GESTIONE DELLE PERIFERICHE
D’INGRESSO/USCITA

ARGOMENTI

<Compiti del sottosistema di 1/0
Architettura del sottosistema di 1/0
eGestore di un dispositivo di 170

<Gestione e organizzazione dei dischi

COMPITI DEL SOTTOSISTEMA DI 1/0

1. Nascondere al programmatore i dettagli
delle interfacce hardware dei dispositivi;

2. Omogeneizzare la gestione di dispositivi
diversi;

3. Gestire i malfunzionamenti che si possono
verificare durante un trasferimento di

dati;

4. Definire lo spazio dei nomi (naming) con
cui vengono identificati i dispositivi;

5. Garantire la corretta sincronizzazione tra
un processo applicativo che ha attivato un

trasferimento dati e I'attivita del

dispositivo.

COMPITI DEL SOTTOSISTEMA DI 1/0

1. Nascondere al programmatore i dettagli
delle interfacce hardware dei dispositivi

L | | o

. Controllore Controllore |.......
CPU Memoria di A di B

Periferica Periferica .-
A B

COMPITI DEL SOTTOSISTEMA DI 1/0

2) Omogeneizzare la gestione di dispositivi

diversi

dispositivo

velocita di trasferimento

tastiera

10 bytes/sec

mouse

100 bytes/sec

modem

10 Kbytes/sec

linea ISDN

16 Kbytes/sec

stampante laser

100 Kbytes/sec

scanner

400 Kbytes/sec

porta USB 1.5 Mbytes/sec
disco IDE 5 Mbytes/sec
CD-ROM 6 Mbytes/sec

Fast Etherneet

12.5 Mbytes/sec

FireWire (1EEE 1394)|

50 Mbytes/sec

monitor XGA

60 Mbytes/sec

Ethernet gigabit

125 Mbytes/sec

COMPITI DEL SOTTOSISTEMA DI 1/0

COMPITI DEL SOTTOSISTEMA DI 1/0

2) Omogeneizzare la gestione di dispositivi
diversi

TIPOLOGIE DI DISPOSITIVI

« Dispositivi a carattere (es. tastiera,
stampante, mouse,...)

« Dispositivi a blocchi (es. dischi, nastri, ..)

= Dispositivi speciali (es. timer)

3. Gestire i malfunzionamenti che si possono
verificare durante un trasferimento di dati

TIPOLOGIE DI GUASTI

= Eventi eccezionali (es. mancanza di carta
sulla stampante, end-of-file);

« Guasti transitori (es. disturbi
elettromagnetici durante un trasferimento
dati);

= Guasti permanenti (es. rottura di una testina
di lettura/scrittura di un disco).

COMPITI DEL SOTTOSISTEMA DI 1/0

COMPITI DEL SOTTOSISTEMA DI 1/0

4. Definire lo spazio dei nomi (naming) con
cui vengono identificati i dispositivi

« Uso di nomi unici (valori numerici)
all’interno del sistema per identificare in
modo univoco i dispositivi;

< Uso di nomi simbolici da parte dell’utente
(170 API Input/Output Application
Programming Interface);

« Uniformita col meccanismo di naming del
file-system.

5. Garantire la corretta sincronizzazione tra
un processo applicativo che ha attivato un
trasferimento dati e I'attivita del
dispositivo.

= Gestione sincrona dei trasferimenti: un
processo applicativo attiva un dispositivo e
si blocca fino al termine del trasferimento;

= Gestione asincrona dei trasferimenti: un
processo applicativo attiva un dispositivo e
prosegue senza bloccarsi;

= Necessita di gestire la “bufferizzazione” dei
dati.

ARCHITETTURA DEL SOTTOSISTEMA DI 170

Interfaccia applicativa: 170 API

Parte del sottosistema di 170
indipendente dai dispositivi

Interfaccia device-independent

Parte del sottosistema di 170
dipendente dai dispositivi: device drivers

ARCHITETTURA DEL SOTTOSISTEMA DI 170

t
Disp. di rete | disp. ablocchi |disp.acaranere

- — — Livello
Parte dipendente dai dispositivi sistema

device drivers operativo

| Interrupt handlers

interfaccia di accesso ai dispositivi
leello

hardware
controllori dei dispositivi

ARCHITETTURA DEL SOTTOSISTEMA DI 170

LIVELLO INDIPENDENTE DAI DISPOSITIVI

processi applicativi ‘

Livello
utente
I|brer|e

interfaccia applicativa 1/0 API
leello

sistema
| Parte 1/0 independent operativo

FUNZIONI

Naming

Buffering

Gestione malfunzionamenti

Allocazione dei dispositivi ai processi
applicativi

BUFFERING

ES. operazione di lettura con singolo buffer

lettura| buffer copia u-buf
dispositivo sistema processo
operativo applicativo

« Buffer: area tampone nella memoria del
sistema operativo

« u-buf: area tampone nella memoria vertuale
del processo applicativo

BUFFERING

ES. operazione di lettura con doppio buffer

bufferl
lettura, % copial u-buf
) pufperey T
dispositivo processo
applicativo
sistema
operativo

GESTIONE MALFUNZIONAMENTI

= Tipi di gestione degli eventi anomali:
» Risoluzione del problema
(mascheramento dell’evento anomalo);
» Gestione parziale e propagazione a livello
applicativo;
« Tipi di eventi anomali:
» Eventi propagati dal livello inferiore (es.
guasto HW permanente;
» Eventi generati a questo livello (es.
tentativo di accesso a un dispositivo
inesistente).

ALLOCAZIONE DEI DISPOSITIVI

« Dispositivi condivisi da utilizzare in
mutua esclusione;

« Dispositivi dedicati ad un solo
processo (server) a cui i processi
client possono inviare messaggi di
richiesta di servizio;

= Tecniche di spooling (dispositivi
virtuali).

LIVELLO DIPENDENTE DAI DISPOSITIVI

Funzioni:
« fornire i gestori dei dispositivi (device
drivers)

- offrire al livello superiore I'insieme delle
funzioni di accesso ai dispositivi
(interfaccia “device-independent’), es:

N=_read (di sp, buf fer, nbytes)
N\

nome unico /

GESTORE DI UN DISPOSITIVO

Schema semplificato di un controllore

CPU

comandi _| _segnali
______ -+ Reg. controllo RN

controllore

R

-1 { Reg state |- {aspositve)

~
-
-

.) Buffer di sistema | bus
del dispositivo
GESTORE DI UN DISPOSITIVO PROCESSO ESTERNO
Registri di stato e controllo 1] Bit di
itdi
attende l’'invio _di un start=0
4 i: bit di abilitazione comando tramite il
i S| alle interruzioni registro di controllo
Registri di controllo s: bit di start leo--—-- - bit di start+ 1
esegue il comando
4 ‘ e: bit di condizioni 1------- -+ 1- bit di flag
© N di errore segnala, tramite il
Registri di stato s: bit di flag registro di stato, la
fine del comando

L 1

PROCESSO ESTERNO

processo esterno

{
while (t rue)
{
do{;} while (St art ==0)//stand-by
<esegue il comando=>;
<registra I'esito del comando
ponendo f | ag = 1>;
¥
}

PROCESSO APPLICATIVO

1
Prepara un comando
invia il comando r==1- bit di start
l] Bit di
attende la fine del flag=0

comando

no @ “‘ ----- bit di flag <1
si

PROCESSO APPLICATIVO

processo applicativo

for i nt i=0; i++; i<n)
{ <prepara il comando=>;
<invia il comando=>;
do{;} while (f | ag ==0)
//ciclo di attesa attiva
<verifica I'esito>;

GESTIONE A INTERRUZIONE

Lo schema precedente viene detto anche “a
controllo di programma”.
Non adatto per sistemi multiprogrammati a
causa dei clicli di attesa attiva.
Per evitare I'attesa attiva:
» Riservare, per ogni dispositivo un
semaforo: dat o_di sponi bil e

»dat o_di sponi bil e =o0;

Attivare un dispositivo abilitandolo a
interrompere (ponendo nel registro di
controllo il bit di abilitazione a 1.

GESTIONE A INTERRUZIONE

processo applicativo

FUNZIONE DI RISPOSTA ALLE INTERRUZIONI

{ I nterrupt_handl er
for i nt i =0; i++; i<n) i
{ <prepara il comando=>; signal (dat o_di sponi bil e) ;
<invia il comando=;
wait (dat o_di sponi bile); y T
<verifica I'esito>; riattiva il
b processo
.................... licati
} applicativo
DIAGRAMMA TEMPORALE DIAGRAMMA TEMPORALE
E™~ preferibile uno schema in cui il processo
Q

inlzt: 4] 41
PE @ “

P1: processo applicativo che attiva il dispositivo
PE: processo esterno

Inth: routine di gestione interruzioni

Q: altro processo applicativo

applicativo che ha attivato un dispositivo per
trasferire n dati venga risvegliato solo alla fine
dell’intero trasferimento:

Q) \

inlzt: 4] 41
pE \ -

ASTRAZIONE DI UN DISPOSITIVO

DESCRITTORE DI UN DISPOSITIVO

device driver indirizzo registro di controllo

indirizzo registro di stato
processi descrittore del indirizzo registro dati
applicativi dispositivo semaforo

Dat o_di sponi bile
I—— n= reald (...)// \ inth

dispositivo

contatore
dati da trasferire
n= write (...) punt at or e
al buffer in memoria
esi t 0 del trasferimento

DRIVER DI UN DISPOSITIVO

DRIVER DI UN DISPOSITIVO

ESEMPIO: int read(int disp,char *buf,int cont)
. . . . { descrittore[disp].contatore=cont;
i nt read(int disp,char *buf,int cont) descrittore[disp].puntatore=buf;
i <attivazione dispositivo> ;

CON: wait(descrittore[disp].dato_disponibile);
« la funzione che restituisce -1 in caso di if (descrittore[disp].esito== <cod.errore>)

errore o il numero di caratteri letti se tutto return (- 1) ;

va bene, return (cont - descrittore[di sp].contatore);
e di sp & il nome unico del dispositivo, }

e buf e rindirizzo del buffer in memoria,

e cont il numero di dati da leggere

DRIVER DI UN DISPOSITIVO

RAMO NORMALE DELLA FUNZIONE

{ < b =registro dati >;
A . *(descrittore[disp].puntatore)= b;
voi dinth() //interrupt handl er descrittore[disp].puntatore ++
{ char b; descrittore[disp].contatore --;
<l egge il valore del registro di stato>; if (descrittore[disp].contatore!=0)
if (<bit di errore> == Q) <riattivazione dispositivo>;
{<ranp nornal e del | a funzi one> } else _ , ,
else {descrittore[disp].esito =
. . <codi ce di termninazione corretta>;
{<rano eccezi onal e _del la fu_n2| one> } <di sattivazi one di spositivo>;
return//ritorno da interruzi one signal (descrittore[disp].
} dat o_di sponi bi | e);
}
}
RAMO ECCEZIONALE DELLA FUNZIONE Gestione di un dispositivo in DMA
{ < routine di gestione errore > but fer puntatore
if (<errore non recuperabile>) T (eutter]
{descrittore[disp].esito = c‘l“‘ conttore 4@
) <codi ce gh term pa2| one anonal a>; L dispositivo
Slgnal (descrittor e[di Sp] . CPU Memorig DMA ...l.! controllore
dat o_di sponi bil e);

}

Flusso di controllo durante un trasferimento
Interfaccia applicativa

Process Pl {
int n;
int ubufsize = 64;

char ubuf [ubuf si ze] ; Sistema Operativo

§ 8™ int read (device dp, char *punt, int cont){
ad(IN, ubuf, ubufsize); | B i
i ——» char buffer[N:

<individuazione del dispositivo D coinvolto. (naming)>;
< controllo degli accessi>;

) ® __ n=s_read(D, buffer, N;

dati dabuf fer di sistemaaubuf >; «
returnn; /ritorno daint.

interfaccia device independent ®

L, int _read (int disp, char *pbuf, int cont){]
<attivazione del dispositivo>;

<sospensione del processo>;

retur n (numero dat lett);
@
v

oid inth() {
<trasterimento dati in buf f er >;
<riativazione processo>

har dwar e =<+

Gestione del temporizzatore

« Per consentire la modalita di servizio a divisione di tempo &
necessario che il nucleo gestisca un dispositivo
temporizzatore tramite un’apposita procedura che, ad
intervalli di tempo fissati, provveda a sospendere il
processo in esecuzione ed assegnare I'unita di
elaborazione ad un altro processo

» Gestione del clock: i dispositivi clock generano
interruzioni periodiche (clock ticks) a frequenze stabilite; la
gestione software delle interruzioni consente di ottenere
alcuni servizi quali:

eaggiornamento della data

egestione del quanto di tempo (sistemi time-sharing)
svalutazione dell'impegno della CPU di un processo
egestione della system call ALARM

egestione del time-out (watchdog timers)

Il controllore del timer contiene, oltre ai registri di controllo e
di stato, un registro contatore nel quale la CPU trasferisce
un valore intero che viene decrementato dal timer.

Quando il registro contatore raggiunge il valore zero il
controllore lancia un segnale di interruzione.

Nel descrittore della periferica timer sono presenti:

-un array di N semafori privati (fine_attesa[N]).
Ciascun semaforo viene utilizzato per bloccare il
corrispondente processo che chiama la delay.

- un array di interi utilizzato per mantenere aggiornato il
numero di quanti di tempo che devono ancora passare
prima che un processo possa essere riattivato

Descrittore del timer

Indirizzo registro di controllo

Indirizzo registro di stato

Indirizzo registro contatore

Array di semafori privati

fine_attesa[N

Array di interi:
ritardo[N]

10

void delay (int n) {
int proc;
proc=<i ndi ce del processo in esecuzione>;
descrittore.ritardo[proc]= n;
I/ sospensi one del processo
descrittore.fine_attesa[proc].wait();

}

void inth(){
for(int=0; int<N, i++)
if (descrittore.ritardo[i]!=0){
descrittore.ritardo [i]--;
if (descrittore.ritardo[i]==0)

descrittore.fine_attesa[proc].signal ();

» Aggiornamento della data Il tempo del giorno viene
mantenuto in secondi in un registro a 32 bit. Un contatore
secondario conta i ticks (es.: frequenza 50 Hz) fino ad
ottenere un secondo.

fe—— 32bit——]
tempo del giorno Numero di ticks per ottenere 1
in secondi secondo (es. 50 ticks)

232 secondi e circa 136 anni. Nei sistemi Unix il tempo si
conta dal 1 gennaio 1970. Si avra overflow del clock nel
2038 (I'intero a 32 bit € con segno).

* Gestione del quanto di tempo. Quando un processo
inizia 'esecuzione, viene inizializzato un contatore con il
valore del quanto di tempo espresso in clock ticks. Ad ogni
interruzione il contatore € decrementato di 1. Quando
raggiunge il valore zero, lo scheduler sottrae la CPU al
processo.

« Valutazione dell'impegno di CPU di un processo. Ad
ogni clock tick viene incrementato di 1 un campo contenuto
nel descrittore del processo in esecuzione (problema delle
interruzioni che possono avvenire durante I'esecuzione del
processo).

» System Call ALARM. Un processo puo richiedere al S.O.
un segnale, un’interruzione, un messaggio, etc... dopo un
certo tempo (es. pacchetto inviato sulla rete deve essere
ritrasmesso, se non riconosciuto, entro un intervallo di
tempo).

segnale corrente segnale successivo

clock

%—HH—MH—MH—MMM\

11

Nel caso siano attivi pitl segnali si simula la presenza di
piu clock tramite una lista ordinata. Ogni elemento della
lista definisce quanti clock ticks occorre attendere per il
prossimo segnale dopo il precedente. | segnali sono attesi
a 4203, 4207, 4213, 4215, 4216.

Ad ogni tick il valore di “segnale successivo”
(nel’esempio, 3) viene decrementato di 1. Quando
diventa zero, viene generato il segnale corrispondente al
primo elemento della lista. Questo viene rimosso dalla
lista e “segnale successivo” viene aggiornato
(nellesempio, 4).

Gestione e organizzazione dei dischi

Organizzazione fisica

&>
Iég“\ .
=) -
33;?;:*‘90'0 @E

Indirizzo di un settore (blocco fisico)
(ft.s)

f numero della faccia, t numero della traccia nell’lambito della
faccia, s numero del settore entro la faccia.

Tutti i settori che compongono un disco (0 un pacco di
dischi), vengono trattati come un array.

[settoreo] [settore1]| setoren-1 | [settoreN |-—{ settore2n-1] [settore2N -
traccia 0 traccia O traccia: O tracciar 1 tracciar 1 traccia: 2
settore: 0 settore: 1 settore: N-1 settore: 0 settore: N-1 settore: 0

Indicando con

M il numero di tracce per faccia
N numero di settori per traccia

un settore di coordinate (f,t,s) viene rappresentato nel’ambito
dell'array con l'indice i

I=F*M*N+t*N+s

12

Scheduling delle richieste di trasferimento
TF=TA+TT

TF tempo medio di trasferimento di un settore (per
leggere o scrivere un settore)

TA tempo medio di accesso (per posizionare la testina di
lettura/ scrittura all'inizio del settore considerato)

TT tempo di trasferimento dei dati del settore

TA= ST +RL

ST tempo di seek (per posizionare la testina sopra la
traccia contenente il settore considerato)

RL rotational latency (tempo necessario perché il settore
ruoti sotto la testina)

Paranetri ACSAD WDEIS3N
Numero cilindri (N. di tracce per ogni faccia) 1048 13614
Tracce per cilindro [§

Settori per fraccia 251 320

Byte per settore 312 12
Capacith S MB 183GB
Tempo minimo di seek (ra cilindrd adiacenti) 4 msec. 0.6 msec.
Tempo medio di seek 11 msec. 5.2 msec.
Tempo di rotazione 13 msec. 6 msec.
Tempo di trasterimento di un setiore [s | 0w |
Tabella 5.2 paramati caratierizzanti i due dischi WD AC2540 ¢ WDET300.

TT tempo necessario per far transitare sotto la testina

I'intero settore. Indicando con t il tempo necessario per

compiere un giro, s il numero di settori per traccia, si ha
TT=t/s (valore approssimato).

Quindi
TF= ST+RL+TT

Il tempo medio di trasferimento dipende sostanzialmente dal
tempo medio di accesso (ST e RL).

Due modi di intervento:
- Criteri con cui i dati sono memorizzati su disco
(metodo di allocazione dei file)
- Criteri con cui servire le richieste di accesso
(politiche di scheduling delle richieste)

Politiche di Scheduling delle Richieste

Nella valutazione del tempo medio di attesa di un processo, e
necessario tenere in conto anche il tempo durante il quale il processo
attende che la sua richiesta di accesso venga servita.

Le richieste in coda ad un dispositivo possono essere servite secondo
diverse politiche:

- First-Come-First-Served (FCFS)
- Shortest-Seek-Time-First (SSTF)
- SCAN algorithm

- C-SCAN (Circular-SCAN)

FCFS. Le richieste sono servite rispettando il tempo di arrivo. Si elimina il
problema della starvation, ma non risponde ad alcun criterio di ottimalita.

SSTF. Seleziona la richiesta con tempo di seek minimo a partire dalla
posizione attuale della testina; pud provocare situazioni di starvation

13

SCAN. La testina si porta ad una estremita del disco e si
sposta verso l'altra estremita, servendo le richieste man
mano che viene raggiunta una traccia, fino all’altra
estremita del disco. Quindi viene invertita la direzione.

CSCAN. Fornisce un tempo di attesa piu uniforme. Arrivata
alla fine del disco la testina, essa torna immediatamente
all'inizio del disco.

Testina posizionata sulla traccia sul cilindro 20. Richieste
presenti in coda: 14, 40, 23, 47,7

Algoritmo di scheduling FIFO

Posizione
cilindi Inizide

Nl fle][] T

Spostamento totale = 113cilindri

Algoritmo di Scheduling SSTF

[0Te =]

Ay

Spostamento totale = 59 cilindri

Algoritmo di Scheduling SCAN

cilindri
1 7w [ERE) £) @[=
o

Spostamento totale = 53 cilindri

14

C-SCAN (circular scan).

Ipotizzando una distribuzione uniforme per le richieste relative
alle varie tracce, quando la testina inverte la direzione sono
presenti poche richieste in quanto servite di recente.

La maggior densita di richieste & presente all’altra estremita
del disco. Queste richieste sono quelle con maggior tempo di
attesa.

Dischi RAID
(Redundant Array of Independent Disks)

« Miglioramento delle prestazioni delle memorie di massa:
problemi tecnologici.

« Soluzione: utilizzo di pit dischi contemporaneamente che
consentano di operare in parallelo .

« Organizzazione dei dati sui dischi in modo da ottenere
parallelismo (=efficienza) e ridondanza (=affidabilita’).

« Definizione di standard per la organizzazione dei dati.
Obiettivo: unico disco virtuale caratterizzato da grande
capacita, alta velocita di ingresso e alta affidabilita.

= RAID: standard piu diffuso.

— 7 diverse varianti dello standard RAID: livelli 0,1,2,3,4,5,6 che
dipendono dal grado di affidabilita e rapidita di accesso.

Schema utilizzato nello standard RAID per la
parallelizzazione degli accessi

‘ discoreden. 1 ‘ ‘ discoreden. 2 ‘ ‘ discoreden. 3 ‘

Organizzazione dei dati

« Tutti i dati sono visti come appartenenti ad un disco virtuale.

« Le informazioni residenti su disco virtuale sono memorizzate
suddividendole sui dischi reali, ad esempio a livello di settore.

» Una traccia del disco virtuale contiene un numero di settori
pari ad n volte quello di una traccia di un disco reale.

« | settori sono distribuiti round-robin.
« Possibilita di velocizzare tutte le operazioni di I/O che

richiedono di operare su un insieme contiguo di settori del
disco virtuale. Livello massimo di parallelismo pari a n.

15

Livello 0
Non prevede alcun livello di ridondanza dei dati

Livello 1

« Ridondanza ottenuta tramite la duplicazione dei dati.
Ogni settore virtuale viene mappato su una coppia di dischi
fisici (mirroring).

=> Alta efficenza, alta affidabilita ma costi elevati.

Operazioni di lettura: su uno qualunque dei due dischi,
quello che richiede il minor tempo di ricerca.

Possibilita® di lettura in parallelo di settori allocati sullo
stasso disco.

Operazioni di scrittura: possono procedere in parallelo su
entrambi i dischi(la durata dell’operazione € vincolata dal
tempo di scrittura piu lungo.

« Si usa come funzione di backup per dati critici.

I livelli successivi si differenziano dal precedente schema
per il livello di ridondanza richiesto e per i meccanismi di
rilevazione e recupero da guasti (schemi di codifica
Hamming o meccanismi di controllo di parita).

Livello 2

« Il codice di correzione di errore viene calcolato sui bit
corrispondenti di ogni disco e i bit del codice sono
memorizzati nelle corrispondenti posizioni in dischi di
parita multipli (utilizzo del codice di Hamming, corregge
errori di bit singoli e rileva errori di bit doppi).

=>Bit diversi della stessa parola sono allocati su dischi
diversi

« Costi elevati: necessita” di sincronizzare tutti i
dischi(posizione della testina e rotazione).

Livelli 3,4,5

« Utilizzo di un insieme di bit di parita per I'insieme (parola
nel livello 3, settore nei livelli 4-5) di tutti i bit che si trovano
in posizioni corrispondenti su tutti i dischi.

* In caso di un guasto di un disco si accede al disco di parita
e i dati vengono ricostruiti utilizzando i dischi rimanenti.

Esempio: Array di 5 dischi: x0,x1,x2,x3 contegono dati, x4 &
il disco di parita.
« Parita per il bit i-esimo:
x4(i) = x3(i) A x2(i) A x1(i) A x0(i)
da cui

X1(i) = x4(i) A x3(i) A x2(i) A x0()

16

« Nel caso di n dischi, per ogni gruppo di n settori
consecutivi, memorizzati sugli n dischi dell’array, viene
calcolato un n+lesimo settore contenente bit di parita.

« |l primo bit del settore di parita corrisponde al bit di parita
calcolato sui primi bit degli n settori regolari. Analogamente
per gli altri bit di ogni settore.

Vantaggi per I'affidabilita: se uno qualunque dei settori di
un disco si corrompe per un guasto il suo contenuto pud
essere recuperato utilizzando il corrispondente settore di
parita.

=>Ogni operazione di scrittura coinvolge il settore di parita.

Livelli 3,4
| bit di parita vengono memorizzati su un nuovo disco (disco
di parita). Criticita

Livello 5 (Block interleaved parity)
| settori di parita vengono allocati su tutti i dischi esistenti in
modo circolare (round-robin).

17

