Primitive asincrone

* Send non bloccante: il processo mittente, non

appena inviato il messaggio, prosegue la sua
esecuzione.

Il supporto a tempo di esecuzione deve fornire un
meccanismo di accodamento dei messaggi.

Il processo ricevente non puo dedurre dal contenuto
del messaggio ricevuto alcuna informazione sullo
stato del mittente.

Esempio produttori consumatori

» Utilizzo delle primitive send e receive asincrone per
realizzare uno schema cliente-servitore.

« |l servitore € un processo che gestisce una risorsa
buffer destinata a memorizzare i messaggi inviati da
uno o piu processi produttori ad uno o piu processi
consumatori.

» Ogni processo produttore pud inviare un messaggio
ad uno qualunque dei processi consumatori.Si
vogliono evitare situazioni in cui esistano processi
consumatori in attesa di messaggi ed altri con
messaggi in coda.

« |l processo buffer gestisce la risorsa di
memorizzazione dei messaggi (dati) inviati dai
processi produttori e convoglia tali messaggi in
ordine FIFO ai processi consumatori.

Ogni consumatore invia un messaggio di controllo
(pronto) al buffer per denotare il suo stato di pronto a
ricevere un messaggio e quindi si mette in attesa del
messaggio.

Buffer & un processo servitore, produttori e
consumatori sono processi clienti.

Primitive:
Send(nmes, proc);
proc=Recei ve(&nes) ;

* nes e una variabile di tipo messaggio, pr oc € una
variabile di tipo process

« Ogni processo ha una coda di messaggi a lui inviati
gestita FIFO.

« La primitiva Send inserisce il messaggio mes nella coda di
proc e termina

« La primitiva Receive analizza la coda d'ingresso del
processo che la esegue: se la coda € vuota il processo
viene bloccato; diversamente viene estratto il primo
messaggio il cui valore € assegnato alla variabile nes.

pronto

Processo

produttore - i
buffer

consumatore - j

Due diversi tipi di messaggi per rappresentare le
diverse informazioni scambiate tra i processi:

— i messaggi di tipo in-mess ricevuti dal processo
buffer : sono caratterizzati da due varianti per
tenere conto sia dei dati inviati dai produttori che
dei segnali di controllo (pronto) inviati dai
consumatori.

— i messaggi di tipo out-mess inviati da buffer ai
consumatori (dati).

« | messaggi inviati a buffer sono ricevuti in ordine FIFO (dati
o segnali pronto).

« Quando viene ricevuto un messaggio inviato da un
produttore (dati):

— questo deve essere inviato ad un consumatore, se uno
0 pill consumatori sono in attesa;
— diversamente il messaggio deve essere memorizzato
nella coda-dati locale a buffer.
« Quando viene ricevuto un messaggio da un consumatore
(segnale pronto):

— se nella coda locale vi sono dati disponibili, ne viene
prelevato uno ed inviato al consumatore;

— in caso contrario il nome del consumatore viene inserito
nella coda-consumatori—pronti contenente i nomi dei
consumatori in attesa di dati.

typedef enurm{dati, pronto}nsg_ricevuto;

typedef struct{
neg_ricevuto specie;

uni on{
tipodato informazione; /* specie == dati*/
ti posegnal e ready; /* specie == pronto*/
} cont enut o;

}in-ness;

typedef tipodato out-ness;

voi d Process_buffer() /* codice del processo buffer*/
T_queue coda_dati; /*coda di elenenti di tipo Tipodato*/
P_queue consumatori_pronti; /*coda di noni di processo*/
Tipodato inf;
process consunatore, proc;
In-mess in; out-mess out;
while (1)
{ proc= Receive(& n);
switch (in.specie
{case dati:
if (<consumatori-pronti e vuota>)
<inserzione di
in.contenuto.informzione
nella coda_dati>;
el se
<estrazione di consumatore da
consunat ori - pronti >;
out =i n. cont enut o. i nf or mazi one:
Send(out, consumat or e) ;

reak;
case pronto: if (<coda_dati e’ vuota>)
<inserzione proc In
consunat ori - pronti >;

el se { <estrazione di inf da coda_dati >;

out =i nf ;
Send(out, proc);}

1}/* fine swtch*/
}* fine while*/

Codice produttore:

voi d produttore-i()
{ in-ness ness;

Ti podato C;
ness. speci e=dat i ;
whi | e(1)

{ <produci contenuto C;
nmess. cont enut o. i nf or mazi one=C;
Send(ness, buffer);

. voi d consumatore-j ()

Codice consumatore: { in-mess nessl, nmess2;

nmessl. speci e=pront o;

whi | e(1)

{ Send(nessl, buffer);
proc=Recei ve(&ress2);
<consuma ness2>;

Uso delle porte
» Piu canali di ingresso per ogni processo ciascuno
dedicato a messaggi di tipo diverso.
 Utilizzo di uno schema di ricezione che consenta di
specificare, sulla base dello stato interno del processo
ricevente, I'insieme dei canali sui quali attendere il
messaggio.

Definizione di una porta x:
port x:T; /* variabile di tipo porta*/
« dove T e'iltipo dei messaggi associati alla porta.

» L'identificatore della porta & visibile all'esterno del
processo.

» Nel caso di pitl porte con lo stesso nome, si utilizza la
notazione:

nome-processo.nome-porta

Primitive:
Send_to(x, m;
proc= Receive_from(x, &n;

« Due porte per il processo buffer, una per ricevere i
messaggi dati e I'altra per messaggi pronto.

Il tipo della prima porta corrisponde al tipo T dei dati
inviati dai produttori.

« Il tipo della seconda porta corrisponde al tipo
predefinito signal che contraddistingue i messaggi
contenenti solo segnali di sincronizzazione.

« |l supporto a tempo di esecuzione deve fornire tante
code di ingresso per ciascun processo quante sono
le porte in esso dichiarate

voi d Process_buffer()
{ port porta-dati:T,;
porta controllo:signal;
T inf;
si gnal pronto;
process produttore, consunatore;
do /* comando con guardia ripetitivo*/
O produttore=Recei ve_fron(porta-dati, & nf);
- consumat or e=Recei ve_fron(control |l o, &pronto);
Send_to(consumatore.inport, Inf);
O consunat ore= Receive_fron(controll o, &ronto);
- produttore: =Receive_from (porta-dati, & nf);
Send_to(consumatore.inport, Inf);
end;

Codice produttore:

voi d produttore-i()

{

}

T inf;

while (1)

{ <produci contenuto>;
i nf =<cont enut 0>;
Send_to(porta-dati, inf);

Codice consumatore:

voi d consumatore-j ()
{ T inf;
process buffer;
signal pronto;
port inport:T;
whi | e(1)
{ Send_to(control l o, pronto);
buf f er =Recei ve_fron(i nport,inf);
<consuma i nf>;

Esempio produttori-consumatori con
limitazione del numero di messaggi
memorizzati

* N numero di messaggi memorizzati da buffer.

« |l produttore rimane in attesa di un segnale di
abilitazione all'invio dei dati da parte di buffer e
soltanto quando tale messaggio € arrivato invia il
messaggio dati.

Processo
buffer

produttore - i

consumatore -

voi d Process_buffer()

port porta-dati:T;

port controllo-prod: signal;

port controllo-cons: signal;

T inf; signal ok-prod, ok-cons, ok-to-send;

process prod, cons;

int cont=0; /* contatore dei nessaggi nel buffer*/

do

O(cont<N); prod=Recei ve_fron{controll o-prod, &k- prod);
= cont ++;
Send_t o(pr od. okport, ok-to-send);

O(cont>0); cons=Recei ve_fron(controllo-cons, &k-cons);
- prod=Recei ve_fronm(porta-dati, & nf);
cont--;
Send_to(cons.inport, inf);

end;

voi d produttore_i()

{ port okport: signal;
Tinf;
signal ok-prod, ok-to-send;
process buffer;

while (1)

{ <produci contenut 0>;
i nf =<cont enut 0>;
Send_t o(control | o-prod, ok-prod);
buf f er =Recei ve_fron(okport, ok-to-send);
Send_to(porta-dati,inf);

}

}

» Lo schemadel processo consumatore rimane |0 stesso.

ESEMPIO DI SISTEMA PIPELINE

« Lettura degli N record di un file, loro elaborazione e

creazione di un secondo file contenente gli N record
elaborati.

Il processo di ingresso legge da file_1 un record alla
volta e lo invia al processo di elaborazione il quale, a
sua volta, riceve il record, lo elabora e lo invia al
processo di uscita.

Quest'ultimo riceve, uno alla volta, i record
elaborati e li scrive sul file_2.

filen. 1 filen.2

/* Programma esenpi o- pi peline */

FILE filel,file2; /*file of T*/
process I ngresso, Elabora, Uscita;

/* codice del proc.
I ngresso: */
void Proc_I ngresso()
{T buf;
int i;
for(i=1; i<=N i++)
{ Read(filel,&buf);
Send(buf, El abora);
}

}

/* codice del proc. El abora: */
voi d Proc_El abora()
{T buf-in, buf-out;
process proc; int i;
for(i=1;i<=N;, i++)
{ proc=Recei ve(&buf-in);
buf-out: =<risultato el aborazi one
buf-in >;
Send(buf - out, Usci ta);
}

T
/* codice del proc. Uscita: */
void Proc_Uscita()
{T buf; process proc;

int i;

for(i=1;i<=N; i++)

{ pr oc=Recei ve(&buf);

wite(file2, buf);
}

}

» L'uso di primitive con specifiche di canale di tipo

simmetrico potrebbe risultare piu indicato in questo caso.

* Un controllo del flusso dei messaggi pud essere ottenuto

per ogni copia di processi con l'utilizzazione di un
processo buffer.

