GESTIONE DELLE PERIFERICHE
D’INGRESSO/USCITA

ARGOMENTI

«Compiti del sottosistema di 1/0
eArchitettura del sottosistema di 1/0
eGestore di un dispositivo di 1/0

eGestione e organizzazione del dischi




COMPITI DEL SOTTOSISTEMA DI 1/0

1. Nascondere al programmatore i1 dettagli
delle interfacce hardware dei dispositivi,

2. Omogeneizzare la gestione di dispositivi
diversi;

3. Gestire 1| malfunzionamenti che si possono
verificare durante un trasferimento di
dati;

4. Definire lo spazio dei nomi (nhaming) con
cul vengono identificati 1 dispositivi,

5. Garantire la corretta sincronizzazione tra
un processo applicativo che ha attivato un
trasferimento dati e I'attivita del
dispositivo.




COMPITI DEL SOTTOSISTEMA DI 1/0

1. Nascondere al programmatore i1 dettagli
delle interfacce hardware dei dispositivi

] Controllore Controllore
CPU Memoria di A di B
‘ Periferica H Periferica
A B

bus




COMPITI DEL SOTTOSISTEMA DI 1/0

2) Omogeneizzare la gestione di dispositivi

diversi
dispositivo velocita di trasferimento
tastiera 10 bytes/sec
mouse 100 bytes/sec
modem 10 Kbytes/sec
linea ISDN

16 Kbytes/sec

stampante laser

100 Kbytes/sec

scanner

400 Kbytes/sec

porta USB 1.5 Mbytes/sec
disco IDE 5 Mbytes/sec
CD-ROM

6 Mbytes/sec

Fast Etherneet

12.5 Mbytes/sec

FireWire (1IEEE 1394)

50 Mbytes/sec

monitor XGA

60 Mbytes/sec

Ethernet gigabit

125 Mbytes/sec




COMPITI DEL SOTTOSISTEMA DI 1/0

2) Omogeneizzare la gestione di dispositivi
diversi

TIPOLOGIE DI DISPOSITIVI

e Dispositivi a carattere (es. tastiera,
stampante, mouse,...)

e Dispositivi a blocchi (es. dischi, nastri, ..)

e Dispositivi speciali (es. timer)




COMPITI DEL SOTTOSISTEMA DI 1/0

3. Gestire | malfunzionamenti che si possono
verificare durante un trasferimento di dati

TIPOLOGIE DI GUASTI

e Eventi eccezionali (es. mancanza di carta
sulla stampante, end-of-file );

e Guasti transitori (es. disturbi
elettromagnetici durante un trasferimento
dati);

e Guasti permanenti (es. rottura di una testina
di lettura/Zscrittura di un disco).



COMPITI DEL SOTTOSISTEMA DI 1/0

4. Definire lo spazio dei nomi (nhaming) con
cui vengono identificati 1 dispositivi

e Uso di nomi unici (valori numerici)
all’interno del sistema per identificare In
modo univoco I dispositivi;

e Uso di nomi simbolici da parte dell’utente
(170 API Input/Output Application
Programming Interface);

e Uniformita col meccanismo di naming del
file-system.




COMPITI DEL SOTTOSISTEMA DI 1/0

5. Garantire la corretta sincronizzazione tra
un processo applicativo che ha attivato un
trasferimento dati e I'attivita del
dispositivo.

e (Gestione sincrona dei trasferimenti: un

processo applicativo attiva un dispositivo e
si blocca fino al termine del trasferimento;

e Gestione asincrona del trasferimenti: un
processo applicativo attiva un dispositivo e
prosegue senza bloccarsi,

e Necessita di gestire la “bufferizzazione” del
dati.




ARCHITETTURA DEL SOTTOSISTEMA DI 1/0

@ccia applicativa: 170 API

Parte del sottosistema di 1/0
Indipendente dai dispositivi

!
<\/Inte’rgccia device-independent

Parte del sottosistema di 170
dipendente dail dispositivi: device drivers




ARCHITETTURA DEL SOTTOSISTEMA DI 1/0

|

t

Disp. di rete

disp. a blocchi

disp. a carattere

Parte dipendente dai dispositivi
device drivers

Interrupt handlers

|

Livello
sistema

operativo
A

< interfaccia di accesso ai dispositivi _>

}

controllori dei dispositivi

v
Livello
hardware




ARCHITETTURA DEL SOTTOSISTEMA DI 1/0

processi applicativi

I Livello
utente
librerie t
t
v |
<__interfaccia applicativa I/O API > |
| | Livello
sistema

Parte 1/0 independent

operativo




LIVELLO INDIPENDENTE DAI DISPOSITIVI

FUNZIONI
e« Naming

e Buffering
e Gestione malfunzionamenti

e Allocazione del dispositivi al processi
applicativi




BUFFERING

ES. operazione di lettura con singolo buffer

lettura

>

dispositivo

buffer

copia

u-buf

>

sistema
operativo

processo
applicativo

e Buffer: area tampone nella memoria del

sistema operativo
e u-buf: area tampone nella memoria vertuale

del processo applicativo




BUFFERING

ES. operazione di lettura con doppio buffer

bufferl
Iettu?/ cobia u-buf
) (s
: e buffer2/
dispositivo K y, processo
applicativo
sistema

operativo




GESTIONE MALFUNZIONAMENTI

e Tipi di gestione degli eventi anomali:

» Risoluzione del problema
(mascheramento dell’evento anomalo);

» Gestione parziale e propagazione a livello
applicativo;
e Tipi di eventi anomali:

» Eventi propagati dal livello inferiore (es.
guasto HW permanente;

» Eventi generati a questo livello (es.
tentativo di accesso a un dispositivo
Inesistente).




ALLOCAZIONE DEI DISPOSITIVI

e Dispositivi condivisi da utilizzare In
mutua esclusione;

e Dispositivi dedicati ad un solo
processo (server) a cul | processi
client possono inviare messaggi di
richiesta di servizio;

e Tecniche di spooling (dispositivi
virtualr).




LIVELLO DIPENDENTE DAI DISPOSITIVI

Funzioni:
e fornire 1 gestori deil dispositivi (device
drivers)

e offrire al livello superiore I'insieme delle
funzioni di accesso al dispositivi
(interfaccia “device-independent™), es:

N=_read (di sp, buf fer, nbyt es)

AN

nome unico / Buffer di sistema

del dispositivo




GESTORE DI UN DISPOSITIVO

Schema semplificato di un controllore

comandi segnali

______ -+ Reg. controllo| " T =~~<

%

=== -1 Reg. stato «.-—’ﬂdispositivo
CPU  ["stato

o4
e
-

Reg. dati |« - - ’d’ati

—
—
—_

controllore




GESTORE DI UN DISPOSITIVO

Registri di stato e controllo

S

N

Registri di controllo

1 bit di abilitazione
alle interruzioni

Registri di stato

s: bit di start

— N\

e: bit di condizioni
di errore

s: bit di flag




PROCESSO ESTERNO

l_ _ _ ' Bit di
attende I'invio di un start=0
comando tramite il
registro di controllo

be--———- - bit di start « 1

esegue Il comando

[--=----- —~ 1- bit di flag

segnala, tramite Il
registro di stato, la
fine del comando




PROCESSO ESTERNO

processo esterno

{

while (1 rue)

{
do{;} while (St art ==0)//stand-by
<esegue il comando=>;
<registra I’esito del comando

ponendo f | ag = 1>;
¥



PROCESSO APPLICATIVO

'

Prepara un comando

!

Invia il comando - == 1-> bit di start

1 | Bit di

attende la fine del flag=0
comando

rm‘<ii?i£; ----- bit di flag « 1
fine
Si



PROCESSO APPLICATIVO

processo applicativo

ford nt 1=0; 1++; 1 <n)
{ <prepara il comando=>;
<invia il comando=>;
do{;} while (f | ag ==0)
//ciclo di attesa attiva
<verifica I'esito>;




GESTIONE A INTERRUZIONE

Lo schema precedente viene detto anche “a
controllo di programma’.

Non adatto per sistemi multiprogrammati a
causa dei clicli di attesa attiva.

Per evitare ’attesa attiva:
» Riservare, per ogni dispositivo un
semaforo: dat o_di sponi bi |l e

»dat o _di sponi bi |l e =o0;

Attivare un dispositivo abilitandolo a
Interrompere (ponendo nel registro di
controllo il bit di abilitazione a 1.




GESTIONE A INTERRUZIONE

processo applicativo

{
ford nt 1=0; 1++; 1 <n)
{ <prepara il comando=>;
<invia il comando=>;
wait (dat o_di sponi bil e);
<verifica l'esito>;
} -
.................... commutazione
}



FUNZIONE DI RISPOSTA ALLE INTERRUZIONI

| nt errupt _handl er

signal (dat o_di sponi bil e ) ;

riattiva il
processo
applicativo




DIAGRAMMA TEMPORALE

Pl
INth

PE

Pl: processo applicativo che attiva il dispositivo
PE: processo esterno

Inth: routine di gestione interruzioni

Q: altro processo applicativo



DIAGRAMMA TEMPORALE

E~ preferibile uno schema in cui il processo
applicativo che ha attivato un dispositivo per
trasferire n dati venga risvegliato solo alla fine
dell’intero trasferimento:

Q

Pl
INth

PE




ASTRAZIONE DI UN DISPOSITIVO

device driver
dispositivo

processi descrittore del
applicativi dispositivo

L‘ // N

L, N=write (...)




DESCRITTORE DI UN DISPOSITIVO

iIndirizzo registro di controllo

Indirizzo registro di stato
INndirizzo registro dati
semaforo
Dat o_di sponi bi |l e

contatore

dati da trasferire
punt at ore

a_ll buffer iIn memoria
eS| t O del trasferimento




DRIVER DI UN DISPOSITIVO

ESEMPIO:
| Nt read(1 Nt di sp,char *buf,int cont)

CON:

e la funzione che restituisce -1 1IN caso di
errore o Il numero di caratteri letti se tutto

va bene,
e di Sp & il nome unico del dispositivo,

e buf e I'indirizzo del buffer in memoria,

e cont il numero di dati da leggere




DRIVER DI UN DISPOSITIVO

| nt read(1 nt disp,char *buf,int cont)
{ descrittore[disp].contatore=cont;
descrittore[disp]. puntatore=buf,;

<attivazione dispositivo> |

wait( descrittore[di sp].dato_di sponibile);

if (descrittore[disp].esito== <cod. errore>)
return (- 1) ;

return (cont -descrittore[di sp].contatore);

}



DRIVER DI UN DISPOSITIVO

vol dinth() //i1nterrupt handl er
{ char Db;

<legge il valore del registro di stato>;
if(<bit di errore> == 0)

{<rano nornmal e della funzi one> }
else

{<ranp eccezionale della funzione> }
return//ritorno da I nterruzione



RAMO NORMALE DELLA FUNZIONE

{

< b =registro dati >;
*(descrittore[disp].puntatore)= b;
descrittore[di sp]. puntatore ++;
descrittore[disp].contatore --;
If (descrittore[disp].contatore! =0)
<riattivazione dispositivo>;
else
{descrittore[disp].esito =
<codice di term nazione corretta>,
<di sattivazi one dispositivo>,
signal (descrittore[disp].
dat o_di sponi bil e);




RAMO ECCEZIONALE DELLA FUNZIONE

{ < routine di gestione errore >;
If (<errore non recuperabile>)
{descrittore[disp].esito =
<codi ce di term nazione anonal a>;
signal (descrittore[disp].
dat o_di sponi bi |l e);
}




Gestione di un dispositivo in DMA

CPU

buf f er

puntatore

buf f er

contatore

registro dati

. controllore

—_

dispositivo




Flusso di controllo durante un trasferimento

I nter faccia applicativa

Process PI {

int n;
i nt ubufsize = 64; _ _
char ubuf [ ubufsi ze] ; Sistema Operativo
......... waern . . .
......... call int read (device dp, char *punt, int cont){
= i . int n, D
n read(4| N, ubuf, ubufsize); +—. char buffer[N:
® < individuazione del dispositivo D coinvolto (naming)>;
......... < controllo degli accessi>;
} ® ~ n=s_read(D, buffer, Ny;
<trasferimento dei dati dabuf f er di sistemaaubuf >, <«—

returnn; // ritornodaint.

}

interfaccia device independent

int _read (int disp, char *pbuf, int cont){
<attivazione del dispositivo>;
—»  <sospensione del processo>;
@ r et ur n (numero dati letti);
}

void inth() {
<trasferimento dati in buf f er >;
<riattivazione processo> NE)

>

}

hardware ——---"----------



Gestione del temporizzatore

* Per consentire la modalita di servizio a divisione di tempo e
necessario che il nucleo gestisca un dispositivo
temporizzatore tramite un’apposita procedura che, ad
Intervalli di tempo fissati, provveda a sospendere I
processo in esecuzione ed assegnare l'unita di
elaborazione ad un altro processo

« Gestione del clock: 1 dispositivi clock generano
Interruzioni periodiche (clock ticks) a frequenze stabilite; la
gestione software delle interruzioni consente di ottenere
alcuni servizi quali:

eaggiornamento della data

sgestione del quanto di tempo (sistemi time-sharing)
svalutazione dell'impegno della CPU di un processo
egestione della system call ALARM

egestione del time-out (watchdog timers)



Il controllore del timer contiene, oltre ai registri di controllo e
di stato, un registro contatore nel quale la CPU trasferisce
un valore intero che viene decrementato dal timer.

Quando il registro contatore raggiunge il valore zero Il
controllore lancia un segnale di interruzione.

Nel descrittore della periferica timer sono presenti:

- un array di N semafori privati (fine_attesa[N]).
Ciascun semaforo viene utilizzato per bloccare |l
corrispondente processo che chiama la delay.

- un array di interi utilizzato per mantenere aggiornato |l
numero di quanti di tempo che devono ancora passare
prima che un processo possa essere riattivato



Descrittore del timer

Indirizzo registro di controllo

Indirizzo registro di stato

Indirizzo registro contatore

Array di semafori privati

fine attesa[ N




void delay (int n) {
| nt proc;
proc=<i ndi ce del processo in esecuzi one>,
descrittore.ritardo[ proc]= n;
/ | sospensi one del processo
descrittore.fine attesa[proc].wait();

}

void inth(){
for(int=0; int<N, i++)
| f (descrittore.ritardo[i]!=0){
descrittore.ritardo [i1]--;
| f (descrittore.ritardo[i]==0)
descrittore.fine _attesa[proc].signal();



 Aggiornamento della data Il tempo del giorno viene
mantenuto in secondi in un registro a 32 bit. Un contatore
secondario conta i ticks (es.: frequenza 50 Hz) fino ad

ottenere un secondo.
< 32 hit

tempo del giorno
in second

Numero di ticks per ottenere 1
secondo (es. 50 ticks)

2 32 secondi e circa 136 anni. Nei sistemi Unix il tempo si
conta dal 1 gennaio 1970. Si avra overflow del clock nel
2038 (I'intero a 32 bit e con segno).



e Gestione del quanto di tempo. Quando un processo
Inizia I'esecuzione, viene Inizializzato un contatore con il
valore del quanto di tempo espresso in clock ticks. Ad ogni
Interruzione il contatore e decrementato di 1. Quando
raggiunge il valore zero, lo scheduler sottrae la CPU al
pProcesso.

* Valutazione dell'impegno di CPU di un processo. Ad
ogni clock tick viene incrementato di 1 un campo contenuto
nel descrittore del processo in esecuzione (problema delle
Interruzioni che possono avvenire durante I'esecuzione del
Processo).



o System Call ALARM. Un processo puo richiedere al S.O.
un segnale, un’interruzione, un messaggio, etc... dopo un
certo tempo (es. pacchetto inviato sulla rete deve essere
ritrasmesso, se non riconosciuto, entro un intervallo di

tempo).

segnale corrente segnale successivo

4200 3

clock

header 3 S » 6 . y 1|0




Nel caso siano attivi piu segnali si simula la presenza di
piu clock tramite una lista ordinata. Ogni elemento della
lista definisce quanti clock ticks occorre attendere per |l
prossimo segnale dopo il precedente. | segnali sono attesi
a 4203, 4207, 4213, 4215, 4216.

Ad ogni tick Il valore di “segnale successivo”
(nell’esempio, 3) viene decrementato di 1. Quando
diventa zero, viene generato il segnale corrispondente al
primo elemento della lista. Questo viene rimosso dalla
lista e “segnale successivo” viene aggiornato
(nell’esempio, 4).



Gestione e organizzazione dei dischi

seftore

gap
tra settori

Organizzazione fisica

gap
tratracce

traccia

a) disco singolo
b) disk pack

—cilindro




Indirizzo di un settore (blocco fisico)
(f,t,s)

f numero della faccia, t numero della traccia nell’ambito della
faccia, s numero del settore entro la faccia.

Tutti | settori che compongono un disco ( 0 un pacco di
dischi), vengono trattati come un array.

settore 0 settore 1 ---1 settore N-1 settore N |----- settore 2N-1 settore 2N |------

traccia: O traccia: O traccia: O traccia 1 traccia: 1 traccia: 2
settore: O settore: 1 settore: N-1 settore: O settore: N-1 settore: O




Indicando con

M il numero di tracce per faccia
N numero di settori per traccia

un settore di coordinate (f,t,s) viene rappresentato nell’ambito
dell’array con l'indice |

I=F*M*N+t*N+s



Scheduling delle richieste di trasferimento
TF=TA+TT

TF  tempo medio di trasferimento di un settore (per
leggere o0 scrivere un settore)

TA  tempo medio di accesso (per posizionare la testina di
lettura/ scrittura all’inizio del settore considerato)

TT  tempo di trasferimento dei dati del settore

TA= ST +RL

ST tempo di seek (per posizionare la testina sopra la
traccia contenente Il settore considerato)

RL  rotational latency (tempo necessario perché il settore
ruoti sotto la testina)



Parametri AC2H40 WDEIZ300
Numero cilindri (N. di tracce per ogni faccia) {48 13614
Tracce per cilindro 4 b
Settori per traccia 252 320
Capacit 540 MB 18.3GB
Tempo minimo di seek (tra cilindri adiacenti) 4 msec. (.6 msec.
Tempo medio di seek |1 msec. 5.2 msec.
Tempo di rotazione |3 msec. b msec.
empo di trasterimento di un settore 3 ns s

Tabella 5.2 parametri caratterizzanti i aue dischi WD AC2540 e WDETR300,



TT  tempo necessario per far transitare sotto la testina

I'intero settore. Indicando con t il tempo necessario per

compiere un giro, s il numero di settori per traccia, si ha
TT=1t/s (valore approssimato).

Quindi
TF= ST+RL+TT

Il tempo medio di trasferimento dipende sostanzialmente dal
tempo medio di accesso (ST e RL).

Due modi di intervento:
- Criteri con cui 1 dati sono memorizzati su disco
(metodo di allocazione del file)
- Criteri con cui servire le richieste di accesso
(politiche di scheduling delle richieste)



Politiche di Scheduling delle Richieste

Nella valutazione del tempo medio di attesa di un processo, e
necessario tenere in conto anche il tempo durante il quale il processo
attende che la sua richiesta di accesso venga servita.

Le richieste in coda ad un dispositivo possono essere servite secondo
diverse politiche:

- First-Come-First-Served (FCFS)
- Shortest-Seek-Time-First (SSTF)
- SCAN algorithm

- C-SCAN (Circular-SCAN)

FCFS. Le richieste sono servite rispettando il tempo di arrivo. Si elimina il
problema della starvation, ma non risponde ad alcun criterio di ottimalita.

SSTF. Seleziona la richiesta con tempo di seek minimo a partire dalla
posizione attuale della testina; puo provocare situazioni di starvation



SCAN. La testina si porta ad una estremita del disco e si
sposta verso l'altra estremita, servendo le richieste man
mano che viene raggiunta una traccia, fino all’altra
estremita del disco. Quindi viene invertita la direzione.

CSCAN. Fornisce un tempo di attesa piu uniforme. Arrivata
alla fine del disco la testina, essa torna immediatamente
all’'inizio del disco.

Testina posizionata sulla traccia sul cilindro 20. Richieste
presenti in coda: 14, 40, 23, 47, 7



Algoritmo di scheduling FIFO

Posizione
Iniziale

cilindri

tl v 7 HT - 40 47 50

Spostamento totale = 113cilindri



Algoritmo di Scheduling SSTF

Posizione
cilindri Iniziale

Spostamento totale = 59 cilindri



Algoritmo di Scheduling SCAN

Posizione
cilindri Iniziale

T e B B S POy O B L L B
L T T T T e T T T T T T T T IS T T L S L L L L

Spostamento totale = 53 cilindri



C-SCAN (circular scan).

Ipotizzando una distribuzione uniforme per le richieste relative
alle varie tracce, quando la testina inverte la direzione sono
presenti poche richieste in quanto servite di recente.

La maggior densita di richieste e presente all’altra estremita
del disco. Queste richieste sono guelle con maggior tempo di
attesa.



Dischi RAID
(Redundant Array of Independent Disks)

* Miglioramento delle prestazioni delle memorie di massa:
problemi tecnologici.

* Soluzione: utilizzo di piu dischi contemporaneamente che
consentano di operare in parallelo .

 Organizzazione dei dati sui dischi in modo da ottenere
parallelismo (=efficienza) e ridondanza (=affidabilita’).

e Definizione di standard per la organizzazione dei dati.
Obiettivo: unico disco virtuale caratterizzato da grande
capacita, alta velocita di ingresso e alta affidabilita.

= RAID: standard piu diffuso.

— 7 diverse varianti dello standard RAID: livelli 0,1,2,3,4,5,6 che
dipendono dal grado di affidabilita e rapidita di accesso.



Schema utilizzato nello standard RAID per la
parallelizzazione degli accessi

disco .
virtuale .-~

discoreaen. 1 discoreaen. 2 discoreaen. 3




Organizzazione del dati

o Tutti | dati sono visti come appartenenti ad un disco virtuale.

e Le informazioni residenti su disco virtuale sono memorizzate
suddividendole sui dischi reali, ad esempio a livello di settore.

e Una traccia del disco virtuale contiene un numero di settori
pari ad n volte quello di una traccia di un disco reale.

e | settori sono distribuiti round-robin.
 Possibilita di velocizzare tutte le operazioni di I/O che

richiedono di operare su un insieme contiguo di settori del
disco virtuale. Livello massimo di parallelismo pari a n.



Livello O
Non prevede alcun livello di ridondanza dei dati

Livello 1

e Ridondanza ottenuta tramite la duplicazione del dati.
Ogni settore virtuale viene mappato su una coppia di dischi
fisici (mirroring).

= Alta efficenza, alta affidabilita ma costi elevati.

Operazioni di lettura: su uno qualungue dei due dischi,
guello che richiede il minor tempo di ricerca.

Possibilita™ di lettura in parallelo di settori allocati sullo
stasso disco.

Operazioni di scrittura: possono procedere in parallelo su
entrambi i dischi( la durata dell’'operazione e vincolata dal
tempo di scrittura piu lungo.

e Si usa come funzione di backup per dati critici.



| livelli successivi si differenziano dal precedente schema
per il livello di ridondanza richiesto e per i meccanismi di
rilevazione e recupero da guasti (schemi di codifica
Hamming o meccanismi di controllo di parita).

Livello 2

* || codice di correzione di errore viene calcolato sul bit
corrispondenti di ogni disco e 1 bit del codice sono
memorizzati nelle corrispondenti posizioni in dischi di
parita multipli (utilizzo del codice di Hamming, corregge
errori di bit singoli e rileva errori di bit doppi).

=>» Bit diversi della stessa parola sono allocati su dischi
diversi

» Costi elevati: necessita di sincronizzare tutti i
dischi(posizione della testina e rotazione).



@ [Sp4 ] 573 | [Swpe] [Sp7] Aap ewio
(Sree) (Sne ] [sero) (st
(svpe] (Ses) svipo] (v

| B | | Bz ] [ s || Bie ] [ s || Bve ) | w7




Livelli 3,4,5

o Utilizzo di un insieme di bit di parita per I'insieme (parola
nel livello 3, settore nei livelli 4-5) di tutti | bit che si trovano
IN posizioni corrispondenti su tutti | dischi.

 In caso di un guasto di un disco si accede al disco di parita
e | dati vengono ricostruiti utilizzando i dischi rimanenti.

Esempio: Array di 5 dischi: x0,x1,x2,x3 contegono dati, x4 e
Il disco di parita.

 Parita per il bit i-esimo:

x4(1) = x3(1) A x2(1) A x1(i) A x0(i)
da cui

x1(3i) = x4() A x3(i) A x2(i) A x0(i)



>
{d} HAmeuea
]

Sl
.'
o) (S ] | Sps )
(s7pe) (S

Strip 0
e

Strip 8
]
Strip 12
P ]
P16-19
g A

Strip 4

PO-3

P47

-
Strip 1
R
Strip 5
e 1
Strip 9
o
Pi12-15
e

Strip 16
Seupiugas’

Strip 2
-

Strip 6
h"‘-'———""‘
Pg-11
]

Strip 13
o

Strip 17
e, SO

Strip 3
M ]

P4-7
—
Strip 10
I

Strip 14
R

Strip 18
T

(.

PO-3
Strip 7

L.""'———"""J

Strip 11
e
Strip 15
e 1

Strip 19
SRR

RAID level 4

RAID level 5




* Nel caso di n dischi, per ogni gruppo di n settori
consecutivi, memorizzati sugli n dischi dell'array, viene
calcolato un n+lesimo settore contenente bit di parita.

* || primo bit del settore di parita corrisponde al bit di parita
calcolato sui primi bit degli n settori regolari. Analogamente
per gli altri bit di ogni settore.

Vantaggi per I'affidabilita: se uno qualunque dei settori di
un disco si corrompe per un guasto il suo contenuto puo
essere recuperato utilizzando il corrispondente settore di
parita.

=>» Ogni operazione di scrittura coinvolge il settore di parita.



Livelli 3,4
| bit di parita vengono memorizzati su un nuovo disco (disco
di parita). Criticita

Livello 5 (Block interleaved parity)
| settori di parita vengono allocati su tutti i dischi esistenti in
modo circolare (round-robin).



