

Learning by doing: vLab, a virtual laboratory

for Computer Engineering education

Roberto Laschi
Dip. Elettronica Informatica e

Sistemistica
Università di Bologna, Italy

rlaschi@deis.unibo.it

Anna Riccioni
Dip. Elettronica Informatica e

Sistemistica
Università di Bologna, Italy

ariccioni@deis.unibo.it

Patrik Suzzi
Dip. Elettronica Informatica e

Sistemistica
Università di Bologna, Italy

patrik.suzzi@studio.unibo.it

Abstract

In this paper we present the design and implementation of
an advanced virtual lab aimed at supporting teaching and
learning in Computer Engineering courses. We first
outline the requirements an educational tool must meet to
represent an effective and comprehensive support for
students through the whole process that leads them to
achieve conceptual understanding and technical skills.
The described virtual lab, based on a constructivist
approach and suitable for use in blended-learning
contexts, responds to a general model that allows its
application in different educational domains. In the
second part of the paper we describe the implementation
of vLab 2.0, a prototype built following the proposed
directions and the results of a prior experimentation
within the Information Security Technologies course hold
at the Engineering Faculty of the University of Bologna.
vLab 2.0 relies on Eclipse technology in order to
guarantee openness and extensibility, and to access a set
of advanced features which concur in providing support
for building a comprehensive and sophisticated tool for
teaching and learning.

1 Introduction

Information and Communication Technologies
are constantly advancing and becoming more pervasive.
Nowadays, one of the most challenging issues is
represented by the individuation of new, complex and
effective ICTs application. Education is a sector which
can greatly benefit from ICTs improvements and proper
adoption.

Our research project aims at defining and
implementing an integrated tool to support teaching and
learning in Computer Engineering courses. The ideal
framework in which this instrument can be effectively
used is blended learning, here intended as a combination
of two different approaches: synchronous traditional

face-to-face lessons and asynchronous, individual
experimentations in a virtual laboratory.

One of the main skills a computer engineer must
achieve during his studies is the ability to design a well
dimensioned software system, able to satisfy the defined
requirements in a specific domain. Once that the
specifications and the domain have been settled, the
engineer starts an incremental process which cycles
through four main steps:

• analyze the problem
• sketch a solution
• verify how the model fits the requirements
• design, implement and test a prototype.

What we want to do is to define the requirements
an educational tool must meet in order to represent an
effective and comprehensive support for students
through the whole process that leads them to achieve
conceptual understanding and technical skills.

Modeling frameworks and simulators have a
strategic importance in helping students to gain greater
insight into subjects [1, 2, 3]. Many authors have pointed
out that the use of simulation tools often reinforces
learning, offering a proper support for verifying theory,
and contributes to improve students’ performances in
various disciplines [2, 3]. Especially in Computer
Engineering, modeling skills are traditionally taught
relying on CAD tools [3, 4].

To achieve technical proficiency and to improve
practical programming skills students often benefit from
the employ of advanced IDEs. They can acquire better
understanding of subjects by quickly designing,
simulating and then testing and extending systems [2].

Our purpose has been to integrate these different
functionalities in one comprehensive educational tool. In
our perspective, this tool should be projected towards
educational and not industrial objectives. This makes it
suitable to focus on relevant didactic aspects and to
suggest an educational, partial code to students as a

starting point for software development, so that they can
complete, modify and reuse it in different and more
complex contexts. Following this direction, our virtual
lab helps users to:

• understand and solve problems related to
key theoretical concepts

• solve problems through the design and
construction of new artifacts or processes

• gain and improve the technical skills their
future professional roles will require.

One of the main facets of the project is its
suitability to be used in different formative domains.
This feature is achieved through the adoption of one of
the best-known abstraction in computer engineering
field: the block diagram [5, 6].

2 Requirements

In 2005 we developed a first prototype, vLab 1.0,
taking the course on Information Security Technologies
hold at the Engineering Faculty of the University of
Bologna as our reference case study.

 vLab 1.0 GUI was composed by three
synchronized areas: the main one shows a graphical
representation of the system to be analyzed and allows
students to configure and run experiments. The second
area is dedicated to prompt feedback reporting: for each
component part of the system whose execution
successfully ended, notes about data dimension and
execution time are presented. On the other hand, for
those components that could not complete their
execution, usually because of a wrong parameters
setting, errors are shown in red. Finally, a third view
displays an educational sample code related to the
ongoing exercise. A two-year experimentation conducted
by making vLab 1.0 available to around 200 students
confirmed the effectiveness of the chosen approach and
served as a successful acceptance test, but also pointed
out vLab 1.0 main limit: its lacking support to students’
autonomous experimentation, based on self-constructed
experiments. In line with these results, we focused on
constructivist theory, which assumes that students should
be provided with an open and extensible environment:
they have to be actors, other than active, in their own
learning process [7]. For this purpose it is fundamental to
provide students with various instruments aimed at
covering the different functionalities which can have a
central role in the learning process [7, 8, 9]. Figure 1
shows how to reap these broad goals, outlining the major
actors and features involved.

The sketch represents the workbench dedicated to
the graphical modeling of the current experiment as the
central aspect within the virtual lab. The workbench
includes a library of primitive components, that students
can use to construct their own experiments. It is also
possible for users to load a predefined exercitation,
chosen among the available sets, and configure and run
it. According to this approach, tutors and teachers are

charged with the responsibility of creating a starting
collection of experiments that learners can set and run;
but then learners too can cover the instructor’s role and
modify or build their own trials from scratch. Thus
saving and restoring features in a standard format, so that
new built experiments can be shared between users,
assume a primary importance within the virtual lab.

Figure 1. Actors and tools role in the virtual lab
environment.

The workbench should also let users switch
between different detail levels, in order to analyze
different sides of the same topic. This can provide a
more effective, customizable and comprehensive
didactic experience and is central to gain a major
compliance with different learning styles. Especially for
computer science students it is important to have the
ability to access both the systemic and the algorithmic
view within a same solution, while referring to our case
study such a facility enables to switch from a security
service perspective to a mechanism-oriented one.

Another issue within the virtual lab is represented
by help instruments. In fact, activities can be introduced
and proposed by an intelligent tutoring system, the
“judge” in figure 1, which evaluates users’ performances
and suggests new tasks according to students
achievements and objectives. Furthermore, each step
conducted within an experiment can be followed by a
“mentor” aimed at pointing out possible errors and
suggesting how to correct them. Users’ understanding
and reflection can also be improved by allowing the
access to external additional resources, such as technical
documentation or reference standards.

The virtual lab also includes gathering and
analysis tools whose function is to help users in
collecting experimental data and interpreting them.
Finally, users can switch at any time to a development
environment integrated within the lab to complete,

modify, debug, test and run a program, starting from a
partial educational code automatically produced during
an exercitation.

With these features, the virtual lab can really
support the constructivist approach and learners’ active
and primary role in their own educational experience.
Building and sharing new knowledge can, in fact, pass
through:

• the construction of new experiments
• the modification of predefined experiments
• non trivial experiments settings
• the interpretation of gathered experimental

data relying on the featured analysis tools
• the discovery or application of new analysis

methods
• accessing multiple external information

sources.
Furthermore, users can extend the virtual lab in

order to comply with their changing needs and share
their new knowledge with other users, for instance
adding their new built schemas to shared libraries, or
implementing special analysis tools for specific needs.

3 Eclipse technology

The implementation of a prototype adherent to
the exposed constructivist approach has requested the
design of an appropriate architecture and the adoption of
a proper technology suitable for its realization.

The architecture of an effective educational tool
must be open and extensible. Eclipse plug-in architecture
and extension point mechanism perfectly address this
major issue [10]. Relying on Eclipse technology is
crucial also in order to access a set of basic and
advanced features essential for providing a complete and
sophisticated tool for support teaching and learning in
higher education. Eclipse technology simplifies the
creation and coordination of synchronized multiple
editors, views and perspectives and makes
straightforward to integrate a fully-featured IDE
customizable for different programming languages.
Furthermore, within Eclipse Community several projects
are being developed as general purpose plug-in which
can effectively be integrated within our educational tool.

Table 1 outlines the mapping between the
requirements previously discussed and the proper
technical solutions selected within Eclipse technologies.

Requirement Solution
Judge BPEL
Student workbench GEF-based editor
Mentor Ganymede
Data analysis tools BIRT and special purpose

plug-ins
Development environment JDT

Table 1. Mapping between requirements and technical

solutions.

Figure 2 outlines the resulting vLab 2.0
architecture, which is represented by a stack where each
tier depends upon, uses and integrates the level below.

Figure 2. The virtual lab architecture based on Eclipse

technology.

The OSGi runtime, responsible for the
coordination of multiple and different software
components, is the foundation of the framework [11].
The Eclipse Rich Client Platform relies on OSGi
services to provide a specific implementation of the
standard, replacing the generic OSGi bundles with
Eclipse plug-ins [12]. It also offers a new set of facilities,
collected in the org.eclipse.ui package, essential for the
Eclipse Development Framework and tailored to support
external contributes through the extension point
mechanism. The vLab feature leverages different
resources to provide its added functionalities: among
them, the Eclipse RCP, the Graphical Editing
Framework [13] and several projects, like BIRT [14], or
third-parties plug-ins such as Ganymede [15], built to
integrate Log4J within Eclipse applications. Accordingly
to Eclipse technology main characteristics, vLab is
supplied with a set of extension points in order to be
open to future expansions.

3.1 The black-box model

The exercitations within the virtual lab are based
on a logical model that reflects the block diagram
abstraction.

The block diagram key elements are blocks and
connections. The blocks have an associated function or
system of functions, and can have inputs, outputs and
parameters which are graphically represented by nodes.
The connections are oriented and must respect some
basic rules related to data flow to be considered
syntactically valid: each input or parameter node can
only be a target for at most one connection, while output
nodes can propagate their value towards multiple
destinations being the source of several connections.

To cope with increasing schema complexity, the
box abstraction has been added. Box represents a

boundary which can isolate a sub-graph providing it with
an external interface through pins. Box pins are called
“adapters” because of their double function: other than
performing data flow, they can allow users to
accomplish the possibly required data type conversions.
Boxes can also be obscured to hide their inner structure:
thus, they represent the needed support for implementing
the hierarchical design approach and for switching
between different detail levels within the same schema.
Finally, boxes can be used to introduce recursion and
iteration.

Since blocks can execute, and so change their
state, it’s necessary to define a color code to discriminate
between different states. Orange blocks are missing input
data, while yellow blocks are fully configured and ready
to be executed. A similar semantic occurs within nodes,
too: a node whose associated value is null is colored in
red, and becomes green when the handled data assumes a
defined value.

The following figure illustrates the depicted
model.

Figure 3. The underlying abstract model.

3.2 Plug-ins

The primary way users have to interact with the
virtual lab is through a graphical representation of the
exercitation based on the depicted logical model. For this
reason, the GUI is composed by the workbench centered
on a GEF-based editor, and by several views. Each view
is aimed at a specific task, and synchronized with the
underlying model.

The editor includes a palette that displays the
available components and allows vLab users to build
their schemas by mean of drag and drop operations.
Users can also load a predefined exercitation and then
modify it. The Eclipse outline view provides an
alternative tree representation of the schema elements.

Once that the schema has been completed, users
can switch from the modeling phase to the simulation of
the built system, setting and then executing all of the
components. The Eclipse property view supports users in
configuring the required parameters, thanks to a business
logic which allows to assign a value only to
disconnected input or parameter nodes: in fact, a
connection between two nodes represents a channel that
propagates the source data value to the target.

When simulating a system behavior, it is possible
to trace and record a series of characteristic values which
can be used to perform tests and evaluations, other than
to refine system dimensioning. Engineers usually base
their efficiency evaluations on time and data dimension:
for this reason the virtual lab can trace, for each block,
the associated function execution time and input and
output data dimensions. Once that these information
have been saved, they can be displayed within a BIRT
report: BIRT plug-in, which can be easily integrated
with the virtual lab, allows users to represent gathered
data according to various layout and to complete them
with aggregated and derived information. As a
consequence of the mechanism of extension points, the
virtual lab can also be extended with other special
purpose plug-ins, when tracing time and data dimension
is not enough.

After modeling and simulation support, it is
important to provide the third requested feature:
automatic educational code generation. To achieve this
purpose we implemented an extension of Eclipse basic
view, aimed at integrating the outline of the graphical
schema with the representation in form of partial code of
each schema element. Saving the generated content as a
file with the appropriate extension enables users to
switch to the proper development perspective.

Another key feature is represented by the online
interaction support, which is offered through various
services: the first one is the “judge” plug-in, currently in
a planning phase, which may rely on the BPEL project
[16, 17]. A central role is also covered by the prompt
feedback reporting view, based on Ganymede plug-in
and aimed at immediately notify users with errors or
significant info related to the current activity. In order to
simplify the construction and test of new schemas,
Ganymede displays “info”-tagged messages to give
positive or neutral feedback, “warn” messages to point
out incomplete configurations or not allowed operations,
and “error” message to report exceptions obtained during
run-time simulation. The third component involved in
offering a complete interaction support is a
comprehensive help online documentation, related both
to the virtual lab usage and to the components available
in the palette. Finally, it is important to provide users
with a documentation perspective, that allows students to
consult additional and external resources using a browser
view and a suggested and extensible link list.

3.3 Screenshots
According to the requirements previously

outlined and to the correspondent technical solutions
individuated in the Eclipse technology framework, we
integrated our research with the development of vLab
2.0, a prototype of advanced virtual lab.

Figure 4 shows a very simple example of how the
virtual lab works. To make the screenshot more readable,
it has been focused on only three views: the GEF-based
editor with its palette, the code view and the XML view.
These views usually appear in the exercitation
perspective together with other facilities.

Figure 4. vLab 2.0 screenshot (exercitation
perspective): editor, code view, XML view.

The schema represented in the editor is composed
of four primitive components and a box with two
adapters, which could be obscured to hide its content.
The editor palette is organized in different categories
related to libraries which can pertain to various domains;
a special category can be reserved for the student’s self-
constructed new components.

Accordingly to the Model-View-Controller
pattern, the various views within the virtual lab all rely
and operate on the same underlying model in order to
keep themselves synchronized. During a work session
within vLab, the shared model structure or the data it
holds change following users’ actions: the system must
then propagate the suitable notifications to the interested
recipients, in order to make them able to properly
respond to the modifications occurred. The common
model can be represented through an abstract tree that,
when building the XML description of a graphical
schema, is translated into a corresponding Document
Object Model.

Figure 5 focuses on a different combination of
views, still referring to the exercitation perspective: the
right part of the screenshot shows the “mentor”,
implemented by a log view based on Ganymede plug-in.
The log view contains messages tagged as “info”,

“warn” and “error”, each one represented in a different
text color, respectively green, orange and red. These
messages have been interactively produced during the
modeling and the simulation phases, in consequence of
specific actions performed by the user.

Figure 5. vLab 2.0 screenshot (exercitation

perspective): editor, XML view, log view.

vLab 2.0 offers also other perspectives, each one
providing different features through various plug-ins.
For example, a BIRT report can be used to display the
data collected during simulations. Furthermore, the
virtual lab will soon integrate a special purpose plug-in
aimed at performing FIPS-140-2 tests to evaluate bits
casuality and another one focused on frequency
distributions analysis.

3.4 Delivery

vLab 2.0 will be extensively tested within the
2008 edition of the course on Information Security.

Students will be able to access vLab 2.0 through
AlmaChannel, the University of Bologna e-learning
platform [18, 19]. Different distributions will be
available for download: a feature-based one, for those
users who already have Eclipse platform installed on
their computers, and a Rich Client Platform version,
suitable for who prefers to deal with a ready-to-run
product [12]. The RCP will probably integrate
SourceForge Dr.Java plug-in in order to simulate a
simplified Java Development Environment [20]. The
availability of different distributions, one of which
simpler to use, is desirable in the experimental context:
the course on Information Security Technologies has a
mixed target composed of students with various starting
informatic competences.

4 Conclusions and future work

In Computer Engineering education a central
issue is to make students achieve strong design and
programming skills. Providing students with advanced
tools aimed at support them during modeling, testing,
evaluation and implementation of software systems can

help reaching this objective. Such a tool, to be effective,
must be complete, highly customizable and offer an
integrated support for the various step the learning
process goes through. Our research led us to design
vLab, an advanced tool aimed at satisfying the described
requirements.

The system we are currently developing, vLab
2.0, relies on Eclipse technology. The plug-in
architecture is essential to supply extensibility and to
reuse third-parties tools compliant with our needs.
Finally, Eclipse provides support for designing different
solutions for delivery and customizing packages with
different features dedicated to specific targets.

Our future efforts will be addressed both at
improving vLab adding new advanced features and at
dealing with new open and challenging issues. A key
point is represented by users’ activities evaluation, and is
strictly connected to the presentation of customized
feedback and the suggestion of new tasks based on
users’ profiles, formative objectives and activity history.
This research direction will also imply an integration
with the standard SCORM [21]. Furthermore, we are
planning to analyze BPEL suitability to define and
manage users’ portfolios and curricula.
An interesting and useful achievement would be to build
new component libraries to adapt vLab 2.0 for being
adopted also in contexts other than Information Security
Technologies. A suitable new frame is represented by
Logic Circuits, as we experimented following Eclipse
GEF tutorial based on logic diagrams. Finally, it is
possible to make vLab 2.0 provide educational code in
various programming languages, other than Java.

Bibliography.

1 Chung G. K., Harmon T. C., Baker E. L., (2001). The

Impact of a Simulation-Based Learning Design Project on
Student Learning, IEEE Transactions on Education 44 (4):
390-398.

2 Büchner P., Nehrir M H., (1991). A Block-Oriented PC-
Based Simulation Tool For Teaching and Research in
Electric Drives and Power Systems, IEEE Transactions on
Power Systems 6 (3): 1299-1304.

3 Allwood J. M., Cox B. M., Latif S. S., (2001). The
Structured Development of Simulation-Based Learning
Tools With an Example for the Taguchi Method, IEEE
Transactions on Education 44 (4): 347-353.

4 Ma J., Nickerson J. V., (2006). Hands-on, Simulated, and
Remote Laboratories: A Comparative Literature Review,
ACM Computing Surveys 38 (3): art. n. 7. DOI=
http://doi.acm.org/10.1145/1132960.1132961.

5 Mano M. M., Kime C. R., (2004). Logic and Computer
Design Fundamentals, Pearson Prentice Hall.

6 Stallings W., (2006). Cryptography and Network Security,
Pearson Education.

7 Black J. B., McClintock R. O., (1995). An Interpretation
Construction Approach to Constructivist Design, in B.
Wilson (Ed.) Constructivist Learning Environments.

8 Guidorzi R., (2003). e-Learning Projects at Bologna
University: an Overview, Proceedings of the International
Conference on Networked e-Learning for European
Universities.

9 Guidorzi R., Diversi R., Colin M., Lodoli G., (2006). A
Constructivist Approach in Designign an e-Learning
System Identification Course, Preprints of the 7th IFAC
Symposium on Advances in Control Education.

10 Gamma E., Beck K., (2003). Contributing to Eclipse:
Principles, Patterns, and Plug-Ins, Addison-Wesley.

11 OSGi Alliance, (2005). OSGi Service Platform
specifications, Release 4. Available from http://osgi.org.

12 McAffer J., Lemieux J. M., (2005). Eclipse Rich Client
Platform : Designing, Coding, and Packaging Java
Application, Addison-Wesley Professional.

13 Moore B., Dean D., Gerber A., Wagenknecht G.,
Vanderrheyden P., (2004). Eclipse Development Using
the Graphical Editing Framework and the Eclipse
Modeling Framework, IBM RedBooks.

14 Peh D., Hannemann A., Hague N., (2006). BIRT: A Field
Guide to Reporting, Addison-Wesley Professional.

15 Ganymede plug-in:
http://sourceforge.net/projects/ganymede/.

16 BPEL project: http://www.eclipse.org/bpel/index.php.

17 Eclipse Italian Community:
http://www.dis.unina.it/ECLIPSE/index.php?option=com
_content&task=view&id=12&Itemid=28&lang=en.

18 Vicari D., (2004). AlmaChannel Project, Citam internal
report, University of Bologna.

19 AlmaChannel portal:
https://www.almachannel.unibo.it/portale/index.htm.

20 Dr.Java plug-in: http://drjava.sourceforge.net/.

21 Advanced Distributed Learning (2006). SCORM 2004 3rd
Edition. Available from http://www.adl.gov.

