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GESTIONE DELLE  PERIFERICHE 
D’INGRESSO/USCITA

ARGOMENTI

•Compiti del sottosistema di I/O

•Architettura del sottosistema di I/O

•Gestore di un dispositivo di I/O

•Gestione e organizzazione dei dischi

COMPITI DEL SOTTOSISTEMA DI I/O

1. Nascondere al programmatore i dettagli 
delle interfacce hardware dei dispositivi;

2. Omogeneizzare la gestione di dispositivi 
diversi;

3. Gestire i malfunzionamenti che si possono 
verificare durante un trasferimento di 
dati;

4. Definire lo spazio dei nomi (naming) con 
cui vengono identificati i dispositivi;

5. Garantire la corretta sincronizzazione tra 
un processo applicativo che ha attivato un 
trasferimento dati e l’attività del 
dispositivo.

COMPITI DEL SOTTOSISTEMA DI I/O

1. Nascondere al programmatore i dettagli 
delle interfacce hardware dei dispositivi

Controllore
di  A

Periferica
A

MemoriaCPU
Controllore

di  B                                 

Periferica
B

bus

COMPITI DEL SOTTOSISTEMA DI I/O

2) Omogeneizzare la gestione di dispositivi 
diversi
dispositivo       velocità di trasferimento

tastiera 10 bytes/sec
mouse 100 bytes/sec
modem 10 Kbytes/sec
linea ISDN 16 Kbytes/sec
stampante laser 100 Kbytes/sec
scanner 400 Kbytes/sec
porta USB 1.5 Mbytes/sec
disco IDE 5 Mbytes/sec
CD-ROM 6 Mbytes/sec
Fast Etherneet 12.5 Mbytes/sec
FireWire (IEEE 1394) 50 Mbytes/sec
monitor XGA 60 Mbytes/sec
Ethernet gigabit 125 Mbytes/sec
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COMPITI DEL SOTTOSISTEMA DI I/O

2) Omogeneizzare la gestione di dispositivi 
diversi

TIPOLOGIE DI DISPOSITIVI

• Dispositivi a carattere  (es. tastiera, 
stampante, mouse,…)

• Dispositivi a blocchi  (es. dischi, nastri, ..)

• Dispositivi speciali  (es. timer)

COMPITI DEL SOTTOSISTEMA DI I/O

3. Gestire i malfunzionamenti che si possono
verificare durante un trasferimento di dati

TIPOLOGIE DI GUASTI
• Eventi eccezionali (es. mancanza di carta

sulla stampante, end-of-file );

• Guasti transitori (es. disturbi
elettromagnetici durante un trasferimento
dati);

• Guasti permanenti (es. rottura di una testina
di lettura/scrittura di un disco).

COMPITI DEL SOTTOSISTEMA DI I/O

4. Definire lo spazio dei nomi (naming) con 
cui vengono identificati i dispositivi

• Uso di nomi unici (valori numerici) 
all’interno del sistema per identificare in 
modo univoco i dispositivi;

• Uso di nomi simbolici da parte dell’utente
(I/O API Input/Output Application 
Programming Interface);

• Uniformità col meccanismo di naming del 
file-system.

COMPITI DEL SOTTOSISTEMA DI I/O

5. Garantire la corretta sincronizzazione tra
un processo applicativo che ha attivato un 
trasferimento dati e l’attività del 
dispositivo.

• Necessita di gestire la “bufferizzazione” dei
dati.

• Gestione sincrona dei trasferimenti: un 
processo applicativo attiva un dispositivo e 
si blocca fino al termine del trasferimento;

• Gestione asincrona dei trasferimenti: un 
processo applicativo attiva un dispositivo e 
prosegue senza bloccarsi;
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ARCHITETTURA DEL SOTTOSISTEMA DI  I/O

Parte del sottosistema di I/O 
indipendente dai dispositivi

Parte del sottosistema di I/O 
dipendente dai dispositivi: device drivers

Interfaccia device-independent

Interfaccia applicativa: I/O API

ARCHITETTURA DEL SOTTOSISTEMA DI  I/O

controllori dei dispositivi

interfaccia di accesso ai dispositivi
Livello
hardware

Parte dipendente dai dispositivi
device drivers

Interrupt handlers

Livello
sistema
operativo

Disp. di rete disp. a blocchi disp. a carattere

ARCHITETTURA DEL SOTTOSISTEMA DI  I/O

Parte I/O independent

interfaccia applicativa I/O API
Livello
sistema
operativo

Livello
utente

librerie

processi applicativi

LIVELLO INDIPENDENTE DAI DISPOSITIVI

FUNZIONI
• Naming

• Buffering

• Gestione malfunzionamenti

• Allocazione dei dispositivi ai processi
applicativi
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BUFFERING

ES. operazione di lettura con singolo buffer

• Buffer: area tampone nella memoria del 
sistema operativo

• u-buf: area tampone nella memoria vertuale
del processo applicativo

dispositivo sistema
operativo

processo
applicativo

buffer u-buflettura copia

BUFFERING

ES. operazione di lettura con doppio buffer

dispositivo

sistema
operativo

processo
applicativo

buffer1

u-buflettura
copia

buffer2

GESTIONE MALFUNZIONAMENTI

• Tipi di gestione degli eventi anomali:
Ø Risoluzione del problema

(mascheramento dell’evento anomalo);
Ø Gestione parziale e propagazione a livello

applicativo;

• Tipi di eventi anomali:
Ø Eventi propagati dal livello inferiore (es. 

guasto HW permanente;
Ø Eventi generati a questo livello (es. 

tentativo di accesso a un dispositivo
inesistente).

ALLOCAZIONE DEI DISPOSITIVI

• Dispositivi condivisi da utilizzare in 
mutua esclusione;

• Dispositivi dedicati ad un solo 
processo (server) a cui i processi
client possono inviare messaggi di
richiesta di servizio;

• Tecniche di spooling (dispositivi
virtuali).
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LIVELLO DIPENDENTE DAI DISPOSITIVI

Funzioni:
• fornire i gestori dei dispositivi (device 

drivers)

• offrire al livello superiore l’insieme delle
funzioni di accesso ai dispositivi
(interfaccia “device-independent”), es:

N=_read (disp, buffer, nbytes)

nome unico
del  dispositivo

Buffer di sistema

GESTORE DI UN DISPOSITIVO

Schema semplificato di un controllore

Reg. stato

Reg. dati

controllore

CPU
dispositivo

Reg. controllo

bus

comandi

stato

dati

segnali

dati

GESTORE DI UN DISPOSITIVO

Registri di stato e controllo

Registri di controllo

i s
i: bit di abilitazione

alle interruzioni

s: bit di start

Registri di stato

e f
e: bit di condizioni

di errore

s: bit di flag

PROCESSO  ESTERNO

bit di start    1

1    bit di flag

attende l’invio di un 
comando tramite il
registro di controllo

esegue il comando

segnala, tramite il
registro di stato, la
fine del comando

Bit di
start=0
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PROCESSO  ESTERNO

processo esterno
{

while (true)
{

do{;} while (start ==0)//stand-by
<esegue il comando>;
<registra l’esito del comando

ponendo flag = 1>;
}

}

PROCESSO  APPLICATIVO

bit di flag    1

1    bit di start

Prepara un comando

invia il comando

attende la fine del 
comando

Bit di
flag=0

fine
si

no

PROCESSO  APPLICATIVO

processo applicativo
{

………………..
for (int i=0; i++; i<n)
{ <prepara il comando>;

<invia il comando>;
do{;} while (flag ==0)
//ciclo di attesa attiva

<verifica l’esito>;
}
……………….. 

}

GESTIONE A INTERRUZIONE

• Lo schema precedente viene detto anche “a 
controllo di programma”.

• Non adatto per sistemi multiprogrammati a 
causa dei clicli di attesa attiva.

• Per evitare l’attesa attiva:
Ø Riservare, per ogni dispositivo un 

semaforo: dato_disponibile
Ødato_disponibile = 0;

• Attivare un dispositivo abilitandolo a 
interrompere (ponendo nel registro di
controllo il bit di abilitazione a 1.
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GESTIONE A INTERRUZIONE

processo applicativo
{

………………..
for (int i=0; i++; i<n)
{ <prepara il comando>;

<invia il comando>;
wait (dato_disponibile ) ;
<verifica l’esito>;

}
……………….. 

}
commutazione
di contesto

FUNZIONE DI RISPOSTA ALLE INTERRUZIONI

Interrupt_handler
{

………………..
signal (dato_disponibile ) ;
……………….. 

}
riattiva il
processo
applicativo

DIAGRAMMA TEMPORALE

Q

PI

PE

inth

PI: processo applicativo che attiva il dispositivo
PE: processo esterno
Inth: routine di gestione interruzioni
Q: altro processo applicativo

Q

PI

PE

inth

DIAGRAMMA TEMPORALE

E` preferibile uno schema in cui il processo
applicativo che ha attivato un dispositivo per 
trasferire n dati venga risvegliato solo alla fine 
dell’intero trasferimento:
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ASTRAZIONE DI UN DISPOSITIVO

descrittore del 
dispositivo

device driver

n= read (…)

n= write (…)

inth

dispositivo

processi
applicativi

DESCRITTORE DI UN DISPOSITIVO

indirizzo registro di controllo

indirizzo registro di stato
indirizzo registro dati

semaforo
Dato_disponibile

contatore
dati da trasferire
puntatore

al buffer in memoria
esito del trasferimento

DRIVER DI UN DISPOSITIVO

ESEMPIO:  

int read(int disp,char *buf,int cont)

CON:  

• la funzione che restituisce -1 in caso di
errore o il numero di caratteri letti se tutto
va bene,

•disp è il nome unico del dispositivo,

•buf è l’indirizzo del buffer in memoria,

•cont il numero di dati da leggere

DRIVER DI UN DISPOSITIVO

int read(int disp,char *buf,int cont)
{ descrittore[disp].contatore=cont;

descrittore[disp].puntatore=buf;
<attivazione dispositivo> ;
wait(descrittore[disp].dato_disponibile);
if (descrittore[disp].esito== <cod.errore>)

return (-1);
return (cont-descrittore[disp].contatore);

}
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DRIVER DI UN DISPOSITIVO

void inth() //interrupt handler
{ char b;

<legge il valore del registro di stato>;
if (<bit di errore> == 0)

{<ramo normale della funzione> }
else
{<ramo eccezionale della funzione> }
return //ritorno da interruzione

}

{  < b = registro dati >;
*(descrittore[disp].puntatore)= b;
descrittore[disp].puntatore ++;
descrittore[disp].contatore --;
if (descrittore[disp].contatore!=0)

<riattivazione dispositivo>;
else

{descrittore[disp].esito =
<codice di terminazione corretta>;

<disattivazione dispositivo>;
signal (descrittore[disp].

dato_disponibile);
}

}

RAMO NORMALE DELLA FUNZIONE

RAMO ECCEZIONALE DELLA FUNZIONE

{  < routine di gestione errore >;
if (<errore non recuperabile>)
{descrittore[disp].esito =

<codice di terminazione anomala>;
signal (descrittore[disp].

dato_disponibile);
}

}

CPU Memoria

cont

buffer

cont

DMA

contatore

puntatore

registro dati

controllore

buffer

Gestione di un dispositivo in DMA

dispositivo
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Process PI  {
int n;
int ubufsize = 64;
char ubuf[ubufsize];
…………
…………
…………
n=read(IN, ubuf, ubufsize);
…………
…………
…………
}

Sistema Operativo

int read (device dp, char *punt, int cont){
int n, D;
char buffer[N];
< individuazione del dispositivo D coinvolto  (naming)>;
< controllo degli accessi>;
n = s_read(D, buffer, N);
<trasferimento dei dati da buffer di sistema a ubuf>;
return n;  // ritorno da int.

}

int _read (int disp, char *pbuf, int cont){
<attivazione del dispositivo>;
<sospensione del processo>;
return (numero dati letti);  

}

void inth() {
<trasferimento dati in buffer>; 
<riattivazione processo>

}

hardware

interfaccia device independent

Interfaccia applicativa

system 
call

Flusso di controllo durante un trasferimento

�

�

�

�

�

�

Gestione del temporizzatore
• Per consentire la modalità di servizio a divisione di tempo è 

necessario che il nucleo gestisca un dispositivo 
temporizzatore tramite un’apposita procedura che, ad 
intervalli di tempo fissati, provveda a sospendere il 
processo in esecuzione ed assegnare l’unità di 
elaborazione ad un altro processo

• Gestione del clock: i dispositivi clock generano 
interruzioni periodiche (clock ticks) a frequenze stabilite; la 
gestione software delle interruzioni consente di ottenere 
alcuni servizi quali:

•aggiornamento della data
•gestione del quanto di tempo (sistemi time-sharing)
•valutazione dell’impegno della CPU di un processo
•gestione della system call ALARM 
•gestione del time-out (watchdog timers)

Il controllore del timer contiene, oltre ai registri di controllo e 
di stato, un registro contatore nel quale la CPU trasferisce 
un valore intero che viene decrementato dal timer.

Quando il registro contatore raggiunge il valore zero il 
controllore lancia un segnale di interruzione.

Nel descrittore della periferica timer sono presenti:

- un array di N semafori privati (fine_attesa[N]). 
Ciascun semaforo viene utilizzato per bloccare il 
corrispondente processo che chiama la  delay.
- un array di interi utilizzato per mantenereaggiornato il 
numero di quanti di tempo che devono ancora passare 
prima che un processo possa essere riattivato

Descrittore del timer

Indirizzo registro di controllo

Indirizzo registro di stato

Indirizzo registro contatore

Array di semafori privati 

fine_attesa[N]

Array di interi:
ritardo[N]
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void delay (int n) {
int proc;
proc=<indice del processo in esecuzione>;
descrittore.ritardo[proc]= n;

//sospensione del processo
descrittore.fine_attesa[proc].wait();

}

void inth(){
for(int=0; int<N, i++)

if (descrittore.ritardo[i]!=0){
descrittore.ritardo [i]--;
if (descrittore.ritardo[i]==0)

descrittore.fine_attesa[proc].signal();
}

}

• Aggiornamento della data Il tempo del giorno viene 
mantenuto in secondi in un registro a 32 bit. Un contatore 
secondario conta i ticks (es.:  frequenza 50 Hz) fino ad 
ottenere un secondo.

32 bit

tempo del giorno 
in secondi

Numero di ticks per ottenere 1 
secondo (es. 50 ticks)

2 32 secondi è circa 136 anni. Nei sistemi Unix il tempo si 
conta dal 1 gennaio 1970. Si avrà overflow del clock nel 
2038 (l’intero a 32 bit è con segno).

• Gestione del quanto di tempo. Quando un processo 
inizia l’esecuzione, viene inizializzato un contatore con il 
valore del quanto di tempo espresso in clock ticks. Ad ogni 
interruzione il contatore è decrementato di 1. Quando 
raggiunge il valore zero, lo scheduler sottrae la CPU al 
processo.

• Valutazione dell’impegno di CPU di un processo. Ad 
ogni clock tick viene incrementato di 1 un campo contenuto 
nel descrittore del processo in esecuzione (problema delle 
interruzioni che possono avvenire durante l’esecuzione del 
processo).

• System Call ALARM. Un processo può richiedere al S.O. 
un segnale, un’interruzione, un messaggio, etc… dopo un 
certo tempo (es. pacchetto inviato sulla rete deve essere 
ritrasmesso, se non riconosciuto, entro un intervallo di 
tempo).

4200 3

segnale successivosegnale corrente

clock

header 3 4 6 2 1 0
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Nel caso siano attivi più segnali si simula la presenza di 
più clock tramite una lista ordinata. Ogni elemento della 
lista definisce quanti clock ticks occorre attendere per il 
prossimo segnale dopo il precedente. I segnali sono attesi 
a 4203, 4207, 4213, 4215, 4216.

Ad ogni tick il valore di “segnale successivo” 
(nell’esempio, 3) viene decrementato di 1. Quando 
diventa zero, viene generato il segnale corrispondente al 
primo elemento della lista. Questo viene rimosso dalla 
lista e “segnale successivo” viene aggiornato 
(nell’esempio, 4).

Gestione e organizzazione dei dischi

Organizzazione fisica

traccia

gap
tra tracce

gap
tra settori

settore
cilindro

a) disco singolo                                               
b) disk pack

Indirizzo di un settore (blocco fisico)

(f,t,s)

f numero della faccia, t numero della traccia nell’ambito della 
faccia, s numero del settore entro la faccia.

Tutti i settori che compongono un disco ( o un pacco di 
dischi), vengono trattati come un array.

settore 0

traccia: 0
settore: 0

settore 1

traccia: 0
settore: 1

settore N-1

traccia: 0
settore: N-1

settore N

traccia: 1
settore: 0

settore 2N-1

traccia: 1
settore: N-1

settore 2N

traccia: 2
settore: 0

Indicando con

M il numero di tracce per faccia
N numero di settori per traccia

un settore di coordinate (f,t,s) viene rappresentato nell’ambito 
dell’array con l’indice i

i=f*M*N+t*N+s
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Scheduling delle richieste di trasferimento

TF= TA+TT

TF tempo medio di trasferimento di un settore (per 
leggere o scrivere un settore)

TA tempo medio di accesso (per posizionare la testina di 
lettura/ scrittura all’inizio del settore considerato)

TT tempo di trasferimento dei dati del settore

TA= ST +RL

ST tempo di seek (per posizionare la testina sopra la 
traccia contenente il settore considerato)
RL rotational latency (tempo necessario perché il settore 
ruoti sotto la testina)

µs µs

TT  tempo necessario per far transitare sotto la testina 
l’intero settore. Indicando con t il tempo necessario per 
compiere un giro, s il numero di settori per traccia, si ha 

TT= t/s (valore approssimato).

Quindi

TF= ST+RL+TT

Il tempo medio di trasferimento dipende sostanzialmente dal 
tempo medio di accesso (ST e RL).

Due modi di intervento:
- Criteri con cui i dati sono memorizzati su disco 

(metodo di allocazione dei file)
- Criteri con cui servire le richieste di accesso

(politiche di scheduling delle richieste)

Nella valutazione del tempo medio di attesa di un processo, e` 
necessario tenere in conto anche il tempo durante il quale il processo 
attende che la sua richiesta di accesso venga servita.

Le richieste in coda ad un dispositivo possono essere servite secondo 
diverse politiche:

- First-Come-First-Served (FCFS)
- Shortest-Seek-Time-First (SSTF)
- SCAN  algorithm
- C-SCAN (Circular-SCAN)

FCFS. Le richieste sono servite rispettando il tempo di arrivo. Si elimina il 
problema della starvation, ma non  risponde ad alcun criterio di ottimalità.

SSTF. Seleziona la richiesta con tempo di seek minimo a partire dalla 
posizione attuale della testina; può provocare situazioni di starvation

Politiche di Scheduling delle Richieste
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SCAN. La testina si porta ad una estremità del disco e si 
sposta verso l’altra estremità, servendo le richieste man 
mano che viene raggiunta una traccia, fino all’altra 
estremità del disco. Quindi viene invertita la direzione. 

CSCAN. Fornisce un tempo di attesa più uniforme. Arrivata 
alla fine del disco la testina, essa torna immediatamente 
all’inizio del disco.

Testina posizionata sulla traccia sul cilindro 20. Richieste 
presenti in coda: 14, 40, 23, 47, 7

Algoritmo di scheduling FIFO

Spostamento totale = 113cilindri

237 472014 504030101

cilindri

Posizione
Iniziale

Spostamento totale = 59 cilindri

7 4720 2314 504030101

cilindri
Posizione
Iniziale

Algoritmo di Scheduling SSTF

Spostamento totale = 53 cilindri

7 4720 2314 504030101

cilindri
Posizione
Iniziale

Algoritmo di Scheduling SCAN
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C-SCAN (circular scan). 
Ipotizzando una distribuzione uniforme per le richieste relative
alle varie tracce, quando la testina inverte la direzione sono 
presenti poche richieste in quanto servite di recente.

La maggior densità di richieste è presente all’altra estremità 
del disco. Queste richieste sono quelle con maggior tempo di 
attesa.

Dischi RAID
(Redundant Array of Independent Disks)

• Miglioramento delle prestazioni delle memorie di massa: 
problemi tecnologici. 

• Soluzione: utilizzo di più dischi contemporaneamente che 
consentano di operare in parallelo .

• Organizzazione dei dati sui dischi in modo da ottenere 
parallelismo (=efficienza) e ridondanza (=affidabilita`).

• Definizione di standard per la organizzazione dei dati. 
Obiettivo: unico disco virtuale caratterizzato da grande 
capacità, alta velocità di ingresso e alta affidabilità.

èRAID: standard più diffuso.
– 7 diverse varianti dello standard RAID: livelli 0,1,2,3,4,5,6 che 

dipendono dal grado di affidabilità e rapidità di accesso.

Schema utilizzato nello standard RAID per la 
parallelizzazione degli accessi

disco reale n. 1

settore 0

settore 3

disco 
virtuale

settore 1

settore 2

disco reale n. 2 disco reale n. 3

0 1
2

0 1
2

0 1
2

Organizzazione dei dati

• Tutti i dati sono visti come appartenenti ad un disco virtuale.

• Le informazioni residenti su disco virtuale sono memorizzate 
suddividendole sui dischi reali, ad esempio a livello di settore.

• Una traccia del disco virtuale contiene un numero di settori 
pari ad n volte quello di una traccia di un disco reale.

• I settori sono distribuiti round-robin.

• Possibilità di velocizzare tutte le operazioni di I/O che 
richiedono di operare su un insieme contiguo di settori del 
disco virtuale. Livello massimo di parallelismo pari a n.
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Livello 0
Non prevede alcun livello di ridondanza dei dati

Livello 1
• Ridondanza ottenuta tramite la duplicazione dei dati. 
Ogni settore virtuale viene mappato su una coppia di dischi 
fisici (mirroring).
è Alta efficenza, alta affidabilità ma costi elevati.

Operazioni di lettura: su uno qualunque dei due dischi, 
quello che richiede il minor tempo di ricerca.
Possibilita` di lettura in parallelo di settori allocati sullo
stasso disco.
Operazioni di scrittura: possono procedere in parallelo su 
entrambi i dischi( la durata dell’operazione è vincolata dal 
tempo di scrittura più lungo.

• Si usa come funzione di backup per dati critici.

I livelli successivi si differenziano dal precedente schema 
per il livello di ridondanza richiesto e per i meccanismi di 
rilevazione e recupero da guasti (schemi di codifica 
Hamming o meccanismi di controllo di parità).

Livello 2
• Il codice di correzione di errore viene calcolato sui bit 
corrispondenti di ogni disco e i bit del codice sono 
memorizzati nelle corrispondenti posizioni in dischi di 
parità multipli (utilizzo del codice di Hamming, corregge 
errori di bit singoli e rileva errori di bit doppi).

èBit diversi della stessa parola sono allocati su dischi
diversi

• Costi elevati: necessita` di sincronizzare tutti i 
dischi(posizione della testina e rotazione).

Livelli 3,4,5

• Utilizzo di un insieme di bit di parità per l’insieme (parola
nel livello 3, settore nei livelli 4-5) di tutti i bit che si trovano 
in posizioni corrispondenti su tutti i dischi.

• In caso di un guasto di un disco si accede al disco di parità 
e i dati vengono ricostruiti utilizzando i dischi rimanenti.

Esempio: Array di 5 dischi: x0,x1,x2,x3 contegono dati, x4 è 
il disco di parità.

• Parità per il bit i-esimo:
x4(i) = x3(i) ⊕ x2(i) ⊕ x1(i) ⊕ x0(i)

da cui  

x1(i) = x4(i) ⊕ x3(i) ⊕ x2(i) ⊕ x0(i)
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• Nel caso di n dischi, per ogni gruppo di n settori 
consecutivi, memorizzati sugli n dischi dell’array, viene 
calcolato un n+1esimo settore contenente bit di parità.

• Il primo bit del settore di parità corrisponde al bit di parità
calcolato sui primi bit degli n settori regolari. Analogamente  
per gli altri bit di ogni settore.

Vantaggi per l’affidabilità: se uno qualunque dei settori di 
un disco si corrompe per un guasto il suo contenuto può 
essere recuperato utilizzando il corrispondente settore di 
parità.

èOgni operazione di scrittura coinvolge il settore di parità.

Livelli 3,4
I bit di parità vengono memorizzati su un nuovo disco (disco 
di parità). Criticità

Livello 5 (Block interleaved parity)
I settori di parità vengono allocati su tutti i dischi esistenti in 
modo circolare (round-robin).


