Primitive sincrone

« Processo mittente e processo ricevente si
sincronizzano al momento della comunicazione.

(rendez-vous).

Il trasferimento dell'informazione avviene non appena
entrambi i processi sono pronti a comunicare

Il modello di comunicazione adottato prevede che ad

un processo siano associati canali privi di memoria,
uno per ogni tipo di messaggio che il processo pud

ricevere.

Produttore-consumatore
3 Processi: Produttore, Consumatore e Buffer
Il processo Buffer puo contenere fino ad N messaggi.
Utilizzo delle primitive:
Send (mess, proc); /*send sincrona*/
Proc= Receive (mess); /* receive bloccante*/

Il processo produttore invia due tipi di messaggi, pronto (per tenere conto
della limitazione di buffer) e dati.ll processo consumatore invia un
messaggio pronto.

Il processo buffer ha due canali, uno per il tipo di messaggio pronto ed
uno per il tipo di messaggio dati.Essendo la send di tipo sincrono non &
necessario, rispetto al caso di send asincrona, il messaggio ok-to-send.

| canali servono al processo buffer per sincronizzarsi con i processi
produttore e consumatore.

“richiesta di servizio”

“richiesta di servizio”

Buffer
“servitore”

pronto

dati

pronto
Produttore
cliente’ dati
“servizio”

“servizio”

Consumatore
“cliente’

voi d produttore()
{ T dati; nessaggi o pronto=...;

while (1)

{ <produci dati >;
Send(pronto, buffer);
Send(dati, buffer);

}

}

voi d consumat ore()
{ T dati; nessaggio pronto=...;
processo proc;

while (1)

{ Send(pronto, buffer);
proc=Recei ve(dati)
<consuma dati >;

voi d buffer_process()
{ queue coda; /*coda di elenmenti di tipo T*/,
processo proc;
bool ean cons-pronto, prod-pronto=false;
T dati;
nessaggi o pronto;
while (1)
{ proc=Recei ve(pronto);
if (proc==produttore)
if (<coda piena>)
pr od- pront o=t r ue;
el se
{ proc=Recei ve (dati);
if (cons-pronto)
{ Send(dati, consunmatore);
cons- pront o=f al se;

el se <inserzione dati in coda>

/* continua...*/

else /* il nmittente (proc) e un consumatore*/
if (<coda vuota>)
cons- pront o=t rue;
el se
{ <estrazione dati da coda>;
Send (dati, consunmatore);
if (prod-pronto)
{ proc=Recei ve(dati);
<inserzione dati in coda>;
pr od- pront o=f al se;

}

}
}* fine while*/

Stati di un processo che esegue la send e la receive:

Invocazione Trasmissione Invocazione Ricezione
primitiva messaggio primitiva messaggio
E (esecuzione) E (esecuzione)

BO (bloccato, ma pronto ad inviare Bl (bloccato, ma pronto a ricevere

un messaggio) un messaggio)

Implementazione di send/receive

Il supporto a tempo di esecuzione ha il compito di
implementare i messaggi di sincronizzazione
necessari per garantire il comportamento sincrono
delle primitive.

La Send sincrona viene tradotta nella seguente
sequenza di operazioni asincrone:

1. invio di un segnale di disponibilita a spedire un
messaggio;

2. attesa del segnale di disponibilita (ok-to-send)
del ricevente (sincronizzazione);

3. invio del messaggio vero e proprio.

Implementazione send sincrona

Esempio:

voi d Send_si ncrona(ness nsg, proc Dest)
{ nmess OK; proc D
send(Dest,ready_to_send); /* send asi ncrona*/

whil e (D=receive(&XK)!=Dest)|| OK!'= ok_to_send);

send(Dest, nsg);
}

proc Receive(ness *Msg)

{ proc p;
p=recei ve(Msg);
send(proc, ok_to_send);
p=r ecei ve(Msg);
return p;

}

ricevente

E E
M BI
E S
l segnale di disponibilita

BI
BO segnale “ok —to - send”
B0 BI
| invio messaggio |
' !
E E

m+
m-

