
Hsqldb User Guide

The HSQLDB Development GroupEdited by Blaine Simpson and Fred
Toussi

Hsqldb User Guide
by The HSQLDB Development Group, Blaine Simpson, and Fred Toussi

Published $Date: 2005/07/25 23:02:52 $

Copyright 2002-2005 HSQLDB Development Group. Permission is granted to distribute this document without any alteration un-
der the terms of the HSQLDB license.

Table of Contents
Introduction .. xi

Available formats for this document .. xi
1. Running and Using Hsqldb .. 1

Introduction ... 1
Running Tools .. 1
Running Hsqldb .. 2
Server Modes ... 2

Hsqldb Server ... 3
Hsqldb Web Server ... 3
Hsqldb Servlet .. 3
In-Process (Standalone) Mode ... 4
Memory-Only Databases .. 5

General ... 5
Closing the Database ... 5
Using Multiple Databases in One JVM .. 5
Creating a New Database .. 6

Using the Database Engine ... 6
Different Types of Tables ... 6
Constraints and Indexes .. 7
SQL Support .. 7
JDBC Support .. 8

2. SQL Issues ... 9
Purpose ... 9
SQL Standard Support ... 9
Constraints and Indexes .. 9

Primary Key Constraints ... 9
Unique Constraints .. 10
Unique Indexes ... 10
FOREIGN KEYS .. 10
Indexes and Query Speed .. 10
Where Condition or Join ... 11
Subqueries and Joins .. 12

Types and Arithmetic Operations ... 12
Integral Types .. 13
Other Numeric Types ... 13
Bit and Boolean Types ... 14
Storage and Handling of Java Objects ... 14
Type Size, Precision and Scale .. 14

Sequences and Identity ... 15
Identity Auto-Increment Columns .. 15
Sequences .. 15

Issues with Transactions ... 16
New Features and Changes ... 16

3. UNIX Quick Start .. 17
Purpose ... 17
Installation ... 17
Setting up Database Instance and Server .. 19
Accessing your Database .. 20
Create additional Accounts ... 23
Shutdown .. 23
Running Hsqldb as a System Daemon ... 23

Portability of hsqldb init script ... 24
Init script Setup Procedure .. 24

iv

Troubleshooting the Init Script .. 28
4. Advanced Topics ... 29

Purpose ... 29
Connections ... 29

Connection properties .. 30
Properties Files ... 31

Server and Web Server Properties .. 32
Starting a Server from your application ... 33
Individual Database Properties ... 33

SQL Commands for Database Properties ... 36
5. Deployment Issues ... 38

Purpose ... 38
Mode of Operation and Tables ... 38

Mode of Operation .. 38
Tables ... 38
Large Objects ... 39
Deployment context ... 39

Memory and Disk Use ... 39
Cache Memory Allocation .. 40

Managing Database Connections .. 41
Upgrading Databases ... 41

Upgrading Using the SCRIPT Command ... 42
Manual Changes to the .script File .. 42

Backing Up Databases ... 43
6. Text Tables ... 44

The Implementation ... 44
Definition of Tables ... 44
Scope and Reassignment .. 45
Null Values in Columns of Text Tables ... 45
Configuration ... 45

Text File Issues ... 47
Text File Global Properties ... 47
Importing from a Text Table file .. 48

7. TLS .. 49
Requirements ... 49
Encrypting your JDBC connection ... 49

Client-Side .. 49
Server-Side .. 51

JSSE ... 51
Making a Private-key Keystore .. 51

CA-Signed Cert .. 52
Non-CA-Signed Cert ... 52

Automatic Server or WebServer startup on UNIX ... 52
8. SqlTool .. 53

Purpose ... 53
Recent changes ... 53

The Bare Minimum ... 54
Non-displayable Types ... 55
Desktop shortcuts .. 56
Loading sample data .. 57

RC File Authentication Setup .. 57
Using Inline RC Authentication ... 60
Using the current version of SqlTool with an older HSQLDB distribution. 60
Interactive ... 61

Command Types ... 62
Special Commands .. 63
Buffer Commands ... 65
PL Commands .. 67

Hsqldb User Guide

v

Storing and retrieving binary files .. 68
SQL History ... 68
Shell scripting and command-line piping ... 69
Emulating Non-Interactive mode .. 69

Non-Interactive ... 69
Giving SQL on the Command Line ... 69
SQL Files .. 70
Piping and shell scripting .. 72
Optimally Compatible SQL Files ... 72
Comments ... 72
Special Commands and Buffer Commands in SQL Files 73
Automation .. 75
Getting Interactive Functionality with SQL Files ... 75
Character Encoding ... 75

Generating Text or HTML Reports ... 75
SqlTool Procedural Language .. 76

Variables ... 77
PL Aliases ... 77
Logical Expressions ... 78
Flow Control .. 79

Chunking ... 81
Why? .. 82
How? .. 82

Raw Mode ... 82
PL/SQL ... 83
Using hsqltool.jar and hsqldbutil.jar .. 84
Character-Separated-Value Imports and Exports ... 85

Simple CSV exports and imports using default settings 85
Specifying queries, delimiters, file names, table names, columns 86

9. SQL Syntax .. 88
Notational Conventions Used in this Chapter .. 88
SQL Commands ... 88

ALTER INDEX .. 88
ALTER SEQUENCE ... 88
ALTER SCHEMA .. 88
ALTER TABLE ... 89
ALTER USER .. 90
CALL ... 91
CHECKPOINT ... 91
COMMIT .. 91
CONNECT .. 91
CREATE ALIAS .. 91
CREATE INDEX .. 92
CREATE ROLE ... 92
CREATE SCHEMA .. 92
CREATE SEQUENCE .. 93
CREATE TABLE ... 93
CREATE TRIGGER ... 95
CREATE USER ... 96
CREATE VIEW ... 96
DELETE ... 97
DISCONNECT ... 97
DROP INDEX .. 97
DROP ROLE ... 98
DROP SEQUENCE ... 98
DROP SCHEMA .. 98
DROP TABLE ... 98
DROP TRIGGER .. 98

Hsqldb User Guide

vi

DROP USER ... 99
DROP VIEW ... 99
EXPLAIN PLAN .. 99
GRANT .. 99
INSERT .. 100
REVOKE .. 100
ROLLBACK .. 100
SAVEPOINT ... 100
SCRIPT .. 101
SELECT ... 101
SET AUTOCOMMIT .. 102
SET DATABASE COLLATION ... 102
SET CHECKPOINT DEFRAG .. 102
SET IGNORECASE .. 103
SET INITIAL SCHEMA .. 103
SET LOGSIZE ... 103
SET PASSWORD ... 103
SET PROPERTY .. 103
SET REFERENTIAL INTEGRITY .. 103
SET SCHEMA ... 104
SET SCRIPTFORMAT .. 104
SET TABLE INDEX ... 104
SET TABLE READONLY ... 104
SET TABLE SOURCE .. 104
SET WRITE DELAY .. 106
SHUTDOWN ... 106
UPDATE ... 107

Schema object naming ... 107
Data Types .. 108
SQL Comments .. 109
Stored Procedures / Functions .. 109
Built-in Functions and Stored Procedures .. 110
SQL Expression .. 114

A. Building HSQLDB .. 117
Purpose ... 117
Building with Ant ... 117

Obtaining Ant ... 117
Building Hsqldb with Ant ... 117

Building with DOS Batch Files .. 119
Hsqldb CodeSwitcher .. 119
Building documentation ... 120

B. First JDBC Client Example ... 122
C. Hsqldb Database Files and Recovery ... 126

... 126
States .. 126

... 126

... 126

... 127
Procedures ... 127

Clean Shutdown .. 127
Startup .. 128
Repair ... 128

D. Running Hsqldb with OpenOffice.org 1.1.x .. 130
Introduction ... 130
Installing ... 130
Setting up OpenOffice.org .. 130

On Windows .. 130
On Linux ... 130

Hsqldb User Guide

vii

E. Hsqldb Test Utility .. 132
F. Database Manager ... 134

Brief Introduction .. 134
Auto tree-update ... 134
Automatic Connection ... 135
RC File ... 135
Using the current DatabaseManagers with an older HSQLDB distribution. 135
DatabaseManagerSwing as an Applet .. 136

G. Transfer Tool ... 138
Brief Introduction .. 138

Hsqldb User Guide

viii

List of Tables
1. Alternate formats of this document ... xi
4.1. Hsqldb URL Components ... 29
4.2. Connection Properties .. 30
4.3. Hsqldb Server Properties Files ... 32
4.4. Property File Properties .. 32
4.5. Server Property File Properties .. 33
4.6. WebServer Property File Properties .. 33
4.7. Database-specific Property File Properties ... 34
4.8. SQL command properties ... 36
9.1. Data Types ... 108

ix

List of Examples
1.1. Java code to connect to the local Server above .. 4
2.1. Column values which satisfy a 2-column UNIQUE constraint 10
2.2. Query comparison ... 12
2.3. Numbering returned rows of a SELECT in sequential order ... 15
3.1. server.properties fragment ... 26
3.2. example sqltool.rc stanza .. 27
7.1. Exporting certificate from the server's keystore ... 50
7.2. Adding a certificate to the client keystore ... 50
7.3. Specifying your own trust store to a JDBC client ... 50
7.4. Running an Hsqldb server with TLS encryption .. 51
7.5. Getting a pem-style private key into a JKS keystore ... 52
8.1. Sample RC File ... 57
8.2. Defining and using a PL alias (PL variable) .. 67
8.3. Inserting binary data into database from a file ... 68
8.4. Downloading binary data from database to a file ... 68
8.5. Piping input into SqlTool .. 72
8.6. Valid comment example ... 73
8.7. Invalid comment example ... 73
8.8. Simple SQL file using PL ... 78
8.9. SQL File showing use of most PL features ... 80
8.10. Single-line chunking example .. 81
8.11. Multi-line chunking example ... 82
8.12. Raw Mode example ... 82
8.13. PL/SQL Example .. 83
8.14. CSV Export Example ... 86
8.15. CSV Import Example ... 86
8.16. CSV Export of an Arbitrary SELECT Statement .. 87
A.1. Buiding the standard Hsqldb jar file with Ant ... 118
A.2. Example source code before CodeSwitcher is run ... 119
A.3. CodeSwitcher command line invocation ... 119
A.4. Source code after CodeSwitcher processing ... 120
A.5. Building HTML User Guides .. 120
A.6. Building User Guides in all formats ... 121
B.1. JDBC Client source code example ... 122

x

Introduction
If you notice any mistakes in this document, please email the author listed at the beginning of the
chapter. If you have problems with the procedures themselves, please use the HSQLDB support facilit-
ies which are listed at http://hsqldb.org/web/hsqlSupport.html.

Available formats for this document
This document is available in several formats.

You may be reading this document right now at http://hsqldb.org/doc/guide, or in a distribution some-
where else. I hereby call the document distribution from which you are reading this, your current distro.

http://hsqldb.org/doc/guide hosts the latest production versions of all available formats. If you want a
different format of the same version of the document you are reading now, then you should try your cur-
rent distro. If you want the latest production version, you should try http://hsqldb.org/doc/guide.

Sometimes, distributions other than http://hsqldb.org/doc/guide do not host all available formats. So, if
you can't access the format that you want in your current distro, you have no choice but to use the new-
est production version at http://hsqldb.org/doc/guide.

Table 1. Alternate formats of this document

format your distro at http://hsqldb.org/doc/guide

Chunked HTML index.html ht-
tp://hsqldb.org/doc/guide/index.h
tml

All-in-one HTML guide.html ht-
tp://hsqldb.org/doc/guide/guide.h
tml

PDF guide.pdf ht-
tp://hsqldb.org/doc/guide/guide.p
df

xi

http://hsqldb.org/web/hsqlSupport.html
index.html
http://hsqldb.org/doc/guide/index.html
http://hsqldb.org/doc/guide/index.html
http://hsqldb.org/doc/guide/index.html
guide.html
http://hsqldb.org/doc/guide/guide.html
http://hsqldb.org/doc/guide/guide.html
http://hsqldb.org/doc/guide/guide.html

Chapter 1. Running and Using Hsqldb
Fred Toussi, HSQLDB Development Group <ft@cluedup.com>

Copyright 2002-2005 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQLDB Development
Group to distribute this document with or without alterations under the terms of the HSQLDB license.
$Date: 2005/09/19 00:03:12 $

Introduction
The HSQLDB jar package is located in the /lib directory and contains several components and pro-
grams. Different commands are used to run each program.

Components of the Hsqldb jar package

• HSQLDB RDBMS

• HSQLDB JDBC Driver

• Database Manager (Swing and AWT versions)

• Query Tool (AWT)

• Sql Tool (command line)

The HSQLDB RDBMS and JDBC Driver provide the core functionality. The rest are general-purpose
database tools that can be used with any database engine that has a JDBC driver.

Running Tools
All tools can be run in the standard way for archived Java classes. In the following example the AWT
version of the Database Manager, the hsqldb.jar is located in the directory ../lib relative to the
current directory.

java -cp ../lib/hsqldb.jar org.hsqldb.util.DatabaseManager

If hsqldb.jar is in the current directory, the command would change to:

java -cp hsqldb.jar org.hsqldb.util.DatabaseManager

Main classes for the Hsqldb tools

• org.hsqldb.util.DatabaseManager

• org.hsqldb.util.DatabaseManagerSwing

1

• org.hsqldb.util.Transfer

• org.hsqldb.util.QueryTool

• org.hsqldb.util.SqlTool

Some tools, such as the Database Manager or SQL Tool, can use command line arguments or entirely
rely on them. You can add the command line argument -? to get a list of available arguments for these
tools. Database Manager features a graphical user interface and can be explored interactively.

Running Hsqldb
HSQLDB can be run in a number of different ways. In general these are divided into Server Modes and
In-Process Mode (also called Standalone Mode). A different sub-program from the jar is used to run
HSQLDB in each mode.

Each HSQLDB database consists of between 2 to 5 files, all named the same but with different exten-
sions, located in the same directory. For example, the database named "test" consists of the following
files:

• test.properties

• test.script

• test.log

• test.data

• test.backup

The properties files contains general settings about the database. The script file contains the definition of
tables and other database objects, plus the data for non-cached tables. The log file contains recent
changes to the database. The data file contains the data for cached tables and the backup file is a zipped
backup of the last known consistent state of the data file. All these files are essential and should never be
deleted. If the database has no cached tables, the test.data and test.backup files will not be
present. In addition to those files, HSQLDB database may link to any formatted text files, such as CSV
lists, anywhere on the disk.

While the "test" database is operational, a test.log file is used to write the changes made to data.
This file is removed at a normal SHUTDOWN. Otherwise (with abnormal shutdown) this file is used at
the next startup to redo the changes. A test.lck file is also used to record the fact that the database
is open. This is deleted at a normal SHUTDOWN. In some circumstances, a test.data.old is cre-
ated and deleted afterwards.

Note

When the engine closes the database at a shutdown, it creates temporary files with the exten-
sion .new which it then renames to those listed above.

Server Modes
Server modes provide the maximum accessibility. The database engine runs in a JVM and listens for
connections from programs on the same computer or other computers on the network. Several different
programs can connect to the server and retrieve or update information. Applications programs (clients)

Running and Using Hsqldb

2

connect to the server using the HSQLDB JDBC driver. In most server modes, the server can serve up to
10 databases that are specified at the time of running the server.

Server modes can use preset properties or command line arguments as detailed in the Advanced Topics
chapter. There are three server modes, based on the protocol used for communications between the cli-
ent and server.

Hsqldb Server
This is the preferred way of running a database server and the fastest one. A proprietary communications
protocol is used for this mode. A command similar to those used for running tools and described above
is used for running the server. The following example of the command for starting the server starts the
server with one (default) database with files named "mydb.*".

java -cp ../lib/hsqldb.jar org.hsqldb.Server -database.0 file:mydb -dbname.0 xdb

The command line argument -? can be used to get a list of available arguments.

Hsqldb Web Server
This mode is used when access to the computer hosting the database server is restricted to the HTTP
protocol. The only reason for using the Web Server mode is restrictions imposed by firewalls on the cli-
ent or server machines and it should not be used where there are no such restrictions. The HSQLDB
Web Server is a special web server that allows JDBC clients to connect via HTTP. From 1.7.2 this mode
also supports transactions.

To run a web server, replace the main class for the server in the example command line above with the
following:

org.hsqldb.WebServer

The command line argument -? can be used to get a list of available arguments.

Hsqldb Servlet
This uses the same protocol as the Web Server. It is used when a separate servlet engine (or application
server) such as Tomcat or Resin provides access to the database. The Servlet Mode cannot be started in-
dependently from the servlet engine. The hsqlServlet class, in the HSQLDB jar, should be installed
on the application server to provide the connection. The database is specified using an application server
property. Refer to the source file hsqlServlet.java to see the details.

Both Web Server and Servlet modes can only be accessed using the JDBC driver at the client end. They
do not provide a web front end to the database. The Servlet mode can serve only a single database.

Please note that you do not normally use this mode if you are using the database engine in an application
server.

Connecting to a Database running as a Server

Once an HSQLDB server is running, client programs can connect to it using the HSQLDB JDBC Driver
contained in hsqldb.jar. Full information on how to connect to a server is provided in the Java Doc-
umentation for jdbcConnection [../src/org/hsqldb/jdbc/jdbcConnection.html] (located in the /
doc/src directory of HSQLDB distribution. A common example is connection to the default port

Running and Using Hsqldb

3

../src/org/hsqldb/jdbc/jdbcConnection.html

(9001) used for the hsql protocol on the same machine:

Example 1.1. Java code to connect to the local Server above

try {
Class.forName("org.hsqldb.jdbcDriver");

} catch (Exception e) {
System.out.println("ERROR: failed to load HSQLDB JDBC driver.");
e.printStackTrace();
return;

}

Connection c = DriverManager.getConnection("jdbc:hsqldb:hsql://localhost/xdb", "sa", "");

In some circumstances, you may have to use the following line to get the driver.

Class.forName("org.hsqldb.jdbcDriver").newInstance();

Note in the above connection URL, there is no mention of the database file, as this was specified when
running the server. Instead, the value defined for dbname.0 is used. Also, see the Advanced Topics
chapter for the connection URL when there is more than one database per server instance.

Security Considerations

When HSQLDB is run as a server, network access should be adequately protected. Source IP addresses
may be restricted by use of TCP filtering or firewall programs, or standalone firewalls. If the traffic will
cross an unprotected network (such as the Internet), the stream should be encrypted (for example by
VPN, ssh tunneling, or TLS using the SSL enabled HSQLS and HTTPS variants of the server and web
server modes). Only secure passwords should be used-- most importantly, the password for the default
system user should be changed from the default empty string. If you are purposefully providing data to
the public, then the wide-open public network connection should be used exclusively to access the pub-
lic data via read-only accounts. (I.e., neither secure data nor privileged accounts should use this connec-
tion). These considerations also apply to HSQLDB servers run with the HTTP protocol.

In-Process (Standalone) Mode
This mode runs the database engine as part of your application program in the same Java Virtual Ma-
chine. For most applications this mode can be faster, as the data is not converted and sent over the net-
work. The main drawback is that it is not possible by default to connect to the database from outside
your application. As a result you cannot check the contents of the database with external tools such as
Database Manager while your application is running. In 1.8.0, you can run a server instance in a thread
from the same virtual machine as your application and provide external access to your in-process data-
base.

The recommended way of using the in-process mode in an application is to use an HSQLDB Server in-
stance for the database while developing the application and then switch to In-Process mode for deploy-
ment.

An In-Process Mode database is started from JDBC, with the database file path specified in the connec-
tion URL. For example, if the database name is testdb and its files are located in the same directory as
where the command to run your application was issued, the following code is used for the connection:

Running and Using Hsqldb

4

Connection c = DriverManager.getConnection("jdbc:hsqldb:file:testdb", "sa", "");

The database file path format can be specified using forward slashes in Windows hosts as well as Linux
hosts. So relative paths or paths that refer to the same directory on the same drive can be identical. For
example if your database path in Linux is /opt/db/testdb and you create an identical directory
structure on the C: drive of a Windows host, you can use the same URL in both Windows and Linux:

Connection c = DriverManager.getConnection("jdbc:hsqldb:file:/opt/db/testdb", "sa", "");

When using relative paths, these paths will be taken relative to the directory in which the shell command
to start the Java Virtual Machine was executed. Refer to Javadoc for jdbcConnection
[../src/org/hsqldb/jdbc/jdbcConnection.html] for more details.

Memory-Only Databases
It is possible to run HSQLDB in a way that the database is not persistent and exists entirely in random
access memory. As no information is written to disk, this mode should be used only for internal pro-
cessing of application data, in applets or certain special applications. This mode is specified by the mem:
protocol.

Connection c = DriverManager.getConnection("jdbc:hsqldb:mem:aname", "sa", "");

You can also run a memory-only server instance by specifying the same URL in the serv-
er.properties. This usage is not common and is limited to special applications where the database
server is used only for exchanging information between clients, or for non-persistent data.

General
Closing the Database

All databases running in different modes can be closed with the SHUTDOWN command, issued as an
SQL query. From version 1.7.2, in-process databases are no longer closed when the last connection to
the database is explicitly closed via JDBC, a SHUTDOWN is required. In 1.8.0, a connection property,
shutdown=true, can be specified on the first connection to the database (the connection that opens the
database) to force a shutdown when the last connection closes.

When SHUTDOWN is issued, all active transactions are rolled back. A special form of closing the data-
base is via the SHUTDOWN COMPACT command. This command rewrites the .data file that con-
tains the information stored in CACHED tables and compacts it to size. This command should be issued
periodically, especially when lots of inserts, updates or deletes have been performed on the cached
tables. Changes to the structure of the database, such as dropping or modifying populated CACHED
tables or indexes also create large amounts of unused file space that can be reclaimed using this com-
mand.

Using Multiple Databases in One JVM
In the above examples each server serves only one database and only one in-memory database can be
created. However, from version 1.7.2, HSQLDB can serve several databases in multiple server modes
and allow simultaneous access to multiple in-process and memory-only databases. These capabilities are
covered in the Advanced Topics chapter.

Running and Using Hsqldb

5

../src/org/hsqldb/jdbc/jdbcConnection.html

Creating a New Database
When a server instance is started, or when a connection is made to an in-process database, a new, empty
database is created if no database exists at the given path.

This feature has a side effect that can confuse new users. If a mistake is made in specifying the path for
connecting to an existing database, a connection is nevertheless established to a new database. For
troubleshooting purposes, you can specify a connection property ifexists=true to allow connection to
an existing database only and avoid creating a new database. In this case, if the database does not exist,
the getConnection() method will throw an exception.

Using the Database Engine
Once a connection is established to a database in any mode, JDBC methods are used to interact with the
database. The Javadoc for jdbcConnection [../src/org/hsqldb/jdbc/jdbcConnection.html], jdb-
cDriver [../src/org/hsqldb/jdbcDriver.html], jdbcDatabaseMetadata
[../src/org/hsqldb/jdbc/jdbcDatabaseMetaData.html], jdbcResultSet
[../src/org/hsqldb/jdbc/jdbcResultSet.html], jdbcStatement
[../src/org/hsqldb/jdbc/jdbcStatement.html], and jdbcPreparedStatement
[../src/org/hsqldb/jdbc/jdbcPreparedStatement.html] list all the supported JDBC methods together with
information that is specific to HSQLDB. JDBC methods are broadly divided into: connection related
methods, metadata methods and database access methods. The database access methods use SQL com-
mands to perform actions on the database and return the results either as a Java primitive type or as an
instance of the java.sql.ResultSet class.

You can use Database Manager or other Java database access tools to explore your database and update
it with SQL commands. These programs use JDBC internally to submit your commands to the database
engine and to display the results in a human readable format.

The SQL dialect used in HSQLDB is as close to the SQL92 and SQL200n standards as it has been pos-
sible to achieve so far in a small-footprint database engine. The full list of SQL commands is in the SQL
Syntax chapter.

Different Types of Tables
HSQLDB supports TEMP tables and three types of persistent tables.

TEMP tables are not written to disk and last only for the lifetime of the Connection object. The contents
of each TEMP table is visible only from the Connection that was used to populate it; other concurrent
connections to the database will have access to their own copies of the table. Since 1.8.0 the definition
of TEMP tables conforms to the GLOBAL TEMPORARY type in the SQL standard. The definition of
the table persists but each new connections sees its own copy of the table, which is empty at the begin-
ning. When the connection commits, the contents of the table are cleared by default. If the table defini-
tion statements includes ON COMMIT PRESERVE ROWS, then the contents are kept when a commit
takes place.

The three types of persistent tables are MEMORY tables, CACHED tables and TEXT tables.

Memory tables are the default type when the CREATE TABLE command is used. Their data is held en-
tirely in memory but any change to their structure or contents is written to the <dbname>.script
file. The script file is read the next time the database is opened, and the MEMORY tables are recreated
with all their contents. So unlike TEMP table, the default, MEMORY tables are persistent.

CACHED tables are created with the CREATE CACHED TABLE command. Only part of their data or
indexes is held in memory, allowing large tables that would otherwise take up to several hundred mega-
bytes of memory. Another advantage of cached tables is that the database engine takes less time to start
up when a cached table is used for large amounts of data. The disadvantage of cached tables is a reduc-

Running and Using Hsqldb

6

../src/org/hsqldb/jdbc/jdbcConnection.html
../src/org/hsqldb/jdbcDriver.html
../src/org/hsqldb/jdbcDriver.html
../src/org/hsqldb/jdbc/jdbcDatabaseMetaData.html
../src/org/hsqldb/jdbc/jdbcResultSet.html
../src/org/hsqldb/jdbc/jdbcStatement.html
../src/org/hsqldb/jdbc/jdbcPreparedStatement.html

tion in speed. Do not use cached tables if your data set is relatively small. In an application with some
small tables and some large ones, it is better to use the default, MEMORY mode for the small tables.

TEXT tables are supported since version 1.7.0 and use a CSV (Comma Separated Value) or other delim-
ited text file as the source of their data. You can specify an existing CSV file, such as a dump from an-
other database or program, as the source of a TEXT table. Alternatively, you can specify an empty file
to be filled with data by the database engine. TEXT tables are efficient in memory usage as they cache
only part of the text data and all of the indexes. The Text table data source can always be reassigned to a
different file if necessary. Two commands are needed to set up a TEXT table as detailed in the Text
Tables chapter.

With memory-only databases (see above), both MEMORY table and CACHED table declarations are
treated as declarations for non-persistent memory tables. TEXT table declarations are not allowed in this
mode.

Constraints and Indexes
HSQLDB supports PRIMARY KEY, NOT NULL, UNIQUE, CHECK and FOREIGN KEY constraints.
In addition, it supports UNIQUE or ordinary indexes. This support is fairly comprehensive and covers
multi-column constraints and indexes, plus cascading updates and deletes for foreign keys.

HSQLDB creates indexes internally to support PRIMARY KEY, UNIQUE and FOREIGN KEY con-
straints: a unique index is created for each PRIMARY KEY or UNIQUE constraint; an ordinary index is
created for each FOREIGN KEY constraint. Because of this, you should not create duplicate user-
defined indexes on the same column sets covered by these constraints. This would result in unnecessary
memory and speed overheads. See the discussion in the SQL Issues chapter for more information.

Indexes are crucial for adequate query speed. When queries joining multiple tables are used, there must
be an index on each joined column of each table. When range or equality conditions are used e.g. SE-
LECT ... WHERE acol >10 AND bcol = 0, an indexe is required on the acol column used in
the condition. Indexes have no effect on ORDER BY clauses or some LIKE conditions.

As a rule of thumb, HSQLDB is capable of internal processing of queries at over 100,000 rows per
second. Any query that runs into several seconds should be checked and indexes should be added to the
relevant columns of the tables if necessary.

SQL Support
The SQL syntax supported by HSQLDB is essentially that specified by the SQL Standard (92 and
200n). Not all the features of the Standard are supported and there are some proprietary extensions. In
1.8.0 the behaviour of the engine is far more compliant with the Standards than with older versions. The
main changes are

• correct treatment of NULL column values in joins, in UNIQUE constraints and in query conditions

• correct processing of selects with JOIN and LEFT OUTER JOIN

• correct processing of aggregate functions contained in expressions or containing expression argu-
ments

The supported commands are listed in the SQL Syntax chapter. For a well written basic guide to SQL
with examples you can consult PostgreSQL: Introduction and Concepts
[http://www.postgresql.org/files/documentation/books/aw_pgsql/index.html] by Bruce Momjian, which
is available on the web. Most of the SQL coverage in the book applies also to HSQLDB. There are some
differences in keywords supported by one and not the other engine (OUTER, OID's, etc.) or used differ-

Running and Using Hsqldb

7

http://www.postgresql.org/files/documentation/books/aw_pgsql/index.html

ently (IDENTITY/SERIAL, TRIGGER, SEQUENCE, etc.).

JDBC Support
Since 1.7.2, support for JDBC2 has been significantly extended and some features of JDBC3 are also
supported. The relevant classes are thoroughly documented. See the JavaDoc for org.hsqldb.jdbcXXXX
[../src/index.html] classes.

Running and Using Hsqldb

8

../src/index.html

Chapter 2. SQL Issues
Fred Toussi, HSQLDB Development Group <ft@cluedup.com>

Copyright 2002-2005 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQLDB Development
Group to distribute this document with or without alterations under the terms of the HSQLDB license.
$Date: 2005/07/01 17:06:32 $

Purpose
Many questions repeatedly asked in Forums and mailing lists are answered in this guide. If you want to
use HSQLDB with your application, you should read this guide.

SQL Standard Support
HSQLDB 1.8.0 supports the dialect of SQL defined by SQL standards 92, 99 and 2003. This means
where a feature of the standard is supported, e.g. left outer join, the syntax is that specified by the stand-
ard text. Many features of SQL92 and 99 up to Advanced Level are supported and there is support for
most of SQL 2003 Foundation and several optional features of this standard. However, certain features
of the Standards are not supported so no claim is made for full support of any level of the standards.

The SQL Syntax chapter of this guide SQL Syntax lists all the keywords and syntax that is supported.
When writing or converting existing SQL DDL (Data Definition Language) and DML (Data Manipula-
tion Language) statements for HSQLDB, you should consult the supported syntax and modify the state-
ments accordingly.

Several words are reserved by the standard and cannot be used as table or column names. For example,
the word POSITION is reserved as it is a function defined by the Standards with a similar role as
String.indexOf() in Java. HSQLDB does not currently prevent you from using a reserved word if it does
not support its use or can distinguish it. For example BEGIN is a reserved words that is not currently
supported by HSQLDB and is allowed as a table or column name. You should avoid the use of such
words as future versions of HSQLDB are likely to support the words and will reject your table defini-
tions or queries. The full list of SQL reserved words is in the source of the org.hsqldb.Token
class.

HSQLDB also supports some keywords and expressions that are not part of the SQL standard as en-
hancements. Expressions such as SELECT TOP 5 FROM .., SELECT LIMIT 0 10 FROM ...
or DROP TABLE mytable IF EXISTS are among such constructs.

All keywords, can be used for database objects if they are double quoted.

Constraints and Indexes
Primary Key Constraints

Before 1.7.0, a CONSTRAINT <name> PRIMARY KEY was translated internally to a unique index
and, in addition, a hidden column was added to the table with an extra unique index. From 1.7.0 both
single-column and multi-column PRIMARY KEY constraints are supported. They are supported by a
unique index on the primary key column(s) specified and no extra hidden column is maintained for these
indexes.

9

Unique Constraints
According to the SQL standards, a unique constraint on a single column means no two values are equal
unless one of them is NULL. This means you can have one or more rows where the column value is
NULL.

A unique constraint on multiple columns (c1, c2, c3, ..) means that no two sets of values for the columns
are equal unless at lease one of them is NULL. Each single column taken by itself can have repeat val-
ues. The following example satisfies a UNIQUE constraint on the two columns:

Example 2.1. Column values which satisfy a 2-column UNIQUE constraint

1, 2
2, 1
2, 2
NULL, 1
NULL, 1
1, NULL
NULL, NULL
NULL, NULL

Since version 1.7.2 the behaviour of UNIQUE constraints and indexes with respect to NULL values has
changed to conform to SQL standards. A row, in which the value for any of the UNIQUE constraint
columns is NULL, can always be added to the table. So multiple rows can contain the same values for
the UNIQUE columns if one of the values is NULL.

Unique Indexes
In 1.8.0, user defined UNIQUE indexes can still be declared but they are deprecated. You should use a
UNIQUE constraint instead.

CONSTRAINT <name> UNIQUE always creates internally a unique index on the columns, as with
previous versions, so it has exactly the same effect as the deprecated UNIQUE index declaration.

FOREIGN KEYS
From version 1.7.0, HSQLDB features single and multiple column foreign keys. A foreign key can also
be specified to reference a target table without naming the target column(s). In this case the primary key
column(s) of the target table is used as the referenced column(s). Each pair of referencing and refer-
enced columns in any foreign key should be of identical type. When a foreign key is declared, a unique
constraint (or primary key) must exist on the referenced columns in the primary key table. A non-unique
index is automatically created on the referencing columns. For example:

CREATE TABLE child(c1 INTEGER, c2 VARCHAR, FOREIGN KEY (c1, c2) REFERENCES parent(p1, p2));

There must be a UNIQUE constraint on columns (p1,p2) in the table named "parent". A non-unique
index is automatically created on columns (c1, c2) in the table named "child". Columns p1 and c1
must be of the same type (INTEGER). Columns p2 and c2 must be of the same type (VARCHAR).

Indexes and Query Speed
HSQLDB does not use indexes to improve sorting of query results. But indexes have a crucial role in

SQL Issues

10

improving query speed. If no index is used in a query on a single table, such as a DELETE query, then
all the rows of the table must be examined. With an index on one of the columns that is in the WHERE
clause, it is often possible to start directly from the first candidate row and reduce the number of rows
that are examined.

Indexes are even more important in joins between multiple tables. SELECT ... FROM t1 JOIN
t2 ON t1.c1 = t2.c2 is performed by taking rows of t1 one by one and finding a matching row
in t2. If there is no index index on t2.c2 then for each row of t1, all the rows of t2 must be checked.
Whereas with an index, a matching row can be found in a fraction of the time. If the query also has a
condition on t1, e.g., SELECT ... FROM t1 JOIN t2 ON t1.c1 = t2.c2 WHERE t1.c3
= 4 then an index on t1.c3 would eliminate the need for checking all the rows of t1 one by one, and will
reduce query time to less than a millisecond per returned row. So if t1 and t2 each contain 10,000 rows,
the query without indexes involves checking 100,000,000 row combinations. With an index on t2.c2,
this is reduced to 10,000 row checks and index lookups. With the additional index on t2.c2, only about 4
rows are checked to get the first result row.

Indexes are automatically created for primary key and unique columns. Otherwise you should define an
index using the CREATE INDEX command.

Note that in HSQLDB a unique index on multiple columns can be used internally as a non-unique index
on the first column in the list. For example: CONSTRAINT name1 UNIQUE (c1, c2, c3);
means there is the equivalent of CREATE INDEX name2 ON atable(c1);. So you do not need to
specify an extra index if you require one on the first column of the list.

In 1.8.0, a multi-column index will speed up queries that contain joins or values on ALL the columns.
You need NOT declare additional individual indexes on those columns unless you use queries that
search only on a subset of the columns. For example, rows of a table that has a PRIMARY KEY or
UNIQUE constraint on three columns or simply an ordinary index on those columns can be found effi-
ciently when values for all three columns are specified in the WHERE clause. For example, SELECT
... FROM t1 WHERE t1.c1 = 4 AND t1.c2 = 6 AND t1.c3 = 8 will use an index on
t1(c1,c2,c3) if it exists.

As a result of the improvements to multiple key indexes, the order of declared columns of the index or
constraint has less affect on the speed of searches than before. If the column that contains more diverse
values appears first, the searches will be slightly faster.

A multi-column index will not speed up queries on the second or third column only. The first column
must be specified in the JOIN .. ON or WHERE conditions.

Query speed depends a lot on the order of the tables in the JOIN .. ON or FROM clauses. For example
the second query below should be faster with large tables (provided there is an index on TB.COL3). The
reason is that TB.COL3 can be evaluated very quickly if it applies to the first table (and there is an index
on TB.COL3):

(TB is a very large table with only a few rows where TB.COL3 = 4)

SELECT * FROM TA JOIN TB ON TA.COL1 = TB.COL2 AND TB.COL3 = 4;

SELECT * FROM TB JOIN TA ON TA.COL1 = TB.COL2 AND TB.COL3 = 4;

The general rule is to put first the table that has a narrowing condition on one of its columns.

1.7.3 features automatic, on-the-fly indexes for views and subselects that are used in a query. An index
is added to a view when it is joined to a table or another view.

Where Condition or Join

SQL Issues

11

Using WHERE conditions to join tables is likely to reduce execution speed. For example the following
query will generally be slow, even with indexes:

SELECT ... FROM TA, TB, TC WHERE TC.COL3 = TA.COL1 AND TC.COL3=TB.COL2 AND TC.COL4 = 1

The query implies TA.COL1 = TB.COL2 but does not explicitly set this condition. If TA and TB
each contain 100 rows, 10000 combinations will be joined with TC to apply the column conditions, even
though there may be indexes on the joined columns. With the JOIN keyword, the TA.COL1 =
TB.COL2 condition has to be explicit and will narrow down the combination of TA and TB rows before
they are joined with TC, resulting in much faster execution with larger tables:

SELECT ... FROM TA JOIN TB ON TA.COL1 = TB.COL2 JOIN TC ON TB.COL2 = TC.COL3 WHERE TC.COL4 = 1

The query can be speeded up a lot more if the order of tables in joins are changed, so that TC.COL1 =
1 is applied first and a smaller set of rows are joined together:

SELECT ... FROM TC JOIN TB ON TC.COL3 = TB.COL2 JOIN TA ON TC.COL3 = TA.COL1 WHERE TC.COL4 = 1

In the above example the engine automatically applies TC.COL4 = 1 to TC and joins only the set of
rows that satisfy this condition with other tables. Indexes on TC.COL4, TB.COL2 and TA.COL1 will
be used if present and will speed up the query.

Subqueries and Joins
Using joins and setting up the order of tables for maximum performance applies to all areas. For ex-
ample, the second query below should generally be much faster if there are indexes on TA.COL1 and
TB.COL3:

Example 2.2. Query comparison

SELECT ... FROM TA WHERE TA.COL1 = (SELECT MAX(TB.COL2) FROM TB WHERE TB.COL3 = 4)

SELECT ... FROM (SELECT MAX(TB.COL2) C1 FROM TB WHERE TB.COL3 = 4) T2 JOIN TA ON TA.COL1 = T2.C1

The second query turns MAX(TB.COL2) into a single row table then joins it with TA. With an index on
TA.COL1, this will be very fast. The first query will test each row in TA and evaluate MAX(TB.COL2)
again and again.

Types and Arithmetic Operations
Table columns of all types supported by HSQLDB can be indexed and can feature in comparisons.
Types can be explicitly converted using the CONVERT() library function, but in most cases they are
converted automatically. It is recommended not to use indexes on LONGVARBINARY,
LONGVARCHAR and OTHER columns, as these indexes will probably not be allowed in future ver-
sions.

Previous versions of HSQLDB featured poor handling of arithmetic operations. For example, it was not

SQL Issues

12

possible to insert 10/2.5 into any DOUBLE or DECIMAL column. Since 1.7.0, full operations are
possible with the following rules:

TINYINT, SMALLINT, INTEGER, BIGINT, NUMERIC and DECIMAL (without a decimal point) are
supported integral types and map to byte, short, int, long and BigDecimal in Java. The SQL type dictates
the maximum and minimum values that can be held in a field of each type. For example the value range
for TINYINT is -128 to +127, although the actual Java type used for handling TINYINT is
java.lang.Integer.

REAL, FLOAT, DOUBLE are all mapped to double in Java.

DECIMAL and NUMERIC are mapped to java.math.BigDecimal and can have very large num-
bers of digits.

Integral Types
TINYINT, SMALLINT, INTEGER, BIGINT, NUMERIC and DECIMAL (without a decimal point) are
fully interchangeable internally, and no data narrowing takes place. Depending on the types of the oper-
ands, the result of the operations is returned in a JDBC ResultSet in any of related Java types: In-
teger, Long or BigDecimal. The ResultSet.getXXXX() methods can be used to retrieve the
values so long as the returned value can be represented by the resulting type. This type is deterministic-
ally based on the query, not on the actual rows returned. The type does not change when the same query
that returned one row, returns many rows as a result of adding more data to the tables.

If the SELECT statement refers to a simple column or function, then the return type is the type corres-
ponding to the column or the return type of the function. For example:

CREATE TABLE t(a INTEGER, b BIGINT); SELECT MAX(a), MAX(b) FROM t;

would return a result set where the type of the first column is java.lang.Integer and the second
column is java.lang.Long. However,

SELECT MAX(a) + 1, MAX(b) + 1 FROM t;

would return java.lang.Long and BigDecimal values, generated as a result of uniform type pro-
motion for all the return values.

There is no built-in limit on the size of intermediate integral values in expressions. As a result, you
should check for the type of the ResultSet column and choose an appropriate getXXXX() method
to retrieve it. Alternatively, you can use the getObject() method, then cast the result to
java.lang.Number and use the intValue() or longValue() methods on the result.

When the result of an expression is stored in a column of a database table, it has to fit in the target
column, otherwise an error is returned. For example when 1234567890123456789012 /
12345687901234567890 is evaluated, the result can be stored in any integral type column, even a
TINYINT column, as it is a small value.

Other Numeric Types
In SQL statements, numbers with a decimal point are treated as DECIMAL unless they are written with
an exponent. Thus 0.2 is considered a DECIMAL value but 0.2E0 is considered a DOUBLE value.

When PreparedStatement.setDouble() or setFloat() is used, the value is treated as a
DOUBLE automatically.

SQL Issues

13

When a REAL, FLOAT or DOUBLE (all synonymous) is part of an expression, the type of the result is
DOUBLE.

Otherwise, when no DOUBLE value exists, if a DECIMAL or NUMERIC value is part an expression,
the type of the result is DECIMAL. The result can be retrieved from a ResultSet in the required type
so long as it can be represented. This means DECIMAL values can be converted to DOUBLE unless
they are beyond the Double.MIN_VALUE - Double.MAX_VALUE range. Similar to integral val-
ues, when the result of an expression is stored in a table column, it has to fit in the target column, other-
wise an error is returned.

The distinction between DOUBLE and DECIMAL is important when a division takes place. When the
terms are DECIMAL, the result is a value with a scale (number of digits to the right of the decimal
point) equal to the larger of the scales of the two terms. With a DOUBLE term, the scale will reflect the
actual result of the operation. For example, 10.0/8.0 (DECIMAL) equals 1.2 but 10.0E0/8.0E0
(DOUBLE) equals 1.25. Without division operations, DECIMAL values represent exact arithmetic;
the resulting scale is the sum of the scales of the two terms when multiplication is performed.

REAL, FLOAT and DOUBLE values are all stored in the database as java.lang.Double objects.
Special values such as NaN and +-Infinity are also stored and supported. These values can be submitted
to the database via JDBC PreparedStatement methods and are returned in ResultSet objects.

Bit and Boolean Types
Since 1.7.2, BIT is simply an alias for BOOLEAN. The primary representation of BOOLEAN column is
'true' or 'false' either as the boolean type or as strings when used from JDBC. This type of
column can also be initialised using values of any numeric type. In this case 0 is translated to false
and any other value such as 1 is translated to true.

Since 1.7.3 the BOOLEAN type conforms to the SQL standards and supports the UNDEFINED state in
addition to TRUE or FALSE. NULL values are treated as undefined. This improvement affects queries
that contain NOT IN. See the test text file, TestSelfNot.txt, for examples of the queries.

Storage and Handling of Java Objects
Since version 1.7.2 this support has improved and any serializable JAVA Object can be inserted directly
into a column of type OTHER using any variation of PreparedStatement.setObject() meth-
ods.

For comparison purposes and in indexes, any two Java Objects are considered equal unless one of them
is NULL. You cannot search for a specific object or perform a join on a column of type OTHER.

Please note that HSQLDB is not an object-relational database. Java Objects can simply be stored intern-
ally and no operations should be performed on them other than assignment between columns of type
OTHER or tests for NULL. Tests such as WHERE object1 = object2, or WHERE object1 =
? do not mean what you might expect, as any non-null object would satisfy such a tests. But WHERE
object1 IS NOT NULL is perfectly acceptable.

The engine does not return errors when normal column values are assigned to Java Object columns (for
example assigning an INTEGER or STRING to such a column with an SQL statement such as UPDATE
mytable SET objectcol = intcol WHERE ...) but this is highly likely to be disallowed in
future. So please use columns of type OTHER only to store your objects and nothing else.

Type Size, Precision and Scale
Prior to 1.7.2, all table column type definitions with a column size, precision or scale qualifier were ac-
cepted and ignored.

SQL Issues

14

In 1.8.0, such qualifiers must conform to the SQL standards. For example INTEGER(8) is no longer ac-
ceptable. The qualifiers are still ignored unless you set a database property. SET PROPERTY
"sql.enforce_strict_size" TRUE will enforce sizes for CHARACTER or VARCHAR
columns and pad any strings when inserting or updating a CHARACTER column. The precision and
scale qualifiers are also enforced for DECIMAL and NUMERIC types. TIMESTAMP can be used with
a precision of 0 or 6 only.

Casting a value to a qualified CHARACTER type will result in truncation or padding as you would ex-
pect. So a test such as CAST (mycol AS VARCHAR(2)) = 'xy' will find the values beginning
with 'xy'. This is the equivalent of SUBSTRING(mycol FROM 1 FOR 2) = 'xy'.

Sequences and Identity
The SEQUENCE keyword was introduced in 1.7.2 with a subset of the SQL 200n standard syntax. Cor-
responding SQL 200n syntax for IDENTITY columns has also been introduced.

Identity Auto-Increment Columns
Each table can contain one auto-increment column, known as the IDENTITY column. An IDENTITY
column is always treated as the primary key for the table (as a result, multi-column primary keys are not
possible with an IDENTITY column present). Support has been added for CREATE TABLE
<tablename>(<colname> IDENTITY, ...) as a shortcut.

Since 1.7.2, the SQL standard syntax is used by default, which allows the initial value to be specified.
The supported form is(<colname> INTEGER GENERATED BY DEFAULT AS IDEN-
TITY(START WITH n, [INCREMENT BY m])PRIMARY KEY, ...). Support has also been
added for BIGINT identity columns. As a result, an IDENTITY column is simply an INTEGER or BI-
GINT column with its default value generated by a sequence generator.

When you add a new row to such a table using an INSERT INTO <tablename> ...; statement,
you can use the NULL value for the IDENTITY column, which results in an auto-generated value for
the column. The IDENTITY() function returns the last value inserted into any IDENTITY column by
this connection. Use CALL IDENTITY(); as an SQL statement to retrieve this value. If you want to
use the value for a field in a child table, you can use INSERT INTO <childtable> VALUES
(...,IDENTITY(),...);. Both types of call to IDENTITY() must be made before any addition-
al update or insert statements are issued on the database.

The next IDENTITY value to be used can be set with the

ALTER TABLE ALTER COLUMN <column name> RESTART WITH <new value>;

Sequences
The SQL 200n syntax and usage is different from what is supported by many existing database engines.
Sequences are created with the CREATE SEQUENCE command and their current value can be modified
at any time with ALTER SEQUENCE. The next value for a sequence is retrieved with the NEXT
VALUE FOR <name> expression. This expression can be used for inserting and updating table rows.
You can also use it in select statements. For example, if you want to number the returned rows of a SE-
LECT in sequential order, you can use:

Example 2.3. Numbering returned rows of a SELECT in sequential order

SQL Issues

15

SELECT NEXT VALUE FOR mysequence, col1, col2 FROM mytable WHERE ...

Please note that the semantics of sequences is not exactly the same as defined by SQL 200n. For ex-
ample if you use the same sequence twice in the same row insert query, you will get two different val-
ues, not the same value as required by the standard.

You can query the SYSTEM_SEQUENCES table for the next value that will be returned from any of
the defined sequences. The SEQUENCE_NAME column contains the name and the NEXT_VALUE
column contains the next value to be returned.

Issues with Transactions
HSQLDB supports transactions at the READ_UNCOMMITTED level, also known as level 0 transac-
tion isolation. This means that during the lifetime of a transaction, other connections to the database can
see the changes made to the data. Transaction support works well in general. Reported bugs concerning
transactions being committed if the database is abruptly closed have been fixed. However, the following
issues may be encountered only with multiple connections to a database using transactions:

If two transactions modify the same row, no exception is raised when both transactions are committed.
This can be avoided by designing your database in such a way that application data consistency does not
depend on exclusive modification of data by one transaction. You can set a database property to cause
an exception when this happens.

SET PROPERTY "sql.tx_no_multi_rewrite" TRUE

When an ALTER TABLE .. INSERT COLUMN or DROP COLUMN command results in changes to
the table structure, the current session is committed. If an uncommitted transaction started by another
connections has changed the data in the affected table, it may not be possible to roll it back after the AL-
TER TABLE command. This may also apply to ADD INDEX or ADD CONSTRAINT commands. It is
recommended to use these ALTER commands only when it is known that other connections are not us-
ing transactions.

After a CHECKPOINT command is issued, uncommitted transactions can be continued, committed, or
rolled back. However, if the database is not subsequently closed properly with the SHUTDOWN com-
mand, any such transaction that still remains uncommitted at the time of shutdown, is part committed (to
the state at CHECKPOINT) at the next startup. It is recommended to use the CHECKPOINT command
either when no uncommitted transactions is in progress, or it is known that any such transaction is not
likely to last for such a long time that an abnormal shutdown might affect its data.

New Features and Changes
In recent versions leading to 1.8.0 many enhancements were made for better SQL support. These are lis-
ted in the SQL Syntax chapter, in ../changelog_1_8_0.txt and ../changelog_1_7_2.txt. Functions and ex-
pressions such as POSITION(), SUBSTRING(), NULLIF(), COALESCE(), CASE ... WHEN .. ELSE,
ANY, ALL etc. are among them. Other enhancements may not be very obvious in the documentation
but can result in changes of behaviour from previous versions. Most significant among these are hand-
ling of NULL values in joins (null columns are no longer joined) and OUTER joins (the results are now
correct). You should test your applications with the new version to ensure they do not rely on past incor-
rect behaviour of the engine. The engine will continue to evolve in future versions towards full SQL
standard support, so it is best not to rely on any non-standard feature of the current version.

SQL Issues

16

../changelog_1_8_0.txt
../changelog_1_7_2.txt

Chapter 3. UNIX Quick Start
How to quickly get Hsqldb up and running on UNIX, including Mac
OS X

Blaine Simpson, HSQLDB Development Group
<blaine.simpson@admc.com>

$Date: 2005/07/25 23:20:53 $

Purpose
This chapter explains how to quickly install, run, and use HSQLDB on UNIX.

HSQLDB has lots of great optional features. I intend to cover very few of them. I do intend to cover
what I think is the most common UNIX setup: To run a multi-user database with permament data per-
sistence. (By the latter I mean that data is stored to disk so that the data will persist across database shut-
downs and startups). I also cover how to run HSQLDB as a system daemon.

Installation
Go to http://sourceforge.net/projects/hsqldb and click on the "files" link. You want the current version.
This will be the highest numbered version under the plain black "hsqldb" heading. See if there's a distri-
bution for the current HSQLDB version in the format that you want.

If you want an rpm, you should still find out the current version of HSQLDB as described in the previ-
ous paragraph. Then click "hsqldb" in the "free section" of http://www.jpackage.org/ and see if they
have the current HSQLDB version built yet. Hopefully, the JPackage folk will document what JVM ver-
sions their rpm will support (currently they document this neither on their site nor within the package it-
self). (I really can't document how to download from a site that is totally beyond my control).

Note

It could very well happen that some of the file formats which I discuss below are not in fact
offered. If so, then we have not gotten around to building them.

Binary installation depends on the package format that you downloaded.

Installing from a .pkg.Z file This package is only for use by a Solaris super-user. It's a System
V package. Download then uncompress the package with uncom-
press or gunzip

uncompress filename.pkg.Z

You can read about the package by running

pkginfo -l -d filename.pkg

Run pkgadd as root to install.

17

http://sourceforge.net/projects/hsqldb
http://www.jpackage.org/

pkgadd -d filename.pkg

Installing from a .rpm file This is a Linux rpm package. After you download the rpm, you
can read about it by running

rpm -qip /path/to/file.rpm

Rpms can be installed or upgraded by running

rpm -Uvh /path/to/file.rpm

as root. Suse users may want to keep Yast aware of installed
packages by running rpm through Yast: yast2 -i /
path/to/file.rpm.

Installing from a .zip file Extract the zip file to the parent directory of the new HSQLDB
home. You don't need to create the HSQLDB_HOME directory
because the extraction will create it for you with the right name)

cd parent/of/new/hsqldb/home
unzip /path/to/file.zip

All the files in the zip archive will be extracted to underneath a
new hsqldb directory.

Take a look at the files you installed. (Under hsqldb for zip file installations. Otherwise, use the utilit-
ies for your packaging system). The most important file of the hsqldb system is hsqldb.jar, which
resides in the directory lib.

Important

For the purposes of this chapter, I define HSQLDB_HOME to be the parent directory of the
lib directory that contains hsqldb.jar. E.g., if your path to hsqldb.jar is /
a/b/hsqldb/lib/hsqldb.jar, then your HSQLDB_HOME is /a/b/hsqldb.

If the description of your distribution says that the hsqldb.jar file will work for your Java version, then
you are finished with installation. Otherwise you need to build a new hsqldb.jar file.

If you followed the instructions above and you still don't know what Java version your hsqldb.jar
supports, then read HSQLDB_HOME/readme.txt and HSQLDB_HOME/index.html. If that
still doesn't help, then you can just try your hsqldb.jar and see if it works, or build your own.

To use the supplied hsqldb.jar, just skip to the next section of this document. Otherwise build a new
hsqldb.jar.

Procedure 3.1. Building hsqldb.jar

1. If you don't already have Ant, download the latest stable binary version from http://ant.apache.org.
cd to where you want Ant to live, and extract from the archive with

UNIX Quick Start

18

http://ant.apache.org

unzip /path/to/file.zip

or

tar -xzf /path/to/file.tar.gz

or

bunzip2 -c /path/to/file.tar.bz2 | tar -xzf -

Everything will be installed into a new subdirectory named apache-ant- + version. You
can rename the directory after the extraction if you wish.

2. Set the environmental variable JAVA_HOME to the base directory of your Java JRE or SDK, like

export JAVA_HOME; JAVA_HOME=/usr/java/j2sdk1.4.0

The location is entirely dependent upon your variety of UNIX. Sun's rpm distributions of Java nor-
mally install to /usr/java/something. Sun's System V package distributions of Java
(including those that come with Solaris) normally install to /usr/something, with a sym-link
from /usr/java to the default version (so for Solaris you will usually set JAVA_HOME to /
usr/java).

3. Remove the existing file HSQLDB_HOME/lib/hsqldb.jar.

4. cd to HSQLDB_HOME/build. Make sure that the bin directory under your Ant home is in your
search path. Run the following command.

ant hsqldb

This will build a new HSQLDB_HOME/lib/hsqldb.jar.

See the Building HSQLDB appendix if you want to build anything other than hsqldb.jar with all
default settings.

Setting up a Hsqldb Persistent Database In-
stance and a Hsqldb Server

If you installed from an OS-specific package, you may already have a database instance and server pre-
configured. See if your package includes a file named server.properties (make use of your pack-
aging utilities). If you do, then I suggest that you still read this section while you poke around, in order
to understand your setup.

1. Select a UNIX user to run the database as. If this database is for the use of multiple users, or is a
production system (or to emulate a production system), you should dedicate a UNIX user for this
purpose. In my examples, I use the user name hsqldb. In this chapter, I refer to this user as the
HSQLDB_OWNER, since that user will own the database instance files and processes.

UNIX Quick Start

19

If the account doesn't exist, then create it. On all system-5 UNIXes and most hybrids (including
Linux), you can run (as root) something like

useradd -c 'HSQLDB Database Owner' -s /bin/bash -m hsqldb

(BSD-variant users can use a similar pw useradd hsqldb... command).

2. Become the HSQLDB_OWNER. Copy the sample file HSQLDB_HOME/
src/org/hsqldb/sample/sample-server.properties to the HSQLDB_OWNER's
home directory and rename it to server.properties.

Hsqldb Server cfg file.
See the Advanced Topics chapter of the Hsqldb User Guide.

server.database.0 file:db0/db0

Since the value of the first database (server.database.0) begins with file:, the database instance
will be persisted to a set of files in the specified directory with names beginning with the specified
name. Set the path to whatever you want (relative paths will be relative to the directory containing
the properties file). You can read about how to specify other database instances of various types,
and how to make settings for the listen port and many other things, in the Advanced Topics chapter.

3. Set and export the environmental variable CLASSPATH to the value of HSQLDB_HOME (as de-
scribed above) plus "/lib/hsqldb.jar", like

export CLASSPATH; CLASSPATH=/path/to/hsqldb/lib/hsqldb.jar

In HSQLDB_OWNER's home directory, run

nohup java org.hsqldb.Server &

This will start the Server process in the background, and will create your new database instance
"db0". Continue on when you see the message containing HSQLDB server... is online.
nohup just makes sure that the command will not quit when you exit the current shell (omit it if
that's what you want to do).

Accessing your Database
Copy the file HSQLDB_HOME/src/org/hsqldb/sample/sqltool.rc to the
HSQLDB_OWNER's home directory. Use chmod to make the file readable and writable only to
HSQLDB_OWNER.

$Id: sqltool.rc,v 1.17 2005/11/06 18:01:49 unsaved Exp $

This is a sample RC configuration file used by SqlTool, DatabaseManager,
and any other program that uses the org.hsqldb.util.RCData class.

You can run SqlTool right now by copying this file to your home directory
and running
java -jar /path/to/hsqldb.jar mem
This will access the first urlid definition below in order to use a

UNIX Quick Start

20

personal Memory-Only database.

If you have the least concerns about security, then secure access to
your RC file.
See the documentation for SqlTool for various ways to use this file.

A personal Memory-Only database.
urlid mem
url jdbc:hsqldb:mem:memdbid
username sa
password

This is for a hsqldb Server running with default settings on your local
computer (and for which you have not changed the password for "sa").
urlid localhost-sa
url jdbc:hsqldb:hsql://localhost
username sa
password

Template for a urlid for an Oracle database.
You will need to put the oracle.jdbc.OracleDriver class into your
classpath.
In the great majority of cases, you want to use the file classes12.zip
(which you can get from the directory $ORACLE_HOME/jdbc/lib of any
Oracle installation compatible with your server).
Since you need to add to the classpath, you can't invoke SqlTool with
the jar switch, like "java -jar .../hsqldb.jar..." or
"java -jar .../hsqlsqltool.jar...".
Put both the HSQLDB jar and classes12.zip in your classpath (and export!)
and run something like "java org.hsqldb.util.SqlTool...".

#urlid cardiff2
#url jdbc:oracle:thin:@aegir.admc.com:1522:TRAFFIC_SID
#username blaine
#password secretpassword
#driver oracle.jdbc.OracleDriver

Template for a TLS-encrypted HSQLDB Server.
Remember that the hostname in hsqls (and https) JDBC URLs must match the
CN of the server certificate (the port and instance alias that follows
are not part of the certificate at all).
You only need to set "truststore" if the server cert is not approved by
your system default truststore (which a commercial certificate probably
would be).

#urlid tls
#url jdbc:hsqldb:hsqls://db.admc.com:9001/lm2
#username blaine
#password asecret
#truststore /home/blaine/ca/db/db-trust.store

Template for a Postgresql database
#urlid blainedb
#url jdbc:postgresql://idun.africawork.org/blainedb
#username blaine
#password losung1
#driver org.postgresql.Driver

Template for a MySQL database. MySQL has poor JDBC support.

UNIX Quick Start

21

#urlid mysql-testdb
#url jdbc:mysql://hostname:3306/dbname
#username root
#username blaine
#password hiddenpwd
#driver com.mysql.jdbc.Driver

Note that "databases" in SQL Server and Sybase are traditionally used for
the same purpose as "schemas" with more SQL-compliant databases.

Template for a Microsoft SQL Server database
url jdbc:microsoft:sqlserver://hostname;DatabaseName=DbName;SelectMethod=Cursor
The SelectMethod setting is required to do more than one thing on a JDBC
session (I guess Microsoft thought nobody would really use Java for
anything other than a "hello world" program).
This is for Microsoft's SQL Server 2000 driver (requires mssqlserver.jar
and msutil.jar).
driver com.microsoft.jdbc.sqlserver.SQLServerDriver
username myuser
password hiddenpwd

Template for a Sybase database
urlid sybase
url jdbc:sybase:Tds:hostname:4100/dbname
username blaine
password hiddenpwd
This is for the jConnect driver (requires jconn3.jar).
driver com.sybase.jdbc3.jdbc.SybDriver

We will be using the "localhost-sa" sample urlid definition from the config file. The JDBC URL for this
urlid is jdbc:hsqldb:hsql://localhost. That is the URL for the default database instance of a
HSQLDB Server running on the default port of the local host. You can read about URLs to connect to
other instances and other servers in the Advanced Topics chapter.

Run SqlTool.

java -jar path/to/hsqldb.jar localhost-sa

If you get a prompt, then all is well. If security is of any concern to you at all, then you should change
the privileged password in the database. Use the command SET PASSWORD command to change SA's
password.

set password "newpassword";

When you're finished playing, exit with the command \q.

If you changed the SA password, then you need to fix the password in the sqltool.rc file accord-
ingly.

You can, of course, also access the database with any JDBC client program. See the First JDBC Client
Example appendix. You will need to modify your classpath to include hsqldb.jar as well as your
client class(es). You can also use the other HSQLDB client programs, such as
org.hsqldb.util.DatabasManagerSwing, a graphical client with a similar purpose to
SqlTool.

You can use any normal UNIX account to run the JDBC clients, including SqlTool, as long as the ac-
count has read access to the hsqldb.jar file and to an sqltool.rc file. See the SqlTool chapter
about where to put sqltool.rc, how to execute sql files, and other SqlTool features.

UNIX Quick Start

22

Create additional Accounts
Connect to the database as SA (or any other Administrative user) and run CREATE USER to create new
accounts for your database instance. HSQLDB accounts are database-instance-specific, not Server-
specific.

For the current version of HSQLDB, only users with Role of DBA may create or own database objects.
DBA members have privileges to do anything. Non-DBAs may be granted some privileges, but may
never create or own database objects. (Before long, non-DBAs will be able to create objects if they have
permission to do so in the target schema). When you first create a hsqldb database, it has only one data-
base user-- SA, a DBA account, with an empty string password. You should set a password (as de-
scribed above). You can create as many additional users as you wish. To make a user a DBA, you can
use the "ADMIN" option to the CREATE USER command, or GRANT the DBA Role to the account
after creating it.

If you create a user without the ADMIN tag (and without granting the DBA role to them) this user will
be able to read the data dictionary tables, but will be able unable to create or own his own objects. He
will have only the rights which the pseudo-user PUBLIC has. To give him more permissions, even rights
to read objects, you can GRANT permissions for specific objects, grant Roles (which encompass a set of
permissions), or grant the DBA Role itself.

Since only people with a database account may do anything at all with the database, it is often useful to
permit other database users to view the data in your tables. To optimize performance, reduce contention,
and minimize administration, it is often best to grant SELECT to PUBLIC on any object that needs to be
accessed by multiple database users (with the significant exception of any data which you want to keep
secret).

Shutdown
Do a clean database shutdown when you are finished with the database instance. You need to connect up
as SA or some other Admin user, of course. With SqlTool, you can run

java -jar path/to/hsqldb.jar --sql shutdown localhost-sa

You don't have to worry about stopping the Server because it shuts down automatically when all
served database instances are shut down.

Running Hsqldb as a System Daemon
You can, of course, run HSQLDB through inittab on System V UNIXes, but usually an init script is
more convenient and manageable. This section explains how to set up and use our UNIX init script. Our
init script is only for use by root. (That is not to say that the Server will run as root-- it usually should
not).

The main purpose of the init script is to start up a Server with the database instances specified in your
server.properties file; and to shut down all of those instances plus additional urlids which you
may (optionally) list in your init script config file. These urlids must all have entries in a sqltool.rc file.
If, due to firewall issues, you want to run a WebServer instead of a Server, then make sure you have a
healthy WebServer with a webserver.properties set up, adjust your URLs in sqltool.rc, and set
TARGET_CLASS in the config file. (By following the commented examples in the config file, you can
start up any number of Server and/or WebServer listeners with or without TLS ecryption).

After you have the init script set up, root can use it anytime to start or stop HSQLDB. (I.e., not just at
system bootup or shutdown).

UNIX Quick Start

23

Portability of hsqldb init script
The primary design criterion of the init script is portability. It does not print pretty color startup/shut-
down messages as is common in late-model Linuxes and HPUX; and it does not keep subsystem state
files or use the startup/shutdown functions supplied by many UNIXes, because these features are all
non-portable.

Offsetting these limitations, this one script does it's intended job great on the UNIX varieties I have
tested, and can easily be modified to accommodate other UNIXes. While you don't have tight integration
with OS-specific daemon administration guis, etc., you do have a well tested and well behaved script
that gives good, utilitarian feedback.

Init script Setup Procedure
The strategy taken here is to get the init script to run your single Server or WebServer first (as specified
by TARGET_CLASS). After that's working, you can customize the JVM that is run by running addi-
tional Servers in it, running your own application in it (embedding), or even overriding HSQLDB beha-
vior with your own overriding classes.

1. Copy the init script hsqldb from HSQLDB_HOME/bin into the directory where init scripts
live on your variety of UNIX. The most common locations are /etc/init.d or /
etc/rc.d/init.d on System V style UNIXes, /usr/local/etc/rc.d on BSD style
UNIXes, and /Library/StartupItems/hsqldb on OS X (you'll need to create the direct-
ory for the last).

2. Look at the comment towards the top of the init script which lists recommended locations for the
configuration file for various UNIX platforms. Copy the sample config file HSQLDB_HOME/
src/org/hsqldb/sample/sample-hsqldb.cfg to one of the listed locations (your
choice). Edit the config file according to the instructions in it.

$Id: sample-hsqldb.cfg,v 1.16 2005/07/24 18:33:13 unsaved Exp $

Sample configuration file for HSQLDB database server.
See the "UNIX Quick Start" chapter of the Hsqldb User Guide.

N.b.!!!! You must place this in the right location for your type of UNIX.
See the init script "hsqldb" to see where this must be placed and
what it should be renamed to.

This file is "sourced" by a Bourne shell, so use Bourne shell syntax.

This file WILL NOT WORK until you set (at least) the non-commented
variables to the appropriate values for your system.
Life will be easier if you avoid all filepaths with spaces or any other
funny characters. Don't ask for support if you ignore this advice.

Thanks to Meikel Bisping for his contributions. -- Blaine

JAVA_EXECUTABLE=/usr/bin/java

Unless you copied a hsqldb.jar file from another system, this typically
resides at $HSQLDB_HOME/lib/hsqldb.jar, where $HSQLDB_HOME is your HSQLDB
software base directory.
HSQLDB_JAR_PATH=/opt/hsqldb/lib/hsqldb.jar

Where the file "server.properties" resides.
SERVER_HOME=/opt/hsqldb/data

What UNIX user the server will run as.

UNIX Quick Start

24

(The shutdown client is always run as root or the invoker of the init script).
Runs as root by default, but you should take the time to set database file
ownerships to another user and set that user name here.
HSQLDB_OWNER=hsqldb

The HSQLDB jar file specified in HSQLDB_JAR_PATH above will automatically
be in the class path. This arg specifies additional classpath elements.
To embed your own application, add your jar file(s) or class base
directories here, and add your main class to the INVOC_ADDL_ARGS setting
below.
#SERVER_ADDL_CLASSPATH=/usr/local/dist/currencybank.jar

We require all Server/WebServer instances to be accessible within
$MAX_START_SECS from when the Server/WebServer is started.
Defaults to 60.
Raise this is you are running lots of DB instances or have a slow server.
#MAX_START_SECS=200

Time to allow for JVM to die after all HSQLDB instances stopped.
Defaults to 1.
#MAX_TERMINATE_SECS=0

These are "urlid" values from a SqlTool authentication file
** IN ADDITION TO THOSE IN YOUR server.properties OR webserver.properties **
file. All server.urlid.X values from your properties file will automatically
be started/stopped/tested. $SHUTDOWN_URLIDS is for additional urlids which
will stopped. (Therefore, most users will not set this at all).
Separate multiple values with white space. NO OTHER SPECIAL CHARACTERS!
Make sure to quote the entire value if it contains white space separator(s).
Defaults to none (i.e., only urlids set in properties file will be stopped).
#SHUTDOWN_URLIDS='sa mygms'

SqlTool authentication file used only for shutdown.
The default value will be sqltool.rc in root's home directory, since it is
root who runs the init script.
(See the SqlTool chapter of the HSQLDB User Guide if you don't understand
this).
#AUTH_FILE=/home/blaine/sqltool.rc

Set this to either 'WebServer' or 'Server'. Defaults to Server.
The JVM that is started can invoke many classes (see the following item
about that), but this is the Server that is used (1) to check status,
(2) to shut down the JVM, (3) to get urlids for #1 from the
server's server/webserver.properties file.
#TARGET_CLASS=WebServer
Note that you don't specify the org.hsqldb package, since you have no
choice in the matter (you can only run org.hsqldb.Server or
org.hsqldb.WebServer). If you specify additional classes with
INVOC_ADDL_ARGS (described next), you do need to specify the
full class name with package name.

This is where you specify exactly what your HSQLDB JVM will run.
The class org.hsqldb.util.MainInvoker will run the TARGET_CLASS
specified above with any arguments supplied here + any other classes
and arguments. Every additional class (in addition to the TARGET_CLASS)
must be preceded with an empty string, so that MainInvoker will know
you are giving a class name. MainInvoker will invoke the normal
static main(String[]) method of each such class.
By default, MainInvoker will just run TARGET_CLASS with no args.
Example that runs just the TARGET_CLASS with the specified arguments:
#INVOC_ADDL_ARGS='-silent false'
Example that runs the TARGET_CLASS plus a WebServer:

UNIX Quick Start

25

#INVOC_ADDL_ARGS='"" org.hsqldb.WebServer'
Note the empty string preceding the class name.
Example that starts TARGET_CLASS with an argument + a WebServer +
your own application with its args (i.e., the HSQLDB Servers are
"embedded" in your application). (Set SERVER_ADDL_CLASSPATH too).:
#INVOC_ADDL_ARGS='-silent false "" org.hsqldb.WebServer "" com.acme.Stone --env prod localhost'
Example to run a non-TLS server in same JVM with a TLS server. In this
case, TARGET_CLASS is Server which will run in TLS mode by virtue of
setting TLS_KEYSTORE and TLS_PASSWORD above. The "additional" Server
here overrides the 'tls' and 'port' settings:
#INVOC_ADDL_ARGS="'' org.hsqldb.Server -port 9002 -tls false"
Note that you use nested quotes to group arguments and to specify the
empty-string delimiter.

For TLS encryption for your Server, set these two variables.
N.b.: If you set these, then make this file unreadable to non-root users!!!!
See the TLS chapter of the HSQLDB User Guide, paying attention to the
security warning(s).
If you are running with a private server cert, then you will also need to
set "truststore" in the your SqlTool config file (location is set by the
AUTH_FILE variable in this file, or it must be at the default location for
HSQLDB_OWNER).
#TLS_KEYSTORE=/path/to/jks/server.store
#TLS_PASSWORD=password

Any JVM args for the invocation of the JDBC client used to verify DB
instances and to shut them down (SqlToolSprayer).
This example specifies the location of a private trust store for TLS
encryption.
For multiple args, put quotes around entire value.
#CLIENT_JVMARGS=-Djavax.net.debug=ssl

Any JVM args for the server.
For multiple args, put quotes around entire value.
#SERVER_JVMARGS=-Xmx512m

3. Either copy HSQLDB_OWNER's sqltool.rc file into root's home directory, or set the value
of AUTH_FILE to the absolute path of HSQLDB_OWNER's sqltool.rc file. This file is read
(for stops) directly by root, even if you run hsqldb as non-root (by setting HSQLDB_OWNER in
the config file). If you copy the file, make sure to use chmod to restrict permissions on the new
copy. (The init script now enforces permissions on this file).

4. Edit your server.properties file. For every server.database.X that you have defined,
set a property of name server.urlid.X to the urlid for an Administrative user for that database
instance.

Example 3.1. server.properties fragment

server.database.0=file://home/hsqldb/data/db1
server.urlid.0=localhostdb1

Warning

Make sure to add a urlid for each and every database instance. If you don't then the init script

UNIX Quick Start

26

will never know about databases that become inaccessible and will give false diagnostics.

For this example, you would need to define the urlid localhostdb1 in your sqltool.rc file.

Example 3.2. example sqltool.rc stanza

urlid localhostdb1
url jdbc:hsqldb:hsql://localhost
username sa
password secret

5. Verify that the init script works.

Just run

/path/to/hsqldb

as root to see the arguments you may use. Notice that you can run

/path/to/hsqldb status

at any time to see whether your HSQLDB Server is running.

Re-run the script with each of the possible arguments to really test it good. If anything doesn't work
right, then see the Troubleshooting the Init Script section.

6. Tell your OS to run the init script upon system startup and shutdown. If you are using a UNIX vari-
ant that has /etc/rc.conf or /etc/rc.conf.local (like BSD variants and Gentoo), you
must set "hsqldb_enable" to "YES" in either of those files. (Just run cd /etc; ls rc.conf
rc.conf.local to see if you have one of these files). For good UNIXes that use System V style
init, you must set up hard links or soft links either manually or with management tools (such as
chkconfig or insserv) or Gui's (like run level editors).

This paragraph is for Mac OS X users only. If you followed the instructions above, your init script
should reside at /Library/StartupItems/hsqldb/hsqldb. Now copy the file Star-
tupParameters.plist from the directory src/org.hsqldb/sample of your HSQLDB
distribution to the same directory as the init script. As long as these two files reside in /
Library/StartupItems/hsqldb, your init script is active (for portability reasons, it doesn't
check for a setting in /etc/hostconfig). You can run it as a Startup Item by running

SystemStarter {start|stop|restart} Hsqldb

Hsqldb is the service name. See the man page for SystemStarter. To disable the init script,
wipe out the /Library/StartupItems/hsqldb directory. Hard to believe, but the Mac
people tell me that during system shutdown the Startup Items don't run at all. Therefore, if you
don't want your data corrupted, make sure to run "SystemStarter stop Hsqldb" before shutting down
your Mac.

UNIX Quick Start

27

Follow the examples in the config file to add additional classes to the server JVM's classpath and to ex-
ecute additional classes in your JVM. (See the SERVER_ADDL_CLASSPATH and IN-
VOC_ADDL_ARGS items).

Troubleshooting the Init Script
Do a ps to look for processes containing the string hsqldb, and try to connect to the database from
any client. If the init script starts up your database successfully, but incorrectly reports that it has not,
then your problem is with specification of urlid(s) or SqlTool setup. If your database really did not start,
then skip to the next paragraph. Verify that the urlid(s) listed in the server.properties or web-
server.properties are correct. and verify that you can run SqlTool as root to connect to the in-
stances. (For the latter test, use the --rcfile switch if you are setting AUTH_FILE in the init script
config file).

If your database really is not starting, then verify that you can su to the database owner account and start
the database. The command su USERNAME -c ... won't work on most UNIXes unless the target
user has a real login shell. Therefore, if you try to tighten up security by disabling this user's login shell,
you will break the init script. If these possibilities don't pan out, then debug the init script or seek help,
as described below.

To debug the init script, run it in verbose mode to see exactly what is happening (and perhaps manually
run the steps that are suspect). To run an init script (in fact, any sh shell script) in verbose mode, use sh
with the -x or -v switch, like

sh -x path/to/hsqldb start

See the man page for sh if you don't know the difference between -v and -x.

If you want troubleshooting help, use the HSQLDB lists/forums or email me at
blaine.simpson@admc.com [mailto:blaine.simpson@admc.com?Subject=hsqldb-unix]. If you email me,
make sure to include the revision number from your hsqldb init script (it's towards the top in the line
that starts like "# $Id:"), and the output of a run of

sh -x path/to/hsqldb start > /tmp/hstart.log 2>&1

UNIX Quick Start

28

mailto:blaine.simpson@admc.com?Subject=hsqldb-unix

Chapter 4. Advanced Topics
Fred Toussi, HSQLDB Development Group <ft@cluedup.com>

Copyright 2002-2005 Fred Toussi. Permission is granted to distribute this document without any alteration
under the terms of the HSQLDB license. Additional permission is granted to the HSQLDB Development
Group to distribute this document with or without alterations under the terms of the HSQLDB license.
$Date: 2005/06/30 22:38:54 $

Purpose
Many questions repeatedly asked in Forums and mailing lists are answered in this guide. If you want to
use HSQLDB with your application, you should read this guide. This document covers system related
issues. For issues related to SQL see the SQL Issues chapter.

Connections
The normal method of accessing an HSQLDB database is via the JDBC Connection interface. An intro-
duction to different methods of providing database services and accessing them can be found in the SQL
Issues chapter. Details and examples of how to connect via JDBC are provided in our JavaDoc for jdb-
cConnection [../src/org/hsqldb/jdbc/jdbcConnection.html].

Version 1.7.2 introduced a uniform method of distinguishing between different types of connection,
alongside new capabilities to provide access to multiple databases. The common driver identifier is jd-
bc:hsqldb: followed by a protocol identifier (mem: file: res: hsql: http: hsqls:
https:) then followed by host and port identifiers in the case of servers, then followed by database
identifier.

Table 4.1. Hsqldb URL Components

Driver and Protocol Host and Port Database

jdbc:hsqldb:mem:
not available

accounts

Lowercase, single-word identifier creates the in-memory database when the first connection is made.
Subsequent use of the same Connection URL connects to the existing DB.

The old form for the URL, jdbc:hsqldb:. creates or connects to the same database as the new
form for the URL, jdbc:hsqldb:mem:.

jdbc:hsqldb:file:
not available

mydb
/opt/db/accounts
C:/data/mydb

The file path specifies the database file. In the above examples the first one refers to a set of mydb.*
files in the directory where the javacommand for running the application was issued. The second and
third examples refer to absolute paths on the host machine.

jdbc:hsqldb:res:
not available

/adirectory/dbname

Database files can be loaded from one of the jars specified as part of the Java command the same way
as resource files are accessed in Java programs. The /adirectory above stands for a directory in

29

../src/org/hsqldb/jdbc/jdbcConnection.html
../src/org/hsqldb/jdbc/jdbcConnection.html

Driver and Protocol Host and Port Database

one of the jars.

jdbc:hsqldb:hsql:
jdbc:hsqldb:hsqls:
jdbc:hsqldb:http:
jdbc:hsqldb:https:

//localhost
//192.0.0.10:9500
/
/dbserv-
er.somedomain.com

/an_alias
/enrollments
/quickdb

The host and port specify the IP address or host name of the server and an optional port number. The
database to connect to is specified by an alias. This alias is a lowercase string defined in the serv-
er.properties file to refer to an actual database on the file system of the server or a transient, in-
memory database on the server. The following example lines in server.properties or web-
server.properties define the database aliases listed above and accessible to clients to refer to
different file and in-memory databases.

database.0=file:/opt/db/accounts
dbname.0=an_alias

database.1=file:/opt/db/mydb
dbname.1=enrollments

database.2=mem:adatabase
dbname.2=quickdb

The old form for the server URL, e.g., jdbc:hsqldb:hsql//localhost connects to the same
database as the new form for the URL, jdbc:hsqldb:hsql//localhost/ where the alias is a
zero length string. In the example below, the database files lists.* in the /home/dbmaster/ dir-
ectory are associated with the empty alias:

database.3=/home/dbmaster/lists
dbname.3=

Connection properties
Each new JDBC Connection to a database can specify connection properties. The properties user and
password are always required. In 1.8.0 the following optional properties can also be used.

Connection properties are specified either by establishing the connection via the:

DriverManager.getConnection (String url, Properties info);

method call, or the property can be appended to the full Connection URL.

Table 4.2. Connection Properties

get_column_name true column name in ResultSet

This property is used for compatibility with other JDBC driver implementations. When true (the de-
fault), ResultSet.getColumnName(int c) returns the underlying column name

Advanced Topics

30

When false, the above method returns the same value as ResultSet.getColumnLabel(int
column) Example below:

jdbc:hsqldb:hsql://localhost/enrollments;get_column_name=false

When a ResultSet is used inside a user-defined stored procedure, the default, true, is always used for
this property.

ifexists false connect only if database already
exists

Has an effect only with mem: and file: database. When true, will not create a new database if one
does not already exist for the URL.

When false (the default), a new mem: or file: database will be created if it does not exist.

Setting the property to true is useful when troubleshooting as no database is created if the URL is mal-
formed. Example below:

jdbc:hsqldb:file:enrollments;ifexists=true

shutdown false shut down the database when the
last connection is closed

This mimics the behaviour of 1.7.1 and older versions. When the last connection to a database is
closed, the database is automatically shut down. The property takes effect only when the first connec-
tion is made to the database. This means the connection that opens the database. It has no effect if used
with subsequent, simultaneous connections.

This command has two uses. One is for test suites, where connections to the database are made from
one JVM context, immediately followed by another context. The other use is for applications where it
is not easy to configure the environment to shutdown the database. Examples reported by users include
web application servers, where the closing of the last connection conisides with the web app being shut
down.

In addition, when a connection to an in-process database creates a new database, or opens an existing
database (i.e. it is the first connection made to the database by the application), all the user-defined data-
base properties can be specified as URL properties. This can be used to specify properties to enforce
more strict SQL adherence, or to change cache_scale or similar properties before the database files are
created. However, for new databases, it is recommended to use the SET PROPERTY command for such
settings.

Properties Files
HSQLDB relies on a set of properties files for different settings. Since 1.7.0 property naming has been
streamlined and a number of new properties have been introduced.

In all properties files, values are case-sensitive. All values apart from names of files or pages are re-
quired in lowercase (e.g. server.silent=FALSE will have no effect, but server.silent=false will work).

The properties files and the settings stored in them are as follows:

Advanced Topics

31

Table 4.3. Hsqldb Server Properties Files

File Name Location Function

server.properties the directory where the command
to run the Server class is issued

settings for running HSQLDB as
a database server communicating
with the HSQL protocol

webserver.properties the directory where the command
to run the WebServer class is
issued

settings for running HSQLDB as
a database server communicating
with the HTTP protocol

<dbname>.properties the directory where all the files
for a database are located

settings for each particular data-
base

Properties files for running the servers are not created automatically. You should create your own files
that contain server.property=value pairs for each property.

The properties file for each database is generated by the database engine. This file can be edited after
closing the database. In 1.8.0, most of these properties can be changed via SQL commands.

Server and Web Server Properties
In both server.properties and webserver.properties files, supported values and their de-
faults are as follows:

Table 4.4. Property File Properties

Value Default Description

server.database.0 test the path and file name of the first
database file to use

server.dbname.0 "" lowercase server alias for the first
database file

server.urlid.0 NONE SqlTool urlid used by UNIX init
script. (This property is not used
if your are running Server/
Webserver on a platform other
than UNIX, or of you are not us-
ing our UNIX init script).

server.silent true no extensive messages displayed
on console

server.trace false JDBC trace messages displayed
on console

In 1.8.0, each server can serve up to 10 different databases simultaneously. The server.database.0 prop-
erty defines the filename / path whereas the server.dbname.0 defines the lowercase alias used by clients
to connect to that database. The digit 0 is incremented for the second database and so on. Values for the
server.database.{0-9} property can use the mem:, file: or res: prefixes and properties as discussed
above under CONNECTIONS. For example,

database.0=mem:temp;sql.enforce_strict_size=true;

Advanced Topics

32

Values specific to server.properties are:

Table 4.5. Server Property File Properties

Value Default Description

server.port 9001 TCP/IP port used for talking to
clients. All databases are served
on the same port.

server.no_system_exit true no System.exit() call when
the database is closed

Values specific to webserver.properties are:

Table 4.6. WebServer Property File Properties

Value Default Description

server.port 80 TCP/IP port used for talking to
clients

server.default_page index.html the default web page for server

server.root ./ the location of served pages

.<extension> ? multiple entries such as
.html=text/html define the
mime types of the static files
served by the web server. See the
source for WebServer.java
for a list.

All the above values can be specified on the command line to start the server by omitting the server.
prefix.

Starting a Server from your application
If you want to start the server from within your application, as opposed to the command line or batch
files, you should create an instance of Server or Web Server, then assign the properties in the form of a
String and start the Server. An example of this can be found in the org.hsqldb.test.TestBase
source.

Note

Upgrading: If you have existing custom properties files, change the values to the new naming
convention. Note the use of digits at the end of server.database.n and server.dbname.n proper-
ties.

Individual Database Properties
Each database has its own <dbname>.properties file as part of a small group of files which also
includes <dbname>.script and <dbname>.data. The properties files contain key/value pairs for
some important settings.

In version 1.8.0 a new SQL command allows most database properties to be modified as follows:

Advanced Topics

33

SET PROPERTY "property_name" property_value

Properties that can be modified via SET PROPERTY are indicated in the table below. Other properties
are indicated as PROPERTIES FILE ONLY and can be modified only by editing the .properties file
after a shutdown and before a restart. Only the user-defined values listed below should ever be modified.
Changing any other value could result in unexpected malfunction in database operations. Most of these
values have been introduced for the new features since 1.7.0:

Table 4.7. Database-specific Property File Properties

Value Default Description

readonly no whole database is read-only

When true, the database cannot be modified in use. This setting can be changed to yes if the database
is to be opened from a CD. Prior to changing this setting, the database should be closed with the
SHUTDOWN COMPACT command to ensure consistency and compactness of the data. (PROPERTIES
FILE ONLY) but can be used as a connection property to open a normal
database as readonly.

hsqldb.files_readonly false database files will not be written
to

When true, data in MEMORY tables can be modified and new MEMORY tables can be added.
However, these changes are not saved when the database is shutdown. CACHED and TEXT tables are
always readonly when this setting is true. (PROPERTIES FILE ONLY)

hsqldb.cache_file_scale 1 Set larger data file limits. Once
set, the limit will go up to 8GB.

This property can be set to 8 to increase the size limit of the .data file from 2GB to 8GB. To apply the
change to an existing database, SHUTDOWN SCRIPT should be performed first, then the prop-
erty=value line below should be added to the .properties file before reopening the database.

hsqldb.cache_file_scale=8

The property can be set with the SQL command (as opposed to changing the value in the properties
file) when the database has no CACHED tables (e.g. a new database). (SET PROPERTY)

sql.enforce_size false trimming and padding string
columns

This property is no longer supported. Use sql.enforce_sctrict_size

sql.enforce_strict_size false size enforcement and padding
string columns

Conforms to SQL standards for size and precision of data types. When true, all CHARACTER,
VARCHAR, NUMERIC and DECIMAL values that are in a row affected by an INSERT INTO or UP-
DATE statement are checked against the size specified in the SQL table definition. An exception is
thrown if the value is too long. Also all CHARACTER values that are shorter than the specified size
are padded with spaces. TIMESTAMP(0) and TIMESTAMP(6) are also allowed in order to specify the
subsecond resolution of the values. When false (default), stores the exact string that is inserted. (SET
PROPERTY)

sql.tx_no_multi_rewrite false transaction management

Advanced Topics

34

Value Default Description

In the default READ_UNCOMMITED mode, a transaction can write over rows inserted or updated by
another uncommitted transaction. Setting this property to true will raise an
exception when such a write is attempted (SET PROPERTY)

hsqldb.cache_scale 14 memory cache exponent

Indicates the maximum number of rows of cached tables that are held in memory, calculated as 3
*(2**value) (three multiplied by (two to the power value)). The default results in up to 3*16384 rows
from all cached tables being held in memory at any time.

The value can range between 8-18. (SET PROPERTY). If the value is set via SET PROPERTY then
it becomes effective after the next database SHUTDOWN or CHECKPOINT. (SET PROPERTY)

hsqldb.cache_size_scale 10 memory cache exponent

Indicates the average size of each row in the memory cache used with cached tables, calculated as
2**value (two to the power value). This result value is multiplied by the maximum number of rows
defined by hsqldb.cache_scale to form the maximum number of bytes for all the rows in memory
cache. The default results in 1024 bytes per row. This default, combined with the default number of
rows, results in approximately 50MB of the .data file to be stored in the memory cache.

The value can range between 6-20. (SET PROPERTY). If the value is set via SET PROPERTY then
it becomes effective after the next database SHUTDOWN or CHECKPOINT. (SET PROPERTY)

hsqldb.log_size 200 size of log when checkpoint is
performed

The value is the size in megabytes that the .log file can reach before an automatic checkpoint occurs.
A checkpoint and rewrites the .script file and clears the .log file. The value can be changed via
the SET LOGSIZE nnn SQL command.

runtime.gc_interval 0 forced garbage collection

This setting forces garbage collection each time a set number of result set row or cache row objects are
created. The default, "0" means no garbage collection is forced by the program.

This should not be set when the database engine is acting as a server inside an exclusive JVM. The set-
ting can be useful when the database is used in-process with the application with some Java Runtime
Environments (JRE's). Some JRE's increase the size of the memory heap before doing any automatic
garbage collection. This setting would prevent any unnecessary enlargement of the heap. Typical val-
ues for this setting would probably be between 10,000 to 100,000. (PROPERTIES FILE ONLY)

hsqldb.nio_data_file true use of nio access methods for the
.data file

When HSQLDB is compiled and run in Java 1.4 or higher, setting this property to false will avoid
the use of nio access methods, resulting in somewhat reduced speed. If the data file is larger than
256MB when it is first opened, nio access methods are not used. Also, if the file gets larger than the
amount of available computer memory that needs to be allocated for nio access, non-nio access meth-
ods are used.

(SET PROPERTY). If used before defining any CACHED table, it applies to the current session, oth-
erwise it comes to effect after a SHUTDOWN and restart or CHECKPOINT.

hsqldb.default_table_type memory type of table created with unqual-
ified CREATE TABLE

The CREATE TABLE command results in a MEMORY table by default. Setting the value "cached"

Advanced Topics

35

Value Default Description

for this property will result in a cached table by default. The qualified forms such as CREATE
MEMORY TABLE or CREATE CACHED TABLE are not affected at all by this property. (SET
PROPERTY)

hsqldb.applog 0 application logging level

The default level 0 indicates no logging. Level 1 results in events related to persistence to be logged,
including any failures. The events are logged in a file ending with .app.log

textdb.* 0 default properties for new text
tables

Properties that override the database engine defaults for newly created text tables. Settings in the text
table SET <tablename> SOURCE <source string> command override both the engine de-
faults and the database properties defaults. Individual textdb.* properties are listed in the Text Tables
chapter. (SET PROPERTY)

When connecting to an in-process database creates a new database, or opens an existing database (i.e. it
is the first connection made to the database by the application), all the user-defined database properties
listed in this section can be specified as URL properties.

Note

Upgrading: From 1.7.0, the location of the database files can no longer be overridden by paths
defined in the properties file. All files belonging to a database should reside in the same direct-
ory.

The property sql.compare_in_locale=true is no longer supported. If the line exists in a .properties file, it
will switch the database to the collation for the current default. See the SET DATABASE
COLLATION1 command.

When HSQLDB is used in OpenOffice.org, some property values will have a different default. The
properties and values are:

hsqldb.default_table_type=cached hsqldb.cache_scale=13 hsqldb.log_size=10;
hsqldb.nio_data_file=false sql.enforce_strict_size=true

SQL Commands for Database Properties
There are some database properties that are set with dedicated SQL commands beginning with SET.

Table 4.8. SQL command properties

SET WRITE_DELAY {{TRUE | FALSE} | <seconds> | <milliseconds> MILLIS

The default is TRUE and indicates that the changes to the database that have been logged are synched
to the file system once every 20 seconds. FALSE indicates there is no delay and at each commit a file
synch operation is performed. Numeric values from 0 can also be specified for the synch delay.

The purpose of this command is to control the amount of data loss in case of a total system crash. A
delay of 1 second means at most the data written to disk during the last second before the crash is lost.
All data written prior to this has been synced and should be recoverable

This setting should be specified on the basis of the reliability of the hardware used for running the data-

Advanced Topics

36

base engine, the type of disk system used, the possibility of power failure etc. Also the nature of the
data stored should be considered.

In general, when the system is very reliable, the setting can be left to the default. If it is not very reli-
able, or the data is critical a setting of 1 or 2 seconds would suffice. Only in the worst case scenario or
with the most critical data should a setting of 0 or FALSE be specified as this will slow the engine
down to the speed at which the file synch operation can be performed by the disk subsystem.

Values down to 10 millisconds can be specified by adding MILLIS to the command, but in practice a
delay of 100 milliseconds provides 99.99999% reliability with an average one system crash per 6 days.

SET LOG_SIZE <numeric value>

The engine writes out a log of all the changes to the database as they occur. This log is synched to the
disk based on the WRITE_DELAY property above. The log is never reused unless there is an abnormal
termination, i.e. the database process is terminated without SHUTDOWN, or it was terminated using
SHUTDOWN IMMEDIATELY.

The default maximum size of the .log file is 200 MB. When the maximum size is reached, a CHECK-
POINT operation is performed. This operation will save the other database files in a consistent state
and delete the old log. A value of 0 indicates no limit for the .log file.

SET CHECKPOINT DEFRAG <numeric value>

When rows in CACHED tables are updated or deleted, the spaces are mostly reused. However, in time,
some unused spaces are left in the .data file, especially when large tables are dropped or their structure
is modified.

A CHECKPOINT operation does not normally reclaim the empty spaces, whereas CHECKPOINT DE-
FRAG always does.

This property determines when a normal CHECKPOINT, whether initiated by an administrator or
when the size of the log exceeds its limit.

The numeric value is the number of megabytes of recorded empty spaces in the .data file that would
force a DEFRAG operation. Low values result in more frequent DEFRAG operations. A value of 0 in-
dicates no automatic DEFRAG is performed. The default is 200 megabytes of lost space.

SET REFERENTIAL INTEGRITY {TRUE | FALSE}

This is TRUE by default. If bulk data needs to be loaded into the database, this property can be set
FALSE for the duration of bulk load operation. This allows loading data for related tables in any order.
The property should be set TRUE after bulk load. If the loaded data is not guaranteed to conform to the
referential integrity constraints, SQL queries should be run after loading to identify and modify any
non-conforming rows.

Advanced Topics

37

Chapter 5. Deployment Issues
Fred Toussi, HSQLDB Development Group <ft@cluedup.com>

Copyright 2005 Fred Toussi. Permission is granted to distribute this document without any alteration un-
der the terms of the HSQLDB license. Additional permission is granted to the HSQLDB Development
Group to distribute this document with or without alterations under the terms of the HSQLDB license.
$Date: 2005/07/02 09:11:39 $

Purpose
Many questions repeatedly asked in Forums and mailing lists are answered in this guide. If you want to
use HSQLDB with your application, you should read this guide. This document covers system related
issues. For issues related to SQL see the SQL Issues chapter.

Mode of Operation and Tables
HSQLDB has many modes of operation and features that allow it to be used in very different scenarios.
Levels of memory usage, speed and accessibility by different applications are influenced by how
HSQLDB is deployed.

Mode of Operation
The decision to run HSQLDB as a separate server process or as an in-process database should be based
on the following:

• When HSQLDB is run as a server on a separate machine, it is isolated from hardware failures and
crashes on the hosts running the application.

• When HSQLDB is run as a server on the same machine, it is isolated from application crashes and
memory leaks.

• Server connections are slower than in-process connections due to the overhead of streaming the data
for each JDBC call.

Tables
TEXT tables are designed for special applications where the data has to be in an interchangeable format,
such as CSV. TEXT tables should not be used for routine storage of data.

MEMORY tables and CACHED tables are generally used for data storage. The difference between the
two is as follows:

• The data for all MEMORY tables is read from the .script file when the database is started and stored
in memory. In contrast the data for cached tables is not read into memory until the table is accessed.
Furthermore, only part of the data for each CACHED table is held in memory, allowing tables with
more data than can be held in memory.

38

• When the database is shutdown in the normal way, all the data for MEMORY tables is written out to
the disk. In comparison, the data in CACHED tables that has changed is written out at shutdown,
plus a compressed backup of all the data in all cached tables.

• The size and capacity of the data cache for all the CACHED tables is configurable. This makes it
possible to allow all the data in CACHED tables to be cached in memory. In this case, speed of ac-
cess is good, but slightly slower than MEMORY tables.

• For normal applications it is recommended that MEMORY tables are used for small amounts of
data, leaving CACHED tables for large data sets. For special applications in which speed is para-
mount and a large amount of free memory is available, MEMORY tables can be used for large tables
as well

Large Objects
JDBC Clobs are supported as columns of the type LONGVARCHAR. JDBC Blobs are supported as
columns of the type LONGVARBINARY. When large objects (LONGVARCHAR, LONGVARBIN-
ARY, OBJECT) are stored with table definitions that contain several normal fields, it is better to use two
tables instead. The first table to contain the normal fields and the second table to contain the large object
plus an identity field. Using this method has two benefits. (a) The first table can usually be created as a
MEMORY table while only the second table is a CACHED table. (b) The large objects can be retrieved
individually using their identity, instead of getting loaded into memory for finding the rows during query
processing. An example of two tables and a select query that exploits the separation between the two fol-
lows:

CREATE MEMORY TABLE MAINTABLE(MAINID INTEGER,);

CREATE CACHED TABLE LOBTABLE(LOBID INTEGER, LOBDATA LONGVARBINARY);

SELECT * FROM (SELECT * FROM MAINTABLE <join any other table> WHERE <various conditions apply>) JOIN LOBTABLE ON MAINID=LOBID;

The inner SELECT finds the required rows without reference to the LOBTABLE and when it has found
all the rows, retrieves the required large objects from the LOBTABLE.

Deployment context
The files used for storing HSQLDB database data are all in the same directory. New files are always cre-
ated and deleted by the database engine. Two simple principles must be observed:

• The Java process running HSQLDB must have full privileges on the directory where the files are
stored. This include create and delete privileges.

• The file system must have enough spare room both for the 'permanent' and 'temporary' files. The de-
fault maximum size of the .log file is 200MB. The .data file can grow to up to 8GB. The .backup file
can be up to 50% of the .data file. The temporary file created at the time of a SHUTDOWN COM-
PACT can be equal in size to the .data file.

Memory and Disk Use
Memory used by the program can be thought of as two distinct pools: memory used for table data, and
memory used for building result sets and other internal operations. In addition, when transactions are

Deployment Issues

39

used, memory is utilised for storing the information needed for a rollback.

Since version 1.7.1, memory use has been significantly reduced compared to previous versions. The
memory used for a MEMORY table is the sum of memory used by each row. Each MEMORY table row
is a Java object that has 2 int or reference variables. It contains an array of objects for the fields in the
row. Each field is an object such as Integer, Long, String, etc. In addition each index on the table
adds a node object to the row. Each node object has 6 int or reference variables. As a result, a table with
just one column of type INTEGER will have four objects per row, with a total of 10 variables of 4 bytes
each - currently taking up 80 bytes per row. Beyond this, each extra column in the table adds at least a
few bytes to the size of each row.

The memory used for a result set row has fewer overheads (fewer variables and no index nodes) but still
uses a lot of memory. All the rows in the result set are built in memory, so very large result sets may not
be possible. In server mode databases, the result set memory is released from the server once the data-
base server has returned the result set. In-process databases release the memory when the application
program releases the java.sql.ResultSet object. Server modes require additional memory for re-
turning result sets, as they convert the full result set into an array of bytes which is then transmitted to
the client.

When UPDATE and DELETE queries are performed on CACHED tables, the full set of rows that are
affected, including those affected due to ON UPDATE actions, is held in memory for the duration of the
operation. This means it may not be possible to perform deletes or updates involving very large numbers
of rows of CACHED tables. Such operations should be performed in smaller sets.

When transactions support is enabled with SET AUTOCOMMIT OFF, lists of all insert, delete or up-
date operations are stored in memory so that they can be undone when ROLLBACK is issued. Transac-
tions that span hundreds of modification to data will take up a lot of memory until the next COMMIT or
ROLLBACK clears the list.

Most JVM implementations allocate up to a maximum amount of memory (usually 64 MB by default).
This amount is generally not adequate when large memory tables are used, or when the average size of
rows in cached tables is larger than a few hundred bytes. The maximum amount of allocated memory
can be set on the java ... command line that is used for running HSQLDB. For example, with Sun JVM
version 1.3.0 the parameter -Xmx256m increases the amount to 256 MB.

1.8.0 uses a fast cache for immutable objects such as Integer or String that are stored in the database. In
most circumstances, this reduces the memory footprint still further as fewer copies of the most fre-
quently-used objects are kept in memory.

Cache Memory Allocation
With CACHED tables, the data is stored on disk and only up to a maximum number of rows are held in
memory at any time. The default is up to 3*16384 rows. The hsqldb.cache_scale database property can
be set to alter this amount. As any random subset of the rows in any of the CACHED tables can be held
in the cache, the amount of memory needed by cached rows can reach the sum of the rows containing
the largest field data. For example if a table with 100,000 rows contains 40,000 rows with 1,000 bytes of
data in each row and 60,000 rows with 100 bytes in each, the cache can grow to contain nearly 50,000
rows, including all the 40,000 larger rows.

An additional property, hsqldb.cache_size_scale can be used in conjunction with the hsqldb.cache_scale
property. This puts a limit in bytes on the total size of rows that are cached. When the default values is
used for both properties, the limit on the total size of rows is approximately 50MB. (This is the size of
binary images of the rows and indexes. It translates to more actual memory, typically 2-4 times, used for
the cache because the data is represented by Java objects.)

If memory is limited, the hsqldb.cache_scale or hsqldb.cache_size_scale database properties can be re-
duced. In the example above, if the hsqldb.cache_size_scale is reduced from 10 to 8, then the total bin-
ary size limit is reduced from 50MB to 12.5 MB. This will allow the number of cached rows to reach

Deployment Issues

40

50,000 small rows, but only 12,500 of the larger rows.

Managing Database Connections
In all running modes (server or in-process) multiple connections to the database engine are supported.
In-process (standalone) mode supports connections from the client in the same Java Virtual Machine,
while server modes support connections over the network from several different clients.

Connection pooling software can be used to connect to the database but it is not generally necessary.
With other database engines, connection pools are used for reasons that may not apply to HSQLDB.

• To allow new queries to be performed while a time-consuming query is being performed in the back-
ground. This is not possible with HSQLDB 1.8.0 as it blocks while performing the first query and
deals with the next query once it has finished it. This capability is under development and will be in-
troduced in a future version.

• To limit the maximum number of simultaneous connections to the database for performance reasons.
With HSQLDB this can be useful only if your application is designed in a way that opens and closes
connections for each small task.

• To control transactions in a multi-threaded application. This can be useful with HSQLDB as well.
For example, in a web application, a transaction may involve some processing between the queries
or user action across web pages. A separate connection should be used for each HTTP session so that
the work can be committed when completed or rolled back otherwise. Although this usage cannot be
applied to most other database engines, HSQLDB is perfectly capable of handling over 100 simul-
taneous HTTP sessions as individual JDBC connections.

An application that is not both multi-threaded and transactional, such as an application for recording
user login and logout actions, does not need more than one connection. The connection can stay open in-
definitely and reopened only when it is dropped due to network problems.

When using an in-process database with versions prior to 1.7.2 the application program had to keep at
least one connection to the database open, otherwise the database would have been closed and further at-
tempts to create connections could fail. This is not necessary since 1.7.2, which does not automatically
close an in-process database that is opened by establishing a connection. An explicit SHUTDOWN com-
mand, with or without an argument, is required to close the database. In version 1.8.0 a connection prop-
erty can be used to revert to the old behaviour.

When using a server database (and to some extent, an in-process database), care must be taken to avoid
creating and dropping JDBC Connections too frequently. Failure to observe this will result in unsuccess-
ful connection attempts when the application is under heavy load.

Upgrading Databases
Any database not produced with the release version of HSQLDB 1.8.0 must be upgraded to this version.
This includes databases created with the RC versions of 1.8.0. The instructions under the Upgrading Us-
ing the SCRIPT Command section should be followed in all cases.

Once a database is upgraded to 1.8.0, it can no longer be used with Hypersonic or previous versions of
HSQLDB.

There may be some potential legacy issues in the upgrade which should be resolved by editing the .script
file:

Deployment Issues

41

• Version 1.8.0 does not accept duplicate names for indexes that were allowed before 1.7.2.

• Version 1.8.0 does not accept duplicate names for table columns that were allowed before 1.7.0.

• Version 1.8.0 does not create the same type of index for foreign keys as versions before 1.7.2.

• Version 1.8.0 does not accept table or column names that are SQL identifiers without double quot-
ing.

Upgrading Using the SCRIPT Command
To upgrade from 1.7.2 or 1.7.3 to 1.8.0, simply issue the SET SCRIPTFORMAT TEXT and SHUT-
DOWN SCRIPT commands with the old version, then open with the new version of the engine. The up-
grade is then complete.

To upgrade from older version database files (1.7.1 and older) that do not contain CACHED tables,
simple SHUTDOWN with the older version and open with the new version. If there is any error in the
.script file, try again after editing the .script file.

To upgrade from older version database files (1.7.1 and older) that contain CACHED tables, use the
SCRIPT procedure below. In all versions of HSQLDB and Hypersonic 1.43, the SCRIPT 'file-
name' command (used as an SQL query) allows you to save a full record of your database, including
database object definitions and data, to a file of your choice. You can export a script file using the old
version of the database engine and open the script as a database with 1.8.0.

Procedure 5.1. Upgrade Using SCRIPT procedure

1. Open the original database in the old version of DatabaseManager

2. Issue the SCRIPT command, for example SCRIPT 'newversion.script' to create a script
file containing a copy of the database.

3. Use the 1.8.0 version of DatabaseManager to create a new database, in this example 'newver-
sion' in a different directory.

4. SHUTDOWN this database.

5. Copy the newversion.script file from step 2 over the file of the same name for the new data-
base created in 4.

6. Try to open the new database using DatabaseManager.

7. If there is any inconsistency in the data, the script line number is reported on the console and the
opening process is aborted. Edit and correct any problems in the newversion.script before
attempting to open again. Use the guidelines in the next section (Manual Changes to the .script
File). Use a programming editor that is capable of handling very large files and does not wrap long
lines of text.

Manual Changes to the .script File
In 1.8.0 the full range of ALTER TABLE commands is available to change the data structures and their
names. However, if an old database cannot be opened due to data inconsistencies, or the use of index or

Deployment Issues

42

column names that are not compatible with 1.8.0, manual editing of the SCRIPT file can be performed.

The following changes can be applied so long as they do not affect the integrity of existing data.

• Names of tables, columns and indexes can be changed.

• CREATE UNIQUE INDEX ... to CREATE INDEX ... and vice versa

A unique index can always be converted into a normal index. A non-unique index can only be con-
verted into a unique index if the table data for the column(s) is unique in each row.

• NOT NULL

A not-null constraint can always be removed. It can only be added if the table data for the column
has no null values.

• PRIMARY KEY

A primary key constraint can be removed or added. It cannot be removed if there is a foreign key
referencing the column(s).

• COLUMN TYPES

Some changes to column types are possible. For example an INTEGER column can be changed to
BIGINT, or DATE, TIME and TIMESTAMP columns can be changed to VARCHAR.

After completing the changes and saving the modified *.script file, you can open the database as normal.

Backing Up Databases
The data for each database consists of up to 5 files in the same directory. The endings are *.properties,
*.script, *.data, *.backup and *.log (a file with the *.lck ending is used for controlling access to the data-
base and should not be backed up). These should be backed up together. The files can be backed up
while the engine is running but care should be taken that a CHECKPOINT or SHUTDOWN operation
does not take place during the backup. It is more efficient to perform the backup immediately after a
CHECKPOINT. The *.data file can be excluded from the backup. In this case, when restoring, a dummy
*.data file is needed which can be an empty, 0 length file. The engine will expand the *.backup file to
replace this dummy file if the backup is restored. If the *.data file is not backed up, the *.properties file
may have to be modified to ensure it contain modified=yes instead of modified=no prior to restoration.
If a backup immediately follows a checkpoint, then the *.log file can also be excluded, reducing the sig-
nificant files to *.properties, *.script and *.backup. Normal backup methods, such as archiving the files
in a compressed bundle can be used.

Deployment Issues

43

Chapter 6. Text Tables
Text Tables as a Standard Feature of Hsqldb

Bob Preston, HSQLDB Development Group
Fred Toussi, HSQLDB Development Group <ft@cluedup.com>

Copyright 2002-2005 Bob Preston and Fred Toussi. Permission is granted to distribute this document
without any alteration under the terms of the HSQLDB license. Additional permission is granted to the
HSQLDB Development Group to distribute this document with or without alterations under the terms of
the HSQLDB license.
$Date: 2005/06/29 23:15:13 $

Text Table support for HSQLDB was originally developed by Bob Preston independently from the
Project. Subsequently Bob joined the Project and incorporated this feature into version 1.7.0, with a
number of enhancements, especially the use of conventional SQL commands for specifying the files
used for Text Tables.

In a nutshell, Text Tables are CSV or other delimited files treated as SQL tables. Any ordinary CSV or
other delimited file can be used. The full range of SQL queries can be performed on these files, includ-
ing SELECT, INSERT, UPDATE and DELETE. Indexes and unique constraints can be set up, and for-
eign key constraints can be used to enforce referential integrity between Text Tables themselves or with
conventional tables.

HSQLDB with Text Table support is the only comprehensive solution that employs the power of SQL
and the universal reach of JDBC to handle data stored in text files and will have wide-ranging use way
beyond the currently established Java realm of HSQLDB.

Goals of the Implementation

1. We aimed to finalise the DDL for Text Tables so that future releases of HSQLDB use the same
DDL scripts.

2. We aimed to support Text Tables as GLOBAL TEMPORARY or GLOBAL BASE tables in the
SQL domain.

The Implementation
Definition of Tables

Text Tables are defined similarly to conventional tables with the added TEXT keyword:

CREATE TEXT TABLE <tablename> (<column definition> [<constraint definition>])

In addition, a SET command specifies the file and the separator character that the Text table uses:

SET TABLE <tablename> SOURCE <quoted_filename_and_options> [DESC]

44

Text Tables cannot be created in memory-only databases (databases that have no script file).

Scope and Reassignment

• A Text table without a file assigned to it is READ ONLY and EMPTY.

• A Temporary Text table has the scope and the lifetime of the SQL session (a JDBC Connection).

• Reassigning a Text Table definition to a new file has implications in the following areas:

1. The user is required to be an administrator.

2. Existing transactions are committed at this point.

3. Constraints, including foreign keys referencing this table, are kept intact. It is the responsibility
of the administrator to ensure their integrity.

From version 1.7.2 the new source file is scanned and indexes are built when it is assigned to the ta-
ble. At this point any violation of NOT NULL, UNIQUE or PRIMARY KEY constrainst are caught
and the assignment is aborted. owever, foreign key constraints are not checked at the time of assign-
ment or reassignment of the source file.

Null Values in Columns of Text Tables
This has changed since 1.7.2 to support both null values and empty strings.

• Empty fields are treated as NULL. These are fields where there is nothing or just spaces between the
separators.

• Quoted empty strings are treated as empty strings.

Configuration
The default field separator is a comma (,). A different field separator can be specified within the SET
TABLE SOURCE statement. For example, to change the field separator for the table mytable to a vertic-
al bar, place the following in the SET TABLE SOURCE statement, for example:

SET TABLE mytable SOURCE "myfile;fs=|"

Since HSQLDB treats CHAR's, VARCHARs, and LONGVARCHARs the same, the ability to assign
different separators to the latter two is provided. When a different separator is assigned to a VARCHAR
or LONGVARCHAR field, it will terminate any CSV field of that type. For example, if the first field is
CHAR, and the second field LONGVARCHAR, and the separator fs has been defined as the pipe (|) and
vs as the period (.) then the data in the CSV file for a row will look like:

First field data|Second field data.Third field data

The following example shows how to change the default separator to the pipe (|), VARCHAR separator

Text Tables

45

to the period (.) and the LONGVARCHAR separator to the tilde (~). Place the following within the SET
TABLE SOURCE statement, for example:

SET TABLE mytable SOURCE "myfile;fs=|;vs=.;lvs=~"

HSQLDB also recognises the following special indicators for separators:

special indicators for separators

\semi semicolon

\quote qoute

\space space character

\apos apostrophe

\n newline - Used as an end anchor (like $ in regular expressions)

\r carriage return

\t tab

\\ backslash

\u#### a Unicode character specified in hexadecimal

Furthermore, HSQLDB provides csv file support with three additional boolean options: ig-
nore_first, quoted and all_quoted. The ignore_first option (default false) tells
HSQLDB to ignore the first line in a file. This option is used when the first line of the file contains
column headings. The all_quoted option (default false) tells the program that it should use quotes
around all character fields when writing to the source file. The quoted option (default true) uses quotes
only when necessary to distinguish a field that contains the separator character. It can be set to false to
prevent the use of quoting altogether and treat quote characters as normal characters. These options may
be specified within the SET TABLE SOURCE statement:

SET TABLE mytable SOURCE "myfile;ignore_first=true;all_quoted=true"

When the default options all_quoted= false and quoted=true are in force, fields that are writ-
ten to a line of the csv file will be quoted only if they contain the separator or the quote character. The
quote character is doubled when used inside a string. When all_quoted=false and
quoted=false the quote character is not doubled. With this option, it is not possible to insert any
string containing the separator into the table, as it would become impossible to distinguish from a separ-
ator. While reading an existing data source file, the program treats each individual field separately. It de-
termines that a field is quoted only if the first character is the quote character. It interprets the rest of the
field on this basis.

The character encoding for the source file is ASCII by default. To support UNICODE or source files
preprared with different encodings this can be changed to UTF-8 or any other encoding. The default is
encoding=ASCII and the option encoding=UTF-8 or other supported encodings can be used.

Finally, HSQLDB provides the ability to read a text file from the bottom up and making them READ
ONLY, by placing the keyword "DESC" at the end of the SET TABLE SOURCE statement:

Text Tables

46

SET TABLE mytable SOURCE "myfile" DESC

This feature provides functionality similar to the Unix tail command, by re-reading the file each time a
select is executed. Using this feature sets the table to read-only mode. Afterwards, it will no longer be
possible to change the read-only status with SET TABLE <tablename> READONLY TRUE.

Text table source files are cached in memory. The maximum number of rows of data that are in memory
at any time is controlled by the textdb.cache_scale property. The default value for
textdb.cache_scale is 10 and can be changed by setting the property in the .properties file for the
database. The number of rows in memory is calculated as 3*(2**scale), which translates to 3072 rows
for the default textdb.cache_scale setting (10). The property can also be set for individual text tables:

SET TABLE mytable SOURCE "myfile;ignore_first=true;all_quoted=true;cache_scale=12"

Text File Issues
Text File Issues

• File locations are restricted to below the directory that contains the database, unless the
textdb.allow_full_path property is set true in the database properties file.

• Blank lines are allowed anywhere in the text file, and are ignored.

• The file location for a text table created with

SELECT <select list> INTO TEXT <tablename> FROM

is the directory that contains the database and the file name is based on the table name. The table
name is converted into the file name by replacing all the non-alphanumeric characters with the un-
derscore character, conversion into lowercase, and adding the ".csv" suffix.

• From version 1.7.2 it is possible to define a primay key or identity column for text tables.

• When a table source file is used with the ignore_first=true option, the first, ignored line is
replaced with a blank line after a SHUTDOWN COMPACT.

• An existing table source file may include CHARACTER fields that do not begin with the quote char-
acter but contain instances of the quote character. These fields are read as literal strings. Alternat-
ively, if any field begins with the quote character, then it is interpreted as a quoted string that should
end with the quote character and any instances of the quote character within the string is doubled.
When any field containing the quote character or the separator is written out to the source file by the
program, the field is enclosed in quote character and any instance of the quote character inside the
field is doubled.

• Inserts or updates of CHARACTER type field values are allowed with strings that contains the line-
feed or the carriage return character. This feature is disabled when both quoted and all_quoted prop-
erties are false.

Text File Global Properties

Text Tables

47

Complete list of supported global properties in *.properties files

• textdb.fs

• textdb.lvs

• textdb.quoted

• textdb.all_quoted

• textdb.ignore_first

• textdb.encoding

• textdb.cache_scale

• textdb.allow_full_path

Importing a Text Table file in to a Traditional
(non-Text Table) Table

The directory src/org/hsqldb/sample in your HSQLDB distibution contains a file named
load_binding_lu.sql. This is a working SQL file which imports a pipe-delimited text file from
the database's file directory into an existing normal table. You can edit a copy of this file and use it dir-
ectly with SqlTool, or you can use the SQL therein as a model (using any SQL client at all).

Text Tables

48

Chapter 7. TLS
TLS Support (a.k.a. SSL)

Blaine Simpson, HSQLDB Development Group
<blaine.simpson@admc.com>

$Date: 2005/11/06 20:03:37 $

The instructions in this document are liable to change at any time. In particular, we will be changing the
method to supply the server-side certificate password.

Requirements
Hsqldb TLS Support Requirements

• Sun Java 2.x and up. (This is probably possible with IBM's Java, but I don't think anybody has at-
tempted to run HSQLDB with TLS under IBM's Java, and I'm sure that nobody in the HSQLDB De-
velopment Group has documented how to set up the environment).

• If Java 2.x or 3.x, then you will need need to install JSSE. Your server and/or client will start up
much slower than that of Java 4.x users. Client-side users will not be able to use the https: JDBC
protocol (because the https protocol handler is not implemented in 2.x/3.x Java JSSE; if there is de-
mand, we could work around this).

• A JKS keystore containing a private key, in order to run a server.

• If you are running the server side, then you'll need to run a HSQLDB Server or WebServer. It
doesn't matter if the underlying database instances are new, and it doesn't matter if you are making a
new Server configuration or encrypting an existing Server configuration. (You can turn encryption
on and off at will).

• You need a HSQLDB jar file that was built with JSSE present. If you got your HSQLDB 1.7.2 dis-
tribution from us, you are all set, because we build with Java 1.4 (which contains JSSE). If you build
your own jar file with Java 1.3, make sure to install JSSE first.

Encrypting your JDBC connection
At this time, only 1-way, server-cert encryption is tested.

Client-Side
Just use one of the following protocol prefixes.

Hsqldb TLS URL Prefixes

• jdbc:hsqldb:hsqls://

• jdbc:hsqldb:https://

49

At this time, the latter will only work for clients running with Java 1.4.

If the server you wish to connect to is using a certificate approved by your default trust keystores, then
there is nothing else to do. If not, then you need to tell Java to "trust" the server cert. (It's a slight over-
simplification to say that if the server certificate was purchased, then you are all set; if somebody
"signed their own" certificate by self-signing or using a private ca certificate, then you need to set up
trust).

First, you need to obtain the cert (only the "public" part of it). Since this cert is passed to all clients, you
could obtain it by writing a java client that dumps it to file, or perhaps by using openssl s_client. Since
in most cases, if you want to trust a non-commercial cert, you probably have access to the server key-
store, I'll show an example of how to get what you need from the server-side JKS keystore.

You may already have an X509 cert for your server. If you have a server keystore, then you can generate
a X509 cert like this.

Example 7.1. Exporting certificate from the server's keystore

keytool -export -keystore server.store -alias existing_alias -file server.cer

In this example, server.cer is the X509 certificate that you need for the next step.

Now, you need to add this cert to one of the system trust keystores or to a keystore of your own. See the
Customizing Stores section in JSSERefGuide.html
[http://java.sun.com/j2se/1.4.2/docs/guide/security/jsse/JSSERefGuide.html#CustomizingStores] to see
where your system trust keystores are. You can put private keystores anywhere you want to. The follow-
ing command will add the cert to an existing keystore, or create a new keystore if client.store
doesn't exist.

Example 7.2. Adding a certificate to the client keystore

keytool -import -trustcacerts -keystore trust.store -alias new_alias -file server.cer

If you are making a new keystore, you probably want to start with a copy of your system default key-
store which you can find somewhere under your JAVA_HOME directory (typically jre/
lib/security/cacerts for a JDK, but I forget exactly where it is for a JRE).

Unless your OS can't stop other people from writing to your files, you probably do not want to set a
password on the trust keystore.

If you added the cert to a system trust store, then you are finished. Otherwise you will need to specify
your custom trust keystore to your client program. The generic way to set the trust keystore is to set the
sytem property javax.net.ssl.trustStore every time that you run your client program. For ex-
ample

Example 7.3. Specifying your own trust store to a JDBC client

java -Djavax.net.ssl.trustStore=/home/blaine/trust.store -jar /path/to/hsqldb.jar dest-urlid

TLS

50

http://java.sun.com/j2se/1.4.2/docs/guide/security/jsse/JSSERefGuide.html#CustomizingStores
http://java.sun.com/j2se/1.4.2/docs/guide/security/jsse/JSSERefGuide.html#CustomizingStores

This example runs the program SqlTool. SqlTool has built-in TLS support, however, so, for SqlTool you
can set truststore on a per-urlid basis in the SqlTool configuration file.

N.b. The hostname in your database URL must match the Common Name of the server's certificate ex-
actly. That means that if a site certificate is admc.com, you can not use jd-
bc:hsqldb:hsqls://localhost or jdbc:hsqldb:hsqls://www.admc.com:1100 to
connect to it.

If you want more details on anything, see JSSERefGuide.html on Sun's site
[http://java.sun.com/j2se/1.4.2/docs/guide/security/jsse/JSSERefGuide.html], or in the subdirectory
docs/guide/security/jsse of your Java SE docs.

Server-Side
Get yourself a JKS keystore containing a private key. Then set the system property
javax.net.ssl.keyStore to the path to that file, and javax.net.ssl.keyStorePassword to the
password of the keystore (and to the private key-- they have to be the same).

Example 7.4. Running an Hsqldb server with TLS encryption

java -Djavax.net.ssl.keyStorePassword=secret \
-Djavax.net.ssl.keyStore=/usr/hsqldb/db/db3/server.store \
-cp /path/to/hsqldb.jar org.hsqldb.Server

(This is a single command that I have broken into 2 lines using my shell's \ line-continuation feature. In
this example, I'm using a server.properties file so that I don't need to give arguments to specify database
instances or the server endpoint).

Caution

Specifying a password on the command-line is definitely not secure. It's really only appropri-
ate when untrusted users do not have any access to your computer.

If there is any user demand, we will have a more secure way to supply the password before long.

JSSE
If you are running Java 4.x, then you are all set. Java 1.x users, you are on your own (Sun does not
provide a JSSE that will work with 1.x). Java 2.x and 3.x users continue...

Go to http://java.sun.com/products/jsse/index-103.html. If you agree to the terms and meet the require-
ments, download the domestic or global JSSE software. All you need from the software distro is the
three jar files. If you have a JDK installation, then move the 3 jar files into the directory
$JAVA_HOME/jre/lib/ext. If you have a JRE installation, then move the 3 jar files into the direct-
ory $JAVA_HOME/lib/ext.

Pretty painless.

Making a Private-key Keystore
There are two main ways to do this. Either you can use a certificate signed by a certificate authority, or
you can make your own. One thing that you need to know in both cases is, the Common Name of the

TLS

51

http://java.sun.com/j2se/1.4.2/docs/guide/security/jsse/JSSERefGuide.html
http://java.sun.com/products/jsse/index-103.html

cert has to be the exact hostname that JDBC clients will use in their database URL.

CA-Signed Cert
I'm not going to tell you how to get a CA-signed SSL certificate. That is well documented at many other
places.

Assuming that you have a standard pem-style private key certificate, here's how you can use openssl
[http://www.openssl.org] and the program DERImport to get it into a JKS keystore.

Because I have spent a lot of time on this document already, I am just giving you an example.

Example 7.5. Getting a pem-style private key into a JKS keystore

openssl pkcs8 -topk8 -outform DER -in Xpvk.pem -inform PEM -out Xpvk.pk8 -nocrypt

openssl x509 -in Xcert.pem -out Xcert.der -outform DER

java DERImport new.keystore NEWALIAS Xpvk.pk8 Xcert.der

Important

Make sure to set the password of the key exactly the same as the password for the keystore!

You need the program DERImport.class of course. Do some internet searches to find DERIm-
port.java or DERImport.class and download it.

If DERImport has become difficult to obtain, I can write a program to do the same thing-- just let me
know.

Non-CA-Signed Cert
Run man keytool or see the Creating a Keystore section of JSSERefGuide.html
[http://java.sun.com/j2se/1.4.2/docs/guide/security/jsse/JSSERefGuide.html#CreateKeystore].

Automatic Server or WebServer startup on
UNIX

If you are on UNIX and want to automatically start and stop a Server or WebServer running with en-
cryption, follow the instructions in the UNIX Quick Start chapter, and remember to make the init script
configuration file readable only to root and to set the variables TLS_PASSWORD and TLS_KEYSTORE.

If you are using a private server certificate, make sure to also set the trust store filepath as shown in the
sample init script configuration file.

The cautionary warning above still applies. The password will be visible to any minimally competent
local UNIX user who wants to see it.

TLS

52

http://www.openssl.org
http://java.sun.com/j2se/1.4.2/docs/guide/security/jsse/JSSERefGuide.html#CreateKeystore

Chapter 8. SqlTool
SqlTool Manual

Blaine Simpson, HSQLDB Development Group
<blaine.simpson@admc.com>
Dan Shinton, HSQLDB Development Group <dan@shinton.net>

$Date: 2006/03/16 22:47:19 $

Purpose
This document explains how to use SqlTool, the main purpose of which is to read your SQL text file or
stdin, and execute the SQL commands therein against a JDBC database. There are also a great number
of features to facilitate both interactive use (such as command-line editing and PL aliases) and automa-
tion (such as scripting variables and SQL transaction control and error handling).

Some of the examples below use quoting which works exactly as-is for any Bourne-compatible UNIX
shell. (Only line-continuation would need to be changed for C-compatible UNIX shells). I have not yet
tested these commands on Windows, and I doubt whether the quoting will work just like this (though it
is possible). SqlTool is still a very useful tool even if you have no quoting capability at all.

If you are using SqlTool from a HSQDLB distribution before version 1.8.0.0 final, you should use the
documentation with that distribution (because, for brevity, I do not here indicate changes made to beha-
vior before 1.8.0.0 final). This document is now updated for the current versions of SqlTool and SqlFile
at the time I am writing this (versions 1.50 and 1.130 correspondingly, SqlFile is the class which does
most of the work for SqlTool). Therefore, if you are using a version of SqlTool or SqlFile that is more
than a couple revisions greater, you should find a newer version of this document. (The imprecision is
due to content-independent revision increments at build time, and the likelihood of one or two behavior-
independent bug fixes after public releases). The startup banner will report both versions when you run
SqlTool interactively.

Recent changes
This section lists changes to SqlTool since the last major release of HSQLDB. For this revision of this
document, this list consists of significant changes made to SqlTool AFTER the final 1.8.0.0 HSQLDB
release.

• Fixed bug where PL "end" command was still requiring old syntax (wrt white space). Fixed for
HSQLDB v. 1.8.0.2.

• Fixed NPE sometimes encountered when fetching null Timestamp values. Fixed for HSQLDB v.
1.8.0.2.

• Implemented new \dr command for HSQLDB and Sybase servers. Implemented \du for Sybase. Ad-
ded for HSQLDB v. 1.8.0.3.

• Implemented CSV eXport and iMport commands \x and \m. Added for HSQLDB v. 1.8.0.3.

• Implemented method for specifying RC file parameters as a command-line switch. Modified
SqlTool to now accepts case insensitive command-line switches. Added for HSQLDB v. 1.8.1.

53

When recently changed or added features (i.e, those items in the preceding list) are described in the main
document below, there is a Note at that point indicating when the feature was added or changed.

The Bare Minimum You Need to Know to Run
SqlTool

Warning

If you are using an Oracle database server, it will commit your current transaction if you
cleanly disconnect, regardless of whether you have set auto-commit or not. This will occur if
you exit SqlTool (or any other client) in the normal way (as opposed to killing the process or
using Ctrl-C, etc.). This is mentioned in this section only for brevity, so I don't need to mention
it in the main text in the many places where auto-commit is discussed. This behavior has noth-
ing to do with SqlTool. It is a quirk of Oracle.

If you want to use SqlTool, then you either have an SQL text file, or you want to interactively type in
SQL commands. If neither case applies to you, then you are looking at the wrong program.

Procedure 8.1. To run SqlTool...

1. Copy the file sqltool.rc from the directory src/org/hsqldb/sample of your HSQLDB
distribution to your home directory and secure access to it if your home directory is accessible to
anybody else. This file will work as-is for a Memory Only database instance; or if your target is a
HSQLDB Server running on your local computer with default settings and the password for the
"sa" account is blank (the sa password is blank when new HSQLDB database instances are cre-
ated). Edit the file if you need to change the target Server URL, username, password, character set,
JDBC driver, or TLS trust store as documented in the RC File Authentication Setup section.

OR

Use the --inlineRc command-line switch to specify your connection parameters as documented
in the Using Inline RC Authentication section.

2. Find out where your hsqldb.jar file resides. It typically resides at HSQLDB_HOME/
lib/hsqldb.jar where HSQLDB_HOME is the base directory of your HSQLDB software in-
stallation. For this reason, I'm going to use "$HSQLDB_HOME/lib/hsqldb.jar" as the path to
hsqldb.jar for my examples, but understand that you need to use the actual path to your own
hsqldb.jar file.

3. Run

java -jar $HSQLDB_HOME/lib/hsqldb.jar --help

to see what command-line arguments are available. Note that you don't need to worry about setting
the CLASSPATH when you use the -jar switch to java. Assuming that you set up your SqlTool
RC file at the default location and you want to use the HSQLDB JDBC driver, you will want to run
something like

java -jar $HSQLDB_HOME/lib/hsqldb.jar mem

for interactive use, or

SqlTool

54

java -jar $HSQLDB_HOME/lib/hsqldb.jar --sql 'SQL statement' mem

or

java -jar $HSQLDB_HOME/lib/hsqldb.jar mem filepath1.sql...

where mem is an urlid, and the following arguments are paths to text SQL files. For the filepaths,
you can use whatever wildcards your operating system shell supports.

The urlid mem in these commands is a key into your RC file, as explained in the RC File Authen-
tication Setup section. Since this is a Memory Only database, you can use SqlTool with this urlid
immediately with no database setup whatsoever (however, you can't persist any changes that you
make to this database). The sample sqltool.rc file also defines the urlid "localhost-sa" for a local
HSQLDB Server. At the end of this section, I explain how you can load some sample data to play
with, if you want to.

Important

SqlTool does not commit DML changes by default. This leaves it to the user's disgression
whether to commit or rollback their modifications. Remember to either run the command com-
mit; before quitting SqlTool, or use the --autoCommit command-line switch.

If you put a file named auto.sql into your home directory, this file will be executed automatically
every time that you run SqlTool interactively and without the --noAutoFile switch.

To use a JDBC Driver other than the HSQLDB driver, you can't use the -jar switch because you need
to modify the classpath. You must add the hsqldb.jar file and your JDBC driver classes to your
classpath, and you must tell SqlTool what the JDBC driver class name is. The latter can be accom-
plished by either using the "--driver" switch, or setting "driver" in your config file. The RC File Authen-
tication Setup section. explains the second method. Here's an example of the first method (after you
have set the classpath appropriately).

java org.hsqldb.util.SqlTool --driver oracle.jdbc.OracleDriver urlid

Tip

If the tables of query output on your screen are all messy because of lines wrapping, the best
and easiest solution is usually to resize your terminal emulator window to make it wider. (With
some terms you click & drag the frame edges to resize, with others you use a menu system
where you can enter the number of columns).

Non-displayable Types
There are many SQL types which SqlTool (being a text-based program) can't display properly. This in-
cludes the SQL types BLOB, JAVA_OBJECT, STRUCT, and OTHER. When you run a query that returns
any of these, SqlTool will save the very first such value obtained to the binary buffer and will not dis-
play any output from this query. You can then save the binary value to a file, as explained in the Storing
and retrieving binary files section.

There are other types, such as BINARY, which JDBC can make displayable (by using Result-
Set.getString()), but which you may very well want to retrieve in raw binary format. You can use the \b

SqlTool

55

command to retrieve any-column-type-at-all in raw binary format (so you can later store the value to a
binary file).

Another restriction which all text-based database clients have is the practical inability for the user to
type in binary data such as photos, audio streams, and serialized Java objects. You can use SqlTool to
load any binary object into a database by telling SqlTool to get the insert/update datum from a file. This
is also explained in the Storing and retrieving binary files section.

Desktop shortcuts
Desktop shortcuts and quick launch icons are useful, especially if you often run SqlTool with the same
set of arguments. It's really easy to set up several of them-- one for each way that you invoke SqlTool
(i.e., each one would start SqlTool with all the arguments for one of your typical startup needs). One
typical setup is to have one shortcut for each database account which you normally use (use a different -
-urlid switch in each shortcut's Target specification.

Desktop icon setup varies depending on your Desktop manager, of course. I'll explain how to set up a
SqlTool startup icon in Windows XP. Linux and Mac users should be able to take it from there, since it's
easier with the common Linux and Mac desktops.

Procedure 8.2. Creating a Desktop Shortcut for SqlTool

1. Right click in the main Windows background.

2. New

3. Shortcut

4. Browse

5. Navigate to where your good JRE lives. For recent Sun JRE's, it installs to C:\Program
Files\Java*\bin by default (the * will be a JDK or JRE name and version number).

6. Select java.exe.

7. OK

8. Next

9. Enter any name

10. Finish

11. Right click the new icon.

12. Properties

13. Edit the Target field.

14. Leave the path to java.exe exactly as it is, including the quotes, but append to what is there. Begin-
ning with a space, enter the command-line that you want run.

15. Change Icon... to a pretty icon.

16. If you want a quick-launch icon instead of (or in addition to) a desktop shortcut icon, click and drag
it to your quick launch bar. (You may or may not need to edit the Windows Toolbar properties to
let you add new items).

SqlTool

56

Loading sample data
If you want some sample database objects and data to play with, execute the sampledata.sql SQL
file. sampledata.sql resides in the src/org/hsqldb/sample directory of your HSQLDB dis-
tribution. Run it like this from an SqlTool session

\i HSQLDB_HOME/src/org/hsqldb/sample/sampledata.sql

where HSQLDB_HOME is the base directory of your HSQLDB software installation.

For memory-only databases, you'll need to run this every time that you run SqlTool. For other
(persistent) databases, the data will reside in your database until you drop the tables.

RC File Authentication Setup
RC file authentication setup is accomplished by creating a text RC configuration file. In this section,
when I say configuration or config file, I mean an RC configuration file. RC files can be used by any
JDBC client program that uses the org.hsqldb.util.RCData class-- this includes SqlTool, DatabaseMan-
ager, DatabaseManagerSwing. You can use it for your own JDBC client programs too.

The following sample RC file resides at src/org/hsqldb/sample/sqltool.rc in your
HSQLDB distribution.

Example 8.1. Sample RC File

$Id: sqltool.rc,v 1.17 2005/11/06 18:01:49 unsaved Exp $

This is a sample RC configuration file used by SqlTool, DatabaseManager,
and any other program that uses the org.hsqldb.util.RCData class.

You can run SqlTool right now by copying this file to your home directory
and running
java -jar /path/to/hsqldb.jar mem
This will access the first urlid definition below in order to use a
personal Memory-Only database.

If you have the least concerns about security, then secure access to
your RC file.
See the documentation for SqlTool for various ways to use this file.

A personal Memory-Only database.
urlid mem
url jdbc:hsqldb:mem:memdbid
username sa
password

This is for a hsqldb Server running with default settings on your local
computer (and for which you have not changed the password for "sa").
urlid localhost-sa
url jdbc:hsqldb:hsql://localhost
username sa
password

Template for a urlid for an Oracle database.
You will need to put the oracle.jdbc.OracleDriver class into your
classpath.
In the great majority of cases, you want to use the file classes12.zip

SqlTool

57

(which you can get from the directory $ORACLE_HOME/jdbc/lib of any
Oracle installation compatible with your server).
Since you need to add to the classpath, you can't invoke SqlTool with
the jar switch, like "java -jar .../hsqldb.jar..." or
"java -jar .../hsqlsqltool.jar...".
Put both the HSQLDB jar and classes12.zip in your classpath (and export!)
and run something like "java org.hsqldb.util.SqlTool...".

#urlid cardiff2
#url jdbc:oracle:thin:@aegir.admc.com:1522:TRAFFIC_SID
#username blaine
#password secretpassword
#driver oracle.jdbc.OracleDriver

Template for a TLS-encrypted HSQLDB Server.
Remember that the hostname in hsqls (and https) JDBC URLs must match the
CN of the server certificate (the port and instance alias that follows
are not part of the certificate at all).
You only need to set "truststore" if the server cert is not approved by
your system default truststore (which a commercial certificate probably
would be).

#urlid tls
#url jdbc:hsqldb:hsqls://db.admc.com:9001/lm2
#username blaine
#password asecret
#truststore /home/blaine/ca/db/db-trust.store

Template for a Postgresql database
#urlid blainedb
#url jdbc:postgresql://idun.africawork.org/blainedb
#username blaine
#password losung1
#driver org.postgresql.Driver

Template for a MySQL database. MySQL has poor JDBC support.
#urlid mysql-testdb
#url jdbc:mysql://hostname:3306/dbname
#username root
#username blaine
#password hiddenpwd
#driver com.mysql.jdbc.Driver

Note that "databases" in SQL Server and Sybase are traditionally used for
the same purpose as "schemas" with more SQL-compliant databases.

Template for a Microsoft SQL Server database
url jdbc:microsoft:sqlserver://hostname;DatabaseName=DbName;SelectMethod=Cursor
The SelectMethod setting is required to do more than one thing on a JDBC
session (I guess Microsoft thought nobody would really use Java for
anything other than a "hello world" program).
This is for Microsoft's SQL Server 2000 driver (requires mssqlserver.jar
and msutil.jar).
driver com.microsoft.jdbc.sqlserver.SQLServerDriver
username myuser
password hiddenpwd

Template for a Sybase database
urlid sybase
url jdbc:sybase:Tds:hostname:4100/dbname
username blaine

SqlTool

58

password hiddenpwd
This is for the jConnect driver (requires jconn3.jar).
driver com.sybase.jdbc3.jdbc.SybDriver

You can put this file anywhere you want to, and specify the location to SqlTool/DatabaseMan-
ager/DatabaseManagerSwing by using the --rcfile argument. If there is no reason to not use the de-
fault location (and there are situations where you would not want to), then use the default location and
you won't have to give --rcfile arguments to SqlTool/DatabaseManager/DatabaseManagerSwing.
The default location is sqltool.rc or dbmanager.rc in your home directory (corresponding to
the program using it). If you have any doubt about where your home directory is, just run SqlTool with a
phony urlid and it will tell you where it expects the configuration file to be.

java -jar $HSQLDB_HOME/lib/hsqldb.jar x

The config file consists of stanza(s) like this:

urlid web
url jdbc:hsqldb:hsql://localhost
username web
password webspassword

These four settings are required for every urlid. (There are optional settings also, which are described a
couple paragraphs down). You can have as many blank lines and comments like

This comment

in the file as you like. The whole point is that the urlid that you give in your SqlTool/DatabaseManager
command must match a urlid in your configuration file.

Important

Use whatever facilities are at your disposal to protect your configuration file.

It should be readable, both locally and remotely, only to users who run programs that need it. On UNIX,
this is easily accomplished by using chmod/chown commands and making sure that it is protected
from anonymous remote access (like via NFS, FTP or Samba).

You can also put the following optional settings into a urlid stanza. The setting will, of course, only ap-
ply to that urlid.

charset This is used by the SqlTool program, but not by the DatabaseManager programs. See
the Character Encoding section of the Non-Interactive section. You can, alternatively,
set this for one SqlTool invocation by setting the system property sqlfile.charset . De-
faults to US-ASCII.

driver Sets the JDBC driver class name. You can, alternatively, set this for one SqlTool/
DatabaseManager invocation by using the command line switch --driver. Defaults to
org.hsqldb.jdbcDriver.

truststore TLS trust keystore store file path as documented in the TLS chapter. You usually only
need to set this if the server is using a non-publicly-certified certificate (like a self-

SqlTool

59

signed self-ca'd cert).

Property and SqlTool command-line switches override settings made in the configuration file.

Using Inline RC Authentication
Inline RC authentication setup is accomplished by using the --inlineRc command-line switch on
SqlTool. The --inlineRc command-line switch takes two required (URL and USER) and three op-
tional arguments seperated by commas.

URL The JDBC URL of the database you wish to connect to.

USER The username to connect to the database as.

DRIVER The JDBC driver class name. Defaults to org.hsqldb.jdbcDriver.

CHARSET Sets the character encoding. Defaults to US-ASCII.

TRUST The TLS trust keystore file path as documented in the TLS chapter.

Here is an example of invoking SqlTool to connect to a standalone database.

java -jar $HSQLDB_HOME/lib/hsqldb.jar
--inlineRc URL=jdbc:hsqldb:file:/home/dan/dandb,USER=dan

For security reasons, you cannot specify the password as an argument. You will be prompted for a pass-
word as part of the login process.

Using the current version of SqlTool with an
older HSQLDB distribution.

This procedure will allow users of a legacy version of HSQLDB to use all of the new features of
SqlTool. You will also get the new versions of the DatabaseManagers! This procedure works for distros
going back to 1.7.3.3 at least, probably much farther.

These instructions assume that you are capable of running an Ant build. See the Building HSQLDB
chapter.

1. Download and extract a current HSQLDB distribution. If you don't want to use the source code,
documentation, etc., you can use a temporary directory and remove it afterwards.

2. Cd to the build directory under the root directory where you extracted the distribution to.

3. Run ant hsqldbutil. Do not run ant hsqltool, because hsqlbutil.jar files contain the
HSQLDB JDBC driver, and you can not use a newer JDBC driver with an older HSQLDB data-
base.

4. If you're going to wipe out the build directory, copy hsqldbutil.jar to a safe location first.

5. For now on, whenver you are going to run SqlTool, make sure that you have this hsqld-

SqlTool

60

butil.jar as the first item in your CLASSPATH. You can't run SqlTool with the "-jar" switch
(because the -jar switch doesn't permit setting your own class path).

Here's a UNIX example where somebody wants to use the new SqlTool with their older HSQLDB data-
base, as well as with Postgresql and a local application.

CLASSPATH=/path/to/hsqldbutil.jar:/home/bob/classes:/usr/local/lib/pg.jdbc3.jar
export CLASSPATH
java org.hsqldb.util.SqlTool urlid

Interactive
Do read the The Bare Minimum section before you read this section.

You run SqlTool interactively by specifying no SQL filepaths on the SqlTool command line. Like this.

java -jar $HSQLDB_HOME/lib/hsqldb.jar urlid

Procedure 8.4. What happens when SqlTool is run interactively (using all default
settings)

1. SqlTool starts up and connects to the specified database, using your SqlTool configuration file (as
explained in the RC File Authentication Setup section).

2. SQL file auto.sql in your home directory is executed (if there is one),

3. SqlTool displays a banner showing the SqlTool and SqlFile version numbers and describes the dif-
ferent command types that you can give, as well as commands to list all of the specific commands
available to you.

You exit your session by using the "\q" special command or ending input (like with Ctrl-D or Ctrl-Z).

Important

Every command (regardless of type) and comment must begin at the beginning of a line (or im-
mediately after a comment ends with "*/").

You can't nest commands or comments. You can only start new commands (and comments)
after the preceding statement has been terminated. (Remember that if you're running SqlTool
interactively, you can terminate an SQL statement without executing it by entering a blank
line).

(Special Commands, Buffer Commands and PL Commands always consist of just one line.
Any of these commands or comments may be preceded by space characters.)

These rules do not apply at all to Raw Mode. Raw mode is for use by advanced users when
they want to completely bypass SqlTool processing in order to enter a chunk of text for direct

SqlTool

61

transmission to the database engine.

When you are typing into SqlTool, you are always typing part of the current command. The buffer is the
last SQL command. If you're typing an SQL command, then the previous SQL command will be in the
buffer, not the one you are currently typing. The current command could be any type of command, but
only SQL When you type command-editing commands, the current command is the editing command
(like ":s/tbl/table/"), the result of which is to modify the SQL command in the buffer (which can
thereafter be executed). The ":a" command (with no argument) is special in that it takes a copy of the
SQL command in the buffer and makes that the current command, leaving you in a state where you are
appending to that now current command. The buffer is the zeroeth item of the SQL command history.

Command Types

Command types

Note

Above, we said that if you enter an SQL command, one SQL command corresponds to one
SqlTool command. This is the most typical usage, however, you can actually put multiple SQL
statements into one SQL command. One example would be

INSERT INTO t1 VALUES(0); SELECT * FROM t1;

This is one SqlTool command containing two SQL statements. See the Chunking section to see
why you may want to chunk SQL commands, how, and the implications.

SQL Statement Any command that you enter which does not begin with "\", ":", or "* " is an
SQL Statement. The command is not terminated when you hit ENTER, like
most OS shells. You terminate SQL Statements with either ";" at the end of a
line, or with a blank line. In the former case, the SQL Statement will be ex-
ecuted against the SQL database and the command will go into the command
buffer and SQL command history for editing or viewing later on. In the former
case, execute against the SQL database means to transmit the SQL text to the
database engine for execution. In the latter case (you end an SQL Statement
with a blank line), the command will go to the buffer and SQL history, but will
not be executed (but you can execute it later from the buffer). (See the note im-
mediately above about multiple SQL statements in one SqlTool command).

(Blank lines are only interpreted this way when SqlTool is run interactively. In
SQL files, blank lines inside of SQL statements remain part of the SQL state-
ment).

As a result of these termination rules, whenever you are entering text that is not
a Special Command, Buffer Command, or PL Command, you are always ap-
pending lines to an SQL Statement. (In the case of the first line, you will be ap-
pending to an empty SQL statement. I.e. you will be starting a new SQL State-
ment).

Special Command Run the command "\?" to list the Special Commands. All of the Special Com-
mands begin with "\". I'll describe some of the most useful Special Commands
below.

Buffer Command Run the command ":?" to list the Buffer Commands. All of the Buffer Com-
mands begin with ":". Buffer commands operate upon the command "buffer",
so that you can edit and/or (re-)execute previously entered commands.

SqlTool

62

PL Command Procedural Langage commands. Run the command "*?" to list the PL Com-
mands. All of the PL Commands begin with "*". PL commands are for setting
and using scripting variables and conditional and flow control statements like *
if and * while. A few PL features (such as PL aliases and updating and se-
lecing data directly from/to files) can be a real convenience for nearly all users,
so these features will be discussed briefly in this section. More detailed explan-
ation of PL variables and the other PL features, with examples, are covered in
the SqlTool Procedural Language section.

Raw Mode The descriptions of command-types above do not apply to Raw Mode. In raw
mode, SqlTool doesn't interpret what you type at all. It all just goes into a buf-
fer which you can send to the database engine. Beginners can safely ignore raw
mode. You will never encounter it unless you run the "\." special command, or
enter a PL/SQL command. See the Raw Mode section for the details.

Special Commands

Essential Special Commands

\? help

\q quit

\dt [filter_substring]
\dv [filter_substring]
\ds [filter_substring]
\di [table_name]
\dS [filter_substring]
\da [filter_substring]
\dn [filter_substring]
\du [filter_substring]
\d* [filter_substring] Lists available objects of the given type.

• t: non-system Table#

• v: Views

• s: Synonyms

• i: Indexes

• S: System table#

• a: Aliases

• n: schema Names

• u: database Users

• *: all table-like objects

If your database supports schemas, then the schema name will also
be listed.

If you supply an optional filter substring, then only items which con-

SqlTool

63

tain the given substring (in the object name or schema name) will be
listed.

Important

The substring test is case-sensitive! Even though in SQL queries and for the "\d objectname"
command object names are usually case-insensitive, for the \dX commands, you must capitalize
the filter substring exactly as it will appear in the special command output. This is an incon-
venience, since the database engine will change names in SQL to default case unless you
double-quote the name, but that is server-side functionality which cannot (portably) be repro-
duced by SqlTool. You can use spaces and other special characters in the string.

Tip

Filter substrings ending with "." are special. If a substring ends with ".", then this means to nar-
row the search by the exact, case-sensitive schema name given. For example, if I run "\d*
BLAINE.", this will list all table-like database objects in the "BLAINE" schema. The capitaliz-
ation of the schema must be exactly the same as how the schema name is listed by the "\dn"
command. You can use spaces and other special characters in the string. (I.e., enter the name
exactly how you would enter it inside of double-quotes in an SQL command). This is an incon-
venience, since the database engine will change names in SQL to default case unless you
double-quote the name, but that is server-side functionality which cannot (portably) be repro-
duced by SqlTool.

Important

Indexes may not be searched for by substring, only by exact target table name. So if I1 is an
index on table T1, then you list this index by running "\di T1". In addition, many database
vendors will report on indexes only if a target table is identified. Therefore, "\di" with no argu-
ment will fail if your database vendor does not support it.

\d objectname [filter] Lists names of columns in the specified table or view. object-
name may be a base table name or a schema.object name.

If you supply a filter string, then only columns with a name contain-
ing the given filter will be listed. The objectname is nearly always
case-insensitive (depends on your database), but the filter is always
case-sensitive. You'll find this filter is a great convenience compared
to other database utilities, where you have to list all columns of large
tables when you are only interested in one of them.

Tip

When working with real data (as opposed to learning or playing), I often find it useful to run
two SqlTool sessions in two side-by-side terminal emulator windows. I do all of my real work
in one window, and use the other mostly for \d commands. This way I can refer to the data dic-
tionary while writing SQL commands, without having to scroll.

\s Shows the SQL command history. The SQL command history will
show a number (a negative number) for each SQL Statement that has
made it into the buffer so fare (by either executing or entering a
blank line). You can then use the "\-" command (which is described
next) to retrieve commands from the SQL history to work with. To
list just the very last command, you would use the ":l" buffer com-
mand to list the buffer contents, instead of this command.

\-[3] Enter "\" followed by the command number from SQL history, like

SqlTool

64

"\-3". That command will be written to the buffer so that you can ex-
ecute it or edit it using buffer commands.

(You can append a semicolon to a recall command in order to ex-
ecute the recalled buffer immediately, like "\-3;". This is actually just
a shortcut for running the Special Command "\-3" and the Buffer
Command ":;".)

This list here includes only the essential Special Commands, but n.b. that there are other useful Special
Commands which you can list by running \?. (You can, for example, execute SQL from external SQL
files, and save your interactive SQL commands to files). Some specifics of these other commands are
specified immediately below, and the Generating Text or HTML Reports section explains how to use the
"\o" and "\H" special commands to generate reports.

Be aware that the \! Special Command does not work for external programs that read from standard in-
put. You can invoke non-interactive and graphical interactive programs, but not command-line interact-
ive programs.

SqlTool executes \! programs directly, it does not run an operating system shell (this is to avoid OS-
specific code in SqlTool). Because of this, you can give as many command-line arguments as you wish,
but you can't use shell wildcards or redirection.

The \w command can be used to store any command in your SQL history to a file. Just restore the com-
mand to the buffer (which is the 0th element of the history) with a command like "\-4" before you give
the \w command.

Buffer Commands

Buffer Commands

:? help

:; Executes the SQL statement in the current buffer against the data-
base. This is an extremely useful command. It's easy to remember
because it consists of ":", meaning Buffer Command; plus a line-
terminating ";", which sends the preceding SQL to the database
engine for execution.

:l (This is a lower case L). List the current contents of the buffer.

:a Enter append mode with the contents of the buffer as the current
SQL Statement. Things will be exactly as if you physically re-
typed the command that is in the buffer. Whatever line you type
next will be appended to the SQL Statement. You can execute the
command by terminating a line with ";", or send it back to the
buffer by entering a blank line.

You can, optionally, put a string after the :a, in which case this
text will be appended and you will remain in append mode.
(Unless the text ends with ';', in which case the resultant statement
will be executed immediately). Note that if you do put text after
the "a", exactly what you type immediately after "a" will be ap-
pended. If your buffer contains SELECT x FROM mytab and
you run a:le, the resultant command will be SELECT x FROM
mytable. If your buffer contains SELECT x FROM mytab

SqlTool

65

and you run a: ORDER BY y, the resultant command will be
SELECT x FROM mytab ORDER BY y. Notice that in the
latter case the append text begins with a space character.

:s/from string/to string/switches This is the primary command for SqlTool command editing-- it
operates upon the current buffer. The "to string" and the
"switches" are both optional. To start with, I'll discuss the use and
behavior if you don't supply any substitution mode switches.

Don't use "/" if it occurs in either "from string" or "to string". You
can use any character that you want in place of "/", but it must not
occur in the from or to strings. Example

:s@from string@to string@

The to string is substituted for the first occurrence of the
(case-specific)from string. The replacement will consider the en-
tire SQL statement, even if it is a multi-line statement.

All occurrences of "$" in the from string and the to string are
treated as line breaks. For example, from string of "*$FROM
mytable" would actually look for occurrences of

*
FROM mytable

Here is a another meaningful example using $.

:s/e)$/e) WHERE col1 is not null$/

This command appends "WHERE col1 is not null" to the
line(s) which end with "e)".

The to string may be empty, in which case, occurrences of the
from string are just deleted. For example

:s/this//

would remove the first occurrence of "this". (With the "g" substi-
tution mode switch, as explained below, it would remove all oc-
currences of "this").

Don't end a to string with ";" in attempt to make a SQL statement
execute. There is a substitution mode switch to use for that pur-
pose.

You can use any combination of the substitution mode switches.

• Use "i" to make the searches for from string case insensitive.

• Use "g" to substitute globally, i.e., for all occurrences of from

SqlTool

66

string which are found in the text under consideration.

• Use ";" to execute the command immediately after the substi-
tution is performed.

• Use an integer (from 1 to 9) to narrow the text under consider-
ation to a specific line of a multi-line buffer.

The substitution facility doesn't support any regular expressions at
all. When we stop supporting Java versions older than 1.4, I'll
start supporting regular expressions and other advanced string
manipulation functions.

PL Commands

Essential PL Command

* VARNAME = value Set the value of a variable. If the variable doesn't exist yet, it will
be created. The most common use for this is so that you can later
use it in SQL statements, print statements, and PL conditionals,
by using the *{VARNAME} construct.

If you set a variable to an SQL statement (without the terminating
";") you can then use it as a PL alias like *VARNAME, as shown in
this example.

Example 8.2. Defining and using a PL alias (PL
variable)

* q = SELECT COUNT(*) FROM mytable
\p The stored query is '*{q}'
/q;
/q WHERE mass > 200;

If you put variable definitions into the SQL file auto.sql in
your home directory, those aliases/variables will always be avail-
able for interactive use.

* load VARNAME /file/path.txt Sets VARNAME to the content of the specified ASCII file.

* prepare VARNAME Indicate that next command should be a SQL INSERT or UP-
DATE command containing one question mark. The value of
VARNAME will be substuted for the ? variable. This does work
for CLOB columns.

* VARNAME _ When next SQL command is run, instead of displaying the rows,
just store the very first column value to variable VARNAME.
This works for CLOB columns. It also works with Oracle XML
type columns if you use column labels and the getclobval

SqlTool

67

function.

* dump VARNAME /file/path.txt Store the value of VARNAME to the specified ASCII file.

Note that PL commands are used to upload and download column values to/from local ASCII files, but
the corresponding actions for binary files use the special \b commands. This is because PL variables are
used for ASCII values and you can store any number of column values in PL variables. This is not true
for binary column values. The \b commands work with a single binary byte buffer.

See the SqlTool Procedural Language section below for information on using variables in other ways,
and information on the other PL commands and features.

Storing and retrieving binary files
You can upload binary files such as photographs, audio files, or serialized Java objects into database
columns. SqlTool keeps one binary buffer which you can load from files with the \bl command, or from
a database query by doing a one-row query for any non-displayable type (including BLOB, OBJECT,
and OTHER). In the latter case, the data returned for the first non-displayable column of the first result
row will be stored into the binary buffer.

Once you have data in the binary buffer, you can upload it to a database column (including BLOB, OB-
JECT, and OTHER type columns), or save it to a file. The former is accomplished by the special com-
mand \bp followed by a prepared SQL query containing one question mark place-holder to indicate
where the data gets inserted. The latter is accomplished with the \bd command.

You can also store the output from normal, displayable column into the binary buffer by using the spe-
cial command \b. The very first column value from the first result row of the next SQL command will be
stored to the binary byte buffer.

Example 8.3. Inserting binary data into database from a file

\bl /tmp/favoritesong.mp3
\bp
INSERT INTO musictbl (id, stream) VALUES(3112, ?);

Example 8.4. Downloading binary data from database to a file

SELECT stream FROM musictbl WHERE id = 3112;
\bd /tmp/favoritesong.mp3

You can also store and retrieve text column values to/from ASCII files, as documented in the Essential
PL Command section.

SQL History
The SQL history shown by the \s command, and used by other commands, is truncated to 20 entries,
since the utility comes from being able to quickly view the history list. You can change the history

SqlTool

68

length by setting the system property sqltool.historyLength to an integer like

java -Dsqltool.historyLength=40 -jar $HSQLDB_HOME/lib/hsqldb.jar urlid

The SQL history list explicitly does not contain Special, Buffer, or PL commands. It only contains SQL
commands, valid or invalid, successful or unsuccessful. The reason for including bad SQL commands is
so that you can recall and edit them if you want to. The same applies to the editing buffer (which is ele-
ment 0 of the history).

Shell scripting and command-line piping
You normally use non-interactive mode for piping. You specify "-" as the SQL file name. See the Piping
and shell scripting subsection of the Non-Interactive chapter.

Emulating Non-Interactive mode
You can run SqlTool interactively, but have SqlTool behave exactly as if it were processing an SQL file
(i.e., no command-line prompts, error-handling that defaults to fail-upon-error, etc.). Just specify "-" as
the SQL file name in the command line. This is a good way to test what SqlTool will do when it encoun-
ters any specific command in an SQL file. See the Piping and shell scripting subsection of the Non-
Interactive chapter for an example.

Non-Interactive
Read the Interactive section if you have not already, because much of what is in this section builds upon
that. Even if your plans are to run SqlTool non-interactively, you should really learn to run it interact-
ively because it's such a powerful debugging tool, and you can use it to prototype sql scripts.

Important

If you're doing data updates, remember to issue a commit command or use the -
-autoCommit switch.

As you'll see, SqlTool has many features that are very convenient for scripting. But what really makes it
superior for automation tasks (as compared to SQL tools from other vendors) is the ability to reliably de-
tect errors and to control JDBC transactions.

Giving SQL on the Command Line
If you just have a couple SQL commands to run, you can run them directly from the comand-line or
from a shell script without an SQL file, like this.

java -jar $HSQLDB_HOME/lib/hsqldb.jar --sql 'SQL statement' urlid

Note

The --sql automatically implies --noinput, so if you want to execute the specified SQL
before and in addition to an interactive session (or stdin piping), then you must also give the -
-stdinput switch.

Note

SqlTool

69

SqlTool will automatically add a trailing semicolon to your --sql SQL. You may still give
the trailing semicolon if you wish to, and you must still delimit multiple SQL commands with a
simicolon, of course.

Since SqlTool transmits SQL statements to the database engine only when a line is terminated with ";",
if you want feedback from multiple SQL statements in an --sql expression, you will need to use func-
tionality of your OS shell to include linebreaks after the semicolons in the expression. With any Bourne-
compatible shell, you can include linebreaks in the SQL statements like this.

java -jar $HSQLDB_HOME/lib/hsqldb.jar --sql 'SQL statement' urlid '
SQL statement number one;
SQL statement

number two;
SQL statement three;

' urlid

If you don't need feedback, just separate the SQL commands with semicolons and the entire expression
will be chunked.

The --sql switch is very useful for setting shell variables to the output of SQL Statements, like this.

A shell script
USERCOUNT=`java -jar $HSQLDB_HOME/lib/hsqldb.jar --sql '

select count(*) from usertbl
' urlid` || {

Handle the SqlTool error
}
echo "There are $USERCOUNT users registered in the database."
["$USECOUNT" -gt 3] && { # If there are more than 3 users registered

Some conditional shell scripting

SQL Files
Just give paths to sql text file(s) on the command line after the urlid.

Often, you will want to redirect output to a file, like

java -jar $HSQLDB_HOME/lib/hsqldb.jar sql... > /tmp/log.sql 2>&1

(Skip the "2>&1" if you're on Windows).

You can also execute SQL files from an interactive session with the "\i"' Special Command, but be
aware that the default behavior in an interactive session is to continue upon errors. If the SQL file was
written without any concern for error handling, then the file will continue to execute after errors occur.
You could run \c false before \i filename, but then your SqlTool session will exit if an error is
encountered in the SQL file. If you have an SQL file without error handling, and you want to abort that
file when an error occurs, but not exit SqlTool, the easiest way to accomplish this is usually to add \c
false to the top of the script.

If you specify multiple SQL files on the command-line, the default behavior is to exit SqlTool if any of
the SQL files encounters an error.

SQL files themselves have ultimate control over error handling. Regardless of what command-line
options are set, or what commands you give interactively, if a SQL file gives error handling statements,
they will take precedence.

SqlTool

70

You can also use \i in SQL files. This results in nested SQL files.

You can use the following SQL file, sample.sql, which resides in the src/
org/hsqldb/sample directory of your HSQLDB distribution. It contains SQL as well as Special
Commands making good use of most of the Special Commands documented below.

/*
$Id: sample.sql,v 1.5 2005/05/02 15:07:27 unsaved Exp $
Examplifies use of SqlTool.
PCTASK Table creation

*/

/* Ignore error for these two statements */
\c true
DROP TABLE pctasklist;
DROP TABLE pctask;
\c false

\p Creating table pctask
CREATE TABLE pctask (

id integer identity,
name varchar(40),
description varchar,
url varchar,
UNIQUE (name)

);

\p Creating table pctasklist
CREATE TABLE pctasklist (

id integer identity,
host varchar(20) not null,
tasksequence int not null,
pctask integer,
assigndate timestamp default current_timestamp,
completedate timestamp,
show bit default true,
FOREIGN KEY (pctask) REFERENCES pctask,
UNIQUE (host, tasksequence)

);

\p Granting privileges
GRANT select ON pctask TO public;
GRANT all ON pctask TO tomcat;
GRANT select ON pctasklist TO public;
GRANT all ON pctasklist TO tomcat;

\p Inserting test records
INSERT INTO pctask (name, description, url) VALUES (

'task one', 'Description for task 1', 'http://cnn.com');
INSERT INTO pctasklist (host, tasksequence, pctask) VALUES (

'admc-masq', 101, SELECT id FROM pctask WHERE name = 'task one');

commit;

You can execute this SQL file with a Memory Only database with a command like

java -jar $HSQLDB_HOME/lib/hsqldb.jar --sql '
create user tomcat password "x"

' mem path/to/hsqldb/src/org/hsqldb/sample/sample.sql

SqlTool

71

(The --sql "create..." arguments create an account which the script uses).

Piping and shell scripting
You can of course, redirect output from SqlTool to a file or another program.

java -jar $HSQLDB_HOME/lib/hsqldb.jar urlid file.sql > file.txt 2>&1

java -jar $HSQLDB_HOME/lib/hsqldb.jar urlid file.sql 2>&1 | someprogram...

You can type commands in to SqlTool while being in non-interactive mode by supplying "-" as the file
name. This is a good way to test how SqlTool will behave when processing your SQL files.

java -jar $HSQLDB_HOME/lib/hsqldb.jar urlid -

This is how you have SqlTool read its input from another program:

Example 8.5. Piping input into SqlTool

echo "Some SQL commands with '$VARIABLES';" |
java -jar $HSQLDB_HOME/lib/hsqldb.jar urlid -

Make sure that you also read the Giving SQL on the Command Line section. The --sql switch is a
great facility to use with shell scripts.

Optimally Compatible SQL Files
If you want your SQL scripts optimally compatible among other SQL tools, then don't use any Special
or PL Commands. SqlTool has default behavior which I think is far superior to the other SQL tools, but
you will have to disable these defaults in order to have optimally compatible behavior.

These switches provide compatibilty at the cost of poor control and error detection.

• --continueOnErr

The output will still contain error messages about everything that SqlTool doesn't like (malformatted
commands, SQL command failures, empty SQL commands), but SqlTool will continue to run. Er-
rors will not cause rollbacks (but that won't matter because of the following setting).

• --autoCommit

You don't have to worry about accidental expansion of PL variables, since SqlTool will never expand
PL variables if you don't set any variables on the command line, or give any "* " PL commands. (And
you could not have "* " commands in a compatible SQL file).

Comments

SqlTool

72

SQL comments of the form /*...*/ must begin where a (SQL/Special/Buffer/PL) Command could
begin, and they end with the very first "*/" (regardless of quotes, nesting, etc. You may have as many
blank lines as you want inside of a comment.

Example 8.6. Valid comment example

SELECT count(*) FROM atable;
/* Lots of
comments interspersed among
several lines */ SELECT count(*)
FROM btable;

Notice that a command can start immediate after the comment ends.

Example 8.7. Invalid comment example

SELECT count(*) FROM
/* atable */
btable;

This comment is invalid because you could not start another command at the comment location (because
it is within an SQL Statement).

You can try using /*...*/ in other locations, and -- style SQL comments, but SqlTool will not treat
them as comments. If they occur within an SQL Statment, SqlTool will pass them to the database en-
gine, and the DB engine will determine whether to parse them as comments.

Special Commands and Buffer Commands in SQL Files
Don't use Buffer Commands in your sql files, because they won't work. Buffer Commands are for inter-
active use only. (But, see the Raw Mode section for an exception).

\q [abort message] Be aware that the \q command will cause SqlTool to completely exit. If
a script x.sql has a \q command in it, then it doesn't matter if the
script is executed like

java -jar .../hsqldb.jar urlid a.sql x.sql z.sql

or if you use \i to read it in interactively, or if another SQL file uses \i to
nest it. If \q is encountered, SqlTool will quit. See the SqlTool Proced-
ural Language section for commands to abort an SQL file (or even parts
of an SQL file) without causing SqlTool to exit.

\q takes an optional argument, which is an abort message. If you give an
abort message, the message is displayed to the user and SqlTool will
exit with a failure status. If you give no abort message, then SqlTool
will exit quietly with successful status.

SqlTool

73

\p [text to print] Print the given string to stdout. Just give "\p" alone to print a blank line.

\i /path/to/file.sql Include another SQL file at this location. You can use this to nest SQL
files. For database installation scripts I often have a master SQL file
which includes all of the other SQL files in the correct sequence. Be
aware that the current continue-upon-error behavior will apply to in-
cluded files until such point as the SQL file runs its own error handling
commands.

\H Toggle HTML output mode. If you redirect output to a file, this can
make a long session log much easier to view. This will HTML-ify the
entire session. For example,

java -jar $HSQLDB_HOME/lib/hsqldb.jar urlid filepath1.sql... > /tmp/log.html 2>&1

(See the Generating Text or HTML Reports section about how to easily
store just the query output to file.)

\a [true|false] This turns on and off SQL transaction autocommits. Auto-commit de-
faults to false, but you can change that behavior by using the -
-autoCommit command-line switch.

\c [true|false] A "true" setting tells SqlTool to Continue when errors are encountered.
The current transaction will not be rolled back upon SQL errors, so if \c
is true, then run the ROLLCACK; command yourself if that's what you
want to happen. The default for interactive use is to continue upon error,
but the default for non-interactive use is to abort upon error. You can
override this behavior by using the --continueOnErr or the -
-abortOnErr command-line switch.

With database setup scripts, I usually find it convenient to set "true" be-
fore dropping tables (so that things will continue if the tables aren't
there), then set it back to false so that real errors are caught. DROP TA-
BLE tablename IF EXISTS; is a more elegant, but less portable,
way to accomplish the same thing.

Tip

It depends on what you want your SQL files to do, of course, but I usually want my SQL files
to abort when an error is encountered, without necessarily killing the SqlTool session. If this is
the behavior that you want, then put an explicit \c false at the top of your SQL file and turn
on continue-upon-error only for sections where you really want to permit errors, or where you
are using PL commands to handle errors manually. This will give the desired behavior whether
your script is called by somebody interactively, from the SqlTool command-line, or included in
another SQL file (i.e. nested).

Important

The default settings are usually best for people who don't want to put in any explicit \c or error
handling code at all. If you run SQL files from the SqlTool command line, then any errors will
cause SqlTool to roll back and abort immediately. If you run SqlTool interactively and invoke
SQL files with \i commands, the scripts will continue to run upon errors (and will not roll
back). This behavior was chosen because there are lots of SQL files out there that produce er-
rors which can be ignored; but we don't want to ignore errors that a user won't see. I reiterate
that any and all of this behavior can (and often should) be changed by Special Commands run
in your interactive shell or in the SQL files. Only you know whether errors in your SQL files
can safely be ignored.

SqlTool

74

Automation
SqlTool is ideal for mission-critical automation because, unlike other SQL tools, SqlTool returns a de-
pendable exit status and gives you control over error handling and SQL transactions. Autocommit is off
by default, so you can build a completely dependable solution by intelligently using \c commands
(Continue upon Errors) and commit statements, and by verifying exit statuses.

Using the SqlTool Procedural Language, you have ultimate control over program flow, and you can use
variables for database input and output as well as for many other purposes. See the SqlTool Procedural
Language section.

Getting Interactive Functionality with SQL Files
Some script developers may run into cases where they want to run with sql files but they alwo want
SqlTool's interactive behavior. For example, they may want to do command recall in the sql file, or they
may want to log SqlTool's command-line prompts (which are not printed in non-interactive mode). In
this case, do not give the sql file(s) as an argument to SqlTool, but pipe them in instead, like

java -jar $HSQLDB_HOME/lib/hsqldb.jar urlid < filepath1.sql > /tmp/log.html 2>&1

or

cat filepath1.sql... |
java -jar $HSQLDB_HOME/lib/hsqldb.jar urlid > /tmp/log.html 2>&1

Character Encoding
SqlTool defaults to the US-ASCII character set (for reading). You can use another character set by set-
ting the system property sqlfile.charset, like

java -Dsqlfile.charset=UTF-8 -jar $HSQLDB_HOME/lib/hsqldb.jar urlid file.sql...

You can also set this per urlid in the SqlTool configuration file. See the RC File Authentication Setup
section about that.

Generating Text or HTML Reports
This section is about making a file containing the output of database queries. You can generate reports
by using operating system facilities such as redirection, tee, and cutting and pasting. But it is much easi-
er to use the "\o" and "\H" special commands.

Procedure 8.5. Writing query output to an external file

1. By default, everthing will be done in plain text. If you want your report to be in HTML format, then
give the special command \H. If you do so, you will probably want to use filenames with an suffix
of ".html" or ".htm" instead of ".txt" in the next step.

2. Run the command \o path/to/reportfile.txt. From this point on, output from your
queries will be appended to the specified file. (I.e. another copy of the output is generated.) This

SqlTool

75

way you can continue to monitor or use output as usual as the report is generated.

3. When you want SqlTool to stop writing to the file, run \o (or just quit SqlTool if you have no other
work to do).

4. If you turned on HTML mode with \H before, you can run \H again to turn it back off, if you wish.

It is not just the output of "SELECT" statements that will make it into the report file, but

Kinds of output that get teed to \o files

• Output of SELECT statements.

• Output of all "\d" Special Commands. (I.e., "\dt", "\dv", etc., and "\d OBJECTNAME").

• Output of "\p" Special Commands. You will want to use this to add titles, and perhaps spacing, for
the output of individual queries.

Other output will go to your screen or stdout, but will not make it into the report file. Be aware that no
error messages will go into the report file. If SqlTool is run non-interactively (including if you give any
SQL file(s) on the command line), SqlTool will abort with an error status if errors are encountered. The
right way to handle errors is to check the SqlTool exit status. (The described error-handling behavior can
be modified with SqlTool command-line switches and Special Commands).

Warning

Remember that \o appends to the named file. If you want a new file, then use a new file name
or remove the targe file ahead of time.

Tip

So that I don't end up with a bunch of junk in my report file, I usually leave \o off while I per-
fect my SQL. With \o off, I perfect the SQL query until it produces on my screen exactly what I
want saved to file. At this point I turn on \o and run ":;" to repeat the last SQL command. If I
have several complex queries to run, I turn \o off and repeat until I'm finished. (Every time you
turn \o on, it will append to the file, just like we need).

Usually it doesn't come to mind that I need a wider screen until a query produces lines that are
too long. In this case, stretch your window and repeat the last command with the ":;" Buffer
Command.

SqlTool Procedural Language
Aka PL

Most importantly, run SqlTool interactively and give the "*?" command to see what PL commands
are available to you.

PL variables will only be expanded after you run a PL command (or set variable(s) from the command-
line). We only want to turn on variable expansion if the user wants variable expansion. People who don't
use PL don't have to worry about strings getting accidentally expanded.

All other PL commands imply the "*" command, so you only need to use the "*" statement if your script
uses PL variables and it is possible that no variables may be set before-hand (and no PL commands have

SqlTool

76

been run previously). In this case, without "*", your script would silently use a literal value like "*{x}"
instead of trying to expand it. With a preceding "*" command, PL will notice that the variable x has not
been set and will generate an error. (If x had been set here will be no issue because setting a variable
automatically turns on PL variable expansion).

PL is also used to upload and download column values to/from local ASCII files, analogously to the spe-
cial \b commands for binary files. This is explained above in the Interactive Essential PL Command sec-
tion above.

Variables

• Use the * list command to list some or all variables; or * listvalue to also see the values.

• You can set variables using the * VARNAME = value command.

• You can also set variables using the --setvar command-line switch. I give a very brief but useful
example of this below.

• Variables are always expanded in SQL, Special, and PL commands if they are written like
*{VARNAME} (assuming that a PL command has been run previously). Your SQL scripts can give
good feedback by echoing the value of variables with the "\p" special command.

• A variable written like /VARNAME is expanded if it begins an SQL Statement. This usage is called
PL Aliasing. See the PL Aliases section below.

• Variables are normally written like *VARNAME in logical expressions to prevent them from being
evaluated too early. See below about logical expressions.

• You can't do math with expression variables, but you can get functionality like the traditional for
(i = 0; i < x; i++) by appending to a variable and testing the string length, like

* while (*i < ${x})
* i = *{i}.

i will be a growing line of dots.

• Variable names must not contain white space, or the characters "}" or "=".

PL Aliases
PL Aliasing just means the use of a PL variable as the first thing in an SQL statement, with the shortcut
notation /VARNAME.

/VARNAME must be followed by whitespace or terminate the Statement, in order for SqlFile to tell
where the variable name ends.

Note

Note that PL aliases are a very different thing from SQL aliases or HSQLDB aliases, which are
features of databases, not SqlFile.

If the value of a variable is an entire SQL command, you generally do not want to include the terminat-
ing ";" in the value. There is an example of this above.

PL aliasing may only be used for SQL statements. You can define variables for everything in a Special

SqlTool

77

or PL Command, except for the very first character ("\" or "*"). Therefore, you can use variables other
than alias variables in Special and PL Commands. Here is a hyperbolically impractical example to show
the extent to which PL variables can be used in Special commands even though you can not use them as
PL aliases.

sql> * qq = p Hello Butch
sql> *{qq} done now
Hello Butch done now

(Note that the * here is not the special command "*", but is the special command "\p" because "*{qq}"
resolves to "p").

Here is a short SQL file that gives the specified user write permissions on some application tables.

Example 8.8. Simple SQL file using PL

/*
grantwrite.sql

Run SqlTool like this:
java -jar path/to/hsqldb.jar -setvar USER=debbie grantwrite.sql

*/

/* Explicitly turn on PL variable expansion, in case no variables have
been set yet. (Only the case if user did not set USER).

*/
*

GRANT all ON book TO *{USER};
GRANT all ON category TO *{USER};

Note that this script will work for any (existing) user just by supplying a different user name on the com-
mand-line. I.e., no need to modify the tested and proven script. There is no need for a commit state-
ment in this SQL file since no DML is done. If the script is accidentally run without setting the USER
variable, SqlTool will give a very clear notificaton of that.

The purpose of the plain "*" command is just so that the *{USER} variables will be expanded. (This
would not be necessary if the USER variable, or any other variable, were set, but we don't want to de-
pend upon that).

Logical Expressions
Logical expressions occur only inside of logical expression parentheses in PL statements. For example,
if (*var1 > astring) and while (*checkvar). (The parentheses after "foreach" do not en-
close a logical expression, they just enclose a list).

There is a critical difference between *{VARNAME} and *VARNAME inside logical expressions.
*{VARNAME} is expanded one time when the parser first encounters the logical expression.
*VARNAME is re-expanded every time that the expression is evaluated. So, you would never want to
code * while (*{X} < 5) because the statement will always be true or always be false. (I.e. the
following block will loop infinitely or will never run).

Don't use quotes or whitespace of any kind in *{VARNAME} variables in expressions. (They would ex-
pand and then the expression would most likely no longer be a valid expression as listed in the table be-

SqlTool

78

low). Quotes and whitespace are fine in *VARNAME variables, but it is the entire value that will be used
in evaluations, regardless of whether quotes match up, etc. I.e. quotes and whitespace are not special to
the token evaluator.

Logical Operators

TOKEN The token may be a literal, a *{VARNAME} which is expanded early, or
a *VARNAME which is expanded late. (You usually do not want to use
*{VARNAME} in logical expressions). False if the token is not set,
empty, or "0". True otherwise.

TOKEN1 == TOKEN2 True if the two tokens are equivalent "strings".

TOKEN1 <> TOKEN2 Ditto.

TOKEN1 >< TOKEN2 Ditto.

TOKEN1 > TOKEN2 True if the TOKEN1 string is longer than TOKEN2 or is the same
length but is greater according to a string sort.

TOKEN1 < TOKEN2 Similarly to TOKEN1 > TOKEN2.

! LOGICAL_EXPRESSION Logical negation of any of the expressions listed above.

*VARNAMEs in logical expressions, where the VARNAME variable is not set, evaluate to an empty
string. Therefore (*UNSETVAR = 0) would be false, even though (*UNSETVAR) by itself is false
and (0) by itself is false.

When developing scripts, you definitely use SqlTool interactively to verify that SqlTool evaluates logic-
al expressions as you expect. Just run * if commands that print something (i.e. \p) if the test expres-
sion is true.

Flow Control
Flow control works by conditionally executing blocks of Commands according to conditions specified
by logical expressions.

The conditionally executed blocks are called PL Blocks. These PL Blocks always occur between a PL
flow control statement (like * foreach, *while, * if) and a corresponding * end PL Com-
mand (like * end foreach).

Caution

Be aware that the PL block reader is ignorant about SQL statements and comments when look-
ing for the end of the block. It just looks for lines beginning with some specific PL commands.
Therefore, if you put a comment line before a PL statement, or if a line of a multi-line SQL
statement has a line beginning with a PL command, things may break.

I am not saying that you shouldn't use PL commands or SQL commands inside of PL blocks--
you definitely should! I'm saying that in PL blocks you should not have lines inside of SQL
statments or comments which could be mistaken for PL commands. (Especially, "commenting
out" PL end statements will not work if you leave * end at the beginning of the line).

(This limitation will very likely be removed in a future version of SqlTool).

The values of control variables for foreach and while PL blocks will change as expected.

SqlTool

79

There are * break and * continue, which work as any shell scripter would expect them to. The *
break command can also be used to quit the current SQL file without triggering any error processing.
(I.e. processing will continue with the next line in the including SQL file or interactive session, or with
the next SQL file if you supplied multiple on the command-line).

Below is an example SQL File that shows how to use most PL features. If you have a question about
how to use a particular PL feature, check this example before asking for help. This file resides in the
src/org/hsqldb/sample directory with the name pl.sql. Definitely give it a run, like

java -jar $HSQLDB_HOME/lib/hsqldb.jar mem $HSQLDB_HOME/src/org/hsqldb/sample/pl.jar

Example 8.9. SQL File showing use of most PL features

/*
$Id: pl.sql,v 1.4 2005/05/02 15:07:26 unsaved Exp $
SQL File to illustrate the use of SqlTool PL features.
Invoke like

java -jar .../hsqldb.jar .../pl.sql mem
-- blaine

*/

* if (! *MYTABLE)
\p MYTABLE variable not set!
/* You could use \q to Quit SqlTool, but it's often better to just

break out of the current SQL file.
If people invoke your script from SqlTool interactively (with
\i yourscriptname.sql) any \q will kill their SqlTool session. */

\p Use arguments "--setvar MYTABLE=mytablename" for SqlTool
* break

* end if

/* Turning on Continue-upon-errors so that we can check for errors ourselves.*/
\c true

\p
\p Loading up a table named '*{MYTABLE}'...

/* This sets the PL variable 'retval' to the return status of the following
SQL command */

* retval ~
CREATE TABLE *{MYTABLE} (

i int,
s varchar

);
\p CREATE status is *{retval}
\p

/* Validate our return status. In logical expressions, unset variables like
*unsetvar are equivalent to empty string, which is not equal to 0
(though both do evaluate to false on their own, i.e. (*retval) is false
and (0) is false */

* if (*retval != 0)
\p Our CREATE TABLE command failed.
* break

* end if

/* Default Continue-on-error behavior is what you usually want */
\c false
\p

SqlTool

80

/* Insert data with a foreach loop.
These values could be from a read of another table or from variables
set on the command line like

*/
\p Inserting some data int our new table (you should see 3 row update messages)
* foreach VALUE (12 22 24 15)

* if (*VALUE > 23)
\p Skipping *{VALUE} because it is greater than 23
* continue
\p YOU WILL NEVER SEE THIS LINE, because we just 'continued'.

* end if
INSERT INTO *{MYTABLE} VALUES (*{VALUE}, 'String of *{VALUE}');

* end foreach
\p

* themax ~
/* Can put Special Commands and comments between "* VARNAME ~" and the target

SQL statement. */
\p We're saving the max value for later. You'll still see query output here:
SELECT MAX(i) FROM *{MYTABLE};

/* This is usually unnecessary because if the SELECT failed, retval would
be undefined and the following print statement would make SqlTool exit with
a failure status */

* if (! *themax)
\p Failed to get the max value.
/* It's possible that the query succeeded but themax is "0".

You can check for that if you need to. */
* break
\p YOU WILL NEVER SEE THIS LINE, because we just 'broke'.

* end if

\p
\p ##
\p The results of our work:
SELECT * FROM *{MYTABLE};
\p MAX value is *{themax}

\p
\p Everything worked.

Chunking
We hereby call the ability to transmit multiple SQL commands to the database in one transmission
chunking. Unless you are in Raw mode, SqlTool only transmits commands to the database engine when
it reads in a ";" at the end of a line of an SQL command. Therefore, you normally want to end each and
every SQL command with ";" at the end of a line. This is because the database can only send one status
reply to each JDBC transmission. So, while you could run

SELECT * FROM t1; SELECT * FROM t2;

SqlTool can only display the results from the last query. This is a limitation of the client/server nature of
JDBC, and applies to any JDBC client. There are, however, situations where you don't need immediate
feedback from every SQL command. For example,

Example 8.10. Single-line chunking example

SqlTool

81

INSERT INTO t1 VALUES(0); SELECT * FROM t1;

It's useful because the output of the second SQL command will tell you whether the first SQL command
succeeded. So, you won't miss the status output from the first command.

Why?
The first general reason to chunk SQL commands is performance. For standalone databases, the most
common performance bottleneck is network latency. Chunking SQL commands can dramatically reduce
network traffic.

The second general reason to chunk SQL commands is if your database requires you to send multiple
commands in one transmission. This is often the case when you need to tell the database the SQL or PL/
SQL commands that comprise a stored procedure, function, trigger, etc.

How?
The most simple way is enter as many SQL commands as you want, but just do not end a line with ";"
until you want the chunk to transmit.

Example 8.11. Multi-line chunking example

INSERT INTO t1 VALUES (1)
; INSERT INTO t1 VALUES (2)
; SELECT * FROM t1;

If you list your command history with \s, you will see that all 3 SQL commands in 3 lines are in one
SqlTool command. You can recall this SqlTool command from history to re-execute all three SQL com-
mands.

The other method is by using Raw Mode. Go to the Raw Mode section to see how. You can enter any
text at all, exactly how you want it to be sent to the database engine. Therefore, in addition to chunking
SQL commands, you can give commands for non-SQL extensions to the database. For example, you
could enter JavaScript code to be used in a stored procedure.

Raw Mode
You begin raw mode by issuing the Special Command "\.". You can then enter as much text in any
format you want. When you are finished, enter a line consisting of only ".". If you are running SqlTool
interactively, you'll notice that your prompt will be the continuation prompt until you enter the "." line.

When you terminate raw entry with the "\." line, the command does not execute, it just goes into the
command buffer. If running interactively, you can look at the buffer with the ":l" Buffer Command.
What you will normally want to do is to enter the Buffer Command ":;" to transmit the buffer to the
database engine.

Example 8.12. Raw Mode example

SqlTool

82

sql> \.
Enter RAW SQL. No \, :, * commands. End with a line containing only ".":
raw> line one;
+> line two;
+> line three;
+> .

Raw SQL chunk moved into buffer. Run ":;" to execute the chunk.
sql> :;
Executing command from buffer:
line one;
line two;
line three;

SQL Error at 'stdin' line 13:
"line one;
line two;
line three;"
Unexpected token: LINE in statement [line]
sql>

The error message "Unexpected token: LINE in statement [line]" comes from the database engine, not
SqlTool. All three lines were transmitted to the database engine.

Buffer Commands are generally unavailable when runninb SqlTool interactively. However, the com-
mand ":;", and the command buffer have been enabled for non-interactive use, because they are required
for using raw mode, and it is definitely useful to be able to use raw mode in SQL files.

PL/SQL
Note

PL/SQL is not the same as PL. PL is the procedural language of SqlFile and is independent of
your back-end database. PL commands always begin with *. PL/SQL is processed on the server
side and you can only use it of your database supports it. You can not intermix PL and PL/SQL
(except for setting a PL variable to the output of PL/SQL execution), because when you enter
PL/SQL to SqlTool that input is not processed by SqlFile.

Use Raw Mode to send PL/SQL code blocks to the database engine. You do not need to enter the "\."
command to enter raw mode. Just begin a new SqlTool command line with "DECLARE" or "BEGIN",
and SqlTool will automatically put you into raw mode. See the Raw Mode section for details.

The following sample SQL file resides at src/org/hsqldb/sample/plsql.sql in your
HSQLDB distribution. This script will only work if your database engine supports standard PL/SQL, if
you have permission to create the table "T1" in the default schema, and if that object does not already
exist.

Example 8.13. PL/SQL Example

/*
* $Id: plsql.sql,v 1.3 2005/05/02 15:09:11 unsaved Exp $
*
* This example is copied from the "Simple Programs in PL/SQL"
* example by Yu-May Chang, Jeff Ullman, Prof. Jennifer Widom at
* the Standord University Database Group's page
* http://www-db.stanford.edu/~ullman/fcdb/oracle/or-plsql.html .
* I have only removed some blank lines (because you can't use blank

SqlTool

83

* lines inside of SQL commands in non-raw mode SqlTool when running
* it interactively); and, at the bottom I have replaced the
* client-specific, non-standard command "run;" with SqlTool's
* corresponding command ":;" and added a plain SQL SELECT command
* to show whether the PL/SQL code worked. - Blaine
*/

CREATE TABLE T1(
e INTEGER,
f INTEGER

);

DELETE FROM T1;

INSERT INTO T1 VALUES(1, 3);

INSERT INTO T1 VALUES(2, 4);

/* Above is plain SQL; below is the PL/SQL program. */
DECLARE

a NUMBER;

b NUMBER;

BEGIN

SELECT e,f INTO a,b FROM T1 WHERE e>1;

INSERT INTO T1 VALUES(b,a);

END;

.

/**/
/* Remaining SqlTool-specific code added by Blaine Simpson of the
* HSQLDB Development Group.
*/

:;

/* This should show 3 rows, one containing values 4 and 2 (in this order)...*/
SELECT * FROM t1;

Note that, inside of raw mode, you can use any kind of formatting you want: Whatever you enter-- blank
lines, comments, everything-- will be transmitted to the database engine.

Using hsqltool.jar and hsqldbutil.jar
This section is only for those users who want to use SqlTool but without the overhead of hsqldb.jar.

If you do not need to directly use JDBC URLs like jdbc:hsqldb:mem: + something, jd-
bc:hsqldb:file: + something, or jdbc:hsqldb:res: + something, then you can use
hsqltool.jar in place of the much larger hsqldb.jar file. hsqltool.jar will work for all
JDBC databases other than HSQLDB Memory-only and In-process databases (the latter are fine if you
access them via a HSQLB Server or WebServer). You will have to supply the JDBC driver for non-
HSQLDB URLs, of course.

hsqltool.jar includes the HSQLDB JDBC driver. If you do not need to connect to HSQLDB data-

SqlTool

84

bases at all, then hsqldbutil.jar is what you need. hsqldbutil.jar contains everything you
need to run SqlTool and DatabaseManagerSwing against non-HSQLDB databases... well, be-
sides the JDBC drivers for the target databases.

The HSQLDB distribution doesn't "come with" a pre-built hsqltool.jar and hsqldbutil.jar
files. You should build the hsqltool or hsqldbutil target, as explained in the Building HSQLDB ap-
pendix.

If you are using the HSQLDB JDBC driver (i.e., you're connecting up to a URL like jdbc:hsqldb:hsql +
something or jdbc:hsqldb:http + something), you run SqlTool exactly as with hsqldb.jar except you use
the file path to your new jar file instead of the path to hsqldb.jar.

If you are using a non-HSQLDB JDBC driver, follow the instructions at the end of the The Bare Minim-
um section, but use your new file in place of hsqldb.jar.

Character-Separated-Value Imports and Ex-
ports

Note

These features were added for version 1.8.0.3 of HSQLDB.

Note

This feature is independent of HSQLDB Text Tables, a server-side feature of HSQLDB. It
makes no difference to SqlTool whether the source or target table of your export/import is a
memory, cache, or text table. Indeed, like all features of SqlTool, it works fine with other JD-
BC databases. It works great, for example to migrate data from a table of one type to a table of
another type, or to another schema, or to another database instance, or to another database sys-
tem.

Because of common usage of the term, I call this feature CSV imports and exports, even though the de-
limiters are not constrained to single characters, but may be any String. Use the \x command to eXport
a table to a CSV file, and the \m command to iMport a CSV file into a pre-existing table.

Just as the delimiter capability is more general than traditional CSV delimiters, the export function is
also more general than just a table data exporter. Besides the trivial generalization that you may specify
a view or other virtual table name in place of a table name, you can alternatively export the output of
any query which produces normal text output. A benefit to this approach is that it allows you to export
only some columns of a table, and to specify a WHERE clause to narrow down the rows to be exported
(or perform any other SQL transformation, mapping, join, etc.). One specific use for this would be to ex-
clude columns of binary data (which can be exported by other means, such as a PL loop to store binary
values to files with the \bd command).

Note that the import command will not create a new table. This is because of the impossibility of guess-
ing appropriate types and constraints based only on column names and a data sampling (which is all that
a CSV-importer has access to). Therefore, if you wish to populate a new table, create the table before
running the import. The import file does not need to have data for all columns of a table. The only re-
quired columns are those required by non-null and FK constraints. One specific reason to omit columns
is if you want values of some columns to be created automatically by column DEFAULT settings, trig-
gers, HSQLDB identity sequences, etc. Another reason would be to skip binary columns.

Simple CSV exports and imports using default settings
Even if you need to change delimiters, table names, or file names from the defaults, I suggest that you
run one export and import with default settings as a practice run. A memory-only HSQLDB instance is

SqlTool

85

ideal for test runs like this.

This command exports the table icf.projects to the file projects.csv in the current directory
(where you invoked SqlTool from). By default, the output file name will be the specified source table
name plus the extension .csv.

Example 8.14. CSV Export Example

SET SCHEMA icf;
\x projects

We could also have run \x icf.projects (which would have created a file named
icf.projects.csv) instead of changing the session schema. In this example we have chosen to
make the export file name independent of the schema to facilitate importing it into a different schema.

Take a look at the output file. Notice that the first line consists of column names, not data. This line is
present because it will be needed if the file is to used for a CSV import. Notice the following character-
stics about the export data. The column delimiter is the pipe character "|". The record delimiter is the de-
fault line delimiter character(s) for your operating system. The string used to represent database NULLs
is [null]. See the next section for how to change these from their default values.

This command imports the data from the file projects.csv in the current directory (where you in-
voked SqlTool from) into the table newschema.projects. By default, the output table name will be
the input filename after removing optional leading directory and trailing final extension.

Example 8.15. CSV Import Example

SET SCHEMA newschema;
\m projects.csv

If the CSV file was named with the target schema, you would have skipped the SET SCHEMA com-
mand, like \m newschema.projects.csv.

Specifying queries, delimiters, file names, table names,
columns

The header line in the CSV file is required at this time. (If there is user demand, it can be made optional
for exporting, but it will remain required for importing).

Your export will fail if the column or record delimiter, or the null representation value occurs in the data
being exported. You change these values by setting the PL variables *CSV_COL_DELIM,
*CSV_ROW_DELIM, *CSV_NULL_REP. Notice that the asterisk is part of the variable names, to indic-
ate that these variables are used by SqlTool internally. You can use the escape sequences \n, \r, and \t in
the usual manner. For example, to change the column delimiter to the tab character, you would give the
command

* *CSV_COL_DELIM = \t

For imports, you must always specify the source CSV file path. If you want to export to a different file
than one in the current directory named according to the source table, set the PL variable

SqlTool

86

*CSV_FILEPATH, like

* *CSV_FILEPATH = /tmp/dtbl.csv

For exports, you must always specify the source table name or query. If you want to import to a table
other than that derived from the input CSV file name, set the PL variable *CSV_TABLENAME. The ta-
ble name may contain a schema name prefix.

At this time, you must import all columns that have data in the CSV file. If there is demand to specify an
optional list of columns to import, I'll gladly add that feature.

You can specify a query instead of a tablename with the \x command in order to filter or transform data
from a table or view, or to export the output of a join, etc. You must set the PL variable
*CSV_FILEPATH, as explained above (since there is no table name from which to automatically map a
file name).

Example 8.16. CSV Export of an Arbitrary SELECT Statement

* *CSV_FILEPATH = outfile.txt
\x SELECT entrydate, 2 * aval "Double aval", modtime from bs.dtbl

Note that I specified the column label alias "Double aval" so that the label for that column in the CSV
file header will not be blank.

SqlTool

87

1These features were added by HSQL Development Group since April 2001

Chapter 9. SQL Syntax
The Hypersonic SQL Group
Fred Toussi, HSQLDB Development Group <ft@cluedup.com>
Peter Hudson, HSQLDB Development Group
Joe Maher, HSQLDB Development Group
<jrmaher@ameritech.net>
Edited by Blaine Simpson
$Date: 2005/11/06 22:13:26 $

HSQLDB version 1.8.0 supports the SQL statements and syntax described in this chapter.

Notational Conventions Used in this Chapter
[A] means A is optional.

{ B | C } means either B or C must be used.

[{ B | C }] means either B or C may optionally be used, or nothing at all.

(and) are the actual characters '(' and ')' used in statements.

UPPERCASE words are keywords

SQL Commands
ALTER INDEX1

ALTER INDEX <indexname> RENAME TO <newname>;

Index names can be changed so long as they do not conflict with other user-defined or sytem-defined
names.

ALTER SEQUENCE1

ALTER SEQUENCE <sequencename> RESTART WITH <value>;

Resets the next value to be returned from the sequence.

ALTER SCHEMA1

ALTER SCHEMA <schemaname> RENAME TO <newname>;

Renames the schema as specified. All objects of the schema will hereafter be accessible only with the
new schema name.

Requires Administrative privileges.

88

ALTER TABLE1

ALTER TABLE <tablename> ADD [COLUMN] <columnname> Datatype
[(columnSize[,precision])] [{DEFAULT <defaultValue> |
GENERATED BY DEFAULT AS IDENTITY (START WITH <n>[, INCREMENT BY <m>])}] |
[[NOT] NULL] [IDENTITY] [PRIMARY KEY]
[BEFORE <existingcolumn>];

Adds the column to the end of the column list. The optional BEFORE <existingcolumn> can be used to
specify the name of an existing column so that the new column is inserted in a position just before the
<existingcolumn>.

It accepts a columnDefinition as in a CREATE TABLE command. If NOT NULL is specified and the
table is not empty, then a default value must be specified. In all other respects, this command is the equi-
valent of a column definition statement in a CREATE TABLE statement.

If an SQL view includes a SELECT * FROM <tablename> in its select statement, the new column is ad-
ded to the view. This is a non-standard feature which is likely to change in the future.

ALTER TABLE <tablename> DROP [COLUMN] <columnname>;

Drops the column from the table. Will drop any single-column primary key or unique constraint on the
column as well. The command will not work if there is any multiple key constraint on the column or the
column is referenced in a check constraint or a foreign key.

It will also fail if an SQL view includes the column.

ALTER TABLE <tablename> ALTER COLUMN <columnname> RENAME TO <newname>

Changes a column name.

ALTER TABLE <tablename> ALTER COLUMN <columnname> SET DEFAULT <defaultvalue>};

Adds the specified default value to the column. Use NULL to remove a default.

ALTER TABLE <tablename> ALTER COLUMN <columnname> SET [NOT] NULL

Sets or removes a NOT NULL constraint for the column.

ALTER TABLE <tablename> ALTER COLUMN <columnDefinition>;

This form of ALTER TABLE ALTER COLUMN accepts a columnDefinition as in a CREATE TABLE
command, with the following restrictions.

Restrictions

• The column must be already be a PK column to accept an IDENTITY definition.

• If the column is already an IDENTITY column and there is no IDENTITY definition, the existing
IDENTITY attribute is removed.

• The default expression will be that of the new definition, meaning an existing default can be dropped
by ommission, or a new default added.

SQL Syntax

89

• The NOT NULL attribute will be that of the new definition (similar to previous item).

• Depending on the type of change, the table may have to be empty for the command to work. It al-
ways works when the type of change is possible in general and the individual existing values can all
be converted.

ALTER TABLE <tablename> ALTER COLUMN <columnname>
RESTART WITH <new sequence value>

This form is used exclusively for IDENTITY columns and changes the next automatic value for the
identity sequence.

ALTER TABLE <tablename> ADD [CONSTRAINT <constraintname>]
CHECK (<search condition>);

Adds a check constraint to the table. In the current version, a check constraint can reference only the row
being inserted or updated.

ALTER TABLE <tablename> ADD [CONSTRAINT <constraintname>] UNIQUE (<column list>);

Adds a unique constraint to the table. This will not work if there is already a unique constraint covering
exactly the same <column list>.

This will work only if the values of the column list for the existing rows are unique or include a null
value.

ALTER TABLE <tablename> ADD [CONSTRAINT <constraintname>]
PRIMARY KEY (<column list>);

Adds a primary key constraint to the table, using the same constraint syntax as when the primary key is
specified in a table definition.

ALTER TABLE <tablename>
ADD [CONSTRAINT <constraintname>] FOREIGN KEY (<column list>)
REFERENCES <exptablename> (<column list>)
[ON {DELETE | UPDATE} {CASCADE | SET DEFAULT | SET NULL}];

Adds a foreign key constraint to the table, using the same constraint syntax as when the foreign key is
specified in a table definition.

This will fail if for each existing row in the referring table, a matching row (with equal values for the
column list) is not found in the referenced tables.

ALTER TABLE <tablename> DROP CONSTRAINT <constraintname>;

Drop a named unique, check or foreign key constraint from the table.

ALTER TABLE <tablename> RENAME TO <newname>;

ALTER USER1

ALTER USER <username> SET PASSWORD <password>;

SQL Syntax

90

Changes the password for an existing user. Password must be double quoted. Use "" for an empty pass-
word.

DBA's may change users' base default schema name with the comand

ALTER USER <username> SET INITIAL SCHEMA <schemaname>;

This is the schema which database object names will resolve to for this user, unless overridden as ex-
plained in Schema object naming. For reasons of backwards compatibility, the initial schema value will
not be persisted across database shutdowns until HSQLDB version 1.8.1. (I.e., INITIAL SCHEMA set-
tings will be lost upon database shutdown with HSQLDB versions lower than version 1.8.1).

Only an administrator may use these commands.

CALL
CALL Expression;

Any expression can be called like a stored procedure, including, but not only Java stored procedures or
functions. This command returns a ResultSet with one column and one row (the result) just like a SE-
LECT statement with one row and one column.

See also: Stored Procedures / Functions, SQL Expression.

CHECKPOINT
CHECKPOINT [DEFRAG1];

Closes the database files, rewrites the script file, deletes the log file and opens the database.

If DEFRAG is specified, this command also shrinks the .data file to its minimal size.

See also: SHUTDOWN, SET LOGSIZE.

COMMIT
COMMIT [WORK];

Ends a transaction and makes the changes permanent.

See also: ROLLBACK, SET AUTOCOMMIT, SET LOGSIZE.

CONNECT
CONNECT USER <username> PASSWORD <password>;

Connects to the database as a different user. Password should be double quoted. Use "" for an empty
password.

See also: GRANT, REVOKE.

CREATE ALIAS

SQL Syntax

91

CREATE ALIAS <function> FOR <javaFunction>;

Creates an alias for a static Java function to be used as a Stored Procedure. The function must be access-
ible from the JVM in which the database runs. Example:

CREATE ALIAS ABS FOR "java.lang.Math.abs";

Note

The CREATE ALIAS command just defines the alias. It does not validate existence of the tar-
get method or its containing class. To validate the alias, use it.

See also: CALL, Stored Procedures / Functions.

CREATE INDEX
CREATE [UNIQUE] INDEX <index> ON <table> (<column> [DESC] [, ...]) [DESC];

Creates an index on one or more columns in a table.

Creating an index on searched columns may improve performance. The qualifier DESC can be present
for command compatibility with other databases but it has no effect. Unique indexes can be defined but
this is deprecated. Use UNIQUE constraints instead. The name of an index must be unique within the
whole database.

See also: CREATE TABLE, DROP INDEX.

CREATE ROLE1

CREATE ROLE <rolename>;

Creates the named role with no members. Requires Administrative privileges.

CREATE SCHEMA1

CREATE SCHEMA <schemaname> AUTHORIZATION <grantee>
[<createStatement> [<grantStatement>] [...];

Creates the named schema, with ownership of the specified authorization. The authorization grantee
may be a database user or a role.

Optional (nested) CREATE and GRANT statements can be given only for new objects in this new
schema. Only the last nested statement should be terminated with a semicolon, because the first semi-
colon encountered after "CREATE SCHEMA" will end the CREATE SCHEMA command. In the ex-
ample below, a new schema, ACCOUNTS, is created, then two tables and a view are added to this
schma and some rights on these objects are granted.

CREATE SCHEMA ACCOUNTS AUTHORIZATION DBA
CREATE TABLE AB(A INTEGER, ...)
CREATE TABLE CD(C CHAHR, ...)
CREATE VIEW VI AS SELECT ...
GRANT SELECT TO PUBLIC ON AB
GRANT SELECT TO JOE ON CD;

SQL Syntax

92

Note that this example consists of one CREATE SCHEMA statement which is terminated by a semi-
colon.

Requires Administrative privileges.

CREATE SEQUENCE1

CREATE SEQUENCE <sequencename> [AS {INTEGER | BIGINT}]
[START WITH <startvalue>] [INCREMENT BY <incrementvalue>];

Creates a sequence. The default type is INTEGER. The default start value is 0 and the increment 1. Neg-
ative values are not allowed. If a sequence goes beyond Integer.MAXVALUE or Long.MAXVALUE,
the next result is determined by 2's complement arithmetic.

The next value for a sequence can be included in SELECT, INSERT and UPDATE statements as in the
following example:

SELECT [...,] NEXT VALUE FOR <sequencename> [, ...] FROM <tablename>;

In the proposed SQL 200n and in the current version, there is no way of retreiving the last returned value
of a sequence.

CREATE TABLE
CREATE [MEMORY | CACHED | [GLOBAL] TEMPORARY | TEMP 1 | TEXT1] TABLE <name>

(<columnDefinition> [, ...] [, <constraintDefinition>...])
[ON COMMIT {DELETE | PRESERVE} ROWS];

Creates a tables in memory (default) or on disk and only cached in memory. If the database is all-
in-memory, both MEMORY and CACHED forms of CREATE TABLE return a MEMORY table while
the TEXT form is not allowed.

Components of a CREATE TABLE command

columnDefinition
columnname Datatype [(columnSize[,precision])]

[{DEFAULT <defaultValue> |
GENERATED BY DEFAULT AS IDENTITY
(START WITH <n>[, INCREMENT BY <m>])}] |
[[NOT] NULL] [IDENTITY] [PRIMARY KEY]

Default values that are allowed are constant values or certain SQL
datetime functions.

Allowed Default Values in Column Definitions

• For character column, a single-quoted string or NULL. The
only SQL function that can be used is CURRENT_USER.

SQL Syntax

93

• For datetime columns, a single-quoted DATE, TIME or
TIMESTAMP value or NULL. Or a datetime SQL function
such as CURRENT_DATE, CURRENT_TIME, CUR-
RENT_TIMESTAMP, TODAY, NOW. Each function is al-
lowed for a certain datetime type.

• For BOOLEAN columns, the literals FALSE, TRUE, NULL.

• For numeric columns, any valid number or NULL.

• For binary columns, any valid hex string or NULL.

Only one identity column is allowed in each table. Identity
columns are autoincrement columns. They must be of INTEGER
or BIGINT type and are automatically primary key columns (as a
result, multi-column primary keys are not possible with an IDEN-
TITY column present). Using the long SQL syntax the (START
WITH <n>) clause specifies the first value that will be used. The
last inserted value into an identity column for a connection is
available using the function IDENTITY(), for example (where Id
is the identity column):

INSERT INTO Test (Id, Name) VALUES (NULL,'Test');
CALL IDENTITY();

constraintDefinition
[CONSTRAINT <name>]

UNIQUE (<column> [,<column>...]) |
PRIMARY KEY (<column> [,<column>...]) |
FOREIGN KEY (<column> [,<column>...])
REFERENCES <refTable> (<column> [,<column>...])
[ON {DELETE | UPDATE}
{CASCADE | SET DEFAULT | SET NULL}]1 |
CHECK(<search condition>)1

Both ON DELETE and ON UPDATE clauses can be used in a
single foreign key definition.

search condition A search condition is similar to the set of conditions in a WHERE
clause. In the current version of HSQLDB, the conditions for a
CHECK constraint can only reference the current row, meaning
there should be no SELECT statement. Sample table definitions
with CHECK constraints are in TestSelfCheckCon-
straints.txt. This file is in the /hsqldb/testrun/hsqldb/ dir-
ectory of the zip.

General syntax limitations HSQLDB databases are initially created in a legacy mode that
does not enforce column size and precision. You can set the prop-
erty: sql.enforce_strict_size=true to enable this fea-
ture. When this property has been set, Any supplied column size
and precision for numeric and character types (CHARACTER
and VARCHAR) are enforced. Use the command, SET PROP-
ERTY "sql.enforce_strict_size" TRUE once before
defining the tables.

NOT NULL constraints can be part of the column definition only.

SQL Syntax

94

Other constraints cannot be part of the column definition and
must appear at the end of the column definition list.

TEMPORARY TABLE contents for each session (connection)
are emptied by default at each commit or rollback. The optional
qualifier ON COMMIT PRESERVE ROWS can be used to keep
the rows while the session is open. The default is ON COMMIT
DELETE ROWS.

See also: DROP TABLE.

CREATE TRIGGER1

CREATE TRIGGER <name> {BEFORE | AFTER} {INSERT | UPDATE | DELETE} ON <table>
[FOR EACH ROW] [QUEUE n] [NOWAIT] CALL <TriggerClass>;

TriggerClass is an application-supplied class that implements the org.hsqldb.Trigger interface
e.g. "mypackage.TrigClass". It is the fire method of this class that is invoked when the trigger event oc-
curs. You should provide this class, which can have any name, and ensure that this TriggerClass is
present in the classpath which you use to start hsqldb.

Since 1.7.2 the implementation has been changed and enhanced. When the 'fire' method is called, it is
passed the following arguments:

fire (String name, String table, Object row1[], Object row2[])

where 'row1' and 'row2' represent the 'before' and 'after' states of the row acted on, with each column be-
ing a member of the array. The mapping of members of the row arrays to database types is specified in
Data Types. For example, BIGINT is represented by a java.lang.Long Object. Note that the
number of elements in the row arrays could be larger than the number of columns by one or two ele-
ments. Never modify the last elements of the array, which are not part of the actual row.

If the trigger method wants to access the database, it must establish its own JDBC connection. This can
cause data inconsistency and other problems so it is not recommended. The jd-
bc:default:connection: URL is not currently supported.

Implementation note:

If QUEUE 0 is specified, the fire method is execued in the same thread as the database engine. This al-
lows trigger action to alter the data that is about to be stored in the database. Data can be checked or
modified in BEFORE INSERT / UPDATE + FOR EACH ROW triggers. All table constraints are then
enforced by the database engine and if there is a violation, the action is rejected for the SQL command
that initiated the INSERT or UPDATE. There is an exception to this rule, that is with UPDATE queries,
referential integrity and cascading actions resulting from ON UPDATE CASCASE / SET NULL / SET
DEFAULT are all performed prior to the invocation of the trigger method. If an invalid value that breaks
referential integrity is inserted in the row by the trigger method, this action is not checked and results in
inconsistent data in the table.

Alternatively, if the trigger is used for external communications and not for checking or altering the
data, a queue size larger than zero can be specified. This is in the interests of not blocking the database's
main thread as each trigger will run in a thread that will wait for its firing event to occur. When this hap-
pens, the trigger's thread calls TriggerClass.fire. There is a queue of events waiting to be run by each
trigger thread. This is particularly useful for 'FOR EACH ROW' triggers, when a large number of trigger
events occur in rapid succession, without the trigger thread getting a chance to run. If the queue becomes

SQL Syntax

95

full, subsequent additions to it cause the database engine to suspend awaiting space in the queue. Take
great care to avoid this situation if the trigger action involves accessing the database, as deadlock will
occur. This can be avoided either by ensuring the QUEUE parameter makes a large enough queue, or by
using the NOWAIT parameter, which causes a new trigger event to overwrite the most recent event in
the queue. The default queue size is 1024. Note also that the timing of trigger method calls is not guar-
anteed, so applications should implement their own synchronization measures if necessary.

With a non-zero QUEUE parameter, if the trigger methods modifies the 'row2' values, these changes
may or may not affect the database and will almost certainly result in data inconsistency.

Please refer to the code for org.hsqldb.sample.Trigger [../src/org/hsqldb/Trigger.html] and
org.hsqldb.sample.TriggerSample [../src/org/hsqldb/sample/TriggerSample.html] for more
information on how to write a trigger class.

See also: DROP TRIGGER.

CREATE USER
CREATE USER <username> PASSWORD <password> [ADMIN];

Creates a new user or new administrator in this database. Password must be double quoted. Empty pass-
word can be made using "". You can change a password afterwards using a ALTER USER1 command.

Only an administrator can do this.

See also: CONNECT, GRANT, REVOKE. ALTER USER1,

CREATE VIEW1

CREATE VIEW <viewname>[(<viewcolumn>,..) AS SELECT ... FROM ... [WHERE Expression]
[ORDER BY orderExpression [, ...]]
[LIMIT <limit> [OFFSET <offset>]];

A view can be thought of as either a virtual table or a stored query. The data accessible through a view is
not stored in the database as a distinct object. What is stored in the database is a SELECT statement. The
result set of the SELECT statement forms the virtual table returned by the view. A user can use this vir-
tual table by referencing the view name in SQL statements the same way a table is referenced. A view is
used to do any or all of these functions:

• Restrict a user to specific rows in a table. For example, allow an employee to see only the rows re-
cording his or her work in a labor-tracking table.

• Restrict a user to specific columns. For example, allow employees who do not work in payroll to see
the name, office, work phone, and department columns in an employee table, but do not allow them
to see any columns with salary information or personal information.

• Join columns from multiple tables so that they look like a single table.

• Aggregate information instead of supplying details. For example, present the sum of a column, or the
maximum or minimum value from a column.

Views are created by defining the SELECT statement that retrieves the data to be presented by the view.
The data tables referenced by the SELECT statement are known as the base tables for the view. In this
example, is a view that selects data from three base tables to present a virtual table of commonly needed

SQL Syntax

96

../src/org/hsqldb/Trigger.html
../src/org/hsqldb/sample/TriggerSample.html

data:

CREATE VIEW mealsjv AS
SELECT m.mid mid, m.name name, t.mealtype mt, a.aid aid,

a.gname + ' ' + a.sname author, m.description description,
m.asof asof

FROM meals m, mealtypes t, authors a
WHERE m.mealtype = t.mealtype
AND m.aid = a.aid;

You can then reference mealsjv in statements in the same way you would reference a table:

SELECT * FROM mealsjv;

A view can reference another view. For example, mealsjv presents information that is useful for long de-
scriptions that contain identifiers, but a short list might be all a web page display needs. A view can be
built that selects only specific mealsjv columns:

CREATE VIEW mealswebv AS SELECT name, author FROM mealsjv;

The SELECT statement in a VIEW definition should return columns with distinct names. If the names
of two columns in the SELECT statement are the same, use a column alias to distinguish between them.
A list of new column names can always be defined for a view.

CREATE VIEW aview (new_name, new_author) AS
SELECT name, author
FROM mealsjv

See also: SQL Expression, SELECT1, DROP VIEW1.

DELETE
DELETE FROM table [WHERE Expression];

Removes rows in a table.

See also: SQL Expression, INSERT, SELECT1.

DISCONNECT
DISCONNECT;

Closes this connection. It is not required to call this command when using the JDBC interface: it is
called automatically when the connection is closed. After disconnecting, it is not possible to execute oth-
er queries (including CONNECT) with this connection.

See also: CONNECT.

DROP INDEX
DROP INDEX index [IF EXISTS];

SQL Syntax

97

Removes the specified index from the database. Will not work if the index backs a UNIQUE of FOR-
EIGN KEY constraint.

See also: CREATE INDEX.

DROP ROLE1

DROP ROLE <rolename>;

Removes all members from specified role, then removes the role itself.

DROP SEQUENCE1

DROP SEQUENCE <sequencename> [IF EXISTS] [RESTRICT | CASCADE];

Removes the specified sequence from the database. When IF EXIST is used, the statement returns
without an error if the sequence does not exist. The RESTRICT option is in effect by default, meaning
that DROP will fail if any view reference the sequence. Specify the CASCADE option to silently drop all
dependent database objects.

DROP SCHEMA1

DROP SCHEMA <schemaname> [RESTRICT | CASCADE];

Removes the specified schema from the database. The RESTRICT option is in effect by default, mean-
ing that DROP will fail if any objects such as tables or sequences have been defined in the schema. Spe-
cify the CASCADE option to silently drop all database objects in the schema.

Requires Administrative privileges.

DROP TABLE
DROP TABLE <table> [IF EXISTS] [RESTRICT | CASCADE];

Removes a table, the data and indexes from the database. When IF EXIST is used, the statement returns
without an error even if the table does not exist.

The RESTRICT option is in effect by default, meaning that DROP will fail if any tables or views refer
to this table. Specify the CASCADE option to silently drop all dependent views, and to drop any foreign
key constraint that links this table with other tables.

See also:

CREATE TABLE.

DROP TRIGGER
DROP TRIGGER <trigger>;

Removes a trigger from the database.

SQL Syntax

98

See also: CREATE TRIGGER1.

DROP USER
DROP USER <username>;

Removes a user from the database.

Only an administrator do this.

See also: CREATE USER.

DROP VIEW1

DROP VIEW <viewname> [IF EXISTS] [RESTRICT | CASCADE];

Removes a view from the database. When IF EXIST is used, the statement returns without an error if the
view does not exist. The RESTRICT option is in effect by default, meaning that DROP will fail if any
other view refers to this view. Specify the CASCADE option to silently drop all dependent views.

See also: CREATE VIEW1.

EXPLAIN PLAN
EXPLAIN PLAN FOR { SELECT ... | DELETE ... | INSERT ... | UPDATE ..};

EXPLAIN PLAN FOR can be used with any query to get a detailed list of the elements in the execution
plan.

This list includes the indexes used for performing the query and can be used to optimise the query or to
add indexes to tables.

GRANT
GRANT { SELECT | DELETE | INSERT | UPDATE | ALL } [,...]
ON { table | CLASS "package.class" } TO <grantee>;

GRANT <rolename> [,...] TO <grantee>1;

<grantee> is either a user name, a role name, or PUBLIC. PUBLIC means all users.

The first form of the GRANT command assigns privileges to a grantee for a table or for a class. To al-
low a user to call a Store Procedure static function, the right ALL must be used. Examples:

GRANT SELECT ON Test TO GUEST;
GRANT ALL ON CLASS "java.lang.Math.abs" TO PUBLIC;

Warning

Even though the command is GRANT ALL ON CLASS, you must specify a static method
name. You are actually granting access to a static method, not to a class.

SQL Syntax

99

The second form of the GRANT command gives the specified <grantee> membership in the specified
role.

Requires Administrative privileges.

See also: REVOKE, CREATE USER, CREATE ROLE1.

INSERT
INSERT INTO table [(column [,...])]
{ VALUES(Expression [,...]) | SelectStatement};

Adds one or more new rows of data into a table.

REVOKE
REVOKE { SELECT | DELETE | INSERT | UPDATE | ALL } [,...]
ON { table | CLASS "package.class" } FROM <grantee>;

REVOKE <rolename> [,...] FROM <grantee>1;

<grantee> is either a user name, a role name, or PUBLIC. PUBLIC means all users.

The first form of the REVOKE command withdraws privileges from a grantee for a table or for a class.

The second form of the REVOKE command withdraws membership of the specified <grantee> from the
specified role.

Both forms require Administrative privileges.

See also: GRANT.

ROLLBACK
ROLLBACK [TO SAVEPOINT <savepoint name>1 | WORK}];

ROLLBACK used on its own, or with WORK, undoes changes made since the last COMMIT or ROLL-
BACK.

ROLLBACK TO SAVEPOINT <savepoint name> undoes the change since the named savepoint.
It has no effect if the savepoint is not found.

See also: COMMIT.

SAVEPOINT1

SAVEPOINT <savepoint name>;

Sets up a SAVEPOINT for use with ROLLBACK TO SAVEPOINT.

See also: COMMIT.

SQL Syntax

100

SCRIPT
SCRIPT ['file'];

Creates an SQL script describing the database. If the file is not specified, a result set containing only the
DDL script is returned. If the file is specified then this file is saved with the path relative to the machine
where the database engine is located.

Only an administrator may do this.

SELECT1

SELECT [{LIMIT <offset> <limit> | TOP <limit>}1][ALL | DISTINCT]
{ selectExpression | table.* | * } [, ...]
[INTO [CACHED | TEMP | TEXT]1 newTable]
FROM tableList
[WHERE Expression]
[GROUP BY Expression [, ...]]
[HAVING Expression]
[{ UNION [ALL | DISTINCT] | {MINUS [DISTINCT] | EXCEPT [DISTINCT] } |
INTERSECT [DISTINCT] } selectStatement]
[ORDER BY orderExpression [, ...]]
[LIMIT <limit> [OFFSET <offset>]];

Retrieves information from one or more tables in the database.

Components of a SELECT command

tableList
table [{CROSS | INNER | LEFT OUTER | RIGHT OUTER}

JOIN table ON Expression] [, ...]

table
{ (selectStatement) [AS] label | tableName}

selectExpression
{ Expression | COUNT(*) | {

COUNT | MIN | MAX | SUM | AVG | SOME | EVERY |
VAR_POP | VAR_SAMP | STDDEV_POP | STDDEV_SAMP

} ([ALL | DISTINCT]1] Expression) } [[AS] label]

If DISTINCT is specified, only one instance of several equivalent
values is used in the aggregate function. Except COUNT(*), all
aggregate functions exclude NULL values. The type of the re-
turned value for SUM is subject to deterministic widenning to en-
sure lossless results. The returned value type for COUNT is IN-
TEGER, for MIN, MAX and AVG it is the same type as the
column, for SOME and EVERY it is BOOLEAN. For VAR_POP,
VAR_SAMP, STDDEV_POP and STDDEV_SAMP statistical
functions, the type is always DOUBLE. These statistical functions
do not allow ALL or DISTINCT qualifiers.

If CROSS JOIN is specified no ON expression is allowed for the
join.

SQL Syntax

101

orderExpression
{ columnNr | columnAlias | selectExpression }

[ASC | DESC]

LIMIT n m Creates the result set for the SELECT statement first and then dis-
cards the first n rows (OFFSET) and returns the first m rows of
the remaining result set (LIMIT). Special cases: LIMIT 0 m is
equivalent to TOP m or FIRST m in other RDBMS's; LIMIT n 0
discards the first n rows and returns the rest of the result set.

LIMIT m OFFSET n This form is used at the end of the SELECT statement. The OFF-
SET term is optional.

TOP m Equivalent to LIMIT 0 m.

UNION and other set operations Multiple SELECT statements joined with UNION, EXCEPT and
INTERSECT are possible. Each SELECT is then treated as a
term, and the set operation as an operator in an expression. The
expression is evaluated from left to right but INTERSECT takes
precedence over the rest of the operators and is applied first. You
can use parentheses around any number of SELECT statements to
change the evaluation order.

See also: INSERT, UPDATE, DELETE.

SET AUTOCOMMIT
SET AUTOCOMMIT { TRUE | FALSE };

Switches on or off the connection's auto-commit mode. If switched on, then all statements will be com-
mitted as individual transactions. Otherwise, the statements are grouped into transactions that are ter-
minated by either COMMIT or ROLLBACK. By default, new connections are in auto-commit mode.
This command should not be used directly. Use the JDBC equivalent method, Connec-
tion.setAutoCommit(boolean autocommit).

SET DATABASE COLLATION1

SET DATABASE COLLATION <double quoted collation name>;

Each database can have its own collation. Sets the collation from the set of collations in the source for
org.hsqldb.Collation.

Once this command has been issued, the database can be opened in any JVM and will retain its colla-
tion.

SET CHECKPOINT DEFRAG1

SET CHECKPOINT DEFRAG <size>;

The parameter size is the megabytes of abandoned space in the .data file. When a CHECKPOINT is
performed either as a result of the .log file reaching the limit set by "SET LOGSIZE size", or by the user
issuing a CHECKPOINT command, the amount of space abandoned during the session is checked and if
it is larger than size, a CHECKPOINT DEFRAG is performed instead of a checkpoint.

SQL Syntax

102

SET IGNORECASE
SET IGNORECASE { TRUE | FALSE };

Disables (ignorecase = true) or enables (ignorecase = false) the case sensitivity of text comparison and
indexing for new tables. By default, character columns in new databases are case sensitive. The sensitiv-
ity must be switched before creating tables. Existing tables and their data are not affected. When
switched on, the data type VARCHAR is set to VARCHAR_IGNORECASE in new tables. Alternatively,
you can specify the VARCHAR_IGNORECASE type for the definition of individual columns. So it is
possible to have some columns case sensitive and some not, even in the same table.

Only an administrator may do this.

SET INITIAL SCHEMA 1

Users may change their base default schema name with the comand

SET INITIAL SCHEMA <schemaname>;

This is the schema which database object names will resolve to for the current user, unless overridden as
explained in Schema object naming. For reasons of backwards compatibility, the initial schema value
will not be persisted across database shutdowns until HSQLDB version 1.8.1. (I.e., INITIAL SCHEMA
settings will be lost upon database shutdown with HSQLDB versions lower than version 1.8.1).

SET LOGSIZE
SET LOGSIZE <size>;

Sets the maximum size in MB of the .log file. Default is 200 MB. The database will be closed and
opened (just like using CHECKPOINT) if the .log file gets over this limit, and so the .log file will
shrink. 0 means no limit.

See also: CHECKPOINT.

SET PASSWORD
SET PASSWORD <password>;

Changes the password of the currently connected user. Password must be double quotedEmpty password
can be set using "".

SET PROPERTY1

SET PROPERTY <double quoted name> <value>;

Sets a database property. Properties that can be set using this command are either boolean or integral and
are listed in the Advanced Topics chapter.

SET REFERENTIAL INTEGRITY
SET REFERENTIAL_INTEGRITY { TRUE | FALSE };

SQL Syntax

103

This commands enables / disables the referential integrity checking (foreign keys). Normally it should
be switched on (this is the default) but when importing data (and the data is imported in the 'wrong' or-
der) the checking can be switched off.

Warning

Note that when referential integrity is switched back on, no check is made that the changes to
the data are consistent with the existing referential integrity constraints. You can verify consist-
ency using SQL queries and take appropriate actions.

Only an administrator may do this.

See also: CREATE TABLE.

SET SCHEMA1

SET SCHEMA <schemaname>;

Sets the current JDBC session's schema. The sole purpose for the session schema is to provide a default
schema name for schema objects that do not have the schema name specified explicitly in the SQL com-
mand, or by association with another object of known schema. For example, if you run SELECT *
FROM atbl;, HSQLDB will look for the table or view named atbl in the session's current schema.

Session schemas last only for the duration of the current session. When a new JDBC session is obtained,
the new session will have the default schema.

SET SCRIPTFORMAT1

SET SCRIPTFORMAT {TEXT | BINARY | COMPRESSED};

Changes the format of the script file. BINARY and COMPRESSED formats are slightly faster and more
compact than the default TEXT. Recommended only for very large script files.

SET TABLE INDEX
SET TABLE tableName INDEX 'index1rootPos index2rootPos ... ';

This command is only used internally to store the position of index roots in the .data file. It appears only
in database script files; it should not be used directly.

SET TABLE READONLY1

SET TABLE <tablename> READONLY {TRUE | FALSE};

Sets the table as read only.

SET TABLE SOURCE1

SET TABLE <tablename> SOURCE <file and options> [DESC];

For details see the Text Tables chapter.

SQL Syntax

104

This command is used exclusively with TEXT tables to specify which file is used for storage of the data.
The optional DESC qualifier results in the text file indexed from the end and opened as readonly. The
<file and options> argument is a double quoted string that consists of:

<file and options>::= <doublequote> <filepath>
[<semicolon> <option>...] <doublequote>

Example:

SET TABLE mytable SOURCE "myfile;fs=|;vs=.;lvs=~"

Supported Properties

quoted = { true | false } default is true. If false, treats double quotes as normal characters

all_quoted = { true | false } default is false. If true, adds double quotes around all fields.

encoding = <encoding name> character encoding for text and character fields, for example, en-
coding=UTF-8

ignore_first = { true | false } default is false. If true ignores the first line of the file

cache_scale= <numeric value> exponent to calculate rows of the text file in cache. Default is 8,
equivalent to nearly 800 rows

cache_size_scale = <numeric
value>r

exponent to calculate average size of each row in cache. Default
is 8, equivalent to 256 bytes per row.

fs = <unquoted character> field separator

vs = <unquoted character> varchar separator

lvs = <unquoted character> long varchar separator

Special indicators for Hsqldb Text Table separators

\semi semicolon

\quote quote

\space space character

\apos apostrophe

\n newline - Used as an end anchor (like $ in regular expressions)

\r carriage return

\t tab

\\ backslash

\u#### a Unicode character specified in hexadecimal

SQL Syntax

105

Only an administrator may do this.

SET WRITE DELAY1

SET WRITE_DELAY {{ TRUE | FALSE } | <seconds> | <milliseconds> MILLIS};

This controls the frequency of file sync for the log file. When WRITE_DELAY is set to FALSE or 0,
the sync takes place immediately at each COMMIT. WRITE_DELAY TRUE performs the sync once
every 20 seconds (which is the default). A numeric value can be specified instead.

The purpose of this command is to control the amount of data loss in case of a total system crash. A
delay of 1 second means at most the data written to disk during the last second before the crash is lost.
All data written prior to this has been synced and should be recoverable.

A write delay of 0 impacts performance in high load situations, as the engine has to wait for the file sys-
tem to catch up.

To avoid this, you can set write delay down to 10 milliseconds. In practice, a write delay of 100 milli-
seconds provides better than 99.9999% reliability with an average one system crash per day, or
99.99999% with an average one system crash per 6 days.

Each time a SET WRITE_DELAY is issued with any value, a sync is immediately performed.

Only an administrator may do this.

SHUTDOWN
SHUTDOWN [IMMEDIATELY | COMPACT | SCRIPT1];

Closes the current database.

Varieties of the SHUTDOWN command

SHUTDOWN Performs a checkpoint to creates a new .script file that has the minimum
size and contains the data for memory tables only. It then backs up the
.data file containing the CACHED TABLE data in zipped format to the
.backup file and closes the database.

SHUTDOWN IMMEDI-
ATELY

Just closes the database files (like when the Java process for the data-
base is terminated); this command is used in tests of the recovery mech-
anism. This command should not be used as the routine method of clos-
ing the database.

SHUTDOWN COMPACT Writes out a new .script file which contains the data for all the tables,
including CACHED and TEXT tables. It then deletes the existing text
table files and the .data file before rewriting them. After this, it backs up
the .data file in the same way as normal SHUTDOWN. This operation
shrinks all files to the minimum size.

SHUTDOWN SCRIPT Similar to SHUTDOWN COMPACT but after writing the script and de-
leting the existing files, it does not rewrite the .data and text table files.
After SHUTDOWN SCRIPT, only the .script and .properties file re-
main. At the next startup, these files are processed and the .data and
.backup files are created. This command in effect performs part of the

SQL Syntax

106

job of SHUTDOWN COMPACT, leaving the other part to be per-
formed automatically at the next startup.

This command produces a full script of the database which can be ed-
ited for special purposes prior to the next startup.

Only an administrator may use the SHUTDOWN command.

UPDATE
UPDATE table SET column = Expression [, ...] [WHERE Expression];

Modifies data of a table in the database.

See also: SELECT1, INSERT, DELETE.

Schema object naming
Schema objects are database objects that are always scoped to a specific schema. Each schema has a
namespace. There may be multiple schema objects of the same name, each in the namespace of a differ-
ent schema. A particular schema object may nearly always be uniquely identified using the notation
schemaname.objectname. All HSQLDB database objects are schema objects, other than the fol-
lowing.

Users

Roles

Store Procedure Java Classes

HSQL Aliases

Our current Java-class-based Triggers are not fully schema objects. However, we are in the process of
implementing SQL-conformant triggers which will encompass our Java-class-based triggers. When this
work is completed, HSQLDB triggers will be schema objects.

Sequences are schema objects with creation and removal permission governed by schema authorization
(as described hereafter), but GRANT and REVOKE command do not work yet for sequences. In a future
version of HSQLDB, sequence GRANTs and REVOKEs will work similarly to the current GRANT and
REVOKE commands for table access.

Most of the time, you do not need to specify the schema for the desired schema object, because the im-
plicit schema is usually the only one that can be used. For example, when creating an index, the target
schema will default to that of the table which is the target of the index. Named constraints are an ex-
treme example of this. There is never a need to specify a schema name for a constraint, since constraint
names are only specified in a CREATE or ALTER TABLE command, and the schema must be that of
the target table. If the implicit schema is not determined by a related object, then the default comes from
your JDBC session's current schema setting. The session schema value will be your login user's initial
schema, or whatever you last set it to with SET SCHEMA1 in your current JDBC session with the SET
SCHEMA command. (Your initial schema is "PUBLIC" unless changed with the ALTER USER SET
INITIAL SCHEMA or the SET INITIAL SCHEMA 1 command).

In addition to namespace scoping, there are permission aspects to the schema of a database object. The
authorization of a schema is a role or user that is basically the owner of the schema. Only a user with the

SQL Syntax

107

DBA role (an admin user) or the owner of a schema may create objects, or modify the DDL of objects,
in the namespace of that schema. In this way, a schema authorization is said to "own" the objects of that
schema. A schema authorization/owner can be a role or a user (even a role with no members). The two
schemas automatically created when a database is initialized are both owned by the role DBA.

An important implication to database objects being owned by the schema owner is, if a non-DBA data-
base user is to have permission to create any database object, they must have ownership of a schema. To
allow a user to create (or modify DDL of) objects in their own personal schema, you would create a new
schema with that user as the authorization. To allow a non-DBA user to share create and DDL privileges
in some schema, you would create this schema with a role as the authorization, then GRANT this role to
all of the desired users.

The INFORMATION_SCHEMA is a system defined schema that contains the system tables for the
database. This schema is read-only. When a database is created, a shema named PUBLIC is automatic-
ally created as the default schma. This schema has the authorization DBA. You can change the name of
this schema. If all non-system schemas are dropped from a database, an empty PUBLIC schema is cre-
ated again. So each database always has at least one non-system schema.

Data Types

Table 9.1. Data Types. The types on the same line are equivalent.

Name Range Java Type

INTEGER | INT as Java type int | java.lang.Integer

DOUBLE [PRECISION] |
FLOAT

as Java type double |
java.lang.Double

VARCHAR as Integer.MAXVALUE java.lang.String

VARCHAR_IGNORECASE as Integer.MAXVALUE java.lang.String

CHAR | CHARACTER as Integer.MAXVALUE java.lang.String

LONGVARCHAR as Integer.MAXVALUE java.lang.String

DATE as Java type java.sql.Date

TIME as Java type java.sql.Time

TIMESTAMP | DATETIME as Java type java.sql.Timestamp

DECIMAL No limit java.math.BigDecimal

NUMERIC No limit java.math.BigDecimal

BOOLEAN | BIT as Java type boolean |
java.lang.Boolean

TINYINT as Java type byte | java.lang.Byte

SMALLINT as Java type short | java.lang.Short

BIGINT as Java type long | java.lang.Long

REAL as Java type double |
java.lang.Double1

BINARY as Integer.MAXVALUE byte[]

VARBINARY as Integer.MAXVALUE byte[]

LONGVARBINARY as Integer.MAXVALUE byte[]

OTHER | OBJECT as Integer.MAXVALUE java.lang.Object

The uppercase names are the data types names defined by the SQL standard or commonly used by

SQL Syntax

108

RDMS's. The data types in quotes are the Java class names - if these type names are used then they must
be enclosed in quotes because in Java names are case-sensitive. Range indicates the maximum size of
the object that can be stored. Where Integer.MAXVALUE is stated, this is a theoretical limit and in
practice the maximum size of a VARCHAR or BINARY object that can be stored is dictated by the
amount of memory available. In practice, objects of up to a megabyte in size have been successfully
used in production databases.

The recommended Java mapping for the JDBC datatype FLOAT is as a Java type "double". Because of
the potential confusion it is recommended that DOUBLE is used instead of FLOAT.

VARCHAR_IGNORECASE is a special case-insensitive type of VARCHAR. This type is not portable.

In table definition statements, HSQLDB accepts size, precision and scale qualifiers only for certain
types: CHAR(s), VARCHAR(s), DOUBLE(p), NUMERIC(p), DECIMAL(p,s) and TIMESTAMP(p).

TIMESTAMP(p) can take only 0 or 6 as precision. Zero indicates no subsecond part. Without the preci-
sion, the default is 6.

By default specified precision and scale for the column is simply ignored by the engine. Instead, the val-
ues for the corresponding Java types are always used, which in the case of DECIMAL is an unlimited
precision and scale. If a size is specified, it is stored in the database definition but is not enforeced by de-
fault. Once you have created the database (before adding data), you can add a database property value to
enforce the sizes:

SET PROPERTY "sql.enforce_strict_size" true

This will enforce the specified size and pad CHAR fields with spaces to fill the size. This complies with
SQL standards by throwing an exception if an attempt is made to insert a string longer than the maxim-
um size. It also results in all DECIMAL values conforming to the specified precision and scale.

CHAR and VARCHAR and LONGVARCHAR columns are by default compared and sorted according
to POSIX standards. See the SET DATABASE COLLATION1 section above to modify this behavior.
The property sql.compare_in_locale is no longer supported. Instead, you can define a collation
to be used for all character comparisons.

Columns of the type OTHER or OBJECT contain the serialized form of a Java Object in binary format.
To insert or update such columns, a binary format string (see below under Expression) should be used.
Using PreparedStatements with JDBC automates this transformation.

SQL Comments
-- SQL style line comment
// Java style line comment
/* C style line comment */

All these types of comments are ignored by the database.

Stored Procedures / Functions
Stored procedures are static Java functions that are called directly from the SQL language or using an
alias. Calling Java functions (directly or using the alias) requires that the Java class can be reached by
the database (server). The syntax is:

"java.lang.Math.sqrt"(2.0)

SQL Syntax

109

This means the package must be provided, and the name must be written as one word, and inside " be-
cause otherwise it is converted to uppercase (and not found).

An alias can be created using the command CREATE ALIAS:

CREATE ALIAS SQRT FOR "java.lang.Math.sqrt";

When an alias is defined, then the function can be called additionally using this alias:

SELECT SQRT(A) , B FROM MYTABLE;

Only static java methods can be used as stored procedures. If, within the same class, there are over-
loaded methods with the same number of arguments, then the first one encountered by the program will
be used. If you want to use Java library methods, it is recommended that you create your own class with
static methods that act as wrappers around the Java library methods. This will allow you to control
which method signature is used to call each Java library method.

Built-in Functions and Stored Procedures
Numerical built-in Functions / Stored Procedures

ABS(d) returns the absolute value of a double value

ACOS(d) returns the arc cosine of an angle

ASIN(d) returns the arc sine of an angle

ATAN(d) returns the arc tangent of an angle

ATAN2(a,b) returns the tangent of a/b

BITAND(a,b) return a & b

BITOR(a,b) returns a | b

CEILING(d) returns the smallest integer that is not less than d

COS(d) returns the cosine of an angle

COT(d) returns the cotangent of an angle

DEGREES(d) converts radians to degrees

EXP(d) returns e (2.718...) raised to the power of d

FLOOR(d) returns the largest integer that is not greater than d

LOG(d) returns the natural logarithm (base e)

LOG10(d) returns the logarithm (base 10)

MOD(a,b) returns a modulo b

PI() returns pi (3.1415...)

SQL Syntax

110

POWER(a,b) returns a raised to the power of b

RADIANS(d) converts degrees to radians

RAND() returns a random number x bigger or equal to 0.0 and smaller than 1.0

ROUND(a,b) rounds a to b digits after the decimal point

ROUNDMA-
GIC(d)

solves rounding problems such as 3.11-3.1-0.01

SIGN(d) returns -1 if d is smaller than 0, 0 if d==0 and 1 if d is bigger than 0

SIN(d) returns the sine of an angle

SQRT(d) returns the square root

TAN(A) returns the trigonometric tangent of an angle

TRUNCATE(a,b) truncates a to b digits after the decimal point

String built-in Functions / Stored Procedures

ASCII(s) returns the ASCII code of the leftmost character of s

BIT_LENGTH(str)1 returns the length of the string in bits

CHAR(c) returns a character that has the ASCII code c

CHAR_LENGTH(str)1 returns the length of the string in characters

CONCAT(str1,str2) returns str1 + str2

DIFFERENCE(s1,s2) returns the difference between the sound of s1 and s2

HEXTORAW(s1)1 returns translated string

INSERT(s,start,len,s2) returns a string where len number of characters beginning at start
has been replaced by s2

LCASE(s) converts s to lower case

LEFT(s,count) returns the leftmost count of characters of s) - requires double
quoting - use SUBSTRING() instead

LENGTH(s) returns the number of characters in s

LOCATE(search,s,[start]) returns the first index (1=left, 0=not found) where search is found
in s, starting at start

LTRIM(s) removes all leading blanks in s

OCTET_LENGTH(str)1 returns the length of the string in bytes (twice the number of char-
acters)

RAWTOHEX(s1)1 returns translated string

REPEAT(s,count) returns s repeated count times

SQL Syntax

111

REPLACE(s,replace,s2) replaces all occurrences of replace in s with s2

RIGHT(s,count) returns the rightmost count of characters of s

RTRIM(s) removes all trailing spaces

SOUNDEX(s) returns a four character code representing the sound of s

SPACE(count) returns a string consisting of count spaces

SUBSTR(s,start[,len]) alias for substring

SUBSTRING(s,start[,len]) returns the substring starting at start (1=left) with length len

UCASE(s) converts s to upper case

LOWER(s) converts s to lower case

UPPER(s) converts s to upper case

Date/Time built-in Functions / Stored Procedures

CURDATE() returns the current date

CURTIME() returns the current time

DATEDIFF(string, datetime1, date-
time2)1

returns the count of units of time elapsed from datetime1 to date-
time2. The string indicates the unit of time and can have the fol-
lowing values 'ms'='millisecond',
'ss'='second','mi'='minute','hh'='hour', 'dd'='day', 'mm'='month', 'yy'
= 'year'. Both the long and short form of the strings can be used.

DAYNAME(date) returns the name of the day

DAYOFMONTH(date) returns the day of the month (1-31)

DAYOFWEEK(date) returns the day of the week (1 means Sunday)

DAYOFYEAR(date) returns the day of the year (1-366)

HOUR(time) return the hour (0-23)

MINUTE(time) returns the minute (0-59)

MONTH(date) returns the month (1-12)

MONTHNAME(date) returns the name of the month

NOW() returns the current date and time as a timestamp) - use CUR-
RENT_TIMESTAMP instead

QUARTER(date) returns the quarter (1-4)

SECOND(time) returns the second (0-59)

WEEK(date) returns the week of this year (1-53)

SQL Syntax

112

YEAR(date) returns the year

CURRENT_DATE1 returns the current date

CURRENT_TIME1 returns the current time

CURRENT_TIMESTAMP1 returns the current timestamp

System/Connection built-in Functions / Stored Procedures

DATABASE() returns the name of the database of this connection

USER() returns the user name of this connection

CUR-
RENT_USER

SQL standard function, returns the user name of this connection

IDENTITY() returns the last identity values that was inserted by this connection

System built-in Functions / Stored Procedures

IFNULL(exp,value) if exp is null, value is returned else exp) - use COALESCE() in-
stead

CASEWHEN(exp,v1,v2) if exp is true, v1 is returned, else v2) - use CASE WHEN instead

CONVERT(term,type) converts exp to another data type

CAST(term AS type)1 converts exp to another data type

SQL Syntax

113

1 if expr1 is not null then it is returned else, expr2 is evaluated and
if not null it is returned and so on

NULLIF(v1,v2)1 if v1 equals v2 return null, otherwise v1

CASE v1 WHEN...1 CASE v1 WHEN v2 THEN v3 [ELSE v4] END

when v1 equals v2 return v3 [otherwise v4 or null if there is no
ELSE]

CASE WHEN...1 CASE WHEN expr1 THEN v1[WHEN expr2 THEN v2]
[ELSE v4] END

when expr1 is true return v1 [optionally repeated for more cases]
[otherwise v4 or null if there is no ELSE]

EXTRACT1 EXTRACT ({YEAR | MONTH | DAY | HOUR | MINUTE
| SECOND} FROM <datetime value>)

POSITION (... IN ..)1 POSITION(<string expression> IN <string ex-
pression>)

if the first string is a sub-string of the second one, returns the pos-
ition of the sub-string, counting from one; otherwise 0

SUBSTRING(... FROM ... FOR
...)1

SUBSTRING(<string expression> FROM <numeric
expression> [FOR <numeric expression>])

TRIM(LEDING ... FROM ...)1 TRIM([{LEADING | TRAILING | BOTH}] FROM
<string expression>)

See also: CALL, CREATE ALIAS.

SQL Expression
[NOT] condition [{ OR | AND } condition]

Components of SQL Expressions

condition
{ value [|| value]
| value { = | < | <= | > | >= | <> | != } value
| value IS [NOT] NULL
| EXISTS(selectStatement)
| value BETWEEN value AND value
| value [NOT] IN ({value [, ...] | selectStatement })
| value [NOT] LIKE value [ESCAPE] value }

value
[+ | -] { term [{ + | - | * | / | || } term]
| (condition)
| function ([parameter] [,...])
| selectStatement giving one value
| {ANY|ALL} (selectStatement giving single column)

SQL Syntax

114

term
{ 'string' | number | floatingpoint
| [table.]column | TRUE | FALSE | NULL }

sequence
NEXT VALUE FOR <sequence>

HSQLDB does not currently enforce the SQL 200n proposed rules on where sequence
generated values are allowed to be used. In general, these values can be used in insert
and update statements but not in CASE statements, order by clauses, search conditions,
aggregate functions, or grouped queries.

string Strings in HSQLDB are Unicode strings. A string starts and ends with a single '
(singlequote). In a string started with ' (singlequote) use '' (two singlequotes) to create a '
(singlequote).

String contatenation should be performed with the standard SQL operator || rather than
the non-standard + operator.

The LIKE keyword uses '%' to match any (including 0) number of characters, and '_' to
match exactly one character. To search for '%' or '_' itself an escape character must also
be specified using the ESCAPE clause. For example, if the backslash is the escaping
character, '\%' and '_' can be used to find the '%' and '_' characters themselves. For ex-
ample, SELECT LIKE '_%' ESCAPE '\' will find the strings beginning with an un-
derscore.

name The character set for quoted identifiers (names) in HSQLDB is Unicode.

A unquoted identifier (name) starts with a letter and is followed by any number of AS-
CII letters or digits. When an SQL statement is issued, any lowercase characters in un-
quoted identifiers are converted to uppercase. Because of this, unquoted names are in
fact ALL UPPERCASE when used in SQL statements. An important implication of this
is the for accessing columns names via JDBC DatabaseMetaData: the internal form,
which is the ALL UPPERCASE must be used if the column name was not quoted in the
CREATE TABLE statement.

Quoted identifiers can be used as names (for tables, columns, constraints or indexes).
Quoted identifiers start and end with " (one doublequote). A quoted identifier can con-
tain any Unicode character, including space. In a quoted identifier use "" (two double-
quotes) to create a " (one doublequote). With quoted identifiers it is possible to create
mixed-case table and column names. Example:

CREATE TABLE "Address" ("Nr" INTEGER,"Name" VARCHAR);
SELECT "Nr", "Name" FROM "Address";

The equivalent quoted identifier can be used for an unquoted identifer by converting the
identifier to all uppercase and quoting it. For example, if a table name is defined as Ad-
dress2 (unquoted), it can be referred to by its quoted form, "ADDRESS2", as well as ad-
dress2, aDDress2 and ADDRESS2. Quoted identifiers should not be confused with SQL
strings.

Quoting can sometimes be used for identifiers, aliases or functions when there is an am-
biguity. For example:

SELECT COUNT(*) "COUNT" FROM MYTABLE;
SELECT "LEFT"(COL1, 2) FROM MYTABLE;

SQL Syntax

115

Although HSQLDB 1.8.0 does not force unquoted identifiers to contain only ASCII
characters, the use of non-ASCII characters in these identifiers does not comply with
SQL standards. Portability between different JRE locales could be an issue when accen-
ted characters (or extended unicode characters) are used in unquoted identifiers. Because
native Java methods are used to convert the identifier to uppercase, the result may vary
not be expected in different locales. It is recommended that accented characters are used
only in quoted identifiers.

When using JDBC DatabaseMetaData methods that take table, column, or index identi-
fiers as arguments, treat the names as they are registered in the database. With these
methods, unquoted identifiers should be used in all-uppercase to get the correct result.
Quoted identifiers should be used in the exact case combination as they were defined -
no quote character should be included around the name. JDBC methods that return a res-
ult set containing such identifiers return unquoted identifiers as all-uppercase and quoted
identifiers in the exact case they are registered in the database (a change from 1.6.1 and
previous versions).

Please also note that the JDBC getXXX(String columnName) methods interpret the
columnName as case-independent. This is a general feature of JDBC and not specific to
HSQLDB.

password Passwords must be double quoted and used consistently. Passwords are case insensitive
only for backward compatibility. This may change in future versions.

values

• A DATE literal starts and ends with ' (singlequote), the format is yyyy-mm-dd (see
java.sql.Date.

• A TIME liteal starts and ends with ' (singlequote), the format is hh:mm:ss (see
java.sql.Time).

• A TIMESTAMP or DATETIME literal starts and ends with ' (singlequote), the
format is yyyy-mm-dd hh:mm:ss.SSSSSSSSS (see java.sql.Timestamp).

When specifying default values for date / time columns in CREATE TABLE statements,
or in SELECT,INSERT, and UPDATE statements, special SQL functions: NOW, SYS-
DATE, TODAY, CURRENT_TIMESTAMP, CURRENT_TIME and CUR-
RENT_DATE (case independent) can be used. NOW is used for TIME and
TIMESTAMP columns, TODAY is used for DATE columns. The data and time variants
CURRENT_* are SQL standard versions and should be used in preference to others. Ex-
ample:

CREATE TABLE T(D DATE DEFAULT CURRENT_DATE);
CREATE TABLE T1(TS TIMESTAMP DEFAULT CURRENT_TIMESTAMP);

Binary data starts and ends with ' (singlequote), the format is hexadecimal. '0004ff' for
example is 3 bytes, first 0, second 4 and last 255 (0xff).

Any number of commands may be combined. With combined commands, ';' (semicolon) must be used at
the end of each command to ensure data integrity, despite the fact that the engine may understand the
end of commands and not return an error when a semicolon is not used.

SQL Syntax

116

Appendix A. Building HSQLDB
Fred Toussi, HSQLDB Development Group <ft@cluedup.com>
$Date: 2005/05/26 23:22:06 $

Purpose
From 1.8.0, the supplied hsqldb.jar file is built with Java 1.5. If you want to run the engine under
JDK1.3 or earlier, you should rebuild the jar with Ant.

Building with Ant, from the Apache Jakarta
Project

Ant (Another Neat Tool) is used for building hsqldb. The version currently used to test the build script is
1.6.1 but versions since 1.5.1 should also be compatible.

Obtaining Ant
Ant is a part of the Jakarta/Apache Project.

• Home of the Apache Ant project [http://ant.apache.org]

• The Installing Ant [http://ant.apache.org/manual/install.html#installing] page of the Ant Manual
[http://ant.apache.org/manual]. Follow the directions for your platform.

Building Hsqldb with Ant
Once you have unpacked the zip package for hsqldb, under the /hsqldb folder, in /build there is a
build.xml file that builds the hsqldb.jar with Ant (Ant must be already installed). To use it,
change to /build then type:

ant -projecthelp

This displays the available ant targets, which you can supply as command line arguments to ant. These
include

hsqldb to make the hsqldb.jar

explainjars Lists all targets which build jar files, with an explanation of the purposes of the dif-
ferent jars.

clean to clean up the /classes directory that is created

cleanall to remove the old jar as well

javadoc to build javadoc

hsqldbmain to build a smaller jar for HSQLDB that does not contain utilities

hsqljdbc to build an extremely small jar containing only the client-side JDBC driver (does not

117

http://ant.apache.org
http://ant.apache.org/manual/install.html#installing
http://ant.apache.org/manual

support direct connection to HSQLDB URLs of the form jdbc:hsldb:mem:*, jd-
bc:hsqldb:file:*, nor jdbc:hsqldb:res:*).

hsqldbmin to build a small jar that supports HSQLDB URLs of the form jdbc:hsqldb:mem:*, jd-
bc:hsqld:file*, jdbc:hsqldb:res:*; but not network URLs like jdbc:hsql* or jdbc:http*.

hsqldbtest to build a larger jar for hsqldb that contains tests

... Many more targets are available. Run ant -projecthelp and ant explain-
jars.

HSQLDB can be built in any combination of three JRE (Java Runtime Environment) versions and many
jar file sizes. The smallest jar size(hsqljdbc.jar) contains only the HSQLDB JDBC Driver client.
The default size (hsqldb.jar) also contains server mode support and the utilities. The largest size
(hsqldbtest.jar)includes some test classes as well. Before building the hsqldbtest.jar pack-
age, you should download the junit jar from http://www.junit.org and put it in the /lib directory,
alongside servlet.jar, which is included in the .zip package.

Just run ant explainjars for a concise list of all available jar files.

If you want your code built for debugging, as opposed to high performance, make a file named
build.properties in your build directory with the contents

build.debug: true

The resulting Java binaries will be larger and slower, but exception stack traces will contain source code
line numbers, which can be extremely useful for debugging.

The preferred method of rebuilding the jar is with Ant. After installing Ant on your system use the fol-
lowing command from the /build directory:

ant explainjars

The command displays a list of different options for building different sizes of the HSQLDB Jar. The
default is built using:

Example A.1. Buiding the standard Hsqldb jar file with Ant

ant hsqldb

The Ant method always builds a jar with the JDK that is used by Ant and specified in its JAVA_HOME
environment variable. Building with JDK 1.4.x or 1.5.x will result in a jar that is not backward compat-
ible.

From version 1.7.2, use of JDK 1.1.x is not recommended for building the JAR, even for running under
JDK 1.1.x -- use JDK 1.3.1 for compatibility with 1.1.x. This is done in the following way. JDK 1.3.1
should be used as the JAVA_HOME for ant. You then issue the following commands. The first com-
mand will make the sources compatible with JDK 1.3, the second command modifies the sources further
so that the compiled result can run under jdk 1.1 as well. The third command builds the jar.

ant switchtojdk12
ant switchtojava1target
ant hsqldb

Building HSQLDB

118

http://www.junit.org

Building with DOS Batch Files
UNIX users must use Ant to build hsqldb.

For DOS/Windows users, a set of MSDOS batch files is provided as an example. These files produce
only the default jar size. The path and classpath variables for the JDK should of course be set before run-
ning any of the batch files. These files are not currently maintained and will probably need some addi-
tions and changes to work correctly. Please see the build.xml file for up-to-date file

If you are compiling for JDK's other than 1.4.x, you should use the appropriate switchTo-
JDK11.bat or switchToJDK12.bat to adapt the source files to the target JDK before running the
appropriate buildJDK11.bat or buildJDK12.bat JDK and JRE versions.

Hsqldb CodeSwitcher
CodeSwitcher is a tool to manage different version of Java source code. It allows to compile HSQLDB
for different JDKs. It is something like a precompiler in C but it works directly on the source code and
does not create intermediate output or extra files.

CodeSwitcher is used internally in HSQLDB build scripts. You do not have to use it separately to com-
pile HSQLDB.

CodeSwitcher reads the source code of a file, removes comments where appropriate and comments out
the blocks that are not used for a particular version of the file. This operation is done for all files of a
defined directory, and all subdirectories.

Example A.2. Example source code before CodeSwitcher is run

...

//#ifdef JAVA2

properties.store(out,"hsqldb database");

//#else

/*

properties.save(out,"hsqldb database");

*/

//#endif

...

The next step is to run CodeSwitcher.

Example A.3. CodeSwitcher command line invocation

java org.hsqldb.util.CodeSwitcher . -JAVA2

Building HSQLDB

119

The '.' means the program works on the current directory (all subdirectories are processed recursively). -
JAVA2 means the code labelled with JAVA2 must be switched off.

Example A.4. Source code after CodeSwitcher processing

...

//#ifdef JAVA2

/*

pProperties.store(out,"hsqldb database");

*/

//#else

pProperties.save(out,"hsqldb database");

//#endif

...

For detailed information on the command line options run java
org.hsqldb.util.CodeSwitcher. Usage examples can be found in the switchtojdk1*.bat files
in the /build directory.

Building documentation
To build the User Guide in HTML format, you must have the Docbook stylesheets installed locally. The
Docbook stylesheets are available on the Internet. On Linux, just install the docbook-
xsl-stylesheets rpm. Then add an entry to build.properties in your build directory with
contents like

docbook.xsl.home: /usr/share/sgml/docbook/docbook-xsl-stylesheets

Where you specify your local path to the base directory of your Docbook stylesheet installation. Build
like

Example A.5. Building HTML User Guides

ant docbooks-html
ant docbooks-chunk

To build the User Guide in PDF format, you must also have the Java FOP system installed locally. FOP
is available for free download on the Internet. Add an entry to build.properties in your build dir-
ectory with contents like

fop.home /usr/local/fop-0.20.5

Where you specify your local path to the base directory of your FOP installation.

Building HSQLDB

120

Example A.6. Building User Guides in all formats

ant docbook

Don't pay too much attention to error messages by FOP, because they are really warnings, but do check
the output. If there are problems with the PDF output, try using a newer version of FOP.

Important

By default, your docs will fail to build if you do not have Internet connectivity. This is because
our primary Docbook source file references the Docbook DTDs via Internet URL. You can
build without Internet connectivity by installing the Docbook DTDs and editing our primary
Docbook source file. Docbook is available on the Internet. On Linux, just install the doc-
book-dtds or docbook rpm. Then make one edit to the file docsrc/
guide/guide.xml in your HSQLDB distribution. Change the line containing

"http://www.oasis-open.org/docbook/xml/4.2CR1/docbookx.dtd" [

to

"file:///usr/share/xml/docbook/schema/dtd/4.2/docbookx.dtd" [

where the second filepath is the path to the docbookx.dtd file within your Docbook install-
ation.

Building HSQLDB

121

Appendix B. First JDBC Client Example
There is a copy of Testdb.java in the directory src/org/hsqldb/sample of your HSQLDB
distribution.

Example B.1. JDBC Client source code example

/* Copyright (c) 2001-2005, The HSQL Development Group
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of the HSQL Development Group nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL HSQL DEVELOPMENT GROUP, HSQLDB.ORG,
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

package org.hsqldb.sample;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;
import java.sql.Statement;

/**
* Title: Testdb
* Description: simple hello world db example of a
* standalone persistent db application
*
* every time it runs it adds four more rows to sample_table
* it does a query and prints the results to standard out
*
* Author: Karl Meissner karl@meissnersd.com
*/
public class Testdb {

Connection conn; //our connnection to the db - presist for life of program

122

// we dont want this garbage collected until we are done
public Testdb(String db_file_name_prefix) throws Exception { // note more general exception

// Load the HSQL Database Engine JDBC driver
// hsqldb.jar should be in the class path or made part of the current jar
Class.forName("org.hsqldb.jdbcDriver");

// connect to the database. This will load the db files and start the
// database if it is not alread running.
// db_file_name_prefix is used to open or create files that hold the state
// of the db.
// It can contain directory names relative to the
// current working directory
conn = DriverManager.getConnection("jdbc:hsqldb:"

+ db_file_name_prefix, // filenames
"sa", // username
""); // password

}

public void shutdown() throws SQLException {

Statement st = conn.createStatement();

// db writes out to files and performs clean shuts down
// otherwise there will be an unclean shutdown
// when program ends
st.execute("SHUTDOWN");
conn.close(); // if there are no other open connection

}

//use for SQL command SELECT
public synchronized void query(String expression) throws SQLException {

Statement st = null;
ResultSet rs = null;

st = conn.createStatement(); // statement objects can be reused with

// repeated calls to execute but we
// choose to make a new one each time
rs = st.executeQuery(expression); // run the query

// do something with the result set.
dump(rs);
st.close(); // NOTE!! if you close a statement the associated ResultSet is

// closed too
// so you should copy the contents to some other object.
// the result set is invalidated also if you recycle an Statement
// and try to execute some other query before the result set has been
// completely examined.

}

//use for SQL commands CREATE, DROP, INSERT and UPDATE
public synchronized void update(String expression) throws SQLException {

Statement st = null;

st = conn.createStatement(); // statements

int i = st.executeUpdate(expression); // run the query

if (i == -1) {

First JDBC Client Example

123

System.out.println("db error : " + expression);
}

st.close();
} // void update()

public static void dump(ResultSet rs) throws SQLException {

// the order of the rows in a cursor
// are implementation dependent unless you use the SQL ORDER statement
ResultSetMetaData meta = rs.getMetaData();
int colmax = meta.getColumnCount();
int i;
Object o = null;

// the result set is a cursor into the data. You can only
// point to one row at a time
// assume we are pointing to BEFORE the first row
// rs.next() points to next row and returns true
// or false if there is no next row, which breaks the loop
for (; rs.next();) {

for (i = 0; i < colmax; ++i) {
o = rs.getObject(i + 1); // Is SQL the first column is indexed

// with 1 not 0
System.out.print(o.toString() + " ");

}

System.out.println(" ");
}

} //void dump(ResultSet rs)

public static void main(String[] args) {

Testdb db = null;

try {
db = new Testdb("db_file");

} catch (Exception ex1) {
ex1.printStackTrace(); // could not start db

return; // bye bye
}

try {

//make an empty table
//
// by declaring the id column IDENTITY, the db will automatically
// generate unique values for new rows- useful for row keys
db.update(

"CREATE TABLE sample_table (id INTEGER IDENTITY, str_col VARCHAR(256), num_col INTEGER)");
} catch (SQLException ex2) {

//ignore
//ex2.printStackTrace(); // second time we run program
// should throw execption since table
// already there
//
// this will have no effect on the db

}

try {

First JDBC Client Example

124

// add some rows - will create duplicates if run more then once
// the id column is automatically generated
db.update(

"INSERT INTO sample_table(str_col,num_col) VALUES('Ford', 100)");
db.update(

"INSERT INTO sample_table(str_col,num_col) VALUES('Toyota', 200)");
db.update(

"INSERT INTO sample_table(str_col,num_col) VALUES('Honda', 300)");
db.update(

"INSERT INTO sample_table(str_col,num_col) VALUES('GM', 400)");

// do a query
db.query("SELECT * FROM sample_table WHERE num_col < 250");

// at end of program
db.shutdown();

} catch (SQLException ex3) {
ex3.printStackTrace();

}
} // main()

} // class Testdb

First JDBC Client Example

125

Appendix C. Hsqldb Database Files
and Recovery

This text is based on HypersonicSQL documentation, updated to reflect the latest version 1.8.0 of
HSQLDB.
$Date: 2005/07/01 17:06:32 $

The Standalone and Client/Server modes will in most cases use files to store all data to disk in a persist-
ent and safe way. This document describes the meaning of the files, the states and the procedures fol-
lowed by the engine to recover the data.

A database named 'test' is used in this description. The database files will be as follows.

Database Files

test.properties Contains the entry 'modified'. If the entry 'modified' is set to 'yes' then the data-
base is either running or was not closed correctly (because the close algorithm
sets 'modified' to 'no' at the end).

test.script This file contains the SQL statements that makes up the database up to the last
checkpoint - it is in synch with test.backup.

test.data This file contains the (binary) data records for CACHED tables only.

test.backup This is compressed file that contains the complete backup of the old
test.data file at the time of last checkpoint.

test.log This file contains the extra SQL statements that have modified the database
since the last checkpoint (something like the 'Redo-log' or 'Transaction-log', but
just text).

In the above list, a checkpoint results from both a CHECKPOINT command
and a SHUTDOWN command.

States
Database is closed correctly

State after using the command SHUTDOWN

• The test.data file is fully updated.

• The test.backup contains the compressed test.data file.

• The test.script contains the information in the database, excluding data for CACHED and
TEXT tables.

• The test.properties contains the entry 'modified' set to 'no'.

• There is no test.log file.

126

Database is closed correctly with SHUTDOWN SCRIPT

State after using the command SHUTDOWN SCRIPT

• The test.data file does not exist; all CACHED table data is in the test.script file

• The test.backup does not exist.

• The test.script contains the information in the database, including data for CACHED and
TEXT tables.

• The test.properties contains the entry 'modified' set to 'no'.

• There is no test.log file.

Database is aborted

This may happen by sudden power off, Ctrl+C in Windows, but may be simulated using the command
SHUTDOWN IMMEDIATELY.

Aborted Database state

• The test.properties still containes 'modified=yes'.

• The test.script contains a snapshot of the database at the last checkpoint and is OK.

• The test.data file may be corrupt because the cache in memory was not written out completely.

• The test.backup file contains a snapshot of test.data that corresponds to test.script.

• The test.log file contain all information to re-do all changes since the snanapshot. As a result of
abnormal termination, this file may be partially corrupt.

Procedures
The database engine performs the following procedures internally in different circumstances.

Clean Shutdown

Procedure C.1. Clean Hsqldb database shutdown

1. The test.data file is written completely (all the modified cached table rows are witten out) and
closed.

2. The test.backup.new is created (containing the compressed test.data file)

3. The file test.script.new is created using the information in the database (and thus shrinks
because no UPDATE and DELETE statements; only INSERT).

4. The entry 'modified' in the properties file is set to 'yes-new-files'

Hsqldb Database Files and Recovery

127

5. The file test.script is deleted

6. The file test.script.new is renamed to test.script

7. The file test.backup is deleted

8. The file test.backup.new is renamed to test.backup

9. The entry 'modified' in the properties file is set to 'no'

10. The file test.log is deleted

Startup

Procedure C.2. Database is opened

1. Check if the database files are in use (by checking a special test.lck file).

2. See if the test.properties file exists, otherwise create it.

3. If the test.properties did not exist, then this is a new database. Create the empty
test.log to append new commands.

4. If it is an existing database, check in the test.properties file if 'modified=yes'. This would
mean last time it was not closed correctly, and thus the test.data file may be corrupted or in-
complete. In this case the 'REPAIR' algorithm is executed (see below), before the database is
opened normally.

5. Otherwise, if in the test.properties file 'modified=yes-new-files', then the (old)
test.backup and test.script files are deleted and the new test.script.new file is re-
named to test.script.

6. Open the test.script file and execute the commands.

7. Create the empty test.log to append new commands.

Repair
The current test.data file is corrupt, but with the old test.data (from the test.backup file
and test.script) and the current test.log, the database is made up-to-date. The database engine
takes these steps:

Procedure C.3. Database Repair

1. Restore the old test.data file from the backup (uncompress the test.backup and overwrite
test.data).

2. Execute all commands in the test.script file.

Hsqldb Database Files and Recovery

128

3. Execute all commands in the test.log file. If due to corruption, an exception is thrown, the rest
of the lines of command in the test.log file are ignored.

4. Close the database correctly (including a backup).

Hsqldb Database Files and Recovery

129

Appendix D. Running Hsqldb with
OpenOffice.org 1.1.x

Hermann Kienlein, EDV - Systeme Kienlein <hermann@kienlein.com>

Copyright 2003-2004 Hermann Kienlein. Permission is granted to distribute this document without any
alteration under the terms of the HSQLDB license. Additional permission is granted to the HSQLDB
Development Group to distribute this document with or without alterations under the terms of the
HSQLDB license.
$Date: 2005/06/08 16:02:34 $

Introduction
HSQLDB can now act as a Database with OpenOffice.org. This document is written to help you con-
necting and running HSQLDB out of OpenOffice.org in a simple way. Without user-managment and
only for your single-system.

If you have problems read the other available documents, because I will not write them here again. If
you need a real DB-System with user-management and different rights for different users, read the other
documents.

HSQLDB is included with OpenOffice.org 2.0 and is used by default. Please refer to standard OpenOf-
fice.org 2.0 documentation on how to use HSQLDB with this version.

Installing
I assume you have a running OpenOffice.org (OOo) and a JavaRuntimeEnvironment. So place the
hsqldb_*.zip file where you want on your disk and unpack it (I assume you have done this already).

Setting up OpenOffice.org
Start OOo with a text document and go to the Database-Explorer (simply by pressing F4). In the left
frame you see a tree-view with all known databases in OOo.

A right mouse-click opens a menu where you can manage your databases. So click on New Database
and choose a name that you want to have inside OOo. I chose HSQLDB as name.

As connection-type choose JDBC and then switch to the JDBC-tab.

As Driver-Class insert org.hsqldb.jdbcDriver and as URL choose the following:

On Windows
You can specify a directory where HSQLDB should store the info and data. Something like jd-
bc:hsqldb:file:c:\javasrc\hsqldb-dev\databasename (where jdbc: is written by
OOo). The string c:\javasrc\hsqldb-dev\databasename works only on windows, but you
can write this down as linux-path like /javasrc/hsqldb-dev/databasename too. Then
HSQLDB takes the c:\ drive as root. This means this works only on c:\ for you.

The first is the directory-path and the databasename is the identifier for the database.

On Linux

130

Choose a path as said for windows like /opt/db/data

As username take sa, this is the standard-administrator for HSQLDB.

Now click the OK-Button

Now OOo has to find your hsqldb.jar file. So go to options => security and insert the path to the
.jar file. If you have problems, search the Online-help for JDBC. You then get help in your own lan-
guage (this is generally quite better than my English, I think ;-)

If you cannot write to your Tables, OOo thinks that you don't have permission to write to HSQLDB.
Then we tell OOo to ignore the DriverPrivileges because on our single-user-system we do not need
them.

Because OOo is working on this, the next Step is only needed for systems without write - permission.

So we go to http://dba.openoffice.org and look at the IgnoreDriverPrivileges.html file in the
HowTo-section. You find here a macro-code.

Open tools => macro in OOo to get the Basic-IDE. Here simple copy and paste the code and run the
macro. You see a input-box where you only have to insert the name of your DB, in my example I have
to insert HSQLDB, because I took this as name in OOo.

Note that if you change your OOo-DB name, you have to run this macro again!

Now we only have to stop and restart OOo. Be sure that you exit Quickstarter and all running processes
too. On next OOo-Start you should have a running Database in OpenOffice.org.

Running Hsqldb with OpenOffice.org 1.1.x

131

Appendix E. Hsqldb Test Utility
$Date: 2005/05/27 12:41:50 $

The org.hsqldb.test package contains a number of tests for various functions of the database en-
gine. Among these, the TestSelf class performs the tests that are based on scripts. To run the tests,
you should compile the hsqldbtest.jar target with Ant.

For TestSelf, a batch file is provided in the testrun/hsqldb directory, together with a set of Test-
Self*.txt files. To start the application in Windows, change to the directory and type:

runtest TestSelf

In Unix / Linux, type:

./runTest.sh TestSelf

The new version of TestSelf runs multiple SQL test files to test different SQL operations of the data-
base. All files in the working directory with names matching TestSelf*.txt are processed in alphabetical
order.

You can add your own scripts to test different series of SQL queries. The format of the TestSelf*.txt file
is simple text, with some indentation and prefixes in the form of Java-style comments. The prefixes in-
dicate what the expected result should be.

• Comment lines must start with -- and are ignored

• Lines starting with spaces are the continuation of the previous line

• SQL statements with no prefix are simply executed.

• The remaining items in this list exemplify use of the available command line-prefixes.

•
The /*s*/ option stands for silent. It is used for executing quries regardless of results. Used for pre-
paration of tests, not for actual tests.

/*s*/ Any SQL statement - errors are ignored

•
The /*c<rows>*/ option is for SELECT queries and asserts the number of rows in the result matches
the given count.

/*c<rows>*/ SQL statement returning count of <rows>

•
The /*u*/ option is for queries that return an update count, such as DELETE and UPDATE. It asserts
the update count matches.

/*u<count>*/ SQL statement returning an update count equal to <count>

132

•
The /*e*/ option asserts that the given query results in an erros. It is mainly used for testing the error
detection capabilities of the engine. It can also be used with syntactically valid queries to assert a
certain state in the database. For example a CREATE TABLE can be used to assert the table of the
same name already exists.

/*e*/ SQL statement that should produce an error when executing

•
The /*r....*/ option asserts the SELECT query returns a single row containing the given set of field
values.

/*r<string1>,<string2>*/ SQL statement returning a single row ResultSet equal to the specified value

•
The extended /*r...*/ option asserts the SELECT query returns the given rows containing the given
set of field values.

/*r
<string1>,<string2>
<string1>,<string2>
<string1>,<string2>

*/ SQL statement returning a multiple row ResultSet equal to the specified values

(note that the result set lines are indented).

• All the options are lowercase letters. During development, an uppercase can be used for a given test
to exclude a test from the test run. The utility will just report the test blocks that have been excluded
without running them. Once the code has been developed, the option can be turned into lowercase to
perform the actual test.

See the TestSelf*.txt files in the /testrun/hsqldb/ directory for actual examples.

Hsqldb Test Utility

133

Appendix F. Database Manager
Fred Toussi, HSQLDB Development Group <ft@cluedup.com>
Blaine Simpson, HSQLDB Development Group <ft@cluedup.com>
$Date: 2005/07/25 23:21:10 $

Brief Introduction
The Database Manager tool is a simple GUI database query tool with a tree display of the tables. Both
AWT and SWING versions of the tool are available and work almost identically. The AWT version
class name is org.hsqldb.util.DatabaseManager; the SWING version,
org.hsqldb.util.DatabaseManagerSwing.

The AWT version of the database manager can be deployed as an applet in a browser. A demo HTML
file with an embedded Database Manager is included in the /demo directory.

When the Database Manager is started, a dialogue allows you to enter the JDBC driver, URL, user and
password for the new connection. A drop-down box, Type, offers preset values for JDBC driver and
URL for most popular database engines, including HSQLDB. Once you have selected an item from this
drop-down box, you should edit the URL to specify the details of the database or any additional proper-
ties to pass. You should also enter the username and password before clicking on the OK button.

The connection dialogue allows you to save the settings for the connection you are about to make. You
can then access the connection in future sessions. To save a connection setting, enter a name in the Set-
ting Name box before clicking on the OK button. Next time the connection dialogue is displayed, the
drop-down box labeled Recent will include the name for all the saved connection settings. When you se-
lect a name, the individual settings are displayed in the appropriate boxes.

The small Clr button next to the drop-down box allows you to clear all the saved settings. If you want to
modify an existing setting, first select it from the drop-down box then modify any of the text boxes be-
fore making the connection. The modified values will be saved.

Most menu items have context-sensitive tool tip help text which will appear if you hold the mouse curs-
or still over the desired menu item. (Assuming that you don't turn Tooltips off under the Help menu.

The DatabaseManagers do work with HSQLDB servers serving TLS-encrypted JDBC data. See the TLS
chapter and the RC File Authentication Setup section of this Guide.

Tip
If you are using DatabaseManagerSwing with Oracle, you will want to make sure that Show
row counts and Show row counts are both off before connecting to the database. You may also
want to turn off Auto tree-update, as described in the next section.

Auto tree-update
By default, the object tree in the left panel is refreshed when you execute DDL which may update those
objects. If you are on a slow network or performance-challenged PC, use the view / Auto-refresh tree
menu item to turn it off. You will then need to use the viewRefresh tree menu item every time that you
want to refresh the tree.

Note

Auto-refresh tree does not automatically show all updates to database objects, it only refreshes
when you submit DDL which may update database objects. (This behavior is a compromise
between utility and performance).

134

Automatic Connection
You can use command-line switches to supply connection information. If you use these switch(es), then
the connection dialog window will be skipped and a JDBC connection will be established immediately.
Assuming that the hsqldb.jar (or an alternative jar) are in your CLASSPATH, this command will list the
available command-line options.

java org.hsqldb.util.DatabaseManagerSwing --help

It's convenient to skip the connection dialog window if you always work with the same database ac-
count.

Warning

Use of the --password switch is not secure. Everything typed on command-lines is generally
available to other users on the computer. The problem is compounded if you use a network
connection to obtain your command line. The RC File section explains how you can set up
automatic connections without supplying a password on the command line.

RC File
You can skip the connection dialog window securely by putting the connection information into an RC
file and then using the --urlid switch to DatabaseManager or DatabaseManagerSwing. This strategy
is great for adding launch menu items and/or launch icons to your desktop. You can set up one icon for
each of the database accounts which you regularly use.

The default location for the RC file is dbmanager.rc in your home directory. The RC File Authentic-
ation Setup section explains how to put the connection information into this text file. If you also run
SqlTool, then you can share the RC file with SqlTool by using a sym-link (if your operating system sup-
ports sym links), or by using the --rcfile switch for either SqlTool or DatabaseManagerSwing.

Warning

Use your operating system facilities to prevent others from reading your RC file, since it con-
tains passwords.

To set up launch items/icons, first experiment on your command line to find exactly what command
works. For example,

java -cp /path/to/hsqldb.jar org.hsqldb.util.DatabaseManagerSwing --urlid mem

Then, use your window manager to add an item that runs this command.

Using the current DatabaseManagers with an
older HSQLDB distribution.

This procedure will allow users of a legacy version of HSQLDB to use all of the new features of the
DatabaseManagers. You will also get the new version of the SqlTool! This procedure works for distros
going back to 1.7.3.3 at least, probably much farther.

These instructions assume that you are capable of running an Ant build. See the Building HSQLDB
chapter.

Database Manager

135

1. Download and extract a current HSQLDB distribution. If you don't want to use the source code,
documentation, etc., you can use a temporary directory and remove it afterwards.

2. Cd to the build directory under the root directory where you extracted the distribution to.

3. Run ant hsqldbutil.

4. If you're going to wipe out the build directory, copy hsqldbutil.jar to a safe location first.

5. For now on, whenver you are going to run DatabaseManager*, make sure that you have this
hsqldbutil.jar as the first item in your CLASSPATH.

Here's a UNIX example where somebody wants to use the new DatabaseManagerSwing with their older
HSQLDB database, as well as with Postgresql and a local application.

CLASSPATH=/path/to/hsqldbutil.jar:/home/bob/myapp/classes:/usr/local/lib/pg.jdbc3.jar
export CLASSPATH
java org.hsqldb.util.DatabaseManagerSwing --urlid urlid

DatabaseManagerSwing as an Applet
DatabaseManagerSwing is also an applet. You can use it in HTML, JSPs, etc. Be aware that in Applet
mode, actions to load or save local files will be disabled, and attempts to access any server other than the
HTML-serving-host will be fail.

Since the Applet can not store or load locally saved preferences, the only way to have persistent prefer-
ence settings is by using Applet parameters.

DatabaseManagerSwing Applet Parameters

jdbcUrl URL of a data source to auto-connect to. String value.

jdbcDriver URL of a data source to auto-connect to. String value. Defaults to
org.hsqldb.jdbcDriver.

jdbcUser User name for data source to auto-connect to. String value.

jdbcPassword Password for data source to auto-connect to. String value. Defaults to zero-length
string.

schemaFilter Display only object from this schema in the object navigator. String value.

laf Look-and-feel. String value.

loadSampleData Auto-load sample data. Boolean value. Defaults to false.

autoRefresh Auto-refresh the object navigator when DDL modifications detected in user SQL
commands. Boolean value. Defaults to true.

showRowCounts Show number of rows in each table in the object navigator. Boolean value. De-
faults to false.

Database Manager

136

showSysTables Show system tables in the object navigator. Boolean value. Defaults to false.

showSchemas Show object names like schema.name in object navigator. Boolean value. De-
faults to true.

resultGrid Show query results in Gui grid (as opposed to in plain text). Boolean value. De-
faults to true.

showToolTips Show help hover-text. Boolean value. Defaults to true.

Database Manager

137

Appendix G. Transfer Tool
Fred Toussi, HSQLDB Development Group <ft@cluedup.com>
$Date: 2005/06/29 23:15:13 $

Brief Introduction
Transfer Tool is a GUI program for transferring SQL schema and data from one JDBC source to anoth-
er. Source and destination can be different database engines or different databases on the same server.

Transfer Tool works in two different modes. Direct transfer maintains a connection to both source and
destination and performs the transfer. Dump and Restore mode is invoked once to transfer the data from
the source to a text file (Dump), then again to transfer the data from the text file to the destination
(Restore). With Dump and Restore, it is possible to make any changes to database object definitions and
data prior to restoring it to the target.

Dump and Restore modes can be set via the command line with -d (--dump) or -r (--restore) options. Al-
ternatively the Transfer Tool can be started with any of the three modes from the Database Manager's
Tools menu.

The connection dialogue allows you to save the settings for the connection you are about to make. You
can then access the connection in future sessions. These settings are shared with those from the Database
Manager tool. See the appendix on Database Manager for details of the connection dialogue box.

In version 1.8.0 Transfer Tool is no longer part of the hsqldb.jar. You can build the hsqldbutil.jar using
the Ant command of the same name, to build a jar that includes Transfer Tool and the Database Man-
ager.

When collecting meta-data, Transfer Tool performs SELECT * FROM <table> queries on all the tables
in the source database. This may take a long time with some database engines. When the source data-
base is HSQLDB, this means memory should be available for the result sets returned from the queries.
Therefore, the memory allocation of the java process in which Transfer Tool is executed may have to be
high.

138

	Hsqldb User Guide
	Table of Contents
	Introduction
	Available formats for this document

	Chapter 1. Running and Using Hsqldb
	Introduction
	Running Tools
	Running Hsqldb
	Server Modes
	Hsqldb Server
	Hsqldb Web Server
	Hsqldb Servlet
	Connecting to a Database running as a Server
	Security Considerations

	In-Process (Standalone) Mode
	Memory-Only Databases

	General
	Closing the Database
	Using Multiple Databases in One JVM
	Creating a New Database

	Using the Database Engine
	Different Types of Tables
	Constraints and Indexes
	SQL Support
	JDBC Support

	Chapter 2. SQL Issues
	Purpose
	SQL Standard Support
	Constraints and Indexes
	Primary Key Constraints
	Unique Constraints
	Unique Indexes
	FOREIGN KEYS
	Indexes and Query Speed
	Where Condition or Join
	Subqueries and Joins

	Types and Arithmetic Operations
	Integral Types
	Other Numeric Types
	Bit and Boolean Types
	Storage and Handling of Java Objects
	Type Size, Precision and Scale

	Sequences and Identity
	Identity Auto-Increment Columns
	Sequences

	Issues with Transactions
	New Features and Changes

	Chapter 3. UNIX Quick Start
	Purpose
	Installation
	Setting up a Hsqldb Persistent Database Instance and a Hsqldb Server
	Accessing your Database
	Create additional Accounts
	Shutdown
	Running Hsqldb as a System Daemon
	Portability of hsqldb init script
	Init script Setup Procedure
	Troubleshooting the Init Script

	Chapter 4. Advanced Topics
	Purpose
	Connections
	Connection properties

	Properties Files
	Server and Web Server Properties
	Starting a Server from your application
	Individual Database Properties

	SQL Commands for Database Properties

	Chapter 5. Deployment Issues
	Purpose
	Mode of Operation and Tables
	Mode of Operation
	Tables
	Large Objects
	Deployment context

	Memory and Disk Use
	Cache Memory Allocation

	Managing Database Connections
	Upgrading Databases
	Upgrading Using the SCRIPT Command
	Manual Changes to the .script File

	Backing Up Databases

	Chapter 6. Text Tables
	The Implementation
	Definition of Tables
	Scope and Reassignment
	Null Values in Columns of Text Tables
	Configuration

	Text File Issues
	Text File Global Properties
	Importing a Text Table file in to a Traditional (non-Text Table) Table

	Chapter 7. TLS
	Requirements
	Encrypting your JDBC connection
	Client-Side
	Server-Side

	JSSE
	Making a Private-key Keystore
	CA-Signed Cert
	Non-CA-Signed Cert

	Automatic Server or WebServer startup on UNIX

	Chapter 8. SqlTool
	Purpose
	Recent changes

	The Bare Minimum You Need to Know to Run SqlTool
	Non-displayable Types
	Desktop shortcuts
	Loading sample data

	RC File Authentication Setup
	Using Inline RC Authentication
	Using the current version of SqlTool with an older HSQLDB distribution.
	Interactive
	Command Types
	Special Commands
	Buffer Commands
	PL Commands
	Storing and retrieving binary files
	SQL History
	Shell scripting and command-line piping
	Emulating Non-Interactive mode

	Non-Interactive
	Giving SQL on the Command Line
	SQL Files
	Piping and shell scripting
	Optimally Compatible SQL Files
	Comments
	Special Commands and Buffer Commands in SQL Files
	Automation
	Getting Interactive Functionality with SQL Files
	Character Encoding

	Generating Text or HTML Reports
	SqlTool Procedural Language
	Variables
	PL Aliases
	Logical Expressions
	Flow Control

	Chunking
	Why?
	How?

	Raw Mode
	PL/SQL
	Using hsqltool.jar and hsqldbutil.jar
	Character-Separated-Value Imports and Exports
	Simple CSV exports and imports using default settings
	Specifying queries, delimiters, file names, table names, columns

	Chapter 9. SQL Syntax
	Notational Conventions Used in this Chapter
	SQL Commands
	ALTER INDEX
	ALTER SEQUENCE
	ALTER SCHEMA
	ALTER TABLE
	ALTER USER
	CALL
	CHECKPOINT
	COMMIT
	CONNECT
	CREATE ALIAS
	CREATE INDEX
	CREATE ROLE
	CREATE SCHEMA
	CREATE SEQUENCE
	CREATE TABLE
	CREATE TRIGGER
	CREATE USER
	CREATE VIEW
	DELETE
	DISCONNECT
	DROP INDEX
	DROP ROLE
	DROP SEQUENCE
	DROP SCHEMA
	DROP TABLE
	DROP TRIGGER
	DROP USER
	DROP VIEW
	EXPLAIN PLAN
	GRANT
	INSERT
	REVOKE
	ROLLBACK
	SAVEPOINT
	SCRIPT
	SELECT
	SET AUTOCOMMIT
	SET DATABASE COLLATION
	SET CHECKPOINT DEFRAG
	SET IGNORECASE
	SET INITIAL SCHEMA
	SET LOGSIZE
	SET PASSWORD
	SET PROPERTY
	SET REFERENTIAL INTEGRITY
	SET SCHEMA
	SET SCRIPTFORMAT
	SET TABLE INDEX
	SET TABLE READONLY
	SET TABLE SOURCE
	SET WRITE DELAY
	SHUTDOWN
	UPDATE

	Schema object naming
	Data Types
	SQL Comments
	Stored Procedures / Functions
	Built-in Functions and Stored Procedures
	SQL Expression

	Appendix A. Building HSQLDB
	Purpose
	Building with Ant, from the Apache Jakarta Project
	Obtaining Ant
	Building Hsqldb with Ant

	Building with DOS Batch Files
	Hsqldb CodeSwitcher
	Building documentation

	Appendix B. First JDBC Client Example
	Appendix C. Hsqldb Database Files and Recovery
	
	States
	
	
	

	Procedures
	Clean Shutdown
	Startup
	Repair

	Appendix D. Running Hsqldb with OpenOffice.org 1.1.x
	Introduction
	Installing
	Setting up OpenOffice.org
	On Windows
	On Linux

	Appendix E. Hsqldb Test Utility
	Appendix F. Database Manager
	Brief Introduction
	Auto tree-update
	Automatic Connection
	RC File
	Using the current DatabaseManagers with an older HSQLDB distribution.
	DatabaseManagerSwing as an Applet

	Appendix G. Transfer Tool
	Brief Introduction

