
Factoring Large Numbers

with the TWINKLE Device

�Extended Abstract�

Adi Shamir

Dept� of Applied Math�

The Weizmann Institute of Science

Rehovot ������ Israel

shamir�wisdom�weizmann�ac�il

Abstract

The current record in factoring large RSA keys is the factorization
of a ��� bit ���� digit� number achieved in February ���� by run�
ning the Number Field Sieve on hundreds of workstations for several
months	 This paper describes a novel factoring technique which is sev�
eral orders of magnitude more e
cient	 It is based on a very simple
handheld optoelectronic device which can analyse ����������� large
integers� and determine in less than �� milliseconds which ones factor
completely over a prime base consisting of the �rst
������ prime num�
bers	 The new technique can increase the size of factorable numbers by
��� to
�� bits� and in particular can make ��
 bit RSA keys �which
protect ��� of today�s E�commerce on the Internet� very vulnerable	

Keywords� Cryptanalysis� Factoring� Sieving� Quadratic Sieve�
Number Field Sieve� optical computing	

�

� Introduction

The security of the RSA public key cryptosystem depends on the di��
culty of factoring a large number n which is the product of two equal
size primes p and q� This problem had been thoroughly investigated �es�
pecially over the last �� years�� and the last two breakthroughs were the
invention of the Quadratic Sieve �QS� algorithm 	P
 in the early ���
�s
and the invention of the Number Field Sieve �NFS� algorithm 	LLMP
 in
the early ���
�s� The asymptotic time complexity of the QS algorithm is
O�eln�n�

���ln�ln�n������� and the asymptotic time complexity of the NFS algo�

rithm is O�e���� ln�n����ln�ln�n������� For numbers with up to about ��
 bits
the QS algorithm is faster due to its simplicity� but for larger numbers the
NFS algorithm is faster due to its better asymptotic complexity�

The complexity of the NFS algorithm grows fairly slowly with the binary
size of n� Denote the complexity of factoring a ��� bit number �which is the
current record � see 	R
� by X� Then the complexity of factoring numbers
which are �

 bits longer is about �
X� the complexity of factoring numbers
which are ��
 bits longer is about ��
X� and the complexity of factoring
numbers which are �

 bits longer is about ��

X� Since the technique
described in this paper can increase the e�ciency of the NFS algorithm
by two to three orders of magnitude� we expect it to increase the size of
factorable numbers by �

 to �

 bits� or alternatively to make it possible
to factor with a budget of one million dollars numbers which previously
required hundreds of millions of dollars� The main practical signi�cance of
such an improvement is that it can make ��� bit numbers �which are the
default setting of most Internet browsers in e�commerce applications� and
the maximum size deemed exportable by the US government� easy to crack�

The new factoring technique is based on a novel optoelectronic device
called TWINKLE� � Designing and constructing the �rst prototype of this
device can cost hundreds of thousands of dollars� but the manufacturing
cost of each additional device is about ���

� It can be combined with any
sieve�based factoring algorithm� and in particular it can be used in both the
QS and the NFS algoritms� It uses their basic mathematical structure and
inherits their asymptotic complexity� but improves the practical e�ciency
of their sieving stage by a large constant factor� Since this is the most time
consuming part of these algorithms� we get a major improvement in their
total running time�

For the sake of simplicity� we describe in this extended abstract only the

�TWINKLE stands for �The Weizmann INstitute Key Locating Engine��

�

new implementation of the sieving stage in the simplest variant of the QS
algorithm� Most of the new ideas apply equally well to improved variants of
the QS algorithm and to the general NFS algorithm� but the details are more
complicated� and will be described only in the full version of this paper�

� The QS Factoring Algorithm

Given the RSA number n � pq� the QS algorithm tries to construct two num�
bers y and z such that y �� �z �mod n� and y� � z� �mod n�� Knowledge of
such a pair makes it easy to factor n since gcd�y�z� n� is either p or q� To �nd
such y and z� we generate a large number of values y�� y�� � � � � ym� compute
each y�i �mod n�� and try to factor it into a product of primes pj from a prime
base B consisting of the k smallest primes p� � �� p� � �� � � � � pk� Numbers
y�i �mod n� which have such factorizations into

Qk
j�� p

ej
j are called smooth�

If the number of smooth modular squares found in such a way exceeds k�
we can use Gauss elimination to �nd a subset of the vectors �e�� e�� � � � � ek�
of the prime multiplicities which is linearly dependent modulo �� When the
corresponding y�i �mod n� and their factorizations are multiplied� we get
an equation of the form

Qm
i���y

�
i �

bi �
Qk

j�� p
cj
j �mod n� where all the bi�s

�which de�ne the subset� are
�s and ��s and all the cj�s �which are the
sums of the prime multiplicities� are even numbers� We can now get the
desired equation y� � z�� mod n� by de�ning y �

Qm
i�� y

bi
i �mod n� and

z �
Qk

j�� p
cj��
j �mod n��

The key to the e�ciency of the QS algorithm is the generation of many
small modular squares whose smoothness is easy to test� Consider the sim�
plest case in which we use the quadratic polynomial f�x� � �a�x�� �mod n�
where a � b

p
�n�c� and choose yi � a� i for i � �� �� � � � �m� Then it is easy

to see that for small m the corresponding y�i � f�i� �mod n� are half size
modular squares which are much more likely to be smooth numbers than
random modular squares�

The simplest way of testing the smoothness of the values in such a se�
quence is to perform trial division of each value in the sequence by each
prime in the basis� Since the f�i��s are hundreds of bits long� this is very
slow�

The QS algorithm expresses all the generated f���� � � � � f�m� in the non
modular form f�i� � �a� i�� � n �since m is small�� and determines which
of these values are divisible by pj from the basis B by solving the quadratic
modular equation �a� i���n �
 �mod pj�� This is easy� since the modulus

�

pj is quite small� �

The quadratic equation mod pj will have either zero or two solutions
d�

i and di�� In the �rst case we can deduce that none of the f�i��s will
be divisible by pj� and in the second case we can deduce that f�i� will be
divisible by pj if and only if i belongs to the union of the two arithmetic
progressions pj � r � d�

j and pj � r � dj� for r �
�
The smoothness test in the QS algorithm is based on an array A of m

counters� where the i�th entry is associated with f�i�� The sieving algorithm
zeroes all these counters� and then loops over the primes in the basis� For
each prime pj� and for each one of its two arithmetic progressions �if they
exist�� the algorithm scans the counter array� and adds the constant log��pj�
to all the counters A�i� whose indices i belong to the arithmetic progression
�there are about m�pj such indices�� At the end of this loop� the value of
A�i� describes the �approximate� binary length of the largest divisor of f�i�
which factors completely over the prime base B� The algorithm then scans
the array� �nds all the entries i for which A�i� is close to the binary length
of f�i�� tests that these f�i��s are indeed smooth by trial division� and uses
them in order to factor n�

Typical large scale factoring attacks with networks of PC�s may use
m � �

�

�

 and k � �

�

� The array requires �

 megabytes of
RAM� and its counters can be accessed at the standard bus speed of �

megahertz� � Just scanning such a huge array requires about one second�
Well optimized implementations of the QS algorithm perform the sieving
in � to �
 seconds� and �nd very few smooth numbers� They then choose
a di�erent quadratic polynomial f ��x�� and repeat the sieving run �on the
same machine� or on a di�erent machine working in parallel�� This phase
stops when a total of k � � smooth modular squares are collected in all the
sieving runs� and a single powerful computer performs the Gauss elimination
algorithm and the actual factorization in a small fraction of the time which
was devoted to the sieving�

In the next section we describe the new TWINKLE device� which is
an ultrafast optical siever� It costs about the same as a powerful PC or a
workstation� but can test the smoothness of �

�

�

 modular squares
over a prime base of �

�

 primes in less than
�
� seconds� This is �

 to

�We ignore the issue of the divisibility of f�i� by higher powers of pj � since except for
the smallest primes in the basis this is extremely unlikely� and we can explicitly add the
powers of the �rst few primes to the basis without substantially increasing its size�

�Note that the faster cache memory is of little use� since the sieving process accesses
arithmetic progressions of addresses with huge jumps� which create continuous cache
misses�

�

�

 times faster than the conventional sieving approach described above�

� The TWINKLE Device

The TWINKLE device is a simple optoelectronic device which is housed in
an opaque blackened cylinder whose diameter is about � inches and whose
height is about �
 inches� The bottom of the cylinder consists of a large
collection of LEDs �light emitting diodes� which twinkle at various frequen�
cies� and the top of the cylinder contains a photodetector which measures
the total amount of light emitted at any given moment by all the LEDs�
The photodetector alerts a connected PC whenever this total exceeds a cer�
tain threshold� Such events are related to the detection of possibly smooth
numbers� and their precise timing is the only output of the TWINKLE de�
vice� Since these events are extremely rare� the PC can leisurely translate
the timing of each reported event to a candidate modular square� verify its
smoothness via trial division� and use it in a conventional implementation
of the QS or NFS algorithms in order to factor the input n�

The standard PC implementation of the sieving technique assigns modu�
lar squares to array elements �using space� and loops over the primes �using
time�� The TWINKLE device assigns primes to LEDs �using space� and
loops over the modular squares �using time�� which reverses their roles�
This is schematically described in Fig� ��

Each LED is associated with some period pj and delay dj� and its only
role is to light up for one clock cycle at times described by the arithmetic
progression pj � r � dj for r �
� To mimic the QS sieving procedure�
we have to use nonuniform LED intensities� In particular� we want the
LED associated with prime pj to generate light intensity proportional to
log��pj� whenever it �ashes� so that the total intensity measured by the
photodetector at time i will correspond to the binary size of the largest
smooth divisor of the f�i� � We can achieve this by using an array of LEDs
of di�erent sizes or with di�erent resistances� However� a simpler and more
elegant solution to the problem is to construct a uniform array of identical
LEDs� to assign similar sized primes to neighbouring LEDs� and to cover
the LED array with a transparent �lter with smoothly changing grey levels�
� Note that the dynamic range of grey levels we have to use is quite limited�

�Again� we ignore the issue of the divisibility of f�i� by higher powers of the primes�
�For example� we can assign primes to LEDs in row major order and use a �lter which

is dark grey at the top and completely transparent at the bottom� or assign primes to
LEDS in spiral order and use a �lter which is darkest at its center�

�

PRIMES PRIMES

SQUARES SQUARES

(LEDs)

(TIME SLICES)

(TIME

SLICES)

(MEMORY LOCATIONS)

+U +U +U +U

+V +V

+W +W

+X +X

+U +U +U

+V

+V

+V

+W +W

+X +X

CONVENTIONAL SIEVING OPTICAL SIEVING

Figure �� Conventional vs� optical sieving� the boxed operations are carried
out at the same time slice

since the ratio of the logs of the largest and the smallest primes in a typical
basis does not exceed �����

To increase the sensitivity of the photodetector� we can place it behind
a large lense which concentrates all the incoming light on its small surface
area� The light intensity measurement is likely to be in�uenced by many
sources of errors� For example� the grey levels of the �lter are only approx�
imations of the logs� and even uniformly designed LEDs may have actual
intensities varying by �
� or more� We can improve the accuracy of the
TWINKLE device by measuring the actual �ltered intensity of each LED in
the manufactured array� and assigning the sequence of primes to the various
LEDs based on their sorted list of measured intensities� However� the QS
and NFS factoring algorithms are very forgiving to such measurement er�
rors� and in PC implementations they use crude integer approximations to
the logs in order to speed up the computation� There are two possible types
of errors� missed events and false alarms� To minimize the number of missed
events we can set a slightly lower reporting threshold� and to eliminate the
resultant false alarms we can later test all the reported events on a PC� in
order to �nd the extremely rare real events among the rare false alarms�
For typical values of the parameters� the average binary size of the smooth
part of candidate values is about one tenth of their size� and only a tiny

�

fraction of all candidate values have ratios exceeding one half� As a result�
the desired events stand out very clearly as isolated narrow peaks which are
about ten times higher than the background noise�

We claim that optical sieving is much better than conventional counter
array sieving for the following reasons�

�� We can perform optical sieving at an extremely fast clock rate� Typ�
ical silicon RAM chips in standard PC�s operate at about �

 mega�
hertz� LEDs� on the other hand� are manufactured with a much faster
Gallium Arsenide �GaAs� technology� and can be clocked at rates ex�
ceeding �
 gigahertz without di�culty� Commercially available LEDs
and photodetectors are used to send �
 gigabits per second along �ber
optic cables� and GaAs devices are widely used at similar clock rates
as routers in high speed networks�

�� We can instantaneously add hundreds of thousands of optical contri�
butions� if we do not need perfect accuracy� Building a digital adder
with �

�

 inputs which computes their sum in a single clock cycle
is completely unrealistic�

�� The optical technique does not need huge arrays of counters� Instead
of using one memory cell per sieved value� we use one time slice per
sieved value� Even with the declining cost of fast memories� time is
cheaper than space�

�� In the optical technique do not have to scan the array at the beginning
in order to zero it� and do not have to scan the array again at the end
in order to �nd its high entries � both operations are done at no extra
cost during the actual sieving�

In the remaining sections we �esh out the design of each cell and the ar�
chitecture of the whole device� We based this design on many conversations
with experienced GaAs chip designers� and used only commercially available
technologies� We may be o� by a small factor in some of our size speed and
cost estimates� but we believe that the design is realistic� and that someone
will try it out in the near future�

� Cell Design

The LED array is implemented on a single wafer of GaAs� Each cell on
this wafer contains one LED plus some circuitry which makes it �ash for

�

REGISTER A

REGISTER B

CLOCK
LOAD

FEEDBACK

ANDLEDSENSOR

XOR

Figure �� A single cell in the array

exactly one clock cycle every exactly pj clock cycles with an initial delay of
exactly dj clock cycles� The high clock rate and extremely accurate timing
requirements rule out analog control methods� and the unavoidable existence
of bad cells in the wafer rules out a prewired assignment of primes to cells�
Instead� we use identical cells throughout the wafer� and include in each cell
two registers� A and B� which are loaded before the beginning of the sieving
process with values corresponding to pj and dj � respectively� For a typical
sieving run over m � �

�

�

 values� we need only log��m� � �� bits
in each one of these registers�

The structure of each cell �described in Fig� �� is very simple� Instead of
using counters �with their more complicated designs and additional carry�
induced delays�� we use register B as a maximal length shift register based
on a single XOR of two of its bits� It is driven by the clock� and runs until it
enters the special state in which all its bits are ���� When this is recognized
by the AND of all the bits of register B� the LED �ashes� and register
B is reloaded with the contents of register A �which remains unchanged
throughout the computation�� The initial values loaded into registers A and
B are not the binary representations of pj and dj � but the �easily computed�
states of the shift register which are that many steps before the special state
of all ���� That�s the whole cell design�

�

An important issue in such a high speed device is clock synchronization�
Each clock cycle lasts only �

 picoseconds� and all the light pulses must be
synchronized to within a fraction of this interval in order to correctly sum
their contributions� Distributing electrical clock pulses �which travel slowly
over long� high capacity wires� at �
 gigahertz to thousands of cells all over
the wafer without skewing their arrival times by more than �
��
 picoseconds
seems to be a very di�cult problem� We solve it by using another optical
trick� Since it is easy to construct in GaAs technology a small photodetector
in each cell� we use optical rather than electrical clock distribution� a strong
LED placed opposite the wafer� which �ashes at a �xed rate of �
 gigahertz�
and its pulses are almost simultaneously picked up by the photodetectors
in all the cells� and used to drive the shift registers in a synchronized way�
Since light passes about � centimeters in �

 picoseconds� we just have to
place the clocking LED and the summing photodetector su�ciently far away
from the wafer to guarantee su�ciently similar optical delays to and from
all the cells on the �at wafer� To avoid possible confusion between clock and
data light pulses� we can use two di�erent wavelengths for the two purposes�

Computing the AND of �� inputs requires a tree of depth � of ��input
AND gates� which may be the slowest cell operation� To speed it up� we can
use a systolic design which carries out the tree computation in � consecutive
clock cycles� This delays the detection of the special state by � clock cycles
but keeps all the �ashing LEDs perfectly synchronized� To compensate for
the late reloading of register B� we simply store a modi�ed value of pj in
register A�

An improved cell design is based on the observation that about half
the primes do not yield arithmetic progressions� whereas each prime in the
other half yields two arithmetic progressions with the same period pj� In
standard PC implementations this has little e�ect� since we still have to
scan on average one arithmetic progression per prime in the basis� However�
in the TWINKLE design the two cells assigned to the same pj can share
the same A register �which never changes� to reload their separate B shift
registers� In addition� the two cells can share the same LED and �ash it
with the OR of the two AND gates� since the two arithmetic progressions
are always disjoint� We call such a combination a double cell� and use it to
reduce the average number of registers per prime in the basis from � to ����
Since these registers occupy most of the area of the cell� this observation can
increase the number of primes we can handle with a single wafer by almost
����

�

� Wafer design

We would like to justify our claim that a single wafer can handle a prime
base of �

�

 primes �which is the actual size used in recent PC�based
factorizations�� A standard � inch wafer has a total usable area of about
�� � �
� square microns� Commercially available LED arrays �such as the
arrays sold by Oki Semiconductors to manufacturers of laser printers � see
http���www�oki�co�jp�OKI�home�English�New�OKI�News������z����e�html
for further details� have a linear density of ��

 LEDs per inch� At this den�
sity� each LED occupies a �
���
� square with an area of �

��� and we can
�t about �
�

�

 LEDs on a single wafer� However� most of area of each
double cell will be devoted to the three �� bit registers� Crude conservative
estimates indicate that we can very comfortably �t each one of these �� bits
into an area of �� �

�� using commercially available GaAs technology� We
can thus �t the whole double cell into an area of less than ��
�

��� and
pack �

�

 double cells into a single wafer� Such a wafer will be able to
sieve numbers over a prime base of �

�

 primes�

A simple reality check is based on the computation of the total amount
of memory on the wafer� The �

�

 double cells contain �� � �

�

bits� or about one megabyte of memory� The other gates �XOR� AND� and
diodes �LEDs� photodetectors� occupy a small additional area� This is a
very modest goal for wafer scale designs�

The cost of manufacturing silicon wafers in a commercial FAB is about
����

 per wafer� and the cost of manufacturing the more expensive GaAs
wafers is about ���

 per wafer �excluding design costs and assuming a
reasonably large order of wafers�� This is comparable to the cost of a strong
workstation� but provides a sieving e�ciency which is several hundred times
higher�

The TWINKLE device does not have a yield problem� which plagues
many other wafer�scale designs� During the sieving process each cell works
completely independently� without receiving any inputs or sending any out�
puts to neighbouring cells� Even if �
� of the cells are found to be defective
in postproduction inspection� we can use the remaining �
� of the cells� If
necessary� we can place two or more wafers at the same distance opposite
the same summing detector� in order to compensate for defective cells or to
sieve over larger prime bases�

After determining the number of cells� we can consider the issue �which
was ignored so far� of loading registers A and B in each cell with some
precomputed data from a connected storage device� Silicon memory cannot
operate at �
 gigahertz� and thus we have to slow down the clocking LEDs

�

facing the GaAs wafer during the loading phase� The A registers which
contain the primes assigned to each LED can be loaded only once after each
powerup� but the B registers which contain the initial delays have to be
loaded for each sieving run� The total size of the �

�

 B registers is
about ��� kilobytes� Such a small amount of data can be kept in a standard
type of silicon memory� and transfered to the wafer in
�

� seconds on a
�� bit bus operating at �

 megahertz� This is one �fth the time required
to carry out the actual sieving at the full �
 gigahertz clock rate� and thus
it does not create a new speed bottleneck�

The proposed wafer design has just �� external connections� Two for
power� two for control� and �� for the input bus� The four modes of opera�
tion induced by the two control wires consist of a test mode �in which the
various LEDs are sequentially �ashed to test their functionality and measure
their light intensity�� LOAD�A mode �in which the various A registers are
sequentially loaded from the bus�� LOAD�B mode �in which the various B
registers are sequentially loaded from the bus�� and sieving mode �in which
all the shift registers are simultaneously clocked at �
 gigahertz�� We can
brie�y freeze the optical clocking during mode changes in order to enable
the slow electric control signals to propagate to all the cells on the wafer
before we start operating in the new mode�

Another important factor in the wafer design is its total power consump�
tion� Strong LEDs consume considerable amounts of power� and if a large
number of LEDs on the wafer �ash simultaneously� the excessive power con�
sumption can skew the intensity of the �ashes� However� each tested number
can be divisible by at most several hundred primes fron the basis� and thus
we have a small upper bound on the total power which can be consumed by
all the LEDs at any given moment in the sieving process�

� The Geometry of the TWINKLE device

The TWINKLE device is housed in an opaque cylinder with the wafer at
the bottom and the summing photodetector and clocking LED at the top�
Its diameter is determined by the size of the wafer� which is about � inches�
Its height is determined by the uniformity requirements of the length of the
various optical paths�

To determine this height� we recall that light travels about � centimeters
in a single clock cycle which lasts �

 picoseconds� To make sure that all
the received light pulses are synchronized to within ��� of this duration�
we want the length of the optical paths from the clocking LED to any point

��

in the wafer and from there to the summing photodetector to vary by at
most
�� centimeter� The simplest arrangement places both elements at
the center of the top face of the cylinder� but this penalizes twice LEDs
located at the rim compared to LEDs located at the center� and requires a
cylinder whose length is about ��
 centimeters� A better arrangement uses
several clocking LEDs placed symmetrically around the rim of the top face�
and a single photodetector at the center of this face� A simple geometric
calculation shows that the required uniformity will be attained in a cylinder
which is just �� centimeters ��
 inches� long�

� concluding remarks

The idea of using physical devices in number theoretic computations is
not new� D� H� Lehmer managed to factor �relatively small� numbers and
solve other diophantine equations by pedalling on a device based on toothed
wheels and bicycle chains of various lengths �a replica of this ingenious con�
traption from the ���
�s is located at the Boston Computer Museum�� His
device even included a photodetector to alert the rider when the solution
was found� but its mode of operation was of course completely di�erent from
our implementation of the quadratic sieve�

The TWINKLE device proposed in this paper demonstrates the incred�
ible speed and almost unbounded parallelism which is o�ered by today�s
optoelectronic techniques� We believe that they will �nd many additional
applications in cryptography and cryptanalysis�

Acknowledgements� I would like to thank Moty Heiblum and Vladimir
Umanski for many useful discussions of GaAs technology�

References

	LLMP
 A� K� Lenstra� H� W� Lenstra� M� S� Manasse� and J� M� Pollard�
The number �eld sieve� Vol� ���� of Lecture Notes in Mathematics�
������ Springer Verlag� �����

	P
 C� Pomerance� The quadratic sieve factoring algorithm� Proceedings
of EUROCRYPT �� �LNCS �
��� �������� �����

	R
 Hermann J� J� te Riele� email announcement� February � ����� avail�
able at http���jya�com�rsa��
�htm�

��

