Chiamata di procedura remota

* Meccanismo di comunicazione e sincronizzazione tra
processi in cui un processo che richiede un servizio ad un
altro processo rimane sospeso fino al completamento del
servizio richiesto.

Meccanismo di tipo sincrono in cui processo mittente e
processo ricevente rimangono sincronizzati per tutto il
tempo necessario all’esecuzione del servizio da parte del
ricevente ed alla ricezione dei risultati da parte del
mittente (rendez-vous esteso).

Con gli strumenti gia™ visti, si puo realizzare come segue:
elato chiamante: send asincrona immediatamente
seguita da una receive
elato chiamato: una receive seguita, al termine

|_____dell'azione richiesta, da una send

* Analogia semantica (e spesso anche sintattica) con una
normale chiamata di procedura (chiamata di procedura
remota).

« Prevede il trasferimento di controllo tra processi che
operano in ambienti separati secondo il modello a scambio
di messaggi (modello cliente —servitore).

call <servizio> (paranetri - ingresso, parametri - uscita);

dove servizio identifica univocamente I'insieme di istruzioni
ed il processo che deve eseguirle per soddisfare la
richiesta.

renote procedure <servizio> (in<paranmetri-ingresso>,
out <paranetri di uscita>)

{0

Due modelli:

1) Per ogni richiesta di servizio viene creata una nuova
istanza del processo servitore provvedendo, laddove
necessario, ad una sincronizzazione per accesso a
variabili comuni (thread). (es. linguaggio DP)

2

-

Il servizio richiesto viene specificato come un insieme di
istruzioni che puo comparire in un punto qualungue del
processo servitore. (es. linguaggio ADA)

Modello 1: lato server

Ipotesi: l'insieme delle procedure remote invocabili dai client sono
definite all'interno di un componente sw (modulo), che contiene
anche le variabili locali al server ed eventuali procedure e
processi locali:

nodul e nome_del _ nodul o

<di chi arazione delle variabili |ocali>;
<inizializzazione delle variabili locali>;
public void opl (<paranetri fornmali>){
<corpo della procedura opl>;}

public void opn (<paranetri formali>){
<corpo della procedura opn >;}

<di chi arazi one di procedure |ocali>;
<di chi arazione di processi |ocali>;

}

| singoli moduli operano in spazi di indirizzamento diversi e
possono quindi essere allocati su nodi distinti di una rete.

Modello 1

» La chiamata di una procedura remota verra
specificata dal client con uno statement del tipo:
call nome_del _nodul 0. op_i (<paranetri attuali>);

il server serve la chiamata creando un thread che
esegue l'operazione richiesta (op_i).

Ad ogni istante e possibile che piu” thread
concorrenti all'interno del modulo accedano a
variabili interne.

Necessita™ di sincronizzazione -> monitor, semafori, ...

Esempio: servizio di sveglia
Si vuole realizzare tramite RPC un allarme che ha il
compito di risvegliare un insieme di processi clienti che
richiedono questo servizio dopo un tempo da loro
prefissato

SERVER:
nmodul e al | arme
-
int time;
semaphore nut ex=1;
semaphore priv[N =0;
coda_richieste coda; /* struttura contenente le richieste di
sveglia (sveglia, id) pervenute*/
public void richiesta_sveglia(int tineout, int id)
{ int sveglia= time+tineout;
wai t (nut ex) ;
<inserimento sveglia e id nella coda di risveglio in nodo da
mantenere tale coda ordinata secondo valori non decrescenti
di sveglia>;
si gnal (nut ex) ;
wait (priv[fid]); /* attesa della sveglia..*/

process clock{
int tenpo_di _sveglia ;
<avvia il clock>;
while (true) {
<attende per |'interruzione, quindi riavvia il clock>;
time++;
wait (nutex);

tenpo_di _sveglia= < piu piccolo valore di sveglia in coda>;

while (time>= tenpo_di_sveglia) {

<rinozione di tenpo_di_ sveglia e id corrisp. dalla coda>;
signal priv[id]; /* risveglio del processo id*/

si gnal (nutex) ;

}/* fine nodulo */

CLIENT:

call allarne.richiesta_sveglia(60,ny_id);

timer

richiesta_sveglia

esegue la
richiesta,

Modello 2

« |l servizio richiesto viene specificato come un insieme di
istruzioni che puo comparire in un punto qualungue del
processo servitore (V. linguaggio ADA)

accept <servi zi 0>(i n <par-ingresso>, out<par-uscita>);
> {S1,..,sn};

Accept

Se non sono presenti richieste di servizio I'esecuzione
di accept provoca la sospensione del processo
servitore.

Se lo stesso servizio € richiesto da pit processi prima
che il servitore esegua la accept, le richieste vengono
inserite in una coda associata al servizio gestita,
normalmente, FIFO.

Ad uno stesso servizio possono essere associate pit
accept: ad una richiesta possono corrispondere azioni
diverse in funzione del punto di elaborazione del
processo che la definisce.

Lo schema di comunicazione realizzato dal meccanismo
di chiamata a procedura remota € di tipo asimmetrico da
molti a uno.

Possibili sequenze di eventi in una chiamata di

procedura remota

Taccept

; attesa

. trasmissione richiesta
chiamata Inizio rendez-vous
attesa | esecuzione del servizio
Fine rendez-vous
trasmissione risultato

Possibili sequenze di eventi in una chiamata di

procedura remota
| attesa accept

Q trasmissione richiesta

attesa |

? trasmissione risultato

chiamata

Inizio rendez-vous

esecuzione del servizio

Fine rendez-vous

Accept: selezione delle richieste

» Nel secondo modello, il server puo™ selezionare le
richieste da servire in base al suo stato interno (es. lo
stato delle risorse gestite), utilizzando i comandi con
guardia:

[]1<statol>; accept<serviziol>(in <par-
i ngresso>, out<par-uscita>);
> {S11, .., Sln};
[]1<stat02>; accept<servizi 02>(in <par-
i ngresso>, out<par-uscita>);
> {S21,..,8S2n};

end;

Esempio: produttore e consumatore

process buffer
{ messaggio buff[N;
int testa=0, coda=0;

int cont=0;
do {
[1(cont<N); accept inserisci(in dato:messaggio)->
{ buff[coda] = dato;}/* fine rendez-vous*/
cont ++;

coda= (coda+1) %\;
[1(cont>0); accept prel eva(out dato: messaggio)->
{ dato=buff[testa];} /* fine rendez-vous*/
cont--;
testa=(testa+l) %\

NB: la sincronizzazione tra processo chiamante e processo chiamato sia
limitata alle sole istruzioni comprese nel blocco di accept (cioe’ quelle
comprese in->{.})

process produttore-i{
nessaggi o dati;
for(; ;)
{ <produci dati>;
call buffer.inserisci(dati);
}
}

process consumatore-j {
nessaggi o dati ;
for(; ;)
{ call buffer.preleva(dati);
<consuma dati >;
}

}

Selezione delle richieste in base ai parametri
diingresso

« La decisione se servire 0 no una richiesta puo’
dipendere, oltre che dallo stato della risorsa, anche
dai parametri della richiesta stessa. In questo caso
infatti, la guardia logica che condiziona I'esecuzione
dell'azione richiesta deve essere espressa anche in
termini dei parametri di ingresso.

» E’ pertanto necessaria una doppia interazione tra
processo cliente e processo servitore; la prima per
trasmettere i parametri della richiesta e la seconda
per richiedere il servizio.

Vettore di operazioni di servizio

» Nell'ipotesi di un numero limitato di differenti richieste
si puo ottenere una semplice soluzione al problema
associando ad ogni richiesta una differente
operazione di servizio (vettore di operazioni di
servizio) (v. linguaggio Ada).

Esempio: sveglia

« Si consideri ad esempio il caso del processo (server)
allarme il cui compito sia di inviare una segnalazione
di sveglia ad un insieme di processi che richiedono
questo servizio dopo un tempo da essi stabilito.
« |l processo allarme interagisce periodicamente con
un processo clock per tenere traccia del tempo.
» Server: 3 tipi di richieste
— tick: aggiornamento del tempo (da clock a allarme)
— richiesta_di_sveglia(T): impostazione della sveglia per il
cliente mittente (da cliente generico ad allarme)
— svegliami(T) (da cliente generico ad allarme):invio del
segnale di allarme al tempo specificato

=>»L’ordine con cui il processo allarme risponde alle
richieste del tipo svegliami dipende solo dal
parametro T (intervallo di attesa) trasferito con la
richiesta.

Struttura del generico processo cliente:

process cliente_i
{ ...
al larne.richiesta_di _sveglia (T);
al l arme. svegliam (T);

Vettore di operazioni di servizio

« possiamo associare ad ogni richiesta di sveglia, un
diverso elemento di un vettore:

typedef struct

{ int risveglio;
int intervallo;
}dati _di _risveglio;

/*vettore delle richieste di servizio: */
dati_ di _risveglio tenpo_di_sveglia[N;

Server:
process al |l arme

int tenpo;
typedef struct
{ int risveglio;
int intervallo;}dati_di_risveglio;
dati_ di _risveglio tenpo_di_sveglia[N;

do {
[laccept tick;-> {tenpo++;} /* dal processo clock*/
[laccept richiesta di sveglia (in int intervallo)
-> {<inserinento tenpo + intervallo ed intervallo in
tenmpo di sveglia in npbdo da mantenere tale vettore
ordi nato secondo val ori non decrescenti di
risveglio>}
[1(tenpo==tenpo_di _sveglia[1].risveglio);
accept svegliam [tenpo_di_sveglia[l].intervallo];
-> {<riordinamento del vettore tenpo_di_ sveglia>;}
}

}

Ipotesi: bassa frequenza di aggiornamento del clock

