Primitive asincrone

 Send non bloccante: il processo mittente, non
appena inviato il messaggio, prosegue la sua
esecuzione.

* |l supporto a tempo di esecuzione deve fornire un
meccanismo di accodamento dei messaggi.

|l processo ricevente non puo dedurre dal contenuto
del messaggio ricevuto alcuna informazione sullo
stato del mittente.

Esempio produttori consumatori

o Utilizzo delle primitive send e receive asincrone per
realizzare uno schema cliente-servitore.

|l servitore e un processo che gestisce una risorsa
buffer destinata a memorizzare | messaggi inviati da
uno o piu processi produttori ad uno o piu processi
consumatori.

e (Ogni processo produttore puo inviare un messaggio
ad uno qualungque del processi consumatori.Si
vogliono evitare situazioni in cui esistano processi
consumatori in attesa di messaggi ed altri con
messaggi in coda.

* |l processo buffer gestisce la risorsa di
memorizzazione del messaggi (dati) inviati dai
processi produttori e convoglia tali messaggi in
ordine FIFO ai processi consumatori.

e Ogni consumatore invia un messaggio di controllo
(pronto) al buffer per denotare il suo stato di pronto a
ricevere un messaggio e quindi si mette in attesa del
messaggio.

» Buffer e un processo servitore, produttori e
consumatori sono processi clienti.

Primitive:
Send(nes, proc),;
proc=Recei ve(&mes) ;

 NEes e una variabile di tipo messaggio, pr oc € una
variabile di tipo process

e Ogni processo ha una coda di messaggi a lui inviati
gestita FIFO.

e La primitiva Send inserisce il messaggio mes nella coda di
pr oc e termina

« La primitiva Receive analizza la coda d’'ingresso del
processo che la esegue: se la coda e vuota il processo

viene bloccato; diversamente viene estratto il primo
messaggio il cui valore e assegnato alla variabile nes.

produttore - i

dati

Processo
buffer

pronto

dati

consumatore - |

Due diversi tipi di messaggi per rappresentare le
diverse informazioni scambiate tra | processi:

— 1 messaggi di tipo in-mess ricevuti dal processo
buffer : sono caratterizzati da due varianti per
tenere conto sia dei dati inviati dai produttori che
dei segnali di controllo (pronto) inviati dal
consumatori.

— 1 messaggi di tipo out-mess inviati da buffer ai
consumatori (dati).

* | messaggi inviati a buffer sono ricevuti in ordine FIFO (dati
0 segnali pronto).

e Quando viene ricevuto un messaggio inviato da un
produttore (dati):

— guesto deve essere inviato ad un consumatore, se uno
0 piu consumatori sono in attesa;

— diversamente il messaggio deve essere memorizzato
nella coda-dati locale a buffer.

 Quando viene ricevuto un messaggio da un consumatore
(segnale pronto):

— se nella coda locale vi sono dati disponibili, ne viene
prelevato uno ed inviato al consumatore;

— In caso contrario il nome del consumatore viene inserito
nella coda-consumatori—pronti contenente i nomi dei
consumatori in attesa di dati.

t ypedef enun{dati, pronto}nsg ricevut o,

t ypedef struct{
nNeg ricevut o speci e;

uni on{
ti podato I nformazione; /* specie == dati*/
ti posegnal e ready; /* specie == pronto*/
} cont enut o;

}1 n-mess;

t ypedef tipodato out-ness;

voi d Process buffer() /* codice del processo buffer*/
{ T queue coda_dati; /*coda di elenenti di tipo Tipodato*/
P_queue consumatori _pronti; /*coda di nom di processo*/
Ti podat o i nf;
process consunmatore, proc;
| Nn-Mess i n; out-ness out;
while (1)
{ proc= Recei ve(& n);
swtch (in.specie)
{case dati :
| f (<consunmatori-pronti e vuota>)
<i nserzi one di
| n. cont enut 0. i nf or mazi one
nella coda dati >;
el se
{ <estrazione di consunatore da
consumat ori - pronti >;
out =i n. cont enut 0. i nf or nazi one:
Send(out, consunat or e) ;

br eak;
case pronto: if (<coda dati e vuota>)
<i nserzione proc in
consumat ori - pronti >;
el se { <estrazione di inf da coda dati >;
out =i nf ;
Send(out, proc);}
}* fine swtch*/
\ }* fine while*/

Codice produttore:

voi d produttore-i ()
{ 1n-nmess ness;

Ti podat o C,
nMess. speci e=dat i ;
whi l e(1)

{ <produci contenuto C;
nMess. cont enut o. i nf or mazi one=C,
Send(ness, buffer);

: voi d consunatore-j ()
Codice consumatore: | jpn.pess messl, ness2;

nmessl. speci e=pront o;

whi | e(1)

{ Send(nessl, buffer);
proc=Recei ve(&mess?2);
<consuma ness2>;

Uso delle porte

* Piu canali di ingresso per ogni processo ciascuno
dedicato a messagqgi di tipo diverso.

e Utilizzo di uno schema di ricezione che consenta di
specificare, sulla base dello stato interno del processo
ricevente, I'insieme dei canali sui quali attendere |l
messaggio.

Definizione di una porta x:
port x: T, /* variabile di tipo porta*/
« dove T e iltipo dei messaggi associati alla porta.

* L’identificatore della porta e visibile all’esterno del
Processo.

* Nel caso di piu porte con lo stesso home, si utilizza la
notazione:

nome-processo.nome-porta

Primitive:
Send to(x, m,;
proc= Recel ve fronm x, &m,

* Due porte per il processo buffer, una per ricevere |
messaggi dati e I'altra per messaggi pronto.

|l tipo della prima porta corrisponde al tipo T dei dati
Inviati dai produttori.

|l tipo della seconda porta corrisponde al tipo
predefinito signal che contraddistingue | messaggi
contenenti solo segnali di sincronizzazione.

* |l supporto a tempo di esecuzione deve fornire tante
code di Ingresso per ciascun processo quante sono
le porte in esso dichiarate

voi d Process buffer()
{ port porta-dati:T,
porta controll o:signal;
T 1 nf;
si gnal pronto;
process produttore, consunat ore;
do /* comando con guardia ripetitivo*/
0 produttore=Receive fron(porta-dati, & nf);
- consunmat or e=Recel ve fron(controll o, &pronto);
Send to(consumatore.inport, Inf);
[0 consumat ore= Recei ve fron(controll o, &ront 0);
- produttore: =Receive from (porta-dati, & nf);
Send to(consumatore.inport, Inf);
end;

Codice produttore:

voi d produttore-i ()
{ T 1 nf;
while (1)
{ <produci cont enut 0>;
| nf =<cont enut 0>;
Send_to(porta-dati, inf);
}
}

Codice consumatore:

voi d consumatore-j ()
{ T 1 nf;
process buffer;
si gnal pronto;
port inport:T,
whi | e(1)
{ Send to(controll o, pronto);
buf f er =Recei ve _fronm(inport,inf);
<consunma I nf >;

Esempio produttori-consumatori con
limitazione del numero di messaggi
memorizzati

N numero di messaggi memorizzati da buffer.

|| produttore rimane Iin attesa di un segnale di
abilitazione all'invio dei dati da parte di buffer e
soltanto quando tale messaggio e arrivato invia il
messaggio dati.

ok - prod
S
ok —to - send | ok - cons
- Processo
roduttore - | _i
P i uffer deti consumatore - j
))

voi d Process buffer()
{ port porta-dati:T,
port controllo-prod: signal;
port controllo-cons: signal;
T inf; signal ok-prod, ok-cons, ok-to-send;
process prod, cons;
I nt cont=0; /* contatore dei nessaggi nel buffer*/
do
C(cont <N); prod=Recei ve fron(controll o-prod, &k- prod);
- cont ++;
Send_t o(prod. okport, ok-to-send);
C(cont >0); cons=Recei ve fron{controll o-cons, &k-cons);
- prod=Receil ve fron(porta-dati, & nf);
cont - -;
Send to(cons.inport, iInf);
end;

voi d produttore_ i ()

{ port okport: signal;
T 1 nf;
si gnal ok-prod, ok-to-send,
process buffer;

while (1)
{ <pr oduci cont enut 0>;
| nf =<cont enut 0>;
Send to(controll o-prod, ok-prod);
buf f er =Recei ve_from okport, ok-to-send);
Send to(porta-dati,inf);

}
}

e Lo schemadd processo consumatore rimane |0 stesso.

ESEMPIO DI SISTEMA PIPELINE

o Lettura degli N record di un file, loro elaborazione e
creazione di un secondo file contenente gli N record
elaborati.

e |l processo di ingresso legge da file_1 un record alla
volta e lo invia al processo di elaborazione il quale, a
sua volta, riceve il record, lo elabora e lo invia al
processo di uscita.

« Quest'ultimo riceve, uno alla volta, 1 record
elaborati e li scrive sul file 2.

Processo
| ngresso

Processo
Elabora

Processo
Uscita

filen. 1 filen. 2

[* Programma esenpi o-pi peline */

FILE filel, file2; /*file of T*/
process | ngresso, Elabora, Uscita,;

/* codi ce del proc.
| ngresso: */
voi d Proc_ | ngresso()
{T buf;
Int I ;
for(i=1, i<=N, i++)
{ Read(filel, &uf);
Send(buf, El abora);

}

}

/[* codice del proc. Elabora: */
voi d Proc_El abora()
{T buf-in, buf-out;
process proc; int i;
for(i=1;1<=N;, |I++)
{ proc=Recei ve(&buf-in);
buf - out: =<risultato el aborazi one
buf -1 n >;
Send(buf - out, Uscita);
}

|

/* codice del proc. Uscita: */
void Proc_Uscita()
{T buf; process proc;

Int 1 ;

for(i=1;1<=N;, |I++)

{ pr oc=Recei ve(&buf) ;
wite(file2, buf);

}

}

e L’uso di primitive con specifiche di canale di tipo
simmetrico potrebbe risultare piu indicato in questo caso.

e Un controllo del flusso dei messaggi puo essere ottenuto
per ogni copia di processi con l'utilizzazione di un
processo buffer.

