Chiamata di procedura remota

 Meccanismo di comunicazione e sincronizzazione tra
processi in cui un processo che richiede un servizio ad un
altro processo rimane sospeso fino al completamento del
servizio richiesto.

e Meccanismo di tipo sincrono Iin cui processo mittente e
Processo ricevente rimangono sincronizzati per tutto |l
tempo necessario all’esecuzione del servizio da parte del
ricevente ed alla ricezione dei risultati da parte del
mittente (rendez-vous esteso).

Con gli strumenti gia® visti, si puo realizzare come segue:
sJato chiamante: send asincrona immediatamente
seguita da una receive
sJato chiamato: una receive seguita, al termine
dell’azione richiesta, da una send

* Analogia semantica (e spesso anche sintattica) con una
normale chiamata di procedura (chiamata di procedura

remota).

* Prevede Il trasferimento di controllo tra processi che
operano in ambienti separati secondo il modello a scambio
di messaggi (modello cliente —servitore).

call <servizio> (paranetri - ingresso, paranetri - uscita);

dove servizio identifica univocamente I'insieme di istruzioni
ed il processo che deve eseguirle per soddisfare la
richiesta.

renote procedure <servizio> (in<paranetri-ingresso>,
out <paranetri di uscita>)

(..

Due modelli:

1)

2)

Per ogni richiesta di servizio viene creata una nuova
Istanza del processo servitore provvedendo, laddove
necessario, ad una sincronizzazione per accesso a
variabili comuni (thread). (es. linguaggio DP)

Il servizio richiesto viene specificato come un insieme di
Istruzioni che puo comparire in un punto qualunque del
processo servitore. (es. linguaggio ADA)

Modello 1: lato server

Ipotesi: I'insieme delle procedure remote invocabili dai client sono
definite all'interno di un componente sw (modulo), che contiene
anche le variabili locali al server ed eventuali procedure e
processi locali:

nodul e none_del _ nodul o

<di chi arazione delle variabili |ocali>;
<inizializzazione delle variabili |ocali>;

public void opl (<paranetri formali>){
<cor po della procedura opl>;}

<corpo della procedura opn >;}

<di chi arazi one di procedure |ocali>;
<di chi ar azi one di processi |ocali>;

}

| singoli moduli operano in spazi di indirizzamento diversi e
possono quindi essere allocati su nodi distinti di una rete.

Modello 1

e La chiamata di una procedura remota verra
specificata dal client con uno statement del tipo:
call nonme_del nodul o.op i (<paranetri attuali>);

Il server serve la chiamata creando un thread che
eseqgue l'operazione richiesta (op_I).

Ad ogni istante e possibile che piu thread
concorrenti all'interno del modulo accedano a
variabili interne.

Necessita di sincronizzazione -> monitor, semafori, ...

Esempio: servizio di sveglia

Si vuole realizzare tramite RPC un allarme che ha il
compito di risvegliare un insieme di processi clienti che
richiedono questo servizio dopo un tempo da loro
prefissato

SERVER:
nodul e al | arne
Lo
int tine;
semaphore nut ex=1;
semaphore priv[N] =0;
coda richieste coda; /* struttura contenente |le richieste di
sveglia (sveglia, id) pervenute*/
public void richiesta sveglia(int tinmeout, int id)
{ I nt sveglia= tinme+tinmeout;
wai t (mut ex) ;
<inserinmento sveglia e id nella coda di risveglio in nodo da
mant enere tal e coda ordi nata secondo val ori non decrescenti
di sveglia>;
si gnal (nmut ex) ;
wait (priv[id]); /* attesa della sveglia..*/

process cl ock{
int tenpo_di _sveglia ;
<avvia il clock>;
while (true) {
<attende per |’'interruzione, quindi riavvia il clock>;
ti me++;
wait (nutex);
tenpo_di _sveglia= < piu piccolo valore di sveglia in coda>;
while (tinme>= tenpo_di _sveglia) {
<rinozione di tenpo _di _sveglia e id corrisp. dalla coda>;
signal priv[id]; /* risveglio del processo id*/
}
si gnal (nut ex) ;

}

}/* fine nodulo */

CLIENT:

call allarnme.richiesta sveglia(60,ny_id);

timer

server

richiesta_sveglia

client

thread che
eseqgue la
richiesta

Modello 2

|l servizio richiesto viene specificato come un insieme di
Istruzioni che puo comparire in un punto qualungque del
processo servitore (V. linguaggio ADA)

accept <servi zi o>(in <par-ingresso>, out<par-uscita>);

-> {31, .., Sn};

Accept

e Se non sono presenti richieste di servizio I'esecuzione
di accept provoca la sospensione del processo
servitore.

» Se lo stesso servizio e richiesto da piu processi prima
che il servitore esegua la accept, le richieste vengono
Inserite in una coda associata al servizio gestita,
normalmente, FIFO.

e Ad uno stesso servizio possono essere associate piu
accept: ad una richiesta possono corrispondere azioni
diverse in funzione del punto di elaborazione del
processo che la definisce.

e Lo schema di comunicazione realizzato dal meccanismo
di chiamata a procedura remota e di tipo asimmetrico da
molti a uno.

Possibili sequenze di eventi in una chiamata di
proceduraremota

‘ accept

' attesa

trasmissione richiesta
chiamata

Inizio rendez-vous

©<

attesa | esecuzione del servizio

A

Fine rendez-vous
trasmissione risultato

Possibili sequenze di eventi in una chiamata di
proceduraremota

@ ricevente
chiamata ‘

| attesa Y accept
Q trasmissione richiesta X Inizio rendez-vous
i esecuzione del servizio
attesa |

) Fine rendez-vous
trasmissione risultato

Accept: selezione delle richieste

* Nel secondo modello, il server puo selezionare le
richieste da servire in base al suo stato interno (es. lo
stato delle risorse gestite), utilizzando | comandi con

guardia:
i f

[] <stato0l>, accept<serviziol>(in <par-
| Nngr esso>, out<par-uscita>);
- {S11, .., Sln};
[] <stat 02>, accept<servizio2>(in <par-
| Nngr esso>, out<par-uscita>);
- {821, .., S2n};

end;

Esempio: produttore e consumatore

process buffer
{ messaggio buff[N];
| nt testa=0, coda=0:;

| nt cont =0;
do {
[] (cont<N); accept inserisci(in dato:nessaggio)->
{ buff[coda] = dato;}/* fine rendez-vous*/
cont ++;

coda= (coda+l) %\;
[] (cont >0); accept preleva(out dato:nessaggio)->
{ dato=buff[testa];} /* fine rendez-vous*/
cont - -;
testa=(testa+l) %\,

NB: la sincronizzazione tra processo chiamante e processo chiamato sia
limitata alle sole istruzioni comprese nel blocco di accept (cioe quelle
comprese in->{..})

process produttore-i{
nmessaggi o dati;
for(; ;)
{ <produci dati >;
call buffer.inserisci(dati);
}
}

process consumatore-j{
messaggi o dati ;
for(; ;)
{ call buffer.preleva(dati);
<consuma dati >;

}
}

Selezione delle richieste in base al parametri
di iIngresso

* La decisione se servire 0 no una richiesta puo
dipendere, oltre che dallo stato della risorsa, anche
dai parametri della richiesta stessa. In questo caso
Infatti, la guardia logica che condiziona I'’esecuzione
dell’'azione richiesta deve essere espressa anche in
termini dei parametri di ingresso.

 E’ pertanto necessaria una doppia interazione tra
processo cliente e processo servitore; la prima per
trasmettere | parametri della richiesta e la seconda
per richiedere Il servizio.

Vettore di operazioni di servizio

* Nell'ipotesi di un numero limitato di differenti richieste
Si puo ottenere una semplice soluzione al problema
associando ad ogni richiesta una differente
operazione di servizio (vettore di operazioni di
servizio) (v. linguaggio Ada).

Esempio: sveglia

« Siconsideri ad esempio il caso del processo (server)
allarme il cui compito sia di inviare una segnalazione
di sveglia ad un insieme di processi che richiedono
guesto servizio dopo un tempo da essi stabilito.

* |l processo allarme interagisce periodicamente con
un processo clock per tenere traccia del tempo.

e Server: 3 tipi di richieste
— tick: aggiornamento del tempo (da clock a allarme)
— richiesta_di_sveglia(T): impostazione della sveglia per il
cliente mittente (da cliente generico ad allarme)
— svegliami(T) (da cliente generico ad allarme):invio del
segnale di allarme al tempo specificato

=>» L’ordine con cuil Il processo allarme risponde alle
richieste del tipo svegliami dipende solo dal
parametro T (intervallo di attesa) trasferito con la
richiesta.

Struttura del generico processo cliente:

process cliente |

{ ...
allarnme.richiesta _di _sveglia (T);
al l arne. svegliam (T);

Vettore di operazioni di servizio

e possiamo associare ad ogni richiesta di sveglia, un
diverso elemento di un vettore:

t ypedef struct

{ int risveglio;
I nt I ntervallo;
}dati _di _risveglio;

[*vettore delle richieste di servizio: */
dati _ di _risveglio tenpo di _sveglia[N;

Server:
process all arne

{

| nt tenpo;
t ypedef struct

{

I nt risveglio;
Int intervallo;}dati _di _risveglio;

dati _ di _risveglio tenpo _di _sveglia[N;

do {

}

[]accept tick;-> {tenpo++;} /* dal processo cl ock*/
[]accept richiesta di sveglia (in int intervall o)

-> {<inserinento tenpo + intervallo ed intervallo in
tenpo di sveglia in nodo da nantenere tale vettore
ordi nat o secondo val ori non decrescenti di
risveglio>;}

[] (tenpo==tenpo_di sveglia[l].risveglio);

accept svegliam [tenpo _di _sveglia[l].intervallo];
-> {<riordi nanento del vettore tenpo_di _ sveglia>;}

}

Ipotesi: bassa frequenza di aggiornamento del clock

