
Le Azioni Atomiche

AZIONI ATOMICHE

Strumento di più alto livello per la strutturazione di
programmi concorrenti

Applicazioni:

– sistemi operativi distribuiti
– applicazioni transazionali

• Utilizzo nella costruzione di programmi tolleranti vari
tipi di malfunzionamenti

• E’ un’astrazione realizzata con i meccanismi
linguistici offerti dal linguaggio concorrente, piuttosto
che un nuovo costrutto linguistico

CONSISTENZA DEI DATI

• Ogni oggetto astratto può trovarsi in stati consistenti
o inconsistenti a seconda che si sia verificata o
meno una particolare relazione (invariante del tipo)
fra i valori delle variabili componenti l’oggetto

• Ogni tipo ha una sua relazione invariante, che lo
caratterizza dal punto di vista semantico

• Ogni operazione del tipo deve essere programmata
in modo da lasciare l’oggetto su cui opera in uno
stato consistente (cioe` in uno stato in cui
l'invariante sia soddisfatta)

• Durante l’esecuzione dell’operazione l’oggetto può
passare attraverso stati inconsistenti, che tuttavia
non devono essere visibili ad altre operazioni

• Modello ad ambiente globale: monitor

• Modello ad ambiente locale: processo servitore

CONSISTENZA DEI DATI E PARALLELISMO

Sia O = [O1, O2,….. On] l'insieme degli oggetti su cui operano più
programmi concorrenti

è necessità di mantenere la consistenza dell’insieme di oggetti al
termine dell’esecuzione di un programma

• La relazione di consistenza R (invariante) è relativa all’insieme
di oggetti

ESEMPIO: applicazioni bancarie

– oggetti: conti correnti
– programmi: operazioni di lettura, modifica, ecc., che riguardano

più oggetti
• Ad esempio, Operazione di trasferimento: dati gli oggetti O1e O2,

spostare x da O1 a O2.

è L'invariante e`: R = valore O1 + valore O2 = costante

• Durante l’esecuzione del programma, quando x è stata
tolta da O1 ma non ancora sommata a O2, si ha stato
complessivo inconsistente (anche se i due oggetti si
trovano singolarmente in stato consistente)

• La mutua esclusione sui singoli oggetti garantisce
l’atomicità delle operazioni su di essi, ma non
dell’intera operazione su tutto l’insieme

• E’ necessario che l’intero programma che interessa gli
oggetti possa essere considerato atomico, cioè non
divisibile (vale per entrambi i modelli).

Soluzioni

1. nuova astrazione che racchiude tutti gli oggetti e
tutte le operazioni possibili (monitor o processo
servitore)

è Limiti:
• Le operazioni possono non essere note al momento

delle definizione dell’astrazione
• non e` possibile operare direttamente sugli oggetti

2. Associare ad ogni oggetto un gestore ed obbligare i
processi applicativi a richiedere l’uso dedicato di
tutti gli oggetti e rilasciarli solo dopo che il nuovo
stato consistente è stato raggiunto.

Consistenza dei Dati e Malfunzionamento

• Fino ad ora abbiamo considerato l’azione atomica come
un’operazione che in forma non divisibile fa transitare
un insieme di oggetti da uno stato consistente iniziale
(S1) ad un altro consistente finale (S2).

• Durante l’esecuzione dell’azione atomica si può
verificare una qualche condizione anomala che ne
impedisce il completamento.

• Affinché gli oggetti non rimangano in uno stato
inconsistente, è necessario un meccanismo di
recupero che riporti gli oggetti in uno stato consistente.

Azione atomicaS1 S2

Proprieta` "TUTTO O NIENTE"

Indicando con S’ lo stato risultante dall’esecuzione
dell’azione atomica, si deve avere:

S’= S1 oppure S’=S2

dove S1 e S2 sono rispettivamente lo stato iniziale e
finale.

La proprietà indicata prende il nome di

tutto o niente

Proprietà tutto o niente (segue)

• Un’azione atomica che gode della proprietà del tutto
o niente è in grado di tollerare il verificarsi di
condizioni anomale durante la sua esecuzione, senza
lasciare gli oggetti in stato inconsistente.

Esempio dell’applicazione bancaria:

• Evento anomalo dopo che x è stata addebitata ad
O1, ma non ancora accreditata ad O2.

• O1 e O2 sono globalmente inconsistenti.

è Necessità di un meccanismo di recupero che riporti
lo stato complessivo in uno stato consistente.

Azioni Atomiche
Proprieta` Fondamentali

• Per garantire la consistenza dei dati, l’azione
atomica deve possedere due proprietà fondamentali:

– Tutto o niente (o atomicità nei confronti di eventi
anomali)

– Serializzabilità (o atomicità nei confronti della
concorrenza)

Serializzabilita`

• La proprietà di serializzabilità delle azioni
atomiche è simile a quella di indivisibilità delle
azioni primitive:

Assicura che ogni azione atomica operi
sempre su un insieme di oggetti il cui stato
iniziale è consistente ed i cui stati parziali,
durante l’esecuzione, non sono visibili ad
altre azioni concorrenti

• Sia A un’azione atomica che opera su un insieme di oggetti
O= {O1, O2,….. On}

• Siano Richiesta (Oi) e Rilascio (Oj) le operazioni per
richiedere al gestore di ogni oggetto l’uso esclusivo
dell’oggetto

• La serializzabilità viene garantita allocando dinamicamente
singoli oggetti in modo dedicato alle azioni atomiche
secondo il seguente protocollo:

a. Ogni oggetto deve essere acquisito da A in modo esclusivo prima
di qualunque azione su di esso:
è Richiesta (Oi) e` bloccante se l’oggetto Oi non è disponibile

b. Nessun oggetto deve essere rilasciato prima che siano eseguite
tutte le operazioni su di esso;

c. Nessun oggetto può essere richiesto dopo che è stato effettuato
un rilascio di un altro oggetto

ESEMPIO:

A1 : { X= X+20; A2 : { X= X*20;
Y= Y+20; Y= Y*20;

} }

Sia X = Y la relazione di consistenza:

• Ogni azione atomica preserva la consistenza e quindi anche
una qualunque esecuzione sequenziale di A1 e A2

• Se A1 e A2 sono eseguite in parallelo possono nascere
inconsistenze

Rispettando i due primi requisiti (a e b) si può avere

A1 :{ Richiesta(X); A2:{ Richiesta(X);
X= X+20; X= X*10;
Rilascio(X); Rilascio(X);
Richiesta(Y); Richiesta(Y);
Y= Y+20; Y= Y*10;
Rilascio(Y); Rilascio(Y);

} }

IPOTESI: dopo Rilascio(X) ma prima di Richiesta(Y) da parte di
A1 , viene eseguita A2

Xi Yi valori iniziali di X e Y

Xf Yf valori finali di X e Y

Xi,=Yi per ipotesi

Xf = (Xi + 20) * 10

Yf = (Yi * 10) + 20

E quindi

Xf diverso Yf

• L’inconsistenza è dovuta al non rispetto del requisito c)

• Il requisito c) assicura che quando un’azione rilascia un
oggetto contenente il valore finale, nessuno degli altri
oggetti su cui l’azione opera è libero e contenente il valore
iniziale

TWO PHASE LOCK PROTOCOL

I° fase (fase crescente)

l’azione atomica acquisisce gli oggetti ed opera su di essi

II° fase (fase calante)

inizia non appena viene eseguito il primo rilascio e durante
essa non possono essere acquisiti ulteriori oggetti

t1 t2 t3 t4 t

Diritti di
accesso

Diritto su y

Diritto su x

A1 : { A2 :{

Richiesta(X); Richiesta(X);
X= X+20; X= X*10;
Richiesta(Y); Richiesta(Y);
Rilascio(X); Rilascio(X);
Y= Y+20; Y= Y*10;
Rilascio(Y); Rilascio(Y);

} }

•Si può verificare che le inconsistenze esaminate precedentemente
non possono più verificarsi qualunque sia il grado di concorrenza tra
le due azioni atomiche

•E` così soddisfatta la condizione di serializzabilità.

Per soddisfare la condizione del “tutto o niente”
occorre definire un ulteriore requisito:

d. Nessun oggetto può essere rilasciato prima che
l’azione atomica abbia completato la sua
esecuzione
In altri termini, i rilasci devono costituire le ultime
operazioni dell’azione atomica

ESEMPIO: A1 e A2 soddisfano a), b), c) ma non d).

A1 e A2 con riferimento all’esempio precedente

1. A1 in esecuzione:

• viene acquisito X e viene eseguita X = X+20

• viene acquisito Y

• viene rilasciato X, contenente il valore finale

2. A2 in esecuzione:

• viene acquisito X e viene eseguita X = X*10

3. A causa di un malfunzionamento (es. condizione di stallo
in cui il processo che esegue A1 è coinvolto) l’oggetto X
viene riportato al valore che aveva prima che iniziasse A1 ;

4. Gli effetti dell’ultima operazione di A2 su X vengono distrutti.
E’ necessario pertanto ripristinare lo stato iniziale degli
oggetti su cui opera A2 .

L’operazione di distruzione degli effetti di un’azione
atomica ed il ripristino del valore iniziale degli oggetti
viene indicato con il termine di aborto.

Effetto domino: l’aborto di un’azione atomica genera, come
effetto collaterale, l’aborto di una diversa azione
atomica (e così via)

Causa: l’azione atomica rilascia un oggetto prima di aver
completato la sequenza di operazioni su tutti gli
oggetti interessati e di aver raggiunto uno stadio di
avanzamento tale da garantire che, da quel punto in
poi, qualunque evento anomalo accada, l’azione
atomica non sarà più abortita.

Operazione commit
• Per garantire la proprietà tutto o niente (come si vedrà) è

necessario che il meccanismo di recupero da
malfunzionamento si comporti in maniera diversa a
seconda dell’istante in cui l’evento anomalo si verifica.
Dovrà:

– abortire l’azione se il malfunzionamento avviene quando gli oggetti
sono in stato inconsistente (effetto niente)

– garantire il completamento dell’azione quando gli oggetti
sono nel nuovo stato consistente (effetto tutto)

• L'operazione primitiva commit discrimina i due tipi di
comportamento del meccanismo di recupero da
malfunzionamento;

• Viene eseguita quando tutti gli oggetti sono al valore finale
e produce come effetto l’impossibilità di aborto dell’azione
atomica (completamento con successo).

•Il requisito d) si può riformulare nel seguente modo:

Ogni azione atomica deve rilasciare i propri oggetti dopo
l’operazione di completamento con successo (commit)

A1 : { A2 : {

Richiesta(X); Richiesta(X);
Richiesta(Y); Richiesta(Y);
X:= X+20; X:= X*10;
Y:= Y+20; Y:= Y*10;
commit; commit;
Rilascio(X); Rilascio(X);
Rilascio(Y); Rilascio(Y);

} }

è Rimane soddisfatto il two phase lock protocol

Le azioni atomiche vengono spesso utilizzate come strumento
per strutturare applicazioni transazionali, ad esempio gestione
di basi di dati

Richiesta (x) viene indicata con lock (x)

Rilascio (x) viene indicata con unlock (x)

•Shared lock per acquisire un oggetto su cui operare in sola
lettura

•Exclusive lock lettura e scrittura

TRANSAZIONE ⇒ sequenza di operazioni effettuate su data
base che fanno passare il sistema da uno stato all’altro,
ambedue consistenti

Deve rispettare 4 proprietà:

ACID (Atomic, Consistency, Isolation, Durability)

1. ATOMICITA’ ⇒ transazione come entità indivisibile

2. CONSISTENZA ⇒ evoluzione del data base da uno stato
corretto all’altro

3. ISOLAMENTO ⇒ informazioni protette durante l’esecuzione
delle transazione

4. DURATA ⇒ una volta che la transazione sia completata i
suoi effetti sul data base hanno carattere duraturo. Possono
essere alterati soltanto da altre transazioni e non da
malfunzionamenti del sistema.

Proprietà “tutto o niente”

• Azione atomica termina in uno dei due modi:

Terminazione normale - l’azione atomica completa l’intera
sequenza delle operazioni sugli oggetti. Nuovo stato
consistente

Terminazione anomala – l’azione atomica non completa
l’intera sequenza di operazioni sugli oggetti che devono essere
ripristinati al valore iniziale (azione atomica abortita)

• La sequenza dei rilasci fa parte dell’operazione di
completamento con successo o di aborto

Cause di terminazione anomala:

1. Il verificarsi di un’eccezione sollevata durante una delle
operazioni sugli oggetti. Il processo esegue la primitiva
abort

2. Il verificarsi di un malfunzionamento hardware o di una
condizione di blocco critico. Il sistema di recupero da
malfunzionamento forza l’aborto dell’azione atomica (stato
iniziale)

• In entrambi i casi è necessario un meccanismo di supporto
alle azioni atomiche in grado di ripristinare, per ogni
oggetto, il suo stato iniziale.

• Il meccanismo necessita di informazioni relative allo stato corrente
delle operazioni ed allo stato iniziale degli oggetti.

• Nel caso di eccezioni durante l’ esecuzione dei programmi (caso 1)
queste informazioni sono facilmente disponibili

• Nel caso di malfunzionamento hardware (interruzione di energia
elettrica, guasto fisico, ecc.) si ha la perdita di tutte le informazioni
residenti in RAM

IPOTESI:Le informazioni su memoria di massa rimangono inalterate.
Le informazioni necessarie per il recupero vengono
mantenute in memoria di massa.

Memoria stabile

• Esiste la possibilità che le informazioni contenute
nella memoria di massa risultino alterate (non
consistenti) in seguito ad un malfunzionamento

Es: Caduta (crash) dell’elaboratore mentre sta
trasferendo informazioni nella memoria di massa

Memoria stabile: astrazione, con la proprietà di
contenere le informazioni necessarie al recupero e di
non essere soggetta ad alcun tipo di
malfunzionamento

• Realizzata tramite uso di ridondanza delle informazioni

• Le operazioni per leggere e scrivere su questa memoria sono
atomiche (stable-read, stable-write). Un malfunzionamento
che si verifichi durante la loro esecuzione deve avere gli
stessi effetti di un malfunzionamento che si sia verificato o
prima o dopo l’esecuzione stessa (tutto o niente)

• Per specificare il tipo d operazione che deve eseguire il
meccanismo di recupero dopo la caduta dell’elaboratore è
necessario caratterizzare lo stato del processo in base allo
stato di avanzamento nell’esecuzione dell’azione atomica

STATI DI UN PROCESSO
Stato working

• Durante l’esecuzione del corpo dell’azione atomica. Quando il
processo è in questo stato gli oggetti sono inconsistenti.

• Se l’elaboratore cade, il meccanismo di recupero deve abortire l’azione
atomica.

Stato committing

• Durante la terminazione corretta dell’azione. Gli oggetti sono al loro
stato finale. Il processo commuta in tale stato tramite la commit. Se
l’elaboratore cade il meccanismo di recupero deve completare l’azione
(valori finali già disponibili)

Stato aborting

• Durante la terminazione anomala dell’azione atomica. Gli oggetti
devono essere ripristinati al loro valore iniziale.Il processo commuta in
tale stato tramite abort. Se l’elaboratore cade durante l’azione di
aborto, il meccanismo di recupero deve garantire il completamento del
ripristino dei valori iniziali degli oggetti

committingworking

aborting

end

end

abort
caduta

caduta

caduta

begin commit

•Le informazioni sullo stato in cui si trova un processo che
esegue un’azione atomica vengono tenute aggiornate in una
struttura dati (DESCRITTORE DI AZIONE) allocata in
memoria stabile

•Primitiva begin action crea in memoria stabile un descrittore
di azione , inizializzando lo stato del processo a “working”

•Le primitive abort e commit dovranno commutare
atomicamente lo stato del processo ad “aborting” e
“committing”

⇓
•Durante la riattivazione dell’elaboratore, il meccanismo di
recupero può desumere, analizzando il descrittore dell’azione
atomica, lo stato dei processi al momento del
malfunzionamento

OPERAZIONE DI ABORT

• Gli oggetti risiedono in memoria stabile. All’inizio dell’azione
atomica viene creata una copia degli oggetti (copia di
lasvoro) in memoria volatile sulla quale eseguire le
operazioni

• L’aborto dell’azione atomica coincide con la distruzione delle
copie di lavoro in memoria volatile (in memoria stabile
esistono i valori iniziali)

• Soltanto se l’azione termina correttamente i valori finali delle
copie di lavoro sono salvati nella copia valida in memoria
stabile

Schema di programma di un’azione atomica

< creazione del descrittore dell’azione atomica>;
< richiesta esclusiva degli oggetti residenti in memoria

stabile>;
/*fase crescente del two phase lock protocol*/

<creazione copie volatili degli oggetti>;
<sequenza di operazioni sulle copie volatili>;

/*corpo dell’azione atomica*/
if (<assenza di malfunzionamenti>)

<terminazione (descrittore)>;
else abort (descrittore);
<distruzione copie volatili>;
<rilascio oggetti in memoria stabile>;
/*fase decrescente del two phase lock protocol*/
<eliminazione descrittore>

•La procedura Terminazione viene eseguita, nel caso di corretto
completamento dell’azione atomica, per salvare in memoria stabile i valori
finali degli oggetti.

•La procedura prevede una sequenza di operazioni stable write; se
l’elaboratore cade a metà sequenza si ha uno stato inconsistente.

Copia delle intenzioni: Copia dei valori finali creata in memoria stabile
prima della commit (stato working), senza modificare la copia stabile
originale.

Solo se la copia delle intenzioni è stata correttamente memorizzata, viene
successivamente trasferito il suo valore nella copia originale.

<creazione copia intenzioni in memoria stabile>
commit
<trasferimento valori da copia intenzioni a copia oggetti in

memoria stabile>
<distruzione copia intenzioni>

•Le due fasi della procedura sono intervallate dalla primitiva
commit.

•Se l’elaboratore cade durante la prima fase, la copia
originale degli oggetti in memoria stabile rimane inalterata al
valore iniziale.L’azione viene abortita e viene distrutta la
copia delle intenzioni.

•Se la caduta avviene nella seconda fase, la copia finale
viene corrotta ma rimane valida in memoria stabile la copia
delle intenzioni.

•In fase di riattivazione la seconda fase della procedura viene
eseguita dall’inizio (fase committing).

Realizzazione della memoria stabile

• Memoria stabile (astrazione) è un tipo di memoria con le
seguenti proprietà:

– non è soggetta a malfunzionamenti
– le informazioni in essa residenti non vengono perdute

o alterate a causa della caduta dell’elaboratore.

• La prima proprietà si ottiene usando tecniche che fanno
uso di ridondanza.

• La seconda proprietà richiede che le operazioni di lettura
e scrittura siano delle operazioni atomiche (proprietà del
tutto o niente). Stable read e stable write.

Tipi di malfunzionamento

Si prendono in considerazione i seguenti tipi di errore:

a) errori in lettura. Possono essere eliminati rileggendo le informazioni
desiderate. Uso dei codici di ridondanza ciclica (CRC).
(errori transitori)

b) errori in scrittura. Sono rilevabili rileggendo le informazioni scritte e
confrontandole con quelle originali. L’errore può essere eliminato
riscrivendo le informazioni (errori transitori).

c) alterazioni delle informazioni a causa di disturbi o di guasti hardware
che perdurano per un certo numero n di letture consecutive
(errori persistenti).

Per i problemi del tipo c) si fa ricorso alla tecnica delle copie multiple.
Ridondanza di livello due: duplicazione di tutte le informazioni su due
unità a disco distinte.

Classificazione dei malfunzionamenti

• Malfunzionamenti dovuti a disturbi temporanei: gli esempi
a) e b)

• Malfunzionamenti dovuti a guasti hardware: esempio c) ed
errori prodotti dalla caduta dell’elaboratore durante una
scrittura.

Disco permanente: astrazione ottenuta eliminando ogni tipo
di guasto temporaneo.

• Utilizzo di una coppia di dischi permanenti per realizzare
l’astrazione memoria stabile.

• Un blocco stabile è costituito da una coppia di blocchi uno
per ogni disco permanente.

• Ipotesi di base: le due copie non vengono alterate
entrambe dallo stesso malfunzionamento. In tal modo, in
fase di lettura almeno una deve contenere il valore
corretto.Il valore contenuto in un blocco stabile coincide con
il valore del primo blocco se questo contiene dati corretti,
altrimenti coincide con il valore del secondo blocco.

• Atomicità di stable read e stable write .

Proprietà di serializzabilità. La memoria stabile è realizzata
come un monitor il che garantisce l’indivisibilità delle sue
operazioni.

Proprietà "tutto o niente"
Stable read gode della proprietà del tutto o niente perché non
effettua alcuna modifica.

Stable write. Se si verifica un guasto durante la operazione di
scrittura:

•sul primo blocco, questo viene alterato, ma rimane intatto il
secondo (effetto niente della operazione).
•sul secondo blocco, rimane valido il primo (effetto tutto
dell’operazione)
•tra le due operazioni: il risultato è non consistente. Il
meccanismo di recupero legge i due blocchi:

•Se uno è alterato viene sostituito con l’altro.
•Se sono entrambi corretti, ma con valori diversi significa
che c’è stato un guasto tra le due scritture
è Si copia il primo blocco nel secondo.

AZIONI ATOMICHE MULTIPROCESSO

• In alcune applicazioni può risultare conveniente che le
operazioni sugli oggetti di una azione atomica siano
eseguite non da un solo processo, ma da più processi.

• Le azioni atomiche multiprocesso sono tipiche dei sistemi
distribuiti dove gli oggetti possono essere allocati su nodi
diversi.

• L’elaborazione complessiva rimane comunque un’azione
atomica se gode delle due proprietà di serializzabilità e del
tutto o niente.

• L’ipotesi adottata è che i singoli processi operino ciascuno
su oggetti diversi; Ciò consente di evitare condizioni di
blocco critico.

• Se ogni processo segue il two phase lock protocol,
rilasciando gli oggetti su cui opera dopo la terminazione
dell’azione, è assicurata la proprietà di serializzabilità
dell’azione atomica.

• Per soddisfare la proprietà del tutto o niente è necessario
che tutti i processi completino le loro operazioni con lo
stesso risultato: o con successo o con abort.

• Un comportamento difforme (anche di un solo processo
partecipante) porterebbe, alla fine dell’azione, alcuni oggetti
al valore finale, altri al valore iniziale (stato inconsistente).

• Necessità di introdurre un nuovo stato, stato ready.

• Caratterizza un processo quando ha completato la propria
sequenza di azioni ed è pronto a terminare con successo
(commit), ma deve attendere che gli altri processi completino
le loro operazioni.

ready

committing
working

aborting

begin
end

end

prepare
caduta commit

abort
abort

• La transazione da working a ready si ha quando il processo
esegue la primitiva prepare. Con essa il processo perde il
diritto di abortire unilateralmente. Nello stato ready diventa
disponibile a terminare con successo o ad abortire.

• Il protocollo che ciascun processo esegue per negoziare il
tipo di completamento prende il nome di two phase commit
protocol.

• Nella prima fase ciascun processo specifica la propria
opzione (completamento con successo o aborto).

• Nella seconda fase viene verificata l’opzione degli altri: se
tutti hanno optato per terminazione con successo, tutti
transitano in stato committing; se almeno uno ha abortito,
tutti transitano in stato aborting.

• La primitiva prepare separa le due fasi del protocollo.

• Se cade l’elaboratore quando un processo è in stato ready,
il meccanismo di recupero deve ripristinare per tale
processo lo stato ready.

• Infatti il processo non può essere riattivato in stato aborting
poichè con prepare ha perduto il diritto di abortire
unilateralmente, né in stato committing perché ciò
presuppone che tutti siano pronti a terminare
correttamente.

• Il descrittore di azione atomica in memoria stabile dovrà
tenere aggiornato lo stato di tutti i processi partecipanti.

• La realizzazione dell’azione multiprocesso cambia a
seconda del modello di interazione tra processi.

• Nel modello a memoria comune il descrittore di azione è
un monitor.

• Nel modello a scambio di messaggi il descrittore è un
oggetto privato di un processo detto coordinatore
dell’azione atomica

Modello a memoria comune

• L’azione atomica viene iniziata da un processo che ne crea
in memoria stabile il descrittore e attiva in parallelo un certo
numero di processi che la eseguono.

• Quando tutti i processi hanno completato le loro operazioni,
con successo o terminando con aborto, il processo iniziale
riprende il controllo e termina l’azione cancellando dalla
memoria stabile il descrittore.

Schema del funzionamento del processo i-esimo:

• Richiesta esclusiva degli oggetti
• Creazione delle copie volatili degli oggetti
• Sequenza di operazioni sulle copie volatili
• Terminazione:

• con aborto
•Entra nello stato aborting. Lo stato viene riportato sul
descrittore della periferica. Vengono risvegliati i
processi nello stato di ready.

• con successo
•Crea la copia delle intenzioni in memoria stabile
•Transita nello stato di ready attraverso l’esecuzione
della prepare; viene modificato il suo stato da working
a ready nel descrittore dell’azione atomica.

•Verifica se almeno un processo ha abortito (è in stato
aborting). In caso affermativo, distrugge la copia delle
intenzioni ed esegue abort

(segue Terminazione con successo)

In caso negativo si possono verificare due casi:

• Qualche altro processo è ancora in stato di working: il
processo resta nello stato ready e si blocca.

• Tutti i processi sono nello stato di ready e desiderano
terminare correttamente: il processo entra nello stato di
committing, trasferisce gli oggetti dalla copia delle
intenzioni a quella originale e distrugge la copia delle
intenzioni.
Risveglia un altro processo che si era precedentemente
bloccato; il processo svegliato completa la sua
esecuzione.

Modello a scambio di messaggi
Processo coordinatore gestisce il descrittore dell’azione
atomica. E’ uno dei processi che realizzano l’azione atomica.
Crea il descrittore dell’azione atomica ed attiva in parallelo tutti
i processi partecipanti.

Two phase commit protocol
1. Il processo coordinatore, qualora sia disponibile a terminare
con successo l’azione atomica, crea la copia delle intenzioni in
memoria stabile ed esegue la prepare per entrare nello stato
ready.
Invia ad ogni partecipante un messaggio di richiesta esito e
rimane in attesa delle risposte.

2. Se arrivano una o più risposte di esito negativo l’azione
deve essere abortita (passo 5). Se tutti i partecipanti
rispondono con esito positivo l’azione deve terminare con
successo (passo 3).

3. Viene eseguita la primitiva commit e viene inviato a
ciascun partecipante un messaggio con l’indicazione di
terminare con successo. Il coordinatore rimane in attesa
del messaggio di avvenuto completamento da parte di tutti
i partecipanti.

4. All’arrivo di tutti i messaggi di avvenuto completamento il
coordinatore termina eliminando il descrittore dell’azione
atomica.

5. Viene eseguita la primitiva abort e viene inviato il
messaggio di completare con aborto a tutti i partecipanti. Il
coordinatore termina abortendo a sua volta.

Ogni partecipante esegue il seguente algoritmo:
1. Terminate le operazioni sugli oggetti, il processo può aver

abortito (stato aborting) o aver creato la copia delle
intenzioni (stato ready). In entrambi i casi attende il
messaggio richiesta-esito da parte del coordinatore.

2. Risponde con esito positivo o esito negativo a seconda
dello stato in cui si trova. Se è in stato aborting termina
abortendo, altrimenti resta in attesa del messaggio di
completamento da parte del coordinatore.

3. Se viene ricevuto il messaggio completare con aborto,
viene eliminata dalla memoria stabile la copia delle
intenzioni ed il processo termina abortendo.

4. Se viene ricevuto il messaggio completare con successo,
il processo termina correttamente trasferendo i valori della
copia delle intenzioni nella copia originale degli oggetti ed
elimina la copia delle intenzioni. Invia al coordinatore il
messaggio avvenuto completamento.

•Nei sistemi distribuiti si possono avere due tipi particolari di
malfunzionamenti:

- Perdita (o invalidazione) dei messaggi in rete
- Caduta dei singoli nodi della rete.

•Comportano il non arrivo a destinazione di alcuni messaggi o
la non ricezione delle risposte da parte del processo mittente.

•Utilizzo di un temporizzatore per limitare il tempo di attesa
di un messaggio. Al termine del tempo previsto, il processo
viene riattivato e viene eseguita una procedura per richiedere
nuovamente l’informazione oppure per abortire.

•Per fronteggiare la caduta dei singoli nodi, ogni processo
partecipante deve mantenere in memoria stabile delle
variabili di stato da utilizzare in fase di riattivazione.

AZIONI ATOMICHE NIDIFICATE

•In base alle proprietà di serializzabilità e tutto o niente,
un’azione atomica rappresenta un’unità di programma che
non può essere nidificata entro altre azioni atomiche.

•A1 e A2 azioni atomiche con A2 nidificata entro A1
(costituisce una delle operazioni eseguite da A1).

•Lo schema presenta problemi che non consentano, se non si
modificano le proprietà delle azioni atomiche, la sua
realizzazione.

Problemi
• Quando A2 termina, il processo che la esegue rilascia tutti gli oggetti su

cui A2 ha operato. Gli oggetti sono disponibili per essere acquisiti da altri
processi e quindi per operarvi all’interno di altre azioni atomiche.

è Violazione della proprietà di serializzabilità per quanto concerne
l’azione atomica A1.

• Se A2 termina correttamente, essa modifica la copia stabile degli oggetti
su cui ha operato e li rilascia.

Se A1 per qualche motivo non termina correttamente, abortisce e disfa tutte
le modifiche effettuate sugli oggetti (tutto o niente).

Devono essere quindi ripristinati al valore iniziale anche gli oggetti di A2.
Operazione difficile perché per la corretta terminazione di A2 questi
valori sono andati perduti.

Possibilità di un effetto domino in quanto gli oggetti di A2 possono
essere stati acquisiti da altre azioni atomiche.

Limitazioni

• Impossibilità di modularizzare un programma strutturato in
termini di azioni atomiche.

• Alcune delle azioni atomiche nidificate all’interno di un’altra
azione atomica potrebbero essere eseguite in concorrenza in
quanto per effetto del two phase lock protocol, eventuali
competizioni per l’uso di oggetti comuni sarebbero
automaticamente risolte.

• Un’azione atomica nidificata potrebbe fallire senza
implicare la terminazione anomala dell’intera azione atomica.
Il programma potrebbe essere strutturato in modo da
eseguire un’azione atomica alternativa (sottoazione)

Soluzione
• Modifica dei protocolli two phase lock protocol e two

phase commit protocol:
1)Una sottoazione che termina con successo rende

disponibili gli oggetti all’azione atomica (solo a questa)
al cui interno la sottoazione è nidificata.

Si evita la visibilità degli stati intermedi di un’azione
atomica a causa della corretta terminazione di una sua
sottoazione.

2)Quando una sottoazione termina con successo, la
seconda fase di commitment viene ritardata ed
eseguita solo se l’azione più esterna termina con
successo.

In caso di aborto dell’azione esterna, tutte le sottoazioni
devono essere abortite. La modifica degli oggetti in
memoria stabile è effettuata dall’azione atomica più
esterna.

• Per garantire questo tipo di comportamento per ogni
oggetto viene mantenuta aggiornata una pila di copie di
lavoro.
All’inizio di una sottoazione viene generata una nuova
copia in testa alla pila.

Se la sottoazione termina con successo, la copia in testa
alla pila diventa la nuova copia di lavoro per l’azione più
esterna; diversamente viene scartata la copia in testa alla
pila.

CHIAMATA DI PROCEDURA REMOTA IN SISTEMI
DISTRIBUITI

• Le azioni atomiche sono particolarmente utili per strutturare
sistemi transazionali (accesso da parte di più utenti alle
informazioni contenute in un data base)

• Meccanismo di RPC è idoneo per le comunicazioni tra un
processo transazionale e i processi che geatiscono la base di
dati (modello cliente-servitore). Il cliente, dopo la richiesta di
servizio, rimane in attesa della risposta (extended rendez-
vous)

• Il meccanismo RPC rappresenta il meccanismo più idoneo
per la strutturazione di sistemi transazionali distribuiti
(client-server)

• La realizzazione del meccanismo RPC in un sistema
distribuito crea una serie di problemi legati ai
malfunzionamenti propri di questi sistemi:

- guasti alla sottorete di comunicazione
- caduta dei singoli nodi

• Possibili malfunzionamenti:

- messaggio di richiesta perduto
- messaggio di risposta perduto
- crash del nodo servitore durante il servizio

• Per evitare attese indefinite da parte del cliente, si ricorre ad un
meccanismo di temporizzazione nella RPC (time-out)

• La semantica delle RPC dipende dalle azioni intraprese allo
scadere dell’intervallo di tempo

• Le proprietà delle azioni atomiche consentono di ottenere
una di queste possibilità semantiche:

“at most once”

⇓
• In presenza di malfunzionamento durante la RPC questa viene

abortita senza produrre effetti

• Per ottenere ciò, la RPC viene gestita come un’azione
atomica, nidificata all’interno di un’azione di più alto livello,
costituente l’operazione eseguita dal processo cliente

• E’ possibile abortire la RPC, garantendo la sopravvivenza
dell’intera azione svolta dal processo cliente, che può decidere
di scegliere strade alternative

• RPC, vista come azione atomica nidificata, rappresenta
un’azione multiprocesso:

- processo che esegue la chiamata e si sospende

- processo servitore creato per eseguire l’azione

• I due processi devono eseguire il two-phome-committ
protocol, al termine dell’intera operazione del processo
cliente.

• Esistono altre semantiche per la chiamata di procedura remota
che non prevedono l’atomicità della chiamata

• Se il processo è interrotto dal meccanismo di
temporizzazione prima della ricezione dei risultati, si invia di
nuovo il messaggio di richiesta

⇓

• Possibilità di esecuzioni multiple della stessa procedura da
parte del processo servitore

⇓

• Occorre che le procedure siano idempotenti (una loro
ripetuta esecuzione produce sempre gli stessi risultati)

⇓

• In caso contrario è necessario ricorrere a particolari
algoritmi per riconoscere e scartare i messaggi ripetuti

