

appclient -client DurableSubscriberExample.jar

The output looks something like this:

Connection factory without client ID is jms/ConnectionFactory
Connection factory with client ID is jms/
DurableConnectionFactory
Topic name is jms/Topic
Starting subscriber
PUBLISHER: Publishing message: Here is a message 1
SUBSCRIBER: Reading message: Here is a message 1
PUBLISHER: Publishing message: Here is a message 2
SUBSCRIBER: Reading message: Here is a message 2
PUBLISHER: Publishing message: Here is a message 3
SUBSCRIBER: Reading message: Here is a message 3
Closing subscriber
PUBLISHER: Publishing message: Here is a message 4
PUBLISHER: Publishing message: Here is a message 5
PUBLISHER: Publishing message: Here is a message 6
Starting subscriber
SUBSCRIBER: Reading message: Here is a message 4
SUBSCRIBER: Reading message: Here is a message 5
SUBSCRIBER: Reading message: Here is a message 6
Closing subscriber
Unsubscribing from durable subscription

Using JMS API Local Transactions
You can group a series of operations into an atomic unit of work called a transac-
tion. If any one of the operations fails, the transaction can be rolled back, and the
operations can be attempted again from the beginning. If all the operations suc-
ceed, the transaction can be committed.

In a JMS client, you can use local transactions to group message sends and
receives. The JMS API Session interface provides commit and rollback meth-
ods that you can use in a JMS client. A transaction commit means that all pro-
duced messages are sent and all consumed messages are acknowledged. A
transaction rollback means that all produced messages are destroyed and all con-
sumed messages are recovered and redelivered unless they have expired (see
Allowing Messages to Expire, page 1234).

A transacted session is always involved in a transaction. As soon as the commit

or the rollback method is called, one transaction ends and another transaction

CREATING ROBUST JMS APPLICATIONS 1241
begins. Closing a transacted session rolls back its transaction in progress, includ-
ing any pending sends and receives.

In an Enterprise JavaBeans component, you cannot use the Session.commit and
Session.rollback methods. Instead, you use distributed transactions, which
are described in Using the JMS API in a J2EE Application (page 1248).

You can combine several sends and receives in a single JMS API local transac-
tion. If you do so, you need to be careful about the order of the operations. You
will have no problems if the transaction consists of all sends or all receives or if
the receives come before the sends. But if you try to use a request/reply mecha-
nism, whereby you send a message and then try to receive a reply to the sent
message in the same transaction, the program will hang, because the send cannot
take place until the transaction is committed. The following code fragment illus-
trates the problem:

// Don’t do this!
outMsg.setJMSReplyTo(replyQueue);
producer.send(outQueue, outMsg);
consumer = session.createConsumer(replyQueue);
inMsg = consumer.receive();
session.commit();

Because a message sent during a transaction is not actually sent until the transac-
tion is committed, the transaction cannot contain any receives that depend on
that message’s having been sent.

In addition, the production and the consumption of a message cannot both be
part of the same transaction. The reason is that the transactions take place
between the clients and the JMS provider, which intervenes between the produc-
tion and the consumption of the message. Figure 33–11 illustrates this interac-
tion.

Figure 33–11 Using JMS API Local Transactions

The sending of one or more messages to one or more destinations by client 1 can
form a single transaction, because it forms a single set of interactions with the

1242
JMS provider using a single session. Similarly, the receiving of one or more mes-
sages from one or more destinations by client 2 also forms a single transaction
using a single session. But because the two clients have no direct interaction and
are using two different sessions, no transactions can take place between them.

Another way of putting this is that the act of producing and/or consuming mes-
sages in a session can be transactional, but the act of producing and consuming a
specific message across different sessions cannot be transactional.

This is the fundamental difference between messaging and synchronized pro-
cessing. Instead of tightly coupling the sending and receiving of data, message
producers and consumers use an alternative approach to reliability, one that is
built on a JMS provider’s ability to supply a once-and-only-once message deliv-
ery guarantee.

When you create a session, you specify whether it is transacted. The first argu-
ment to the createSession method is a boolean value. A value of true means
that the session is transacted; a value of false means that it is not transacted.
The second argument to this method is the acknowledgment mode, which is rele-
vant only to nontransacted sessions (see Controlling Message
Acknowledgment, page 1229). If the session is transacted, the second argument
is ignored, so it is a good idea to specify 0 to make the meaning of your code
clear. For example:

session = connection.createSession(true, 0);

The commit and the rollback methods for local transactions are associated with
the session. You can combine queue and topic operations in a single transaction
if you use the same session to perform the operations. For example, you can use
the same session to receive a message from a queue and send a message to a
topic in the same transaction.

You can pass a client program’s session to a message listener’s constructor func-
tion and use it to create a message producer. In this way, you can use the same
session for receives and sends in asynchronous message consumers.

The next section provides an example of the use of JMS API local transactions.

A Local Transaction Example
The TransactedExample.java program in the directory <INSTALL>/

j2eetutorial14/examples/jms/advanced/src/ demonstrates the use of
transactions in a JMS client application. This example shows how to use a queue
and a topic in a single transaction as well as how to pass a session to a message

../examples/jms/advanced/src/TransactedExample.java

CREATING ROBUST JMS APPLICATIONS 1243
listener’s constructor function. The program represents a highly simplified e-
commerce application in which the following things happen.

1. A retailer sends a MapMessage to the vendor order queue, ordering a quan-
tity of computers, and waits for the vendor’s reply:
producer =

session.createProducer(vendorOrderQueue);
outMessage = session.createMapMessage();
outMessage.setString("Item", "Computer(s)");
outMessage.setInt("Quantity", quantity);
outMessage.setJMSReplyTo(retailerConfirmQueue);
producer.send(outMessage);
System.out.println("Retailer: ordered " +

quantity + " computer(s)");

orderConfirmReceiver =
session.createConsumer(retailerConfirmQueue);

connection.start();

2. The vendor receives the retailer’s order message and sends an order mes-
sage to the supplier order topic in one transaction. This JMS transaction
uses a single session, so we can combine a receive from a queue with a
send to a topic. Here is the code that uses the same session to create a con-
sumer for a queue and a producer for a topic:
vendorOrderReceiver =

session.createConsumer(vendorOrderQueue);
supplierOrderProducer =

session.createProducer(supplierOrderTopic);

The following code receives the incoming message, sends an outgoing
message, and commits the session. The message processing has been
removed to keep the sequence simple:

inMessage = vendorOrderReceiver.receive();
// Process the incoming message and format the outgoing
// message
...
supplierOrderProducer.send(orderMessage);
...
session.commit();

3. Each supplier receives the order from the order topic, checks its inventory,
and then sends the items ordered to the queue named in the order message’s
JMSReplyTo field. If it does not have enough in stock, the supplier sends
what it has. The synchronous receive from the topic and the send to the
queue take place in one JMS transaction.

1244
receiver = session.createConsumer(orderTopic);
...
inMessage = receiver.receive();
if (inMessage instanceof MapMessage) {

orderMessage = (MapMessage) inMessage;
// Process message

MessageProducer producer =
session.createProducer((javax.jms.Queue)

orderMessage.getJMSReplyTo());
outMessage = session.createMapMessage();
// Add content to message
producer.send(outMessage);
// Display message contents
session.commit();

4. The vendor receives the replies from the suppliers from its confirmation
queue and updates the state of the order. Messages are processed by an
asynchronous message listener; this step shows the use of JMS transac-
tions with a message listener.
MapMessage component = (MapMessage) message;
...
orderNumber =

component.getInt("VendorOrderNumber");
Order order =

Order.getOrder(orderNumber).processSubOrder(component);
session.commit();

5. When all outstanding replies are processed for a given order, the vendor
message listener sends a message notifying the retailer whether it can ful-
fill the order.
javax.jms.Queue replyQueue =

(javax.jms.Queue) order.order.getJMSReplyTo();
MessageProducer producer =

session.createProducer(replyQueue);
MapMessage retailerConfirmMessage =

session.createMapMessage();
// Format the message
producer.send(retailerConfirmMessage);
session.commit();

6. The retailer receives the message from the vendor:

inMessage =
(MapMessage) orderConfirmReceiver.receive();

Figure 33–12 illustrates these steps.

CREATING ROBUST JMS APPLICATIONS 1245
Figure 33–12 Transactions: JMS Client Example

The program contains five classes: Retailer, Vendor, GenericSupplier, Ven-
dorMessageListener, and Order. The program also contains a main method and
a method that runs the threads of the Retailer, Vendor, and two supplier
classes.

All the messages use the MapMessage message type. Synchronous receives are
used for all message reception except for the case of the vendor processing the
replies of the suppliers. These replies are processed asynchronously and demon-
strate how to use transactions within a message listener.

At random intervals, the Vendor class throws an exception to simulate a database
problem and cause a rollback.

All classes except Retailer use transacted sessions.

The program uses three queues named jms/AQueue, jms/BQueue, and jms/

CQueue, and one topic named jms/OTopic. Before you run the program, do the
following:

1. Compile the program if you did not do so previously:
asant build

1246
2. Create the necessary resources:

a. In the Admin Console, create three physical destinations of type queue

named AQueueP, BQueueP, and CQueueP.

b. Create a physical destination of type topic named OTopicP.

c. Create three destination resources with the names jms/AQueue, jms/
BQueue, and jms/CQueue, all of type javax.jms.Queue. For each, set
its Name property to the value AQueueP, BQueueP, or CQueueP, respec-
tively.

d. Create a destination resource with the name jms/OTopic of type
javax.jms.Topic. Set its Name property to the value OTopicP.

To package the program, follow the instructions in Packaging the
Clients (page 1216), except for the values listed in Table 33–7.

Run the program, specifying the number of computers to be ordered. To order
three computers, use the following command:

appclient -client TransactedExample.jar 3

The output looks something like this:

Quantity to be ordered is 3
Retailer: ordered 3 computer(s)
Vendor: Retailer ordered 3 Computer(s)
Vendor: ordered 3 monitor(s) and hard drive(s)
Monitor Supplier: Vendor ordered 3 Monitor(s)
Monitor Supplier: sent 3 Monitor(s)
 Monitor Supplier: committed transaction

Table 33–7 Application Values for TransactedExample

Wizard Field or Area Value

AppClient File
<INSTALL>/j2eetutorial14/examples/jms/advanced/
TransactedExample.jar

AppClient Display Name TransactedExample

Available Files classes
build/TransactedExample*.class (6 files)
build/SampleUtilities*.class (2 files)

Main Class TransactedExample

CREATING ROBUST JMS APPLICATIONS 1247
 Vendor: committed transaction 1
Hard Drive Supplier: Vendor ordered 3 Hard Drive(s)
Hard Drive Supplier: sent 1 Hard Drive(s)
Vendor: Completed processing for order 1
 Hard Drive Supplier: committed transaction
Vendor: unable to send 3 computer(s)
 Vendor: committed transaction 2
Retailer: Order not filled
Retailer: placing another order
Retailer: ordered 6 computer(s)
Vendor: JMSException occurred: javax.jms.JMSException:
Simulated database concurrent access exception
javax.jms.JMSException: Simulated database concurrent access
exception
 at TransactedExample$Vendor.run(Unknown Source)
 Vendor: rolled back transaction 1
Vendor: Retailer ordered 6 Computer(s)
Vendor: ordered 6 monitor(s) and hard drive(s)
Monitor Supplier: Vendor ordered 6 Monitor(s)
Hard Drive Supplier: Vendor ordered 6 Hard Drive(s)
Monitor Supplier: sent 6 Monitor(s)
 Monitor Supplier: committed transaction
Hard Drive Supplier: sent 6 Hard Drive(s)
 Hard Drive Supplier: committed transaction
 Vendor: committed transaction 1
Vendor: Completed processing for order 2
Vendor: sent 6 computer(s)
Retailer: Order filled
 Vendor: committed transaction 2

When you have finished with this sample application, use the Admin Console to
delete the physical destinations AQueueP, BQueueP, CQueueP, and OTopicP, and
the destination resources jms/AQueue, jms/BQueue, jms/CQueue, and jms/

OTopic.

Use the following command to remove the class files:

asant clean

If you wish, you can manually remove the client JAR files.

1248
Using the JMS API in a J2EE Application
This section describes the ways in which using the JMS API in a J2EE applica-
tion differs from using it in a stand-alone client application:

• Using session and entity beans to produce and to synchronously receive
messages

• Using message-driven beans to receive messages asynchronously

• Managing distributed transactions

• Using application clients and web components

A general rule new in the J2EE 1.4 platform specification applies to all J2EE
components that use the JMS API within EJB or web containers:

Any component within an EJB or web container must have no more than
one JMS session per JMS connection.

This rule does not apply to application clients.

Using Session and Entity Beans to
Produce and to Synchronously Receive
Messages
A J2EE application that produces messages or synchronously receives them can
use either a session bean or an entity bean to perform these operations. The
example in A J2EE Application That Uses the JMS API with a Session
Bean (page 1258) uses a stateless session bean to publish messages to a topic.

Because a blocking synchronous receive ties up server resources, it is not a good
programming practice to use such a receive call in an enterprise bean. Instead,
use a timed synchronous receive, or use a message-driven bean to receive mes-
sages asynchronously. For details about blocking and timed synchronous
receives, see Writing the Client Programs (page 1209).

Using the JMS API in a J2EE application is in many ways similar to using it in a
stand-alone client. The main differences are in administered objects, resource
management, and transactions.

USING THE JMS API IN A J2EE APPLICATION 1249
Administered Objects
The J2EE platform specification recommends that you use java:comp/env/jms

as the environment subcontext for JNDI lookups of connection factories and des-
tinations. With the Application Server, you use deploytool to specify JNDI
names that correspond to those in your source code.

Instead of looking up a JMS API connection factory or destination each time it is
used in a method, it is recommended that you look up these instances once in the
enterprise bean’s ejbCreate method and cache them for the lifetime of the
enterprise bean.

Resource Management
The JMS API resources are a JMS API connection and a JMS API session. In
general, it is important to release JMS resources when they are no longer being
used. Here are some useful practices to follow.

• If you wish to maintain a JMS API resource only for the life span of a busi-
ness method, it is a good idea to close the resource in a finally block
within the method.

• If you would like to maintain a JMS API resource for the life span of an
enterprise bean instance, it is a good idea to use the component’s ejbCre-
ate method to create the resource and to use the component’s ejbRemove
method to close the resource. If you use a stateful session bean or an entity
bean and you wish to maintain the JMS API resource in a cached state, you
must close the resource in the ejbPassivate method and set its value to
null, and you must create it again in the ejbActivate method.

Transactions
Instead of using local transactions, you use deploytool to specify container-
managed transactions for bean methods that perform sends or receives, allowing
the EJB container to handle transaction demarcation.

You can use bean-managed transactions and the javax.transaction.User-

Transaction interface’s transaction demarcation methods, but you should do so
only if your application has special requirements and you are an expert in using
transactions. Usually, container-managed transactions produce the most efficient
and correct behavior. This tutorial does not provide any examples of bean-man-
aged transactions.

1250
Using Message-Driven Beans
As we noted in What Is a Message-Driven Bean? (page 864) and How Does the
JMS API Work with the J2EE Platform? (page 1191), the J2EE platform sup-
ports a special kind of enterprise bean, the message-driven bean, which allows
J2EE applications to process JMS messages asynchronously. Session beans and
entity beans allow you to send messages and to receive them synchronously but
not asynchronously.

A message-driven bean is a message listener that can reliably consume messages
from a queue or a durable subscription. The messages can be sent by any J2EE
component—from an application client, another enterprise bean, or a web com-
ponent—or from an application or a system that does not use J2EE technology.

Like a message listener in a stand-alone JMS client, a message-driven bean con-
tains an onMessage method that is called automatically when a message arrives.
Like a message listener, a message-driven bean class can implement helper
methods invoked by the onMessage method to aid in message processing.

A message-driven bean, however, differs from a stand-alone client’s message lis-
tener in the following ways:

• Certain setup tasks are performed by the EJB container.

• The bean class must implement certain interfaces and methods.

The EJB container automatically performs several setup tasks that a stand-alone
client has to do:

• Creating a message consumer to receive the messages. Instead of creating
a message consumer in your source code, you associate the message-
driven bean with a destination and a connection factory at deployment
time. If you want to specify a durable subscription or use a message selec-
tor, you do this at deployment time also.

• Registering the message listener. You must not call setMessageListener.

• Specifying a message acknowledgment mode. (For details, see Managing
Distributed Transactions, page 1252.)

If JMS is integrated with the application server using a resource adapter, the JMS
resource adapter handles these tasks for the EJB container. It creates a connec-
tion factory for the message-driven bean to use. When you package an applica-
tion, you specify properties for the connection factory, such as a durable
subscription, a message selector, or an acknowledgment mode. The examples in
Chapter 34 show how the JMS resource adapter works in the Application Server.

USING THE JMS API IN A J2EE APPLICATION 1251
Your message-driven bean class must implement the following in addition to the
onMessage method:

• The javax.ejb.MessageDrivenBean and the javax.jms.MessageLis-

tener interfaces.

• The ejbCreate method, which has the following signature:
public void ejbCreate() {}

If your message-driven bean produces messages or does synchronous
receives from another destination, you use its ejbCreate method to look
up JMS API connection factories and destinations and to create the JMS
API connection.

• The ejbRemove method, which has the following signature:
public void ejbRemove() {}

If you used the message-driven bean’s ejbCreate method to create a JMS
API connection, you ordinarily use the ejbRemove method to close the
connection.

• The setMessageDrivenContext method. A MessageDrivenContext

object provides some additional methods that you can use for transaction
management. The method has the following signature:
public void setMessageDrivenContext(MessageDrivenContext

mdc) {}

The main difference between a message-driven bean and other enterprise beans
is that a message-driven bean has no home or remote interface. Instead, it has
only a bean class.

A message-driven bean is similar in some ways to a stateless session bean: Its
instances are relatively short-lived and retain no state for a specific client. The
instance variables of the message-driven bean instance can contain some state
across the handling of client messages—for example, a JMS API connection, an
open database connection, or an object reference to an enterprise bean object.

Like a stateless session bean, a message-driven bean can have many interchange-
able instances running at the same time. The container can pool these instances
to allow streams of messages to be processed concurrently. The container
attempts to deliver messages in chronological order when it does not impair the
concurrency of message processing, but no guarantees are made as to the exact
order in which messages are delivered to the instances of the message-driven
bean class. Because concurrency can affect the order in which messages are
delivered, you should write your applications to handle messages that arrive out
of sequence.

1252
For example, your application could manage conversations by using application-
level sequence numbers. An application-level conversation control mechanism
with a persistent conversation state could cache later messages until earlier mes-
sages have been processed.

Another way to ensure order is to have each message or message group in a con-
versation require a confirmation message that the sender blocks on receipt of.
This forces the responsibility for order back on the sender and more tightly cou-
ples senders to the progress of message-driven beans.

To create a new instance of a message-driven bean, the container instantiates the
bean and then does the following:

• Calls the setMessageDrivenContext method to pass the context object to
the instance

• Calls the instance’s ejbCreate method

Figure 33–13 shows the life cycle of a message-driven bean.

Figure 33–13 Life Cycle of a Message-Driven Bean

Managing Distributed Transactions
JMS client applications use JMS API local transactions (described in Using JMS
API Local Transactions, page 1240), which allow the grouping of sends and
receives within a specific JMS session. J2EE applications commonly use distrib-

USING THE JMS API IN A J2EE APPLICATION 1253
uted transactions to ensure the integrity of accesses to external resources. For
example, distributed transactions allow multiple applications to perform atomic
updates on the same database, and they allow a single application to perform
atomic updates on multiple databases.

In a J2EE application that uses the JMS API, you can use transactions to combine
message sends or receives with database updates and other resource manager oper-
ations. You can access resources from multiple application components within a
single transaction. For example, a servlet can start a transaction, access multiple
databases, invoke an enterprise bean that sends a JMS message, invoke another
enterprise bean that modifies an EIS system using the Connector architecture,
and finally commit the transaction. Your application cannot, however, both send
a JMS message and receive a reply to it within the same transaction; the restric-
tion described in Using JMS API Local Transactions (page 1240) still applies.

Distributed transactions within the EJB container can be either of two kinds:

• Container-managed transactions: The EJB container controls the integrity
of your transactions without your having to call commit or rollback.
Container-managed transactions are recommended for J2EE applications
that use the JMS API. You can specify appropriate transaction attributes
for your enterprise bean methods.

Use the Required transaction attribute to ensure that a method is always
part of a transaction. If a transaction is in progress when the method is
called, the method will be part of that transaction; if not, a new transaction
will be started before the method is called and will be committed when
the method returns.

• Bean-managed transactions: You can use these in conjunction with the
javax.transaction.UserTransaction interface, which provides its own
commit and rollback methods that you can use to delimit transaction
boundaries. Bean-managed transactions are recommended only for those
who are experienced in programming transactions.

You can use either container-managed transactions or bean-managed transac-
tions with message-driven beans. To ensure that all messages are received and
handled within the context of a transaction, use container-managed transactions
and specify the Required transaction attribute for the onMessage method. This
means that if there is no transaction in progress, a new transaction will be started
before the method is called and will be committed when the method returns.

1254
When you use container-managed transactions, you can call the following
MessageDrivenContext methods:

• setRollbackOnly: Use this method for error handling. If an exception
occurs, setRollbackOnly marks the current transaction so that the only
possible outcome of the transaction is a rollback.

• getRollbackOnly: Use this method to test whether the current transaction
has been marked for rollback.

If you use bean-managed transactions, the delivery of a message to the
onMessage method takes place outside the distributed transaction context. The
transaction begins when you call the UserTransaction.begin method within
the onMessage method, and it ends when you call UserTransaction.commit or
UserTransaction.rollback. Any call to the Connection.createSession

method must take place within the transaction. If you call UserTransac-

tion.rollback, the message is not redelivered, whereas calling setRollback-

Only for container-managed transactions does cause a message to be redelivered.

Neither the JMS API specification nor the Enterprise JavaBeans specification
(available from http://java.sun.com/products/ejb/) specifies how to han-
dle calls to JMS API methods outside transaction boundaries. The Enterprise
JavaBeans specification does state that the EJB container is responsible for
acknowledging a message that is successfully processed by the onMessage

method of a message-driven bean that uses bean-managed transactions. Using
bean-managed transactions allows you to process the message by using more
than one transaction or to have some parts of the message processing take place
outside a transaction context. In most cases, however, container-managed trans-
actions provide greater reliability and are therefore preferable.

When you create a session in an enterprise bean, the container ignores the argu-
ments you specify, because it manages all transactional properties for enterprise
beans. It is still a good idea to specify arguments of true and 0 to the create-

Session method to make this situation clear:

session = connection.createSession(true, 0);

When you use container-managed transactions, you usually specify the
Required transaction attribute for your enterprise bean’s business methods.

You do not specify a message acknowledgment mode when you create a mes-
sage-driven bean that uses container-managed transactions. The container
acknowledges the message automatically when it commits the transaction.

http://java.sun.com/products/ejb/

FURTHER INFORMATION 1255
If a message-driven bean uses bean-managed transactions, the message receipt
cannot be part of the bean-managed transaction, so the container acknowledges
the message outside the transaction.

If the onMessage method throws a RuntimeException, the container does not
acknowledge processing the message. In that case, the JMS provider will rede-
liver the unacknowledged message in the future.

Using the JMS API with Application
Clients and Web Components
An application client in a J2EE application can use the JMS API in much the
same way that a stand-alone client program does. It can produce messages, and it
can consume messages by using either synchronous receives or message listen-
ers. See Chapter 28 for an example of an application client that produces mes-
sages. For examples of using application clients to produce and to consume
messages, see A J2EE Application That Uses the JMS API with an Entity
Bean (page 1267) and An Application Example That Deploys a Message-Driven
Bean on Two J2EE Servers (page 1282).

The J2EE platform specification does not impose strict constraints on how web
components should use the JMS API. In the Application Server, a web compo-
nent—one that uses either the Java Servlet API or JavaServer Pages (JSP) tech-
nology—can send messages and consume them synchronously but cannot
consume them asynchronously.

Because a blocking synchronous receive ties up server resources, it is not a good
programming practice to use such a receive call in a web component. Instead,
use a timed synchronous receive. For details about blocking and timed synchro-
nous receives, see Writing the Client Programs (page 1209).

Further Information
For more information about JMS, see the following:

• Java Message Service web site:
http://java.sun.com/products/jms/

• Java Message Service specification, version 1.1, available from
http://java.sun.com/products/jms/docs.html

http://java.sun.com/products/jms/
http://java.sun.com/products/jms/docs.html

1256

34
1257
J2EE Examples Using
the JMS API

THIS chapter provides examples that show how to use the JMS API within a
J2EE application in the following ways:

• Using a session bean to send messages that are consumed by a message-
driven bean using a message selector and a durable subscription

• Using an application client to send messages that are consumed by two
message-driven beans; the information from them is stored in an entity
bean

• Using an application client to send messages that are consumed by a mes-
sage-driven bean on a remote server

• Using an application client to send messages that are consumed by mes-
sage-driven beans on two different servers

The examples are in the following directory:

 <INSTALL>/j2eetutorial14/examples/jms/

To build and run the examples, you will do the following:

1. Use the asant tool to compile the example

2. Use the Admin Console to create resources

1258
3. Use deploytool to package and deploy the example

4. Use the appclient command to run the client

Each example has a build.xml file that refers to a targets.xml file and a
build.properties file in the following directory:

<INSTALL>/j2eetutorial14/examples/jms/common/

The following directory contains previously built versions of each application:

<INSTALL>/j2eetutorial14/examples/jms/provided-ears/

If you run into difficulty at any time, you can open the appropriate EAR file in
deploytool and compare that file to your own version.

See Chapter 28 for a simpler example of a J2EE application that uses the JMS
API.

A J2EE Application That Uses the JMS
API with a Session Bean

This section explains how to write, compile, package, deploy, and run a J2EE
application that uses the JMS API in conjunction with a session bean. The appli-
cation contains the following components:

• An application client that invokes an enterprise bean

• A session bean that publishes several messages to a topic

• A message-driven bean that receives and processes the messages using a
durable topic subscriber and a message selector

The section covers the following topics:

• Writing the Application Components

• Creating and Packaging the Application

• Deploying the Application

• Running the Application Client

You will find the source files for this section in the directory <INSTALL>/

j2eetutorial14/examples/jms/clientsessionmdb/. Path names in this sec-
tion are relative to this directory.

A J2EE APPLICATION THAT USES THE JMS API WITH A SESSION BEAN 1259
Writing the Application Components
This application demonstrates how to send messages from an enterprise bean—
in this case, a session bean—rather than from an application client, as in the
example in Chapter 28. Figure 34–1 illustrates the structure of this application.

Figure 34–1 A J2EE Application: Client to Session Bean to Message-Driven Bean

The Publisher enterprise bean in this example is the enterprise-application equiv-
alent of a wire-service news feed that categorizes news events into six news cate-
gories. The message-driven bean could represent a newsroom, where the sports
desk, for example, would set up a subscription for all news events pertaining to
sports.

The application client in the example obtains a handle to the Publisher enterprise
bean’s remote home interface, creates an instance of the bean, and then calls the
bean’s business method. The enterprise bean creates 18 text messages. For each
message, it sets a String property randomly to one of six values representing the
news categories and then publishes the message to a topic. The message-driven
bean uses a message selector for the property to limit which of the published
messages it receives.

Writing the components of the application involves the following:

• Coding the Application Client: MyAppClient.java

• Coding the Publisher Session Bean

• Coding the Message-Driven Bean: MessageBean.java

1260
Coding the Application Client:
MyAppClient.java
The application client program, src/MyAppClient.java, performs no JMS API
operations and so is simpler than the client program in Chapter 28. The program
obtains a handle to the Publisher enterprise bean’s remote home interface, using
the JNDI naming context java:comp/env. The program then creates an instance
of the bean and calls the bean’s business method twice.

Coding the Publisher Session Bean
The Publisher bean is a stateless session bean that has one create method and
one business method. The Publisher bean uses remote interfaces rather than local
interfaces because it is accessed from the application client.

The remote home interface source file is src/PublisherHome.java.

The remote interface, src/PublisherRemote.java, declares a single business
method, publishNews.

The bean class, src/PublisherBean.java, implements the publishNews

method and its helper method chooseType. The bean class also implements the
required methods ejbCreate, setSessionContext, ejbRemove, ejbActivate,
and ejbPassivate.

The ejbCreate method of the bean class allocates resources—in this case, by
looking up the ConnectionFactory and the topic and creating the Connection.
The business method publishNews creates a Session and a MessageProducer

and publishes the messages.

The ejbRemove method must deallocate the resources that were allocated by the
ejbCreate method. In this case, the ejbRemove method closes the Connection.

Coding the Message-Driven Bean:
MessageBean.java
The message-driven bean class, src/MessageBean.java, is identical to the one
in Chapter 28. However, the deployment descriptor will be different, because
instead of a queue the bean is using a topic with a durable subscription.

../examples/jms/clientsessionmdb/src/MyAppClient.java
../examples/jms/clientsessionmdb/src/PublisherHome.java
../examples/jms/clientsessionmdb/src/PublisherRemote.java
../examples/jms/clientsessionmdb/src/PublisherBean.java
../examples/jms/clientsessionmdb/src/MessageBean.java

A J2EE APPLICATION THAT USES THE JMS API WITH A SESSION BEAN 1261
Creating and Packaging the Application
This example uses the topic named jms/Topic and the connection factory jms/

ConnectionFactory, which you created in Creating JMS Administered
Objects (page 1212). It also uses the connection factory jms/DurableConnec-

tionFactory, which you created in A Message Acknowledgment
Example (page 1231) and A Durable Subscription Example (page 1239). If you
deleted any of these objects, create them again.

Creating and packaging this application involve six steps:

1. Compiling the Source Files and Starting the Application Server

2. Starting deploytool and Creating the Application

3. Packaging the Session Bean

4. Packaging the Message-Driven Bean

5. Packaging the Application Client

6. Updating the JNDI Names

Compiling the Source Files and Starting the
Application Server

1. In the directory <INSTALL>/j2eetutorial14/examples/jms/client-

sessionmdb, use the build target to compile the source files:
asant build

2. Start the Application Server, if it is not already running.

Starting deploytool and Creating the
Application

1. Start deploytool. For instructions, see Starting the deploytool
Utility (page 29).

2. Choose File→New→Application.

3. Click Browse next to the Application File Name field, and use the file
chooser to locate the directory clientsessionmdb.

4. In the File Name field, type ClientSessionMDBApp.

5. Click New Application.

6. Click OK.

1262
Packaging the Session Bean
To package the session bean, perform the following steps:

1. Choose File→New→Enterprise Bean to start the Enterprise Bean wizard.
Then click Next.

2. In the EJB JAR General Settings screen:

a. Select Create New JAR Module in Application and verify that the appli-
cation is ClientSessionMDBApp.

b. In the JAR Display Name field, type EBJAR.

c. Click the Edit Contents button.

d. In the dialog box, locate the build/sb/ directory. Select Publisher-
Bean.class, PublisherHome.class, and PublisherRemote.class

from the Available Files tree. Click Add and then OK.

3. In the Bean General Settings screen:

a. From the Enterprise Bean Class menu, choose sb.PublisherBean.

b. Verify that the enterprise bean name is PublisherBean and that the
enterprise bean type is Stateless Session.

c. In the Remote Interfaces area, choose sb.PublisherHome from the
Remote Home Interface menu, and choose sb.PublisherRemote from
the Remote Interface menu.

After you finish the wizard, perform the following steps:

1. Click the PublisherBean node, and then click the Msg Dest Ref’s tab. In
the inspector pane:

a. Click Add. A dialog box opens.

b. Type jms/TopicName in the Coded Name field.

c. Choose javax.jms.Topic from the Destination Type combo box.

d. Choose Produces from the Usage drop-down list.

e. Type PhysicalTopic in the Destination Name combo box.

2. Click the PublisherBean node, and then click the Resource Ref’s tab. In
the inspector pane:

a. Click Add.

b. Type jms/MyConnectionFactory in the Coded Name field.

c. Choose javax.jms.ConnectionFactory from the Type drop-down
list.

A J2EE APPLICATION THAT USES THE JMS API WITH A SESSION BEAN 1263
d. Type jms/ConnectionFactory in the JNDI name combo box, and type
guest in both the User Name and the Password fields.

3. Click the PublisherBean node, and then click the Transactions tab. In the
inspector pane, select the Container-Managed radio button.

4. Click the EBJAR node, and then click the Message Destinations tab. In the
inspector pane:

a. Click Add.

b. Type PhysicalTopic in the Destination Name field. When you press
Enter, this name appears in the Display Name field, and PublisherBean

appears in the Producers area.

c. Type jms/Topic in the JNDI Name combo box.

Packaging the Message-Driven Bean
For greater efficiency, you will package the message-driven bean in the same
JAR file as the session bean.

To package the message-driven bean, perform the following steps:

1. Choose File→New→Enterprise Bean to start the Enterprise Bean wizard.

2. In the EJB JAR General Settings screen:

a. Select the Add to Existing JAR Module radio button, and verify that the
module is EBJAR (ClientSessionMDBApp).

b. Click the Edit Contents button.

c. In the dialog box, locate the build/mdb/ directory. Select Message-
Bean.class from the Available Files tree. Click Add and then OK.

3. In the Bean General Settings screen:

a. From the Enterprise Bean Class menu, choose mdb.MessageBean.

b. In the Enterprise Bean Name field, accept the default value, Message-
Bean.

c. Verify that the enterprise bean type is Message-Driven.

4. In the Message-driven Bean Settings screen:

a. For the Messaging Service, accept the default, JMS.

b. Choose javax.jms.Topic from the Destination Type combo box.

c. Choose PhysicalTopic from the Target Message Destination combo
box.

1264
d. Select the Durable Subscription checkbox. In the Subscription Name
field, type MySub.

e. In the Message Selector field, type the following:
NewsType = ’Sports’ OR NewsType = ’Opinion’

(If you cannot see the Message Selector field in the screen, expand the
screen vertically.)

f. In the Connection Factory JNDI Name (Sun-specific) field, type the fol-
lowing:

jms/DurableConnectionFactory

After you finish the wizard, perform the following steps:

1. Click the MessageBean node, and then click the Transactions tab. In the
inspector pane, select the Container-Managed radio button.

2. Click the EBJAR node, and then click the Message Destinations tab and
select PhysicalTopic. You will see that MessageBean now appears in the
Consumers area.

Packaging the Application Client
To package the application client, perform the following steps:

1. Choose File→New→Application Client to start the Application Client
wizard. Then click Next.

2. In the JAR File Contents screen:

a. Verify that Create New AppClient Module in Application is selected
and that the application is ClientSessionMDBApp.

b. In the AppClient Display Name field, type MyAppClient.

c. Click the Edit Contents button.

d. In the dialog box, locate the build/client/ directory. Select MyApp-
Client.class from the Available Files tree. Click Add and then OK.

3. In the General screen, select client.MyAppClient from the Main Class
drop-down list.

After you finish the wizard, click the EJB Ref’s tab, and then click Add in the
inspector pane. In the dialog box, do the following:

1. Type ejb/remote/Publisher in the Coded Name field.

2. Choose Session from the EJB Type drop-down list.

A J2EE APPLICATION THAT USES THE JMS API WITH A SESSION BEAN 1265
3. Choose Remote from the Interfaces drop-down list.

4. Choose sb.PublisherHome from the Home Interface combo box.

5. Choose sb.PublisherRemote from the Local/Remote Interface combo
box.

6. In the Target EJB area, select JNDI Name and choose PublisherBean

from the combo box.

Updating the JNDI Names
You need to update the JNDI name for the message-driven bean so that it speci-
fies the destination it receives messages from.

1. Select ClientSessionMDBApp and click Sun-specific Settings on the Gen-
eral screen.

2. Type jms/Topic in the JNDI Name field for the MessageBean component.

Verify that the JNDI names for the application components are correct. They
should appear as shown in Tables 34–1 and 34–2.

Deploying the Application
1. Choose File→Save to save the application.

Table 34–1 Application Pane for ClientSessionMDBApp

Component Type Component JNDI Name

EJB MessageBean jms/Topic

EJB PublisherBean PublisherBean

Table 34–2 References Pane for ClientSessionMDBApp

Ref. Type Referenced By Reference Name JNDI Name

EJB Ref MyAppClient ejb/remote/Publisher PublisherBean

Resource PublisherBean
jms/MyConnectionFac-
tory

jms/Connection-
Factory

1266
2. Choose Tools→Deploy.

3. In the dialog box, type your administrative user name and password (if they
are not already filled in).

4. In the Application Client Stub Directory area, select the Return Client Jar
checkbox. If you wish to run the client in a directory other than the default,
click Browse and use the file chooser to specify it.

5. Click OK.

6. In the Distribute Module dialog box, click Close when the process com-
pletes. You will find a file named ClientSessionMDBAppClient.jar in
the specified directory.

Running the Application Client
To run the client, use the following command:

appclient -client ClientSessionMDBAppClient.jar

The program output in the terminal window looks like this:

Looking up EJB reference
Looked up home
Narrowed home
Got the EJB
To view the bean output,
 check <install_dir>/domains/domain1/logs/server.log.

The output from the enterprise beans appears in the server log (<J2EE_HOME>/
domains/domain1/logs/server.log), wrapped in logging information. The
Publisher session bean sends two sets of 18 messages numbered 0 through 17.
Because of the message selector, the message-driven bean receives only the mes-
sages whose NewsType property is Sports or Opinion.

Suppose that the last few messages from the Publisher session bean look like
this:

PUBLISHER: Setting message text to: Item 12: Business
PUBLISHER: Setting message text to: Item 13: Opinion
PUBLISHER: Setting message text to: Item 14: Living/Arts
PUBLISHER: Setting message text to: Item 15: Sports
PUBLISHER: Setting message text to: Item 16: Living/Arts
PUBLISHER: Setting message text to: Item 17: Living/Arts

A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN 1267
Because of the message selector, the last messages received by the message-
driven bean will be the following:

MESSAGE BEAN: Message received: Item 13: Opinion
MESSAGE BEAN: Message received: Item 15: Sports

If you like, you can rewrite the message selector to receive different messages.

Undeploy the application after you finish running the client.

A J2EE Application That Uses the JMS
API with an Entity Bean

This section explains how to write, compile, package, deploy, and run a J2EE
application that uses the JMS API with an entity bean. The application uses the
following components:

• An application client that both sends and receives messages

• Two message-driven beans

• An entity bean that uses container-managed persistence

This section covers the following topics:

• Overview of the Human Resources Application

• Writing the Application Components

• Creating and Packaging the Application

• Deploying the Application

• Running the Application Client

You will find the source files for this section in the directory <INSTALL>/

j2eetutorial14/examples/jms/clientmdbentity/. Path names in this sec-
tion are relative to this directory.

Overview of the Human Resources
Application
This application simulates, in a simplified way, the work flow of a company’s
human resources (HR) department when it processes a new hire. This application

1268
also demonstrates how to use the J2EE platform to accomplish a task that many
JMS client applications perform.

A JMS client must often wait for several messages from various sources. It then
uses the information in all these messages to assemble a message that it then
sends to another destination. The common term for this process is joining mes-
sages. Such a task must be transactional, with all the receives and the send as a
single transaction. If not all the messages are received successfully, the transac-
tion can be rolled back. For a client example that illustrates this task, see A Local
Transaction Example (page 1242).

A message-driven bean can process only one message at a time in a transaction.
To provide the ability to join messages, a J2EE application can have the mes-
sage-driven bean store the interim information in an entity bean. The entity bean
can then determine whether all the information has been received; when it has,
the entity bean can create and send the message to the other destination. After it
has completed its task, the entity bean can remove itself.

The basic steps of the application are as follows.

1. The HR department’s application client generates an employee ID for each
new hire and then publishes a message (M1) containing the new hire’s
name and employee ID. The client then creates a temporary queue, Reply-
Queue, with a message listener that waits for a reply to the message. (See
Creating Temporary Destinations, page 1235, for more information.)

2. Two message-driven beans process each message: One bean, OfficeMDB,
assigns the new hire’s office number, and the other bean, EquipmentMDB,
assigns the new hire’s equipment. The first bean to process the message
creates an entity bean named SetupOffice to store the information it has
generated. The second bean locates the existing entity bean and adds its
information.

3. When both the office and the equipment have been assigned, the entity
bean sends to the reply queue a message (M2) describing the assignments.
Then it removes itself. The application client’s message listener retrieves
the information.

Figure 34–2 illustrates the structure of this application. Of course, an actual HR
application would have more components; other beans could set up payroll and
benefits records, schedule orientation, and so on.

A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN 1269
Figure 34–2 A J2EE Application: Client to Message-Driven Beans to Entity Bean

Writing the Application Components
Writing the components of the application involves the following:

• Coding the Application Client: HumanResourceClient.java

• Coding the Message-Driven Beans

• Coding the Entity Bean

Coding the Application Client:
HumanResourceClient.java
The application client program, src/HumanResourceClient.java, performs the
following steps:

1. Uses the JNDI naming context java:comp/env to look up a Connection-

Factory and a topic

../examples/jms/clientmdbentity/src/HumanResourceClient.java

1270
2. Creates a TemporaryQueue to receive notification of processing that
occurs, based on new-hire events it has published

3. Creates a MessageConsumer for the TemporaryQueue, sets the Message-

Consumer’s message listener, and starts the connection

4. Creates a MessageProducer and a MapMessage

5. Creates five new employees with randomly generated names, positions,
and ID numbers (in sequence) and publishes five messages containing this
information

The message listener, HRListener, waits for messages that contain the assigned
office and equipment for each employee. When a message arrives, the message
listener displays the information received and determines whether all five mes-
sages have arrived. When they have, the message listener notifies the main pro-
gram, which then exits.

Coding the Message-Driven Beans
This example uses two message-driven beans: src/ReserveEquipmentMsg-

Bean.java and src/ReserveOfficeMsgBean.java. The beans take the follow-
ing steps.

1. The ejbCreate method gets a handle to the local home interface of the
entity bean.

2. The onMessage method retrieves the information in the message. The
ReserveEquipmentMsgBean’s onMessage method chooses equipment,
based on the new hire’s position; the ReserveOfficeMsgBean’s onMes-

sage method randomly generates an office number.

3. After a slight delay to simulate real world processing hitches, the onMes-

sage method calls a helper method, compose.

4. The compose method either creates or finds, by primary key, the SetupOf-
fice entity bean and uses it to store the equipment or the office informa-
tion in the database.

Coding the Entity Bean
The SetupOffice bean is an entity bean that uses a local interface. The local
interface means that the entity bean and the message-driven beans run in the

../examples/jms/clientmdbentity/src/ReserveEquipmentMsgBean.java
../examples/jms/clientmdbentity/src/ReserveEquipmentMsgBean.java
../examples/jms/clientmdbentity/src/ReserveOfficeMsgBean.java

A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN 1271
same Java virtual machine (JVM) for maximum efficiency. The entity bean has
these components:

• The local home interface, SetupOfficeLocalHome.java

• The local interface, SetupOfficeLocal.java

• The bean class, SetupOfficeBean.java

The local home interface source file is src/SetupOfficeLocalHome.java. It
declares the create method, called createLocal (because the bean uses a local
interface), and one finder method, findByPrimaryKey.

The local interface, src/SetupOfficeLocal.java, declares several business
methods that get and manipulate new-hire data.

The bean class, src/SetupOfficeBean.java, implements the business methods
and their helper method, checkIfSetupComplete. The bean class also imple-
ments the required methods ejbCreateLocal, ejbPostCreateLocal, setEnti-
tyContext, unsetEntityContext, ejbRemove, ejbActivate, ejbPassivate,
ejbLoad, and ejbStore.

The only methods called by the message-driven beans are the business methods
declared in the local interface, along with the findByPrimaryKey and create-

Local methods declared in the local home interface. The entity bean uses con-
tainer-managed persistence, so all database calls are generated automatically.

Creating and Packaging the Application
This example uses a connection factory named jms/TopicConnectionFactory

and a topic named jms/Topic, both of which you created in Chapter 33. (See
Creating JMS Administered Objects, page 1212, for instructions.) It also uses a
JDBC resource named jdbc/__default, which is enabled by default when you
start the Application Server.

Creating and packaging this application involve seven steps:

1. Starting the Derby server

2. Compiling the source files

3. Creating the application

4. Packaging the entity bean

5. Packaging the message-driven beans

6. Packaging the application client

7. Updating the JNDI names

../examples/jms/clientmdbentity/src/SetupOfficeLocalHome.java
../examples/jms/clientmdbentity/src/SetupOfficeLocal.java
../examples/jms/clientmdbentity/src/SetupOfficeBean.java

1272
You can package the application yourself as an exercise. Use the asant build

target to compile the source files.

This section uses the prepackaged EAR file to show how to create and package
the application.

Examining the Application
1. In deploytool, open the ClientMDBEntityApp.ear file, which resides in

the directory <INSTALL>/j2eetutorial14/examples/jms/provided-

ears.

2. Expand the EBJAR node and select the entity bean SetupOffice.

a. In the General tab, notice that the bean, SetupOffice, uses local inter-
faces. The local home interface is eb.SetupOfficeLocalHome; the
local interface is eb.SetupOfficeLocal; and the bean class is
eb.SetupOfficeBean.

b. Click the Entity tab. The bean uses container-managed persistence. All
six fields in the bean class are persisted. The abstract schema name is
the same as the bean name. The primary key class is an existing field,
employeeId.

c. In the Entity screen, click CMP Database (Sun-specific). The applica-
tion uses the preconfigured jdbc/__default JDBC resource.

d. Click the Resource Ref’s tab. The bean uses the connection factory jms/

ConnectionFactory to send reply messages to the application client.
The application looks up the coded name jms/MyConnectionFactory

and casts the object to an object of type javax.jms.ConnectionFac-

tory. The bean does not specify any message destination references,
however, because it uses a temporary destination for the reply messages.

3. Select either of the message-driven beans: EquipmentMDB or OfficeMDB.
They are configured identically.

a. Click the Message-Driven tab. The beans use the destination type
javax.jms.Topic, the target message destination PhysicalTopic, and
the connection factory jms/ConnectionFactory.

b. Click the EJB Ref’s tab. Both beans reference the entity bean using local
references. The coded name is ejb/local/SetupOffice. The Target
EJB is the enterprise bean name.

A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN 1273
4. Select the HumanResourceClient node.

a. Click the Resource Ref’s tab. The client uses the connection factory
jms/ConnectionFactory both to send messages to a topic and to
receive messages from a temporary queue. The application looks up the
coded name jms/MyConnectionFactory and casts the object to an
object of type javax.jms.ConnectionFactory.

b. Click the Msg Dest Ref’s tab. The coded name jms/NewHireTopic

refers to the target destination PhysicalTopic, of type
javax.jms.Topic. The usage is set to Produces.

c. Click the Message Destinations tab, and then click PhysicalTopic.
The client appears in the Producers area, and the message-driven beans
appear in the Consumers area. The destination name refers to the JNDI
name jms/Topic.

5. Notice that for all the bean components, the Transactions tab is set to Con-
tainer-Managed.

6. Select the ClientMDBEntityApp node and click the Sun-specific Settings
button. On the JNDI Names screen, the JNDI name for the message-driven
beans is the topic destination resource, jms/Topic.

Verify that the JNDI names for the application components are correct. They
should appear as shown in Tables 34–3 and 34–4.

Table 34–3 Application Pane for ClientMDBEntityApp

Component Type Component JNDI Name

EJB EquipmentMDB jms/Topic

EJB OfficeMDB jms/Topic

Table 34–4 References Pane for ClientMDBEntityApp

Ref. Type Referenced By Reference Name JNDI Name

Resource
HumanResourceCli-
ent

jms/MyConnection-
Factory

jms/Connection-
Factory

Resource SetupOffice
jms/MyConnection-
Factory

jms/Connection-
Factory

1274
Deploying the Application
1. Start the Derby server, if it is not already running. For instructions, see

Starting and Stopping the Derby Database Server (page 29).

2. Save the application.

3. Deploy the application. Select the Return Client Jar checkbox.

You will find a file named ClientMDBEntityAppClient.jar in the provided-

ears directory.

Running the Application Client
To run the client, use the following command:

appclient -client ClientMDBEntityAppClient.jar

The program output in the terminal window looks something like this:

PUBLISHER: Setting hire ID to 25, name Gertrude Bourbon,
position Senior Programmer
PUBLISHER: Setting hire ID to 26, name Jack Verdon, position
Manager
PUBLISHER: Setting hire ID to 27, name Fred Tudor, position
Manager
PUBLISHER: Setting hire ID to 28, name Fred Martin, position
Programmer
PUBLISHER: Setting hire ID to 29, name Mary Stuart, position
Manager
Waiting for 5 message(s)
New hire event processed:
 Employee ID: 25
 Name: Gertrude Bourbon
 Equipment: Laptop
 Office number: 183
Waiting for 4 message(s)
New hire event processed:
 Employee ID: 26
 Name: Jack Verdon
 Equipment: Pager
 Office number: 20
Waiting for 3 message(s)
New hire event processed:
 Employee ID: 27
 Name: Fred Tudor

AN APPLICATION EXAMPLE THAT CONSUMES MESSAGES FROM A REMOTE J2EE SERVER 1275
 Equipment: Pager
 Office number: 51
Waiting for 2 message(s)
New hire event processed:
 Employee ID: 28
 Name: Fred Martin
 Equipment: Desktop System
 Office number: 141
Waiting for 1 message(s)
New hire event processed:
 Employee ID: 29
 Name: Mary Stuart
 Equipment: Pager
 Office number: 238

The output from the enterprise beans appears in the server log, wrapped in log-
ging information. For each employee, the application first creates the entity bean
and then finds it. You may see runtime errors in the server log, and transaction
rollbacks may occur. The errors occur if both of the message-driven beans dis-
cover at the same time that the entity bean does not yet exist, so they both try to
create it. The first attempt succeeds, but the second fails because the bean
already exists. After the rollback, the second message-driven bean tries again
and succeeds in finding the entity bean. Container-managed transactions allow
the application to run correctly, in spite of these errors, with no special program-
ming.

Undeploy the application after you finish running the client.

An Application Example That
Consumes Messages from a Remote
J2EE Server

This section and the following section explain how to write, compile, package,
deploy, and run a pair of J2EE applications that run on two J2EE servers and that
use the JMS API to interchange messages with each other. It is a common prac-
tice to deploy different components of an enterprise application on different sys-
tems within a company, and these examples illustrate on a small scale how to do
this for an application that uses the JMS API.

However, the two examples work in slightly different ways. In this first example,
the deployment information for a message-driven bean specifies the remote

1276
server from which it will consume messages. In the next example, the same bean
is deployed on two different servers, so it is the client application that specifies
the servers (one local, one remote) to which it is sending messages.

This first example divides the example in Chapter 28 into two applications: one
containing the application client, and the other containing the message-driven
bean.

This section covers the following topics:

• Overview of the Applications

• Writing the Application Components

• Creating and Packaging the Applications

• Deploying the Applications

• Running the Application Client

You will find the source files for this section in <INSTALL>/j2eetutorial14/

examples/jms/consumeremote/. Path names in this section are relative to this
directory.

Overview of the Applications
Except for the fact that it is packaged as two separate applications, this example
is very similar to the one in Chapter 28:

• One application contains the application client, which runs on the remote
server and sends three messages to a queue.

• The other application contains the message-driven bean, which consumes
the messages from the queue on the remote server.

The basic steps of the applications are as follows.

1. The administrator starts two J2EE servers, one on each system.

2. On the remote server, the administrator deploys the client application.

3. On the local server, the administrator deploys the message-driven bean
application, which uses a connection factory that specifies the remote
server where the client is deployed.

4. The client application sends three messages to a queue.

5. The message-driven bean consumes the messages.

Figure 34–3 illustrates the structure of this application. You can see that it is
almost identical to Figure 28–1 except that there are two J2EE servers. The

AN APPLICATION EXAMPLE THAT CONSUMES MESSAGES FROM A REMOTE J2EE SERVER 1277
queue used is the one on the remote server; the queue must also exist on the local
server for JNDI lookups to succeed.

Figure 34–3 A J2EE Application That Consumes Messages from a Remote Server

Writing the Application Components
Writing the components of the applications involves

• Coding the application client

• Coding the message-driven bean

The application client, jupiterclient/src/SimpleClient.java, is almost
identical to the one in The Application Client (page 1034).

Similarly, the message-driven bean, earthmdb/src/MessageBean.java, is
almost identical to the one in The Message-Driven Bean Class (page 1035).

The only major difference is that the client and the bean are packaged in two sep-
arate applications.

Creating and Packaging the
Applications
For this example, the message-driven bean uses the connection factory named
jms/JupiterConnectionFactory, which you created in Creating Administered
Objects for Multiple Systems (page 1224). Use the Admin Console to verify that
the connection factory still exists and that its AddressList property is set to the
name of the remote system.

../examples/jms/consumeremote/jupiterclient/src/SimpleClient.java
../examples/jms/consumeremote/earthmdb/src/MessageBean.java

1278
The application client can use any connection factory that exists on the remote
server; you created jms/JupiterConnectionFactory on that server, so you can
use that. Both components use the queue named jms/Queue, which you created
in Creating JMS Administered Objects (page 1212).

We’ll assume, as we did in Running JMS Client Programs on Multiple
Systems (page 1223), that the two servers are named earth and jupiter.

Creating and packaging this application involve five steps:

1. Compiling the source files

2. Creating the application

3. Packaging the application client

4. Packaging the message-driven bean

5. Verifying the JNDI names

You can package the applications yourself as an exercise. Use the asant build

targets in the jupiterclient and earthmdb directories to compile the source
files.

This section uses the prepackaged EAR files to show how to create and package
the applications.

Which system you use to package and deploy the applications and which system
you use to run the client depend on your network configuration—which file sys-
tem you can access remotely. These instructions assume that you can access the
file system of jupiter from earth but cannot access the file system of earth
from jupiter. (You can use the same systems for jupiter and earth that you
used in Running JMS Client Programs on Multiple Systems, page 1223.)

The Application Server must be running on both systems.

You can package both applications on earth and deploy them from there. The
only action you perform on jupiter is running the client application.

Examining the Applications
1. In deploytool, on earth, open the two EAR files JupiterClient-

App.ear and EarthMDBApp.ear, which reside in the directory <INSTALL>/

j2eetutorial14/jms/provided-ears.

AN APPLICATION EXAMPLE THAT CONSUMES MESSAGES FROM A REMOTE J2EE SERVER 1279
2. In JupiterClientApp.ear, select the application client node, SimpleCli-
ent.

a. Click the Resource Ref’s tab. The client uses the connection factory
jms/JupiterConnectionFactory to send messages to a queue. The
application looks up the coded name jms/MyConnectionFactory and
casts the object to an object of type javax.jms.ConnectionFactory.

b. Click the Msg Dest Ref’s tab. The coded name jms/QueueName refers
to the target destination PhysicalQueue. Its type is javax.jms.Queue,
and its usage is set to Produces.

c. Click the Message Destinations tab, and then click PhysicalQueue. The
client appears in the Producers area. It refers to the JNDI name jms/

Queue.

3. In EarthMDBApp.ear, expand the MDBJAR node and select MessageBean.

a. Click the Message-Driven tab. The bean uses the PhysicalQueue target
destination and the connection factory jms/JupiterConnectionFac-

tory.

b. Click the Transactions tab. The bean uses container-managed transac-
tions.

4. Select the MDBJAR node, click the Message Destinations tab, and then click
PhysicalQueue. The message-driven bean appears in the Consumers area.
The destination refers to the JNDI name jms/Queue.

5. Select the EarthMDBApp node and click Sun-specific Settings on the Gen-
eral page. The JNDI name for the message-driven bean is the queue desti-
nation resource, jms/Queue.

The JNDI name for the EarthMDBApp application should appear as shown in
Table 34–5. Only the Application pane has any content.

Table 34–5 Application Pane for EarthMDBApp

Component Type Component JNDI Name

EJB MessageBean jms/Queue

1280
The JNDI name for the JupiterClientApp application should appear as shown
in Table 34–6. Only the References pane has any content.

Deploying the Applications
To deploy the EarthMDBApp application, perform the following steps:

1. Verify that localhost is the current target server.

2. Save the application.

3. Choose Tools→Deploy.

4. Type your administrative user name and password (if they are not already
filled in) and click OK.

5. In the Distribute Module dialog box, click Close when the process com-
pletes.

Before you can deploy the JupiterClientApp application, you must add the
remote server. On earth, perform the following steps:

1. Choose File→Add Server.

2. Type the name of the remote system in the Server Name field.

3. Click OK.

4. The server appears in the tree under Servers. Select it.

5. In the Connect to Server dialog box that appears, type the administrative
user name and password for the server in the Connection Settings area, and
click OK.

To deploy the JupiterClientApp application and save the client JAR file, per-
form the following steps:

1. Make the remote server the current target server:

a. Select the remote server.

b. Choose File→Set Current Target Server.

Table 34–6 References Pane for JupiterClientApp

Ref. Type Referenced By Reference Name JNDI Name

Resource SimpleClient
jms/MyConnection-
Factory

jms/JupiterConnec-
tionFactory

AN APPLICATION EXAMPLE THAT CONSUMES MESSAGES FROM A REMOTE J2EE SERVER 1281
2. Save the application.

3. Choose Tools→Deploy.

4. Type your administrative user name and password (if they are not already
filled in).

5. In the Application Client Stub Directory area, select the Return Client Jar
checkbox.

6. Choose Browse to navigate to the directory on the remote system (jupi-
ter) from which you will run the client. When you reach the directory,
click Select, and then click OK.

7. Click OK.

8. In the Distribute Module dialog box, click Close when the process com-
pletes. You will find a file named JupiterClientAppClient.jar in the
specified directory.

Running the Application Client
To run the client, perform the following steps:

1. Go to the directory on the remote system (jupiter) where you created the
client JAR file.

2. Use the following command:
appclient -client JupiterClientAppClient.jar

On jupiter, the output of the appclient command looks like this:

Sending message: This is message 1
Sending message: This is message 2
Sending message: This is message 3

On earth, the output in the server log looks something like this (wrapped in log-
ging information):

In MessageBean.MessageBean()
In MessageBean.setMessageDrivenContext()
In MessageBean.ejbCreate()
MESSAGE BEAN: Message received: This is message 1
MESSAGE BEAN: Message received: This is message 2
MESSAGE BEAN: Message received: This is message 3

Undeploy the applications after you finish running the client.

1282
An Application Example That Deploys
a Message-Driven Bean on Two J2EE
Servers

This section, like the preceding one, explains how to write, compile, package,
deploy, and run a pair of J2EE applications that use the JMS API and run on two
J2EE servers. The applications are slightly more complex than the ones in the
first example.

The applications use the following components:

• An application client that is deployed on the local server. It uses two con-
nection factories—one ordinary one and one that is configured to commu-
nicate with the remote server—to create two publishers and two
subscribers and to publish and to consume messages.

• A message-driven bean that is deployed twice: once on the local server,
and once on the remote one. It processes the messages and sends replies.

In this section, the term local server means the server on which both the applica-
tion client and the message-driven bean are deployed (earth in the preceding
example). The term remote server means the server on which only the message-
driven bean is deployed (jupiter in the preceding example).

The section covers the following topics:

• Overview of the Applications

• Writing the Application Components

• Creating and Packaging the Applications

• Deploying the Applications

• Running the Application Client

You will find the source files for this section in <INSTALL>/j2eetutorial14/

examples/jms/sendremote/. Path names in this section are relative to this
directory.

Overview of the Applications
This pair of applications is somewhat similar to the applications in An Applica-
tion Example That Consumes Messages from a Remote J2EE
Server (page 1275) in that the only components are a client and a message-

AN APPLICATION EXAMPLE THAT DEPLOYS A MESSAGE-DRIVEN BEAN ON TWO J2EE SERVERS 1283
driven bean. However, the applications here use these components in more com-
plex ways. One application consists of the application client. The other applica-
tion contains only the message-driven bean and is deployed twice, once on each
server.

The basic steps of the applications are as follows.

1. You start two J2EE servers, one on each system.

2. On the local server (earth), you create two connection factories: one local
and one that communicates with the remote server (jupiter). On the
remote server, you create a connection factory that has the same name.

3. The application client looks up the two connection factories—the local one
and the one that communicates with the remote server—to create two con-
nections, sessions, publishers, and subscribers. The subscribers use a mes-
sage listener.

4. Each publisher publishes five messages.

5. Each of the local and the remote message-driven beans receives five mes-
sages and sends replies.

6. The client’s message listener consumes the replies.

Figure 34–4 illustrates the structure of this application. M1 represents the first
message sent using the local connection factory, and RM1 represents the first
reply message sent by the local MDB. M2 represents the first message sent using
the remote connection factory, and RM2 represents the first reply message sent
by the remote MDB.

1284
Figure 34–4 A J2EE Application That Sends Messages to Two Servers

Writing the Application Components
Writing the components of the applications involves two tasks:

• Coding the Application Client: MultiAppServerClient.java

• Coding the Message-Driven Bean: ReplyMsgBean.java

Coding the Application Client:
MultiAppServerClient.java
The application client class, multiclient/src/MultiAppServerClient.java,
does the following.

1. It uses the JNDI naming context java:comp/env to look up two connec-
tion factories and a topic.

2. For each connection factory, it creates a connection, a publisher session, a
publisher, a subscriber session, a subscriber, and a temporary topic for
replies.

../examples/jms/sendremote/multiclient/src/MultiAppServerClient.java

AN APPLICATION EXAMPLE THAT DEPLOYS A MESSAGE-DRIVEN BEAN ON TWO J2EE SERVERS 1285
3. Each subscriber sets its message listener, ReplyListener, and starts the
connection.

4. Each publisher publishes five messages and creates a list of the messages
the listener should expect.

5. When each reply arrives, the message listener displays its contents and
removes it from the list of expected messages.

6. When all the messages have arrived, the client exits.

Coding the Message-Driven Bean:
ReplyMsgBean.java
The onMessage method of the message-driven bean class, replybean/src/

ReplyMsgBean.java, does the following:

1. Casts the incoming message to a TextMessage and displays the text

2. Creates a connection, a session, and a publisher for the reply message

3. Publishes the message to the reply topic

4. Closes the connection

On both servers, the bean will consume messages from the topic jms/Topic.

Creating and Packaging the
Applications
This example uses the connection factory named jms/ConnectionFactory and
the topic named jms/Topic. These objects must exist on both the local and the
remote servers. If you need to, you can create the objects there using the Admin
Console, as described in Creating JMS Administered Objects (page 1212).

This example uses an additional connection factory, jms/JupiterConnection-
Factory, which communicates with the remote system; you created it in Creat-
ing Administered Objects for Multiple Systems (page 1224). This connection
factory needs exist only on the local server.

Creating and packaging this application involve six steps:

1. Creating the connection factories

2. Compiling the source files

3. Creating the applications

../examples/jms/sendremote/replybean/src/ReplyMsgBean.java
../examples/jms/sendremote/replybean/src/ReplyMsgBean.java

1286
4. Packaging the application client

5. Packaging the message-driven bean

6. Updating the JNDI names

You can package the applications yourself as an exercise. Use the asant build

targets in the multiclient and replybean directories to compile the source
files.

This section uses the prepackaged EAR files to show how to create and package
the applications. You can use the systems earth and jupiter for the local and
remote systems.

The Application Server must be running on both systems. You package, deploy,
and run the application from the local system.

Examining the Applications
1. In deploytool, on the local system, open the two EAR files Multi-

ClientApp.ear and ReplyBeanApp.ear, which reside in the directory
<INSTALL>/j2eetutorial14/jms/provided-ears.

2. In MultiClientApp.ear, select the application client node, MultiApp-
ServerClient.

a. Click the Resource Ref’s tab. The client looks up two connection facto-
ries and casts them to objects of type javax.jms.ConnectionFactory.
The coded name jms/ConnectionFactory1 refers to jms/Connec-

tionFactory, and the coded name jms/ConnectionFactory2 refers to
jms/JupiterConnectionFactory.

b. Click the Msg Dest Ref’s tab. The coded name jms/TopicName refers
to the target destination PhysicalTopic. Its type is javax.jms.Topic,
and its usage is set to Produces.

c. Click the Message Destinations tab, and then click PhysicalTopic. The
client appears in the Producers area. It refers to the JNDI name jms/

Topic. This is the destination where messages are sent. Replies will
come to a temporary destination.

3. In ReplyBeanApp.ear, expand the MDBJAR node and select ReplyMsgBean.

a. Click the Message-Driven tab. The bean uses the PhysicalTopic target
destination and the connection factory jms/ConnectionFactory.

b. Click the Resource Ref’s tab. The bean uses the connection factory jms/

ConnectionFactory to send reply messages. The bean looks up the

AN APPLICATION EXAMPLE THAT DEPLOYS A MESSAGE-DRIVEN BEAN ON TWO J2EE SERVERS 1287
coded name jms/MyConnectionFactory and casts the object to an
object of type javax.jms.ConnectionFactory. The bean does not
look up a topic for the reply messages; instead, it uses the temporary
topic specified in the incoming message’s JMSReplyTo header field.

c. Click the Transactions tab. The bean uses container-managed transac-
tions.

4. Select the MDBJAR node, click the Message Destinations tab, and then click
PhysicalTopic. The message-driven bean appears in the Consumers area.
The destination refers to the JNDI name jms/Topic.

5. Select the ReplyBeanApp node and click Sun-specific Settings on the Gen-
eral page. The JNDI name for the message-driven bean is the topic desti-
nation resource, jms/Topic.

Verify that the JNDI names for the applications are correct.

The Application pane for ReplyBeanApp should appear as shown in Table 34–7.

The References pane for ReplyBeanApp should appear as shown in Table 34–8.

Select the MultiClientApp application and click the JNDI Names tab.

Table 34–7 Application Pane for ReplyBeanApp

Component Type Component JNDI Name

EJB ReplyMsgBean jms/Topic

Table 34–8 References Pane for ReplyBeanApp

Ref. Type Referenced By Reference Name JNDI Name

Resource ReplyMsgBean
jms/MyConnection-
Factory

jms/ConnectionFac-
tory

1288
The JNDI names for the application should appear as shown in Table 34–9. Only
the References pane has any content.

Deploying the Applications
To deploy the MultiClientApp application and the ReplyBeanApp application
on the local server, perform the following steps for each application:

1. Make localhost the current target server by selecting it and choosing
File→Set Current Target Server.

2. Save the application.

3. Choose Tools→Deploy.

4. Type your administrative user name and password (if they are not already
filled in).

5. For the MultiClientApp application, select the Return Client Jar check-
box in the Application Client Stub Directory area. If you wish to run the
client in a directory other than the default, click Browse and use the file
chooser to specify it.

6. Click OK.

7. In the Distribute Module dialog box, click Close when the process com-
pletes. For the MultiClientApp application, you will find a file named
MultiClientAppClient.jar in the specified directory.

Before you can deploy the ReplyBeanApp application on the remote server, you
must add the remote server. If you did not do so before, perform the following
steps:

1. Choose File→Add Server.

2. Type the name of the server in the Server Name field, and click OK.

Table 34–9 References Pane for MultiClientApp

Ref. Type Referenced By Reference Name JNDI Name

Resource
MultiAppServ-
erClient

jms/
ConnectionFactory1

jms/ConnectionFac-
tory

Resource
MultiAppServ-
erClient

jms/
ConnectionFactory2

jms/JupiterConnec-
tionFactory

AN APPLICATION EXAMPLE THAT DEPLOYS A MESSAGE-DRIVEN BEAN ON TWO J2EE SERVERS 1289
3. The server appears in the tree under Servers. Select it.

4. In the dialog box that appears, type the administrative user name and pass-
word for the server in the Connection Settings area, and click OK.

To deploy the ReplyBeanApp application on the remote server, perform the fol-
lowing steps:

1. Make the remote server the current target server by selecting it and choos-
ing File→Set Current Target Server.

2. Select the application.

3. Choose Tools→Deploy.

4. Type your administrative user name and password (if they are not already
filled in), and click OK.

5. In the Distribute Module dialog box, click Close when the process com-
pletes.

Running the Application Client
To run the client, use the following command:

appclient -client MultiClientAppClient.jar

On the local system, the output of the appclient command looks something like
this:

Sent message: text: id=1 to local app server
Sent message: text: id=2 to remote app server
ReplyListener: Received message: id=1, text=ReplyMsgBean
processed message: text: id=1 to local app server
Sent message: text: id=3 to local app server
ReplyListener: Received message: id=3, text=ReplyMsgBean
processed message: text: id=3 to local app server
ReplyListener: Received message: id=2, text=ReplyMsgBean
processed message: text: id=2 to remote app server
Sent message: text: id=4 to remote app server
ReplyListener: Received message: id=4, text=ReplyMsgBean
processed message: text: id=4 to remote app server
Sent message: text: id=5 to local app server
ReplyListener: Received message: id=5, text=ReplyMsgBean
processed message: text: id=5 to local app server
Sent message: text: id=6 to remote app server
ReplyListener: Received message: id=6, text=ReplyMsgBean
processed message: text: id=6 to remote app server

1290
Sent message: text: id=7 to local app server
ReplyListener: Received message: id=7, text=ReplyMsgBean
processed message: text: id=7 to local app server
Sent message: text: id=8 to remote app server
ReplyListener: Received message: id=8, text=ReplyMsgBean
processed message: text: id=8 to remote app server
Sent message: text: id=9 to local app server
ReplyListener: Received message: id=9, text=ReplyMsgBean
processed message: text: id=9 to local app server
Sent message: text: id=10 to remote app server
ReplyListener: Received message: id=10, text=ReplyMsgBean
processed message: text: id=10 to remote app server
Waiting for 0 message(s) from local app server
Waiting for 0 message(s) from remote app server
Finished
Closing connection 1
Closing connection 2

On the local system, where the message-driven bean receives the odd-numbered
messages, the output in the server log looks like this (wrapped in logging infor-
mation):

In ReplyMsgBean.ReplyMsgBean()
In ReplyMsgBean.setMessageDrivenContext()
In ReplyMsgBean.ejbCreate()
ReplyMsgBean: Received message: text: id=1 to local app server
ReplyMsgBean: Received message: text: id=3 to local app server
ReplyMsgBean: Received message: text: id=5 to local app server
ReplyMsgBean: Received message: text: id=7 to local app server
ReplyMsgBean: Received message: text: id=9 to local app server

On the remote system, where the bean receives the even-numbered messages, the
output in the server log looks like this (wrapped in logging information):

In ReplyMsgBean.ReplyMsgBean()
In ReplyMsgBean.setMessageDrivenContext()
In ReplyMsgBean.ejbCreate()
ReplyMsgBean: Received message: text: id=2 to remote app server
ReplyMsgBean: Received message: text: id=4 to remote app server
ReplyMsgBean: Received message: text: id=6 to remote app server
ReplyMsgBean: Received message: text: id=8 to remote app server
ReplyMsgBean: Received message: text: id=10 to remote app server

Undeploy the applications after you finish running the client.

35
1291
The Coffee Break
Application

This chapter describes the Coffee Break application, a set of web applications
that demonstrate how to use several of the Java Web services APIs together. The
Coffee Break sells coffee on the Internet. Customers communicate with the Cof-
fee Break server to order coffee online. There are two versions of the Coffee
Break server that you can run: One version consists of Java servlets, JSP pages,
and JavaBeans components; the second version uses JavaServer Faces technol-
ogy as well as Java servlets, JSP pages, and JavaBeans components. Using either
version, a customer enters the quantity of each coffee to order and clicks the
Submit button to send the order.

The Coffee Break does not maintain any inventory. It handles customer and
order management and billing. Each order is filled by forwarding suborders to
one or more coffee suppliers. This process is depicted in Figure 35–1.

1292
Figure 35–1 Coffee Break Application Flow

Both versions of the Coffee Break server obtain the coffee varieties and their
prices by querying suppliers at startup and on demand.

1. The Coffee Break servers use SAAJ messaging to communicate with one
of the suppliers. The Coffee Break has been dealing with this supplier for
some time and has previously made the necessary arrangements for doing
request-response SAAJ messaging. The two parties have agreed to
exchange four kinds of XML messages and have set up the DTDs those
messages will follow.

2. The Coffee Break servers use JAXR to send a query searching for coffee
suppliers that support JAX-RPC to a registry server.

3. The Coffee Break servers request price lists from each of the coffee sup-
pliers. The servers make the appropriate remote procedure calls and wait
for the response, which is a JavaBeans component representing a price list.
The SAAJ supplier returns price lists as XML documents.

4. Upon receiving the responses, the Coffee Break servers process the price
lists from the JavaBeans components returned by calls to the suppliers.

5. The Coffee Break servers create a local database of suppliers.

COMMON CODE 1293
6. When an order is placed, suborders are sent to one or more suppliers using
the supplier’s preferred protocol.

Common Code
The Coffee Break servers share the CoffeeBreak.properties file, which con-
tains the URLs exposed by the JAX-RPC and SAAJ suppliers as well as values
used by the JAXR components of the service; the URLHelper class, which is used
by the server and client classes to retrieve the URLs; the DateHelper utility
class; and the following JavaBeans components:

• AddressBean: shipping information for customer

• ConfirmationBean: order id and ship date

• CustomerBean: customer contact information

• LineItemBean: order item

• OrderBean: order id, customer, address, list of line items, total price

• PriceItemBean: price list entry (coffee name and wholesale price)

• PriceListBean: price list

The source code for the shared files is in the <INSTALL>/j2eetutorial14/

examples/cb/common/src/com/sun/cb/ directory.

JAX-RPC Coffee Supplier Service
The Coffee Break servers are clients of the JAX-RPC coffee supplier service.
The service code consists of the service interface, the service implementation
class, and several JavaBeans components that are used for method parameters
and return types.

Service Interface
The service interface, SupplierIF, defines the methods that can be called by
remote clients. The parameters and return types of these methods are the Java-
Beans components listed in the preceding section.

../examples/cb/jaxrpc/src/server/com/sun/cb/SupplierIF.java

1294
The source code for the SupplierIF interface, which follows, resides in the
<INSTALL>/j2eetutorial14/examples/cb/jaxrpc/src/ directory.

package com.sun.cb;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface SupplierIF extends Remote {

public ConfirmationBean placeOrder(OrderBean order)
throws RemoteException;

public PriceListBean getPriceList() throws RemoteException;
}

Service Implementation
The SupplierImpl class implements the placeOrder and getPriceList meth-
ods, which are defined by the SupplierIF interface. So that you can focus on the
code related to JAX-RPC, these methods are short and simplistic. In a real world
application, these methods would access databases and would interact with other
services, such as shipping, accounting, and inventory.

The placeOrder method accepts as input a coffee order and returns a confirma-
tion for the order. To keep things simple, the placeOrder method confirms every
order and sets the ship date in the confirmation to the next day. The source code
for the placeOrder method follows:

public ConfirmationBean placeOrder(OrderBean order) {

Date tomorrow = DateHelper.addDays(new Date(), 1);
ConfirmationBean confirmation =

new ConfirmationBean(order.getId(),
DateHelper.dateToCalendar(tomorrow));

return confirmation;
}

The getPriceList method returns a PriceListBean object, which lists the
name and price of each type of coffee that can be ordered from this service. The
getPriceList method creates the PriceListBean object by invoking a private
method named loadPrices. In a production application, the loadPrices

method would fetch the prices from a database. However, our loadPrices

../examples/cb/jaxrpc/src/server/com/sun/cb/SupplierImpl.java

JAX-RPC COFFEE SUPPLIER SERVICE 1295
method takes a shortcut by getting the prices from the SupplierPrices.prop-

erties file. Here are the getPriceList and loadPrices methods:

public PriceListBean getPriceList() {

PriceListBean priceList = loadPrices();
return priceList;

}

private PriceListBean loadPrices() {

String propsName = "com.sun.cb.SupplierPrices";
Date today = new Date();
Date endDate = DateHelper.addDays(today, 30);

PriceItemBean[] priceItems =
PriceLoader.loadItems(propsName);

PriceListBean priceList =
new PriceListBean(DateHelper.dateToCalendar(today),

DateHelper.dateToCalendar(endDate), priceItems);

return priceList;
}

Publishing the Service in the Registry
Because we want customers to find our service, we publish it in a registry. When
the JAX-RPC web application is started and stopped, the context listener object
ContextListener publishes and removes the service in the contextInitial-

ized and contextDestroyed methods respectively.

The contextInitialized method begins by retrieving the registry and endpoint
URLs and coffee registry properties. Both the context initializer and destroyer
call the makeConnection method, which creates a connection to the registry. See
Establishing a Connection (page 401) for more information. To do this, it first
specifies a set of connection properties using the registry URLs retrieved from a
resource bundle.

Properties props = new Properties();
props.setProperty("javax.xml.registry.queryManagerURL",

queryUrl);
props.setProperty("javax.xml.registry.lifeCycleManagerURL",

publishUrl);
props.setProperty("com.sun.xml.registry.http.proxyHost",

httpProxyHost);

../examples/cb/jaxrpc/src/server/com/sun/cb/ContextListener.java

1296
props.setProperty("com.sun.xml.registry.http.proxyPort",
httpProxyPort);

props.setProperty("com.sun.xml.registry.https.proxyHost",
httpsProxyHost);

props.setProperty("com.sun.xml.registry.https.proxyPort",
httpsProxyPort);

Next, the makeConnection method creates the connection using a connection
factory it looks up using JNDI:

context = new InitialContext();
factory = (ConnectionFactory)

context.lookup("java:comp/env/eis/JAXR");
factory.setProperties(props);
connection = factory.createConnection();

Next, the program instantiates a utility class named JAXRPublisher. To publish
the service, the contextInitialized method invokes the executePublish

method, which accepts as input connection, username, password, and end-

point. The username and password values are required by the registry. The
endpoint value is the URL that remote clients will use to contact our JAX-RPC
service. The executePublish method of JAXRPublisher returns a key that
uniquely identifies the service in the registry. The contextInitialized method
saves this key in a text file named orgkey.txt. The contextDestroyed method
reads the key from orgkey.txt so that it can delete the service. See Deleting the
Service From the Registry, page 1300. The source code for the contextIni-

tialized method follows.

public void contextInitialized(ServletContextEvent event) {
ResourceBundle registryBundle =

ResourceBundle.getBundle("com.sun.cb.CoffeeBreak");

String queryURL = registryBundle.getString("query.url");
String publishURL = registryBundle.getString("publish.url");
logger.info(queryURL);
logger.info(publishURL);

String username =
registryBundle.getString("registry.username");

String password =
registryBundle.getString("registry.password");

String keyFile = registryBundle.getString("key.file");

JAXRPublisher publisher = new JAXRPublisher();
ServletContext context = event.getServletContext();

JAX-RPC COFFEE SUPPLIER SERVICE 1297
String endpointURL = URLHelper.getEndpointURL();

Connection connection =
makeConnection(queryURL, publishURL);

if (connection != null) {
String key = publisher.executePublish(connection,

username, password, endpointURL);
try {

FileWriter out = new FileWriter(keyFile);
out.write(key);
out.flush();
out.close();

} catch (IOException ex) {
logger.severe(ex.getMessage());

}
try {

connection.close();
} catch (Exception je) {}

}
}

The JAXRPublisher class is almost identical to the sample program JAXRPub-

lish.java, which is described in Managing Registry Data (page 413).

The executePublish method takes four arguments: the connection to the regis-
try, a user name, a password, and an endpoint. It begins by obtaining a Regis-

tryService object and then a BusinessQueryManager object and a
BusinessLifeCycleManager object, which enable it to perform queries and
manage data:

rs = connection.getRegistryService();
blcm = rs.getBusinessLifeCycleManager();
bqm = rs.getBusinessQueryManager();

Because it needs password authentication in order to publish data, the execute-

Publish method then uses the username and password arguments to establish
its security credentials:

PasswordAuthentication passwdAuth =
new PasswordAuthentication(username,

password.toCharArray());
Set creds = new HashSet();
creds.add(passwdAuth);
connection.setCredentials(creds);

../examples/cb/jaxrpc/src/registry/com/sun/cb/JAXRPublisher.java
../examples/jaxr/simple/src/JAXRPublish.java
../examples/jaxr/simple/src/JAXRPublish.java

1298
It then creates an Organization object with the name JAXRPCCoffeeSupplier,
and a User object that will serve as the primary contact. This code is almost
identical to the code in the JAXR examples.

ResourceBundle bundle =
ResourceBundle.getBundle("com.sun.cb.CoffeeBreak");

// Create organization name and description
Organization org =

blcm.createOrganization(bundle.getString("org.name"));
InternationalString s =

blcm.createInternationalString
(bundle.getString("org.description"));

org.setDescription(s);

// Create primary contact, set name
User primaryContact = blcm.createUser();
PersonName pName =

blcm.createPersonName(bundle.getString("person.name"));
primaryContact.setPersonName(pName);

The executePublish method adds a telephone number and email address for the
user, then makes the user the primary contact:

org.setPrimaryContact(primaryContact);

It gives JAXRPCCoffeeSupplier a classification using the North American
Industry Classification System (NAICS). In this case it uses the classification
“Other Grocery and Related Products Wholesalers.”

Classification classification = (Classification)
blcm.createClassification(cScheme,

bundle.getString("classification.name"),
bundle.getString("classification.value"));

Collection classifications = new ArrayList();
classifications.add(classification);
org.addClassifications(classifications);

JAX-RPC COFFEE SUPPLIER SERVICE 1299
Next, it adds the JAX-RPC service, called JAXRPCCoffee Service, and its ser-
vice binding. The access URL for the service binding contains the endpoint URL
that remote clients will use to contact our service:

http://localhost:8080/jaxrpc-coffee-supplier/jaxrpc

Collection services = new ArrayList();
Service service =

blcm.createService(bundle.getString("service.name"));
InternationalString is =

blcm.createInternationalString
(bundle.getString("service.description"));

service.setDescription(is);

// Create service bindings
Collection serviceBindings = new ArrayList();
ServiceBinding binding = blcm.createServiceBinding();
is = blcm.createInternationalString

(bundle.getString("service.binding"));
binding.setDescription(is);
binding.setValidateURI(false);
binding.setAccessURI(endpoint);
serviceBindings.add(binding);

// Add service bindings to service
service.addServiceBindings(serviceBindings);

// Add service to services, then add services to organization
services.add(service);
org.addServices(services);

Then it saves the organization to the registry:

Collection orgs = new ArrayList();
orgs.add(org);
BulkResponse response = blcm.saveOrganizations(orgs);

The BulkResponse object returned by saveOrganizations includes the Key

object containing the unique key value for the organization. The executePub-

lish method first checks to make sure that the saveOrganizations call suc-
ceeded.

1300
If the call succeeded, the method extracts the value from the Key object and dis-
plays it:

Collection keys = response.getCollection();
Iterator keyIter = keys.iterator();
if (keyIter.hasNext()) {

javax.xml.registry.infomodel.Key orgKey =
(javax.xml.registry.infomodel.Key) keyIter.next();

id = orgKey.getId();
logger.info("Organization key is " + id);

}

Finally, the method returns the string id so that the contextInitialized

method can save it in a file for use by the contextDestroyed method.

Deleting the Service From the Registry
The contextDestroyed method deletes the service from the registry. Like the
contextInitialized method, the contextDestroyed method starts by fetching
the registry URL and other values from the CoffeeBreak.properties file. One
these values, keyFile, is the name of the file that contains the key that uniquely
identifies the service. The contextDestroyed method reads the key from the
file, connects to the registry by invoking makeConnection, and then deletes the
service from the registry by calling executeRemove. Here is the source code for
the contextDestroyed method:

public void contextDestroyed(ServletContextEvent event) {
String keyStr = null;

ResourceBundle registryBundle =
ResourceBundle.getBundle("com.sun.cb.CoffeeBreak");

String queryURL = registryBundle.getString("query.url");
String publishURL = registryBundle.getString("publish.url");
String username =

registryBundle.getString("registry.username");
String password =

registryBundle.getString("registry.password");
String keyFile = registryBundle.getString("key.file");

try {
FileReader in = new FileReader(keyFile);
char[] buf = new char[512];
while (in.read(buf, 0, 512) >= 0) { }

../examples/cb/jaxrpc/src/server/com/sun/cb/ContextListener.java

JAX-RPC COFFEE SUPPLIER SERVICE 1301
in.close();
keyStr = new String(buf).trim();

} catch (IOException ex) {
logger.severe("contextDestroyed: Exception: " +

ex.toString());
}

JAXRRemover remover = new JAXRRemover();
Connection connection = makeConnection(queryURL,

publishURL);
if (connection != null) {

javax.xml.registry.infomodel.Key modelKey = null;
modelKey = remover.createOrgKey(connection, keyStr);
remover.executeRemove(connection, modelKey, username,

password);
try {

connection.close();
} catch (Exception je) {}

}
}

Instantiated by the contextDestroyed method, the JAXRRemover class contains
the createOrgKey and executeRemove methods. It is almost identical to the
sample program JAXRDelete.java, which is described in Removing Data from
the Registry (page 420).

The createOrgKey utility method takes two arguments: the connection to the
registry and the string value extracted from the key file. It obtains the Registry-

Service object and the BusinessLifeCycleManager object, and then creates a
Key object from the string value.

The executeRemove method takes four arguments: a connection, a user name, a
password, and the Key object returned by the createOrgKey method. It uses the
username and password arguments to establish its security credentials with the
registry, just as the executePublish method does.

The method then wraps the Key object in a Collection and uses the Business-

LifeCycleManager object’s deleteOrganizations method to delete the organi-
zation.

Collection keys = new ArrayList();
keys.add(key);
BulkResponse response = blcm.deleteOrganizations(keys);

../examples/cb/jaxrpc/src/registry/com/sun/cb/JAXRRemover.java
../examples/jaxr/simple/src/JAXRDelete.java

1302
The deleteOrganizations method returns the keys of the organizations it
deleted, so the executeRemove method then verifies that the correct operation
was performed and displays the key for the deleted organization.

Collection retKeys = response.getCollection();
Iterator keyIter = retKeys.iterator();
javax.xml.registry.infomodel.Key orgKey = null;
if (keyIter.hasNext()) {

orgKey = (javax.xml.registry.infomodel.Key) keyIter.next();
id = orgKey.getId();
logger.info("Organization key was " + id);

}

SAAJ Coffee Supplier Service
In contrast to the JAX-RPC service, the SAAJ supplier service does not register
in a publicly accessible registry. It simply implements the arrangements that the
supplier and the Coffee Break have made regarding their exchange of XML doc-
uments. These arrangements include the kinds of messages they will send, the
form of those messages, and the kind of messaging they will do. They have
agreed to do request-response messaging using the SAAJ API (the
javax.xml.soap package).

The Coffee Break servers send two kinds of messages:

• Requests for current wholesale coffee prices

• Customer orders for coffee

The SAAJ coffee supplier responds with two kinds of messages:

• Current price lists

• Order confirmations

All the messages they send conform to an agreed-upon XML structure, which is
specified in a DTD for each kind of message. This allows them to exchange mes-
sages even though they use different document formats internally.

The four kinds of messages exchanged by the Coffee Break servers and the
SAAJ supplier are specified by the following DTDs:

• request-prices.dtd

• price-list.dtd

• coffee-order.dtd

• confirm.dtd

SAAJ COFFEE SUPPLIER SERVICE 1303
These DTDs can be found at <INSTALL>/j2eetutorial14/examples/cb/

saaj/dtds/. The dtds directory also contains a sample of what the XML docu-
ments specified in the DTDs might look like. The corresponding XML files for
the DTDs are as follows:

• request-prices.xml

• price-list.xml

• coffee-order.xml

• confirm.xml

Because of the DTDs, both parties know ahead of time what to expect in a partic-
ular kind of message and can therefore extract its content using the SAAJ API.

Code for the client and server applications is in this directory:

<INSTALL>/j2eetutorial14/examples/cb/saaj/src/

SAAJ Client
The Coffee Break servers, which are the SAAJ clients in this scenario, send
requests to their SAAJ supplier. The SAAJ client application uses the SOAPCon-

nection method call to send messages.

SOAPMessage response = con.call(request, endpoint);

Accordingly, the client code has two major tasks. The first is to create and send
the request; the second is to extract the content from the response. These tasks
are handled by the classes PriceListRequest and OrderRequest.

Sending the Request
This section covers the code for creating and sending the request for an updated
price list. This is done in the getPriceList method of PriceListRequest,
which follows the DTD price-list.dtd.

The getPriceList method begins by creating the connection that will be used to
send the request. Then it gets the default SOAPFactory object to be used for cre-

../examples/cb/saaj/src/com/sun/cb/PriceListRequest.java
../examples/cb/saaj/src/com/sun/cb/OrderRequest.java

1304
ating Name objects, and the default MessageFactory object to be used for creat-
ing the SOAPMessage object msg.

SOAPConnectionFactory scf =
SOAPConnectionFactory.newInstance();

SOAPConnection con = scf.createConnection();
SOAPFactory soapFactory = SOAPFactory.newInstance();

MessageFactory mf = MessageFactory.newInstance();
SOAPMessage msg = mf.createMessage();

The next step is to access the message’s SOAPBody object, to which the message’s
content will be added.

SOAPBody body = msg.getSOAPBody();

The file price-list.dtd specifies that the topmost element inside the body is
request-prices and that it contains the element request. The text node added
to request is the text of the request being sent. Every new element that is added
to the message must have a Name object to identify it, and this object is created
by the SOAPFactory method createName. The following lines of code create the
top-level element in the SOAPBody object body. The first element created in a
SOAPBody object is always a SOAPBodyElement object.

Name bodyName = soapFactory.createName("request-prices",
"RequestPrices", "http://sonata.coffeebreak.com");

SOAPBodyElement requestPrices =
body.addBodyElement(bodyName);

In the next few lines, the code adds the element request to the element
request-prices (represented by the SOAPBodyElement requestPrices). Then
the code adds a text node containing the text of the request. Next, because there
are no other elements in the request, the code calls the method saveChanges on
the message to save what has been done.

Name requestName = soapFactory.createName("request");
SOAPElement request =

requestPrices.addChildElement(requestName);
request.addTextNode("Send updated price list.");

msg.saveChanges();

With the creation of the request message completed, the code sends the message
to the SAAJ coffee supplier. The message being sent is the SOAPMessage object

SAAJ COFFEE SUPPLIER SERVICE 1305
msg, to which the elements created in the previous code snippets were added.
The endpoint is the URI for the SAAJ coffee supplier, http://

localhost:8080/saaj-coffee-supplier/getPriceList. The SOAPConnec-

tion object con is used to send the message, and because it is no longer needed,
it is closed.

URL endpoint = new URL(url);
SOAPMessage response = con.call(msg, endpoint);
con.close();

When the call method is executed, the Application Server executes the servlet
PriceListServlet. This servlet creates and returns a SOAPMessage object
whose content is the SAAJ supplier’s price list. (PriceListServlet is discussed
in Returning the Price List, page 1310.) The Application Server knows to exe-
cute PriceListServlet because we map the given endpoint to that servlet.

Extracting the Price List
This section demonstrates (1) retrieving the price list that is contained in
response, the SOAPMessage object returned by the method call, and (2) return-
ing the price list as a PriceListBean.

The code creates an empty Vector object that will hold the coffee-name and
price elements that are extracted from response. Then the code uses response
to access its SOAPBody object, which holds the message’s content.

Vector list = new Vector();

SOAPBody responseBody = response.getSOAPBody();

The next step is to retrieve the SOAPBodyElement object. The method getCh-

ildElements returns an Iterator object that contains all the child elements of
the element on which it is called, so in the following lines of code, it1 contains
the SOAPBodyElement object bodyEl, which represents the price-list element.

Iterator it1 = responseBody.getChildElements();
while (it1.hasNext()) {

SOAPBodyElement bodyEl = (SOAPBodyElement)it1.next();

The Iterator object it2 holds the child elements of bodyEl, which represent
coffee elements. Calling the method next on it2 retrieves the first coffee ele-

1306
ment in bodyEl. As long as it2 has another element, the method next will return
the next coffee element.

Iterator it2 = bodyEl.getChildElements();
while (it2.hasNext()) {

SOAPElement child2 = (SOAPElement)it2.next();

The next lines of code drill down another level to retrieve the coffee-name and
price elements contained in it3. Then the message getValue retrieves the text
(a coffee name or a price) that the SAAJ coffee supplier added to the coffee-

name and price elements when it gave content to response. The final line in the
following code fragment adds the coffee name or price to the Vector object
list. Note that because of the nested while loops, for each coffee element that
the code retrieves, both of its child elements (the coffee-name and price ele-
ments) are retrieved.

Iterator it3 = child2.getChildElements();
while (it3.hasNext()) {

SOAPElement child3 = (SOAPElement)it3.next();
String value = child3.getValue();
list.addElement(value);

}
}

}

The final code fragment adds the coffee names and their prices (as a PriceLis-

tItem) to the ArrayList priceItems, and prints each pair on a separate line.
Finally it constructs and returns a PriceListBean.

ArrayList priceItems = new ArrayList();
for (int i = 0; i < list.size(); i = i + 2) {

priceItems.add(
new PriceItemBean(list.elementAt(i).toString(),
new BigDecimal(list.elementAt(i + 1).toString())));

System.out.print(list.elementAt(i) + " ");
System.out.println(list.elementAt(i + 1));

}

Date today = new Date();
Date endDate = DateHelper.addDays(today, 30);
Calendar todayCal = new GregorianCalendar();
todayCal.setTime(today);
Calendar cal = new GregorianCalendar();
cal.setTime(endDate);

SAAJ COFFEE SUPPLIER SERVICE 1307
plb = new PriceListBean();
plb.setStartDate(todayCal);
plb.setPriceItems(priceItems);
plb.setEndDate(cal);

Ordering Coffee
The other kind of message that the Coffee Break servers can send to the SAAJ
supplier is an order for coffee. This is done in the placeOrder method of Order-
Request, which follows the DTD coffee-order.dtd.

Creating the Order
As with the client code for requesting a price list, the placeOrder method starts
by creating a SOAPConnection object, a SOAPFactory object, and a SOAPMes-

sage object, and accessing the message’s SOAPBody object.

SOAPConnectionFactory scf =
SOAPConnectionFactory.newInstance();

SOAPConnection con = scf.createConnection();
SOAPFactory soapFactory = SOAPFactory.newInstance();

MessageFactory mf = MessageFactory.newInstance();
SOAPMessage msg = mf.createMessage();

SOAPBody body = msg.getSOAPBody();

Next, the code creates and adds XML elements to form the order. As is required,
the first element is a SOAPBodyElement, which in this case is coffee-order.

Name bodyName = soapFactory.createName("coffee-order", "PO",
"http://sonata.coffeebreak.com");

SOAPBodyElement order = body.addBodyElement(bodyName);

The application then adds the next level of elements, the first of these being
orderID. The value given to orderID is extracted from the OrderBean object
passed to the OrderRequest.placeOrder method.

Name orderIDName = soapFactory.createName("orderID");
SOAPElement orderID = order.addChildElement(orderIDName);
orderID.addTextNode(orderBean.getId());

1308
The next element, customer, has several child elements that give information
about the customer. This information is also extracted from the Customer com-
ponent of OrderBean.

Name childName = soapFactory.createName("customer");
SOAPElement customer = order.addChildElement(childName);

childName = soapFactory.createName("last-name");
SOAPElement lastName = customer.addChildElement(childName);
lastName.addTextNode(orderBean.getCustomer().getLastName());

childName = soapFactory.createName("first-name");
SOAPElement firstName = customer.addChildElement(childName);
firstName.addTextNode(orderBean.getCustomer().getFirstName());

childName = soapFactory.createName("phone-number");
SOAPElement phoneNumber = customer.addChildElement(childName);
phoneNumber.addTextNode(

orderBean.getCustomer().getPhoneNumber());

childName = soapFactory.createName("email-address");
SOAPElement emailAddress =

customer.addChildElement(childName);
emailAddress.addTextNode(

orderBean.getCustomer().getEmailAddress());

The address element, added next, has child elements for the street, city, state,
and zip code. This information is extracted from the Address component of
OrderBean.

childName = soapFactory.createName("address");
SOAPElement address = order.addChildElement(childName);

childName = soapFactory.createName("street");
SOAPElement street = address.addChildElement(childName);
street.addTextNode(orderBean.getAddress().getStreet());

childName = soapFactory.createName("city");
SOAPElement city = address.addChildElement(childName);
city.addTextNode(orderBean.getAddress().getCity());

childName = soapFactory.createName("state");
SOAPElement state = address.addChildElement(childName);
state.addTextNode(orderBean.getAddress().getState());

SAAJ COFFEE SUPPLIER SERVICE 1309
childName = soapFactory.createName("zip");
SOAPElement zip = address.addChildElement(childName);
zip.addTextNode(orderBean.getAddress().getZip());

The element line-item has three child elements: coffeeName, pounds, and
price. This information is extracted from the LineItems list contained in
OrderBean.

for (Iterator it = orderBean.getLineItems().iterator();
it.hasNext();) {

LineItemBean lib = (LineItemBean)it.next();

childName = soapFactory.createName("line-item");
SOAPElement lineItem = order.addChildElement(childName);

childName = soapFactory.createName("coffeeName");
SOAPElement coffeeName =

lineItem.addChildElement(childName);
coffeeName.addTextNode(lib.getCoffeeName());

childName = soapFactory.createName("pounds");
SOAPElement pounds = lineItem.addChildElement(childName);
pounds.addTextNode(lib.getPounds().toString());

childName = soapFactory.createName("price");
SOAPElement price = lineItem.addChildElement(childName);
price.addTextNode(lib.getPrice().toString());

}

// total
childName = soapFactory.createName("total");
SOAPElement total = order.addChildElement(childName);
total.addTextNode(orderBean.getTotal().toString());

With the order complete, the application sends the message to the endpoint
http://localhost:8080/saaj-coffee-supplier/orderCoffee and closes
the connection.

URL endpoint = new URL(url);
SOAPMessage reply = con.call(msg, endpoint);
con.close();

Because we map the given endpoint to ConfirmationServlet, the Application
Server executes that servlet (discussed in Returning the Order
Confirmation, page 1315) to create and return the SOAPMessage object reply.

1310
Retrieving the Order Confirmation
The rest of the placeOrder method retrieves the information returned in reply.
The client knows what elements are in it because they are specified in con-

firm.dtd. After accessing the SOAPBody object, the code retrieves the
confirmation element and gets the text of the orderID and ship-date ele-
ments. Finally, it constructs and returns a ConfirmationBean with this informa-
tion.

SOAPBody sBody = reply.getSOAPBody();
Iterator bodyIt = sBody.getChildElements();
SOAPBodyElement sbEl = (SOAPBodyElement)bodyIt.next();
Iterator bodyIt2 = sbEl.getChildElements();

SOAPElement ID = (SOAPElement)bodyIt2.next();
String id = ID.getValue();

SOAPElement sDate = (SOAPElement)bodyIt2.next();
String shippingDate = sDate.getValue();

SimpleDateFormat df =
new SimpleDateFormat("EEE MMM dd HH:mm:ss z yyyy");

Date date = df.parse(shippingDate);
Calendar cal = new GregorianCalendar();
cal.setTime(date);
cb = new ConfirmationBean(id, cal);

SAAJ Service
The SAAJ coffee supplier—the SAAJ server in this scenario—provides the
response part of the request-response paradigm. When SAAJ messaging is being
used, the server code is a servlet. The core part of each servlet is made up of
three javax.servlet.HttpServlet methods: init, doPost, and onMessage.
The init and doPost methods set up the response message, and the onMessage

method gives the message its content.

Returning the Price List
This section takes you through the servlet PriceListServlet. This servlet cre-
ates the message containing the current price list that is returned to the method
call, invoked in PriceListRequest.

../examples/cb/saaj/src/com/sun/cb/PriceListServlet.java

SAAJ COFFEE SUPPLIER SERVICE 1311
Any servlet extends a javax.servlet class. Being part of a web application, this
servlet extends HttpServlet. It first creates a static MessageFactory object that
will be used later to create the SOAPMessage object that is returned.

public class PriceListServlet extends HttpServlet {
static MessageFactory messageFactory = null;

static {
try {

messageFactory = MessageFactory.newInstance();
} catch (Exception ex) {

ex.printStackTrace();
}

};

Every servlet has an init method. This init method initializes the servlet with
the configuration information that the Application Server passed to it.

public void init(ServletConfig servletConfig)
throws ServletException {

super.init(servletConfig);
}

The next method defined in PriceListServlet is doPost, which does the real
work of the servlet by calling the onMessage method. (The onMessage method is
discussed later in this section.) The Application Server passes the doPost

method two arguments. The first argument, the HttpServletRequest object
req, holds the content of the message sent in PriceListRequest. The doPost

method gets the content from req and puts it in the SOAPMessage object msg so
that it can pass it to the onMessage method. The second argument, the HttpS-

ervletResponse object resp, will hold the message generated by executing the
method onMessage.

In the following code fragment, doPost calls the methods getHeaders and put-

Headers, defined immediately after doPost, to read and write the headers in req.
It then gets the content of req as a stream and passes the headers and the input
stream to the method MessageFactory.createMessage. The result is that the
SOAPMessage object msg contains the request for a price list. Note that in this

1312
case, msg does not have any headers because the message sent in PriceListRe-

quest did not have any headers.

public void doPost(HttpServletRequest req,
HttpServletResponse resp)
throws ServletException, IOException {

try {
// Get all the headers from the HTTP request
MimeHeaders headers = getHeaders(req);

// Get the body of the HTTP request
InputStream is = req.getInputStream();

// Now internalize the contents of the HTTP request
// and create a SOAPMessage
SOAPMessage msg =

messageFactory.createMessage(headers, is);

Next, the code declares the SOAPMessage object reply and populates it by call-
ing the method onMessage.

SOAPMessage reply = null;
reply = onMessage(msg);

If reply has anything in it, its contents are saved, the status of resp is set to OK,
and the headers and content of reply are written to resp. If reply is empty, the
status of resp is set to indicate that there is no content.

if (reply != null) {

/*
 * Need to call saveChanges because we’re
 * going to use the MimeHeaders to set HTTP
 * response information. These MimeHeaders
 * are generated as part of the save.
 */
if (reply.saveRequired()) {

reply.saveChanges();
}

resp.setStatus(HttpServletResponse.SC_OK);
putHeaders(reply.getMimeHeaders(), resp);

// Write out the message on the response stream
OutputStream os = resp.getOutputStream();
reply.writeTo(os);
os.flush();

SAAJ COFFEE SUPPLIER SERVICE 1313
} else {
resp.setStatus(

HttpServletResponse.SC_NO_CONTENT);
}

} catch (Exception ex) {
throw new ServletException("SAAJ POST failed: " +

ex.getMessage());
}

}

The methods getHeaders and putHeaders are not standard methods in a servlet,
as init, doPost, and onMessage are. The method doPost calls getHeaders and
passes it the HttpServletRequest object req that the Application Server passed
to it. It returns a MimeHeaders object populated with the headers from req.

static MimeHeaders getHeaders(HttpServletRequest req) {

Enumeration headerNames = req.getHeaderNames();
MimeHeaders headers = new MimeHeaders();

while (headerNames.hasMoreElements()) {
String headerName = (String)headerNames.nextElement();
String headerValue = req.getHeader(headerName);

StringTokenizer values =
new StringTokenizer(headerValue, ",");

while (values.hasMoreTokens()) {
headers.addHeader(headerName,

values.nextToken().trim());
}

}
return headers;

}

The doPost method calls putHeaders and passes it the MimeHeaders object
headers, which was returned by the method getHeaders. The method putHead-

ers writes the headers in headers to res, the second argument passed to it. The
result is that res, the response that the Application Server will return to the
method call, now contains the headers that were in the original request.

static void putHeaders(MimeHeaders headers,
HttpServletResponse res) {

Iterator it = headers.getAllHeaders();
while (it.hasNext()) {

MimeHeader header = (MimeHeader)it.next();

1314
String[] values = headers.getHeader(header.getName());
if (values.length == 1)

res.setHeader(header.getName(), header.getValue());
else {

StringBuffer concat = new StringBuffer();
int i = 0;
while (i < values.length) {

if (i != 0) {
concat.append(',');

}
concat.append(values[i++]);

}
res.setHeader(header.getName(), concat.toString());

}
}

}

The method onMessage is the application code for responding to the message
sent by PriceListRequest and internalized into msg. It uses the static Message-

Factory object messageFactory to create the SOAPMessage object message and
then populates it with the supplier’s current coffee prices.

The method doPost invokes onMessage and passes it msg. In this case, onMes-
sage does not need to use msg because it simply creates a message containing
the supplier’s price list. The onMessage method in ConfirmationServlet (see
Returning the Order Confirmation, page 1315), on the other hand, uses the mes-
sage passed to it to get the order ID.

public SOAPMessage onMessage(SOAPMessage msg) {
SOAPMessage message = null;

try {
SOAPFactory soapFactory = SOAPFactory.newInstance();
message = messageFactory.createMessage();

SOAPBody body = message.getSOAPBody();

Name bodyName = soapFactory.createName("price-list",
"PriceList", "http://sonata.coffeebreak.com");

SOAPBodyElement list = body.addBodyElement(bodyName);

Name coffeeN = soapFactory.createName("coffee");
SOAPElement coffee = list.addChildElement(coffeeN);

Name coffeeNm1 = soapFactory.createName("coffee-name");

SAAJ COFFEE SUPPLIER SERVICE 1315
SOAPElement coffeeName =
coffee.addChildElement(coffeeNm1);

coffeeName.addTextNode("Arabica");

Name priceName1 = soapFactory.createName("price");
SOAPElement price1 = coffee.addChildElement(priceName1);
price1.addTextNode("4.50");

Name coffeeNm2 = soapFactory.createName("coffee-name");
SOAPElement coffeeName2 =

coffee.addChildElement(coffeeNm2);
coffeeName2.addTextNode("Espresso");

Name priceName2 = soapFactory.createName("price");
SOAPElement price2 = coffee.addChildElement(priceName2);
price2.addTextNode("5.00");

Name coffeeNm3 = soapFactory.createName("coffee-name");
SOAPElement coffeeName3 =

coffee.addChildElement(coffeeNm3);
coffeeName3.addTextNode("Dorada");

Name priceName3 = soapFactory.createName("price");
SOAPElement price3 = coffee.addChildElement(priceName3);
price3.addTextNode("6.00");

Name coffeeNm4 = soapFactory.createName("coffee-name");
SOAPElement coffeeName4 =

coffee.addChildElement(coffeeNm4);
coffeeName4.addTextNode("House Blend");

Name priceName4 = soapFactory.createName("price");
SOAPElement price4 = coffee.addChildElement(priceName4);
price4.addTextNode("5.00");

message.saveChanges();

} catch(Exception e) {
logger.severe("onMessage: Exception: " + e.toString());

}
return message;

}

Returning the Order Confirmation
ConfirmationServlet creates the confirmation message that is returned to the
call method that is invoked in OrderRequest. It is very similar to the code in

../examples/cb/saaj/src/com/sun/cb/ConfirmationServlet.java

1316
PriceListServlet except that instead of building a price list, its onMessage

method builds a confirmation containing the order number and shipping date.

The onMessage method for this servlet uses the SOAPMessage object passed to it
by the doPost method to get the order number sent in OrderRequest. Then it
builds a confirmation message containing the order ID and shipping date. The
shipping date is calculated as today’s date plus two days.

public SOAPMessage onMessage(SOAPMessage message) {

SOAPMessage confirmation = null;

try {

// Retrieve orderID from message received
SOAPBody sentSB = message.getSOAPBody();
Iterator sentIt = sentSB.getChildElements();
SOAPBodyElement sentSBE = (SOAPBodyElement)sentIt.next();
Iterator sentIt2 = sentSBE.getChildElements();
SOAPElement sentSE = (SOAPElement)sentIt2.next();

// Get the orderID test to put in confirmation
String sentID = sentSE.getValue();

// Create the confirmation message
confirmation = messageFactory.createMessage();
SOAPBody sb = message.getSOAPBody();

SOAPFactory soapFactory = SOAPFactory.newInstance();

Name newBodyName = soapFactory.createName("confirmation",
"Confirm", "http://sonata.coffeebreak.com");

SOAPBodyElement confirm = sb.addBodyElement(newBodyName);

// Create the orderID element for confirmation
Name newOrderIDName = soapFactory.createName("orderId");
SOAPElement newOrderNo =

confirm.addChildElement(newOrderIDName);
newOrderNo.addTextNode(sentID);

// Create ship-date element
Name shipDateName = soapFactory.createName("ship-date");
SOAPElement shipDate =

confirm.addChildElement(shipDateName);

// Create the shipping date
Date today = new Date();

COFFEE BREAK SERVER 1317
long msPerDay = 1000 * 60 * 60 * 24;
long msTarget = today.getTime();
long msSum = msTarget + (msPerDay * 2);
Date result = new Date();
result.setTime(msSum);
String sd = result.toString();
shipDate.addTextNode(sd);

confirmation.saveChanges();

} catch (Exception ex) {
ex.printStackTrace();

}
return confirmation;

}

Coffee Break Server
The Coffee Break server uses servlets, JSP pages, and JavaBeans components to
dynamically construct HTML pages for consumption by a web browser client.
The JSP pages use the template tag library discussed in A Template Tag
Library (page 624) to achieve a common look and feel among the HTML pages,
and many of the JSTL custom tags discussed in Chapter 14.

The Coffee Break server implementation is organized along the Model-View-
Controller design pattern. The Dispatcher servlet is the controller. It examines
the request URL, creates and initializes model JavaBeans components, and dis-
patches requests to view JSP pages. The JavaBeans components contain the busi-
ness logic for the application; they call the web services and perform
computations on the data returned from the services. The JSP pages format the
data stored in the JavaBeans components. The mapping between JavaBeans
components and pages is summarized in Table 35–1.

Table 35–1 Model and View Components

Function JSP Page JavaBeans Component

Update order data orderForm ShoppingCart

Update delivery and billing data checkoutForm CheckoutFormBean

Display order confirmation checkoutAck OrderConfirmations

1318
JSP Pages

orderForm
orderForm displays the current contents of the shopping cart. The first time the
page is requested, the quantities of all the coffees are 0 (zero). Each time the cus-
tomer changes the coffee amounts and clicks the Update button, the request is
posted back to orderForm. The Dispatcher servlet updates the values in the
shopping cart, which are then redisplayed by orderForm. When the order is
complete, the customer proceeds to the checkoutForm page by clicking the
Checkout link.

checkoutForm
checkoutForm is used to collect delivery and billing information from the cus-
tomer. When the Submit button is clicked, the request is posted to the check-

outAck page. However, the request is first handled by the Dispatcher, which
invokes the validate method of checkoutFormBean. If the validation does not
succeed, the requested page is reset to checkoutForm, with error notifications in
each invalid field. If the validation succeeds, checkoutFormBean submits subor-
ders to each supplier and stores the result in the request-scoped OrderConfirma-

tions JavaBeans component, and control is passed to checkoutAck.

checkoutAck
checkoutAck simply displays the contents of the OrderConfirmations Java-
Beans component, which is a list of the suborders that constitute an order and the
ship dates of each suborder.

JavaBeans Components

RetailPriceList
RetailPriceList is a list of retail price items. A retail price item contains a cof-
fee name, a wholesale price per pound, a retail price per pound, and a supplier.
This data is used for two purposes: it contains the price list presented to the end

../examples/cb/server/web/orderForm.txt
../examples/cb/server/web/checkoutForm.txt
../examples/cb/server/web/checkoutAck.txt
../examples/cb/server/src/com/sun/cb/RetailPriceList.java

COFFEE BREAK SERVER 1319
user and is used by CheckoutFormBean when it constructs the suborders dis-
patched to coffee suppliers.

RetailPriceList first performs a JAXR lookup to determine the JAX-RPC ser-
vice endpoints. It then queries each JAX-RPC service for a coffee price list.
Finally it queries the SAAJ service for a price list. The two price lists are com-
bined and a retail price per pound is determined by adding a markup of 35% to
the wholesale prices.

Discovering the JAX-RPC Service
Instantiated by RetailPriceList, JAXRQueryByName connects to the registry
and searches for coffee suppliers registered with the name JAXRPCCoffeeSup-

plier in the executeQuery method. The method returns a collection of organi-
zations that contain services. Each service is accessible via a service binding or
URL. RetailPriceList makes a JAX-RPC call to each URL.

ShoppingCart
ShoppingCart is a list of shopping cart items. A ShoppingCartItem contains a
retail price item, the number of pounds of that item, and the total price for that
item.

OrderConfirmations
OrderConfirmations is a list of order confirmation objects. An OrderConfir-

mation contains order and confirmation objects, as discussed in Service
Interface (page 1293).

CheckoutFormBean
CheckoutFormBean checks the completeness of information entered into check-

outForm. If the information is incomplete, the bean populates error messages,
and Dispatcher redisplays checkoutForm with the error messages. If the infor-
mation is complete, order requests are constructed from the shopping cart and
the information supplied to checkoutForm, and these orders are sent to each sup-

../examples/cb/server/src/com/sun/cb/JAXRQueryByName.java
../examples/cb/server/src/com/sun/cb/ShoppingCart.java
../examples/cb/server/src/com/sun/cb/ShoppingCartItem.java
../examples/cb/server/src/com/sun/cb/OrderConfirmations.java
../examples/cb/server/src/com/sun/cb/OrderConfirmation.java
../examples/cb/server/src/com/sun/cb/OrderConfirmation.java
../examples/cb/server/src/com/sun/cb/CheckoutFormBean.java
../examples/cb/server/src/com/sun/cb/RetailPriceList.java

1320
plier. As each confirmation is received, an order confirmation is created and
added to OrderConfirmations.

if (allOk) {
String orderId = CCNumber;

AddressBean address =
new AddressBean(street, city, state, zip);

CustomerBean customer =
new CustomerBean(firstName, lastName,

"(" + areaCode + ") " + phoneNumber, email);

for (Iterator d = rpl.getSuppliers().iterator();
d.hasNext();) {

String supplier = (String)d.next();
logger.info(supplier);
ArrayList lis = new ArrayList();
BigDecimal price = new BigDecimal("0.00");
BigDecimal total = new BigDecimal("0.00");
for (Iterator c = cart.getItems().iterator();

c.hasNext();) {
ShoppingCartItem sci = (ShoppingCartItem) c.next();
if ((sci.getItem().getSupplier()).

equals(supplier) &&
sci.getPounds().floatValue() > 0) {

price = sci.getItem().getWholesalePricePerPound().
multiply(sci.getPounds());

total = total.add(price);
LineItemBean li = new LineItemBean(

sci.getItem().getCoffeeName(), sci.getPounds(),
sci.getItem().getWholesalePricePerPound());

lis.add(li);
}

}

if (!lis.isEmpty()) {
OrderBean order = new OrderBean(address, customer,

orderId, lis, total);

String SAAJOrderURL =
URLHelper.getSaajURL() + "/orderCoffee";

if (supplier.equals(SAAJOrderURL)) {
OrderRequest or = new OrderRequest(SAAJOrderURL);
confirmation = or.placeOrder(order);

} else {
OrderCaller ocaller = new OrderCaller(supplier);
confirmation = ocaller.placeOrder(order);

}

JAVASERVER FACES VERSION OF COFFEE BREAK SERVER 1321
OrderConfirmation oc =
new OrderConfirmation(order, confirmation);

ocs.add(oc);
}

}
}

RetailPriceListServlet
RetailPriceListServlet responds to requests to reload the price list via the
URL /loadPriceList. It simply creates a new RetailPriceList and a new
ShoppingCart.

Because this servlet would be used by administrators of the Coffee Break server,
it is a protected web resource. To load the price list, a user must authenticate
(using basic authentication), and the authenticated user must be in the admin

role.

JavaServer Faces Version of Coffee
Break Server

JavaServer Faces is designed to provide a clean separation of the presentation
layer and the model layer so that you can readily add JavaServer Faces function-
ality to existing applications. In fact almost all of the original Coffee Break
Server back-end code remains the same in the JavaServer Faces technology ver-
sion of the server.

This section provides some details on how the JavaServer Faces version of the
Coffee Break server is different from the non-GUI framework version. Like the
non-GUI framework version of the Coffee Break server implementation, the Jav-
aServer Faces Coffee Break server is organized along the Model-View-Control-
ler design pattern. Instead of the Dispatcher servlet examining the request
URL, creating and initializing model JavaBeans components, and dispatching
requests to view JSP pages, now the FacesServlet (included with the JavaSer-
ver Faces API), performs these tasks. As a result, the Dispatcher servlet has
been removed from the JavaServer Faces version of the Coffee Break server.
Some of the code from the Dispatcher has been moved to beans. This will be
explained later in this section.

../examples/cb/server/src/com/sun/cb/RetailPriceListServlet.java

1322
As with the non-GUI framework version of the Coffee Break server, the JavaSer-
ver Faces Coffee Break server includes JavaBeans components that contain the
business logic for the application: they call the web services and perform compu-
tations on the data returned from the services. The JSP pages format the data
stored in the JavaBeans components. The mapping between JavaBeans compo-
nents and pages is summarized in Table 35–2.

JSP Pages

orderForm
As in the non-GUI framework version of the Coffee Break server, the orderForm
displays the current contents of the shopping cart. The first time the page is
requested, the quantities of all the coffees are 0. Each time the customer changes
the coffee amounts and clicks the Update button, the request is posted back to
orderForm.

The CoffeeBreakBean bean component updates the values in the shopping cart,
which are then redisplayed by orderForm. When the order is complete, the cus-
tomer proceeds to the checkoutForm page by clicking the Checkout button.

The table of coffees displayed on the orderForm is rendered using one of the
JavaServer Faces component tags, dataTable. Here is part of the dataTable tag
from orderForm:

<h:dataTable id="table"
columnClasses="list-column-center,list-column-right,

list-column-center, list-column-right"
headerClass="list-header" rowClasses="list-row"
footerClass="list-column-right"

Table 35–2 Model and View Components

Function JSP Page JavaBeans Component

Update order data orderForm
CoffeeBreakBean,
ShoppingCart

Update delivery and billing data checkoutForm CheckoutFormBean

Display order confirmation checkoutAck OrderConfirmations

../examples/cb/server/web/orderForm.txt

JAVASERVER FACES VERSION OF COFFEE BREAK SERVER 1323
styleClass="list-background-grid"
value="#{CoffeeBreakBean.cart.items}" var="sci">
<f:facet name="header">

<h:outputText value="#{CBMessages.OrderForm}"/>
</f:facet>
<h:column>

<f:facet name="header">
<h:outputText value="Coffee"/>

</f:facet>
<h:outputText id="coffeeName"

value="#{sci.item.coffeeName}"/>
</h:column>
...

</h:dataTable>

When this tag is processed, a UIData component and a Table renderer are cre-
ated on the server side. The UIData component supports a data binding to a col-
lection of data objects. The Table renderer takes care of generating the HTML
markup. The UIData component iterates through the list of coffees, and the
Table renderer renders each row in the table.

This example is a classic use case for a UIData component because the number
of coffees might not be known to the application developer or the page author at
the time the application is developed. Also, the UIData component can dynami-
cally adjust the number of rows in the table to accommodate the underlying data.

For more information on UIData, please see The UIData Component (page 706).

checkoutForm
checkoutForm is used to collect delivery and billing information for the cus-
tomer. When the Submit button is clicked, an ActionEvent is generated. This
event is first handled by the submit method of the checkoutFormBean. This
method acts as a listener for the event because the tag corresponding to the sub-
mit button references the submit method with its action attribute:

<h:commandButton value="#{CBMessages.Submit}"
action="#{checkoutFormBean.submit}"/>

The submit method submits the suborders to each supplier and stores the result
in the request-scoped OrderConfirmations bean.

../examples/cb/server/web/checkoutForm.txt

1324
The checkoutForm page has standard validators on several components and a
custom validator on the email component. Here is the tag corresponding to the
firstName component, which holds the customer’s first name:

<h:inputText id="firstName"
value="#{checkoutFormBean.firstName}"
size="15" maxlength="20" required="true"/>

With the required attribute set to true, the JavaServer Faces implementation
will check whether the user entered something in the First Name field.

The email component has a custom validator registered on it. Here is the tag cor-
responding to the email component:

<h:inputText id="email" value="#{checkoutFormBean.email}"
size="25" maxlength="125"
validator="#{checkoutFormBean.validateEmail}"/>

The validator attribute refers to the validateEmail method on the Checkout-

FormBean class. This method ensures that the value the user enters in the email
field contains an @ character.

If the validation does not succeed, the checkoutForm is re-rendered, with error
notifications in each invalid field. If the validation succeeds, checkoutFormBean
submits suborders to each supplier and stores the result in the request-scoped
OrderConfirmations JavaBeans component and control is passed to the check-

outAck page.

checkoutAck
checkoutAck simply displays the contents of the OrderConfirmations Java-
Beans component, which is a list of the suborders constituting an order and the
ship dates of each suborder. This page also uses a UIData component. Again, the
number of coffees the customer ordered is not known before runtime. The
UIData component dynamically adds rows to accommodate the order.

JavaBeans Components
The JavaBeans components in the JavaServer Faces version of the Coffee Break
server are almost the same as those in the original version. This section high-
lights what has changed and describes the new components.

../examples/cb/server/web/checkoutAck.txt

JAVASERVER FACES VERSION OF COFFEE BREAK SERVER 1325
CheckoutFormBean
The validate method of the original version of the CheckoutFormBean checks
the completeness of information entered into checkoutForm. Because JavaSer-
ver Faces technology automatically validates certain kinds of data when the
appropriate validator is registered on a component, the validate method of
checkoutFormBean is not necessary in the JavaServer Faces version of that bean.

Several of the tags on the checkoutForm page have their required attributes set
to true. This will cause the implementation to check whether the user enters
values in these fields. The tag corresponding to the email component registers a
custom validator on the email component, as explained in
checkoutForm (page 1323). The code that performs the validation is the valida-
teEmail method:

public void validateEmail(FacesContext context,
UIComponent toValidate, Object value) {
String message = "";
String email = (String) value;
if (email.indexOf('@') == -1) {

((UIInput)toValidate).setValid(false);
message = CoffeeBreakBean.loadErrorMessage(context,

CoffeeBreakBean.CB_RESOURCE_BUNDLE_NAME,
"EMailError");

context.addMessage(toValidate.getClientId(context),
new FacesMessage(message));

}
}

As in the non-GUI framework version of the Coffee Break server, if the informa-
tion is incomplete or invalid, the page is rerendered to display the error mes-
sages. If the information is complete, order requests are constructed from the
shopping cart and the information supplied to checkoutForm and are sent to each
supplier.

CoffeeBreakBean
CoffeeBreakBean is exclusive to the JavaServer Faces technology version of the
Coffee Break server. It acts as the backing bean to the JSP pages. See Backing
Bean Management (page 674) for more information on backing beans. Coffee-
BreakBean creates the ShoppingCart object, which defines the model data for
the components on the orderForm page that hold the data about each coffee.
CoffeeBreakBean also loads the RetailPriceList object. In addition, it pro-

../examples/cb/server/src/com/sun/cb/CheckoutFormBean.java

1326
vides the methods that are invoked when the buttons on the orderForm and
checkoutAck are clicked. For example, the checkout method is invoked when
the Checkout button is clicked because the tag corresponding to the Checkout
button refers to the checkout method via its action attribute:

<h:commandButton id="checkoutLink"
value="#{CBMessages.Checkout}"
action="#{CoffeeBreakBean.checkout}" />

The checkout method returns a String, which the JavaServer Faces page navi-
gation system matches against a set of navigation rules to determine what page to
access next. The navigation rules are defined in a separate XML file, described
in the next section.

Resource Configuration
A JavaServer Faces application usually includes an XML file that configures
resources for the application. These resources include JavaBeans components,
navigation rules, and others.

Two of the resources configured for the JavaServer Faces version of the Coffee
Break server are the CheckoutForm bean and navigation rules for the orderForm

page:

<managed-bean>
<managed-bean-name>checkoutFormBean</managed-bean-name>
<managed-bean-class>

com.sun.cb.CheckoutFormBean
</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>

<managed-property>
<property-name>firstName</property-name>
<value>Coffee</value>

</managed-property>
<managed-property>

<property-name>lastName</property-name>
<value>Lover</value>

</managed-property>
<managed-property>

<property-name>email</property-name>

BUILDING, PACKAGING, DEPLOYING, AND RUNNING THE APPLICATION 1327
<value>jane@home</value>
</managed-property>
...

</managed-bean>

<navigation-rule>
<from-view-id>/orderForm.jsp</from-view-id>
<navigation-case>

<from-outcome>checkout</from-outcome>
<to-view-id>/checkoutForm.jsp</to-view-id>

</navigation-case>
</navigation-rule>

As shown in the managed-bean element, the checkoutForm bean properties are
initialized with the values for the user, Coffee Lover. In this way, the hyperlink
tag from orderForm is not required to submit these values in the request parame-
ters.

As shown in the navigation-rule element, when the String, checkout, is
returned from a method referred to by a component’s action attribute, the
checkoutForm page displays.

Building, Packaging, Deploying, and
Running the Application

The source code for the Coffee Break application is located in the directory
<INSTALL>/j2eetutorial14/examples/cb/. Within the cb directory are subdi-
rectories for each web application—saaj, jaxrpc, server, and server-jsf—
and a directory, common, for classes shared by the web applications. Each subdi-
rectory contains a build.xml and build.properties file. The web application
subdirectories in turn contain a src subdirectory for Java classes and a web sub-
directory for web resources.

Setting the Port
The JAX-RPC and SAAJ services in the Coffee Break application run at the port
that you specified when you installed the Application Server. The tutorial exam-
ples assume that the Application Server runs on the default port, 8080. If you

1328
have changed the port, you must update the port number in the following files
before building and running the examples:

• <INSTALL>/j2eetutorial14/examples/cb/common/src/com/sun/cb/

CoffeeBreak.properties. Update the port in the following URLs:

• endpoint.url=http://localhost:8080/jaxrpc-coffee-sup-
plier/jaxrpc

• saaj.url=http://localhost:8080/saaj-coffee-supplier

• <INSTALL>/j2eetutorial14/examples/cb/jaxrpc/config-wsdl.xml

Setting the Registry Properties
The Coffee Break servers use a registry to obtain information about the JAX-
RPC service endpoint. Since the Application Server does not include a registry,
you must use an external registry. See Preliminaries: Getting Access to a
Registry (page 401) for information on registering with a public UDDI registry.
If you previously ran the JAXR examples, you can use the same registry.

Before you build the Coffee Break application, you need to set properties in
much the same way you did with the JAXR examples:

1. Open the file <INSTALL>/j2eetutorial14/examples/cb/common/src/

com/sun/cb/CoffeeBreak.properties in an editor.

2. Edit the following lines to specify the registry you wish to access. For the
query.url and the publish.url assignments, comment out all but the
registry you wish to access. The default is the IBM registry.
IBM:
query.url=http://uddi.ibm.com/testregistry/inquiryapi
publish.url=https://uddi.ibm.com/testregistry/publishapi
Microsoft:
#query.url=http://test.uddi.microsoft.com/inquire
#publish.url=https://test.uddi.microsoft.com/publish

3. Edit the following lines to specify the user name and password you
obtained when you registered with the registry.
Specify user name and password
registry.username=
registry.password=

4. Edit the following lines, which contain empty strings for the proxy hosts,
to specify your own proxy settings. The proxy host is the system on your
network through which you access the Internet; you usually specify it in
your Internet browser settings.

BUILDING, PACKAGING, DEPLOYING, AND RUNNING THE APPLICATION 1329
HTTP and HTTPS proxy host and port
http.proxyHost=
http.proxyPort=8080
https.proxyHost=
https.proxyPort=8080

The proxy ports have the value 8080, which is the usual one; change this
string if your proxy uses a different port.

Your entries usually follow this pattern:

http.proxyHost=proxyhost.mydomain
http.proxyPort=8080
https.proxyHost=proxyhost.mydomain
https.proxyPort=8080

Using the Provided WARs
The instructions that follow for packaging and deploying the Coffee Break web
applications assume that you are familiar with the deploytool procedures for
packaging web services and presentation-oriented web applications described in
previous chapters of the tutorial. If after following these procedures you have
trouble deploying or running the application, you can compare your WAR files
to the WAR files provided in <INSTALL>/j2eetutorial14/examples/cb/pro-

vided-wars/. You cannot deploy the WAR files in this directory, because they
use the unedited version of the <INSTALL>/j2eetutorial14/examples/cb/

common/src/com/sun/cb/CoffeeBreak.properties file.

Building the Common Classes
The Coffee Break applications share a number of common utility classes. To
build the common classes and copy the CoffeeBreak.properties file into the
build directory, do the following:

1. In a terminal window, go to <INSTALL>/j2eetutorial14/examples/cb/

common/.

2. Run asant build.

1330
Building, Packaging, and Deploying the
JAX-RPC Service
To build the JAX-RPC service and client library and to package and deploy the
JAX-RPC service, follow these steps:

1. In a terminal window, go to <INSTALL>/j2eetutorial14/examples/cb/

jaxrpc/.

2. Run asant build-registry and asant build-service. These tasks cre-
ate the JAR file containing the JAXR routines and run wscompile and com-
pile the source files of the JAX-RPC service.

If you get an error, make sure that you edited the file <INSTALL>/

j2eetutorial14/examples/common/build.properties as described in
Building the Examples (page xxxvii).

3. Make sure the Application Server is running.

To package and deploy the JAX-RPC service using asant, follow these steps:

1. Run asant create-war.

2. If you did not do so in Chapter 10, follow the instructions in Creating
JAXR Resources (page 436) to create a JAXR connection factory named
eis/JAXR.

3. Run asant deploy-war.

To package and deploy the JAX-RPC service using deploytool, follow these
steps:

1. Start deploytool.

2. Select File from the deploytool menu, then New, then Web Component.
Use the New Web Component wizard to create a stand-alone web module
named jaxrpc-coffee-supplier in <INSTALL>/j2eetutorial14/

examples/cb/jaxrpc/.

3. Set the context root to /jaxrpc-coffee-supplier.

4. Add the content to the service.

a. Add the com package, Supplier.wsdl, and mapping.xml under
<INSTALL>/j2eetutorial14/examples/cb/jaxrpc/build/server/

to the module.

b. Navigate to <INSTALL>/j2eetutorial14/examples/cb/jaxrpc/

dist/ and add registry-org.jar.

BUILDING, PACKAGING, DEPLOYING, AND RUNNING THE APPLICATION 1331
c. In the web module contents editor, drag the com directory (containing
sun/cb/SupplierPrices.properties and sun/cb/Coffee-

Break.properties) from the context root to WEB-INF/classes/.

d. Click Next.

5. Specify Web Services Endpoint as the component type.

6. In the Choose Service dialog box (Define New Service):

a. Fromthe WSDL File drop-down list, select WEB-INF/wsdl/Sup-

plier.wsdl.

b. From the Mapping File drop-down list, select mapping.xml.

7. In the Component General Properties dialog box:

a. From the Service Endpoint Implementation drop-down list, select
com.sun.cb.SupplierImpl.

b. Click Next.

8. In the Web Service Endpoint dialog box:

a. From the Service Endpoint Interface drop-down list, select
com.sun.cb.SupplierIF.

b. In the Namespace combo box, type urn:Foo.

c. In the Local Part combo box, type SupplierIFPort.

d. Click Next, and then click Finish.

9. Add the alias /jaxrpc to the SupplierImpl web component.

10.Select the Endpoint tab, and then select jaxrpc from the Endpoint
Address combo box in the Sun-specific Settings area.

11.Select the jaxrpc-coffee-supplier module and add an event listener
that references the listener class com.sun.cb.ContextListener.

12.Add a resource reference of type javax.xml.registry.ConnectionFac-
tory named eis/JAXR mapped to the JAXR connection factory eis/JAXR.
Specify j2ee as the value for both the user name and the password. If you
have not already created the connection factory, follow the instructions in
Creating JAXR Resources (page 436).

13.Save the module.

14.Deploy the module.

You will find the orgkey.txt file in the <J2EE_HOME>/domains/domain1/con-

fig directory. Check the server log for errors: <J2EE_HOME>/domains/domain1/
logs/server.log.

1332
Next, build and test the client:

1. Run asant build-client. This task creates the JAR file that contains the
classes needed by JAX-RPC clients. The build-client task runs wscom-
pile to generate the stubs and JavaBeans components.

2. Test that the JAX-RPC service has been deployed correctly by running the
test programs asant run-test-order and asant run-test-price.

Here is what you should see when you run asant run-test-price:

run-test-price:
run-test-client:

[java]http://localhost:8080/jaxrpc-coffee-supplier/jaxrpc
[java] 11/11/04 12/11/04
[java] Wake Up Call 5.50
[java] French Roast 5.00
[java] Kona 6.50
[java] Mocca 4.00

Building, Packaging, and Deploying the
SAAJ Service
To build the SAAJ service and client library, follow these steps:

1. In a terminal window, go to <INSTALL>/j2eetutorial14/examples/cb/

saaj/.

2. Run asant build. This task creates the client library and compiles the
server classes.

3. Make sure the Application Server is started.

To package and deploy the SAAJ service using asant, follow these steps:

1. Run asant create-war.

2. Run asant deploy-war.

To package and deploy the SAAJ service using deploytool, follow these steps:

1. Start deploytool.

2. Create a stand-alone web module called saaj-coffee-supplier in
<INSTALL>/j2eetutorial14/examples/cb/saaj/.

3. Set the context root to /saaj-coffee-supplier.

4. Add the com directory under <INSTALL>/j2eetutorial14/examples/cb/
saaj/build/server/ to the module.

BUILDING, PACKAGING, DEPLOYING, AND RUNNING THE APPLICATION 1333
5. Add the ConfirmationServlet web component. Choose the Servlet com-
ponent type.

6. Add the alias /orderCoffee to the ConfirmationServlet web compo-
nent.

7. Add the PriceListServlet web component to the existing saaj-cof-

fee-supplier WAR.

8. Add the alias /getPriceList to the PriceListServlet web component.

9. Save the module.

10.Deploy the module.

Test that the SAAJ service has been deployed correctly by running one or both of
the test programs asant run-test-price and asant run-test-order.

Building, Packaging, and Deploying the
Coffee Break Server
To build the Coffee Break server:

1. In a terminal window, go to <INSTALL>/j2eetutorial14/examples/cb/

server/.

2. Run asant build. This task compiles the server classes and copies the
classes, JSP pages, and tag libraries into the correct location for packaging.

3. Make sure the Application Server is started.

To package and deploy the Coffee Break server using asant, follow these steps:

1. Run asant create-war.

2. Run asant deploy-war.

To package and deploy the Coffee Break server using deploytool, follow these
steps:

1. Start deploytool.

2. Create a stand-alone web module called cbserver in <INSTALL>/

j2eetutorial14/examples/cb/server/.

3. Set the context root to /cbserver.

4. Add the content to the web module.

a. Add all the JSP pages, tutorial-template.tld, and the template and
com directories under <INSTALL>/j2eetutorial14/examples/cb/

server/build/ to the module.

1334
b. In the web module contents editor, drag the com directory (containing
sun/cb/CoffeeBreak.properties) from the context root to WEB-INF/

classes/.

c. Add the JAX-RPC client library in <INSTALL>/j2eetutorial14/

examples/cb/jaxrpc/dist/jaxrpc-client.jar to the module.

d. Add the SAAJ client library in <INSTALL>/j2eetutorial14/exam-

ples/cb/saaj/dist/saaj-client.jar to the module.

5. Create a Dispatcher web component. Choose the Servlet component
type.

6. Add the aliases /orderForm, /checkoutForm, and /checkoutAck to the
Dispatcher component.

7. Add the RetailPriceListServlet web component to the existing
cbserver WAR.

8. Add the alias /loadPriceList to the RetailPriceListServlet compo-
nent.

9. Add a resource reference of type javax.xml.registry.ConnectionFac-
tory named eis/JAXR mapped to the JAXR connection factory eis/JAXR,
with the user name and password both j2ee.

10.Add a JSP property group named cbserver. The property group applies to
the URL pattern *.jsp. Add the include prelude /template/pre-

lude.jspf.

11.Add a context parameter named javax.servlet.jsp.jstl.fmt.local-

izationContext and value com.sun.cb.messages.CBMessages.

12.Specify a security constraint for the cbserver WAR.

a. Select Basic as the User Authentication Method.

b. Click Settings and enter file in the Realm Name field. Click OK.

c. Add a security constraint and a web resource collection. Use the default
names provided by deploytool.

d. Add the URL /loadPriceList to the web resource collection.

e. Select the GET HTTP method.

f. Add the security role admin.

13.Save the module.

14.Deploy the module.

BUILDING, PACKAGING, DEPLOYING, AND RUNNING THE APPLICATION 1335
Building, Packaging, and Deploying the
JavaServer Faces Technology Coffee
Break Server
To build the JavaServer Faces technology version of the Coffee Break server, fol-
low these steps:

1. In a terminal window, go to <INSTALL>/j2eetutorial14/examples/cb/

server-jsf/.

2. Run asant build. This task compiles the server classes and copies the
classes, JSP pages, tag libraries, and other necessary files into the correct
location for packaging.

3. Make sure the Application Server is started.

To package and deploy the JavaServer Faces technology version of the Coffee
Break server using asant, follow these steps:

1. Run asant create-war.

2. Run asant deploy-war.

To package and deploy the JavaServer Faces technology version of the Coffee
Break server using deploytool, follow these steps:

1. Start deploytool.

2. Create a stand-alone web module called cbserver-jsf in <INSTALL>/

j2eetutorial14/examples/cb/server-jsf/.

3. Set the context root to /cbserver-jsf.

4. Add the content to the web module.

a. Add all the JSP pages, coffeebreak.css, faces-config.xml,
index.html, and the template and com directories under <INSTALL>/
j2eetutorial14/examples/cb/server-jsf/build/ to the module.

b. In the web module contents editor, drag the com directory (containing
sun/cb/CoffeeBreak.properties) from the context root to WEB-INF/

classes.

c. Drag faces-config.xml to the root of the WEB-INF directory.

d. Add the JAX-RPC client library in <INSTALL>/j2eetutorial14/

examples/cb/jaxrpc/dist/jaxrpc-client.jar to the module.

e. Add the SAAJ client library in <INSTALL>/j2eetutorial14/exam-

ples/cb/saaj/dist/saaj-client.jar to the module.

1336
f. Add the file <J2EE_HOME>lib/jsf-api.jar to the module.

5. Create a FacesServlet web component. Choose the Servlet component
type.

a. In the Startup Load Sequence Position field on the Component General
Properties dialog, enter 1.

6. Add the aliases /faces/* and *.jsf to the FacesServlet component.

7. Add a resource reference of type javax.xml.registry.ConnectionFac-
tory named eis/JAXR mapped to the JAXR connection factory eis/JAXR,
with the user name and password both j2ee.

8. Add a JSP property group named cbserver-jsf. The property group
applies to the URL pattern *.jsp. Add the include prelude /template/

prelude.jspf.

9. Save the module.

10.Deploy the module.

Running the Coffee Break Client
After you have installed all the web applications, check that all the applications
are running in deploytool or the Admin Console. You should see cbserver (or
cbserver-jsf), jaxrpc-coffee-supplier, and saaj-coffee-supplier in the
list of applications.

If you have installed the non-GUI framework version of the Coffee Break server,
you can run the Coffee Break client by opening the Coffee Break server URL in
a web browser:

http://localhost:8080/cbserver/orderForm

If you have installed the JavaServer Faces technology version of the Coffee
Break server, you can run the JavaServer Faces version of the Coffee Break cli-
ent by opening this URL in a web browser:

http://localhost:8080/cbserver-jsf/faces/orderForm.jsp

BUILDING, PACKAGING, DEPLOYING, AND RUNNING THE APPLICATION 1337
You should see a page something like the one shown in Figure 35–2.

Figure 35–2 Order Form

After you have gone through the application screens, you will get an order con-
firmation that looks like the one shown in Figure 35–3.

1338
Figure 35–3 Order Confirmation

Removing the Coffee Break Application
To remove the Coffee Break application, perform the following steps:

1. Undeploy the JAX-RPC and SAAJ services and the Coffee Break server
using deploytool or the Admin Console or by running asant undeploy-

war. When you undeploy the JAX-RPC service, the JAXRPCCoffeeSup-

plier organization is deleted from the registry.

2. Stop the Application Server.

If you want to remove the build and dist directories, run asant clean in each
directory, including <INSTALL>/j2eetutorial14/examples/cb/common/.

36
1339
The Duke’s Bank
Application

THIS chapter describes the Duke’s Bank application, an online banking appli-
cation. Duke’s Bank has two clients: an application client used by administrators
to manage customers and accounts, and a web client used by customers to access
account histories and perform transactions. The clients access the customer,
account, and transaction information maintained in a database through enterprise
beans. The Duke’s Bank application demonstrates the way that many of the com-
ponent technologies presented in this tutorial—enterprise beans, application cli-
ents, and web components—are applied to provide a simple but functional
application.

Figure 36–1 gives a high-level view of how the components interact. This chap-
ter looks at each of the component types in detail and concludes with a discus-
sion of how to build, deploy, and run the application.

1340
Figure 36–1 Duke’s Bank Application

Enterprise Beans
Figure 36–2 takes a closer look at the access paths between the clients, enterprise
beans, and database tables. As you can see, the end-user clients (web and appli-
cation clients) access only the session beans. Within the enterprise bean tier, the
session beans are clients of the entity beans. On the back end of the application,
the entity beans access the database tables that store the entity states.

Note: The source code for these enterprise beans is in the <INSTALL>/
j2eetutorial14/examples/bank/src/com/sun/ebank/ejb/ directory.

ENTERPRISE BEANS 1341
Figure 36–2 Enterprise Beans

Session Beans
The Duke’s Bank application has three session beans: AccountControllerBean,
CustomerControllerBean, and TxControllerBean. (Tx stands for a business
transaction, such as transferring funds.) These session beans provide a client’s
view of the application’s business logic. Hidden from the clients are the server-
side routines that implement the business logic, access databases, manage rela-
tionships, and perform error checking.

AccountControllerBean
The business methods of the AccountControllerBean session bean perform
tasks that fall into the following categories: creating and removing entity beans,
managing the account-customer relationship, and getting the account informa-
tion.

1342
The following methods create and remove entity beans:

• createAccount

• removeAccount

These methods of the AccountControllerBean session bean call the create

and remove methods of the AccountBean entity bean. The createAccount and
removeAccount methods throw application exceptions to indicate invalid
method arguments. The createAccount method throws an IllegalAccount-

TypeException if the type argument is neither Checking, Savings, Credit, nor
Money Market. The createAccount method also verifies that the specified cus-
tomer exists by invoking the findByPrimaryKey method of the CustomerBean

entity bean. If the result of this verification is false, the createAccount method
throws a CustomerNotFoundException.

The following methods manage the account-customer relationship:

• addCustomerToAccount

• removeCustomerFromAccount

The AccountBean and CustomerBean entity beans have a many-to-many rela-
tionship. A bank account can be jointly held by more than one customer, and a
customer can have multiple accounts. Because the entity beans use bean-man-
aged persistence, there are several ways to manage this relationship. For more
information, see Mapping Table Relationships for Bean-Managed
Persistence (page 947).

In the Duke’s Bank application, the addCustomerToAccount and removeCus-

tomerFromAccount methods of the AccountControllerBean session bean man-
age the account-customer relationship. The addCustomerToAccount method, for
example, starts by verifying that the customer exists. To create the relationship,
the addCustomerToAccount method inserts a row into the
customer_account_xref database table. In this cross-reference table, each row
contains the customerId and accountId of the related entities. To remove a
relationship, the removeCustomerFromAccount method deletes a row from the
customer_account_xref table. If a client calls the removeAccount method,
then all rows for the specified accountId are removed from the
customer_account_xref table.

The following methods get the account information:

• getAccountsOfCustomer

• getDetails

The AccountControllerBean session bean has two get methods. The getAc-

countsOfCustomer method returns all of the accounts of a given customer by

ENTERPRISE BEANS 1343
invoking the findByCustomerId method of the AccountBean entity bean.
Instead of implementing a get method for every instance variable, the Account-

ControllerBean has a getDetails method that returns an object (AccountDe-
tails) that encapsulates the entire state of an AccountBean bean. Because it can
invoke a single method to retrieve the entire state, the client avoids the overhead
associated with multiple remote calls.

CustomerControllerBean
Because it is the AccountControllerBean enterprise bean that manages the cus-
tomer-account relationship, CustomerControllerBean is the simpler of these
two session beans. A client creates a CustomerBean entity bean by invoking the
createCustomer method of the CustomerControllerBean session bean. To
remove a customer, the client calls the removeCustomer method, which not only
invokes the remove method of CustomerBean but also deletes from the
customer_account_xref table all rows that identify the customer.

The CustomerControllerBean session bean has two methods that return multi-
ple customers: getCustomersOfAccount and getCustomersOfLastName. These
methods call the corresponding finder methods—findbyAccountId and find-

ByLastName—of CustomerBean.

TxControllerBean
The TxControllerBean session bean handles bank transactions. In addition to
its get methods, getTxsOfAccount and getDetails, the TxControllerBean

bean has several methods that change the balances of the bank accounts:

• withdraw

• deposit

• makeCharge

• makePayment

• transferFunds

These methods access an AccountBean entity bean to verify the account type and
to set the new balance. The withdraw and deposit methods are for standard
accounts, whereas the makeCharge and makePayment methods are for accounts
that include a line of credit. If the type method argument does not match the
account, these methods throw an IllegalAccountTypeException. If a with-
drawal were to result in a negative balance, the withdraw method throws an
InsufficientFundsException. If a credit charge attempts to exceed the

1344
account’s credit line, the makeCharge method throws an InsufficientCredi-

tException.

The transferFunds method also checks the account type and new balance; if
necessary, it throws the same exceptions as the withdraw and makeCharge meth-
ods. The transferFunds method subtracts from the balance of one Account-

Bean instance and adds the same amount to another instance. Because both of
these steps must complete, the transferFunds method has a Required transac-
tion attribute. If either step fails, the entire operation is rolled back and the bal-
ances remain unchanged.

Entity Beans
For each business entity represented in our simple bank, the Duke’s Bank appli-
cation has a matching entity bean:

• AccountBean

• CustomerBean

• TxBean

The purpose of these beans is to provide an object view of these database tables:
account, customer, and tx. For each column in a table, the corresponding entity
bean has an instance variable. Because they use container-managed persistence,
the entity beans contain no SQL statements that access the tables. The enterprise
bean container manages all data in the underlying data source, including adding,
updating, and deleting data from the database tables.

In addition, a helper entity bean, NextIdBean, is used to create account, cus-
tomer, and transaction IDs. NextIdBean is the object representation of the
next_id table. AccountControllerBean, CustomerControllerBean, and
TxControllerBean use NextIdBean’s getNextId method when creating new
instances of the respective entity beans.

Unlike the session beans, the entity beans do not validate method parameters
(except for the primary key parameter of ejbCreate). During the design phase,
we decided that the session beans would check the parameters and throw the
application exceptions, such as CustomerNotInAccountException and Illega-

lAccountTypeException. Consequently, if some other application were to
include these entity beans, its session beans would also have to validate the
method parameters.

ENTERPRISE BEANS 1345
Because the entity beans always run in the same Java VM as their clients the ses-
sion beans, for improved performance the entity beans are coded with local inter-
faces.

Helper Classes
The EJB JAR files include several helper classes that are used by the enterprise
beans. The source code for these classes is in the <INSTALL>/j2eetutorial14/

examples/bank/src/com/sun/ebank/util/ directory. Table 36–1 briefly
describes the helper classes.

Table 36–1 Helper Classes for the Application’s Enterprise Beans

Class Name Description

AccountDetails
Encapsulates the state of an AccountBean instance. Returned by the
getDetails methods of AccountControllerBean and Account-
Bean.

CodedNames
Defines the strings that are the logical names in the calls of the lookup
method (for example, java:comp/env/ejb/account). The EJB-
Getter class references these strings.

CustomerDetails
Encapsulates the state of a CustomerBean instance. Returned by the
getDetails methods of CustomerControllerBean and Custom-
erBean.

Debug

Has simple methods for printing a debugging message from an enter-
prise bean. These messages appear on the standard output of the Appli-
cation Server when it’s run with the --verbose option and in the
server log.

DomainUtil
Contains validation methods: getAccountTypes, checkAccount-
Type, and isCreditAccount.

EJBGetter
Has methods that locate (by invoking lookup) and return home inter-
faces (for example, getAccountControllerHome).

TxDetails
Encapsulates the state of a TxBean instance. Returned by the getDe-
tails methods of TxControllerBean and TxBean.

1346
Database Tables
A database table of the Duke’s Bank application can be categorized by its pur-
pose: representing business entities and holding the next primary key.

Tables Representing Business Entities
Figure 36–3 shows the relationships between the database tables. The customer

and account tables have a many-to-many relationship: A customer can have sev-
eral bank accounts, and each account can be owned by more than one customer.
This many-to-many relationship is implemented by the cross–reference table
named customer_account_xref. The account and tx tables have a one-to-
many relationship: A bank account can have many transactions, but each transac-
tion refers to a single account.

Figure 36–3 Database Tables

Figure 36–3 uses several abbreviations. PK stands for primary key, the value that
uniquely identifies a row in a table. FK is an abbreviation for foreign key, which

APPLICATION CLIENT 1347
is the primary key of the related table. Tx is short for transaction, such as a
deposit or withdrawal.

Table That Holds the Next Primary Key
The next_id table has a column, bean_type, that stores the type of ID, and a col-
umn named id. The value of id is the next primary key that is passed to the cre-

ate method of an entity bean. For example, before it creates a new AccountBean

entity bean, the AccountControllerBean session bean must obtain a unique key
by invoking the getNextId method of NextIdBean. The getNextId method
reads the id from the next_id table, increments the id value in the table, and
then returns the id.

Protecting the Enterprise Beans
In the J2EE platform, you protect an enterprise bean by specifying the security
roles that can access its methods. In the Duke’s Bank application, you define two
roles—bankCustomer and bankAdmin—because two categories of operations are
defined by the enterprise beans.

A user in the bankAdmin role will be allowed to perform administrative func-
tions: creating or removing an account, adding a customer to or removing a cus-
tomer from an account, setting a credit line, and setting an initial balance. A user
in the bankCustomer role will be allowed to deposit, withdraw, and transfer
funds, make charges and payments, and list the account’s transactions. Notice
that there is no overlap in functions that users in either role can perform.

The system restricts access to these functions to the appropriate role by setting
method permissions on selected methods of the CustomerControllerBean,
AccountControllerBean, and TxControllerBean enterprise beans. For exam-
ple, by allowing only users in the bankAdmin role to access the createAccount

method in the AccountControllerBean enterprise bean, you deny users in the
bankCustomer role (or any other role) permission to create bank accounts.

Application Client
Sometimes, enterprise applications use a stand-alone client application for han-
dling tasks such as system or application administration. For example, the
Duke’s Bank application uses an application client to administer customers and

1348
accounts. This capability is useful in the event that the site becomes inaccessible
for any reason or if a customer prefers to communicate things such as changes to
account information by phone.

The application client shown in Figure 36–4 handles basic customer and account
administration for the banking application through a Swing user interface. The
bank administrator can perform any of the following functions by making menu
selections.

Figure 36–4 Application Client

Customer administration:

• View customer information

• Add a new customer to the database

• Update customer information

• Find customer ID

Account administration:

• Create a new account

• Add a new customer to an existing account

• View account information

• Remove an account from the database

Error and informational messages appear in the left pane under Application

message watch:, and data is entered and displayed in the right pane.

APPLICATION CLIENT 1349
The Classes and Their Relationships
The source code for the application client is in the <INSTALL>/

j2eetutorial14/examples/bank/src/com/sun/ebank/appclient/ direc-
tory. The application client is divided into three classes: BankAdmin, EventHan-
dle, and DataModel; the relationships among the classes are depicted in Figure
36–5.

Figure 36–5 Relationships among Application Client Classes

BankAdmin builds the initial user interface, creates the EventHandle object, and
provides methods for the EventHandle and DataModel objects to call when they
update the user interface.

EventHandle listens for button clicks by the user, takes action based on which
button the user clicks, creates the DataModel object, calls methods in the Data-

Model object to write data to and read data from the enterprise beans, and calls

1350
methods in the BankAdmin object to update the user interface when actions com-
plete.

DataModel retrieves data from the user interface, performs data checks, writes
valid data to and reads stored data from the underlying database, and calls meth-
ods in the BankAdmin object to update the user interface based on the success of
the database read or write operation.

BankAdmin Class
The BankAdmin class, which creates the user interface, is the class that contains
the main method and provides protected methods for the other BankAdmin

application classes to call.

main Method
The main method creates instances of the BankAdmin and EventHandle classes.
Arguments passed to the main method are used to initialize a locale, which is
passed to the BankAdmin constructor.

public static void main(String args[]) {
String language, country;
if(args.length == 1) {

language = new String(args[0]);
currentLocale = new Locale(language, "");

} else if(args.length == 2) {
language = new String(args[0]);
country = new String(args[1]);
currentLocale = new Locale(language, country);

} else
currentLocale = Locale.getDefault();
frame = new BankAdmin(currentLocale);
frame.setTitle(messages.getString(

"CustAndAccountAdmin"));
WindowListener l = new WindowAdapter() {

public void windowClosing(WindowEvent e) {
System.exit(0);

}
};
frame.addWindowListener(l);
frame.pack();
frame.setVisible(true);

../bank/src/com/sun/ebank/appclient/BankAdmin.java

APPLICATION CLIENT 1351
ehandle = new EventHandle(frame, messages);
System.exit(0);
}

}

Constructor
The BankAdmin constructor creates the initial user interface, which consists of a
menu bar and two panels. The menu bar contains the customer and account
menus, the left panel contains a message area, and the right panel is a data dis-
play or update area.

Class Methods
The BankAdmin class provides methods that other objects call when they need to
update the user interface. These methods are as follows:

• clearMessages: Clears the application messages that appear in the left
panel

• resetPanelTwo: Resets the right panel when the user selects OK to signal
the end of a data view or update operation

• createPanelTwoActLabels: Creates labels for account fields when
account information is either viewed or updated

• createActFields: Creates account fields when account information is
either viewed or updated

• createPanelTwoCustLabels: Creates labels for customer fields when
customer information is either viewed or updated

• createCustFields: Creates customer fields when customer information
is either viewed or updated

• addCustToActFields: Creates labels and fields when an add customer to
account operation is invoked

• makeRadioButtons: Makes radio buttons for selecting the account type
when a new account is created

• getDescription: Makes the radio button labels that describe each avail-
able account type

1352
EventHandle Class
The EventHandle class implements the ActionListener interface, which pro-
vides a method interface for handling action events. Like all other interfaces in
the Java programming language, ActionListener defines a set of methods but
does not implement their behavior. Instead, you provide the implementations
because they take application-specific actions.

Constructor
The constructor receives an instance of the ResourceBundle and BankAdmin

classes and assigns them to its private instance variable so that the EventHandle

object has access to the application client’s localized text and can update the user
interface as needed. The constructor also calls the hookupEvents method to cre-
ate the inner classes to listen for and handle action events.

public EventHandle(BankAdmin frame, ResourceBundle messages) {
 this.frame = frame;
 this.messages = messages;
 this.dataModel = new DataModel(frame, messages);
 //Hook up action events
 hookupEvents();

}

actionPerformed Method
The ActionListener interface has only one method, the actionPerformed

method. This method handles action events generated by the BankAdmin user
interface when users create a new account. Specifically, it sets the account
description when a bank administrator selects an account type radio button, and
it sets the current balance to the beginning balance for new accounts when a bank
administrator presses the Return key in the Beginning Balance field.

hookupEvents Method
The hookupEvents method uses inner classes to handle menu and button press
events. An inner class is a class that is nested or defined inside another class.
Using inner classes in this way modularizes the code, making it easier to read

../bank/src/com/sun/ebank/appclient/EventHandle.java

APPLICATION CLIENT 1353
and maintain. EventHandle inner classes manage the following application cli-
ent operations:

• Viewing customer information

• Creating a new customer

• Updating customer information

• Finding a customer ID by last name

• Viewing account information

• Creating a new account

• Adding customer to an account

• Removing an account

• Clearing data on Cancel button press

• Processing data on OK button press

DataModel Class
The DataModel class provides methods for reading data from the database, writ-
ing data to the database, retrieving data from the user interface, and checking that
data before it is written to the database.

Constructor
The constructor receives an instance of the BankAdmin class and assigns it to its
private instance variable so that the DataModel object can display error messages
in the user interface when its checkActData, checkCustData, or writeData

method detects errors. The constructor also receives an instance of the Resour-

ceBundle class and assigns it to its private instance variable so that the Data-

Model object has access to the application client’s localized text.

Because the DataModel class interacts with the database, the constructor also has
the code to establish connections with the remote interfaces for the Customer-

ControllerBean and AccountControllerBean enterprise beans, and the code
to use their remote interfaces to create instances of the CustomerController-

Bean and AccountControllerBean enterprise beans.

//Constructor
public DataModel(BankAdmin frame, ResourceBundle messages) {

this.frame = frame;
this.messages = messages;

../bank/src/com/sun/ebank/appclient/DataModel.java

1354
//Look up and create CustomerController bean
try {

CustomerControllerHome customerControllerHome =
EJBGetter.getCustomerControllerHome();

customer = customerControllerHome.create();
} catch (Exception namingException) {

namingException.printStackTrace();
}

//Look up and create AccountController bean
try {

AccountControllerHome accountControllerHome =
EJBGetter.getAccountControllerHome();

account = accountControllerHome.create();
} catch (Exception namingException) {

namingException.printStackTrace();
}

}

Methods
The getData method retrieves data from the user interface text fields and uses
the String.trim method to remove extra control characters such as spaces and
returns. Its one parameter is a JTextfield so that any instance of the JText-

field class can be passed in for processing.

private String getData(JTextField component) {
 String text, trimmed;
 if(component.getText().length() > 0) {

text = component.getText();
trimmed = text.trim();
return trimmed;

} else {
text = null;
return text;

}
}

The checkCustData method stores customer data retrieved by the getData

method, but first it checks the data to be sure that all required fields have data,
that the middle initial is no longer than one character, and that the state is no
longer than two characters. If everything checks out, the writeData method is
called. If there are errors, they are printed to the user interface in the BankAdmin

object. The checkActData method uses a similar model to check and store
account data.

WEB CLIENT 1355
The createCustInf and createActInf methods are called by the EventHandle

class to refresh the customer and account information display in the event of a
view, update, or add action event.

Create Customer Information
For a view or update event, the createCustInf method gets the customer infor-
mation for the specified customer from the database and passes it to the create-

CustFields method in the BankAdmin class. A Boolean variable is used to
determine whether the createCustFields method should create read-only fields
for a view event or writable fields for an update event.

For a create event, the createCustInf method calls the createCustFields

method in the BankAdmin class with null data and a Boolean variable to create
empty editable fields for the user to enter customer data.

Create Account Information
For a view or update event, the createActInf method gets the account informa-
tion for the specified account from the database and passes it to the createAct-

Fields method in the BankAdmin class. A Boolean variable is used to determine
whether the createActFields method should create read-only fields for a view
event or writable fields for an update event.

For a create event, the createActInf method calls the createActFields

method in the BankAdmin class with null data and a Boolean variable to create
empty editable fields for the user to enter customer data.

Adding a customer to an account or removing an account events operate directly
on the database without creating any user interface components.

Web Client
In the Duke’s Bank application, the web client is used by customers to access
account information and perform operations on accounts. Table 36–2 lists the
functions the client supports, the URLs used to access the functions, and the
components that implement the functions. Figure 36–6 shows an account history
screen.

1356
Note: The source code for the web client is in the <INSTALL>/j2eetutorial14/
examples/bank/src/com/sun/ebank/web/ and <INSTALL>/j2eetutorial14/
examples/bank/web/ directories.

Table 36–2 Web Client

Function URL Aliases JSP Pages
JavaBeans
Components

Home page /main main.jsp CustomerBean

Log on to or off of
the application

/logon
/logonError
/logoff

logon.jsp
logonError.jsp
logoff.jsp

List accounts /accountList accountList.jsp CustomerBean

List the history of
an account

/accountHist accountHist.jsp
CustomerBean,
AccountHistory-
Bean

Transfer funds
between accounts

/transferFunds
/transferAck

transferFunds.jsp
transferAck.jsp

CustomerBean,
TransferBean

Withdraw and
deposit funds

/atm
/atmAck

atm.jsp
atmAck.jsp

CustomerBean,
ATMBean

Error handling /error error.jsp

WEB CLIENT 1357
Figure 36–6 Account History

Design Strategies
The main job of the JSP pages in the Duke’s Bank application is presentation. To
achieve this, most dynamic processing tasks are delegated to enterprise beans,
custom tags, and JavaBeans components.

In the Duke’s Bank application, the JSP pages use enterprise beans to handle
interactions with the database and rely on JavaBeans components for interactions
with the enterprise beans. In the Duke’s Bookstore application, discussed in
Chapters 11 to 22, the BookDB JavaBeans component acts as a front end to a
database. In the Duke’s Bank application, TransferBean acts as a facade to the
TxControllerBean enterprise bean. However, the other JavaBeans components

../bank/src/com/sun/ebank/web/TransferBean.java

1358
have much richer functionality. ATMBean invokes enterprise bean methods and
sets acknowledgment strings according to customer input, and AccountHisto-

ryBean massages the data returned from the enterprise beans in order to present
the view of the data required by the customer.

The web client uses a template mechanism implemented by custom tags (dis-
cussed in A Template Tag Library, page 624) to maintain a common look across
all the JSP pages. The template mechanism consists of three components:

• template.jsp determines the structure of each screen. It uses the insert

tag to compose a screen from subcomponents.

• screendefinitions.jspf defines the subcomponents used by each
screen. All screens have the same banner, but different title and body con-
tent (specified in the JSP Pages column in Table 36–2).

• Dispatcher, a servlet, processes requests and forwards them to tem-

plate.jsp.

Finally, the web client uses logic tags from the JSTL core tag library to perform
flow control and tags from the JSTL fmt tag library to localize messages and for-
mat currency.

Client Components
All the JavaBeans components used in the web client are instantiated by Dis-

patcher. The BeanManager and CustomerBean components are instantiated for
the session and request, respectively. The other beans—AccountHistoryBean,
TransferBean, and ATMBean—are instantiated depending on which request URL
is being handled.

Responsibility for managing the enterprise beans used by the web client rests
with the BeanManager. It creates customer, account, and transaction controller
enterprise beans and provides methods for retrieving the beans.

When instantiated by Dispatcher, the BeanManager component retrieves the
home interface for each bean from the helper class EJBGetter and creates an
instance by calling the create method of the home interface. Because these
enterprise beans apply to a particular customer or session, Dispatcher stores a
BeanManager as a session attribute.

public class BeanManager {
private CustomerController custctl;
private AccountController acctctl;
private TxController txctl;

../bank/src/com/sun/ebank/web/ATMBean.java
../bank/src/com/sun/ebank/web/AccountHistoryBean.java
../bank/src/com/sun/ebank/web/AccountHistoryBean.java
../bank/web/template/template.txt
../bank/web/template/screendefinitions.txt
../bank/src/com/sun/ebank/web/Dispatcher.java
../bank/src/com/sun/ebank/web/BeanManager.java
../bank/src/com/sun/ebank/util/EJBGetter.java

WEB CLIENT 1359
public BeanManager() {
if (custctl == null) {

try {
CustomerControllerHome home =

EJBGetter.getCustomerControllerHome();
custctl = home.create();

} catch (RemoteException ex) {
Debug.print("Couldn’t create customer bean." +

ex.getMessage());
} catch (CreateException ex) {

Debug.print("Couldn’t create customer bean." +
ex.getMessage());

} catch (NamingException ex) {
Debug.print("Unable to look up home: " +

CodedNames.CUSTOMER_CONTROLLER_EJBHOME +
ex.getMessage());

}
}
public CustomerController getCustomerController() {

return custctl;
}
...

}

CustomerBean maintains the customer and account information for the current
request. Although the customer is the same for each request, the account may
change, so Dispatcher stores a CustomerBean as a request attribute.

public class CustomerBean {
private BeanManager beanManager;
private String customer;
private String account;

public AccountDetails getAccountDetails() {
AccountDetails ad = null;

try {
ad = beanManager.getAccountController().

getDetails(this.account);
} catch (InvalidParameterException e) {

...
return ad;

}

public ArrayList getAccounts() {
ArrayList accounts = null;
try {

accounts = beanManager.getAccountController().
getAccountsOfCustomer(this.customer);

1360
} catch (InvalidParameterException e) {
...
}
return accounts;

}

The page fragment template/links.jsp generates the list of bank function
links at the top of every page. Notice that the customer is retrieved from the
userPrincipal object, which is set when the customer logs in (see Protecting
the Web Client Resources, page 1363). After the customer is set, the page can
retrieve from CustomerBean the collection of accounts for the customer. The
collection is assigned to the accounts variable, and the first item in the collec-
tion is used as the default account ID for the ATM operation.

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"
%>
<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt"
%>
<jsp:useBean id="customerBean"

class="com.sun.ebank.web.CustomerBean" scope="request"/>
<jsp:setProperty name="customerBean" property="customer"

value="${pageContext.request.userPrincipal.name}"/>

<c:set var="accounts" value="${customerBean.accounts}" />
<c:forEach items="${accounts}" begin="0" end="0" var="ad">

<c:set var="accountId" value="${ad.accountId}" />
</c:forEach>
<center>
<table border=0 cellpadding=10 cellspacing=25

width=600 summary="layout">
<tr>

<c:url var="url" value="/accountList" />
<td bgcolor="#CE9A00">

<fmt:message key="AccountList"/></td>
<c:url var="url" value="/transferFunds" />
<td bgcolor="#CE9A00">

<fmt:message key="TransferFunds"/></td>
<c:url var="url"

value="/atm?accountId=${accountId}&operation=0" />
<td bgcolor="#CE9A00">

<fmt:message key="ATM"/></td>
<c:url var="url" value="/logoff" />
<td bgcolor="#CE9A00">

<fmt:message key="Logoff"/></td>
</tr>

</table>
</center>

WEB CLIENT 1361
Request Processing
All requests for the URLs listed in Table 36–2 are mapped to the dispatcher

web component, which is implemented by the Dispatcher servlet:

public class Dispatcher extends HttpServlet {
public void doPost(HttpServletRequest request,

HttpServletResponse response) {
...
String selectedScreen = request.getServletPath();
...
if (selectedScreen.equals("/accountHist")) {

...
} else if (selectedScreen.equals("/transferAck")) {

String fromAccountId =
request.getParameter("fromAccountId");

String toAccountId =
request.getParameter("toAccountId");

if ((fromAccountId == null) || (toAccountId == null)) {
request.setAttribute("errorMessage",

messages.getString("AccountError"));
try {

request.getRequestDispatcher(
"/error.jsp").forward(request, response);

} catch(Exception ex) {
}

} else {
TransferBean transferBean = new TransferBean();
request.setAttribute("transferBean",

transferBean);
try {

transferBean.setMessages(messages);
transferBean.setFromAccountId(fromAccountId);
transferBean.setToAccountId(toAccountId);
transferBean.setBeanManager(beanManager);
transferBean.setTransferAmount(new

BigDecimal(request.
getParameter("transferAmount")));

String errorMessage = transferBean.doTx();
if (errorMessage != null) {

request.setAttribute("errorMessage",
errorMessage);

try {
request.getRequestDispatcher(

"/error.jsp").forward(request, response);
} catch(Exception ex) {
}

1362
}
} catch (NumberFormatException e) {

request.setAttribute("errorMessage",
messages.getString("AmountError"));

try {
request.getRequestDispatcher(

"/error.jsp").forward(request, response);
} catch(Exception ex) {
}

}
}
...
try {

request.getRequestDispatcher(
"/template/template.jsp").forward(request, response);

} catch(Exception e) {
}

}
}

When a request is delivered, Dispatcher does the following:

1. Retrieves the incoming request URL and extracts the requested screen.
Dispatcher performs business logic and updates model objects based on
the requested screen.

2. Creates a JavaBeans component and stores the bean as a request attribute.

3. Parses and validates the request parameters. If a parameter is invalid, Dis-
patcher may reset the request alias to an error page. Otherwise, it initial-
izes the JavaBeans component.

4. Calls the doTx method of the JavaBeans component. This method retrieves
data from the enterprise beans and processes the data according to options
specified by the customer.

5. Forwards the request to template.jsp.

As mentioned earlier, template.jsp generates the response by including the
responses from subcomponents. The body subcomponent in turn usually
retrieves data from the JavaBeans components initialized by Dispatcher.

Figure 36–7 depicts the interaction among these components.

WEB CLIENT 1363
Figure 36–7 Web Component Interaction

Protecting the Web Client Resources
In the J2EE platform, you protect a web resource from anonymous access by
specifying which security roles can access the resource. The web container guar-
antees that only certain users acting in those roles can access the resource. For
the web container to enforce the security constraint, the application must specify
a means for users to identify themselves, and the web container must support
mapping a role to a user.

1364
In the Duke’s Bank web client, you restrict all the URLs listed in Table 36–2 to
the security role bankCustomer. The application requires users to identify them-
selves via the form-based login mechanism. When a customer tries to access a
web client URL and has not been authenticated, the web container displays the
JSP page logon.jsp. This page contains a form that requires a customer to enter
an identifier and password.

<form action="j_security_check" method=post>
<table>
<tr>

<td align="center" >
<table border="0">
<tr>
<td><fmt:message key="CustomerId"/></td>
<td>

<input type="text" size="15" name="j_username">
</td>
</tr>
<tr>
<td><fmt:message key="Password"/></td>
<td>

<input type="password" size="15" name="j_password">
</td>
...

</form>

Note that the action invoked by the form, j_security_check, is specified by the
Java Servlet specification, as are the request parameters j_username and
j_password. The web container retrieves this information, maps it to a security
role, and verifies that the role matches that specified in the security constraint.
Note that in order for the web container to check the validity of the authentica-
tion information and perform the mapping, you must perform these two steps
when you deploy the application:

1. Add the customer’s group, ID, and password to the default realm of the
container using the Admin Console.

2. Map the bankCustomer role to the customer or the customer’s group in
deploytool.

After the customer has been authenticated, the identifier provided by the cus-
tomer is used as a key to identify the customer’s accounts. The identifier is
retrieved from the request using the following expression:

${pageContext.request.userPrincipal.name}

../bank/web/logon.txt

INTERNATIONALIZATION 1365
Internationalization
The application client and web client distributed with the Duke’s Bank applica-
tion are internationalized. All strings that appear in the user interfaces are
retrieved from resource bundles. The administration client uses resource bundles
named AdminMessages_*.properties. The web client uses resource bundles
named WebMessages_*.properties. Both clients are distributed with English
and Spanish resource bundles.

The application client retrieves locale information from the command line. For
example, to use the Spanish resource bundle, invoke the application this way:

appclient -client DukesBankAppClient.jar es

The administration client class BankAdmin creates a ResourceBundle that has a
locale created from the command-line arguments:

//Constructor
public BankAdmin(Locale currentLocale) {

//Internationalization setup
messages = ResourceBundle.getBundle("AdminMessages",

currentLocale);

The web client Dispatcher component retrieves the locale (set by a browser lan-
guage preference) from the request, opens the resource bundle, and then saves
the bundle as a session attribute:

ResourceBundle messages = (ResourceBundle)session.
getAttribute("messages");
if (messages == null) {

Locale locale=request.getLocale();
messages = ResourceBundle.getBundle("WebMessages",

locale);
session.setAttribute("messages", messages);

}

1366
The web client’s JavaBeans components access localized messages using
messages.getString(“key”);.

The web client’s JSP pages use the JSTL fmt:message tags to retrieve localized
messages. You set the localization context of the JSTL fmt tag library as a con-
text parameter when you package the web client with deploytool.

For example, here is how accountHist.jsp generates the headings for the trans-
actions table:

<td><center><fmt:message
key="TxDate"/></center></td>

<td><center><fmt:message
key="TxDescription"/></center></td>

<td><center><fmt:message
key="TxAmount"/></center></td>

<td><center><fmt:message
key="TxRunningBalance"/></center></td>

Building, Packaging, Deploying, and
Running the Application

To build the Duke’s Bank application, you must have installed the tutorial bundle
as described in About the Examples (page xxxvi). When you install the bundle,
the Duke’s Bank application files are located in the <INSTALL>/

j2eetutorial14/examples/bank/ directory:

/bank

/provided-jars - packaged J2EE application containing the enter-
prise beans and web and application clients

/sql - database scripts
/src

/com - component classes
/sun/ebank/appclient

/sun/ebank/ejb

/sun/ebank/util

/sun/ebank/web

/web - JSP pages, images

After you compile the source code, the resulting files will reside in the
<INSTALL>/j2eetutorial14/examples/bank/build/ directory.

../bank/web/accountHist.txt

BUILDING, PACKAGING, DEPLOYING, AND RUNNING THE APPLICATION 1367
Setting Up the Servers
Before you can package, deploy, and run the example, you must first set up the
Derby database server with customer and account data, and you must add some
resources to the Application Server.

Starting the Application Server
Before you can start this tutorial, the Application Server must be running. For
information on starting the Application Server, see Starting and Stopping the
Application Server (page 27).

Creating the Bank Database
You create and enter data into the appropriate tables so that the enterprise beans
have something to read from and write to the database.

Note: Application Server 8.2 includes a copy of the open source Derby data-
base server. Application Server 8.0/ 8.1 includes the PointBase database server. If
you are using Application Server 8.0/8.1, either follow the instructions in the J2EE
Tutorial at http://java.sun.com/j2ee/1.4/docs/tutorial-update6/
doc/index.html that works with Application Server 8.0/8.1 or upgrade to Appli-
cation Server 8.2 (see http://java.sun.com/j2ee/1.4/down-
load.html#appserv to download).

To create and populate the database tables, follow these steps:

1. In a terminal window or command prompt, go to the <INSTALL>/

j2eetutorial14/examples/bank/ directory.

2. Execute the command asant create-db_common. This asant task executes
the SQL commands contained in <INSTALL>/j2eetutorial14/exam-

ples/bank/sql/create-table.sql. The SQL commands delete any
existing tables, create new tables, and insert data.

http://java.sun.com/j2ee/1.4/docs/tutorial-update6/doc/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial-update6/doc/index.html
http://java.sun.com/j2ee/1.4/download.html#appserv
http://java.sun.com/j2ee/1.4/download.html#appserv

1368
Capturing the Database Schema
After you create and populate the tables, you capture the structure of the tables
into a schema file used to map the table data to enterprise bean fields and rela-
tionships. To capture the schema, follow these steps:

1. In a terminal window or command prompt, go to the <INSTALL>/

j2eetutorial14/examples/bank/ directory.

2. Execute the following command:

asant capture-db-schema

This task invokes the capture-schema command and saves the resulting
schema file in <INSTALL>/j2eetutorial14/examples/bank/build/

dukesbank.dbschema.

Creating the JDBC Data Source
The Duke’s Bank enterprise beans reference the database having the JNDI name
jdbc/BankDB. That JNDI name must be mapped to a JDBC data source in the
Application Server. You create the data source using the Admin Console follow-
ing the procedures described in Creating a Data Source (page 1112). When you
create the JDBC data source, name it jdbc/BankDB and map it to DerbyPool.

Adding Users and Groups to the File Realm
To enable the Application Server to determine which users can access enterprise
bean methods and resources in the web client, add users and groups to the
server’s file security realm using the Admin Console following the procedures
described in Managing Users (page 1121). Add the users and groups listed in
Table 36–3.

Table 36–3 Duke’s Bank Users and Groups

User Password Group

200 j2ee bankCustomer

bankadmin j2ee bankAdmin

BUILDING, PACKAGING, DEPLOYING, AND RUNNING THE APPLICATION 1369
Compiling the Duke’s Bank Application
Code
To compile the enterprise beans, application client, and web client, go to the
<INSTALL>/j2eetutorial14/examples/bank/ directory of the tutorial distri-
bution and execute the command asant build.

Packaging and Deploying the Duke’s
Bank Application
The instructions that follow for packaging and deploying Duke’s Bank assume
that you are familiar with the deploytool procedures for packaging enterprise
beans, application clients, and web applications described in previous chapters of
the tutorial. If after following these procedures you have trouble deploying or
running the application, you can use the EAR provided in <INSTALL>/

j2eetutorial14/examples/bank/provided-jars/ to run the example.

Packaging the Enterprise Beans
1. Create an EJB JAR module named DukesBankEJBJAR in <INSTALL>/

j2eetutorial14/examples/bank/.

2. Add the ejb and util packages under <INSTALL>/j2eetutorial14/

examples/bank/build/com/sun/ebank/, and dukesbank.dbschema in
<INSTALL>/j2eetutorial14/examples/bank/build/.

3. Set up the entity beans:

a. Set up each CMP 2.0 entity bean listed in the following tables using the
Enterprise Bean wizard:

Table 36–4 Settings for AccountBean

Setting Value

Local Home Interface LocalAccountHome

Local Interface LocalAccount

Persistent Fields
accountId, balance, beginBalance, beginBal-
anceTimeStamp, creditLine, description, type

1370
Abstract Schema Name AccountBean

Primary Key Class Existing field accountId

Table 36–5 Settings for CustomerBean

Setting Value

Local Home Interface LocalCustomerHome

Local Interface LocalCustomer

Persistent Fields
city, customerId, email, firstName, lastName,
middleInitial, phone, state, street, zip

Abstract Schema Name CustomerBean

Primary Key Class Existing field customerId

Table 36–6 Settings for TxBean

Setting Value

Local Home Interface LocalTxHome

Local Interface LocalTx

Persistent Fields amount, balance, description, timeStamp, txId

Abstract Schema Name TxBean

Primary Key Class Existing field txId

Table 36–7 Settings for NextIdBean

Setting Value

Local Home Interface LocalNextIdHome

Table 36–4 Settings for AccountBean

Setting Value

BUILDING, PACKAGING, DEPLOYING, AND RUNNING THE APPLICATION 1371
4. Set up the entity bean relationships according to Table 36–8:

b. In the Sun-specific Settings->CMP Database dialog:

1.Set the JNDI name to jdbc/BankDB.

2.Click Create Database Mappings and select dukesbank.dbschema

under Map to Tables in Database Schema File.

3.Confirm the fields and relationships were properly mapped by select-
ing each enterprise bean under Persistent Field Mappings.

Local Interface LocalNextId

Persistent Fields beanName, id

Abstract Schema Name NextIdBean

Primary Key Class Existing field beanName

Table 36–8 OrderApp Bean Relationships

Multi-
plicity Bean A

Field Referencing
Bean B and Field
Type Bean B

Field Referencing
Bean A and Field
Type

:
Account-
Bean

customers,
java.util.Col-
lection

Customer-
Bean

accounts,
java.util.
Collection

1:*
Account-
Bean

none TxBean account

Table 36–7 Settings for NextIdBean

Setting Value

1372
c. Set the EJB-QL finder queries according to Table 36–9. To set the finder
queries, select the bean in the tree, select the Entity tab, then select Find/
Select Queries.

d. Set the Transaction Attributes for the NextIdBean.getNextId method
to Requires New. To do this, select the NextIdBean in the tree, select the
Transactions page, and then change the Transaction Attribute for the
getNextId method.

Table 36–9 Finder Queries in Duke’s Bank

Enterprise Bean Method EJB QL Query

AccountBean findByCustomerId

select distinct object(a)
from AccountBean a, in (a.cus-
tomers) as c
where c.customerId = ?1

CustomerBean findByAccountId

select distinct object(c)
from CustomerBean c, in
(c.accounts) as a
where a.accountId = ?1

CustomerBean findByLastName
select object(c)
from CustomerBean c
where c.lastName = ?1

TxBean findByAccountId

select object(t)
from TxBean t
where t.account.accountId = ?3
and (t.timeStamp >= ?1 and
t.timeStamp <= ?2)

BUILDING, PACKAGING, DEPLOYING, AND RUNNING THE APPLICATION 1373
5. Invoke the Enterprise Bean Wizard for each of the stateful session beans in
Table 36–10.

a. Add EJB references from the session beans to the local entity beans
listed in the following tables.

Table 36–10 Stateful Session Beans

Session Bean
Remote Home
Interface

Remote
Interface Implementation Class

Account
Controller-
Bean

Account
ControllerHome

Account
Controller

AccountController-
Bean

Customer
Controller-
Bean

Customer
ControllerHome

Customer
Controller

CustomerController-
Bean

TxController-
Bean

TxController-
Home

TxController TxBean

Table 36–11 EJB References in AccountControllerBean

Coded
Name

EJB
Type Interfaces

Home
Interface

Local/
Remote
Interface

Enterprise
Bean Name

ejb/
account

Entity Local
Local
AccountHome

LocalAc-
count

AccountBean

ejb/
customer

Entity Local
Local
Customer-
Home

LocalCus-
tomer

Customer-
Bean

ejb/nex-
tId

Entity Local
Local
NextIdHome

LocalNex-
tId

NextIdBean

1374
b. Set the Transaction Management of the session beans to Container-
Managed.

6. Save the module.

Packaging the Application Client
1. Invoke the Application Client wizard.

a. Create an application client module named DukesBankACJAR in
<INSTALL>/j2eetutorial14/examples/bank/.

b. Add the appclient, util, and ejb/exception packages and the ejb/

*/*Controller* home and remote interfaces (AccountController,
AccountControllerHome, CustomerController, CustomerControl-
lerHome, TxController, TxControllerHome) under <INSTALL>/

Table 36–12 EJB References in CustomerControllerBean

Coded
Name

EJB
Type Interfaces

Home
Interface

Local/
Remote
Interface

Enterprise
Bean Name

ejb/
customer

Entity Local
Local
Customer-
Home

Local
Customer

Customer-
Bean

ejb/nex-
tId

Entity Local
Local
NextIdHome

Local
NextId

NextIdBean

Table 36–13 EJB References in TxControllerBean

Coded
Name

EJB
Type Interfaces

Home
Interface

Local/
Remote
Interface

Enterprise
Bean Name

ejb/
account

Entity Local
Local
AccountHome

Local
Account

AccountBean

ejb/
tx

Entity Local
Local
TxHome

LocalTx TxBean

ejb/nex-
tId

Entity Local
Local
NextIdHome

Local
NextId

NextIdBean

BUILDING, PACKAGING, DEPLOYING, AND RUNNING THE APPLICATION 1375
j2eetutorial14/examples/bank/build/com/sun/ebank/ to the
JAR.

c. Select appclient.BankAdmin as the application client main class.

2. Add EJB references to the session beans listed in Table 36–14.

Table 36–14 EJB References to Session Beans

3. Save the module.

Packaging the Web Client
1. Create a new web component using the Web Component wizard. On the

first page of the wizad, create a new web module named DukesBankWAR in
<INSTALL>/j2eetutorial14/examples/bank/.

2. Add the Dispatcher servlet web component in <INSTALL>/

j2eetutorial14/examples/bank/build/com/sun/ebank/web/.

3. On the Choose Component Type page, select Servlet.

4. On the Component General Properties page, select the Dispatcher servlet
class.

5. Select Finish to close the wizard.

6. With DukesBankWar selected, add content to the web module.

a. Add the web, util, and ejb/exception packages and the ejb/*/*Con-
troller* home and remote interfaces (AccountController, Account-
ControllerHome, CustomerController, CustomerControllerHome,

Coded
Name

EJB
Type Interfaces

Home
Interface

Local/
Remote
Interface

JNDI Name
of Session
Bean

ejb/
account
Control-
ler

Session Remote
Account
Controller-
tHome

Account
Controller

Account
Controller-
Bean

ejb/cus-
tomer
Control-
ler

Session Remote
Customer
Controller-
Home

Customer
Controller

Customer
Controller-
Bean

1376
TxController, TxControllerHome) under <INSTALL>/

j2eetutorial14/examples/bank/build/com/sun/ebank to the mod-
ule.

b. Add the template directory, all the JSP pages, the WebMes-

sages*.properties files and tutorial-template.tld under
<INSTALL>/j2eetutorial14/examples/bank/build/ to the module.

c. In the web module contents editor, drag the files WebMessages*.prop-
erties from the context root to WEB-INF/classes.

7. Set the context root to /bank.

8. Add the /accountHist, /accountList, /atm, /atmAck, /main, /trans-
ferAck, /transferFunds, and /logoff aliases to the Dispatcher compo-
nent.

9. Add EJB references to the session beans listed in Table 36–15.

10.Select the JSP tab to add a JSP property group named bank. The property
group applies to the URL pattern *.jsp. Add the include prelude /tem-

plate/prelude.jspf.

11.Select the Context tab to add a context parameter named javax.serv-

let.jsp.jstl.fmt.localizationContext and value WebMessages.

12.Select the Security tab to add a security constraint.

a. Select Form Based as the user authentication method. Select the Set-
tings button to set the authentication settings as follows: file for the
realm name, /logon.jsp for the login page, and /logonError.jsp for
the error page.

b. Add a security constraint and a web resource collection. Use the default
names provided by deploytool.

Table 36–15 EJB References to Session Beans

Coded Name JNDI Name of Session Bean

ejb/accountController AccountControllerBean

ejb/customerController CustomerControllerBean

ejb/txController TxControllerBean

BUILDING, PACKAGING, DEPLOYING, AND RUNNING THE APPLICATION 1377
c. Select Edit Collections to add the URL Patterns /main, /accountList,
/accountHist, /atm, /atmAck, /transferFunds, and /transferAck

to the web resource collection. Select the GET and POST HTTP methods.

d. Select Edit Roles to add the authorized role bankCustomer.

13.Save the module.

Packaging and Deploying the Application
1. Create a J2EE application named DukesBankApp in <INSTALL>/

j2eetutorial14/examples/bank/.

2. Select Add to Application from the File menu to add the DukesBankACJAR
application client module to DukesBankApp.

3. Select Add to Application from the File menu to add the DukesBankEJB-

JAR EJB module to DukesBankApp.

4. Select Add to Application from the File menu to add the DukesBankWAR

web module to DukesBankApp.

5. Select the Roles tab to add the security roles bankAdmin and bankCus-

tomer.

6. Add the following security settings for the enterprise beans.

a. AccountControllerBean: In the Security tab, restrict access to users in
the bankAdmin security role for the methods removeCustomerFromAc-
count, removeAccount, createAccount, and addCustomerToAccount.
In the General tab, click the Sun-specific Settings button, and then click
the IOR button in the General frame. In the As Context frame, set
Required to true, and the realm to file.

b. CustomerControllerBean: In the Security tab, restrict access to users
in the bankAdmin security role for the methods getCustomersOfAc-

count, createCustomer, getCustomersOfLastName, setName,
removeCustomer, and setAddress. In the General tab, click the Sun-
specific Settings button, and then click the IOR button in the General
frame. In the As Context frame, set Required to true, and the realm to
file.

c. TxControllerBean: In the Security tab, restrict access to users in the
bankCustomer security role for the methods getTxsOfAccount, make-
Charge, deposit, transferFunds, withdraw, and makePayment.

7. Start the Application Server.

1378
8. From the General tab of DukesBankApp, select Sun-specific Settings to
map the bankCustomer role to the bankCustomer group and to map the
bankAdmin role to the bankAdmin group.

9. Save the application.

10.Deploy the application. In the Deploy DukesBankApp dialog box, select
the Return Client Jar checkbox.

After you have packaged all the modules, deploytool should look like Figure
36–8.

Figure 36–8 Duke’s Bank Modules and Components

BUILDING, PACKAGING, DEPLOYING, AND RUNNING THE APPLICATION 1379
Reviewing JNDI Names
With DukesBankApp selected, click theSun-specific Settings button on the Gen-
eral tab to view the JNDI Names. The JNDI Name column is shown in Figure
36–9. The order may be a little different in your own environment.

Figure 36–9 Duke’s Bank JNDI Names

A JNDI name is the name the Application Server uses to look up enterprise
beans and resources. When you look up an enterprise bean, you supply state-
ments similar to those shown in the following code.

try {
customerControllerHome =

EJBGetter.getCustomerControllerHome();
customer = customerControllerHome.create();

} catch (Exception namingException) {
namingException.printStackTrace();

}

public static CustomerControllerHome

1380
getCustomerControllerHome() throws NamingException {
InitialContext initial = new InitialContext();
Object objref = initial.lookup(

CodedNames.CUSTOMER_CONTROLLER_EJBHOME);

The lookup takes place in the third line of code, in which the getCustomerCon-

trollerHome method of com.sun.ebank.utilEJBGetter is called. EJBGetter
is a utility class that retrieves a coded JNDI name from
com.sun.ebank.util.CodedNames.

In this example, the application client is looking up the coded name for the Cus-

tomerController remote interface. BankAdmin (the display name for the main
class of the application client) references ejb/customerController, which is
the coded name defined in CodedNames for the CustomerController remote
interface.

The JNDI name is stored in the J2EE application deployment descriptor, and the
Application Server uses it to look up the CustomerControllerBean bean. In
Figure 36–9 you see that CustomerControllerBean is mapped to the same
JNDI name as is ejb/customerController. It does not matter what the JNDI
name is, as long as it is the same name for the remote interface lookup as you use
for its corresponding bean. So, looking at the table, you can say that the applica-
tion client (BankAdmin) looks up the CustomerController remote interface,
which uses the JNDI name of CustomerControllerBean, and the Application
Server uses the CustomerControllerBean JNDI name to find the corresponding
CustomerControllerBean object.

The other rows in the table have the mappings for the other enterprise beans. All
of these beans are stored in the JAR file you added to the J2EE application dur-
ing assembly. Their implementations have coded names for looking up either
other enterprise beans or the database driver.

Running the Clients

Running the Application Client
To run the application client, follow these steps:

1. In a terminal window, go to <INSTALL>/j2eetutorial14/examples/

bank/.

2. To run the English version of the client, execute the following command:

RUNNING THE CLIENTS 1381
appclient -client DukesBankAppClient.jar

The DukesBankAppClient.jar parameter is the name of the application
client JAR file returned when you deployed DukesBankApp.

3. To run the Spanish version, include the es language code:
appclient -client DukesBankAppClient.jar es

4. At the login prompts, type bankadmin for the user name and j2ee for the
password. The next thing you should see is the application shown in Figure
36–10.

Figure 36–10 BankAdmin Application Client

Running the Web Client
To run the web client, follow these steps:

1. Open the bank URL, http://localhost:8080/bank/main, in a web
browser. To see the Spanish version of the application, set your browser
language preference to any Spanish dialect.

2. The application will display the login page. Enter 200 for the customer ID
and j2ee for the password. Click Submit.

3. Select an application function: Account List, Transfer Funds, ATM, or
Logoff. When you have a list of accounts, you can get an account history
by selecting an account link.

1382
Note: The first time you select a new page, particularly a complicated page such as
an account history, it takes some time to display because the Application Server
must translate the page into a servlet class and compile and load the class.

If you select Account List, you will see the screen shown in Figure 36–11.

Figure 36–11 Account List

A

1383
Java Encoding
Schemes

This appendix describes the character-encoding schemes that are supported by
the Java platform.

US-ASCII
US-ASCII is a 7-bit character set and encoding that covers the English-lan-
guage alphabet. It is not large enough to cover the characters used in other
languages, however, so it is not very useful for internationalization.

ISO-8859-1
ISO-8859-1 is the character set for Western European languages. It’s an 8-bit
encoding scheme in which every encoded character takes exactly 8 bits.
(With the remaining character sets, on the other hand, some codes are
reserved to signal the start of a multibyte character.)

UTF-8
UTF-8 is an 8-bit encoding scheme. Characters from the English-language
alphabet are all encoded using an 8-bit byte. Characters for other languages
are encoded using 2, 3, or even 4 bytes. UTF-8 therefore produces compact
documents for the English language, but for other languages, documents
tend to be half again as large as they would be if they used UTF-16. If the
majority of a document’s text is in a Western European language, then UTF-
8 is generally a good choice because it allows for internationalization while
still minimizing the space required for encoding.

1384
UTF-16
UTF-16 is a 16-bit encoding scheme. It is large enough to encode all the
characters from all the alphabets in the world. It uses 16 bits for most charac-
ters but includes 32-bit characters for ideogram-based languages such as
Chinese. A Western European-language document that uses UTF-16 will be
twice as large as the same document encoded using UTF-8. But documents
written in far Eastern languages will be far smaller using UTF-16.

Note: UTF-16 depends on the system’s byte-ordering conventions. Although in
most systems, high-order bytes follow low-order bytes in a 16-bit or 32-bit “word,”
some systems use the reverse order. UTF-16 documents cannot be interchanged
between such systems without a conversion.

Further Information
The character set and encoding names recognized by Internet authorities are
listed in the IANA character set registry:

http://www.iana.org/assignments/character-sets

The Java programming language represents characters internally using the Uni-
code character set, which provides support for most languages. For storage and
transmission over networks, however, many other character encodings are used.
The Java 2 platform therefore also supports character conversion to and from
other character encodings. Any Java runtime must support the Unicode transfor-
mations UTF-8, UTF-16BE, and UTF-16LE as well as the ISO-8859-1 character
encoding, but most implementations support many more. For a complete list of
the encodings that can be supported by the Java 2 platform, see

http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html

http://java.sun.com/j2se/1.4/docs/guide/intl/encoding.doc.html
http://www.iana.org/assignments/character-sets

B

1385
XML and Related
Specs: Digesting the

Alphabet Soup

THIS appendix provides a high-level overview of the various XML-related
acronyms and what they mean. There is a lot of work going on around XML, so
there is a lot to learn.

The current APIs for accessing XML documents either serially or in random
access mode are, respectively, SAX (page 1386) and DOM (page 1387). The
specifications for ensuring the validity of XML documents are DTD (page 1388)
(the original mechanism, defined as part of the XML specification) and various
Schema Standards (page 1390) proposals (newer mechanisms that use XML
syntax to do the job of describing validation criteria).

Other future standards that are nearing completion include the XSL (page 1389)
standard, a mechanism for setting up translations of XML documents (for exam-
ple to HTML or other XML) and for dictating how the document is rendered.
The transformation part of that standard, XSLT (+XPath) (page 1389), is com-
pleted and covered in this tutorial. Another effort nearing completion is the XML
Link Language specification (XML Linking, page 1392), which enables links
between XML documents.

1386
Those are the major initiatives you will want to be familiar with. This appendix
also surveys a number of other interesting proposals, including the HTML-
lookalike standard, XHTML (page 1393), and the meta-standard for describing
the information an XML document contains, RDF (page 1393). There are also
standards efforts that extend XML’s capabilities, such as XLink and XPointer.

Finally, there are a number of interesting standards and standards proposals that
build on XML, including Synchronized Multimedia Integration Language
(SMIL, page 1395), Mathematical Markup Language (MathML, page 1395),
Scalable Vector Graphics (SVG, page 1395), and DrawML (page 1395), as well
as a number of e-commerce standards.

The remainder of this appendix gives you a more detailed description of these
initiatives. To help keep things straight, it’s divided into these topics:

• Basic Standards (page 1386)

• Schema Standards (page 1390)

• Linking and Presentation Standards (page 1392)

• Knowledge Standards (page 1393)

• Standards That Build on XML (page 1394)

Skim the terms once so you know what’s here, and keep a copy of this document
handy to refer to whenever you see one of these terms in something you’re read-
ing. Pretty soon, you’ll have them all committed to memory, and you’ll be at
least “conversant” with XML.

Basic Standards
These are the basic standards you need to be familiar with. They come up in
almost any discussion of XML.

SAX
The Simple API for XML was a product of collaboration on the XML-DEV
mailing list rather than a product of the W3C. It’s included here because it has
the same “final” characteristics as a W3C recommendation.

You can think of SAX as a “serial access” protocol for XML that is ideal for
stateless processing, where the handling of an element does not depend on any of
the elements that came before. With a small memory footprint and fast execution

BASIC STANDARDS 1387
speeds, this API is great for straight-through transformations of data into XML,
or out of it. It is an event-driven protocol, because you register a handler with the
parser that defines one callback method for elements, another for text, and one
for comments (plus methods for errors and other XML components).

StAX
The Streaming API for XML is a Java "pull parsing" API. This API also acts like
a "serial access" protocol, but its processing model is ideal for state dependent
processing. With this API, you ask the parser to send you the next thing it has,
and then decide what to do with what it gives you. For example, when you’re in a
heading element and you get text, you’ll use one font size. But if you’re in a nor-
mal paragraph and you get text, you’ll use a different font size.

DOM
Document Object Model

The Document Object Model protocol converts an XML document into a collec-
tion of objects in your program. You can then manipulate the object model in any
way that makes sense. This mechanism is also known as the “random access”
protocol, because you can visit any part of the data at any time. You can then
modify the data, remove it, or insert new data.

JDOM and dom4j
Although the Document Object Model provides a lot of power for document-ori-
ented processing, it doesn’t provide much in the way of object-oriented simplifi-
cation. Java developers who are processing more data-oriented structures—
rather than books, articles, and other full-fledged documents—frequently find
that object-oriented APIs such as JDOM and dom4j are easier to use and more
suited to their needs.

1388
Here are the important differences to understand when you choose between the
two:

• JDOM is a somewhat cleaner, smaller API. Where coding style is an
important consideration, JDOM is a good choice.

• JDOM is a Java Community Process (JCP) initiative. When completed, it
will be an endorsed standard.

• dom4j is a smaller, faster implementation that has been in wide use for a
number of years.

• dom4j is a factory-based implementation. That makes it easier to modify
for complex, special-purpose applications. At the time of this writing,
JDOM does not yet use a factory to instantiate an instance of the parser
(although the standard appears to be headed in that direction). So, with
JDOM, you always get the original parser. (That’s fine for the majority of
applications, but may not be appropriate if your application has special
needs.)

For more information on JDOM, see http://www.jdom.org/. For more infor-
mation on dom4j, see http://dom4j.org/.

DTD
The Document Type Definition specification is actually part of the XML specifi-
cation rather than a separate entity. On the other hand, it is optional; you can
write an XML document without it. And there are a number of schema standards
proposals that offer more flexible alternatives. So the DTD is discussed here as
though it were a separate specification.

A DTD specifies the kinds of tags that can be included in your XML document,
along with the valid arrangements of those tags. You can use the DTD to make
sure that you don’t create an invalid XML structure. You can also use it to make
sure that the XML structure you are reading (or that got sent over the Net) is
indeed valid.

Unfortunately, it is difficult to specify a DTD for a complex document in such a
way that it prevents all invalid combinations and allows all the valid ones. So
constructing a DTD is something of an art. The DTD can exist at the front of the
document, as part of the prolog. It can also exist as a separate entity, or it can be
split between the document prolog and one or more additional entities.

http://www.jdom.org/
http://dom4j.org/

BASIC STANDARDS 1389
However, although the DTD mechanism was the first method defined for speci-
fying valid document structure, it was not the last. Several newer schema specifi-
cations have been devised. You’ll learn about those momentarily.

Namespaces
The namespace standard lets you write an XML document that uses two or more
sets of XML tags in modular fashion. Suppose for example that you created an
XML-based parts list that uses XML descriptions of parts supplied by other
manufacturers (online!). The price data supplied by the subcomponents would be
amounts you want to total up, whereas the price data for the structure as a whole
would be something you want to display. The namespace specification defines
mechanisms for qualifying the names so as to eliminate ambiguity. That lets you
write programs that use information from other sources and do the right things
with it.

The latest information on namespaces can be found at
http://www.w3.org/TR/REC-xml-names.

XSL
The Extensible Stylesheet Language adds display and transformation capabili-
ties to XML. The XML standard specifies how to identify data, rather than how
to display it. HTML, on the other hand, tells how things should be displayed
without identifying what they are. Among other purposes, XSL bridges the gap
between the two.

The XSL standard has two parts: XSLT (the transformation standard, described
next) and XSL-FO (the part that covers formatting objects). XSL-FO lets specify
complex formatting for a variety of publications.

The latest W3C work on XSL is at http://www.w3.org/TR/WD-xsl.

XSLT (+XPath)
The Extensible Stylesheet Language Transformations standard is essentially a
translation mechanism that lets you convert XML data into other forms—for
example, into HTML. Different XSL transforms then let you use the same XML
data in a variety of ways. (The XPath standard is an addressing mechanism that

http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/WD-xsl

1390
you use when constructing transformation instructions. You use it to specify the
parts of the XML structure you want to transform.)

Schema Standards
A DTD makes it possible to validate the structure of relatively simple XML doc-
uments, but that’s as far as it goes.

A DTD can’t restrict the content of elements, and it can’t specify complex rela-
tionships. For example, it is impossible to specify that a <heading> for a <book>

must have both a <title> and an <author>, whereas a <heading> for a <chap-

ter> needs only a <title>. In a DTD, you get to specify the structure of the
<heading> element only one time. There is no context sensitivity, because a
DTD specification is not hierarchical.

For example, for a mailing address that contains several parsed character data
(PCDATA) elements, the DTD might look something like this:

<!ELEMENT mailAddress (name, address, zipcode)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT zipcode (#PCDATA)>

As you can see, the specifications are linear. So if you need another “name” ele-
ment in the DTD, you need a different identifier for it. You could not simply call
it “name” without conflicting with the <name> element defined for use in a
<mailAddress>.

Another problem with the nonhierarchical nature of DTD specifications is that it
is not clear what the comments are meant to explain. A comment at the top might
be intended to apply to the whole structure, or it might be intended only for the
first item. Finally, DTDs do not allow you to formally specify field-validation
criteria, such as the 5-digit (or 5 and 4) limitation for the zipcode field.

Finally, a DTD uses syntax that is substantially different from that of XML, so it
can’t be processed by using a standard XML parser. This means that you can’t,
for example, read a DTD into a DOM, modify it, and then write it back out
again.

To remedy these shortcomings, a number of standards have arisen that define a
more databaselike, hierarchical schema that specifies validation criteria. The
major proposals are discussed in the following sections.

SCHEMA STANDARDS 1391
XML Schema
XML Schema is a large, complex standard that has two parts. One part specifies
structure relationships. (This is the largest and most complex part.) The other
part specifies mechanisms for validating the content of XML elements by speci-
fying a (potentially very sophisticated) data type for each element. The good
news is that XML Schema for Structures lets you specify virtually any relation-
ship you can imagine. The bad news is that it is very difficult to implement, and
it’s hard to learn. Most of the alternatives provide simpler structure definitions
while incorporating XML Schema’s data-typing mechanisms.

For more information on XML Schema, see the W3C specs XML Schema
(Structures) and XML Schema (Data Types), as well as other information acces-
sible at http://www.w3c.org/XML/Schema.

RELAX NG
Simpler than XML Structure Schema, Regular Language Description for XML
(Next Generation) is an emerging standard under the auspices of OASIS (Orga-
nization for the Advancement of Structured Information Standards). It may also
become an ISO standard in the near future.

RELAX NG uses regular-expression patterns to express constraints on structure
relationships, and it uses XML Schema data-typing mechanisms to express con-
tent constraints. This standard also uses XML syntax, and it includes a DTD-to-
RELAX converter. (It’s “next generation” because it’s a newer version of the
RELAX schema mechanism that integrated TREX—Tree Regular Expressions
for XML—a means of expressing validation criteria by describing a pattern for
the structure and content of an XML document.)

For more information on RELAX NG, see http://www.oasis-open.org/com-

mittees/relax-ng/

SOX
Schema for Object-oriented XML is a schema proposal that includes extensible
data types, namespaces, and embedded documentation.

For more information on SOX, see http://www.w3.org/TR/NOTE-SOX.

http://www.w3c.org/XML/Schema
http://www.oasis-open.org/committees/relax-ng/
http://www.oasis-open.org/committees/relax-ng/
http://www.w3.org/TR/NOTE-SOX

1392
Schematron
Schema for Object-oriented XML is an assertion-based schema mechanism that
allows for sophisticated validation.

For more information on the Schematron validation mechanism, see
http://www.ascc.net/xml/resource/schematron/schematron.html.

Linking and Presentation Standards
Arguably the two greatest benefits provided by HTML are the ability to link
between documents and the ability to create simple formatted documents (and,
eventually, very complex formatted documents). The following standards aim to
preserve the benefits of HTML in the XML arena and add new functionality.

XML Linking
These specifications provide a variety of powerful linking mechanisms and may
well have a big impact on how XML documents are used.

 XLink
The XLink protocol is a specification for handling links between XML doc-
uments. This specification allows for some pretty sophisticated linking,
including two-way links, links to multiple documents, expanding links that
insert the linked information into your document rather than replace your
document with a new page, links between two documents that are created in
a third, independent document, and indirect links (so that you can point to an
“address book” rather than directly to the target document; updating the
address book then automatically changes any links that use it).

XML Base
This standard defines an attribute for XML documents that defines a base
address that is used when evaluating a relative address specified in the docu-
ment. (So, for example, a simple file name would be found in the base
address directory.)

XPointer
In general, the XLink specification targets a document or document segment
using its ID. The XPointer specification defines mechanisms for “addressing
into the internal structures of XML documents,” without requiring the author
of the document to have defined an ID for that segment. To quote the spec, it

http://www.ascc.net/xml/resource/schematron/schematron.html

KNOWLEDGE STANDARDS 1393
provides for “reference to elements, character strings, and other parts of
XML documents, whether or not they bear an explicit ID attribute.”

For more information on the XML Linking standards, see
http://www.w3.org/XML/Linking.

XHTML
The XHTML specification is a way of making XML documents that look and act
like HTML documents. Given that an XML document can contain any tags you
care to define, why not define a set of tags that look like HTML? That’s the
thinking behind the XHTML specification, at any rate. The result of this specifi-
cation is a document that can be displayed in browsers and also treated as XML
data. The data may not be quite as identifiable as “pure” XML, but it will be a
heck of a lot easier to manipulate than standard HTML, because XML specifies a
good deal more regularity and consistency.

For example, either every tag in a well-formed XML document must have an end
tag associated with it, or it must end in />. So you might see <p>...</p>, or you
might see <p/>, but you will never see <p> standing by itself. The upshot of this
requirement is that you never have to program for the weird kinds of cases you
see in HTML—where, for example, a <dt> tag might be terminated by </DT>, by
another <DT>, by <dd>, or by </dl>. That makes it a lot easier to write code.

The XHTML specification is a reformulation of HTML 4.0 into XML. The latest
information is at http://www.w3.org/TR/xhtml1.

Knowledge Standards
When you start looking down the road five or six years, and you visualize how
the information on the Web will begin to turn into one huge knowledge base (the
“semantic Web”). For the latest on the semantic Web, visit
http://www.w3.org/2001/sw/.

In the meantime, here are the fundamental standards you’ll want to know about.

RDF
Resource Description Framework is a standard for defining metadata: informa-
tion that describes what a particular data item is and specifies how it can be used.

http://www.w3.org/XML/Linking
http://www.w3.org/TR/xhtml1
http://www.w3.org/2001/sw/

1394
Used in conjunction with the XHTML specification, for example, or with HTML
pages, RDF could be used to describe the content of the pages. For example, if
your browser stored your ID information as FIRSTNAME, LASTNAME, and EMAIL,
an RDF description could make it possible to transfer data to an application that
wanted NAME and EMAILADDRESS. Just think: One day you may not need to type
your name and address at every Web site you visit!

For the latest information on RDF, see http://www.w3.org/TR/REC-rdf-syn-

tax.

RDF Schema
RDF Schema allows the specification of consistency rules and additional infor-
mation that describe how the statements in a resource description framework
(RDF) should be interpreted.

For more information on the RDF Schema recommendation, see
http://www.w3.org/TR/rdf-schema.

XTM
XML topic maps are in many ways a simpler, more readily usable knowledge
representation than RDF, and this standard is one worth watching. So far, RDF is
the W3C standard for knowledge representation, but topic maps could possibly
become the developer’s choice among knowledge representation standards.

For more information on the XML Topic Maps standard, see http://www.top-

icmaps.org/xtm/index.html. For information on topic maps and the Web, see
http://www.topicmaps.org/.

Standards That Build on XML
The following standards and proposals build on XML. Because XML is basi-
cally a language-definition tool, these specifications use it to define standardized
languages for specialized purposes.

http://www.w3.org/TR/REC-rdf-syntax
http://www.w3.org/TR/REC-rdf-syntax
http://www.w3.org/TR/rdf-schema
http://www.topicmaps.org/xtm/index.html
http://www.topicmaps.org/xtm/index.html
http://www.topicmaps.org/

STANDARDS THAT BUILD ON XML 1395
Extended Document Standards
These standards define mechanisms for producing extremely complex docu-
ments—books, journals, magazines, and the like—using XML.

SMIL
Synchronized Multimedia Integration Language is a W3C recommendation that
covers audio, video, and animations. It also addresses the difficult issue of syn-
chronizing the playback of such elements.

For more information on SMIL, see http://www.w3.org/TR/REC-smil.

MathML
Mathematical Markup Language is a W3C recommendation that deals with the
representation of mathematical formulas.

For more information on MathML, see http://www.w3.org/TR/REC-MathML.

SVG
Scalable Vector Graphics is a W3C recommendation that covers the representa-
tion of vector graphic images. (Vector graphic images are built from commands
that say things such as “draw a line (square, circle) from point xi to point m,n”
rather than encoding the image as a series of bits. Such images are more easily
scalable, although they typically require more processing time to render.)

For more information on SVG, see http://www.w3.org/TR/SVG/.

DrawML
Drawing Meta Language is a W3C note that covers two-dimensional images for
technical illustrations. It also addresses the problem of updating and refining
such images.

For more information on DrawML, see http://www.w3.org/TR/NOTE-drawml.

e-Commerce Standards
These standards are aimed at using XML in the world of business-to-business
(B2B) and business-to-consumer (B2C) commerce.

http://www.w3.org/TR/REC-smil
http://www.w3.org/TR/REC-MathML
http://www.w3.org/TR/SVG/
http://www.w3.org/TR/NOTE-drawml

1396
ICE
Information and Content Exchange is a protocol for use by content syndicators
and their subscribers. It focuses on “automating content exchange and reuse,
both in traditional publishing contexts and in business-to-business relationships.”

For more information on ICE, see http://www.w3.org/TR/NOTE-ice.

ebXML
The Electronic Business with XML standard aims at creating a modular elec-
tronic business framework using XML. It is the product of a joint initiative by
the United Nations (UN/CEFACT) and the Organization for the Advancement of
Structured Information Standards (OASIS).

For more information on ebXML, see http://www.ebxml.org/.

cxml
Commerce XML is a RosettaNet (www.rosettanet.org) standard for setting up
interactive online catalogs for different buyers, where the pricing and product
offerings are company-specific. cxml includes mechanisms to handle purchase
orders, change orders, status updates, and shipping notifications.

For more information on cxml, see http://www.cxml.org/

UBL
Universal Business Language is an OASIS initiative aimed at compiling a stan-
dard library of XML business documents (purchase orders, invoices, etc.) that
are defined with XML Schema definitions.

For more information on UBL, see http://www.oasis-open.org/commit-

tees/ubl.

Summary
XML has become a widely adopted standard that is being used in a dizzying
variety of application areas.

http://www.rosettanet.org
http://www.w3.org/TR/NOTE-ice
http://www.ebxml.org/
http://www.cxml.org/
http://www.oasis-open.org/committees/ubl
http://www.oasis-open.org/committees/ubl

C

1397
HTTP Overview

MOST Web clients use the HTTP protocol to communicate with a J2EE
server. HTTP defines the requests that a client can send to a server and responses
that the server can send in reply. Each request contains a URL, which is a string
that identifies a Web component or a static object such as an HTML page or
image file.

A J2EE server converts an HTTP request to an HTTP request object and delivers
it to the Web component identified by the request URL. The Web component
fills in an HTTP response object, which the server converts to an HTTP response
and sends to the client.

This appendix provides introductory material on the HTTP protocol. For further
information on this protocol, see the Internet RFCs: HTTP/1.0 (RFC 1945),
HTTP/1.1 (RFC 2616). These can be downloaded from

http://www.rfc-editor.org/rfc.html

ftp://ftp.isi.edu/in-notes/rfc1945.txt
ftp://ftp.isi.edu/in-notes/rfc2616.txt
http://www.rfc-editor.org/rfc.html

1398
HTTP Requests
An HTTP request consists of a request method, a request URL, header fields,
and a body. HTTP 1.1 defines the following request methods:

• GET: Retrieves the resource identified by the request URL

• HEAD: Returns the headers identified by the request URL

• POST: Sends data of unlimited length to the Web server

• PUT: Stores a resource under the request URL

• DELETE: Removes the resource identified by the request URL

• OPTIONS: Returns the HTTP methods the server supports

• TRACE: Returns the header fields sent with the TRACE request

HTTP 1.0 includes only the GET, HEAD, and POST methods. Although J2EE serv-
ers are required to support only HTTP 1.0, in practice many servers, including
the Application Server, support HTTP 1.1.

HTTP Responses
An HTTP response contains a result code, header fields, and a body.

The HTTP protocol expects the result code and all header fields to be returned
before any body content.

Some commonly used status codes include:

• 404: Indicates that the requested resource is not available

• 401: Indicates that the request requires HTTP authentication

• 500: Indicates that an error occurred inside the HTTP server that prevented
it from fulfilling the request

• 503: Indicates that the HTTP server is temporarily overloaded and unable
to handle the request

D

1399
J2EE Connector
Architecture

THE J2EE Connector architecture enables J2EE components to interact with
enterprise information systems (EISs) and EISs to interact with J2EE compo-
nents. EIS software includes various types of systems: enterprise resource plan-
ning (ERP), mainframe transaction processing, and nonrelational databases,
among others. The J2EE Connector architecture simplifies the integration of
diverse EISs. Each EIS requires only one implementation of the J2EE Connector
architecture. Because an implementation adheres to the J2EE Connector specifi-
cation, it is portable across all compliant J2EE servers.

About Resource Adapters
A resource adapter is a J2EE component that implements the J2EE Connector
architecture for a specific EIS. As illustrated in Figure D–1, it is through the
resource adapter that a J2EE application and an EIS communicate with each
other.

1400
Figure D–1 Resource Adapter Contracts

Stored in a Resource Adapter Archive (RAR) file, a resource adapter can be
deployed on any J2EE server, much like the EAR file of a J2EE application. An
RAR file may be contained in an EAR file, or it may exist as a separate file. See
Figure D–2 for the structure of a resource adapter module.

RESOURCE ADAPTER CONTRACTS 1401
Figure D–2 Resource Adapter Module Structure

A resource adapter is analogous to a JDBC driver. Both provide a standard API
through which an application can access a resource that is outside the J2EE
server. For a resource adapter, the outside resource is an EIS; for a JDBC driver,
it is a DBMS. Resource adapters and JDBC drivers are rarely created by applica-
tion developers. In most cases, both types of software are built by vendors that
sell products such as tools, servers, or integration software.

Resource Adapter Contracts
The resource adapter mediates communication between the J2EE server and the
EIS via contracts. The application contract defines the API through which a
J2EE component such as an enterprise bean accesses the EIS. This API is the
only view that the component has of the EIS. The system contracts link the
resource adapter to important services that are managed by the J2EE server. The
resource adapter itself and its system contracts are transparent to the J2EE com-
ponent.

1402
Management Contracts
The J2EE Connector architecture defines system contracts that enable resource
adapter life cycle and thread management.

Life-Cycle Management
The Connector architecture specifies a life-cycle management contract that
allows an application server to manage the life cycle of a resource adapter. This
contract provides a mechanism for the application server to bootstrap a resource
adapter instance during the instance’s deployment or application server startup.
It also provides a means for the application server to notify the resource adapter
instance when it is undeployed or when an orderly shutdown of the application
server takes place.

Work Management Contract
The Connector architecture work management contract ensures that resource
adapters use threads in the proper, recommended manner. It also enables an
application server to manage threads for resource adapters.

Resource adapters that improperly use threads can create problems for the entire
application server environment. For example, a resource adapter might create too
many threads or it might not properly release threads it has created. Poor thread
handling inhibits application server shutdown. It also impacts the application
server’s performance because creating and destroying threads are expensive
operations.

The work management contract establishes a means for the application server to
pool and reuse threads, similar to pooling and reusing connections. By adhering
to this contract, the resource adapter does not have to manage threads itself.
Instead, the resource adapter has the application server create and provide
needed threads. When the resource adapter is finished with a given thread, it
returns the thread to the application server. The application server manages the
thread: It can return the thread to a pool and reuse it later, or it can destroy the
thread. Handling threads in this manner results in increased application server
performance and more efficient use of resources.

RESOURCE ADAPTER CONTRACTS 1403
In addition to moving thread management to the application server, the Connec-
tor architecture provides a flexible model for a resource adapter that uses
threads:

• The requesting thread can choose to block—stop its own execution—until
the work thread completes.

• Or the requesting thread can block while it waits to get the thread. When
the application server provides a work thread, the requesting thread and the
work thread execute in parallel.

• The resource adapter can opt to submit the work for the thread to a queue.
The thread executes the work from the queue at some later point. The
resource adapter continues its own execution from the point it submitted
the work to the queue, no matter of when the thread executes it.

With the latter two approaches, the resource adapter and the thread may execute
simultaneously or independently from each other. For these approaches, the con-
tract specifies a listener mechanism to notify the resource adapter that the thread
has completed its operation. The resource adapter can also specify the execution
context for the thread, and the work management contract controls the context in
which the thread executes.

Outbound Contracts
The J2EE Connector architecture defines system-level contracts between an
application server and an EIS that enable outbound connectivity to an EIS: con-
nection management, transaction management, and security.

The connection management contract supports connection pooling, a technique
that enhances application performance and scalability. Connection pooling is
transparent to the application, which simply obtains a connection to the EIS.

The transaction management contract between the transaction manager and an
EIS supports transactional access to EIS resource managers. This contract lets an
application server use a transaction manager to manage transactions across mul-
tiple resource managers. This contract also supports transactions that are man-
aged inside an EIS resource manager without the necessity of involving an
external transaction manager. Because of the transaction management contract, a
call to the EIS may be enclosed in an XA transaction (a transaction type defined
by the distributed transaction processing specification created by The Open
Group). XA transactions are global: they can contain calls to multiple EISs, data-
bases, and enterprise bean business methods. Although often appropriate, XA

1404
transactions are not mandatory. Instead, an application can use local transactions,
which are managed by the individual EIS, or it can use no transactions at all.

The security management contract provides mechanisms for authentication,
authorization, and secure communication between a J2EE server and an EIS to
protect the information in the EIS.

Inbound Contracts
The J2EE Connector architecture defines system contracts between a J2EE
server and an EIS that enable inbound connectivity from the EIS: pluggability
contracts for message providers and contracts for importing transactions.

Messaging Contracts
To enable external systems to connect to a J2EE application server, the Connec-
tor architecture extends the capabilities of message-driven beans to handle mes-
sages from any message provider. That is, message-driven beans are no longer
limited to handling JMS messages. Instead, EISs and message providers can
plug any message provider, including their own custom or proprietary message
providers, into a J2EE server.

To provide this feature, a message provider or an EIS resource adapter imple-
ments the messaging contract, which details APIs for message handling and
message delivery. A conforming resource adapter is assured of the ability to send
messages from any provider to a message-driven bean, and it also can be plugged
into a J2EE server in a standard manner.

Transaction Inflow
The Connector architecture supports importing transactions from an EIS to a
J2EE server. The architecture specifies how to propagate the transaction context
from the EIS. For example, a transaction can be started by the EIS, such as the
Customer Information Control System (CICS). Within the same CICS transac-
tion, a connection can be made through a resource adapter to an enterprise bean
on the application server. The enterprise bean does its work under the CICS
transaction context and commits within that transaction context.

The Connector architecture also specifies how the container participates in trans-
action completion and how it handles crash recovery to ensure that data integrity
is not lost.

COMMON CLIENT INTERFACE 1405
Common Client Interface
This section describes how components use the Connector architecture Common
Client Interface (CCI) API and a resource adapter to access data from an EIS.

Defined by the J2EE Connector architecture specification, the CCI defines a set
of interfaces and classes whose methods allow a client to perform typical data
access operations. The CCI interfaces and classes are as follows:

• ConnectionFactory: Provides an application component with a Connec-

tion instance to an EIS.

• Connection: Represents the connection to the underlying EIS.

• ConnectionSpec: Provides a means for an application component to pass
connection-request-specific properties to the ConnectionFactory when
making a connection request.

• Interaction: Provides a means for an application component to execute
EIS functions, such as database stored procedures.

• InteractionSpec: Holds properties pertaining to an application compo-
nent’s interaction with an EIS.

• Record: The superclass for the various kinds of record instances. Record
instances can be MappedRecord, IndexedRecord, or ResultSet instances,
all of which inherit from the Record interface.

• RecordFactory: Provides an application component with a Record

instance.

• IndexedRecord: Represents an ordered collection of Record instances
based on the java.util.List interface.

A client or application component that uses the CCI to interact with an underly-
ing EIS does so in a prescribed manner. The component must establish a connec-
tion to the EIS’s resource manager, and it does so using the ConnectionFactory.
The Connection object represents the actual connection to the EIS and is used
for subsequent interactions with the EIS.

The component performs its interactions with the EIS, such as accessing data
from a specific table, using an Interaction object. The application component
defines the Interaction object using an InteractionSpec object. When the
application component reads data from the EIS (such as from database tables) or
writes to those tables, it does so using a particular type of Record instance: either
a MappedRecord, an IndexedRecord, or a ResultSet instance. Just as the Con-

nectionFactory creates Connection instances, a RecordFactory creates
Record instances.

1406
Note, too, that a client application that relies on a CCI resource adapter is very
much like any other J2EE client that uses enterprise bean methods.

Further Information
For further information on the J2EE Connector architecture, see:

• J2EE Connector 1.5 specification
http://java.sun.com/j2ee/connector/download.html

• The J2EE Connector web site
http://java.sun.com/j2ee/connector

http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector

Glossary
1407
abstract schema
The part of an entity bean’s deployment descriptor that defines the bean’s
persistent fields and relationships.

abstract schema name
A logical name that is referenced in EJB QL queries.

access control
The methods by which interactions with resources are limited to collections
of users or programs for the purpose of enforcing integrity, confidentiality, or
availability constraints.

ACID
The acronym for the four properties guaranteed by transactions: atomicity,
consistency, isolation, and durability.

activation
The process of transferring an enterprise bean from secondary storage to
memory. (See passivation.)

anonymous access
Accessing a resource without authentication.

applet
A J2EE component that typically executes in a web browser but can execute
in a variety of other applications or devices that support the applet program-
ming model.

applet container
A container that includes support for the applet programming model.

application assembler
A person who combines J2EE components and modules into deployable
application units.

application client
A first-tier J2EE client component that executes in its own Java virtual
machine. Application clients have access to some J2EE platform APIs.

application client container
A container that supports application client components.

1408
application client module
A software unit that consists of one or more classes and an application client
deployment descriptor.

application component provider
A vendor that provides the Java classes that implement components’ meth-
ods, JSP page definitions, and any required deployment descriptors.

application configuration resource file
An XML file used to configure resources for a JavaServer Faces application,
to define navigation rules for the application, and to register converters, vali-
dators, listeners, renderers, and components with the application.

archiving
The process of saving the state of an object and restoring it.

asant
A Java-based build tool that can be extended using Java classes. The config-
uration files are XML-based, calling out a target tree where various tasks get
executed.

attribute
A qualifier on an XML tag that provides additional information.

authentication
The process that verifies the identity of a user, device, or other entity in a
computer system, usually as a prerequisite to allowing access to resources in
a system. The Java servlet specification requires three types of authentica-
tion—basic, form-based, and mutual—and supports digest authentication.

authorization
The process by which access to a method or resource is determined. Authori-
zation depends on the determination of whether the principal associated with
a request through authentication is in a given security role. A security role is
a logical grouping of users defined by the person who assembles the applica-
tion. A deployer maps security roles to security identities. Security identities
may be principals or groups in the operational environment.

authorization constraint
An authorization rule that determines who is permitted to access a web
resource collection.

B2B
Business-to-business.

backing bean
A JavaBeans component that corresponds to a JSP page that includes Jav-
aServer Faces components. The backing bean defines properties for the com-
ponents on the page and methods that perform processing for the

1409
component. This processing includes event handling, validation, and pro-
cessing associated with navigation.

basic authentication
An authentication mechanism in which a web server authenticates an entity
via a user name and password obtained using the web application’s built-in
authentication mechanism.

bean-managed persistence
The mechanism whereby data transfer between an entity bean’s variables
and a resource manager is managed by the entity bean.

bean-managed transaction
A transaction whose boundaries are defined by an enterprise bean.

binary entity
See unparsed entity.

binding (XML)
Generating the code needed to process a well-defined portion of XML data.

binding (JavaServer Faces technology)
Wiring UI components to back-end data sources such as backing bean prop-
erties.

build file
The XML file that contains one or more asant targets. A target is a set of
tasks you want to be executed. When starting asant, you can select which
targets you want to have executed. When no target is given, the project’s
default target is executed.

business logic
The code that implements the functionality of an application. In the Enter-
prise JavaBeans architecture, this logic is implemented by the methods of an
enterprise bean.

business method
A method of an enterprise bean that implements the business logic or rules
of an application.

callback methods
Component methods called by the container to notify the component of
important events in its life cycle.

caller
Same as caller principal.

caller principal
The principal that identifies the invoker of the enterprise bean method.

1410
cascade delete
A deletion that triggers another deletion. A cascade delete can be specified
for an entity bean that has container-managed persistence.

CDATA

A predefined XML tag for character data that means “don’t interpret these
characters,” as opposed to parsed character data (PCDATA), in which the nor-
mal rules of XML syntax apply. CDATA sections are typically used to show
examples of XML syntax.

certificate authority
A trusted organization that issues public key certificates and provides identi-
fication to the bearer.

client-certificate authentication
An authentication mechanism that uses HTTP over SSL, in which the server
and, optionally, the client authenticate each other with a public key certifi-
cate that conforms to a standard that is defined by X.509 Public Key Infra-
structure.

comment
In an XML document, text that is ignored unless the parser is specifically
told to recognize it.

commit
The point in a transaction when all updates to any resources involved in the
transaction are made permanent.

component
See J2EE component.

component (JavaServer Faces technology)
See JavaServer Faces UI component.

component contract
The contract between a J2EE component and its container. The contract
includes life-cycle management of the component, a context interface that
the instance uses to obtain various information and services from its con-
tainer, and a list of services that every container must provide for its compo-
nents.

component-managed sign-on
A mechanism whereby security information needed for signing on to a
resource is provided by an application component.

connection
See resource manager connection.

1411
connection factory
See resource manager connection factory.

connector
A standard extension mechanism for containers that provides connectivity to
enterprise information systems. A connector is specific to an enterprise
information system and consists of a resource adapter and application devel-
opment tools for enterprise information system connectivity. The resource
adapter is plugged in to a container through its support for system-level con-
tracts defined in the Connector architecture.

Connector architecture
An architecture for integration of J2EE products with enterprise information
systems. There are two parts to this architecture: a resource adapter provided
by an enterprise information system vendor and the J2EE product that allows
this resource adapter to plug in. This architecture defines a set of contracts
that a resource adapter must support to plug in to a J2EE product—for exam-
ple, transactions, security, and resource management.

container
An entity that provides life-cycle management, security, deployment, and
runtime services to J2EE components. Each type of container (EJB, web,
JSP, servlet, applet, and application client) also provides component-specific
services.

container-managed persistence
The mechanism whereby data transfer between an entity bean’s variables
and a resource manager is managed by the entity bean’s container.

container-managed sign-on
The mechanism whereby security information needed for signing on to a
resource is supplied by the container.

container-managed transaction
A transaction whose boundaries are defined by an EJB container. An entity
bean must use container-managed transactions.

content
In an XML document, the part that occurs after the prolog, including the root
element and everything it contains.

context attribute
An object bound into the context associated with a servlet.

context root
A name that gets mapped to the document root of a web application.

1412
conversational state
The field values of a session bean plus the transitive closure of the objects
reachable from the bean’s fields. The transitive closure of a bean is defined
in terms of the serialization protocol for the Java programming language,
that is, the fields that would be stored by serializing the bean instance.

CORBA
Common Object Request Broker Architecture. A language-independent dis-
tributed object model specified by the OMG.

create method
A method defined in the home interface and invoked by a client to create an
enterprise bean.

credentials
The information describing the security attributes of a principal.

CSS
Cascading style sheet. A stylesheet used with HTML and XML documents
to add a style to all elements marked with a particular tag, for the direction of
browsers or other presentation mechanisms.

CTS
Compatibility test suite. A suite of compatibility tests for verifying that a
J2EE product complies with the J2EE platform specification.

data
The contents of an element in an XML stream, generally used when the ele-
ment does not contain any subelements. When it does, the term content is
generally used. When the only text in an XML structure is contained in sim-
ple elements and when elements that have subelements have little or no data
mixed in, then that structure is often thought of as XML data, as opposed to
an XML document.

DDP
Document-driven programming. The use of XML to define applications.

declaration
The very first thing in an XML document, which declares it as XML. The
minimal declaration is <?xml version="1.0"?>. The declaration is part of
the document prolog.

declarative security
Mechanisms used in an application that are expressed in a declarative syntax
in a deployment descriptor.

1413
delegation
An act whereby one principal authorizes another principal to use its identity
or privileges with some restrictions.

deployer
A person who installs J2EE modules and applications into an operational
environment.

deployment
The process whereby software is installed into an operational environment.

deployment descriptor
An XML file provided with each module and J2EE application that
describes how they should be deployed. The deployment descriptor directs a
deployment tool to deploy a module or application with specific container
options and describes specific configuration requirements that a deployer
must resolve.

destination
A JMS administered object that encapsulates the identity of a JMS queue or
topic. See point-to-point messaging system, publish/subscribe messaging
system.

digest authentication
An authentication mechanism in which a web application authenticates itself
to a web server by sending the server a message digest along with its HTTP
request message. The digest is computed by employing a one-way hash
algorithm to a concatenation of the HTTP request message and the client’s
password. The digest is typically much smaller than the HTTP request and
doesn’t contain the password.

distributed application
An application made up of distinct components running in separate runtime
environments, usually on different platforms connected via a network. Typi-
cal distributed applications are two-tier (client-server), three-tier (client-mid-
dleware-server), and multitier (client-multiple middleware-multiple servers).

document
In general, an XML structure in which one or more elements contains text
intermixed with subelements. See also data.

Document Object Model
An API for accessing and manipulating XML documents as tree structures.
DOM provides platform-neutral, language-neutral interfaces that enables
programs and scripts to dynamically access and modify content and structure
in XML documents.

1414
document root
The top-level directory of a WAR. The document root is where JSP pages,
client-side classes and archives, and static web resources are stored.

DOM
See Document Object Model.

DTD
Document type definition. An optional part of the XML document prolog, as
specified by the XML standard. The DTD specifies constraints on the valid
tags and tag sequences that can be in the document. The DTD has a number
of shortcomings, however, and this has led to various schema proposals. For
example, the DTD entry <!ELEMENT username (#PCDATA)> says that the
XML element called username contains parsed character data—that is, text
alone, with no other structural elements under it. The DTD includes both the
local subset, defined in the current file, and the external subset, which con-
sists of the definitions contained in external DTD files that are referenced in
the local subset using a parameter entity.

durable subscription
In a JMS publish/subscribe messaging system, a subscription that continues
to exist whether or not there is a current active subscriber object. If there is
no active subscriber, the JMS provider retains the subscription’s messages
until they are received by the subscription or until they expire.

EAR file
Enterprise Archive file. A JAR archive that contains a J2EE application.

ebXML
Electronic Business XML. A group of specifications designed to enable
enterprises to conduct business through the exchange of XML-based mes-
sages. It is sponsored by OASIS and the United Nations Centre for the Facil-
itation of Procedures and Practices in Administration, Commerce and
Transport (U.N./CEFACT).

EJB
See Enterprise JavaBeans.

EJB container
A container that implements the EJB component contract of the J2EE archi-
tecture. This contract specifies a runtime environment for enterprise beans
that includes security, concurrency, life-cycle management, transactions,
deployment, naming, and other services. An EJB container is provided by an
EJB or J2EE server.

EJB container provider
A vendor that supplies an EJB container.

1415
EJB context
An object that allows an enterprise bean to invoke services provided by the
container and to obtain the information about the caller of a client-invoked
method.

EJB home object
An object that provides the life-cycle operations (create, remove, find) for an
enterprise bean. The class for the EJB home object is generated by the con-
tainer’s deployment tools. The EJB home object implements the enterprise
bean’s home interface. The client references an EJB home object to perform
life-cycle operations on an EJB object. The client uses JNDI to locate an
EJB home object.

EJB JAR file
A JAR archive that contains an EJB module.

EJB module
A deployable unit that consists of one or more enterprise beans and an EJB
deployment descriptor.

EJB object
An object whose class implements the enterprise bean’s remote interface. A
client never references an enterprise bean instance directly; a client always
references an EJB object. The class of an EJB object is generated by a con-
tainer’s deployment tools.

EJB server
Software that provides services to an EJB container. For example, an EJB
container typically relies on a transaction manager that is part of the EJB
server to perform the two-phase commit across all the participating resource
managers. The J2EE architecture assumes that an EJB container is hosted by
an EJB server from the same vendor, so it does not specify the contract
between these two entities. An EJB server can host one or more EJB con-
tainers.

EJB server provider
A vendor that supplies an EJB server.

element
A unit of XML data, delimited by tags. An XML element can enclose other
elements.

empty tag
A tag that does not enclose any content.

1416
enterprise bean
A J2EE component that implements a business task or business entity and is
hosted by an EJB container; either an entity bean, a session bean, or a mes-
sage-driven bean.

enterprise bean provider
An application developer who produces enterprise bean classes, remote and
home interfaces, and deployment descriptor files, and packages them in an
EJB JAR file.

enterprise information system
The applications that constitute an enterprise’s existing system for handling
companywide information. These applications provide an information infra-
structure for an enterprise. An enterprise information system offers a well-
defined set of services to its clients. These services are exposed to clients as
local or remote interfaces or both. Examples of enterprise information sys-
tems include enterprise resource planning systems, mainframe transaction
processing systems, and legacy database systems.

enterprise information system resource
An entity that provides enterprise information system-specific functionality
to its clients. Examples are a record or set of records in a database system, a
business object in an enterprise resource planning system, and a transaction
program in a transaction processing system.

Enterprise JavaBeans (EJB)
A component architecture for the development and deployment of object-
oriented, distributed, enterprise-level applications. Applications written
using the Enterprise JavaBeans architecture are scalable, transactional, and
secure.

Enterprise JavaBeans Query Language (EJB QL)
Defines the queries for the finder and select methods of an entity bean hav-
ing container-managed persistence. A subset of SQL92, EJB QL has exten-
sions that allow navigation over the relationships defined in an entity bean’s
abstract schema.

entity
A distinct, individual item that can be included in an XML document by ref-
erencing it. Such an entity reference can name an entity as small as a charac-
ter (for example, <, which references the less-than symbol or left angle
bracket, <). An entity reference can also reference an entire document, an
external entity, or a collection of DTD definitions.

1417
entity bean
An enterprise bean that represents persistent data maintained in a database.
An entity bean can manage its own persistence or can delegate this function
to its container. An entity bean is identified by a primary key. If the container
in which an entity bean is hosted crashes, the entity bean, its primary key,
and any remote references survive the crash.

entity reference
A reference to an entity that is substituted for the reference when the XML
document is parsed. It can reference a predefined entity such as < or ref-
erence one that is defined in the DTD. In the XML data, the reference could
be to an entity that is defined in the local subset of the DTD or to an external
XML file (an external entity). The DTD can also carve out a segment of
DTD specifications and give it a name so that it can be reused (included) at
multiple points in the DTD by defining a parameter entity.

error
A SAX parsing error is generally a validation error; in other words, it occurs
when an XML document is not valid, although it can also occur if the decla-
ration specifies an XML version that the parser cannot handle. See also fatal
error, warning.

Extensible Markup Language
See XML.

external entity
An entity that exists as an external XML file, which is included in the XML
document using an entity reference.

external subset
That part of a DTD that is defined by references to external DTD files.

fatal error
A fatal error occurs in the SAX parser when a document is not well formed
or otherwise cannot be processed. See also error, warning.

filter
An object that can transform the header or content (or both) of a request or
response. Filters differ from web components in that they usually do not
themselves create responses but rather modify or adapt the requests for a
resource, and modify or adapt responses from a resource. A filter should not
have any dependencies on a web resource for which it is acting as a filter so
that it can be composable with more than one type of web resource.

filter chain
A concatenation of XSLT transformations in which the output of one trans-
formation becomes the input of the next.

1418
finder method
A method defined in the home interface and invoked by a client to locate an
entity bean.

form-based authentication
An authentication mechanism in which a web container provides an applica-
tion-specific form for logging in. This form of authentication uses Base64
encoding and can expose user names and passwords unless all connections
are over SSL.

general entity
An entity that is referenced as part of an XML document’s content, as dis-
tinct from a parameter entity, which is referenced in the DTD. A general
entity can be a parsed entity or an unparsed entity.

group
An authenticated set of users classified by common traits such as job title or
customer profile. Groups are also associated with a set of roles, and every
user that is a member of a group inherits all the roles assigned to that group.

handle
An object that identifies an enterprise bean. A client can serialize the handle
and then later deserialize it to obtain a reference to the enterprise bean.

home handle
An object that can be used to obtain a reference to the home interface. A
home handle can be serialized and written to stable storage and deserialized
to obtain the reference.

home interface
One of two interfaces for an enterprise bean. The home interface defines
zero or more methods for managing an enterprise bean. The home interface
of a session bean defines create and remove methods, whereas the home
interface of an entity bean defines create, finder, and remove methods.

HTML
Hypertext Markup Language. A markup language for hypertext documents
on the Internet. HTML enables the embedding of images, sounds, video
streams, form fields, references to other objects with URLs, and basic text
formatting.

HTTP
Hypertext Transfer Protocol. The Internet protocol used to retrieve hypertext
objects from remote hosts. HTTP messages consist of requests from client to
server and responses from server to client.

HTTPS
HTTP layered over the SSL protocol.

1419
IDL
Interface Definition Language. A language used to define interfaces to
remote CORBA objects. The interfaces are independent of operating sys-
tems and programming languages.

IIOP
Internet Inter-ORB Protocol. A protocol used for communication between
CORBA object request brokers.

impersonation
An act whereby one entity assumes the identity and privileges of another
entity without restrictions and without any indication visible to the recipients
of the impersonator’s calls that delegation has taken place. Impersonation is
a case of simple delegation.

initialization parameter
A parameter that initializes the context associated with a servlet.

ISO 3166
The international standard for country codes maintained by the International
Organization for Standardization (ISO).

ISV
Independent software vendor.

J2EE
See Java 2 Platform, Enterprise Edition.

J2EE application
Any deployable unit of J2EE functionality. This can be a single J2EE mod-
ule or a group of modules packaged into an EAR file along with a J2EE
application deployment descriptor. J2EE applications are typically engi-
neered to be distributed across multiple computing tiers.

J2EE component
A self-contained functional software unit supported by a container and con-
figurable at deployment time. The J2EE specification defines the following
J2EE components:

• Application clients and applets are components that run on the client.

• Java servlet and JavaServer Pages (JSP) technology components are web
components that run on the server.

• Enterprise JavaBeans (EJB) components (enterprise beans) are business
components that run on the server.

J2EE components are written in the Java programming language and are
compiled in the same way as any program in the language. The difference
between J2EE components and “standard” Java classes is that J2EE compo-

1420
nents are assembled into a J2EE application, verified to be well formed and
in compliance with the J2EE specification, and deployed to production,
where they are run and managed by the J2EE server or client container.

J2EE module
A software unit that consists of one or more J2EE components of the same
container type and one deployment descriptor of that type. There are four
types of modules: EJB, web, application client, and resource adapter. Mod-
ules can be deployed as stand-alone units or can be assembled into a J2EE
application.

J2EE product
An implementation that conforms to the J2EE platform specification.

J2EE product provider
A vendor that supplies a J2EE product.

J2EE server
The runtime portion of a J2EE product. A J2EE server provides EJB or web
containers or both.

J2ME
See Java 2 Platform, Micro Edition.

J2SE
See Java 2 Platform, Standard Edition.

JAR
Java archive. A platform-independent file format that permits many files to
be aggregated into one file.

Java 2 Platform, Enterprise Edition (J2EE)
An environment for developing and deploying enterprise applications. The
J2EE platform consists of a set of services, application programming inter-
faces (APIs), and protocols that provide the functionality for developing
multitiered, web-based applications.

Java 2 Platform, Micro Edition (J2ME)
A highly optimized Java runtime environment targeting a wide range of con-
sumer products, including pagers, cellular phones, screen phones, digital set-
top boxes, and car navigation systems.

Java 2 Platform, Standard Edition (J2SE)
The core Java technology platform.

Java API for XML Processing (JAXP)
An API for processing XML documents. JAXP leverages the parser stan-
dards SAX and DOM so that you can choose to parse your data as a stream
of events or to build a tree-structured representation of it. JAXP supports the

1421
XSLT standard, giving you control over the presentation of the data and
enabling you to convert the data to other XML documents or to other for-
mats, such as HTML. JAXP provides namespace support, allowing you to
work with schema that might otherwise have naming conflicts.

Java API for XML Registries (JAXR)
An API for accessing various kinds of XML registries.

Java API for XML-based RPC (JAX-RPC)
An API for building web services and clients that use remote procedure calls
and XML.

Java IDL
A technology that provides CORBA interoperability and connectivity capa-
bilities for the J2EE platform. These capabilities enable J2EE applications to
invoke operations on remote network services using the Object Management
Group IDL and IIOP.

Java Message Service (JMS)
An API for invoking operations on enterprise messaging systems.

Java Naming and Directory Interface (JNDI)
An API that provides naming and directory functionality.

Java Secure Socket Extension (JSSE)
A set of packages that enable secure Internet communications.

Java Transaction API (JTA)
An API that allows applications and J2EE servers to access transactions.

Java Transaction Service (JTS)
Specifies the implementation of a transaction manager that supports JTA and
implements the Java mapping of the Object Management Group Object
Transaction Service 1.1 specification at the level below the API.

JavaBeans component
A Java class that can be manipulated by tools and composed into applica-
tions. A JavaBeans component must adhere to certain property and event
interface conventions.

JavaMail
An API for sending and receiving email.

JavaServer Faces
A framework for building server-side user interfaces for web applications
written in the Java programming language.

JavaServer Faces conversion model
A mechanism for converting between string-based markup generated by Jav-
aServer Faces UI components and server-side Java objects.

1422
JavaServer Faces event and listener model
A mechanism for determining how events emitted by JavaServer Faces UI
components are handled. This model is based on the JavaBeans component
event and listener model.

JavaServer Faces expression language
A simple expression language used by a JavaServer Faces UI component tag
attributes to bind the associated component to a bean property or to bind the
associated component’s value to a method or an external data source, such as
a bean property. Unlike JSP EL expressions, JavaServer Faces EL expres-
sions are evaluated by the JavaServer Faces implementation rather than by
the web container.

JavaServer Faces navigation model
A mechanism for defining the sequence in which pages in a JavaServer
Faces application are displayed.

JavaServer Faces UI component
A user interface control that outputs data to a client or allows a user to input
data to a JavaServer Faces application.

JavaServer Faces UI component class
A JavaServer Faces class that defines the behavior and properties of a Jav-
aServer Faces UI component.

JavaServer Faces validation model
A mechanism for validating the data a user inputs to a JavaServer Faces UI
component.

JavaServer Pages (JSP)
An extensible web technology that uses static data, JSP elements, and
server-side Java objects to generate dynamic content for a client. Typically
the static data is HTML or XML elements, and in many cases the client is a
web browser.

JavaServer Pages Standard Tag Library (JSTL)
A tag library that encapsulates core functionality common to many JSP
applications. JSTL has support for common, structural tasks such as iteration
and conditionals, tags for manipulating XML documents, internationaliza-
tion and locale-specific formatting tags, SQL tags, and functions.

JAXR client
A client program that uses the JAXR API to access a business registry via a
JAXR provider.

1423
JAXR provider
An implementation of the JAXR API that provides access to a specific regis-
try provider or to a class of registry providers that are based on a common
specification.

JDBC
An API for database-independent connectivity between the J2EE platform
and a wide range of data sources.

JMS
See Java Message Service.

JMS administered object
A preconfigured JMS object (a resource manager connection factory or a
destination) created by an administrator for the use of JMS clients and
placed in a JNDI namespace.

JMS application
One or more JMS clients that exchange messages.

JMS client
A Java language program that sends or receives messages.

JMS provider
A messaging system that implements the Java Message Service as well as
other administrative and control functionality needed in a full-featured mes-
saging product.

JMS session
A single-threaded context for sending and receiving JMS messages. A JMS
session can be nontransacted, locally transacted, or participating in a distrib-
uted transaction.

JNDI
See Java Naming and Directory Interface.

JSP
See JavaServer Pages.

JSP action
A JSP element that can act on implicit objects and other server-side objects
or can define new scripting variables. Actions follow the XML syntax for
elements, with a start tag, a body, and an end tag; if the body is empty it can
also use the empty tag syntax. The tag must use a prefix. There are standard
and custom actions.

JSP container
A container that provides the same services as a servlet container and an
engine that interprets and processes JSP pages into a servlet.

1424
JSP container, distributed
A JSP container that can run a web application that is tagged as distributable
and is spread across multiple Java virtual machines that might be running on
different hosts.

JSP custom action
A user-defined action described in a portable manner by a tag library
descriptor and imported into a JSP page by a taglib directive. Custom
actions are used to encapsulate recurring tasks in writing JSP pages.

JSP custom tag
A tag that references a JSP custom action.

JSP declaration
A JSP scripting element that declares methods, variables, or both in a JSP
page.

JSP directive
A JSP element that gives an instruction to the JSP container and is inter-
preted at translation time.

JSP document
A JSP page written in XML syntax and subject to the constraints of XML
documents.

JSP element
A portion of a JSP page that is recognized by a JSP translator. An element
can be a directive, an action, or a scripting element.

JSP expression
A scripting element that contains a valid scripting language expression that
is evaluated, converted to a String, and placed into the implicit out object.

JSP expression language
A language used to write expressions that access the properties of JavaBeans
components. EL expressions can be used in static text and in any standard or
custom tag attribute that can accept an expression.

JSP page
A text-based document containing static text and JSP elements that describes
how to process a request to create a response. A JSP page is translated into
and handles requests as a servlet.

JSP scripting element
A JSP declaration, scriptlet, or expression whose syntax is defined by the
JSP specification and whose content is written according to the scripting lan-
guage used in the JSP page. The JSP specification describes the syntax and
semantics for the case where the language page attribute is "java".

1425
JSP scriptlet
A JSP scripting element containing any code fragment that is valid in the
scripting language used in the JSP page. The JSP specification describes
what is a valid scriptlet for the case where the language page attribute is
"java".

JSP standard action
An action that is defined in the JSP specification and is always available to a
JSP page.

JSP tag file
A source file containing a reusable fragment of JSP code that is translated
into a tag handler when a JSP page is translated into a servlet.

JSP tag handler
A Java programming language object that implements the behavior of a cus-
tom tag.

JSP tag library
A collection of custom tags described via a tag library descriptor and Java
classes.

JSTL
See JavaServer Pages Standard Tag Library.

JTA
See Java Transaction API.

JTS
See Java Transaction Service.

keystore
A file containing the keys and certificates used for authentication.

life cycle (J2EE component)
The framework events of a J2EE component’s existence. Each type of com-
ponent has defining events that mark its transition into states in which it has
varying availability for use. For example, a servlet is created and has its init
method called by its container before invocation of its service method by cli-
ents or other servlets that require its functionality. After the call of its init

method, it has the data and readiness for its intended use. The servlet’s
destroy method is called by its container before the ending of its existence
so that processing associated with winding up can be done and resources can
be released. The init and destroy methods in this example are callback
methods. Similar considerations apply to the life cycle of all J2EE compo-
nent types: enterprise beans, web components (servlets or JSP pages),
applets, and application clients.

1426
life cycle (JavaServer Faces)
A set of phases during which a request for a page is received, a UI compo-
nent tree representing the page is processed, and a response is produced.
During the phases of the life cycle:

• The local data of the components is updated with the values contained in
the request parameters.

• Events generated by the components are processed.

• Validators and converters registered on the components are processed.

• The components’ local data is updated to back-end objects.

• The response is rendered to the client while the component state of the
response is saved on the server for future requests.

local subset
That part of the DTD that is defined within the current XML file.

managed bean creation facility
A mechanism for defining the characteristics of JavaBeans components used
in a JavaServer Faces application.

message
In the Java Message Service, an asynchronous request, report, or event that is
created, sent, and consumed by an enterprise application and not by a
human. It contains vital information needed to coordinate enterprise applica-
tions, in the form of precisely formatted data that describes specific business
actions.

message consumer
An object created by a JMS session that is used for receiving messages sent
to a destination.

message-driven bean
An enterprise bean that is an asynchronous message consumer. A message-
driven bean has no state for a specific client, but its instance variables can
contain state across the handling of client messages, including an open data-
base connection and an object reference to an EJB object. A client accesses a
message-driven bean by sending messages to the destination for which the
bean is a message listener.

message producer
An object created by a JMS session that is used for sending messages to a
destination.

mixed-content model
A DTD specification that defines an element as containing a mixture of text
and one more other elements. The specification must start with #PCDATA, fol-

1427
lowed by diverse elements, and must end with the “zero-or-more” asterisk
symbol (*).

method-binding expression
A JavaServer Faces EL expression that refers to a method of a backing bean.
This method performs either event handling, validation, or navigation pro-
cessing for the UI component whose tag uses the method-binding expres-
sion.

method permission
An authorization rule that determines who is permitted to execute one or
more enterprise bean methods.

mutual authentication
An authentication mechanism employed by two parties for the purpose of
proving each other’s identity to one another.

namespace
A standard that lets you specify a unique label for the set of element names
defined by a DTD. A document using that DTD can be included in any other
document without having a conflict between element names. The elements
defined in your DTD are then uniquely identified so that, for example, the
parser can tell when an element <name> should be interpreted according to
your DTD rather than using the definition for an element <name> in a differ-
ent DTD.

naming context
A set of associations between unique, atomic, people-friendly identifiers and
objects.

naming environment
A mechanism that allows a component to be customized without the need to
access or change the component’s source code. A container implements the
component’s naming environment and provides it to the component as a
JNDI naming context. Each component names and accesses its environment
entries using the java:comp/env JNDI context. The environment entries are
declaratively specified in the component’s deployment descriptor.

normalization
The process of removing redundancy by modularizing, as with subroutines,
and of removing superfluous differences by reducing them to a common
denominator. For example, line endings from different systems are normal-
ized by reducing them to a single new line, and multiple whitespace charac-
ters are normalized to one space.

1428
North American Industry Classification System (NAICS)
A system for classifying business establishments based on the processes they
use to produce goods or services.

notation
A mechanism for defining a data format for a non-XML document refer-
enced as an unparsed entity. This is a holdover from SGML. A newer stan-
dard is to use MIME data types and namespaces to prevent naming conflicts.

OASIS
Organization for the Advancement of Structured Information Standards. A
consortium that drives the development, convergence, and adoption of e-
business standards. Its web site is http://www.oasis-open.org/. The
DTD repository it sponsors is at http://www.XML.org.

OMG
Object Management Group. A consortium that produces and maintains com-
puter industry specifications for interoperable enterprise applications. Its
web site is http://www.omg.org/.

one-way messaging
A method of transmitting messages without having to block until a response
is received.

ORB
Object request broker. A library that enables CORBA objects to locate and
communicate with one another.

OS principal
A principal native to the operating system on which the J2EE platform is
executing.

OTS
Object Transaction Service. A definition of the interfaces that permit
CORBA objects to participate in transactions.

parameter entity
An entity that consists of DTD specifications, as distinct from a general
entity. A parameter entity defined in the DTD can then be referenced at other
points, thereby eliminating the need to recode the definition at each location
it is used.

parsed entity
A general entity that contains XML and therefore is parsed when inserted
into the XML document, as opposed to an unparsed entity.

http://www.oasis-open.org/
http://www.XML.org
http://www.omg.org/

1429
parser
A module that reads in XML data from an input source and breaks it into
chunks so that your program knows when it is working with a tag, an
attribute, or element data. A nonvalidating parser ensures that the XML data
is well formed but does not verify that it is valid. See also validating parser.

passivation
The process of transferring an enterprise bean from memory to secondary
storage. See activation.

persistence
The protocol for transferring the state of an entity bean between its instance
variables and an underlying database.

persistent field
A virtual field of an entity bean that has container-managed persistence; it is
stored in a database.

POA
Portable Object Adapter. A CORBA standard for building server-side appli-
cations that are portable across heterogeneous ORBs.

point-to-point messaging system
A messaging system built on the concept of message queues. Each message
is addressed to a specific queue; clients extract messages from the queues
established to hold their messages.

primary key
An object that uniquely identifies an entity bean within a home.

principal
The identity assigned to a user as a result of authentication.

privilege
A security attribute that does not have the property of uniqueness and that
can be shared by many principals.

processing instruction
Information contained in an XML structure that is intended to be interpreted
by a specific application.

programmatic security
Security decisions that are made by security-aware applications. Program-
matic security is useful when declarative security alone is not sufficient to
express the security model of an application.

prolog
The part of an XML document that precedes the XML data. The prolog
includes the declaration and an optional DTD.

1430
public key certificate
Used in client-certificate authentication to enable the server, and optionally
the client, to authenticate each other. The public key certificate is the digital
equivalent of a passport. It is issued by a trusted organization, called a certif-
icate authority, and provides identification for the bearer.

publish/subscribe messaging system
A messaging system in which clients address messages to a specific node in
a content hierarchy, called a topic. Publishers and subscribers are generally
anonymous and can dynamically publish or subscribe to the content hierar-
chy. The system takes care of distributing the messages arriving from a
node’s multiple publishers to its multiple subscribers.

query string
A component of an HTTP request URL that contains a set of parameters and
values that affect the handling of the request.

queue
See point-to-point messaging system.

RAR
Resource Adapter Archive. A JAR archive that contains a resource adapter
module.

RDF
Resource Description Framework. A standard for defining the kind of data
that an XML file contains. Such information can help ensure semantic integ-
rity—for example—by helping to make sure that a date is treated as a date
rather than simply as text.

RDF schema
A standard for specifying consistency rules that apply to the specifications
contained in an RDF.

realm
See security policy domain. Also, a string, passed as part of an HTTP request
during basic authentication, that defines a protection space. The protected
resources on a server can be partitioned into a set of protection spaces, each
with its own authentication scheme or authorization database or both.

In the J2EE server authentication service, a realm is a complete database of
roles, users, and groups that identify valid users of a web application or a set
of web applications.

reentrant entity bean
An entity bean that can handle multiple simultaneous, interleaved, or nested
invocations that will not interfere with each other.

1431
reference
See entity reference.

registry
An infrastructure that enables the building, deployment, and discovery of
web services. It is a neutral third party that facilitates dynamic and loosely
coupled business-to-business (B2B) interactions.

registry provider
An implementation of a business registry that conforms to a specification for
XML registries (for example, ebXML or UDDI).

relationship field
A virtual field of an entity bean having container-managed persistence; it
identifies a related entity bean.

remote interface
One of two interfaces for an enterprise bean. The remote interface defines
the business methods callable by a client.

remove method
Method defined in the home interface and invoked by a client to destroy an
enterprise bean.

render kit
A set of renderers that render output to a particular client. The JavaServer
Faces implementation provides a standard HTML render kit, which is com-
posed of renderers that can render HMTL markup.

renderer
A Java class that can render the output for a set of JavaServer Faces UI com-
ponents.

request-response messaging
A method of messaging that includes blocking until a response is received.

resource adapter
A system-level software driver that is used by an EJB container or an appli-
cation client to connect to an enterprise information system. A resource
adapter typically is specific to an enterprise information system. It is avail-
able as a library and is used within the address space of the server or client
using it. A resource adapter plugs in to a container. The application compo-
nents deployed on the container then use the client API (exposed by the
adapter) or tool-generated high-level abstractions to access the underlying
enterprise information system. The resource adapter and EJB container col-
laborate to provide the underlying mechanisms—transactions, security, and
connection pooling—for connectivity to the enterprise information system.

1432
resource adapter module
A deployable unit that contains all Java interfaces, classes, and native librar-
ies, implementing a resource adapter along with the resource adapter deploy-
ment descriptor.

resource manager
Provides access to a set of shared resources. A resource manager participates
in transactions that are externally controlled and coordinated by a transaction
manager. A resource manager typically is in a different address space or on a
different machine from the clients that access it. Note: An enterprise infor-
mation system is referred to as a resource manager when it is mentioned in
the context of resource and transaction management.

resource manager connection
An object that represents a session with a resource manager.

resource manager connection factory
An object used for creating a resource manager connection.

RMI
Remote Method Invocation. A technology that allows an object running in
one Java virtual machine to invoke methods on an object running in a differ-
ent Java virtual machine.

RMI-IIOP
A version of RMI implemented to use the CORBA IIOP protocol. RMI over
IIOP provides interoperability with CORBA objects implemented in any lan-
guage if all the remote interfaces are originally defined as RMI interfaces.

role (development)
The function performed by a party in the development and deployment
phases of an application developed using J2EE technology. The roles are
application component provider, application assembler, deployer, J2EE
product provider, EJB container provider, EJB server provider, web con-
tainer provider, web server provider, tool provider, and system administrator.

role mapping
The process of associating the groups or principals (or both), recognized by
the container with security roles specified in the deployment descriptor.
Security roles must be mapped by the deployer before a component is
installed in the server.

role (security)
An abstract logical grouping of users that is defined by the application
assembler. When an application is deployed, the roles are mapped to security
identities, such as principals or groups, in the operational environment.

1433
In the J2EE server authentication service, a role is an abstract name for per-
mission to access a particular set of resources. A role can be compared to a
key that can open a lock. Many people might have a copy of the key; the lock
doesn’t care who you are, only that you have the right key.

rollback
The point in a transaction when all updates to any resources involved in the
transaction are reversed.

root
The outermost element in an XML document. The element that contains all
other elements.

SAX
See Simple API for XML.

Simple API for XML
An event-driven interface in which the parser invokes one of several methods
supplied by the caller when a parsing event occurs. Events include recogniz-
ing an XML tag, finding an error, encountering a reference to an external
entity, or processing a DTD specification.

schema
A database-inspired method for specifying constraints on XML documents
using an XML-based language. Schemas address deficiencies in DTDs, such
as the inability to put constraints on the kinds of data that can occur in a par-
ticular field. Because schemas are founded on XML, they are hierarchical.
Thus it is easier to create an unambiguous specification, and it is possible to
determine the scope over which a comment is meant to apply.

Secure Socket Layer (SSL)
A technology that allows web browsers and web servers to communicate
over a secured connection.

security attributes
A set of properties associated with a principal. Security attributes can be
associated with a principal by an authentication protocol or by a J2EE prod-
uct provider or both.

security constraint
A declarative way to annotate the intended protection of web content. A
security constraint consists of a web resource collection, an authorization
constraint, and a user data constraint.

security context
An object that encapsulates the shared state information regarding security
between two entities.

1434
security permission
A mechanism defined by J2SE, and used by the J2EE platform to express the
programming restrictions imposed on application component developers.

security permission set
The minimum set of security permissions that a J2EE product provider must
provide for the execution of each component type.

security policy domain
A scope over which security policies are defined and enforced by a security
administrator. A security policy domain has a collection of users (or princi-
pals), uses a well-defined authentication protocol or protocols for authenti-
cating users (or principals), and may have groups to simplify setting of
security policies.

security role
See role (security).

security technology domain
A scope over which the same security mechanism is used to enforce a secu-
rity policy. Multiple security policy domains can exist within a single tech-
nology domain.

security view
The set of security roles defined by the application assembler.

server certificate
Used with the HTTPS protocol to authenticate web applications. The certifi-
cate can be self-signed or approved by a certificate authority (CA). The
HTTPS service of the Application Server will not run unless a server certifi-
cate has been installed.

server principal
The OS principal that the server is executing as.

service element
A representation of the combination of one or more Connector components
that share a single engine component for processing incoming requests.

service endpoint interface
A Java interface that declares the methods that a client can invoke on a web
service.

servlet
A Java program that extends the functionality of a web server, generating
dynamic content and interacting with web applications using a request-
response paradigm.

1435
servlet container
A container that provides the network services over which requests and
responses are sent, decodes requests, and formats responses. All servlet con-
tainers must support HTTP as a protocol for requests and responses but can
also support additional request-response protocols, such as HTTPS.

servlet container, distributed
A servlet container that can run a web application that is tagged as distribut-
able and that executes across multiple Java virtual machines running on the
same host or on different hosts.

servlet context
An object that contains a servlet’s view of the web application within which
the servlet is running. Using the context, a servlet can log events, obtain
URL references to resources, and set and store attributes that other servlets
in the context can use.

servlet mapping
Defines an association between a URL pattern and a servlet. The mapping is
used to map requests to servlets.

session
An object used by a servlet to track a user’s interaction with a web applica-
tion across multiple HTTP requests.

session bean
An enterprise bean that is created by a client and that usually exists only for
the duration of a single client-server session. A session bean performs opera-
tions, such as calculations or database access, for the client. Although a ses-
sion bean can be transactional, it is not recoverable should a system crash
occur. Session bean objects either can be stateless or can maintain conversa-
tional state across methods and transactions. If a session bean maintains
state, then the EJB container manages this state if the object must be
removed from memory. However, the session bean object itself must manage
its own persistent data.

SGML
Standard Generalized Markup Language. The parent of both HTML and
XML. Although HTML shares SGML’s propensity for embedding presenta-
tion information in the markup, XML is a standard that allows information
content to be totally separated from the mechanisms for rendering that con-
tent.

SOAP
Simple Object Access Protocol. A lightweight protocol intended for
exchanging structured information in a decentralized, distributed environ-

1436
ment. It defines, using XML technologies, an extensible messaging frame-
work containing a message construct that can be exchanged over a variety of
underlying protocols.

SOAP with Attachments API for Java (SAAJ)
The basic package for SOAP messaging, SAAJ contains the API for creating
and populating a SOAP message.

SQL
Structured Query Language. The standardized relational database language
for defining database objects and manipulating data.

SQL/J
A set of standards that includes specifications for embedding SQL state-
ments in methods in the Java programming language and specifications for
calling Java static methods as SQL stored procedures and user-defined func-
tions. An SQL checker can detect errors in static SQL statements at program
development time, rather than at execution time as with a JDBC driver.

SSL
Secure Socket Layer. A security protocol that provides privacy over the
Internet. The protocol allows client-server applications to communicate in a
way that cannot be eavesdropped upon or tampered with. Servers are always
authenticated, and clients are optionally authenticated.

stateful session bean
A session bean with a conversational state.

stateless session bean
A session bean with no conversational state. All instances of a stateless ses-
sion bean are identical.

system administrator
The person responsible for configuring and administering the enterprise’s
computers, networks, and software systems.

tag
In XML documents, a piece of text that describes a unit of data or an ele-
ment. The tag is distinguishable as markup, as opposed to data, because it is
surrounded by angle brackets (< and >). To treat such markup syntax as data,
you use an entity reference or a CDATA section.

template
A set of formatting instructions that apply to the nodes selected by an XPath
expression.

1437
tool provider
An organization or software vendor that provides tools used for the develop-
ment, packaging, and deployment of J2EE applications.

topic
See publish-subscribe messaging system.

transaction
An atomic unit of work that modifies data. A transaction encloses one or
more program statements, all of which either complete or roll back. Transac-
tions enable multiple users to access the same data concurrently.

transaction attribute
A value specified in an enterprise bean’s deployment descriptor that is used
by the EJB container to control the transaction scope when the enterprise
bean’s methods are invoked. A transaction attribute can have the following
values: Required, RequiresNew, Supports, NotSupported, Mandatory, or
Never.

transaction isolation level
The degree to which the intermediate state of the data being modified by a
transaction is visible to other concurrent transactions and data being modi-
fied by other transactions is visible to it.

transaction manager
Provides the services and management functions required to support transac-
tion demarcation, transactional resource management, synchronization, and
transaction context propagation.

Unicode
A standard defined by the Unicode Consortium that uses a 16-bit code page
that maps digits to characters in languages around the world. Because 16 bits
covers 32,768 codes, Unicode is large enough to include all the world’s lan-
guages, with the exception of ideographic languages that have a different
character for every concept, such as Chinese. For more information, see
http://www.unicode.org/.

Universal Description, Discovery and Integration (UDDI) project
An industry initiative to create a platform-independent, open framework for
describing services, discovering businesses, and integrating business ser-
vices using the Internet, as well as a registry. It is being developed by a ven-
dor consortium.

Universal Standard Products and Services Classification (UNSPSC)
A schema that classifies and identifies commodities. It is used in sell-side
and buy-side catalogs and as a standardized account code in analyzing
expenditure.

http://www.unicode.org/

1438
unparsed entity
A general entity that contains something other than XML. By its nature, an
unparsed entity contains binary data.

URI
Uniform resource identifier. A globally unique identifier for an abstract or
physical resource. A URL is a kind of URI that specifies the retrieval proto-
col (http or https for web applications) and physical location of a resource
(host name and host-relative path). A URN is another type of URI.

URL
Uniform resource locator. A standard for writing a textual reference to an
arbitrary piece of data in the World Wide Web. A URL looks like this: pro-
tocol://host/localinfo where protocol specifies a protocol for fetching
the object (such as http or ftp), host specifies the Internet name of the tar-
geted host, and localinfo is a string (often a file name) passed to the proto-
col handler on the remote host.

URL path
The part of a URL passed by an HTTP request to invoke a servlet. A URL
path consists of the context path + servlet path + path info, where

• Context path is the path prefix associated with a servlet context of which
the servlet is a part. If this context is the default context rooted at the base
of the web server’s URL namespace, the path prefix will be an empty
string. Otherwise, the path prefix starts with a / character but does not end
with a / character.

• Servlet path is the path section that directly corresponds to the mapping
that activated this request. This path starts with a / character.

• Path info is the part of the request path that is not part of the context path
or the servlet path.

URN
Uniform resource name. A unique identifier that identifies an entity but
doesn’t tell where it is located. A system can use a URN to look up an entity
locally before trying to find it on the web. It also allows the web location to
change, while still allowing the entity to be found.

user data constraint
Indicates how data between a client and a web container should be protected.
The protection can be the prevention of tampering with the data or preven-
tion of eavesdropping on the data.

1439
user (security)
An individual (or application program) identity that has been authenticated.
A user can have a set of roles associated with that identity, which entitles the
user to access all resources protected by those roles.

valid
A valid XML document, in addition to being well formed, conforms to all
the constraints imposed by a DTD. It does not contain any tags that are not
permitted by the DTD, and the order of the tags conforms to the DTD’s spec-
ifications.

validating parser
A parser that ensures that an XML document is valid in addition to being
well formed. See also parser.

value-binding expression
A JavaServer Faces EL expression that refers to a property of a backing
bean. A component tag uses this expression to bind the associated compo-
nent’s value or the component instance to the bean property. If the compo-
nent tag refers to the property via its value attribute, then the component’s
value is bound to the property. If the component tag refers to the property via
its binding attribute then the component itself is bound to the property.

virtual host
Multiple hosts plus domain names mapped to a single IP address.

W3C
World Wide Web Consortium. The international body that governs Internet
standards. Its web site is http://www.w3.org/.

WAR file
Web application archive file. A JAR archive that contains a web module.

warning
A SAX parser warning is generated when the document’s DTD contains
duplicate definitions and in similar situations that are not necessarily an error
but which the document author might like to know about, because they could
be. See also fatal error, error.

Web application
An application written for the Internet, including those built with Java tech-
nologies such as JavaServer Pages and servlets, as well as those built with
non-Java technologies such as CGI and Perl.

Web application, distributable
A web application that uses J2EE technology written so that it can be
deployed in a web container distributed across multiple Java virtual

http://www.w3.org/

1440
machines running on the same host or different hosts. The deployment
descriptor for such an application uses the distributable element.

Web component
A component that provides services in response to requests; either a servlet
or a JSP page.

Web container
A container that implements the web component contract of the J2EE archi-
tecture. This contract specifies a runtime environment for web components
that includes security, concurrency, life-cycle management, transaction,
deployment, and other services. A web container provides the same services
as a JSP container as well as a federated view of the J2EE platform APIs. A
web container is provided by a web or J2EE server.

Web container, distributed
A web container that can run a web application that is tagged as distributable
and that executes across multiple Java virtual machines running on the same
host or on different hosts.

Web container provider
A vendor that supplies a web container.

Web module
A deployable unit that consists of one or more web components, other
resources, and a web application deployment descriptor contained in a hier-
archy of directories and files in a standard web application format.

Web resource
A static or dynamic object contained in a web application that can be refer-
enced by a URL.

Web resource collection
A list of URL patterns and HTTP methods that describe a set of web
resources to be protected.

Web server
Software that provides services to access the Internet, an intranet, or an
extranet. A web server hosts web sites, provides support for HTTP and other
protocols, and executes server-side programs (such as CGI scripts or serv-
lets) that perform certain functions. In the J2EE architecture, a web server
provides services to a web container. For example, a web container typically
relies on a web server to provide HTTP message handling. The J2EE archi-
tecture assumes that a web container is hosted by a web server from the
same vendor, so it does not specify the contract between these two entities.
A web server can host one or more web containers.

1441
Web server provider
A vendor that supplies a web server.

Web service
An application that exists in a distributed environment, such as the Internet.
A web service accepts a request, performs its function based on the request,
and returns a response. The request and the response can be part of the same
operation, or they can occur separately, in which case the consumer does not
need to wait for a response. Both the request and the response usually take
the form of XML, a portable data-interchange format, and are delivered over
a wire protocol, such as HTTP.

well-formed
An XML document that is syntactically correct. It does not have any angle
brackets that are not part of tags, all tags have an ending tag or are them-
selves self-ending, and all tags are fully nested. Knowing that a document is
well formed makes it possible to process it. However, a well-formed docu-
ment may not be valid. To determine that, you need a validating parser and a
DTD.

Xalan
An interpreting version of XSLT.

XHTML
An XML look-alike for HTML defined by one of several XHTML DTDs. To
use XHTML for everything would of course defeat the purpose of XML,
because the idea of XML is to identify information content, and not just to
tell how to display it. You can reference it in a DTD, which allows you to
say, for example, that the text in an element can contain and tags
rather than being limited to plain text.

XLink
The part of the XLL specification that is concerned with specifying links
between documents.

XLL
The XML Link Language specification, consisting of XLink and XPointer.

XML
Extensible Markup Language. A markup language that allows you to define
the tags (markup) needed to identify the content, data, and text in XML doc-
uments. It differs from HTML, the markup language most often used to
present information on the Internet. HTML has fixed tags that deal mainly
with style or presentation. An XML document must undergo a transforma-
tion into a language with style tags under the control of a style sheet before it
can be presented by a browser or other presentation mechanism. Two types

1442
of style sheets used with XML are CSS and XSL. Typically, XML is trans-
formed into HTML for presentation. Although tags can be defined as needed
in the generation of an XML document, a document type definition (DTD)
can be used to define the elements allowed in a particular type of document.
A document can be compared by using the rules in the DTD to determine its
validity and to locate particular elements in the document. A web services
application’s J2EE deployment descriptors are expressed in XML with sche-
mas defining allowed elements. Programs for processing XML documents
use SAX or DOM APIs.

XML registry
See registry.

XML Schema
The W3C specification for defining the structure, content, and semantics of
XML documents.

XPath
An addressing mechanism for identifying the parts of an XML document.

XPointer
The part of the XLL specification that is concerned with identifying sections
of documents so that they can be referenced in links or included in other doc-
uments.

XSL
Extensible Stylesheet Language. A standard that lets you do the following:

• Specify an addressing mechanism, so that you can identify the parts of an
XML document that a transformation applies to (XPath).

• Specify tag conversions, so that you can convert XML data into different
formats (XSLT).

• Specify display characteristics, such page sizes, margins, and font heights
and widths, as well as the flow objects on each page. Information fills in
one area of a page and then automatically flows to the next object when
that area fills up. That allows you to wrap text around pictures, for exam-
ple, or to continue a newsletter article on a different page (XSL-FO).

XSL-FO
A subcomponent of XSL used for describing font sizes, page layouts, and
how information flows from one page to another.

XSLT
Extensible Stylesheet Language Transformations. An XML document that
controls the transformation of an XML document into another XML docu-
ment or HTML. The target document often has presentation-related tags dic-

1443
tating how it will be rendered by a browser or other presentation mechanism.
XSLT was formerly a part of XSL, which also included a tag language of
style flow objects.

XSLTC
A compiling version of XSLT.

1444

About the Authors

Current Writers

Web-Tier Technologies
Jennifer Ball is a staff writer at Sun Microsystems, where she documents
JavaServer Faces technology. Previously she documented the Java2D API,
deploytool, and JAXB. She holds an M.A. degree in Interdisciplinary
Computer Science from Mills College.

Java API for XML-based RPC, Enterprise JavaBeans Technology
Ian Evans is a staff writer at Sun Microsystems, where he documents the
J2EE and Java Web Services platforms and edits the J2EE platform specifi-
cations. In previous positions he documented programming tools, CORBA
middleware, and Java application servers, and taught classes on UNIX, web
programming, and server-side Java development.

Java API for XML Registries, SOAP with Attachments API for Java, Java Message
Service API

Kim Haase is a staff writer with Sun Microsystems, where she documents
the J2EE platform and Java Web Services. In previous positions she docu-
mented compilers, debuggers, and floating-point programming. She cur-
rently writes about the Java Message Service, the Java API for XML
Registries, and SOAP with Attachments API for Java.

Security
Debbie Carson is a staff writer with Sun Microsystems, where she docu-
ments the J2EE, J2SE, and Java Web Services platforms. In previous posi-
tions she documented creating database applications using C++ and Java
technologies and creating distributed applications using Java technology.

Eric Jendrock is a staff writer with Sun Microsystems, where he documents
the J2EE platform and Java Web Services. Previously, he documented mid-
dleware products and standards. Currently, he writes about the Java Web
1445

1446
Services Developer Pack, the Java Architecture for XML Binding, and the
J2EE platform and web security.

Past Writers

Eric Armstrong wrote about XML technologies.

Stephanie Bodoff wrote about web-tier technologies and the case studies.

Dale Green wrote about the JAX-RPC and Enterprise JavaBeans technolo-
gies.

Index

A
abstract document model 256
abstract schemas 861

defined 1046
deployment descriptors 861
deploytool 1007
EJB QL 1045
hidden from clients 866
names 1046
naming conventions 873
types 1046

access methods
examples 978, 1006
local interfaces 975
persistent fields 862, 971
primary keys 1012
relationship fields 863, 971

acknowledge method 1230
action events 670–671, 673, 675,
705, 732, 767

ActionEvent class 704, 732,
767, 769, 779, 798, 813

actionListener attribute 675,
704, 731, 741–743,
769, 785, 790, 798, 812

ActionListener class 686,
732, 767–768

ActionListener implementa-
tion 769

actionListener tag 697, 731–
732, 785

ActionSource interface 743
processAction(ActionEvent)

method 769
referencing methods that han-

dle action events 742,
779

writing a backing-bean meth-
od to handle action
events 779

AdapterNode class 201
adapters 201
addChildElement method 356
addClassifications method 415
addExternalLink method 422
address book, exporting 274
addServiceBindings method 417
addServices method 417
addTextNode method 356
Admin Console 26

starting 28
administered objects, JMS 1197

definition 1192
J2EE applications and 1249
1447

1448 INDEX
ANY 57
appclient 26
applet containers 10
applets 4, 6
application client containers 10
application clients 4, 884

Duke’s Bank 1347, 1350, 1355
classes 1349
running 1380

examples 340, 887, 1034
JAR files 884
packaging 341, 888

Application Deployment Tool
See deploytool

Application Server
connection factories

JNDI subcontexts 1108
creating data sources 106,

1112
creating mail sessions 1114
downloading xxxvii
enabling debugging 31
installation tips xxxvii
server logs 30
starting 27
stopping 28
tools 26–27
user interface technologies 25

apply-templates instruction 293
archiving 42
<article> document type 287
asadmin 26
asant 26

examples 882
asynchronous message consump-
tion 1196

JMS client example 1219
AttachmentPart class 349, 365

creating objects 365
headers 365

attachments 348
adding 365
SAAJ example 392

attribute node 256
Attribute nodes 213
attribute value template 306
attributes 35, 45, 230

creating 245
defining in DTD 59
encoding 37
SOAP envelope 357
standalone 37
types 60
version 37

attributes referencing backing
bean methods 741

action attribute 657, 675, 686,
741

actionListener attribute 675,
741–743

validator attribute 741, 743
valueChangeListener at-

tribute 741, 743–744
attribute-specification parameters
61
authenticating

application clients
configuring 1184

basic 1163
example 1161

client 1157
entities 1160
mutual 1157
web resources

form-based 1134
HTTP basic 1133

INDEX 1449
authentication 1120, 1148, 1404
basic 1133, 1161

example 1161
client-certificate

example 1167
for XML registries 413
form-based

example 1139
mutual

example 1167
web resources

configuring 1139
Duke’s Bank 1364
HTTP basic 1139
SSL protection 1147

authorization 1120, 1404
AUTO_ACKNOWLEDGE mode 1230

B
backing bean methods 660, 741,
777, 798, 808

attributes referencing
See attributes referencing

backing bean
methods

referencing
See referencing backing

bean methods
writing

See writing backing bean
methods

backing bean properties 659, 674–
676, 726, 750, 798, 807

bound to component instances
759–761

properties for UISelectItems

composed of Selec-

tItem instances 757–
758

UIData properties 752
UIInput and UIOutput proper-

ties 751
UISelectBoolean properties

754
UISelectItems properties 757
UISelectMany properties 754
UISelectOne properties 755

backing beans 650, 659, 669, 671,
674–677, 777, 785

method binding
See method binding

methods
See backing bean methods
See backing-bean methods

properties
See backing bean proper-

ties
value binding

See value binding
Base64 encoding 1134
basic logic 189
bean-managed persistence

defined 860
EJB containers
examples 931, 952, 961
isolation levels 1103
relationships 860

bean-managed transactions 1253
See transactions, bean-man-

aged
binding 42
binding templates

adding to an organization with
JAXR 416

finding with JAXR 412

1450 INDEX
BodyTag interface 638
BodyTagSupport class 638
boolean 261

functions 264
boolean function 264
BufferedReader class 458
business logic 856, 940
business methods 867, 886, 889

client calls 903
examples 939, 973
exceptions 904
local interfaces 975
message-driven beans 1035
requirements 904
transactions 1081–1082, 1084,

1100, 1104
business objects 859, 931
businesses

contacts 414
creating with JAXR 414
finding

by name with JAXR 409,
429

using WSDL documents
with JAXR 433

finding by classification with
JAXR 410, 430

keys 414, 420
publishing with JAXR 417
removing with JAXR 420, 430
saving with JAXR 429–430,

432
BusinessLifeCycleManager inter-
face 399, 408, 413
BusinessQueryManager interface
399, 408
BytesMessage interface 1206

C
call method 350–351, 360
Call object 337
capability levels, JAXR 398
capture-schema 27
cascade deletes 1007, 1020
CCI

See J2EE Connector architec-
ture, CCI

CDATA 219, 230
versus PCDATA 56

CDATA node 219
ceiling function 264
chained filters 315
character encodings 850, 1383

ISO 8859 850
ISO-8859-1 1383
US-ASCII 1383
UTF-16 1384
UTF-8 850, 1383

character events 131
character sets 849

IANA registry 1384
Unicode 850
US-ASCII 849

characters method 125
child access

controlling 225
classic tags 637

tag handlers 638
defining variables 644–

645
how invoked 639
life cycle 639
methods 638
shared objects 642, 644
variable availability 644
with bodies 640

INDEX 1451
classification schemes
finding with JAXR 415
ISO 3166 409
NAICS 409, 430
postal address 422, 430
publishing with JAXR 422,

430
removing with JAXR 431
UNSPSC 409
user-defined 421

classifications
creating with JAXR 415

client applications, JMS 1208
packaging 1216, 1221
running 1217, 1222
running on multiple systems

1223
client ID, for durable subscriptions
1237
CLIENT_ACKNOWLEDGE mode 1230
clients

authenticating 1135, 1157,
1167

clients, JAXR 399
examples 426
implementing 400

close method 360
CMP

See container-managed-per-
sistence

CMR
See container-managed rela-

tionships
Coffee Break

building shared classes 1329
JavaServer Faces server 1321,

1327
beans 1324, 1326

building, packaging, and
deploying 1335

JSP pages 1322, 1324
resource configuration

1326
JAX-RPC service 1293, 1302

building, packaging, and
deploying 1330,
1332

deleting from registry
1300, 1302

implementation 1294
interface 1293
publishing in registry

1295, 1300
removing 1338
running the client 1336
SAAJ clients 1303
SAAJ service 1302, 1317

building, packaging, and
deploying 1332

XML messages 1302
server 1317, 1321

beans 1318, 1321
building, packaging, and

deploying 1333–
1334

JSP pages 1318
server interaction 1292
setting registry properties

1328
setting service port numbers

1328
shared files 1293
source code 1327

com.sun.xml.registry.ht-

tp.proxyHost connection property
406

1452 INDEX
com.sun.xml.registry.ht-

tp.proxyPort connection property
406
com.sun.xml.registry.ht-

tps.proxyHost connection proper-
ty 407
com.sun.xml.registry.ht-

tps.proxyPassword connection
property 407
com.sun.xml.registry.ht-

tps.proxyPort connection proper-
ty 407
com.sun.xml.registry.ht-

tps.proxyUserName connection
property 407
com.sun.xml.registry.useCache

connection property 407
com.sun.xml.registry.userTax-

onomyFilenames connection prop-
erty 407, 423
command line

argument processing 125
comment 44, 219, 230

echoing 174
node 256

Comment nodes 213
commit 1089–1090, 1096, 1102
commit method (JMS) 1240
commits

See transactions, commits
compiling 134
component binding 675, 735, 739,
750

advantages of 676
binding attribute 660, 675,

735, 739
component rendering model 662,
664–668

custom renderers
See custom renderers

decode method 684, 732, 766,
806–807, 812

decoding 785, 801
delegated implementation 786
direct implementation 786
encode method 767
encodeBegin method 804–805
encodeChildren method 804–

805
encodeEnd method 804–805,

810
encoding 785, 801
HTML render kit 800, 833
render kit 665, 833
renderer 783
Renderer class 665–666, 732,

833
Renderer implementation 834
RenderKit class 665
RenderKit implementation 834

compression 238
concat function 263
concepts

in user-defined classification
schemes 421

publishing with JAXR 417,
432

removing with JAXR 433
using to create classifications

with JAXR 415
concurrent access 1077
conditional sections 71
configuring beans 817–826

managed bean creation facility
See managed bean creation

facility

INDEX 1453
configuring JavaServer Faces ap-
plications 652

Application class 817, 827
application configuration re-

source files 650, 661,
672–673, 676, 705,
726–727, 736–737,
742, 771, 816, 829,
833, 837

Application instance 762–
763, 773, 798

attribute element 828, 834
attribute-class element 828
attribute-name element 828
configuring beans

See configuring beans
configuring navigation rules

See configuring navigation
rules

faces-config.xml files 831
including the classes, pages,

and other resources
843

including the required JAR
files 843

javax.faces.applica-

tion.CONFIG_FILES

context parameter 816,
840

javax.fac-

es.STATE_SAVING_METH

OD context parameter
841

registering custom converters
See registering custom

converters
registering custom renderers

See registering custom

renderers
registering custom UI compo-

nents
See registering custom UI

components
registering custom validators

See registering custom val-
idators

registering messages
See registering messages

restricting access to JavaServ-
er Faces components
841

specifying a path to an applica-
tion configuration re-
source file 840

specifying where UI compo-
nent state is saved 809,
840

turning on validation of XML
files 842

validateXML context parame-
ter 842

verifying custom objects 842
configuring navigation rules 829

action methods 832
example navigation rule 830–

831
from-action element 832
from-outcome value 832
from-view-id element 831
navigation-case element 830,

832
navigation-rule element 831
to-view-id element 832

Connection 1089–1090, 1102,
1105
Connection class 1405

1454 INDEX
connection factories, JAXR
creating 403

connection factories, JMS
creating 1037, 1212
introduction 1197
looking up 1034, 1197
specifying for message-driven

beans 1264
specifying for remote servers

1224
Connection interface (JAXR) 399,
404
Connection interface (JMS) 1199
connection pooling 1109
connection properties, JAXR 405

examples 404
ConnectionFactory class (JAXR)
403
ConnectionFactory interface
(JMS) 1197
connections

secure 1148
connections, database 1110
connections, JAXR

creating 404
setting properties 404

connections, JMS
introduction 1199
managing in J2EE applications

1249
connections, mail sessions 1113
connections, SAAJ 350

closing 360
point-to-point 359

connections, URL 1116
connectors

See J2EE Connector architec-
ture

container-managed persistence
861

cascade deletes 1020
EJB QL 861, 1019, 1045
examples 967
isolation levels 1103
one-to-many 1016
one-to-one 1016
persistent fields 971
primary keys 1016

compound 1018
primitive types 1017
unknown 1012, 1016

relationship fields 971
relationships 860
table mapping 1019

container-managed relationships
1014

bidirection 968
bidirectional 863
defined 861
deploytool 1004
direction 868, 1006
EJB QL 864
examples 968
local access 868
many-to-many 863
many-to-one 863
multiplicity 863, 968, 1006
one-to-many 863, 1047
one-to-one 863, 1060
self-referential 1015
unidirectional 864, 1016

container-managed transactions
See transactions, container-

managed
containers 8

configurable services 9

INDEX 1455
non-configurable services 9
See also

applet containers
application client contain-

ers
EJB containers
web containers

services 8
contains function 263
content events 129
ContentHandler interface 125
context 257
Context interface 885, 1108
context roots 92
conversion functions 264
conversion model 662, 669–670,
752

converter attribute 711, 726–
727, 745–746

Converter implementations
669, 726, 745–746,
765–766

Converter interface 764–766
converter tag 745
converter tags

See converter tags 727
converterId attribute 726–

727, 745–746
converters

See converters
converting data between mod-

el and presentation 669
javax.faces.convert package

726
model view 765–766
presentation view 765–766

Converter implementation classes
BigDecimalConverter class

726
BigIntegerConverter class

726
BooleanConverter class 726
ByteConverter class 726
CharacterConverter class 726
DateTimeConverter 726
DateTimeConverter class 726–

729
DoubleConverter class 726
FloatConverter class 726
IntegerConverter class 726
LongConverter class 726
NumberConverter class 726–

727, 729–731
ShortConverter class 726

converter tags
convertDateTime tag 727
convertDateTime tag attributes

728
converter tag 726–727, 745–

746
convertNumber tag 727, 729
convertNumber tag attributes

730
parseLocale attribute 728

converters 648, 650, 662, 676,
682–683

custom converters 669, 745
standard converters

See standard converters
converting data

See conversion model 669
core tags

convertNumber tag 729
count function 263
country codes

ISO 3166 409

1456 INDEX
create 1082
create method

bean-managed persistence 933
compared to ejbCreate meth-

od 905
examples 886, 902, 954
life cycles 873, 875
requirements 905, 943, 974

createClassification method
415, 422
createClassificationScheme

method 422
createExternalLink method 422
createOrganization method 414
createPostalAddress method 425
createService method 416
createServiceBinding method
416
createTimer method 919
custom converters 670, 745

Converter implementation 829
creating 764–767
getAsObject method 766
getAsObject(FacesContext,

UIComponent, String)

method 765
getAsString method 767
getAsString(FacesContext,

UIComponent, Object)

method 766
registering

See registering custom
converters

using 745
custom objects

custom converters 745
See custom converters

custom renderers

See custom renderers
custom tags

See custom tags
custom UI components

See custom UI compo-
nents

custom validators 746
See custom validators

using 744–748
using custom converters, ren-

derers and tags togeth-
er 786

custom renderers 783–784, 786,
833

creating the Renderer class
810–812

determining necessity of 785
getName(FacesContext.UICom-

ponent) method 806
javax.faces.render.Render-

er class 794
performing decoding 806
performing encoding 804
registering

See registering custom
renderers

registering with a render kit
ResponseWriter class 805, 811
startElement method 806
writeAttribute method 806

custom tags 575–576, 672, 784,
786

and scripting elements 637
attributes

validation 614
cooperating 585
createValidator method 776
creating 775–777

INDEX 1457
creating tag handler 795
creating using JSP syntax 586
Duke’s Bank 1358
getComponentType method

794, 797
getRendererType method 794,

799, 812
identifying the renderer type

810
release method 800
See also classic tags
See also simple tags
setProperties method 794,

798–799
tag handler class 775–776,

793–795
tag library descriptor 776, 794
tag library descriptors

See tag library descriptors
template tag library 577
UIComponentTag class 794, 797
UIComponentTag.release

method 800
ValidatorTag class 775–776
writing the tag library descrip-

tor 776
custom UI components 671, 745,
783–784, 786, 812

creating component classes
801–809

delegating rendering 794,
810–812

determining necessity of 784
getId method 806
handling events emitted by

812
queueEvent method 807
registering

See registering custom UI
components

restoreState(FacesContext,

Object) method 774,
808–809

saveState(FacesContext)

method 808
saving state 794, 808
setValueBinding method 799
specifying where state is saved

840
steps for creating 794
using 747

custom validators 746, 771
createValidator method 776
custom validator tags 775–777
implementing a backing-bean

method to perform val-
idation 770

implementing the Validator

interface 771
registering

See registering custom val-
idators

using 746
validate method 771–772,

779
Validator implementation

672, 771, 775–777,
828

Validator interface 770
validator tag 770, 775
ValidatorTag class 775–776

cxml 1396

D
data 182

1458 INDEX
element 59
encrypting 1167
encryption 1135
normalizing 79
processing 41
structure

arbitrary 272
types

CDATA 230
element 229
entity reference 229
text 229

data integrity 1077
data sources 1109

connecting to from J2EE com-
ponents 1110

creating 1112
getting a connection 104
looking up with JNDI 104

database schema 1021
databases

bean-managed persistence
931, 942

BLOBs 1020
business methods 939
clients 856, 866
CLOBs 1020
connecting to from J2EE com-

ponents 1110
connections 874, 904, 928,

1101, 1110
creating tables 932, 946, 988,

1009
data recovery 1077
deleting rows 935
Duke’s Bank tables 1346
EIS tier 2
entity beans 859

exceptions 928
foreign keys 863, 948
inserting rows 933
isolation levels 1103
message-driven beans and 865
multiple 1095, 1104
persistent fields 862
portable beans 861
primary keys 948, 962
read-only data 859
referential constraints 949
relationships for bean-man-

aged persistence 947
See also persistence
synchronizing with entity

beans 936
table creation 1021
table relationships

many-to-many 959
one-to-many 951
one-to-one 948

transactions
See transactions

DataSource interface 104, 1109
DDP
declaration 36, 44
DefaultHandler method

overriding 152
defining text 56
deleteOrganizations method 420
delivery modes, JMS 1233

JMSDeliveryMode message
header field 1204

DeliveryMode interface 1233
deployer roles 17
deployment descriptors 13

abstract schema 861
container-managed persis-

INDEX 1459
tence 970
creating 871
EJB QL 1045
enterprise beans 871, 873
portable 13
primary key class 962
runtime 13
transaction attributes 1081
web application 85, 88, 837

runtime 89
deploytool 27

bean-managed persistence 965
components that send messag-

es 1041
container-managed persis-

tence 1001, 1030
message-driven beans 1040,

1263
redeploy operation 897
starting 28–29

Derby database 27
starting 29
stopping 29

Destination interface 1198
destinations, JMS

creating 1037, 1212
introduction 1198
JMSDestination message

header field 1204
looking up 1034, 1198
temporary 1235, 1269, 1284

destroy method 477
detachNode method 355
Detail interface 375
DetailEntry interface 376
development roles 15

application assemblers 16
application client developers

16
application deployers and ad-

ministrators 17
enterprise bean developers 16
J2EE product providers 15
tool providers 15
web component developers 16

DII 336
DII clients

examples 336
DNS 23
doAfterBody method 641
DocType node 215, 230
document

element 59
events 129
fragment 230
node 230
type 287

Document class 190
DocumentBuilderFactory 220, 247

configuring 247
Document-Driven Programming

See DDP
documents 182
doEndTag method 638
doFilter method 463–464, 469
doGet method 457
doInitBody method 641
DOM 123, 1387

applications
extending 226, 236

constructing 188
displaying a hierarchy 195
displaying ub a JTree 201
nodes 183
normalizing 241
SAAJ and 350, 364, 388

1460 INDEX
structure 186
tree structure 181
versus SAX 121
writing out a subtree 271
writing out as an XML file 265

dom4j 123, 184, 1387
domains 27
doPost method 457
doStartTag method 638
doTag method 613
downloading

Application Server xxxvii
J2EE 1.4 SDK xxxvii

DrawML 1395
DTD 37, 1388, 1390

defining attributes 59
defining entities 62
defining namespaces 74
factoring out 81
industry-standard 77
limitations 56
normalizing 81
parsing the parameterized 168
warnings 170

DTDHandler API 178
Duke’s Bank

adding groups and users to the
default realm 1368

application
packaging and deploying

1377–1378
application client 1347, 1355

classes 1349
packaging 1374–1375
running 1380

authentication 1364
building and deploying 1366
compiling 1369

component interaction 1339
creating the data source 1368
custom tags 1358
database tables 1346
enteprise beans

protecting 1347
enterprise beans 1340, 1347

method permissions 1347
packaging 1369, 1374

entity beans 1344
helper classes 1345
internationalizing clients 1365
JavaBeans components 1357
JNDI names 1379–1380
JSP pages 1355
packaging and deploying 1369
populating the database 1367
security roles 1347
servlet 1361
session beans 1341, 1344
web client 1355, 1366

component interaction
1362

packaging and deploying
1375, 1377

request processing 1361
running 1381

web resources
protecting 1364

Duke’s Bookstore
applet 520
common classes and database

schema 103
JavaServer Faces technology

version 677, 690–694
JSP documents in 526
JSP with basic JSTL version

486

INDEX 1461
JSP with example custom tags
576

JSP with JSTL SQL tags 548
JSP with JSTL XML tags 561
MVC architecture 487
populating the database 105
servlet version 444
use of JSTL tags 488

DUPS_OK_ACKNOWLEDGE mode 1230
durable subscriptions, JMS 1236

examples 1239, 1258
dynamic invocation interface

See DII
dynamic proxies 333
dynamic proxy clients

examples 333
DynamicAttributes interface 615

E
EAR files 13
ebXML 12, 21, 1396

registries 398
EIS 1399, 1405
EIS tier 8
EJB

timer service 919
EJB containers 10

bean-managed persistence
See bean-managed persis-

tence
container-managed persis-

tence 860
container-managed transac-

tions 1078
generating primary keys 1012
instance contexts 918
instantiating enterprise beans

873, 902
message-driven beans 1250
onMessage method, invoking

1035
persistence 967
persistent fields 971
relationships 861, 967
services 855

EJB JAR files 872
container-managed relation-

ships 868
EJB QL 1045, 1058
portability 872

EJB QL 1045
abstract schemas 1046, 1059,

1072
arithmetic functions 1068
boolean logic 1069
case sensitivity 1057
cmp_field element 1060
cmr_field element 1060
collection member declara-

tions 1059
collections 1059, 1067
comments 1075
compared to SQL 1045, 1049,

1057
conditional expressions 1062,

1064
delimiters 1061
deployment descriptors 861
deploytool 1008, 1031
domain of query 1045, 1057–

1058
EJB containers 861
examples 1026, 1047
finder methods 861, 985
identification variables 1047,

1462 INDEX
1057–1058
input parameters 1063
multiple declarations 1058
navigation 1049, 1059, 1062
navigation operator 1049,

1061
null values 1067, 1069
operators 1064
parameters 1048
path expressions 1046, 1060
range variables 1059
relationship direction 864
scope 1045
select methods 972
string functions 1068
syntax diagram 1053
types 1061, 1070–1071

ejbActivate method 874, 876
EJBContext 1082, 1089, 1101
ejbCreate method

bean-managed persistence 933
compared to create method

905
container-managed persis-

tence 973
examples 902, 933, 953, 973,

977
JMS administered object look-

ups 1249
life cycles 873, 875, 877
message-driven beans 1037,

1251
primary keys 876, 964, 1012
requirements 903
session beans using JMS 1260

ejbFindByPrimaryKey method 937,
964
EJBHome interface 904

ejbLoad 1083
ejbLoad method 936, 957, 960,
974
EJBObject interface 906
ejbPassivate method 874, 876–
877
ejbPostCreate method 875, 934,
973
ejbRemove method

bean-managed persistence
935, 961

container-managed persis-
tence 974

examples 935
life cycles 874, 876, 878
message-driven beans 1037,

1251
ejbStore method 936, 974
ejbTimeout method 919–920
element 45, 229, 239

content 228
empty 47, 159
events 130
nested 45
node 256
qualifiers 55
root 44

eliminating redundancies 79
EMPTY 57
encoding 37
endDocument method 125
endElement method 125
enterprise bean JAR files

examples 883
enterprise beans 6, 18, 882

accessing 866
business methods

See business methods 882

INDEX 1463
compiling 882
container-managed persis-

tence
See container-managed

persistence
contents 871
defined 855
deployment 872
distribution 869
Duke’s Bank 1340, 1347

protecting 1347
entity beans

See entity beans
environment entries 916
exceptions 928
home interfaces

See home interfaces
home methods 1020
implementor of business logic

6
interfaces 866, 871
life cycles 867, 873
local access 868
local home interfaces

See local home interfaces
local interfaces

See local interfaces
lookups 885
mapping references to JNDI

names 893
message-driven beans. See

message-driven beans
method permissions

Duke’s Bank 1347
See method permissions

packaging 883
performance 868–869, 871
persistence

See persistence
propagating security identity

1182
protecting 1175
references 886, 889, 892, 1028
remote access 867
remote interfaces

See remote interfaces
See also J2EE components
session beans

See session beans
state 863
transactions 1101
types 7, 857
web service endpoint interfac-

es 870
web services 857–858, 866,

870, 911
Enterprise Information Systems

See EIS tier
Enterprise JavaBeans Query Lan-
guage

See EJB QL
EnterpriseBean interface 902
entities 37, 230

defining in DTD 62
external 80
included "in line" 39
parameter 68
parsed 66, 161
predefined 51
reference 80, 185, 229
reference node 218
references 219
referencing binary 66
referencing external 64
unparsed 66, 161
useful 64

1464 INDEX
entity beans 7, 18, 859
bean-managed persistence

See bean-managed persis-
tence

collections 1059
container-managed persis-

tence
See container-managed

persistence
container-managed versus

bean-managed 969
Duke’s Bank 1344
equality 918
finder methods 868
garbage collection 877
isolation levels 1103
JMS example 1267
persistent state 864
primary keys

See primary keys
transactions 1082–1083, 1089,

1101
EntityBean interface 933
EntityContext interface 918, 934
EntityResolver 251

API 179
environment entries 916
errors

generating 294
handling 190

in the validating parser 168
handling XML Schema errors

164
nonfatal 151
validation 166, 193

event and listener model 662, 670–
671

action events

See action events
ActionEvent class 710, 713
data model events 671
Event class 670
event handlers 650, 683, 794
event listeners 648, 650, 682,

684–686, 731
handling events of custom UI

components 812
implementing event listeners

767–770
Listener class 670, 777
queueEvent method 807
value-change events

See value-change events
ValueChangeEvent class 743

events
character 131
content 129
document 129
element 130
lexical 170

examples
access methods 978, 1006
application clients 340, 887
asant 882
bean-managed persistence

931, 952, 961
business methods 939, 973
classpath 883
container-managed persis-

tence 967, 987, 1013
container-managed relation-

ships 968
create method 886, 902, 954
DII clients 336
directory structure xxxix
downloading xxxvi

INDEX 1465
Duke’s Bookstore, JavaServer
Faces technology ver-
sion 690–694

dynamic proxy clients 333
EJB QL 1026, 1047
ejbCreate method 902, 933,

953, 973, 977
ejbRemove method 935
enterprise bean JAR files 883
finder methods 937, 949, 984,

1071
guessNumber 652, 680
home interfaces 905, 943
JAXR

J2EE application 434
simple 426

JMS
asynchronous message

consumption 1219
durable subscriptions 1239
J2EE examples 1258,

1267, 1275, 1282
local transactions 1242
message acknowledgment

1231
synchronous message con-

sumption 1208
JSP pages 482, 889
JSP scripting elements 632
JSP simple tags 623–624
local interfaces 974–975, 978
location xxxvi
persistent fields 971
primary keys 963, 1011
relationship fields 971
remote interfaces 881, 906,

945
required software xxxvi

SAAJ
attachments 392
DOM 388
headers 387
request-response 380
SOAP faults 394

security
basic authentication 1161
client-certificate authenti-

cation 1167
form-based authentication

1139
mutual authentication

1167
See Coffee Break
See Duke’s Bank
See Duke’s Bookstore
session beans 882, 899, 916
setting build properties xxxviii
simple JSP pages 88
simple servlets 88
timer service 921
transactions 1083–1084, 1096
web clients 889
web services 320, 1291

exceptions
business methods 904
create method 905, 943
ejbCreate method 934
ejbCreate method 903
ejbFindByPrimaryKey method

938
ejbRemove method 935
enterprise beans 928
javax.ejb package 928
JMS 1207
mapping to error screens 102
ParserConfigurationExcep-

1466 INDEX
tion 150
rolling back transactions 928,

1082–1083, 1091,
1096

SAXException 148
SAXParseException 147
SQL 1083
transactions 1080–1081

expiration of JMS messages 1234
JMSExpiration message head-

er field 1204

F
false function 264
fillter chain

as concatenated transforma-
tions 311

filter chain 311
in XSLT, operation of 315

filter chains 464, 469
Filter interface 463
filters 463

defining 463
mapping to web components

468
mapping to web resources

468–469
overriding request methods

466
overriding response methods

466
response wrappers 465

findAncestorWithClass method
621
findByPrimaryKey method 958,
977, 980
findClassificationSchemeByName

method 422
findConcepts method 411
finder methods 1019

bean-managed persistence 937
compared to select methods

972
container-managed persis-

tence 969
deploytool 1008
EJB QL 1047
examples 937, 949, 984, 1071
home interfaces 944
local home interfaces 974
returning collections 954
transactions 1082

findOrganization method 409
floor function 264
for-each loops 309
foreign keys 1016
forward method 472
fully qualified names 355
functions

boolean 264
boolean 264
ceiling 264
concat 263
contains 263
conversion 264
count 263
false 264
floor 264
lang 264
last 263
local-name 265
name 265
namespace 265
namespace-uri 265
node-set 262

INDEX 1467
normalize-space 263
not 264
number 265
numeric 264
position 263
positional 263
round 264
starts-with 263
string 263
string 264
string-length 263
substring 263
substring-after 263
substring-before 263
sum 264
translate 264
true 264
XPath 262

G
garbage collection 877–878
GenericServlet interface 444
getAttachments method 367
getBody method 354
getCallerPrincipal method 1178
getConnection method 104, 1109
getEJBObject method 934
getEnvelope method 354
getHeader method 354
getInfo method 921
getJspBody method 616
getJspContext method 618
getNextTimeout method 921
getObject method 918
getParameter method 458
getParent method 621
getParser method 127

getPrimaryKey method 934, 965
getRegistryObject method 410
getRemoteUser method 1131
getRequestDispatcher method
470
getRollbackOnly method 1254
getServletContext method 473
getSession method 474
getSOAPBody method 354
getSOAPHeader method 354
getSOAPPart method 354
getters

See access methods
getTimeRemaining method 921
Getting 83
getUserPrincipal method 1131
getValue method 361
getVariableInfo method 619
groups 1120

H
handling events

See event and listener model
670

helper classes 872, 906, 951
Duke’s Bank 1345

hierarchy
collapsed 233

home interfaces 904, 943
defined 867
examples 881, 905, 943
home methods 941
locating 885, 890

home methods 940, 944
HTML 33
HTTP 319–320, 1167

over SSL 1135, 1167

1468 INDEX
setting proxies 406
HTTP protocol 1397
HTTP request URLs 458

query strings 459
request paths 458

HTTP requests 458, 1398
methods 1398
See also requests

HTTP responses 460, 1398
See also responses
status codes 102, 1398

mapping to error screens
102

HTTPS 1150, 1156
HttpServlet interface 444
HttpServletRequest 1131
HttpServletRequest interface 458,
1131
HttpServletResponse interface
460
HttpSession interface 474

I
ICE 1396
identification 1120
identifying the servlet for lifecycle
processing

servlet-mapping element 839
url-pattern element 839

ignored 151
implicit objects 738
include directive 517
include method 470
information model, JAXR 398–
399
init method 457
InitialContext interface 23

initializing properties with the
managed-property element

initializing Array and List

properties 823
initializing managed-bean

properties 824
initializing Map properties 821
initializing maps and lists 825
referencing an initialization

parameter 820
inline tags 304
instructions

processing 37, 48, 144
internationalization

application clients
Duke’s Bank 1365

web clients
Duke’s Bank 1365

Internationalizing 845
JavaServer Faces applications

See internationalizing Jav-
aServer Faces ap-
plications

internationalizing JavaServer Fac-
es applications

basename 725
FacesContext.getLocale

method 728
FacesMessage class 763
getMessage(FacesContext,

String, Object) meth-
od 763, 773

loadBundle tag 699, 724–725
locale attribute 695
localizing messages 762–764
message factory pattern 762
MessageFactory class 763, 773
performing localization 761–

INDEX 1469
764
queueing messages 780
using localized static data and

messages 724
using the FacesMessage class

to create a message 764
invalidate method 475
invoke method 616
isCallerInRole method 1178
isIdentical method 917
ISO 3166 country codes 409
isolation levels 1103
isThreadSafe 498
isUserInRole method 1131
IterationTag interface 638

J
J2EE 1.4 platform

APIs 18
J2EE 1.4 SDK

downloading xxxvii
J2EE applications 2

debugging 30–31
deploying 895, 909, 914, 926
iterative development 897
JAXR example 434
JMS examples 1258, 1267,

1275, 1282
running on more than one sys-

tem 1275, 1282
See also Duke’s Bank
tiers 2

J2EE clients 4
application clients 4

See also application clients
web clients 4, 83

See also web clients

web clients versus application
clients 5

J2EE components 3
connecting to databases 1110
connecting to mail sessions

1113
connecting to URLs 1116
mapping resource references

to data sources 1111
mapping resource references

to mail sessions 1115
mapping resource references

to URL connections
1117

sending email 1113
specifying resource references

1111, 1115, 1117
types 3

J2EE Connector architecture 1399
CCI 1405
connection management con-

tract 1403
life-cycle management con-

tract 1402
messaging contract 1404
resource adapters

See resource adapters
security management contract

1404
transaction management con-

tract 1403
work management contract

1402
J2EE groups 1121, 1123
J2EE modules 13–14

application client modules 14
EJB modules 14, 872
resource adapter modules 14,

1470 INDEX
1400
web modules

See web modules
J2EE platform 1–2

JMS and 1191
J2EE security model 9
J2EE servers 10
J2EE transaction model 9
J2SE SDK 331
JAAS 23
JAF 20
JAR files

j2ee.jar 883
See also

EJB JAR files
Java API for XML Processing

See JAXP
Java API for XML Registries

See JAXR
Java API for XML-based RPC

See JAX-RPC
Java Authentication and Authori-
zation Service

See JAAS
Java Message Service

See JMS
Java Message Service (JMS) API

message-driven beans. See
message-driven beans

Java Naming and Directory Inter-
face

See JNDI
Java Servlet technology 19

See also servlets
Java Transaction API

See JTA
JavaBeans Activation Framework

See JAF

JavaBeans components 5, 332,
507

creating in JSP pages 509
design conventions 507
Duke’s Bank 1357
in WAR files 88
methods 507
properties 507–508

retrieving in JSP pages 512
setting in JSP pages 510

using in JSP pages 509
JavaMail API 20
JavaMail resources

See mail sessions 1113
JavaServer Faces 25
JavaServer Faces application de-
velopment roles

application architects 651,
742, 765, 771, 794, 815

application developers 651,
665, 749, 752

component writers 651
page authors 651, 665, 689,

731–732, 744, 746,
749, 765, 770

tools vendors 651
JavaServer Faces core tag library
671, 694

action attribute 704–705
actionListener tag 697, 731–

732, 785
attribute tag 697
convertDateTime tag 697, 727
convertDateTime tag attributes

728
converter tag 697, 726–727,

745–746
converterId attribute 726–

INDEX 1471
727, 745–746
convertNumber tag 697, 727,

729
convertNumber tag attributes

730
facet 707
facet tag 697, 699, 707, 716
id attribute 747
jsf_core TLD 694, 699
loadBundle tag 697, 699, 724
maximum attribute 734
minimum attribute 734
param tag 697, 699, 713, 738
parseLocale attribute 728
selectItem tag 668, 699, 718,

720–723
selectitem tag 698, 721
selectItems tag 668, 699, 718,

720–723
selectitems tag 698, 721
subview tag 696, 698–699
type attribute 732
validateDoubleRange tag 698,

733
validateLength tag 698, 733
validateLongRange tag 698,

733–734
validator tag 672, 698, 745,

747, 770, 775
validator tags

See validator tags
valueChangeListener tag 697,

731
verbatim tag 698–699, 713
view tag 695, 698–699

JavaServer Faces expression lan-
guage 674

method-binding expressions

See method binding
method-binding ex-

pressions
value-binding expressions

See value binding
value-binding expres-

sions
JavaServer Faces standard HTML
render kit library 833
JavaServer Faces standard HTML
render kit tag library 666, 694

html_basic TLD 694
UI component tags

See UI component tags
JavaServer Faces standard HTML
RenderKit library

html_basic TLD 800
JavaServer Faces standard UI
components 783

UIColumn component 703, 706
UICommand component 704,

732
UIComponent component 767
UIData component 703–704,

706–708, 753
UIData components 752
UIForm component 703
UIGraphic component 709
UIInput component 710–711,

731, 733, 741, 744,
751, 754, 767, 772

UIMessage component 718
UIMessages component 718
UIOutput component 698, 702,

710–711
UIPanel component 714–715
UISelectBoolean component

754

1472 INDEX
UISelectItem component 755–
756

UISelectItems component
721, 755, 757

UISelectMany component 698,
720–721, 754, 756–
757

UISelectOne component 698,
720–721, 756–757

UISelectOne properties 755
UIViewRoot component 787

JavaServer Faces tag libraries 650
JavaServer Faces core tag li-

brary 697–699
See JavaServer Faces core

tag library
JavaServer Faces standard

HTML render kit tag
library

See JavaServer Faces stan-
dard HTML render
kit tag library

taglib directives 695, 745
JavaServer Faces technology 647

advantages of 649
backing beans

See backing beans
component rendering model

See component rendering
model

configuring applications
See configuring JavaServ-

er Faces applica-
tions

conversion model
See conversion model

event and listener model
See event and listener

model
FacesContext class 681, 683–

686, 748, 763, 766–
767, 772–773, 779,
787, 789, 805

FacesServlet class 654, 682,
838–840

jsf-api.jar file 843
jsf-impl.jar file 843
lifecycle

See lifecycle of a JavaSer-
ver Faces page

navigation model
See navigation model

roles
See JavaServer Faces ap-

plication develop-
ment roles

tag libraries
See JavaServer Faces tag

libraries
UI component behavioral in-

terfaces
UI component behavioral

interfaces
UI component classes

See UI component classes
UI component tags

See UI component tags
UI components

See JavaServer Faces stan-
dard UI compo-
nents

validation model
See validation model

JavaServer Pages (JSP) technolo-
gy 19

See also JSP pages

INDEX 1473
JavaServer Pages Standard Tag
Library

See JSTL
JavaServer Pages technology 481

See also JSP pages
javax.activation.DataHandler

class 366
javax.servlet package 443
javax.servlet.http package 443
javax.servlet.jsp.tagext 612
javax.servlet.jsp.tagext pack-
age 638
javax.xml.registry package 399
javax.xml.registry.infomodel

package 399
javax.xml.registry.lifeCycleM-

anagerURL connection property
405
javax.xml.registry.postalAd-

dressScheme connection property
406, 424
javax.xml.registry.queryMan-

agerURL connection property 405
javax.xml.registry.securi-

ty.authenticationMethod connec-
tion property 406
javax.xml.registry.seman-

ticEquivalences connection prop-
erty 406, 424
javax.xml.registry.ud-

di.maxRows connection property
406
javax.xml.soap package 345
javax.xml.transform.Source in-
terface 363
JAXM specification 346
JAXP 20
JAXP 1.2 182

JAXR 21, 397
adding

classifications 415
service bindings 416
services 416

architecture 399
capability levels 398
clients 399–400
creating connections 404
defining taxonomies 421
definition 398
establishing security creden-

tials 413
finding classification schemes

415
information model 398
J2EE application example 434
organizations

creating 414
publishing 417
removing 420

overview 397
provider 399
publishing

specification concepts 417
WSDL documents 417

querying a registry 408
specification 398
specifying postal addresses

424
submitting data to a registry

413
JAX-RPC 20

clients 333
generating stubs 329
WSDL configuration files

330
defined 319

1474 INDEX
JavaBeans components 332
mapping files 323
service endpoint interface

interface configuration
files 324

service endpoint interfaces
321

conformance rules 322
specification 344
supported types 330
WSDL files 323, 329–330

JAXRPC
clients

invoking stubs 328
JDBC API 22, 104, 1109

transactions
See transactions, JDBC

JDBC resources
See data sources

JDOM 123, 184, 1387
JEditorPane class 196
JEditPane class 199
JMS

achieving reliability and per-
formance 1228

architecture 1192
basic concepts 1192
client applications 1208
definition 1188
introduction 1188
J2EE examples 1033, 1257–

1258, 1267, 1275,
1282

J2EE platform 1191, 1248
messaging domains 1193
programming model 1196

JMS API 19
JMSCorrelationID message header

field 1205
JMSDeliveryMode message header
field 1204
JMSDestination message header
field 1204
JMSException class 1207
JMSExpiration message header
field 1204
JMSMessageID message header
field 1205
JMSPriority message header field
1205
JMSRedelivered message header
field 1205
JMSReplyTo message header field
1205, 1287
JMSTimestamp message header
field 1205
JMSType message header field
1205
JNDI 22, 885, 1107–1108

data source naming subcon-
texts 23

deploytool 893, 1002
enterprise bean naming sub-

contexts 23
environment naming contexts

23
looking up JMS administered

objects 1197
lookup method 886
names

Duke’s Bank 1379–1380
naming and directory services

23
naming context 885
naming contexts 23
naming environments 23

INDEX 1475
naming subcontexts 23, 1198,
1249

JPanel class 196
JScrollPane class 198
JSP declarations 635
JSP documents 525

alternative syntax for EL oper-
ators 539

creating dynamic content 539
creating static content 537

preserving whitespace 538
declaring namespaces 534
declaring tag libraries 534, 536
generating a DTD 544, 546
generating tags 540
generating XML declarations

543–544
identifying to the web contain-

er 546
including directives 536
including JSP pages in stan-

dard syntax 537
scoping namespaces 535
scripting elements 540
validating 542

JSP expression lanauage
type conversion during expres-

sion evaluation 501
JSP expression language 499

deactivating expression evalu-
ation 500

expression examples 505
expression syntax 499
functions 506

defining 506–507
using 506

implicit objects 502–503
literals 503

operators 504
reserved words 504

JSP expressions 636
JSP fragments 582
JSP pages 481

compilation errors 494
compilation into servlets 493
compiling 891
controlling translation and ex-

ecution 493
converting to JSP documents

532, 534
creating and using objects 498
creating dynamic content 497
creating static content 496
deactivating EL expression

522
declarations

See JSP declarations
default mode for EL expres-

sion evaluation 522
defining preludes and codas

523
disabling scripting 634
Duke’s Bank 1355
error pages

forwarding to 495
precedence over web ap-

plication error page
496

specifying 495
examples 88, 484, 486, 547–

548, 576, 889
execution 494
expressions

See JSP expressions
finalizing 635
forwarding to other web com-

1476 INDEX
ponents 518
implicit objects 498
importing classes and packag-

es 633
importing tag libraries 513
including applets or JavaBeans

components 519
including JSP documents 537
initial response encoding 852
initializing 635
JavaBeans components

creating 509
retrieving properties 512
setting properties 510

from constants 510
from request parame-

ters 510
from runtime expres-

sions 511
using 509

life cycle 493
page directives 494, 496
page encoding 851
preludes and codas 517
reusing other web resources

517
scripting elements

See JSP scripting elements
scriptlets

See JSP scriptlets
setting buffer size 495
setting page encoding 497
setting page encoding for

group of 523
setting properties for groups of

521
setting response encoding 497
setting the request encoding

851
shared objects 498
specifying scripting language

633
standard syntax 482
transitioning to JSP documents

525
translation 493

enforcing constraints for
custom tag at-
tributes 614

translation errors 494
translation of page compo-

nents 493
URLs for running 896
using custom tags 513
XML syntax 482

JSP property groups 521
JSP scripting elements 631

creating and using objects in
631

example 632
JSP scriptlets 636
jsp:attribute element 583–584
jsp:body element 585
jsp:declaration element 540
jsp:directive.include element
537
jsp:directive.page element 536
jsp:doBody element 597
jsp:element element 540
jsp:expression element 541
jsp:fallback element 519
jsp:forward element 518
jsp:getProperty element 512
jsp:include element 517
jsp:invoke element 597
jsp:output element 542

INDEX 1477
jsp:param element 518–519
jsp:plugin element 519
jsp:root element 541
jsp:scriptlet element 541
jsp:setProperty element 510
jsp:text element 537, 539
JspContext interface 612, 639
jspDestroy method 635
jspInit method 635
JSplitPane class 196, 199
JSTL 25, 547

core tags 554
catch tag 559
choose tag 556
conditional 556
flow control 555
forEach tag 557
if tag 556
import tag 558
otherwise tag 556
out tag 559
param tag 559
redirect tag 559
remove tag 555
set tag 554
url tag 559
variable support 554
when tag 556

functions 572
length function 572

internationalization tags 564
bundle tag 566
formatDate tag 567
formatNumber tag 566
localization context 565
message tag 566
outputing localized strings

566

param tag 566
parseDate tag 567
parseNumber tag 567
parsing and formatting 566
requestEncoding tag 565
setBundle tag 566
setLocale tag 565

SQL tags 567
query tag 568
setDataSource tag 567
update tag 568

XML tags 560
core 562
flow control 563
forEach tag 563
out tag 562
param tag 564
parse tag 562
set tag 562
transform tag 564
transformation 564

JTA 19
See also

transactions, JTA
JTree

displaying content 231
JTree class 195
JTree classJEditorPane class 231
JTreeModel class 195
JTS API 1095

K
keystores 1150
keytool 1150
keytool 1150
knowledge standards

RDF 1393

1478 INDEX
RDF schema 1394
XTM 1394

L
lang function 264
last function 263
LDAP 23
lexical

controls 219
events 170

LexicalHandler interface 171
life cycle of a JavaServer Faces
page 680–687

apply request values phase
670–685, 766, 790,
806

Faces request 681
Faces response 681
invoke application phase 670,

686, 790
non-Faces request 681
non-Faces response 681
process validations phase 670,

685
render response phase 684–

687, 767, 773, 795,
804, 809, 812

renderResponse method 681,
684–686

responseComplete method
681, 684–686

restore view phase 683–684,
809, 811

standard request processing
lifecycle 682

update model values phase
676–686

updateModels method 686
views 680, 683–684

linking
XML 1392

listener classes 450
defining 450
examples 451

listener interfaces 450
local home interfaces 974

defined 868
local interfaces 975

defined 868
examples 974–975, 978
requirements 945

local names 358
local transactions, JMS 1240
local-name function 265
locator 142
Locator object 148
lookup method 1107, 1113

See JNDI, lookup method

M
mail sessions 1113

connecting to from J2EE com-
ponents 1113

creating 1114
managed bean creation facility
676, 791, 817

initializing properties with
managed-property ele-
ments 819–826

managed bean declarations
See managed bean declara-

tions
managed bean declarations 661,
791

INDEX 1479
key-class element 822
list-entries element 820
managed-bean element 818,

825
managed-bean-name element

661, 818
managed-bean-scope element

818
managed-property element

662, 819–826
map-entries element 820–821
map-entry element 822
message-bean-name element

736
null-value elements 820
property-name element 661,

736
value element 820
values element 823

MapMessage interface 1206
MathML 1395
message acknowledgment, JMS

bean-managed transactions
1255

introduction 1229
message-driven beans 1250

message bodies, JMS 1205
message consumers, JMS 1201
message consumption, JMS

asynchronous 1196, 1219
introduction 1195
synchronous 1195, 1208

message headers, JMS 1204
message IDs

JMSMessageID message header
field 1205

Message interface 1206
message listeners

JMS 864
message listeners, JMS

examples 1220, 1269, 1284
introduction 1202

message producers, JMS 1200
message properties, JMS 1205
message selectors, JMS

introduction 1203
specifying for message-driven

beans 1264
MessageConsumer interface 1201
message-driven beans 7, 18, 864

accessing 865
coding 1035, 1260, 1270, 1285
defined 864
deployment descriptor ele-

ments 1255
examples 1033, 1258, 1267,

1275, 1282
garbage collection 878
introduction 1250
onMessage method 865, 1035
requirements 1035
transactions 1078, 1082,

1089–1090, 1102
MessageDrivenContext interface
1251
MessageFactory class 353
MessageListener interface 1202
MessageProducer interface 1200
messages

creating messages with the
MessageFactory class
763

FacesMessage class 763
getMessage(FacesContext,

String, Object) 773
getMessage(FacesContext,

1480 INDEX
String, Object) meth-
od 763

integrity 1135, 1167
localizing messages 762–764
message factory pattern 762
MessageFactory class 763, 773
MessageFormat pattern 697,

713
outputFormat tag 713
param tag 713
parameter substitution tags

See JavaServer Faces core
tag library

param tag
queueing messages 780, 827
using the FacesMessage class

to create a message 764
messages, JMS

body formats 1205
definition 1192
delivery modes 1233
expiration 1234
headers 1204
introduction 1204
persistence 1233
priority levels 1234
properties 1205

messages, SAAJ
accessing elements 354
adding body content 355
attachments 348
creating 353
getting the content 360
overview 346

messaging domains, JMS 1193
common interfaces 1195
point-to-point 1193
publish/subscribe 1194

messaging, definition 1188
method binding 711

MethodBinding class 798, 808
method-binding expressions

659, 671, 674, 711,
741–742, 769, 832

method permissions
specifying 1176

method-binding expressions 798
MethodBinding class 798

MIME
data 66
headers 350

mixed-content model 56, 183
mode-based templates 310
modes

content 183
Text 213

mutual authentication 1157
example 1167

MVC architecture 487

N
NAICS 409

using to find organizations
410, 430

name function 265
Name interface 355
names

fully qualified 355, 358
local 358

namespaces 355, 1389
defining a prefix 75
defining in DTD 74
functions 265
node 256
prefix 357

INDEX 1481
referencing 75
target 251
using 73
validating with multiple 249

namespace-uri function 265
navigation model 658, 672–674

action attribute 657, 675, 686,
704–705, 741, 790,
798

action method 830
action methods 673, 777, 829,

832
ActionEvent class 742
configuring navigation rules
example navigation rules 831
logical outcome 705, 741–742,

777–778, 829, 832
navigation case 673
navigation rules 658, 673, 705,

742, 829–831
NavigationHandler class 673,

686, 705, 778
referencing methods that per-

form navigation 741,
777

writing a backing bean method
to perform navigation
processing 777

NDS 23
nested elements 56
NIS 23
node() 260
nodes 183

Attribute 213
attribute 230, 256
CDATA 219
changing 246
Comment 213

comment 230, 256
constants 227
content 244
controlling visibility 224
DocType 215, 230
document 230
document fragment 230
element 239, 256
entity 230
entity reference 218
inserting 246
namespace 256
navigating to 186
notation 230
processing instruction 216,

230, 256
removing 246
root 239, 256
SAAJ and 347
searching 243
text 239, 242, 256
traversing 243
types 202, 256
value 183

node-set functions 262
NON_PERSISTENT delivery mode
1233
nonvalidating parser 145
non-XSL tags 292
normalize-space function 263
normalizing

data 79
DTDs 81

not clause 308
not function 264
notation nodes 230
notationDecl method 178
number function 265

1482 INDEX
numbers
formatting 309
generating 309

numeric functions 264

O
OASIS 77
ObjectMessage interface 1206
objects

Locator 148
Parser 127

objects, administered (JMS) 1197
onMessage method

introduction 1202
message-driven beans 865,

1035, 1250
operators

XPath 261
Organization interface 414
organizations

creating with JAXR 414
finding

by classification 410, 430
by name 409, 429
using WSDL documents

433
keys 414, 420
primary contacts 414
publishing with JAXR 417,

429–430, 432
removing with JAXR 420, 430

P
package-appclient 27
page directive 633
page navigation

see navigation model
PageContext interface 639
parameter entity 68
parse method 279
parsed

character data 56
entity 66, 161

parser
implementation 161
modifying to generate SAX

events 277
nonvalidating 145
using as a SAXSource 284
validating 162

error handling 168
Parser object 127
ParserConfigurationException

150
parsing parameterized DTDs 168
passwords 1162
pattern 255
PCDATA 56

versus CDATA 56
persistence

bean-managed
See bean-managed persis-

tence
container-managed

See container-managed
persistence

entity beans 859
JMS messages 1233
session beans 857
types 860

PERSISTENT delivery mode 1233
persistent fields 862

deploytool 1007
EJB QL 1046, 1060

INDEX 1483
examples 971
physical schemas 861
point-to-point connection, SAAJ
359
point-to-point messaging domain
1193
position function 263
positional functions 263
postal addresses

retrieving with JAXR 425, 430
specifying with JAXR 424,

430
prerequisites xxxiii
primary keys 1016

automatically generating
1012, 1016

bean-managed persistence 962
composite 962, 1010
compound 1018
container-managed persis-

tence 1010
defined 860
examples 963, 1011
methods for setting 877
primitive types 1017
returned by create method

933
See also ejbFindByPrimaryKey

method
unknown 1012, 1016

printing the tutorial xl
PrintWriter class 460
priority levels, for messages 1234

JMSPriority message header
field 1205

processing
command line argument 125
data 41

instruction nodes 216, 230,
256

instructions 37, 48, 144, 185
processingInstruction 145
programming model, JMS 1196
providers

JAXR 399
JMS 1192

proxies 319, 327
HTTP, setting 406

public key certificates 1135, 1167
publish/subscribe messaging do-
main

durable subscriptions 1236
introduction 1194

Q
QName object 334
Queue interface 1198
queues

creating 1198, 1212
introduction 1198
looking up 1034, 1199
temporary 1235, 1269

R
RAR files 1400
RDF 1393

schema 1394
realms 1120

certificate 1121
recover method 1230
redelivery of messages 1229–1230

JMSRedelivered message
header field 1205

referencing backing bean methods

1484 INDEX
741–744
for handling action events 742,

779, 785, 798
for handling value-change

events 675, 743
for performing navigation 741,

777, 798
for performing validation 743,

779
registering custom converters 828

converter element 828
converter-class element 829
converter-id element 829

registering custom renderers 794,
810, 833

renderer element 834
renderer-class element 834
render-kit element 833–834
render-kit-id element 834

registering custom UI components
794, 835

component element 835
component-class element 836
component-extension element

836
component-type element 836
property element 836

registering custom validators 828
validator element 828
validator-class element 828
validator-id element 828

registering messages 827
default-locale element 827
locale-config element 827
message-bundle element 827
supported-locale element

827
registries

definition 397
ebXML 398
getting access to public UDDI

registries 401
publishing to public UDDI

registries 427
querying with JAXR 408
submitting data with JAXR

413
UDDI 398

registry objects 399
retrieving with JAXR 433

RegistryObject interface 399
RegistryService interface 399,
408
relationship fields

defined 863
deploytool 1005
direction 863
EJB QL 1046, 1060
examples 971
modifying by local clients 982

relationships
bean-managed persistence 861
container-managed

See container-managed re-
lationships

multiplicities 863
RELAX NG

 1391
release method 642
reliability, JMS

advanced mechanisms 1236
basic mechanisms 1229
durable subscriptions 1236
local transactions 1240
message acknowledgment

1229

INDEX 1485
message expiration 1234
message persistence 1233
message priority levels 1234
temporary destinations 1235

remote interfaces
defined 867
examples 881, 906, 945
requirements 906

Remote Method Invocation
(RMI), and messaging 1188
remote procedure calls 319
remove

transactions 1082
remove method

bean-managed persistence 935
life cycles 874, 876

request/reply mechanism
JMSCorrelationID message

header field 1205
JMSReplyTo message header

field 1205
temporary destinations and

1235
RequestDispatcher interface 470
request-response messaging 350
requests 458

appending parameters 518
customizing 465
getting information from 458
retrieving a locale 847
See also HTTP requests

Required transaction attribute
1254
requiring a value

See UI component tag at-
tributes

required attribute 734
resource adapter, JAXR 401

creating resources 436
resource adapters 22, 1399

application contracts 1401
archive files

See RAR files
CCI 1405
connection management con-

tract 1403
importing transactions 1404
JAXR 436
life-cycle management con-

tract 1402
messaging contract 1404
security 1181
security management contract

1404
system contracts 1401
transaction management con-

tract 1403
work management contract

1402
resource bundles 846

backing options 846
constructing 846

resource references
specifying in J2EE compo-

nents 1111, 1115, 1117
specifying in web applications

106
resources 1107

JAXR 437
JMS 1249
See also data sources
See also mail sessions
See also URL connections

responses 460
buffering output 460
customizing 465

1486 INDEX
See also HTTP responses
setting headers 457

Result interface 569
roles 1120

development
See development roles

security
See security roles

rollback 1078, 1089–1090, 1096,
1101–1102
rollback method (JMS) 1240
rollbacks

See transactions, rollbacks
root

element 44
node 239, 256

round function 264
RPC 319

S
SAAJ 21, 345

examples 378
messages 346
overview 346
specification 345
tutorial 352

saveConcepts method 417
saveOrganizations method 417
SAX 121, 1386

events 277
versus DOM 121

SAX parser
XML Schema properties 164

SAXException 148, 150
SAXParseException 147, 149

generating 148
SAXParser class 127

schema
associating a document with

165, 248
declaring

in the application 251
in XML data set 250

default 251
definitions 251

specifying 248
RELAX NG 1391
Schematron 1392
SOX 1391
standards 1390
XML Schema 1391

Schematron 1392
secure connections 1148
security

application client tier 1178
callback handlers 1179
login modules 1179

constraints 1127
credentials for XML registries

413
declarative 1119
EIS tier 1179

component-managed sign-
on 1180

container-managed sign-
on 1180

sign-on 1179
EJB tier

method permissions
See method permis-

sions
programmatic 1178

groups 1120
programmatic 1120, 1131
realms 1120

INDEX 1487
resource adapters 1181
roles 1120
users 1120
web tier

programmatic 1131
security constraints 1127
security identity 1182

caller identity 1183
propagating to enterprise

beans 1182
specific identity 1183

security role references 1131
mapping to security roles 1132

security roles 1122
creating 1123
Duke’s Bank 1347
mapping to users and groups

1124
select methods 972, 986, 1008,
1019

EJB QL 1052, 1072
selection criteria 258
selector methods

See select methods
send method 1200
server

authentication 1135
servers

authenticating 1167
certificates 1149

servers, J2EE
deploying on more than one

1275, 1282
running JMS clients on more

than one 1223
service bindings

adding to an organization with
JAXR 416

finding with JAXR 412
services

adding to an organization with
JAXR 416

finding with JAXR 412
Servlet interface 443
ServletContext interface 473
ServletInputStream class 458
ServletOutputStream class 460
ServletRequest interface 458
ServletResponse interface 460
servlets 443

binary data
reading 458
writing 460

character data
reading 458
writing 460

Duke’s Bank 1361
examples 88
finalization 477
initialization 456

failure 457
life cycle 449
life-cycle events

handling 450
service methods 457

notifying 478
programming long running

479
tracking service requests 478

session beans 7, 18, 857
activation 874
clients 857
compared to entity beans 859
databases 1084
Duke’s Bank 1341, 1344
equality 917

1488 INDEX
examples 882, 899, 916, 1258
isolation levels 1103
passivation 874
requirements 900
stateful 858–859
stateless 858–859
transactions 1082–1084, 1090,

1100, 1102, 1105
web services 870, 911

Session interface 1199
SessionBean interface 902
SessionContext interface 918
sessions 474

associating attributes 474
associating with user 476
invalidating 475
notifying objects associated

with 475
sessions, JMS

introduction 1199
managing in J2EE applications

1249
setAttribute method 618
setCoalescing method 220
setContent method 363, 365
setDynamicAttribute method 615
setEntityContext method 875,
954, 956
setExpandEntityReferences

method 220
setIgnoringComments method 220
setIgoringElementContent-

Whitespace method 220
setMessageDrivenContext meth-
od 877, 1251
setPostalAddresses method 425
setRollbackOnly method 1254
setSessionContext method 873,

918
setters

See access methods
simple parser

creating 275
simple tags

attributes
dynamic 583
fragment 582
simple 581

examples 623–624
expression language variables

defining 585
See also tag files 575
shared objects 620

example 621–622
named 620
private 620

specifying body of 585
tag handlers 612

defining scripting vari-
ables 618

how invoked 613
supporting dynamic at-

tributes 615
with attributes 614
with bodies 616

variables
providing information

about 610, 620
with bodies 584

SimpleTag interface 612
SimpleTagSupport class 612
SingleThreadModel interface 454
SMIL 1395
SOAP 319–320, 344–345

body 357
adding content 355

INDEX 1489
Content-Type header 365
envelope 357
headers

adding content 362
Content-Id 365
Content-Location 365
Content-Type 365
example 387

SOAP faults 373
detail 375
fault actor 374
fault code 374
fault string 374
retrieving information 376
SAAJ example 394

SOAP messages 12
SOAP with Attachments API for
Java

See SAAJ
SOAPBody interface 348, 357
SOAPBodyElement interface 355,
358, 384
SOAPConnection class 350–351

getting objects 359
SOAPElement interface 356, 385
SOAPEnvelope interface 347, 355,
357
SOAPFactory class 355
SOAPFault interface 373

creating and populating ob-
jects 375

detail element 375
fault actor element 374
fault code element 374
fault string element 374

SOAPHeader interface 347, 362
SOAPHeaderElement interface 355,
362

SOAPMessage class 347, 353–354
SOAPPart class 347, 350, 356

adding content 363
sorting output 309
SOX 1391
specification concepts

publishing with JAXR 417,
432

removing with JAXR 433
specifications 37
SQL 18, 22, 861, 932–936, 942,
1009, 1049, 1057, 1083, 1090
SQL92 1045, 1069
SSL 1134–1135, 1148, 1167

verifying support 1156
standalone 37
standard converters 669

Converter implementation
classes 726

converter tags 697, 699, 727
NumberConverter class 726
three ways to register on a UI

component 726
using 726–731

standard validators 671
using 732–734
validator implementation

classes
See validator implementa-

tion classes
validator tags 733

See validator tags
startCDATA method 175
startDocument method 125, 129
startDTD method 176
startElement method 125, 130,
133
startEntity method 175

1490 INDEX
starts-with function 263
static stubs 327
StAX 1387
StreamMessage interface 1206
string function 264
string functions 263
string-length function 263
string-value 258, 261
stubs 327
stylesheet 39
subscription names, for durable
subscribers 1237
substitution parameters, defining

See messages
param tag 713

substring function 263
substring-after function 263
substring-before function 263
subtree

concatenation 227
writing 271

sum function 264
Sun Java System Application
Server Platform Edition 8 24

See also Application Server
SVG 1395
synchronous message consump-
tion 1195

JMS client example 1208

T
tag files 575, 586

attribute directive 591
bodies

evaluating 597
body-content attribute 591
customizing behavior 592

declaring expression language
variable 593

declaring tag attributes 591
directives 589
dynamic attributes

example 601
fragment attributes

evaluating 597
example 599
storing evaluation result

597
location 588
packaged 607
simple attributes 598

example 598
specifying body content type

591
tag directive 589, 591
unpackaged 605

implicit TLD 606
variable directive 593
variable synchronization with

calling page 594, 597
variables

example 599
tag handlers 575

classic 575
See also classic tags, tag

handlers
making available to web appli-

cations 613
simple

See also simple tags, tag
handlers

simple tags 575
Tag interface 638
tag libraries

accessing implementation

INDEX 1491
from web applications
516

referencing TLD directly 514
referencing TLD indirectly

514
referencing via absolute URI

515
tag library descriptors 588, 602

attribute element 609
body-content 591
body-content element 608,

638
filenames 514
listener element 604
mapping name to location 515
tag element 607

subelements 607–608
tag-file element 605
taglib

subelements 603
taglib element 602
validator element 604
variable 611

TagData class 619
TagExtraInfo 614
TagExtraInfo class 619
taglib directive 513
tags 33, 35

closing 35
content 304
empty 35
nesting 35
structure 304

TagSupport class 638
target namespace 251
taxonomies

finding with JAXR 415
ISO 3166 409

NAICS 409, 430
UNSPSC 409
user-defined 421
using to find organizations 410

tei-class element 620
templates 257, 292

mode-based 310
named 306
ordering in a stylesheet 302

temporary JMS destinations 1235
examples 1269, 1284

terminate clause 295
test document

creating 289
text 229, 239, 242

node 256
text method 184
Text nodes 213
TextMessage interface 1206
TimedObject interface 919
timeouts 1102
Timer interface 919
timer service 919

cancelling timers 920
creating timers 919
examples 921
exceptions 920
getting information 921
saving timers 920
transactions 921

TimerHandle interface 919
TimerService interface 919
timestamps, for messages

JMSTimestamp message header
field 1205

Topic interface 1198
topics

creating 1198, 1212

1492 INDEX
durable subscriptions 1236
introduction 1198
looking up 1198
temporary 1235, 1284

transactions 1077, 1090
attributes 1027, 1078
bean-managed 1078, 1089,

1102–1103, 1105,
1253

boundaries 860, 1078, 1089
business methods

See business methods,
transactions

commits 1078, 1084, 1090,
1096, 1100, 1102–
1104

container-managed 1078,
1089, 1101–1102,
1253

defined 1077
distributed, JMS 1252
entity beans

See entity beans, transac-
tions

examples 1083–1085, 1091,
1096, 1103, 1242

exceptions
See exceptions

transactions
invoking in web components

456
JDBC 1090, 1102, 1104
JMS and J2EE applications

1249
JTA 1090, 1095, 1102–1103
local, JMS 1240
managers 1081, 1090, 1095,

1104

message-driven beans 866
See message-driven beans,

transactions
nested 1078, 1096
Required attribute 1254
rollbacks 1078, 1082, 1084,

1090, 1096, 1101,
1103

scope 1078
session beans

See session beans, transac-
tions

shared data 860
timer service 921
tips 1101
web components 1105
XA 1403

transformations
concatenating 311
from the command line 311

transformer
creating 267

translate function 264
tree

displaying 211
TreeModelSupport class 211
true function 264
typographical conventions xli

U
UBL 1396
UDDI 12

accessing registries with SAAJ
380

getting access to public regis-
tries 401

registries 398

INDEX 1493
UI component behavioral interfac-
es 664

ActionSource interface 664,
670, 675, 741, 743,
767, 802, 813

ConvertibleValueHolder in-
terface 664, 802

EditableValueHolder inter-
face 664, 802

NamingContainer interface
664, 802

StateHolder interface 664,
802, 808

ValueHolder interface 664,
802

UI component classes 663–664,
784

javax.faces.component pack-
age 801

SelectItem class 720, 723,
756–757

SelectItemGroup class 757
UIColumn class 663
UICommand class 663, 665
UIComponent class 662, 665
UIComponentBase class 663,

801, 804
UIData class 663
UIForm class 663
UIGraphic class 663
UIInput class 663, 670, 675
UIMessage class 663
UIMessages class 663
UIOutput class 663, 669
UIPanel class 663
UIParameter class 663
UISelectBoolean class 663,

717

UISelectItem class 663, 720
UISelectItems class 663, 720
UISelectMany class 663, 717
UISelectOne class 663, 665,

719
UIViewRoot class 663, 695

UI component properties
See backing bean properties

UI component renderers
Grid renderer 715
Group renderer 715
Hidden renderer 710
Label renderer 710
Link renderer 710
Message renderer 710
Secret renderer 710
Table renderer 706
Text renderer 710–711
TextArea renderer 710

UI component tag attributes 700–
702

action attribute 675, 777, 790,
798

actionListener attribute 675,
704, 731, 741–743,
769, 779, 785, 790,
798, 812

alt attribute 709, 790
attributes referencing backing

bean methods
See attributes referencing

backing bean
methods

basename attribute 725
binding attribute 660, 675,

700, 702, 735, 739
columns attribute 715–716
converter attribute 711, 726–

1494 INDEX
727, 745–746
first attribute 708
for attribute 712, 719
headerClass attribute 715
id attribute 700
immediate attribute 700–701,

790
itemLabel attribute 723
itemValue attribute 723
locale attribute 695
redisplay attribute 714
rendered attribute 700–701,

740
required attribute 734
rows attribute 708
size attribute 717, 719
style attribute 700, 702, 709,

719
styleClass attribute 700, 702
url attribute 709
usemap attribute 710, 748
validator attribute 675, 711,

779
value attribute 657, 660, 700,

702, 705, 708, 712–
713, 718, 722, 735–
737, 750, 791–792

valueChangeListener at-
tribute 675, 711, 731,
743–744, 780

var attribute 708, 725
UI component tags 666–668, 671,
700, 750

attributes
See UI component tag at-

tributes
column tag 666, 703
commandButton tag 657, 666,

704–705
commandLink tag 666, 705, 732
dataTable tag 666, 706–709,

753
form tag 666, 703
graphicImage tag 666, 790
inputHidden 710
inputHidden tag 666
inputSecret tag 667, 710, 714
inputText tag 657, 667, 710–

711
inputTextarea 710
inputTextarea tag 667
message tag 667, 718
messages tag 657, 667, 718
outputFormat tag 705, 713
outputLabel tag 667, 710, 712
outputLink tag 667, 710, 713
outputMessage tag 710
outputText tag 667, 710–712,

753
panelGrid tag 667, 715–717
panelGroup tag 667, 707, 715–

716
selectBooleanCheckbox tag

668, 717, 754
selectItems tag 757
selectManyCheckbox tag 668,

717–718, 755
selectManyListbox tag 668,

717
selectManyMenu tag 668
selectOneListbox tag 668,

719
selectOneMenu tag 668, 719–

720, 755–756
selectOneRadio tag 668, 719

UI components

INDEX 1495
buttons 666
checkboxes 668
combo boxes 668
custom UI components

See custom UI compo-
nents

data grids 666
hidden fields 666
hyperlinks 666
labels 667
listboxes 668
password fields 667
radio buttons 668
table columns 666
tables 667
text areas 667
text fields 667

UnavailableException class 457
Universal Standard Products and
Services Classification (UNSPSC)
409
unparsed entity 66, 161
unparsedEntityDecl method 178
unsetEntityContext method 876
UNSPSC 409
URL connections 1116
URLs

connecting to from J2EE com-
ponents 1116

username 1162
users 1120
UserTransaction 1089, 1096,
1101–1103, 1105
UserTransaction interface

message-driven beans 1253
utility classes 872, 932

V
validate method 614
validating

with XML Schema 246
validating input

See validation model
validation errors 166
validation model 662, 671–672

id attribute 747
referencing a method that per-

forms validation 743
requiring a value

See UI component tag at-
tributes

required attribute 734
validator attribute 675, 711,

741, 743, 779
Validator class 776–777
Validator implementation

671, 747
Validator implementation

classes
Validator interface 672, 733,

771, 775, 779
validator tag 745, 747
validators

See validators
writing a backing bean method

to perform validation
779

Validator implementation classes
671, 733

DoubleRangeValidator class
698, 733

LengthValidator class 698,
733

LongRangeValidation imple-
mentation 657

1496 INDEX
LongRangeValidator class 698,
733–734

validator tags 671, 698–699
maximum attribute 734
minimum 734
validateDoubleRange tag 733
validateLength 733
validateLongRange tag 733–

734
validator tag 672, 775

validators 648, 650, 662, 682–683
custom validators 672, 698,

746
standard validators

See standard validators
value binding 735, 750–759

a component instance to a bean
property

See component binding
a component value to a back-

ing-bean property 736
a component value to an im-

plicit object 738
acceptable types of component

values 751
advantages of 676
component values and instanc-

es to external data
sources 735

value attribute 657, 660, 705,
708, 712–713, 718,
722, 735–737, 750,
791–792

ValueBinding class 676, 798–
799, 807

value-binding enabling com-
ponent attributes 799

value-binding expressions

674, 736, 739, 753, 798
value types 332
value-change events 670–671,
731, 767

processValueChange(Val-

ueChangeEvent) meth-
od 768–769, 781

processValueChan-

geEvent(ValueChan-

geEvent) method 781
referencing methods that han-

dle value-change
events 675, 743

type attribute 732
ValueChangeEvent class 675,

732, 767–769
valueChangeListener at-

tribute 675, 711, 731,
741, 743, 780

valuechangeListener at-
tribute 785

ValueChangeListener class
731, 767, 781

ValueChangeListener imple-
mentation 768

valueChangeListener tag 697,
731, 785

writing a backing bean method
to handle value-change
events 780

variables 310
scope 310
value 310

verifier 27
version 37

INDEX 1497
W
W3C 320, 344, 1391
WAR file 837
WAR files

adding web component files
891

JavaBeans components in 88
warnings 152

in DTD 170
web applications 88

accessing data sources 104
accessing databases from 104
accessing tag library imple-

mentations 516
configuring 85, 99
establishing the locale 847
internationalizing 845

J2EE Blueprints 853
maintaining state across re-

quests 474
making tag handlers available

to 613
mapping resource references

to data sources 107
parsing and formatting local-

ized dates and numbers
849

presentation-oriented 83
providing localized messages

846
retrieving localized messages

848
running 94
service oriented 83
setting the resource bundle 847
specifying initialization pa-

rameters 102
specifying resource references

106
specifying welcome files 101

web clients 4, 83
Duke’s Bank 1355, 1366

custom tags 1358
JavaBeans components

1357
JSP template

Duke’s Bank
JSP template 1358

request processing 1361
running 1381

examples 889
Web components

JMS and 1255
web components 6

accessing databases from 455
applets bundled with 6
concurrent access to shared re-

sources 454
declaring environment entries

103
declaring resource references

103
encoding of requests delivered

to 851
enterprise bean references 892
forwarding to other web com-

ponents 472
including other web resources

470
invoking other web resources

469
mapping exceptions to error

screens 102
mapping filters to 468
packaging 891
response encoding 852

1498 INDEX
scope objects 453
See also J2EE components
setting the request encoding

851
setting the response encoding

852
sharing information 452
specifying aliases 99
specifying initialization pa-

rameters 102
transactions 456, 1105
types 6
utility classes bundled with 6
web context 473

web containers 10
loading and initializing serv-

lets 449
mapping URLs to web compo-

nents 99
web modules 14, 88

deploying 92
packaged 94–95
unpackaged 92, 94

dynamic reloading 97–98
undeploying 98
updating 96

packaged 96
unpackaged 96

viewing deployed 95
web resource collections 1127
web resources 88

Duke’s Bank
protecting 1364

mapping filters to 468–469
protecting 1127
unprotected 1127

web services 10
clients 332

EJB. See enterprise beans, web
services

endpoint interfaces 911
example 1291
examples 320
security 1125
WSDL files 912

well-formed 47
whitespace

ignorable 157
wildcards 259
work flows 859
writing backing bean methods
777–781

for handling action events 779
for handling value-change

events 780
for performing navigation 777
for performing validation 779

writing backing-bean methods
for performing validation 711

writing component properties
See backing bean properties

wscompile 27
wscompile tool 321
wsdeploy 27
WSDL 12, 320, 330, 333, 344

publishing concepts for with
JAXR 432

publishing with JAXR 417
removing concepts for with

JAXR 433
using to find organizations

411, 433

X
X.509 certificates 1136

INDEX 1499
Xalan 253, 314
XHTML 46, 1393
XLink 1392
XML 11, 33, 319, 330

comments 36
content 37
designing a data structure 76
documents 59, 141
documents, and SAAJ 346
elements in SOAP messages

347
generating 272
linking 1392
prolog 36
reading 266
registries

establishing security cre-
dentials 413

XML Base 1392
XML data 59, 141

transforming with XSLT 287
XML documents

JSP documents 525
XML namespaces 533
XML Schema

definition 163
Instance 165
reason for using DOM 182,

187
SAX error handling 164
SAX parser properties 164
See also schema
See also validating
summary of 1391
validating 246

with multiple namespaces
249

validating with, in SAX 163

XmlReader interface 282
XPATH 1389
XPath 253–255

basic addressing 257
basic expressions 258
data model 256
data types 261
expression 255
functions 262
operators 261

XPointer 255, 1392
XSL 1389
XSL-FO 254
XSLT 253–254, 287, 1389

concatenating transforma-
tions, filter chain 311

context 257
data model 256
running from the command

line 311
templates 257
transform

writing 290
XTM 1394

1500 INDEX

	Contents
	Foreword
	About This Tutorial
	Who Should Use This Tutorial
	Prerequisites
	How to Read This Tutorial
	About the Examples
	Required Software
	Tutorial Bundle
	Application Server
	Registry Server

	Building the Examples
	Tutorial Example Directory Structure

	Further Information
	How to Buy This Tutorial
	How to Print This Tutorial
	Typographical Conventions
	Acknowledgments
	Feedback

	Overview
	Distributed Multitiered Applications
	J2EE Components
	J2EE Clients
	Web Clients
	Applets
	Application Clients
	The JavaBeans™ Component Architecture
	J2EE Server Communications

	Web Components
	Business Components
	Enterprise Information System Tier

	J2EE Containers
	Container Services
	Container Types

	Web Services Support
	XML
	SOAP Transport Protocol
	WSDL Standard Format
	UDDI and ebXML Standard Formats

	Packaging Applications
	Development Roles
	J2EE Product Provider
	Tool Provider
	Application Component Provider
	Enterprise Bean Developer
	Web Component Developer
	Application Client Developer

	Application Assembler
	Application Deployer and Administrator

	J2EE 1.4 APIs
	Enterprise JavaBeans Technology
	Java Servlet Technology
	JavaServer Pages Technology
	Java Message Service API
	Java Transaction API
	JavaMail API
	JavaBeans Activation Framework
	Java API for XML Processing
	Java API for XML-Based RPC
	SOAP with Attachments API for Java
	Java API for XML Registries
	J2EE Connector Architecture
	JDBC API
	Java Naming and Directory Interface
	Java Authentication and Authorization Service
	Simplified Systems Integration

	Sun Java System Application Server Platform Edition 8
	Technologies
	JavaServer Pages Standard Tag Library
	JavaServer Faces

	Tools
	Starting and Stopping the Application Server
	Starting the Admin Console
	Starting the deploytool Utility
	Starting and Stopping the Derby Database Server
	Debugging J2EE Applications
	Using the Server Log
	Using a Debugger

	Understanding XML
	Introduction to XML
	What Is XML?
	Tags and Attributes
	Empty Tags
	Comments in XML Files
	The XML Prolog
	Processing Instructions

	Why Is XML Important?
	Plain Text
	Data Identification
	Stylability
	Inline Reusability
	Linkability
	Easily Processed
	Hierarchical

	How Can You Use XML?
	Traditional Data Processing
	Document-Driven Programming
	Binding
	Archiving
	Summary

	Generating XML Data
	Writing a Simple XML File
	Creating the File
	Writing the Declaration
	Adding a Comment

	Defining the Root Element
	Adding Attributes to an Element
	Adding Nested Elements
	Adding HTML-Style Text
	Adding an Empty Element
	The Finished Product

	Writing Processing Instructions
	Introducing an Error
	Substituting and Inserting Text
	Handling Special Characters
	Using an Entity Reference in an XML Document
	Handling Text with XML-Style Syntax

	Creating a Document Type Definition
	Basic DTD Definitions
	Defining Text and Nested Elements
	Limitations of DTDs
	Special Element Values in the DTD
	Referencing the DTD

	Documents and Data
	Defining Attributes and Entities in the DTD
	Defining Attributes in the DTD
	Defining Entities in the DTD
	Additional Useful Entities
	Referencing External Entities
	Summarizing Entities

	Referencing Binary Entities
	Using a MIME Data Type
	The Alternative: Using Entity References

	Defining Parameter Entities and Conditional Sections
	Creating and Referencing a Parameter Entity
	Conditional Sections

	Resolving a Naming Conflict
	Using Namespaces
	Defining a Namespace in a DTD
	Referencing a Namespace
	Defining a Namespace Prefix

	Designing an XML Data Structure
	Saving Yourself Some Work
	Attributes and Elements
	Forced Choices
	Stylistic Choices

	Normalizing Data
	Normalizing DTDs

	Summary

	Getting Started with Web Applications
	Web Application Life Cycle
	Web Modules
	Packaging Web Modules
	Deploying Web Modules
	Setting the Context Root
	Deploying an Unpackaged Web Module
	Deploying a Packaged Web Module

	Listing Deployed Web Modules
	Updating Web Modules
	Updating an Unpackaged Web Module
	Updating a Packaged Web Module
	Dynamic Reloading

	Undeploying Web Modules

	Configuring Web Applications
	Mapping URLs to Web Components
	Setting the Component Alias

	Declaring Welcome Files
	Setting Initialization Parameters
	Mapping Errors to Error Screens
	Declaring Resource References

	Duke’s Bookstore Examples
	Accessing Databases from Web Applications
	Populating the Example Database
	Creating a Data Source in the Application Server
	Specifying a Web Application’s Resource Reference
	Mapping the Resource Reference to a Data Source

	Further Information

	Java API for XML Processing
	The JAXP APIs
	An Overview of the Packages
	The Simple API for XML APIs
	The SAX Packages

	The Document Object Model APIs
	The DOM Packages

	The Extensible Stylesheet Language Transformations APIs
	The XSLT Packages

	Using the JAXP Libraries
	Where Do You Go from Here?

	Simple API for XML
	When to Use SAX
	Echoing an XML File with the SAX Parser
	Creating the Skeleton
	Importing Classes
	Setting Up for I/O
	Implementing the ContentHandler Interface
	Setting up the Parser
	Writing the Output
	Spacing the Output
	Handling Content Events
	Document Events
	Element Events
	Character Events

	Compiling and Running the Program
	Checking the Output
	Identifying the Events
	Compressing the Output
	Inspecting the Output
	Documents and Data

	Adding Additional Event Handlers
	Identifying the Document’s Location
	Handling Processing Instructions
	Summary

	Handling Errors with the Nonvalidating Parser
	Handling a SAXParseException
	Handling a SAXException
	Improving the SAXParseException Handler
	Handling a ParserConfigurationException
	Handling an IOException
	Handling NonFatal Errors
	Handling Warnings

	Displaying Special Characters and CDATA
	Handling Special Characters
	Handling Text with XML-Style Syntax
	Handling CDATA and Other Characters

	Parsing with a DTD
	DTD’s Effect on the Nonvalidating Parser
	Tracking Ignorable Whitespace
	Cleanup
	Empty Elements, Revisited
	Echoing Entity References
	Echoing the External Entity
	Summarizing Entities

	Choosing Your Parser Implementation
	Using the Validating Parser
	Configuring the Factory
	Validating with XML Schema
	Setting the SAX Parser Properties
	Setting Up the Appropriate Error Handling
	Associating a Document with a Schema

	Experimenting with Validation Errors
	Error Handling in the Validating Parser

	Parsing a Parameterized DTD
	DTD Warnings

	Handling Lexical Events
	How the LexicalHandler Works
	Working with a LexicalHandler
	Echoing Comments
	Echoing Other Lexical Information

	Using the DTDHandler and EntityResolver
	The DTDHandler API
	The EntityResolver API

	Further Information

	Document Object Model
	When to Use DOM
	Documents Versus Data
	Mixed-Content Model
	Kinds of Nodes

	A Simpler Model
	Increasing the Complexity
	Choosing Your Model

	Reading XML Data into a DOM
	Creating the Program
	Create the Skeleton
	Import the Required Classes
	Declare the DOM
	Handle Errors
	Instantiate the Factory
	Get a Parser and Parse the File
	Run the Program

	Additional Information
	Configuring the Factory
	Handling Validation Errors

	Looking Ahead

	Displaying a DOM Hierarchy
	Convert DomEcho to a GUI Application
	Add Import Statements
	Create the GUI Framework
	Add the Display Components

	Create Adapters to Display the DOM in a JTree
	Define the AdapterNode Class
	Define the TreeModel Adapter

	Finishing Up

	Examining the Structure of a DOM
	Displaying a Simple Tree
	Displaying a More Complex Tree
	Summary of Lexical Controls

	Finishing Up

	Constructing a User-Friendly JTree from a DOM
	Compressing the Tree View
	Make the Operation Selectable
	Identify Tree Nodes
	Control Node Visibility
	Control Child Access
	Check the Results
	Extra Credit

	Acting on Tree Selections
	Identify Node Types
	Concatenate Subnodes to Define Element Content
	Display the Content in the JTree
	Wire the JTree to the JEditorPane
	Run the Application
	Extra Credit

	Handling Modifications
	Finishing Up

	Creating and Manipulating a DOM
	Obtaining a DOM from the Factory
	Modify the Code
	Create Element and Text Nodes
	Run the Application

	Normalizing the DOM
	Other Operations
	Traversing Nodes
	Searching for Nodes
	Obtaining Node Content
	Creating Attributes
	Removing and Changing Nodes
	Inserting Nodes

	Finishing Up

	Validating with XML Schema
	Overview of the Validation Process
	Configuring the DocumentBuilder Factory
	Associating a Document with a Schema

	Validating with Multiple Namespaces
	Declaring the Schemas in the XML Data Set
	Declaring the Schemas in the Application

	Further Information

	Extensible Stylesheet Language Transformations
	Introducing XSL, XSLT, and XPath
	The JAXP Transformation Packages

	How XPath Works
	XPath Expressions
	The XSLT/XPath Data Model
	Templates and Contexts
	Basic XPath Addressing
	Basic XPath Expressions
	Combining Index Addresses
	Wildcards
	Extended-Path Addressing
	XPath Data Types and Operators
	String-Value of an Element
	XPath Functions
	Node-Set Functions
	Positional Functions
	String Functions
	Boolean Functions
	Numeric Functions
	Conversion Functions
	Namespace Functions

	Summary

	Writing Out a DOM as an XML File
	Reading the XML
	Creating a Transformer
	Writing the XML
	Writing Out a Subtree of the DOM
	Cleaning Up

	Summary

	Generating XML from an Arbitrary Data Structure
	Creating a Simple File
	Creating a Simple Parser
	Modifying the Parser to Generate SAX Events
	Using the Parser as a SAXSource
	Doing the Conversion

	Transforming XML Data with XSLT
	Defining a Simple <article> Document Type
	Creating a Test Document
	Writing an XSLT Transform
	Processing the Basic Structure Elements
	Process the <TITLE> Element
	Process Headings
	Generate a Runtime Message

	Writing the Basic Program
	Trimming the Whitespace
	Processing the Remaining Structure Elements
	Modify <PARA> Handling
	Process <LIST> and <ITEM> Elements
	Ordering Templates in a Stylesheet
	Process <NOTE> Elements
	Run the Program

	Process Inline (Content) Elements
	Run the Program

	Printing the HTML
	What Else Can XSLT Do?
	The Trouble with Variables

	Transforming from the Command Line with Xalan
	Concatenating Transformations with a Filter Chain
	Writing the Program
	Understanding How the Filter Chain Works
	Testing the Program

	Further Information

	Building Web Services with JAX-RPC
	Setting the Port
	Creating a Simple Web Service and Client with JAX-RPC
	Coding the Service Endpoint Interface and Implementation Class
	Building the Service
	The compile-service Task
	The generate-wsdl Task

	Packaging and Deploying the Service
	Packaging and Deploying the Service with deploytool
	Packaging and Deploying the Service with asant

	Static Stub Client
	Coding the Static Stub Client
	Building and Running the Static Stub Client

	Types Supported by JAX-RPC
	J2SE SDK Classes
	Primitives
	Arrays
	Value Types
	JavaBeans Components

	Web Service Clients
	Dynamic Proxy Client
	Coding the Dynamic Proxy Client
	Building and Running the Dynamic Proxy Client

	Dynamic Invocation Interface Client
	Coding the DII Client
	Building and Running the DII Client

	Application Client
	J2EE Application HelloClient Listing
	Building the Application Client
	Packaging the Application Client
	Specifying the Web Reference
	Deploying and Running the Application Client

	More JAX-RPC Clients

	Web Services Interoperability and JAX- RPC
	Further Information

	SOAP with Attachments API for Java
	Overview of SAAJ
	Messages
	The Structure of an XML Document
	What Is in a Message?
	SAAJ and DOM

	Connections
	SOAPConnection Objects

	Tutorial
	Creating and Sending a Simple Message
	Creating a Message
	Parts of a Message
	Accessing Elements of a Message
	Adding Content to the Body
	Getting a SOAPConnection Object
	Sending a Message
	Getting the Content of a Message

	Adding Content to the Header
	Adding Content to the SOAPPart Object
	Adding a Document to the SOAP Body
	Manipulating Message Content Using SAAJ or DOM APIs
	Adding Attachments
	Creating an AttachmentPart Object and Adding Content
	Accessing an AttachmentPart Object

	Adding Attributes
	Header Attributes

	Using SOAP Faults
	Overview of SOAP Faults
	Creating and Populating a SOAPFault Object
	Retrieving Fault Information

	Code Examples
	Request.java
	MyUddiPing.java
	Setting Up
	Examining MyUddiPing
	Running MyUddiPing

	HeaderExample.java
	Running HeaderExample

	DOMExample.java and DOMSrcExample.java
	Examining DOMExample
	Examining DOMSrcExample
	Running DOMExample and DOMSrcExample

	Attachments.java
	Running Attachments

	SOAPFaultTest.java
	Running SOAPFaultTest

	Further Information

	Java API for XML Registries
	Overview of JAXR
	What Is a Registry?
	What Is JAXR?
	JAXR Architecture

	Implementing a JAXR Client
	Establishing a Connection
	Preliminaries: Getting Access to a Registry
	Creating or Looking Up a Connection Factory
	Creating a Connection
	Setting Connection Properties
	Obtaining and Using a RegistryService Object

	Querying a Registry
	Finding Organizations by Name
	Finding Organizations by Classification
	Finding Services and Service Bindings

	Managing Registry Data
	Getting Authorization from the Registry
	Creating an Organization
	Adding Classifications
	Adding Services and Service Bindings to an Organization
	Publishing an Organization
	Publishing a Specification Concept
	Removing Data from the Registry

	Using Taxonomies in JAXR Clients
	Defining a Taxonomy
	Specifying Postal Addresses

	Running the Client Examples
	Before You Compile the Examples
	Compiling the Examples
	Running the Examples
	Running the JAXRPublish Example
	Running the JAXRQuery Example
	Running the JAXRQueryByNAICSClassification Example
	Running the JAXRDelete Example
	Publishing a Classification Scheme
	Running the Postal Address Examples
	Deleting a Classification Scheme
	Publishing a Concept for a WSDL Document
	Publishing an Organization with a WSDL Document in Its Service Binding
	Running the JAXRQueryByWSDLClassification Example
	Deleting a Concept
	Getting a List of Your Registry Objects
	Other Targets

	Using JAXR Clients in J2EE Applications
	Coding the Application Client: MyAppClient.java
	Coding the PubQuery Session Bean
	Editing the Properties File
	Compiling the Source Files
	Starting the Application Server
	Creating JAXR Resources
	Creating and Packaging the Application
	Starting deploytool and Creating the Application
	Packaging the Session Bean
	Packaging the Application Client
	Checking the JNDI Names

	Deploying the Application
	Running the Application Client

	Further Information

	Java Servlet Technology
	What Is a Servlet?
	The Example Servlets
	Troubleshooting

	Servlet Life Cycle
	Handling Servlet Life-Cycle Events
	Defining the Listener Class
	Specifying Event Listener Classes

	Handling Errors

	Sharing Information
	Using Scope Objects
	Controlling Concurrent Access to Shared Resources
	Accessing Databases

	Initializing a Servlet
	Writing Service Methods
	Getting Information from Requests
	Constructing Responses

	Filtering Requests and Responses
	Programming Filters
	Programming Customized Requests and Responses
	Specifying Filter Mappings

	Invoking Other Web Resources
	Including Other Resources in the Response
	Transferring Control to Another Web Component

	Accessing the Web Context
	Maintaining Client State
	Accessing a Session
	Associating Objects with a Session
	Notifying Objects That Are Associated with a Session

	Session Management
	Session Tracking

	Finalizing a Servlet
	Tracking Service Requests
	Notifying Methods to Shut Down
	Creating Polite Long-Running Methods

	Further Information

	JavaServer Pages Technology
	What Is a JSP Page?
	Example

	The Example JSP Pages
	The Life Cycle of a JSP Page
	Translation and Compilation
	Execution
	Buffering
	Handling Errors

	Creating Static Content
	Response and Page Encoding

	Creating Dynamic Content
	Using Objects within JSP Pages
	Using Implicit Objects
	Using Application-Specific Objects
	Using Shared Objects

	Expression Language
	Deactivating Expression Evaluation
	Using Expressions
	Variables
	Implicit Objects
	Literals
	Operators
	Reserved Words
	Examples
	Functions
	Using Functions
	Defining Functions

	JavaBeans Components
	JavaBeans Component Design Conventions
	Creating and Using a JavaBeans Component
	Setting JavaBeans Component Properties
	Retrieving JavaBeans Component Properties

	Using Custom Tags
	Declaring Tag Libraries
	Including the Tag Library Implementation

	Reusing Content in JSP Pages
	Transferring Control to Another Web Component
	jsp:param Element

	Including an Applet
	Setting Properties for Groups of JSP Pages
	Deactivating EL Expression Evaluation
	Declaring Page Encodings
	Defining Implicit Includes

	Further Information

	JavaServer Pages Documents
	The Example JSP Document
	Creating a JSP Document
	Declaring Tag Libraries
	Including Directives in a JSP Document
	Creating Static and Dynamic Content
	Using the jsp:root Element
	Using the jsp:output Element
	Generating XML Declarations
	Generating a Document Type Declaration

	Identifying the JSP Document to the Container

	JavaServer Pages Standard Tag Library
	The Example JSP Pages
	Using JSTL
	Tag Collaboration

	Core Tag Library
	Variable Support Tags
	Flow Control Tags
	Conditional Tags
	Iterator Tags

	URL Tags
	Miscellaneous Tags

	XML Tag Library
	Core Tags
	Flow Control Tags
	Transformation Tags

	Internationalization Tag Library
	Setting the Locale
	Messaging Tags
	The setBundle and bundle Tags
	The message Tag

	Formatting Tags

	SQL Tag Library
	query Tag Result Interface

	Functions
	Further Information

	Custom Tags in JSP Pages
	What Is a Custom Tag?
	The Example JSP Pages
	Types of Tags
	Tags with Attributes
	Simple Attributes
	Fragment Attributes
	Dynamic Attributes
	jsp:attribute Element

	Tags with Bodies
	jsp:body Element

	Tags That Define Variables
	Communication between Tags

	Encapsulating Reusable Content Using Tag Files
	Tag File Location
	Tag File Directives
	Declaring Tags
	body-content Attribute
	Declaring Tag Attributes in Tag Files
	Declaring Tag Variables in Tag Files

	Evaluating Fragments Passed to Tag Files
	Examples
	Simple Attribute Example
	Simple and Fragment Attribute and Variable Example
	Dynamic Attribute Example

	Tag Library Descriptors
	Top-Level Tag Library Descriptor Elements
	validator Element
	listener Element

	Declaring Tag Files
	tag-file TLD Element
	Unpackaged Tag Files
	Packaged Tag Files

	Declaring Tag Handlers
	body-content Element

	Declaring Tag Attributes for Tag Handlers
	Declaring Tag Variables for Tag Handlers

	Programming Simple Tag Handlers
	Including Tag Handlers in Web Applications
	How Is a Simple Tag Handler Invoked?
	Tag Handlers for Basic Tags
	Tag Handlers for Tags with Attributes
	Defining Attributes in a Tag Handler
	Attribute Validation
	Setting Dynamic Attributes

	Tag Handlers for Tags with Bodies
	Tag Handlers for Tags That Define Variables
	Cooperating Tags
	Examples
	An Iteration Tag
	A Template Tag Library

	Scripting in JSP Pages
	The Example JSP Pages
	Using Scripting
	Disabling Scripting
	Declarations
	Initializing and Finalizing a JSP Page

	Scriptlets
	Expressions
	Programming Tags That Accept Scripting Elements
	TLD Elements
	Tag Handlers
	How Is a Classic Tag Handler Invoked?

	Tags with Bodies
	Tag Handler Does Not Manipulate the Body
	Tag Handler Manipulates the Body

	Cooperating Tags
	Tags That Define Variables

	JavaServer Faces Technology
	JavaServer Faces Technology Benefits
	What Is a JavaServer Faces Application?
	Framework Roles
	A Simple JavaServer Faces Application
	Steps in the Development Process
	Creating the Pages
	The form Tag
	The outputText Tag
	The inputText Tag
	The commandButton Tag
	The message Tag
	The validateLongRange Tag

	Defining Page Navigation
	Developing the Beans
	Adding Managed Bean Declarations

	User Interface Component Model
	User Interface Component Classes
	Component Rendering Model
	Conversion Model
	Event and Listener Model
	Validation Model

	Navigation Model
	Backing Bean Management
	How the Pieces Fit Together
	The Life Cycle of a JavaServer Faces Page
	Request Processing Life Cycle Scenarios
	Standard Request Processing Life Cycle
	Restore View Phase
	Apply Request Values Phase
	Process Validations Phase
	Update Model Values Phase
	Invoke Application Phase
	Render Response Phase

	Further Information

	Using JavaServer Faces Technology in JSP Pages
	The Example JavaServer Faces Application
	Setting Up a Page
	Using the Core Tags
	Using the HTML Component Tags
	UI Component Tag Attributes
	The id Attribute
	The immediate Attribute
	The rendered Attribute
	The style and styleClass Attributes
	The value and binding Attributes

	The UIForm Component
	The UIColumn Component
	The UICommand Component
	Using the commandButton Tag
	Using the commandLink Tag

	The UIData Component
	The UIGraphic Component
	The UIInput and UIOutput Components
	Using the outputText and inputText Tags
	Using the outputLabel Tag
	Using the outputLink Tag
	Using the outputFormat Tag
	Using the inputSecret Tag

	The UIPanel Component
	The UISelectBoolean Component
	The UISelectMany Component
	Using the selectManyCheckbox Tag

	The UIMessage and UIMessages Components
	The UISelectOne Component
	Using the selectOneMenu Tag

	The UISelectItem, UISelectItems, and UISelectItemGroup Components
	Using the selectItems Tag
	Using the selectItem Tag

	Using Localized Messages
	Referencing a ResourceBundle from a Page
	Referencing a Localized Message

	Using the Standard Converters
	Using DateTimeConverter
	Using NumberConverter

	Registering Listeners on Components
	Registering a Value-Change Listener on a Component
	Registering an Action Listener on a Component

	Using the Standard Validators
	Requiring a Value
	Using the LongRangeValidator

	Binding Component Values and Instances to External Data Sources
	Binding a Component Value to a Property
	Binding a Component Value to an Implicit Object
	Binding a Component Instance to a Bean Property

	Referencing a Backing Bean Method
	Referencing a Method That Performs Navigation
	Referencing a Method That Handles an Action Event
	Referencing a Method That Performs Validation
	Referencing a Method That Handles a Value-change Event

	Using Custom Objects
	Using a Custom Converter
	Using a Custom Validator
	Using a Custom Component

	Developing with JavaServer Faces Technology
	Writing Component Properties
	Writing Properties Bound to Component Values
	UIInput and UIOutput Properties
	UIData Properties
	UISelectBoolean Properties
	UISelectMany Properties
	UISelectOne Properties
	UISelectItem Properties
	UISelectItems Properties

	Writing Properties Bound to Component Instances

	Performing Localization
	Creating a Resource Bundle
	Localizing Dynamic Data
	Localizing Messages
	Creating a Message with a Message Factory
	Using FacesMessage to Create a Message

	Creating a Custom Converter
	Implementing an Event Listener
	Implementing Value-Change Listeners
	Implementing Action Listeners

	Creating a Custom Validator
	Implementing the Validator Interface
	Creating a Custom Tag
	Writing the Tag Handler
	Writing the Tag Library Descriptor

	Writing Backing Bean Methods
	Writing a Method to Handle Navigation
	Writing a Method to Handle an Action Event
	Writing a Method to Perform Validation
	Writing a Method to Handle a Value- Change Event

	Creating Custom UI Components
	Determining Whether You Need a Custom Component or Renderer
	When to Use a Custom Component
	When to Use a Custom Renderer
	Component, Renderer, and Tag Combinations

	Understanding the Image Map Example
	Why Use JavaServer Faces Technology to Implement an Image Map?
	Understanding the Rendered HTML
	Understanding the JSP Page
	Configuring Model Data
	Summary of the Application Classes

	Steps for Creating a Custom Component
	Creating the Component Tag Handler
	Defining the Custom Component Tag in a Tag Library Descriptor
	Creating Custom Component Classes
	Specifying the Component Family
	Performing Encoding
	Performing Decoding
	Enabling Value-Binding of Component Properties
	Saving and Restoring State

	Delegating Rendering to a Renderer
	Creating the Renderer Class
	Identifying the Renderer Type

	Handling Events for Custom Components

	Configuring JavaServer Faces Applications
	Application Configuration Resource File
	Configuring Beans
	Using the managed-bean Element
	Initializing Properties using the managed-property Element
	Referencing an Initialization Parameter
	Initializing Map Properties
	Initializing Array and List Properties
	Initializing Managed Bean Properties

	Initializing Maps and Lists

	Registering Messages
	Registering a Custom Validator
	Registering a Custom Converter
	Configuring Navigation Rules
	Registering a Custom Renderer with a Render Kit
	Registering a Custom Component
	Basic Requirements of a JavaServer Faces Application
	Configuring an Application Using deploytool
	Identifying the Servlet for Life Cycle Processing
	Specifying a Path to an Application Configuration Resource File
	Specifying Where State Is Saved
	Restricting Access to JavaServer Faces Components
	Turning On Validation of XML Files
	Verifying Custom Objects

	Including the Required JAR Files
	Including the Classes, Pages, and Other Resources

	Internationalizing and Localizing Web Applications
	Java Platform Localization Classes
	Providing Localized Messages and Labels
	Establishing the Locale
	Setting the Resource Bundle
	Retrieving Localized Messages

	Date and Number Formatting
	Character Sets and Encodings
	Character Sets
	Character Encoding
	Request Encoding
	Page Encoding
	Response Encoding

	Further Information

	Enterprise Beans
	What Is an Enterprise Bean?
	Benefits of Enterprise Beans
	When to Use Enterprise Beans
	Types of Enterprise Beans

	What Is a Session Bean?
	State Management Modes
	Stateless Session Beans
	Stateful Session Beans

	When to Use Session Beans

	What Is an Entity Bean?
	What Makes Entity Beans Different from Session Beans?
	Persistence
	Shared Access
	Primary Key
	Relationships

	Container-Managed Persistence
	Abstract Schema
	Multiplicity in Container-Managed Relationships
	Direction in Container-Managed Relationships

	When to Use Entity Beans

	What Is a Message-Driven Bean?
	What Makes Message-Driven Beans Different from Session and Entity Beans?
	When to Use Message-Driven Beans

	Defining Client Access with Interfaces
	Remote Clients
	Local Clients
	Local Interfaces and Container- Managed Relationships
	Deciding on Remote or Local Access
	Web Service Clients
	Method Parameters and Access
	Isolation
	Granularity of Accessed Data

	The Contents of an Enterprise Bean
	Naming Conventions for Enterprise Beans
	The Life Cycles of Enterprise Beans
	The Life Cycle of a Stateful Session Bean
	The Life Cycle of a Stateless Session Bean
	The Life Cycle of an Entity Bean
	The Life Cycle of a Message-Driven Bean

	Further Information

	Getting Started with Enterprise Beans
	Creating the J2EE Application
	Creating the Enterprise Bean
	Coding the Enterprise Bean
	Coding the Remote Interface
	Coding the Home Interface
	Coding the Enterprise Bean Class

	Compiling the Source Files
	Packaging the Enterprise Bean

	Creating the Application Client
	Coding the Application Client
	Locating the Home Interface
	Creating an Enterprise Bean Instance
	Invoking a Business Method
	ConverterClient Source Code

	Compiling the Application Client
	Packaging the Application Client
	Specifying the Application Client’s Enterprise Bean Reference

	Creating the Web Client
	Coding the Web Client
	Compiling the Web Client
	Packaging the Web Client
	Specifying the Web Client’s Enterprise Bean Reference

	Mapping the Enterprise Bean References
	Specifying the Web Client’s Context Root
	Deploying the J2EE Application
	Running the Application Client
	Running the Web Client
	Modifying the J2EE Application
	Modifying a Class File
	Adding a File
	Modifying a Deployment Setting

	Session Bean Examples
	The CartBean Example
	Session Bean Class
	The SessionBean Interface
	The ejbCreate Methods
	Business Methods

	Home Interface
	Remote Interface
	Helper Classes
	Building the CartBean Example
	Creating the Application
	Packaging the Enterprise Bean
	Packaging the Application Client
	Specifying the Application Client’s Enterprise Bean Reference
	Deploying the Enterprise Application
	Running the Application Client

	A Web Service Example: HelloServiceBean
	Web Service Endpoint Interface
	Stateless Session Bean Implementation Class
	Building HelloServiceBean
	Creating the Application
	Packaging the Enterprise Bean
	Deploying the Enterprise Application

	Building the Web Service Client
	Running the Web Service Client

	Other Enterprise Bean Features
	Accessing Environment Entries
	Comparing Enterprise Beans
	Passing an Enterprise Bean’s Object Reference

	Using the Timer Service
	Creating Timers
	Canceling and Saving Timers
	Getting Timer Information
	Transactions and Timers
	The TimerSessionBean Example
	Building TimerSessionBean
	Creating the Application
	Packaging the Enterprise Bean
	Compiling the Application Client
	Packaging the Application Client
	Specifying the Application Client’s Enterprise Bean Reference
	Deploying the Enterprise Application
	Running the Application Client

	Handling Exceptions

	Bean-Managed Persistence Examples
	The SavingsAccountBean Example
	Entity Bean Class
	The EntityBean Interface
	The ejbCreate Method
	The ejbPostCreate Method
	The ejbRemove Method
	The ejbLoad and ejbStore Methods
	The Finder Methods
	The Business Methods
	The Home Methods
	Database Calls

	Home Interface
	create Method Definitions
	Finder Method Definitions
	Home Method Definitions

	Remote Interface
	Running the SavingsAccountBean Example
	Defining the Data Source
	Creating the Database Table
	Deploying the Application
	Running the Client

	Mapping Table Relationships for Bean- Managed Persistence
	One-to-One Relationships
	Running the StorageBinBean Example

	One-to-Many Relationships
	A Helper Class for the Child Table
	Running the OrderBean Example
	An Entity Bean for the Child Table
	Running the SalesRepBean Example

	Many-to-Many Relationships
	Running the EnrollerBean Example

	Primary Keys for Bean-Managed Persistence
	The Primary Key Class
	Primary Keys in the Entity Bean Class
	Getting the Primary Key

	deploytool Tips for Entity Beans with Bean-Managed Persistence

	Container-Managed Persistence Examples
	Overview of the RosterApp Application
	The PlayerBean Code
	Entity Bean Class
	Differences between Container-Managed and Bean-Managed Code
	Access Methods
	Finder and Select Methods
	Business Methods
	Entity Bean Methods

	Local Home Interface
	Local Interface

	Method Invocations in RosterApp
	Creating a Player
	1. RosterClient
	2. RosterBean
	3. PlayerBean

	Adding a Player to a Team
	1. RosterClient
	2. RosterBean
	3. TeamBean

	Removing a Player
	1. RosterClient
	2. RosterBean

	Dropping a Player from a Team
	1. RosterClient
	2. RosterBean
	3. TeamBean

	Getting the Players of a Team
	1. RosterClient
	2. RosterBean
	3. TeamBean

	Getting a Copy of a Team’s Players
	1. RosterClient
	2. RosterBean
	3. TeamBean

	Finding the Players by Position
	1. RosterClient
	2. RosterBean
	3. PlayerBean

	Getting the Sports of a Player
	1. RosterClient
	2. RosterBean
	3. PlayerBean

	Building and Running the RosterApp Example
	Creating the Database Tables
	Creating the Data Source
	Capturing the Table Schema
	Building the Enterprise Beans
	Creating the Enterprise Application
	Packaging the Enterprise Beans
	Packaging RosterBean
	Packaging LeagueBean, PlayerBean, and TeamBean
	Adding EJB QL Queries to PlayerBean
	Establishing Relationships between Enterprise Beans
	Creating the Field and Relationship Mappings
	Setting RosterBean’s Transaction Attributes
	Setting the Enterprise Bean References

	Packaging the Enterprise Application Client
	Setting the Enterprise Bean Reference

	Deploying the Enterprise Application
	Running the Client Application

	A Guided Tour of the RosterApp Settings
	RosterApp
	General Tab (RosterApp)
	JNDI Names Tab (RosterApp)

	RosterClient
	JAR File Tab (RosterClient)
	EJB Ref’s Tab (RosterClient)

	RosterJAR
	General Tab (RosterJAR)
	RosterBean

	TeamJAR
	General Tab (TeamJAR)
	Relationships Tab (TeamJAR)
	PlayerBean

	Primary Keys for Container-Managed Persistence
	The Primary Key Class
	Primary Keys in the Entity Bean Class
	Generating Primary Key Values

	Advanced CMP Topics: The OrderApp Example
	Structure of OrderApp
	Bean Relationships in OrderApp
	Self-Referential Relationships
	One-to-One Relationships
	One-to-Many Relationship Mapped to Overlapping Primary and Foreign Keys
	Unidirectional Relationships

	Primary Keys in OrderApp’s Entity Beans
	Unknown Primary Keys
	Primitive Type Primary Keys
	Compound Primary Keys

	Entity Bean Mapped to More Than One Database Table
	Finder and Selector Methods
	Using Home Methods
	Cascade Deletes in OrderApp
	BLOB and CLOB Database Types in OrderApp
	Building and Running the OrderApp Example
	Create the Database Tables
	Capture the Database Schema
	Build the Application
	Package the Application
	Deploy the Enterprise Application
	Run the Client Application

	deploytool Tips for Entity Beans with Container-Managed Persistence
	Selecting the Persistent Fields and Abstract Schema Name
	Defining EJB QL Queries for Finder and Select Methods
	Defining Relationships
	Creating the Database Tables at Deploy Time in deploytool

	A Message-Driven Bean Example
	Example Application Overview
	The Application Client
	The Message-Driven Bean Class
	The onMessage Method
	The ejbCreate and ejbRemove Methods

	Deploying and Running SimpleMessageApp
	Creating the Administered Objects
	Deploying the Application
	Running the Client
	Removing the Administered Objects

	deploytool Tips for Message-Driven Beans
	Specifying the Bean’s Type
	Setting the Message-Driven Bean’s Characteristics

	deploytool Tips for Components That Send Messages
	Setting the Resource References
	Setting the Message Destination References
	Setting the Message Destinations
	Specifying the JNDI Names

	Enterprise JavaBeans Query Language
	Terminology
	Simplified Syntax
	Example Queries
	Simple Finder Queries
	Finder Queries That Navigate to Related Beans
	Finder Queries with Other Conditional Expressions
	Select Queries

	Full Syntax
	BNF Symbols
	BNF Grammar of EJB QL
	FROM Clause
	Identifiers
	Identification Variables

	Path Expressions
	Syntax
	Examples
	Expression Types
	Navigation

	WHERE Clause
	Literals
	Input Parameters
	Conditional Expressions
	Operators and Their Precedence
	BETWEEN Expressions
	IN Expressions
	LIKE Expressions
	NULL Comparison Expressions
	Empty Collection Comparison Expressions
	Collection Member Expressions
	Functional Expressions
	NULL Values
	Equality Semantics

	SELECT Clause
	Return Types
	DISTINCT and OBJECT Keywords
	Aggregate Functions

	ORDER BY Clause

	EJB QL Restrictions

	Transactions
	What Is a Transaction?
	Container-Managed Transactions
	Transaction Attributes
	Required
	RequiresNew
	Mandatory
	NotSupported
	Supports
	Never
	Summary of Transaction Attributes
	Setting Transaction Attributes

	Rolling Back a Container-Managed Transaction
	Synchronizing a Session Bean’s Instance Variables
	Compiling the BankBean Example
	Packaging the BankBean Example
	Creating the J2EE Application
	Packaging the Enterprise Bean
	Packaging the Application Client
	Specifying the Application Client’s Enterprise Bean Reference
	Deploying the J2EE Application
	Running the Application Client

	Methods Not Allowed in Container- Managed Transactions

	Bean-Managed Transactions
	JDBC Transactions
	Deploying and Running the WarehouseBean Example
	Compiling the WarehouseBean Example
	Packaging the WarehouseBean Example
	Creating the J2EE Application
	Packaging the Enterprise Bean
	Packaging the Application Client
	Specifying the Application Client’s Enterprise Bean Reference
	Deploying the J2EE Application
	Running the Application Client

	JTA Transactions
	Deploying and Running the TellerBean Example
	Compiling the TellerBean Example
	Packaging the TellerBean Example
	Creating the J2EE Application
	Packaging the Enterprise Bean
	Packaging the Application Client
	Specifying the Application Client’s Enterprise Bean Reference
	Deploying the J2EE Application
	Running the Application Client

	Returning without Committing
	Methods Not Allowed in Bean-Managed Transactions

	Summary of Transaction Options for Enterprise Beans
	Transaction Timeouts
	Isolation Levels
	Updating Multiple Databases
	Transactions in Web Components

	Resource Connections
	JNDI Naming
	DataSource Objects and Connection Pools
	Database Connections
	Coding a Database Connection
	Specifying a Resource Reference
	Creating a Data Source

	Mail Session Connections
	Running the ConfirmerBean Example
	Creating a Mail Session
	Deploying the Application
	Running the Client

	URL Connections
	Running the HTMLReaderBean Example
	Deploying the Application
	Running the Client

	Further Information

	Security
	Overview
	Realms, Users, Groups, and Roles
	Managing Users
	Setting Up Security Roles
	Mapping Roles to Users and Groups

	Web-Tier Security
	Protecting Web Resources
	Setting Security Requirements Using deploytool
	Specifying a Secure Connection
	Using Programmatic Security in the Web Tier
	Declaring and Linking Role References

	Understanding Login Authentication
	Using HTTP Basic Authentication
	Using Form-Based Authentication
	Using Client-Certificate Authentication
	Using Mutual Authentication
	Using Digest Authentication
	Configuring Authentication
	Example: Using Form-Based Authentication
	Adding Authorized Users
	Creating a Web Client for Form-Based Authentication
	Creating the Login Form and Error Page
	Specifying Security Elements for Form–Based Authentication
	Building, Packaging, Deploying, and Running the Form-Based Authentication Example
	Using Authentication with SSL

	Installing and Configuring SSL Support
	What Is Secure Socket Layer Technology?
	Understanding Digital Certificates
	Creating a Server Certificate
	Signing Digital Certificates
	Using a Different Server Certificate with the Application Server
	Creating a Client Certificate for Mutual Authentication
	Miscellaneous Commands for Certificates

	Using SSL
	Verifying SSL Support
	Tips on Running SSL
	Enabling Mutual Authentication over SSL

	XML and Web Services Security
	Transport-Level Security
	Example: Basic Authentication with JAX�RPC
	Setting Security Properties in the Client Code
	Building, Packaging, Deploying, and Running the Example for Basic Authentication

	Example: Client-Certificate Authentication over HTTP/SSL with JAX�RPC
	Keystores and Trust-Stores in the Mutual Authentication Example
	Modifying the Build Properties
	Setting Security Properties in the Client Code
	Enabling Client-Certificate Authentication for the Mutual Authentication Example
	Building, Packaging, Deploying, and Running the Mutual Authentication Example

	EJB-Tier Security
	Declaring Method Permissions
	Configuring IOR Security
	Using Programmatic Security in the EJB Tier
	Unauthenticated User Name

	Application Client-Tier Security
	EIS-Tier Security
	Container-Managed Sign-On
	Component-Managed Sign-On
	Configuring Resource Adapter Security

	Propagating Security Identity
	Configuring a Component’s Propagated Security Identity
	Configuring Client Authentication
	Trust between Containers

	What Is Java Authorization Contract for Containers?
	Further Information

	The Java Message Service API
	Overview
	What Is Messaging?
	What Is the JMS API?
	When Can You Use the JMS API?
	How Does the JMS API Work with the J2EE Platform?

	Basic JMS API Concepts
	JMS API Architecture
	Messaging Domains
	Point-to-Point Messaging Domain
	Publish/Subscribe Messaging Domain
	Programming with the Common Interfaces

	Message Consumption

	The JMS API Programming Model
	Administered Objects
	Connection Factories
	Destinations

	Connections
	Sessions
	Message Producers
	Message Consumers
	Message Listeners
	Message Selectors

	Messages
	Message Headers
	Message Properties
	Message Bodies

	Exception Handling

	Writing Simple JMS Client Applications
	A Simple Example of Synchronous Message Receives
	Writing the Client Programs
	Compiling the Clients
	Starting the JMS Provider
	Creating JMS Administered Objects
	Packaging the Clients
	Running the Clients

	A Simple Example of Asynchronous Message Consumption
	Writing the Client Programs
	Compiling the Clients
	Starting the JMS Provider
	Packaging the SimpleAsynchConsumer Client
	Running the Clients

	Running JMS Client Programs on Multiple Systems
	Creating Administered Objects for Multiple Systems
	Running the Programs
	Deleting the Connection Factory and Stopping the Server

	Creating Robust JMS Applications
	Using Basic Reliability Mechanisms
	Controlling Message Acknowledgment
	Specifying Message Persistence
	Setting Message Priority Levels
	Allowing Messages to Expire
	Creating Temporary Destinations

	Using Advanced Reliability Mechanisms
	Creating Durable Subscriptions
	Using JMS API Local Transactions

	Using the JMS API in a J2EE Application
	Using Session and Entity Beans to Produce and to Synchronously Receive Messages
	Administered Objects
	Resource Management
	Transactions

	Using Message-Driven Beans
	Managing Distributed Transactions
	Using the JMS API with Application Clients and Web Components

	Further Information

	J2EE Examples Using the JMS API
	A J2EE Application That Uses the JMS API with a Session Bean
	Writing the Application Components
	Coding the Application Client: MyAppClient.java
	Coding the Publisher Session Bean
	Coding the Message-Driven Bean: MessageBean.java

	Creating and Packaging the Application
	Compiling the Source Files and Starting the Application Server
	Starting deploytool and Creating the Application
	Packaging the Session Bean
	Packaging the Message-Driven Bean
	Packaging the Application Client
	Updating the JNDI Names

	Deploying the Application
	Running the Application Client

	A J2EE Application That Uses the JMS API with an Entity Bean
	Overview of the Human Resources Application
	Writing the Application Components
	Coding the Application Client: HumanResourceClient.java
	Coding the Message-Driven Beans
	Coding the Entity Bean

	Creating and Packaging the Application
	Examining the Application

	Deploying the Application
	Running the Application Client

	An Application Example That Consumes Messages from a Remote J2EE Server
	Overview of the Applications
	Writing the Application Components
	Creating and Packaging the Applications
	Examining the Applications

	Deploying the Applications
	Running the Application Client

	An Application Example That Deploys a Message-Driven Bean on Two J2EE Servers
	Overview of the Applications
	Writing the Application Components
	Coding the Application Client: MultiAppServerClient.java
	Coding the Message-Driven Bean: ReplyMsgBean.java

	Creating and Packaging the Applications
	Examining the Applications

	Deploying the Applications
	Running the Application Client

	The Coffee Break Application
	Common Code
	JAX-RPC Coffee Supplier Service
	Service Interface
	Service Implementation
	Publishing the Service in the Registry
	Deleting the Service From the Registry

	SAAJ Coffee Supplier Service
	SAAJ Client
	Ordering Coffee

	SAAJ Service
	Returning the Price List
	Returning the Order Confirmation

	Coffee Break Server
	JSP Pages
	orderForm
	checkoutForm
	checkoutAck

	JavaBeans Components
	RetailPriceList
	ShoppingCart
	OrderConfirmations
	CheckoutFormBean

	RetailPriceListServlet

	JavaServer Faces Version of Coffee Break Server
	JSP Pages
	orderForm
	checkoutForm
	checkoutAck

	JavaBeans Components
	CheckoutFormBean
	CoffeeBreakBean

	Resource Configuration

	Building, Packaging, Deploying, and Running the Application
	Setting the Port
	Setting the Registry Properties
	Using the Provided WARs
	Building the Common Classes
	Building, Packaging, and Deploying the JAX-RPC Service
	Building, Packaging, and Deploying the SAAJ Service
	Building, Packaging, and Deploying the Coffee Break Server
	Building, Packaging, and Deploying the JavaServer Faces Technology Coffee Break Server
	Running the Coffee Break Client
	Removing the Coffee Break Application

	The Duke’s Bank Application
	Enterprise Beans
	Session Beans
	AccountControllerBean
	CustomerControllerBean
	TxControllerBean

	Entity Beans
	Helper Classes
	Database Tables
	Tables Representing Business Entities
	Table That Holds the Next Primary Key

	Protecting the Enterprise Beans

	Application Client
	The Classes and Their Relationships
	BankAdmin Class
	main Method
	Constructor
	Class Methods

	EventHandle Class
	Constructor
	actionPerformed Method
	hookupEvents Method

	DataModel Class
	Constructor
	Methods

	Web Client
	Design Strategies
	Client Components
	Request Processing
	Protecting the Web Client Resources

	Internationalization
	Building, Packaging, Deploying, and Running the Application
	Setting Up the Servers
	Starting the Application Server
	Creating the Bank Database
	Capturing the Database Schema
	Creating the JDBC Data Source
	Adding Users and Groups to the File Realm

	Compiling the Duke’s Bank Application Code
	Packaging and Deploying the Duke’s Bank Application
	Packaging the Enterprise Beans
	Packaging the Application Client
	Packaging the Web Client
	Packaging and Deploying the Application

	Reviewing JNDI Names

	Running the Clients
	Running the Application Client
	Running the Web Client

	Java Encoding Schemes
	Further Information

	XML and Related Specs: Digesting the Alphabet Soup
	Basic Standards
	SAX
	StAX
	DOM
	JDOM and dom4j
	DTD
	Namespaces
	XSL
	XSLT (+XPath)

	Schema Standards
	XML Schema
	RELAX NG
	SOX
	Schematron

	Linking and Presentation Standards
	XML Linking
	XHTML

	Knowledge Standards
	RDF
	RDF Schema
	XTM

	Standards That Build on XML
	Extended Document Standards
	e-Commerce Standards

	Summary

	HTTP Overview
	HTTP Requests
	HTTP Responses

	J2EE Connector Architecture
	About Resource Adapters
	Resource Adapter Contracts
	Management Contracts
	Life-Cycle Management
	Work Management Contract

	Outbound Contracts
	Inbound Contracts
	Messaging Contracts
	Transaction Inflow

	Common Client Interface
	Further Information

	Glossary
	About the Authors
	Current Writers
	Past Writers

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

