
1

Primitive sincrone

• Processo mittente e processo ricevente si
sincronizzano al momento della comunicazione.

• Il trasferimento dell’informazione avviene non appena
entrambi i processi sono pronti a comunicare
(rendez-vous).

• Il modello di comunicazione adottato prevede che ad
un processo siano associati canali privi di memoria,
uno per ogni tipo di messaggio che il processo può
ricevere.

Produttore-consumatore
• 3 Processi: Produttore, Consumatore e Buffer

• Il processo Buffer può contenere fino ad N messaggi.

• Utilizzo delle primitive:

Send (mess, proc); /*send sincrona*/

Proc= Receive (mess); /* receive bloccante*/

• Il processo produttore invia due tipi di messaggi, pronto (per tenere conto
della limitazione di buffer) e dati.Il processo consumatore invia un
messaggio pronto.

• Il processo buffer ha due canali, uno per il tipo di messaggio pronto ed
uno per il tipo di messaggio dati.Essendo la send di tipo sincrono non è
necessario, rispetto al caso di send asincrona, il messaggio ok-to-send.

• I canali servono al processo buffer per sincronizzarsi con i processi
produttore e consumatore.

Produttore
“cliente”

Buffer
“servitore”

Consumatore
“cliente”

pronto pronto

dati dati

“richiesta di servizio” “richiesta di servizio”

“servizio” “servizio”

void produttore()
{ T dati; messaggio pronto=...;

while (1)
{ <produci dati>;

Send(pronto,buffer);
Send(dati, buffer);

}
}

void consumatore()
{ T dati; messaggio pronto=...;

processo proc;

while (1)
{ Send(pronto,buffer);

proc=Receive(dati)
<consuma dati>;

}
}

2

void buffer_process()
{ queue coda; /*coda di elementi di tipo T*/,
processo proc;
boolean cons-pronto, prod-pronto=false;
T dati;
messaggio pronto;
while (1)
{ proc=Receive(pronto);

if (proc==produttore)
if (<coda piena>)

prod-pronto=true;
else
{ proc=Receive (dati);

if (cons-pronto)
{ Send(dati,consumatore);

cons-pronto=false;
}
else <inserzione dati in coda>

}
/* continua...*/

else /* il mittente (proc) e` un consumatore*/
if (<coda vuota>)

cons-pronto=true;
else
{ <estrazione dati da coda>;

Send (dati, consumatore);
if (prod-pronto)
{ proc=Receive(dati);

<inserzione dati in coda>;
prod-pronto=false;

}
}

}/* fine while*/
}

Stati di un processo che esegue la send e la receive:

Invocazione
primitiva

Trasmissione
messaggio

E (esecuzione)
BO (bloccato, ma pronto ad inviare
un messaggio)

E

B0

Invocazione
primitiva

Ricezione
messaggio

E

BI

E (esecuzione)
BI (bloccato, ma pronto a ricevere
un messaggio)

Implementazione di send/receive

Il supporto a tempo di esecuzione ha il compito di
implementare i messaggi di sincronizzazione
necessari per garantire il comportamento sincrono
delle primitive.

• La Send sincrona viene tradotta nella seguente
sequenza di operazioni asincrone:

1. invio di un segnale di disponibilità a spedire un
messaggio;

2. attesa del segnale di disponibilità (ok-to-send)
del ricevente (sincronizzazione);

3. invio del messaggio vero e proprio.

3

Implementazione send sincrona

Esempio:

void Send_sincrona(mess msg, proc Dest)
{ mess OK; proc D;

send(Dest,ready_to_send); /* send asincrona*/
while (D=receive(&OK)!=Dest)|| OK!= ok_to_send);
send(Dest, msg);

}

proc Receive(mess *Msg)
{ proc p;

p=receive(Msg);
send(proc, ok_to_send);
p=receive(Msg);
return p;

}

mittente

E

E

B0

B0

E

E

ricevente

E

BI

BI

BI

E

segnale di disponibilità

segnale “ok – to - send”

invio messaggio

E

