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ABSTRACT
In many fields of Computer Engineering education it is cru-
cial that students gain both conceptual understanding and
practical skills. To this end, an effective teaching approach
relies on a blended-learning strategy that combines face-to-
face lessons with students’ practice on some suitable educa-
tional tool. Such a tool should support students through the
whole learning process, and help them to improve their mod-
elling ability along with their programming expertise. In this
paper we describe S-vLab, a virtual laboratory for support-
ing teaching and learning in several applicative domains; in
particular, we analyse S-vLab applied to the Information Se-
curity field. In this context, one of its main goals is to help
students in dealing with the Java Security Platform, sup-
porting different learning styles and allowing multiple for-
mative paths. Using S-vLab students can, in various steps,
model a secure system, simulate its behaviour and evaluate
its performance, and finally build and test a software pro-
totype by leveraging numerous facilities. These include the
provision of extracts of sample Java code, the availability of
supporting resources and a continuous and immediate feed-
back, aimed at pointing out possible errors and suggesting
solutions. After describing more in detail the features pro-
vided by S-vLab, as well as how the depicted functionalities
can help in achieving the settled learning goals, we refer on
the results obtained in an experimentation of the virtual
lab during a course on Information Security with about 150
students.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer Science
Education; D.3.3 [Language Constructs and Features].
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1. INTRODUCTION
Java is deserving increasing attention in Computer Engi-
neering curricula [26]. In fact, introductory Computer En-
gineering courses, aimed at teaching the fundamentals of
programming, often choose Java as the reference language.
Such courses provide learners with a broad view of the Java
language, platform and technology, while advanced courses
focus on specific facets. Among the various possible ad-
vanced courses, nowadays those focussed on security-related
aspects play a strategic role. E-government, e-business and
e-health are a few samples of widespread fields which strongly
rely on security issues; thus, knowing how to build and man-
age a secure system becomes a key ability for computer en-
gineers. According to the modern idea of education as a
combination of conceptual understanding and practical skills
[22, 6], Information Security courses should focus on teach-
ing both theoretical principles and their practical applica-
tions. To this end, supporting both students’ learning of
theoretical security basis and practice on the Java Security
Platform is of primary relevance.

However, in the typical higher education context several fac-
tors concur to make this a challenging task. One first as-
pect is students’ heterogeneity: especially in advanced, op-
tional courses, attendees often have different backgrounds
and starting competence – for instance, in case of students
attending a Computer Engineering curricula who take a
course together with others enrolled to Telecommunications
or Electronics specializations.

Furthermore, students with different expertise are likely to
achieve the course learning goals to different extents in terms
of in-depth insight into the covered topics and complexity of
the practical experimentations.

Finally, it is widely acknowledged that each person follows
his/her own learning style and approach [10, 2]. Examples
of learning styles include the learning-by-doing, learning-by-
example and learning-by-exploring strategies. The learning-
by-doing method is rooted in the constructivism cognitive
theory. Its basic assumption is that learning is more effec-
tive when a student is actively involved in the construction
of knowledge rather than passively receiving it. However,
the effectiveness of active instructional techniques has been
recently questioned [21]. Several authors document that au-
tonomous activities can be motivating for learners who have
sufficient background competence and expertise to success-
fully complete the given tasks, while novices can find un-



guided exercises too difficult. In these cases, the learning-by-
example strategy, where learners follow step-by-step demon-
strations of how to perform a task or how to solve a problem,
can be a more adequate approach [28]. Furthermore, sev-
eral authors in the literature recognize the importance of
learning-by-exploring, where learners examine the support-
ing materials for elements addressing their specific interests
and needs [6].

To cope with these issues, students could be provided with
an experimental environment suitable for supporting their
investigations [14]. More in detail, referring to the Computer
Engineering education context, the integration of theoretical
knowledge with technical skills can be effectively supported
through a learning tool that allows students to:

• design a model of the system they are going to study;

• evaluate the system behaviour and performance;

• build a software prototype.

To accomplish the first task, such an educational tool should
include an interactive editor and a set of basic components
for building a simplified yet representative version of the
considered protocol or system. A simulator and a set of
data gathering and analyzing tools could help to perform
the second step. Finally, autonomous practice within an In-
tegrated Development Environment is an invaluable training
for learning how to implement the studied system. In addi-
tion, the educational tool could support users through the
whole exercitation session for instance by providing hints,
help examples for specific tasks, as well as an immediate
feedback on the outcomes yielded by their actions. The con-
sidered environment should also be suitable both to novices
and advanced students, and be adaptable to different learn-
ing styles. To this end, it should allow users to experiment
at different levels, taking basic to complex exercises, and
providing several tools and features for achieving the settled
learning goals through different paths, freely forged by the
students, as well as guided by given suggestions.

Following the depicted guidelines, we developed an open
source experimental environment aimed at supporting stu-
dents’ learning and practicing in Java-based security exer-
cises [1]. There, students’ proficiency in Java is mainly con-
nected to their knowledge of the Java Cryptography Archi-
tecture (JCA) and of the major classes and methods in the
Java Cryptography Extension (JCE). Since cryptographic
operations often involve heavy computations, tools and strate-
gies for evaluating the performance of systems assume a
strategic importance: in fact, the implementation of a soft-
ware prototype should always be based on a preliminary
deep and careful examination of possible critical aspects in
terms of computational resources.

Despite its application to the security context, such an ex-
perimental environment is indeed designed according to gen-
eral principles, so as to be easily exportable in several other
Computer Engineering courses.

2. THE EXPERIMENTAL ENVIRONMENT
In the context of Computer Engineering education, the learn-
ing objectives include the ability to model a system, to evalu-
ate its performance and robustness, and to build it, possibly
in a prototypal version. This learning process can be rep-
resented as an incremental cycle, composed of four distinct
steps. The first is a modelling stage, where students are
called to design the secure system they are going to study
and implement. Then, the evaluation step focusses on the
system model and configuration: students analyse the sys-
tem behaviour and test how its performance responds to
variations of the characteristic parameters. The software im-
plementation stage, where learners build their prototypes, is
followed by the test and evaluation phase. The last step aims
to identify architectural optimizations and possibly more
suitable deployment solutions.

Different paths are practicable through the depicted stages,
each with its own strengths and motivations. For instance,
a possible learning path could start with the system mod-
elling phase and proceed towards through the model evalu-
ation, the prototype implementation and to test phase, and
then start a new cycle, in an spiral-shaped incremental pro-
cess. An alternative approach could instead move from the
implementation phase, and then cycle between consequent
software refining and testing sessions: this kind of learning
experience is more likely selected by students with a quite
high programming expertise and a sufficient knowledge of
the theoretical basis of the considered subject.

2.1 S-vLab: goals and architecture
In the context of Information Security, the learning process
can be effectively supported through an interactive virtual
laboratory where students can arrange and perform their ex-
periments by modelling, analysing, implementing and test-
ing a secure system. To this end, the virtual lab should
provide a graphical editor and a set of building blocks suit-
able for designing a simplified yet representative version of
a system or protocol. Thus, the available basic components
should include the parties involved in cryptographic proto-
cols as well as the security mechanisms and services needed
to recreate a wide variety of scenarios. Then, to test and
evaluate the effectiveness and the robustness of the consid-
ered solution from an operational point of view, students
should be able to simulate attacks. By playing the attacker
role students gain a greater insight into how to analyse sys-
tems for weaknesses, how to devise designs avoiding these
flaws, and how to deploy defenses. The data analysis tools
included within the virtual lab also support students in sys-
tem performance evaluation. Referring to the security case
study, tools for measuring the operation execution time or
for verifying that the yielded data satisfy some desired sta-
tistical properties are two possible strategic features. Fur-
thermore, learners can improve their programming skills by
directly implementing and testing their code.

Such features effectively support a learning-by-doing strat-
egy, since settling and performing experiments requires stu-
dents to play an active role in the learning experience. This
methodology also stresses the learners’ self-determination,
as it usually does not provide fixed and detailed instruc-
tions to perform the exercitations, but simply declares the
goal that students should achieve.



Figure 1: S-vLab Architecture

At the same time, a learning-by-example approach is sup-
ported via structured, guided paths, as well as wizards to
simplify the modelling step. Moreover, in order to support
both novices and advanced students, the laboratory should
include a feature to fill the gap from modelling to implemen-
tation, such as providing students with snapshots of sample
code to facilitate the prototype implementation through a
learning-by-example strategy. In fact this approach, by en-
lightening the transition from a graphical model to a sample
and partial code, helps novices in understanding the respon-
sibility of each code extract better than a tutorial. Yet ad-
vanced students could exploit the generated sample code as
a starting point to be refined, integrated, re-engineered and
structured in a more complex software architecture.

Of course, students should also be enabled to quickly ac-
cess informative resources, such as reference standards, Java
technical documentation, RSA standards, RFC documents,
Java Cryptography Extension API, etc: in fact, providing
such materials is strategic for supporting the learning-by-
exploring approach as well as the other learning styles.

The resulting architecture of S-vLab is shown in Figure 1.
The workbench includes an editor and a palette of domain-
specific components, like actors and operations. Palette
items are organized in groups, such as Actors, Cryptographic
primitives and Mathematical operations: in fact, S-vLab al-
lows students to perform experiments at various detail lev-
els, since it provides both the cryptographic primitives and
the mathematical operations needed to build them. The ed-
itor and the underlying simulator are based on the block

diagram abstraction: students can design the structure of
the considered system in terms of interconnected blocks, by
dragging and dropping the desired elements from the palette.
Then, they can simulate the system behaviour by executing
each item, being careful to observe possible precedence con-
straints due to the data flow among blocks and connections.

S-vLab includes a set of functions for evaluating the ran-
domness of a byte sequence and detecting collisions, allow-
ing students to perform interesting experiments within a se-
cure system. Moreover, during the simulation the virtual
lab tracks the execution time and the memory occupation
for each block of the system. Thus, after a few experiments,
students gather a set of data suitable for comparing several
possible configurations of the studied system.

In order to make the learning experience as effective as pos-
sible, it is crucial to provide students with a continuous and
immediate feedback on what is going on within the exercita-
tion. To this end, the virtual lab includes a help tool called
mentor, whose main purpose is to supply various message
typologies, ranging from purely informative details to warn-
ing and errors: in this case, if possible, it suggests how to
fix the occurred problem. In the context of Information Se-
curity, a typical error message provided by the mentor can
notify students trying to build a cryptographic key that the
requested size in bits is not available, due to the chosen al-
gorithm or to the Java cryptography restricted policies.

Browsing informative resources such as the cited standards
or technical documentation is another key issue for learners.



So, S-vLab provides a further supporting tool called the ex-
pert, whose goal is to allow navigation through the available
external resources.

Furthermore, the judge is intended to guide the student
through the possible learning tasks according to a declared
learning goal and to the student’s attested starting com-
petence and preferred learning style. Its responsibilities in-
clude the evaluation of the student’s performance within the
exercitations, providing feedback and updating his/her pro-
file.

Finally, in order to help students to become familiar with
the Java Security Platform, S-vLab can provide extracts of
sample code for each component in the palette. When a
system model is drawn, S-vLab can automatically generate
the corresponding sample Java code to be completed by the
student. This is why S-vLab is strictly integrated with an
IDE where students can freely modify and extend the basic
sample code and autonomously write new programs starting
from scratch.

2.2 Deployment
In order to address the above requirements, a plug-in based
architecture seemed to be an effective solution for designing
and implementing the virtual lab. Thus, the Eclipse plat-
form was a natural candidate: in fact, building S-vLab on
top of Eclipse simplified the creation of a close link between
the modelling editor and the Java IDE, as well as the vir-
tual laboratory implementation, given the wide availability
of projects, facilities and third-party plug-ins that helped in
developing several features. As a further benefit, Eclipse is
a well-known reality both in the academic and in the pro-
fessional scope, and often computer engineers start learning
how to deal with it during their first years at University.
So, students are supposed to be quite familiar with S-vLab
user interface, as it relies on the same abstractions used by
Eclipse: the major ones are views, editors and perspectives.
In Eclipse glossary, a perspective defines the visual arrange-
ment of the workbench parts, which can be views or editors.
One of the main differences between these is the permitted
number of active instances at the same time: there is gener-
ally only one instance of a given view per workbench page,
but there can be several instances of the same type of edi-
tor. Furthermore, editors can be associated with a file name
or an extension and can be in a ”dirty state”, meaning that
their contents are unsaved and will be lost if the editor is
closed without saving, while modifications made in a view
are saved immediately. Finally, editors can appear in only
one region of the page, whereas views can be moved to any
part of the page and minimized as fast views.

S-vLab is distributed in two releases: plug-in and stand-
alone. The former should be installed within an Eclipse
platform. However, since it is widely acknowledged that
the most desirable characteristic in an educational tool is
simplicity, for a complex tool could discourage students, we
provided also a stand-alone release of S-vLab [15, 31]. This
second version is implemented as a Rich Client Application,
a rich client built on top of the Eclipse Rich Client Plat-
form [23]. Such approach allowed us to leverage the Eclipse
architecture to design a flexible and extensible application
reusing numerous existing functionality and patterns. The

availability of two alternative releases is a good compromise
between the tool simplicity and powerful potentialities: in
fact, the RCP version simplifies the installation and man-
agement issues for users who prefer to avoid updating their
Eclipse instance, and at the same time preserves most of
the virtual lab characteristic features. On the other hand,
the plug-in release is more appealing for advanced students
who prefer to experiment more complex tasks and, possi-
bly, to extend the virtual lab functionalities by relying on
additional Eclipse features.

2.3 S-vLab and Eclipse: perspectives
As previously discussed, S-vLab, in both its versions, re-
lies on a graphical editor and on a set of related views. It
also provides several perspectives, each suitable for a spe-
cific stage of the learning process. For instance, the Exerci-
tation perspective is indicated for modelling and simulating
the system, in order to perform some first, simple evaluation
on its behavior. Its default configuration, shown in Figure
2, includes the graphical editor along with the mentor, the
navigator and a tabbed property view.

The navigator view, like in Eclipse, is used to display and
navigate through the workspace. In fact, students can orga-
nize their exercitations in projects, and the navigator allows
users to visualize and modify their structure, as well as to se-
lect a file and open it in a proper editor. Figure 2 represents
a typical schema where Alice and Bob exchange ciphered
messages through a non-secure channel where an eavesdrop-
per (Eve) could be listening. The graphical model includes
both the involved actors and the symbols representing cryp-
tographic operations, and each component has one or more
pins for inputs and/or outputs that can be used to connect
blocks. Each item in the model has a specific function that,
in order to be completed, must be properly initialized and
then executed.

To this end, the tabbed property view assumes a strategic
importance.

2.3.1 The Input/Output tab
The Input/Output tab helps users in understanding the re-
lation occurring between the input and the output of the
considered component by means of two interactive tables.
The first is dedicated to the input and output data man-
aged by the considered block. In fact, each pin is described
through several information, like its name, its direction (in-
put or output), the type of the associated data, its value
codified in hexadecimal format, its size in terms of number
of bytes. The second table presents a list of the component
parameters: by varying them, users can specify in detail
how the inputs will be transformed into outputs. In fact,
each component represents a general cryptographic opera-
tion that can be specified through a set of parameters. As
an example, the Cipher in Figure 2 symbolizes the operation
of encrypting or decrypting a message: the specific function
needed in a given case study can be obtained by setting
the Cipher characteristic parameters. Among these, there
are the operating direction (encrypting or decrypting mes-
sages), the algorithm we want to be used, the operational
mode and finally the padding scheme to be added at the
end of the input. The parameter values, in most cases, can
vary in a finite range of feasible options, so users are usu-



Figure 2: The Exercitation Perspective within S-vLab

ally requested to choose within a set provided by the virtual
laboratory. S-vLab, in fact, relies on lists to show the feasi-
ble values for parameters when they are part of a finite and
small set.

At this stage, S-vLab helps users to orient themselves in the
wide choice of Java classes, methods and setting parame-
ters. In fact, the selection from the palette, the configura-
tion and the execution of a graphical component represent-
ing an operation correspond to instantiate and initialize an
object of the proper Java class and then invoke one or more
of its methods, in order to perform the desired task. The
availability of a list containing the component parameters
helps students to map conceptual decisions to the practical
ways for defining them. Moreover, the Java Cryptography
Architecture is based on providers for the implementation
and possibly the extension of the classes exposed through
the Java Cryptography Extension. S-vLab allows students,
when they are configuring a specific component, to request
the implementation of a desired operation supplied by a spe-
cific cryptographic provider. The desired option can be se-
lected through a list containing all the available providers in
the local machine.

Finally, both the mentor and the simulator help students
to understand which parameters are mandatory, which are

optional (and will not be used), which configurations are fea-
sible and which contain errors that make the operation not
executable. In fact, the simulator prevents the execution of
not fully configured components, while the mentor provide
possible feedback on inconsistent, incomplete or redundant
configurations.

2.3.2 The Code tab
While designing, configuring and executing a system model,
the Input/Output tab is precious to provide students with a
broad view of the operation-specific options. However, the
strongest bind between the modelling and the implementa-
tion step is represented by the Code tab (Figure 3).

The Code tab is part of the property view, and can be dis-
played as an alternative to the Input/Output tab. Its goal
is to provide students with a sample code corresponding to
the selected block in the graphical editor. Such an extract
is strictly dependent from the current component configura-
tion: in fact, it is gradually built as the corresponding block
is being configured.

The block-related code samples are a very useful tool both
for novices and advanced students. In fact, they help stu-
dents in orientating themselves in the widespread set of Java
classes and methods for cryptographic operations. Each



Figure 3: S-vLab Code tab

code sample presents one possible Java class suitable for per-
forming the desired task, symbolized by the corresponding
graphical block. It also shows how to instantiate the desired
objects, helping students in learning the factory pattern typ-
ical of the Java Cryptography Architecture, and how to ini-
tialize them. Furthermore, by observing the code extract,
students learn which methods can be invoked to perform
several operations, and how to specify the method argu-
ments. They can also see the data types the methods deal
with, and so understand where additional data elaborations
or conversions are required in order to meet the proposed
interface. Thus, the combination of the two Input/Output
and Code tabs provides a complete view of the main classes,
along with their methods and feasible parameters, that are
part of the JCE.

Once that a model has been built, or that several blocks
have been interconnected, it is possible to switch from a
component-based code view to a more complex didactic code
extract. In fact, S-vLab can provide an automatically gen-
erated version of sample code corresponding to a whole dia-
gram or sub-diagram drawn in the graphical editor. Such a
complete code is shown in the Code tab when the considered
part of the schema is selected through a selection tool. It is
also written on a Java source file, and stored into a dedicated
folder within the project. The file extension, which is usu-
ally associated with the default Java editor, allows students
who use the S-vLab plug-in version to open it within the
Java editor of the Eclipse IDE just double clicking on the
file name given in the Navigator view. There, students can
freely modify, complete and test the starting sample code,
either leveraging Eclipse tips for resolving problems or by
doing it on their own. In fact, since the provided samples
have only an indicative function, these yield a partial code
that, in order to be compiled and executed without errors,
should be adapted and completed. One of the main issues
to be considered is, for instance, the exception handling. In
this context, the mentor becomes a strategic tool, because,
during the simulation of the designed system the involved
operations are actually executed, not just simulated. This
makes the mentor able to trace and report about the ex-
ceptions that possibly occur at this stage: in particular, it
notifies the user of the exception name and the associated
message. Students can then infer the cause of the exception

by performing several experiments with different configu-
rations in terms of parameters and input data. This also
helps them in figuring out where the exception handling
block should be inserted within the code sample, as well
as what type of errors do they need to intercept and how
should such situations be treated in order to avoid errors in
the final program.

Then, after modifying or writing a Java program, students
can test it through the Eclipse Java IDE and its facilities,
and refine it according to several software engineering con-
siderations, in order to re-organize the code, optimize it, and
build distributed systems.

2.4 Analyzing performance
When dealing with security issues, algorithm performance is
crucial. For this reason, S-vLab provides students with sup-
port tools for analysing the performance of the considered
system within an exercitation. Execution time is a common
index often used to estimate it. However, since algorithms
are platform-independent and can be implemented in any
programming language, there are significant drawbacks to
using an empirical approach to compare the performance of
a given set of algorithms, as well as of different implemen-
tations of the same algorithm. Especially within the Java
platform, several factors concur in making execution time
measurement a difficult task: some of them are the garbage
collector, the just-in-time compiler and the HotSpot opti-
mizer. In the context of security-related applications, the
JCA and JCE implementation based on the factory pattern
is a further aspect.

S-vLab faces the depicted issues by providing students with
various tools for analysing performance, described in detail
in the following section. The considered instruments differ in
various aspects, and sometimes provide complementary in-
formation. Such tools consists of well-known, external soft-
ware: in fact, since our aim is to teach students how to cope
with the performance analysis, relying on existing, standard
and reusable instruments provides a more formative expe-
rience rather than leaning on ad-hoc features implemented
within the virtual laboratory.

2.4.1 Tool comparison
In order to conduct an accurate performance analysis, we
considered three possible solutions for integration within S-
vLab. All the examined tools aim to measure execution
time, as well as other indicators, and to provide users a
certain control over the possible interferences. The first,
JConsole, is a graphical tool for monitoring a Java virtual
machine, and is shipped with the JDK since J2SE 5.0. The
second option is represented by direct calls of some of the
APIs exposed by the Java Virtual Machine Tool Interface
(JVMTI), allowing users both to inspect the state and to
control the execution of applications running in the Java
virtual machine. Finally, we tried the Test & Performance
Tools Platform (TPTP), an Eclipse project for building test
and performance tools on top of an open platform which of-
fers basic services for monitoring, profiling and debugging.
Table 1 summarizes the comparison between the cited solu-
tions on the basis of the main features provided and usabil-
ity.



Figure 4: The CPU usage while benchmarking the
SHA-1 algorithm (a) and RSA decryption (b)

JConsole is the simplest tool to use, as it offers just a ba-
sic set of features, integrates the commands for configuring
the Java virtual machine optimizations and renders through
diagrams the gathered data. Furthermore, being thread-
oriented, it provides a clear and quite precise gauge of sev-
eral parameters.

As benchmarks to test and compare the provided tools, we
considered the execution of the SHA-1 algorithm for hashing
inputs of different length and the decryption of a ciphered
text with RSA, tracking the performance obtained with and
without the optimization based on the Chinese Remainder
Theorem. In the former example, our aim was to leverage
the provided analysing tools for demonstrating the correla-
tion between the input size, with respect to the SHA-1 op-
eration block size, and the algorithm execution time. How-
ever, monitoring the same test in terms of CPU time was
a difficult task in all the three proposed solutions. In fact,
the resolution at which the time is updated within the Java
virtual machine is not specified, and the methods providing
timing information declare nanosecond precision, but do not
grant a nanosecond accuracy. Figure 4a shows the CPU us-
age percentage tracked by JConsole while benchmarking the
SHA-1 algorithm in four test sessions, each using a double-
sized input message with respect to the previous. After an
initial noise, the diagram indicates that the CPU usage dou-
bles in each test. The second benchmark compares the RSA
decryption based on the Chinese Remainder Theorem and
the standard operation: Figure 4b remarks that the consid-
ered optimization reduces by four times the CPU usage. Yet,
in both cases the required CPU time does not present the
same variation rate in neither the data tacked by JConsole,
by JVMTI or by TPTP. That confirms the importance of
training students to use several tools and methods instead
of relying on a unique option.

TPTP is the most complex and complete tool among the
three we considered: it includes advanced tools for studying
memory occupation and load balancing, is primarily aimed
at high-level analysis mostly oriented towards software mod-
ules rather than threads and methods, and provides struc-
tured reports by leveraging BIRT (Business Intelligence and
Reporting Tools), the most used reporting system for Eclipse
[25]. So, TPTP seems more indicated as tool for monitoring
and profiling software prototypes instead of algorithms: this
makes it suitable for supporting students in the learning step
aimed at refining the software architecture and deployment
of their programs.

2.4.2 Evaluating behaviour
Studying performance also involves the analysis of the envi-
sioned system robustness and behaviour. To this end, since
the virtual lab allows students to simulate the modelled sys-
tem by executing each component, it is possible to inte-
grate within S-vLab several tools for analysing data gathered
through various experimentations. This allows students to
study, filter, aggregate and elaborate data in order to infer
some information about the system robustness against var-
ious attacks. Such an analysis is strictly connected to the
specific system, to the conditions of test and to the type of
simulated attack: so, it is difficult to provide tools suitable
for every kind of possible test and investigation. To over-
come this issue, we integrated in S-vLab a data gathering
system based on a database, and then let students free to
elaborate and study the data stored during the work ses-
sions using BIRT. In fact, BIRT offers basic functions for
creating reports to visualize data in tables and diagrams.
Furthermore, it includes a set of features for simple data
elaborations. Being based on the plug-in mechanism, the
set of provided features can easily be extended: by now,
S-vLab includes a simple BIRT extension for finding colli-
sions, but students can yield further extensions addressing
different issues and then share their contributes in order to
extend the virtual laboratory.

For instance, the collision detection tool can be used to prove
the statistical properties of SHA-1 in random number gen-
eration. In fact, students can iteratively hash different in-
put messages and sequence the obtained digests in order to
build a longer bit string. Then, they can analyse the gath-
ered data for finding collisions among bit blocks. Figure 5
shows one of the diagrams yielded by the collision detection
tool: it traces the cumulative distribution for the number
of four-bit chunks, called nibbles, required to find a colli-

Figure 5: Collision detection



Table 1: Tools used for analysing performance
Tool Main perfor-

mance indexes
Run-time control Output data pre-

sentation
Usability

JConsole CPU usage; CPU
time per thread;
memory manage-
ment

Perform garbage
collection on
demand; turn
off or config-
ure HotSpot
optimization

Real-time data
summarized
in tables and
diagrams

Very simple,
intuitive, user-
friendly

JVMTI Thread manage-
ment; memory
management

Perform garbage
collection on de-
mand

Raw data re-
turned by meth-
ods

Easy to use for
users with some
programming ex-
pertise

TPTP Thread manage-
ment; memory
management

Perform garbage
collection on de-
mand

Real-time data
summarized
in tables and
diagrams; gath-
ered data can
be exported to
BIRT for further
elaborations

Complex to use;
previous knowl-
edge of Eclipse
projects helps
in integrating
it with other
plug-ins

sion in a sequence of 20000 bits generated through SHA-1.
In this proof, students verify that the probability to find a
collision peaks after considering 11 nibbles. Furthermore, 5
nibbles suffices to have a probability greater than 0.5. Since
these result perfectly match the expected values, calculated
through the theoretical formulas presented during the face-
to-face lectures, such an experiment helps students to verify
that the SHA-1 algorithm can be used as a random number
generator.

3. STUDENTS’ RESPONSE
S-vLab, in its prototypal version, has been tested within
the 2008 edition of the Information Security course held at
the School of Computer Engineering of the University of
Bologna. About 150 students attending the fourth year of a
five-year curriculum took the course.

The course was structured according to a blended-learning
approach: during face-to-face lessons, students were intro-
duced to algorithms and protocols for assuring information
integrity, confidentiality and authenticity, and learnt the
basic principles for designing secure systems. Then, three
exercitations have been scheduled to allow students to di-
rectly verify and perform experiments on the studied con-
cepts. Each exercitation was introduced through a face-to-
face work session in laboratory, where students could use
S-vLab to discuss and perform the proposed tasks in real
time. In order to allow students who did not attend the
lectures to perform the exercises on their own, we published
on the course web site the given assignments as well as a
user guide and tips on how the virtual lab should be used.
At the end of the exercitations, learners were requested to
provide a written report on their work. Although both the
attendance in laboratory and the autonomous accomplish-
ment of the given assignments were voluntary, we noticed a
significant participation.

At the end of the course, students who provided evidence
of using S-vLab were asked to fill a survey to express their

opinions about the virtual lab and its utilization. The survey
was anonymous, and was given to students immediately after
they had completed the final exam, in order to gather not
conditioned responses. At the present time, when only one
examination session has been carried out, we collected 52
filled surveys, which is about the 87% of students who took
the exam in the first session, and about one third of the
estimated total course attendees.

The survey includes both closed and open-ended questions:
the first allow students to judge the relevance of the main
features offered by the virtual lab through a five value scale,
and to evaluate the envisioned strategy for using S-vLab
within the next course edition; the second ask students to
detail their opinions, provide feedback and suggestions.

Such results indicate that the virtual lab can effectively sup-
port learning. One of the most appreciated features is the
chance to verify the studied concepts through simulation.
The mentor, that provides feedback and notifies possible er-
rors, is the second preferred functionality: 90% of students
signaled the possibility to perform experiments at different
detail level as one of S-vLab’s main strengths. All rated as
positive the blended-learning experience: in particular, 14%
of students said the exercitations with the virtual lab should
be kept optional, while 37% expressed the idea that should
be mandatory as part of the course standard lectures; the
remaining 49% would make the exercises compulsory, but
recognized as extra activities.

4. RELATED WORKS
The design and adoption within a course of an educational
tool for supporting learning and practicing on secure systems
in Java is related to several research issues.

The first concerns the most effective way to devise and man-
age such an educational tool. There, a longstanding debate
compares hands-on, remote and virtual laboratories [11].
Hands-on and remote laboratories involve students, provide



them with real data and realistic situations to face. Exper-
imentations on such systems reported very positive results
both in terms of students’ satisfaction and perceived learning
[18, 12, 19, 29]. One further benefit is that students acquire
proficiency in dealing with open source tools actually used in
real contexts [8]. However, hands-on and remote approaches
require many resources in terms of equipment, ongoing mon-
itoring and handling possible contingencies. Thus, many au-
thors preferred to design modelling frameworks or simulators
suitable for education. S-vLab, according to this approach,
is implemented as a virtual laboratory. Yet, in order to help
students to acquire skills useful for their professional future,
it supports practice on open source, well known and widely
adopted tools.

In the context of Information Security, several educational
tools have been developed to foster students’ ability to model
and simulate secure systems and protocols. A few examples
of such tools consist of statically-defined simulations: this
is the case of some Java applets that act as an autonomous
animation of a protocol or mechanism or service for security,
but does not allow users to configure the depicted scenario
nor to interact with the animation [5]. Other systems, that
can be traced to the active learning theory, enable the learn-
ers to actively interact with the system in order to modify
the desired experiment, although the possible investigations
are limited to predefined, guided paths [32, 9]. S-vLab differs
from these approaches as it is strongly based on a construc-
tivist teaching method. In fact, it provides an interactive en-
vironment where learners can freely settle and modify their
experiments, by starting from scratch as well as by remod-
elling given exercitation schemes.

The task of facilitating the switch from the modelling to the
implementation step has been explored in the past. This
issue has typically been faced through the adoption of Com-
puter Assisted Systems Engineering tools [24]. In our case
study, several works focus on guidelines [3] and CASEs for
modelling and testing secure systems and protocols [20, 4].
Such contributes suggest the adoption of UMLsec, an UML
extension for security, for the modelling step, and the CASEs
rely on automatic theorem provers for assessing the security
of the designed system. These strategies, although efficient
and effective in a professional context, seem not to be the
best choices in an educational scope, since the evaluation of
the system robustness is statically determined, and students
can not leverage the simulation benefits such as the detailed
analysis of data provided in each step. Furthermore, UML
could disorient novices with a low programming expertise.
This is the main reason for S-vLab to rely on a very intuitive
modelling language, easy to use tool despite of the students’
knowledge of UML.

Finally, several systems have been developed to support stu-
dents’ practicing with the Java language. Some of them help
searching the increasingly large Java API libraries [30], pro-
vide code samples illustrating the use of Java APIs [16, 27],
and support learners by allowing knowledge sharing among
peers [31]; others can automatically collect and assess Java
program fragments [7, 17] and offer a pedagogical support
tool to be added to commonly used software development
frameworks [13]. All of these can effectively facilitate learn-
ing and gaining programming expertise both for novices and

advanced students. However, such tools are focussed on the
implementation of Java programs and neglect system mod-
elling and evaluation. S-vLab aims to integrate these di-
rections into a unique comprehensive tool, so as support
students through the whole learning process.

5. CONCLUSION AND FUTURE WORK
Nowadays defending information security is a strategic issue:
thus, training computer engineers to build and deal with
secure systems is crucial. To this end, modern education
can rely on tools such as virtual labs to help students to gain
greater insight into subjects, as well as to acquire practical
and long-lasting proficiency. According to this approach, we
designed and implemented S-vLab, a virtual laboratory for
fostering teaching and learning of security-related aspects,
with a special attention towards the Java Security Platform.
Since S-vLab is built on top of a general framework, it can
be easily suited to different teaching contexts.

S-vLab is suitable both for novices and advanced students,
and can effectively support several learning styles. It pro-
vides learners with numerous features for modelling and sim-
ulating a system, for evaluating its performance and im-
plementing a software prototype, by supporting students
through the whole learning process. In order to fill the
gap between modelling and implementation, S-vLab pro-
vides students with Java code samples related to the studied
system, yields continuous feedback notifying possible Java
exceptions, allows navigation through technical documenta-
tion and reference standards, and permits practice on a Java
Integrated Development Environment.

The experimentation of S-vLab within a course on Informa-
tion Security was highly appreciated by the students. In
fact, the great majority of attendees performed the optional
exercitations within the virtual lab. Furthermore, the results
of an anonymous survey issued at the end of the course indi-
cate that students believe the virtual lab can effectively sup-
port learning. Students also suggested some improvements
for the future versions: the most desired features include
additional tools for analysing simulation results, as well as
minor software refinements for improving the virtual lab us-
ability.

Finally, an interesting research issue concerns the users’ ac-
tivities evaluation, which is strictly related to the presenta-
tion of customized feedback and the suggestion of new tasks
based on users’ profiles, formative objectives and activity
history. Thus, our future efforts will address both improv-
ing S-vLab adding new advanced features, and dealing with
such an open and challenging issue.
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