
1

Chiamata di procedura remota

• Meccanismo di comunicazione e sincronizzazione tra
processi in cui un processo che richiede un servizio ad un
altro processo rimane sospeso fino al completamento del
servizio richiesto.

• Meccanismo di tipo sincrono in cui processo mittente e
processo ricevente rimangono sincronizzati per tutto il
tempo necessario all’esecuzione del servizio da parte del
ricevente ed alla ricezione dei risultati da parte del
mittente (rendez-vous esteso).

Con gli strumenti gia` visti, si puo` realizzare come segue:
•lato chiamante: send asincrona immediatamente
seguita da una receive
•lato chiamato: una receive seguita, al termine
dell’azione richiesta, da una send

• Analogia semantica (e spesso anche sintattica) con una
normale chiamata di procedura (chiamata di procedura
remota).

• Prevede il trasferimento di controllo tra processi che
operano in ambienti separati secondo il modello a scambio
di messaggi (modello cliente –servitore).

call <servizio> (parametri - ingresso, parametri - uscita);

dove servizio identifica univocamente l’insieme di istruzioni
ed il processo che deve eseguirle per soddisfare la
richiesta.

remote procedure <servizio> (in<parametri-ingresso>,
out<parametri di uscita>)
{... }

Due modelli:

1) Per ogni richiesta di servizio viene creata una nuova
istanza del processo servitore provvedendo, laddove
necessario, ad una sincronizzazione per accesso a
variabili comuni (thread). (es. linguaggio DP)

2) Il servizio richiesto viene specificato come un insieme di
istruzioni che può comparire in un punto qualunque del
processo servitore. (es. linguaggio ADA)

Modello 1: lato server
Ipotesi: l'insieme delle procedure remote invocabili dai client sono

definite all'interno di un componente sw (modulo), che contiene
anche le variabili locali al server ed eventuali procedure e
processi locali:

module nome_del_ modulo
{
<dichiarazione delle variabili locali>;
<inizializzazione delle variabili locali>;
public void op1 (<parametri formali>){
<corpo della procedura op1>;}
……..
public void opn (<parametri formali>){
<corpo della procedura opn >;}

<dichiarazione di procedure locali>;
<dichiarazione di processi locali>;
}

I singoli moduli operano in spazi di indirizzamento diversi e
possono quindi essere allocati su nodi distinti di una rete.

2

Modello 1

• La chiamata di una procedura remota verra`
specificata dal client con uno statement del tipo:

call nome_del_modulo.op_i (<parametri attuali>);

il server serve la chiamata creando un thread che
esegue l'operazione richiesta (op_i).

Ad ogni istante e` possibile che piu` thread
concorrenti all'interno del modulo accedano a
variabili interne.

Necessita` di sincronizzazione -> monitor, semafori, ...

Esempio: servizio di sveglia
Si vuole realizzare tramite RPC un allarme che ha il
compito di risvegliare un insieme di processi clienti che
richiedono questo servizio dopo un tempo da loro
prefissato

SERVER:
module allarme
{
int time;
semaphore mutex=1;
semaphore priv[N]=0;
coda_richieste coda; /* struttura contenente le richieste di

sveglia (sveglia, id) pervenute*/
public void richiesta_sveglia(int timeout, int id)
{ int sveglia= time+timeout;

wait(mutex);
<inserimento sveglia e id nella coda di risveglio in modo da
mantenere tale coda ordinata secondo valori non decrescenti
di sveglia>;

signal(mutex);
wait (priv[id]); /* attesa della sveglia..*/

}

process clock{
int tempo_di_sveglia ;
<avvia il clock>;

while (true) {
<attende per l’interruzione, quindi riavvia il clock>;
time++;
wait (mutex);
tempo_di_sveglia= < più piccolo valore di sveglia in coda>;
while (time>= tempo_di_sveglia) {
<rimozione di tempo_di_ sveglia e id corrisp. dalla coda>;
signal priv[id]; /* risveglio del processo id*/
}
signal(mutex);

}
}/* fine modulo */

CLIENT:
call allarme.richiesta_sveglia(60,my_id);

client

timer

clock

server

richiesta_sveglia

thread che
esegue la
richiesta

signal

3

Modello 2

• Il servizio richiesto viene specificato come un insieme di
istruzioni che può comparire in un punto qualunque del
processo servitore (V. linguaggio ADA)

accept<servizio>(in <par-ingresso>, out<par-uscita>);

à {S1,..,Sn};

Accept

• Se non sono presenti richieste di servizio l’esecuzione
di accept provoca la sospensione del processo
servitore.

• Se lo stesso servizio è richiesto da più processi prima
che il servitore esegua la accept, le richieste vengono
inserite in una coda associata al servizio gestita,
normalmente, FIFO.

• Ad uno stesso servizio possono essere associate più
accept: ad una richiesta possono corrispondere azioni
diverse in funzione del punto di elaborazione del
processo che la definisce.

• Lo schema di comunicazione realizzato dal meccanismo
di chiamata a procedura remota è di tipo asimmetrico da
molti a uno.

Possibili sequenze di eventi in una chiamata di
procedura remota

chiamata

accept

Inizio rendez-vous

mittente ricevente

trasmissione risultato

attesa
trasmissione richiesta

Fine rendez-vous

esecuzione del servizioattesa

Possibili sequenze di eventi in una chiamata di
procedura remota

chiamata

accept

Inizio rendez-vous

mittente ricevente

attesa

trasmissione richiesta

attesa

trasmissione risultato
Fine rendez-vous

esecuzione del servizio

4

Accept: selezione delle richieste

• Nel secondo modello, il server puo` selezionare le
richieste da servire in base al suo stato interno (es. lo
stato delle risorse gestite), utilizzando i comandi con
guardia:

if

[]<stato1>; accept<servizio1>(in <par-
ingresso>, out<par-uscita>);
à {S11,..,S1n}; ...

[]<stato2>; accept<servizio2>(in <par-
ingresso>, out<par-uscita>);
à {S21,..,S2n}; ...

...
end;

Esempio: produttore e consumatore
process buffer
{ messaggio buff[N];

int testa=0,coda=0;
int cont=0;
do {

[](cont<N);accept inserisci(in dato:messaggio)->
{ buff[coda] = dato;}/* fine rendez-vous*/

cont++;
coda= (coda+1)%N;

[](cont>0);accept preleva(out dato:messaggio)->
{ dato=buff[testa];} /* fine rendez-vous*/

cont--;
testa=(testa+1)%N;

}

NB: la sincronizzazione tra processo chiamante e processo chiamato sia
limitata alle sole istruzioni comprese nel blocco di accept (cioe` quelle
comprese in -> {..})

process produttore-i{
messaggio dati;
for(; ;)
{ <produci dati>;

call buffer.inserisci(dati);
}

}

process consumatore-j{
messaggio dati;
for(; ;)
{ call buffer.preleva(dati);

<consuma dati>;
}

}

Selezione delle richieste in base ai parametri
di ingresso

• La decisione se servire o no una richiesta puo`
dipendere, oltre che dallo stato della risorsa, anche
dai parametri della richiesta stessa. In questo caso
infatti, la guardia logica che condiziona l’esecuzione
dell’azione richiesta deve essere espressa anche in
termini dei parametri di ingresso.

• E’ pertanto necessaria una doppia interazione tra
processo cliente e processo servitore; la prima per
trasmettere i parametri della richiesta e la seconda
per richiedere il servizio.

5

Vettore di operazioni di servizio

• Nell’ipotesi di un numero limitato di differenti richieste
si può ottenere una semplice soluzione al problema
associando ad ogni richiesta una differente
operazione di servizio (vettore di operazioni di
servizio) (v. linguaggio Ada).

Esempio: sveglia

• Si consideri ad esempio il caso del processo (server)
allarme il cui compito sia di inviare una segnalazione
di sveglia ad un insieme di processi che richiedono
questo servizio dopo un tempo da essi stabilito.

• Il processo allarme interagisce periodicamente con
un processo clock per tenere traccia del tempo.

• Server: 3 tipi di richieste
– tick: aggiornamento del tempo (da clock a allarme)
– richiesta_di_sveglia(T): impostazione della sveglia per il

cliente mittente (da cliente generico ad allarme)
– svegliami(T) (da cliente generico ad allarme):invio del

segnale di allarme al tempo specificato

èL’ordine con cui il processo allarme risponde alle
richieste del tipo svegliami dipende solo dal
parametro T (intervallo di attesa) trasferito con la
richiesta.

Struttura del generico processo cliente:

process cliente_i
{ ...

allarme.richiesta_di_sveglia (T);
allarme.svegliami(T);
...

}

Vettore di operazioni di servizio

• possiamo associare ad ogni richiesta di sveglia, un
diverso elemento di un vettore:

typedef struct

{ int risveglio;
int intervallo;

}dati_di_risveglio;

/*vettore delle richieste di servizio: */
dati_ di_risveglio tempo_di_sveglia[N];

6

Server:
process allarme
{
int tempo;
typedef struct
{ int risveglio;

int intervallo;}dati_di_risveglio;
dati_ di_risveglio tempo_di_sveglia[N];

do {
[]accept tick;-> {tempo++;} /* dal processo clock*/
[]accept richiesta di sveglia (in int intervallo)
-> {<inserimento tempo + intervallo ed intervallo in
tempo di sveglia in modo da mantenere tale vettore
ordinato secondo valori non decrescenti di
risveglio>;}
[](tempo==tempo_di_sveglia[1].risveglio);
accept svegliami [tempo_di_sveglia[1].intervallo];
-> {<riordinamento del vettore tempo_di_ sveglia>;}
}

}
Ipotesi: bassa frequenza di aggiornamento del clock

