
 1

vLab: an Eclipse-based Virtual Laboratory

A. Riccioni, E. Denti – Dip. Elettronica, Informatica e Sistemistica, Università di Bologna, Italy.

{anna.riccioni, enrico.denti}@unibo.it

Abstract

In modern education, and especially in the
Computer Engineering field, integrating
conceptual understanding with technical skills
assumes a strategic importance. The new
Information and Communication
Technologies can help in addressing this issue
allowing the implementation and the delivery
of new advanced educational tools, such as
virtual labs, for fostering teaching and
learning.
In this work, we first outline the requirements
a virtual lab must meet to effectively support
students through the whole learning process
typical of the Computer Engineering
education. After validating the chosen
approach by experimenting with a first,
simplified prototype, tailored to the case
study of the Information Security
Technologies course, we refine our
guidelines, then design a suitable architecture
for the final version of virtual lab and finally
propose an implementation based on Eclipse
technology.

1. Introduction

During the last years the interest on distance
learning techniques has been growing steadily,
and computer-based training is quickly
becoming more and more accepted.

The adoption of new technologies can
improve traditional education, increasing its
personalization capabilities thus making it more
effective. In fact, ICTs can help in supporting
different learning styles and phases: according
to various learning theories, this is essential for
a successful training [1-4].

It is widely acknowledged [5] that, in order
to be effective, a learning experience must

include two main steps: the first, known as
descending curriculum, is centered on notion
transmission from the instructor to students,
while the second is focused on an ascending
curriculum, according to a constructivist
approach. There, learners are called to play a
more active role, building their own
knowledge by practicing on case studies,
verifying and applying concepts to new
scopes, designing and evaluating new
scenarios [6]. The transposition of conceptual
knowledge into practice helps students to
reinforce learning, gain greater insight into
subjects and acquire practical skills and long-
lasting proficiency [7-13].

Such two key steps can be effectively
fostered through a blended learning approach,
intended as a combination of traditional
synchronous face-to-face lectures and
asynchronous, autonomous work sessions
where students practice on a proper
educational tool.

In this paper we refer to the context of
Computer Engineering education, where
integrating conceptual understanding with
technical skills assumes a strategic importance.
In this perspective, the goal of our research is
to design a virtual lab for supporting students
through their learning experiences.

This paper is organized as follows. In the
first part, we first define the general
requirements a virtual lab must meet to
achieve its goal (Section 2), and briefly report
on the results of our early experiments in vLab
1.0 (Section 2.1). Then, from the try-out
results, we refine our project guidelines for the
design of the final version of virtual lab
(Section 2.2): accordingly, we discuss a
suitable architecture (Section 3), and propose

2

an implementation based on Eclipse
technologies (Section 3.1) with the related
roadmap (Section 3.2). Conclusions and related
work are reported in Section 4.

2. Virtual labs

In Computer Engineering education, where the
mastery of technical content is a necessary but
not sufficient requisite, the need for a virtual lab
for fostering students practical abilities is
particularly evident. In fact, they need both
strong skills in problem-solving, design,
judgment and decision-making, and proficiency
in programming languages to be able to design
and implement a well dimensioned software
system.

In a problem-based learning process, once
that the requirements and the domain have been
settled, the student follows an incremental
process cycling through four main stages:

• analyze the problem

• sketch a solution

• verify how the model fits the
requirements

• design, implement and test a prototype.

Students can accomplish the first two steps by
outlining a simplified but representative version
of their proposed solution [8, 14]. To this end, a
virtual lab must expose CAD-like
functionalities, providing users with an
interactive editor and a context-specific palette
exposing the available model components. Such
a tool allows the students to define the structure
of the considered system.

Furthermore, the virtual lab must include
an engine for the interpretation and repeated
execution of the system model, so that learners
can perform simulations to investigate the
system behavior and assess the suitability of the
envisioned solution. Observing the simulation
results makes it easier to identify critical aspects
and predict the response to stimuli in a given
working condition. The interpretation of the
simulated results also helps students to evaluate
their model, estimate the needed resources and
adjust the system sizing [1, 9]. Thus, a virtual
lab must also include a data gathering service
and several data analysis tools.

Once the model has been checked and
found appropriate, users must be able to build a
software prototype of the designed system. The
virtual lab must thus support learners in this

step, for instance by yielding extracts of
sample code. A close link between the virtual
lab and an Integrated Development
Environment would also be an added value,
enabling students to autonomously modify,
extend and reuse the partial code automatically
generated during the exercitation in different
contexts.

Finally, a tracking service is needed in
order to provide users with prompt feedback
related to their activities; in fact, a real-time
advising helps students in quickly identifying
errors and fixing them, thus simplifies and
speeds up the learning process [15]. Wizards,
online help and simplified access to external
additional resources, such as technical
documentation or reference standards related
to the problem domain, are further benefits for
learners.

Our purpose is to design and implement a
virtual lab supporting all the above features; in
particular in the context of the Information
Security Technologies course hold at the
University of Bologna.

A first, simplified version of virtual lab,
vLab 1.0, was developed in 2005, aimed at
supporting rapid prototyping; however, that
early version intentionally met only a subset of
the whole requirements. Thus, we complete
our guidelines according to the results
obtained through vLab 1.0 experimentation,
and consequently refine vLab 2.0 analysis and
design.

2.1 vLab 1.0 experimentation

vLab 1.0 graphical user interface, shown in
Fig.1, is composed by three main areas: the
larger one shows a schematic representation of
the current exercise in terms of interconnected
blocks, each representing a security
mechanism, and allows students to set the
system parameters and run experiments. Every
block is associated to a (set of) function, and
can have inputs, outputs and configuring
parameters. The second area is devoted to
feedback about the current experiment: for
each component in the system model, the
window reports notes about data dimension
and execution time in case of success or error
messages in case of failure. Finally, the third
view displays an educational sample Java code
of the ongoing exercise.

3

Fig. 1 - vLab 1.0 screenshot.

vLab 1.0 was designed as a first, simplified
version of the whole virtual lab project. Its main
goal was to leverage the upcoming edition of
the Information Security Technologies course
as a preliminary acceptance test and as a
validation of the chosen approach. For this
reason, along with strict time constraints, vLab
1.0 was most tailored to rapid prototyping: it is
based on a simple three-tier architecture and
adopts Java 5.0 as reference technology.

The two-year experimentation conducted
by making vLab 1.0 available to around 200
students confirmed the effectiveness of the
chosen approach and served as a successful
acceptance test. This try-out also remarked the
urgent need for a more extensive support to
students' active role: learners should be allowed
to build and modify the system models, to
extend the component library and to contribute
their own data analysis tools to the
environment. Usability and expressivity of the
lab should also be improved adding
supplementary features such as the ability to
save and restore working sessions, to access a
comprehensive online help and to switch
between different detail levels within the
graphical schema.

2.2 vLab 2.0 guidelines

As outlined in the introduction, vLab 2.0 is
inspired to the constructivist approach, which
highlights the strategic importance of providing
learners with different tools to let them
autonomously pursue their formative goals,

following their own interests and logics [9].

In addition, the virtual lab must be open to
upgrades as well as to users' contributes, so
that students can be actors in their own
learning process by freely modifying and
expanding the educational tools according to
their changing needs. To this end, they should
be allowed to yield and share elaborates,
building new exercitation schemas, and
integrate within the virtual lab their own data
analysis tools to fit their own specific needs.

In line with these goals, vLab 2.0 supplies
users with a wide variety of facilities shown in
Fig.2 [16].

Fig.2 - vLab 2.0 as a set of features and
automatic actors.

The different features can be grouped in
default sets tailored to specific objectives, like
system modeling and simulation, data analysis,
documentation and programming environment,
each representing a working mode. vLab 2.0
GUI should then include the proper tool
collection based on the chosen working mode;
users should be allowed to switch between the
several chances and modify the set
configuration varying the included tools.

Two special functionalities in Figure 2
have a particular relevance. Mentor is an
automatic learner assistant that during
modeling and simulation steps observes the
users activities and consequently provides
feedback notifying the students with general
info, warning and error messages; sometimes it
can also suggest how to solve an identified
known problem. This feature represents the
evolution of vLab 1.0 prompt feedback
service: the main difference is the separation
between general advices and experiment-

4

related information. While vLab 1.0 presents
both kind of feedback through the same view,
vLab 2.0 redirects the gathered data to suitable
data analysis tools.

The judge is the second automatic assistant,
aimed at guiding the users through the virtual
lab. Its main responsibility is the evaluation of
the users' learning processes: knowing the
learners' starting competence level, the judge
estimates their performances and suggests the
task or activity which is most suited to their
formative goal. In the future, such a feature
could be tailored to evaluate also users
cooperation ampliating its scope outside the
virtual lab to include external support services.

3 vLab 2.0 design model

In order to address the above requirements, and
in particular the two major issues –extensibility
and integration with several tools- an effective
choice is to adopt a plug-in based architecture.
Accordingly, the tools to be integrated in the
virtual lab will be built as plug-ins or sets of
plug-in implementing a given interface:
possibly, they could publish their own in order
to be extensible too, enabling vLab to be easily
upgraded or enhanced with new features.

Fig.3 - vLab 2.0 plug-in architecture.

In addition, we assume that the system is
built on top of a platform providing some basic
coordination and communication services, as
these are essential for collecting and managing
info from the different components. The
resulting architecture is depicted in Fig.3.

Each feature within the virtual lab is
achieved through a dedicated plug-in or set of
plug-ins, depending on its complexity. For
instance, the modeling editor and the simulator

engine could be designed as a combination of
two interacting plug-ins, in order to uncouple
the graphics management from the execution
of a configured experiment.

Furthermore, in order to specialize the
virtual lab to different formative domains, it is
crucial to be able to configure the model editor
with several context-specific component
palettes. The various palette libraries can thus
correspond to distinct plug-ins, and be
dynamically added to the virtual lab.

A similar idea also applies to the data
analysis tools since users must be able to
design, integrate and share their custom
components. Further plug-ins provide the
logging service needed by the mentor and the
sample code view.

In order to consistently cooperate and
synchronize, all such plug-ins need to share a
common reference model. vLab 2.0 reference
abstractions are the Finite State Machine and
the Block Diagram: each system can be
represented in terms of interconnected blocks,
and each block, during schema construction,
configuration and execution, goes through
several states. Furthermore, the block diagram
model allows the exploration of the system
structure at different detail levels through a
zooming mechanism. This is a really
appreciated facility within a simulation tool: it
helps learners to deeply analyze the system
behavior, providing a more effective,
customizable and comprehensive didactic
experience.

3.1 vLab 2.0 and Eclipse

Given the above plug-in based reference

architecture, Eclipse platform was a natural
candidate for building the virtual lab. In fact, it
is open source, based on plug-ins, and adopted
by many advanced projects. Moreover, some
third-party plug-ins offer a comprehensive
support for software design, development and
deploy, and thus represent a valuable
contribute to simplify and speed up our
implementation. As a further benefit, Eclipse
is a well-known reality in both academic and
professional scope, and often computer
engineers start learning how to deal with it
during their first years at University. For this
reason students are supposed to be quite
familiar with vLab 2.0 user interface, Eclipse

5

IDE and its standard features.

Fig.4 outlines a specialization of vLab 2.0
plug-in architecture to Eclipse technology.

Fig.4 - vLab 2.0 and Eclipse.

The system is rooted on the Eclipse
platform, which supplies a comprehensive set of
features, including some coordination,
communication and data management
mechanisms that in vLab 1.0 were spread over
several layers.

The core of the virtual lab can be
implemented as an Eclipse feature, intended as
a structure that bundles together a set of plug-
ins concurring in the development of a complex
functionality. The key component within the
feature will be the modeling and simulation
editor: in order to simplify and expedite its
implementation we can rely on two Eclipse
projects, the Graphical Modeling Framework
(GMF) and the Eclipse Modeling Framework
(EMF). In fact, EMF allows to design the finite
state machine reference model, and then,
through GMF, we can automatically obtain a
basic editor focused on this abstraction.

The generated editor relies on the Graphical
Editing Framework (GEF), an thus inherits a set
of facilities which greatly simplify the graphical
management. Furthermore, the adoption of
GMF makes it easier to extend the basic editor
features; as the generated model is organized in
two separated modules: vlab.model
represents the reference data model and
application logic, while vlab.model.edit
holds the control logic. In our prototype, we
include in this module also the GEF edit parts
needed to describe the model behavior within
the editor and also the edit policies that
statically define the simulator engine’s working

procedures. As a result, it is possible to
validate the users’ actions aimed at build and
modify a schema within the editor referring to
the edit parts listed in the vlab.model plug-
in. On the other hand, the consequences related
to the execution of a component of the schema
are ruled by the edit policies included within
the same plug-in.

Eclipse platform provides a built-in
support, based on the Property Descriptor
mechanism, for communication and
synchronization between the application logic
elements. Leaning on such a facility grants a
robust and immediate communication and
notification infrastructure that avoid the
complexity of the manual management of a
message exchange protocol or observable-
observer pattern implementation. Within vLab
2.0, the Property Descriptor facility is
employed in two steps: the first is as a setting
interface, through the dedicated Eclipse
Property view, that students fill when
arranging their experiment. Then, during the
simulation phase, the Property Descriptor
assumes the responsibility of propagating the
proper notification to the interested listener, in
order to maintain a complete and consistent
model.

BIRT, a comprehensive Eclipse-based
open source reporting system for web
applications, is a significant example of a
ready-to-use software component that can
simplify the implementation of several vLab
features. In fact BIRT, in its plug-in form, can
be included in the virtual lab in order to
provide an extensive support for creating
advanced data analysis tools. The BIRT
project already includes facilities for users to
autonomously build their reports, following
the composition of a template by selecting
primitive components from a palette, that is
the same procedure that learners must follow
when building their system models. It is also
possible to extend the default palette with user-
provided new elements: the same facility will
be provided within the modeling editor, where
users can extend the basic palette including
their own schemas.

Another key feature in vLab 2.0 is the
mentor, that can be implemented through a
standard logger configured to receive
notifications from the running instances of the
reference domain model. An interesting tool
tailored to log creation is Log4J, whose plug-

6

in version, called Ganymede, can easily be
integrated within the Eclipse platform, and, as a
result, within any Eclipse-based application or
Rich Client Platform. In order to perform this
integration, it is important to properly tie the
exception handling within the vLab feature to
the Ganymede logger listener: this task can be
accomplished relying on the Eclipse platform
socket communication support.

Finally, the Eclipse platform makes it
possible to easily provide learners with the
access to an advanced IDE where they can
expand, modify, test and reuse the sample code
generated within the virtual lab. Thanks to
several plug-ins like JDT or C++DT, the
Eclipse IDE can be configured in order to be
used with different programming languages.

3.2 Roadmap

Our aim is to complete a first stable beta
version of vLab 2.0 by January 2008, in order to
be able to use it within the next edition of the
Information Security Technologies course hold
at the Engineering Faculty of the University of
Bologna.

Fig.5 – Roadmap outline.

The first milestone, representing a complete
refactoring of the reference model, is the
preliminary step needed for achieve
extensibility and, as a result, steadiness. Moving
from this prior stage, the project development
can be split in several guidelines proceeding in
parallel.

The first is associated with the ongoing
project expansion and application to other
formative domains. In this context, the
implementation of several context-specific

palettes dedicated to different case studies is
an interesting step forward, since it will make
it possible to test the virtual lab effectiveness
and . Relevant application could be related to
logic design or network protocols.

The strong integration within vLab of the
Eclipse Java IDE represents a further
significant progress in order to fully support
learners' programming activities. Furthermore,
is an additional test for the virtual lab
extensibility.

The editor development, due to its
complexity, will proceed through two main
steps. The first is aimed at investigating GEF
fully potential for managing advanced
graphical features, relying on a manually built
model based on the block diagram abstraction.
Then, we will switch to the GMF technology
in order to gain a more maintainable standard
representation of the reference model.

One further development direction is
represented by BIRT integration within the
virtual lab. As a first step, we plan to provide
students with a few ready-to-use reports,
composed by the instructors, among which
they can choose. We will then extend the
constructivist approach to the reporting
activities, first letting students access the BIRT
report composition perspective, so as to be
able to create their own reports; then,
depending on vLab and BIRT extensibility,
enabling users to implement their own report
component, sharing and integrating them
within the report’s palette.

The BPEL project hold within the Eclipse
Community is another promising direction for
realizing the judge intelligent tutoring system.
Thus, another interesting guideline to follow
could be related to investigating BPEL project
advancements and to making plans for
integrating it into vLab.

Finally, while analyzing a suitable
approach in order to implement the intended
judge, it is possible to plan and arrange the
basic support structure needed for providing
customization and evaluation. In fact, in order
to measure users’ competences starting level
and their performances, it is important to
defining a proper measurement system. In
more detail, we will define a set of formative
goals, relying on Bloom’s taxonomy [17], and
associate them to the appropriate tasks within
the virtual lab. In this perspective, three key

7

issues arise: the first is the definition of a
suitable measurement parameter set. Then, we
will specify how to (quantitatively) measure the
users’ performances in terms of the established
parameters. Lastly, we will formalize a measure
integration aimed at providing a comprehensive
evaluation of the learner’s performances,
depending on his starting level and on the
formative goals associated to the considered
activities.

As first step towards this goal, we intend to
provide a significant link between formative
goals and exercitations in order to allow a
manual evaluation of the students’
performances in the upcoming edition of the
Information Security Technologies course.

4 Conclusions and related work

In this paper we discussed our approach to the
design of a virtual lab for fostering teaching and
learning. Our purpose is to define the
requirements and the reference model such an
educational tool must comply with in order to
be suitable for use in different formative
domains related to the Computer Engineering
education. While testing our prototype, we will
refer to the course on Information Security
Technologies as a case study.

Several works have been carried out on
similar goals: many authors have outlined and
designed modeling frameworks or simulators
suitable for education at various levels [1, 7, 8,
18, 19]. Furthermore, in order to achieve
technical proficiency and to improve practical
programming skills, students often benefit from
the employ of advanced IDEs: thus, research
efforts are also aimed at designing pedagogical
support tools to be added to commonly used
software development frameworks [14, 15, 18,
20]. These two positions are focused on
supporting students only in one or two phases of
their learning process – respectively modeling
and simulation and prototype development-,
disattending the constructivist approach. Thus,
our purpose is to integrate these main directions
in one comprehensive educational tool.

According to constructivism, our intended
virtual lab has been designed to manage
extensibility and provision of several tools, and
to be strictly connected to an Integrated
Development Environment. For these reasons,
the Eclipse platform seemed a suitable

implementing framework. The initially steep
learning curve to acquire proficiency in the
Eclipse technology is widely rewarded by the
huge variety of advanced projects and third-
parties plug-ins developed within the
community: some of them, tailored to general
needs such as reporting or logging facilities,
can be integrated into the virtual lab in order to
contribute to the required features. Others,
oriented at assisting developers in building,
deploying and managing software, can
represent an useful support throughout the
virtual lab implementation step.

vLab 2.0 is still an ongoing project. With
respect to the roadmap in Fig.5, we currently
have fully accomplished the first milestone,
dedicated to the reference model refactoring,
and we are still working on the second point,
both for integrating BIRT predefined reports
and for improving the GEF-based editor. The
third and forth milestones represent our very
next steps towards the foundation of the judge
system and the editor refinement.

Our future efforts will be addressed both
at improving vLab adding new advanced
features and at dealing with new open and
challenging issues. A key point is represented
by users’ activities evaluation, and is strictly
connected to the presentation of customized
feedback and the suggestion of new tasks
based on users’ profiles, formative objectives
and activity history. This research direction
will also imply an integration with the standard
SCORM [21].

Bibliography

1. BÜCHNER P., NEHRIR M H., A Block-Oriented PC-Based Simulation Tool For Teaching and Research in

Electric Drives and Power Systems, IEEE Transactions on Power Systems 6 (3): 1299-1304 (1991).

2. BROWN S. A., LAHOUD H. A., An Examination of Innovative Online Lab Technologies, SIGITE '05:
Proceedings of the 6th conference on Information technology education: 65-70 (2005).

3. YANG T. A., YUE K. B., LIAW M., COLLINS G., Design of a Distributed Computer Security Lab, Journal of
Computing Sciences in Colleges 20 (1): 332-346 (2004).

4. RIGBY S., DARK M., Designing a Flexible, Multipurpose Remote Lab for the IT Curriculum, SIGITE '06:
Proceedings of the 7th conference on Information technology education: 161-164 (2006).

5. GUERRA L., I Limiti della Qualità Didattica, QueL: seminario di lancio dell’Iniziativa Nazionale per la Qualità
nell’eLearning (in Italian, 2005).

6. GUERRA L., L’elaborazione Didattica di Learning Objects, Ricerche di Pedagogia e Didattica. Retrieved on
June 2007 from http://rpd.cib.unibo.it/archive/00000015/ (in Italian, 2006).

7. CHUNG G. K., HARMON T. C., BAKER E. L., The Impact of a Simulation-Based Learning Design Project on
Student Learning, IEEE Transactions on Education 44 (4): 390-398 (2001).

8. ALLWOOD J. M., COX B. M., LATIF S. S., The Structured Development of Simulation-Based Learning Tools
With an Example for the Taguchi Method, IEEE Transactions on Education 44 (4): 347-353 (2001).

9. BLACK J. B., MCCLINTOCK R. O., An Interpretation Construction Approach to Constructivist Design, in B.
Wilson (Ed.) Constructivist Learning Environments (1995).

10. GUIDORZI R., e-Learning Projects at Bologna University: an Overview, Proceedings of the International
Conference on Networked e-Learning for European Universities (2003).

11. GUIDORZI R., DIVERSI R., COLIN M., LODOLI G., A Constructivist Approach in Designign an e-Learning
System Identification Course, Preprints of the 7th IFAC Symposium on Advances in Control Education (2006).

12. KOLB D. A., Experiential Learning experience as a source of learning and development. New Jersey: Prentice
Hall (1984).

13. KOLB D. A., BOYATZIS R. E., MAINEMELIS C., Experiential Learning Theory: Previous Research and New
Directions, in R. J. Sternberg and L. F. Zhang (Eds.), Perspectives on Cognitive, Learning, and Thinking style
(1999).

14. MA J., NICKERSON J. V., Hands-on, Simulated, and Remote Laboratories: A Comparative Literature Review,
ACM Computing Surveys 38 (3): art. n. 7. DOI= http://doi.acm.org/10.1145/1132960.1132961 (2006).

15. DE BARROS L. N., DOS SANTOS MOTA A. P., DELGADO K. V., MATSUMOTO P. M., A Tool for Programming
Learning with Pedagogical Patterns. In Proceedings of the 2005 OOPSLA Workshop on Eclipse Technology
Exchange: 125-129 (2005).

16. LASCHI R., RICCIONI A., SUZZI P., Learning by Doing: vLab, a Virtual Laboratory for Computer Engineering
Education. DET ’07: Proceedings of the International Workshop on Distance Education Technologies: 127-
132 (2007).

17. BLOOM B. S., Taxonomy of Educational Objectives, Handbook I: The Cognitive Domain. New York: David
McKay Co Inc (1956).

18. LÉDECZI Á., BAKAY Á., MARÓTI M., VÖLGYESI P., NORDSTROM G., SPRINKLE J., KARSAI G., Composing
Domain-Specific Design Environments. Computer 34 (11): 44-51 (2001).

19. BUCHER H. F., SCHULTZ A. J., KOFKE D. A., An Eclipse-based Environment for Molecular Simulation. In
Proceedings of the 2005 OOPSLA Workshop on Eclipse Technology Exchange: 130-134 (2005).

20. REIS C., CARTWRIGHT R., A Friendly Face for Eclipse. In Proceedings of the 2003 OOPSLA Workshop on
Eclipse Technology Exchange: 25-29 (2003).

21. ADVANCED DISTRIBUTED LEARNING, SCORM 2004 3rd Edition. Available from http://www.adl.gov (2006).

