I thread nel sistema operativo
LINUX:
Linuxthreads

LinuxThreads
Caratteristiche threads:

— Il thread e’ realizzato a livello kernel (e I'unita’ di schedulazione)
— | thread vengono creati all'interno di un processo (task) per eseguire
una funzione
— Ogpni thread ha il suo PID (a differenza di POSIX: distinzione tra task e
threads)
Gestione dei segnali non conforme a POSIX:
« Non c'e’ la possibilita” di inviare un segnale a un task.
* SIGUSR1 e SIGUSR2 vengono usati per I'implementazione dei threads e
quindi non sono piu” disponibili.
Sincronizzazione:

— Lock: mutua esclusione (pt hr ead_mut ex_| ock/ unl ock)
— Semafori: esterni alla libreria pt hr ead <semaphore.h>
(POSIX 1003.1b)
— Variabili condizione : (pt hr ead_cond_wai t, pt hr ead_cond_si gnal)

LinuxThreads:
Caratteristiche

Processi leggeri realizzati a livello kernel

System call cl one:

int clone(int (*fn) (void *arg), void *child_stack, int

flags, void *arg)

= E specifica di Linux: scarsa portabilita’!

Libreria LinuxThreads: funzioni di gestione dei threads, in conformita’
con lo standard POSIX 1003.1c (pthreads):

« Creazione/terminazione threads
 Sincronizzazione threads:lock, [semafori], variabili condizione
* Etc.

» Portabilita®

Rappresentazione dei threads

¢ Il thread e I'unita’ di scheduling, ed e" univocamente
individuato da un indentificatore (intero):

pthread_t tid,

— Il tipo pt hread_t e’dichiarato nell’header file
<pt hr ead. h>

LinuxThreads

» Creazione di threads:

#i ncl ude <pthread. h>
int pthread_create(pthread_t *thread, pthread_attr_t *attr,

void *(*start_routine)(void *), void * arg);

LinuxThreads

e Un thread puo” terminare chiamando:

void pthread_exit(void *retval);

« Dove:

— thread: e’ il puntatore alla variabile che raccogliera” il thread_ID (PID)
start_routine: e il puntatore allafunzione che contiene il codice del nuovo thread
— arg: e il puntatore all’eventuale vettore contenente i parametri della funzione da
eseguire
— attr: puo’ essere usato per specificare eventuali attributi da associare al thread (di
solito: NULL):
« ad esempio parametri di scheduling: priorita” etc.(solo per superuser!)
« Legame con gli altri threads (ad esempio: detached o no)

« Ritorna : 0 in caso di successo, altrimenti un codice di errore (!=0)

* Dove:

— retval : e’ il puntatore alla variabile che contiene il valore di
ritorno (puo” essere raccolto da altri threads, v.
pt hread_j oi n).

e E’ una chiamata senza ritorno.

» Alternativa: return();

LinuxThreads: creazione di threads

Ad esempio:

int A B
void * codice(void *){ /*definizione del codice del thread */ .}
mai n()

{pthread_t t1, t2;

pthread_create(& 1, NULL, codice, NULL);

pthread_create(& 2, NULL, codice, NULL);

> Vengono creati due thread (di tid t 1 e t 2) che eseguono le istruzioni
contenute nella funzione codi ce:

— ldue thread appartengono allo stesso task (processo) e condividono le
variabili globali del programma che li ha generati (ad esempio A e B).

LinuxThreads

e Un thread puo” sospendersi in attesa della terminazione
di un altro thread con:

int pthread_join(pthread_t th, void **thread_return);

¢ Dove:

— th: e’il pid del particolare thread da attendere

— thread_return: e’ il puntatore alla variabile dove verra” memorizzato il
valore di ritorno del thread (v. pt hr ead_exi t)

#i ncl ude
#i ncl ude
#i ncl ude

Esempio: creazione di thread

<stdio. h>
<stdlib. h>
<pt hread. h>

void *ny_thread_process (void * arg)

Compilazione
» Per compilare un programma che usa i linuxthreads:

gcc -D REENTRANT -0 prog prog.c —| pt hr ead

[aci anpol i ni @ci b48 threads]$ prog

{ Thread 1: 0
int i; Thread 2: 0
hr ead
for (i =0; i <5 ; i++) { Ih:::d;i
printf ("Thread %: %\n", (char*)arg, i);
sleep (1); Thread 1: 2
} Thread 2: 2
pthread_exit (0); Thread 1: 3
} Thread 2: 3
Thread 1: 4
Thread 2: 4
ternminato il thread 1
terminato il thread 2
9 . . 11
[aci anpol i ni @ci b48 threads] $
main ()
{ Terminazione di threads
pthread_t thil, th2;
int retcode; . . . o
if (pthread_create(& hi, NULL, ny_thread_process,"1") < 0) * Normalmente e necessario eseguire la pt hread_j oi n
{ fpri "”1 (endert, “[RArELErCERE erfar e Bhrees) Mar)s per ogni thread che termina la sua esecuzione, altrimenti
i exit (1) rimangono allocate le aree di memoria ad esso
if (pthread_create(& h2, NULL, ny_thread_process,"2") < 0) assegnate.
{ fprintf (stderr, "pthread_create error for thread 2\n");
exit (1);
} o . . S
retcode = pthread_join (thl, NULL); In alternativa si puo” “staccare” il thread dagli altri con:
if (retcode != 0) X .
fprintf (stderr, "join fallito %\ n", retcode); int pthread_detach(pthread_t th);
clea [rilaeH(Eeeri R U Bhrreee) Ain)E » il thread rilascia automaticamente le risorse assegnatagli quando
retcode = pthread_join (th2, NULL); S
if (retcode !=0)
fprintf (stderr, "join fallito %\ n", retcode);
else printf(“termnato il thread 2\n);
return O;
10 12

LinuxThreads: MUTEX

Lo standard POSIX 1003.1c (libreria <pt hr ead. h>) definisce i
semafori binari (o lock, mutex, etc.)

— sono semafori il cui valore puo” essere 0 oppure 1 (occupato o
libero);
— vengono utilizzati tipicamente per risolvere problemi di mutua
esclusione
— operazioni fondamentali:
« inizializzazione: pt hr ead_nut ex_i ni t
« locking: pthread_nutex_| ock
« unlocking: pthread_nut ex_unl ock

— Per operare sui mutex:

pthread_nutex_t :tipo di dato associato al mutex; esempio:
pt hread_nutex_t mux;

MUTEX: lock/unlock
Locking/unlocking si realizzano con:

int pthread_nutex_| ock(pthread_nutex_t* mux)

int pthread_nutex_unl ock(pthread_nutex_t* nux)

— lock: se il mutex mux e occupato,il thread
chiamante si sospende; altrimenti occupail
mutex.

— unlock: se vi sono processi in attesa del mutex,
ne risveglia uno; altrimenti libera il mutex.

13 15
Cinisiali ; Esempio
MUTEX: inizializzazione el T D
o . X . . X #include <stdlib.h>
L'inizializzazione di un mut ex si puo’realizzare con: #incl ude <pt hread. h>
#define MAX 10
. . pthread_nutex_t M /* def.nutex condiviso tra threads */
int pthread_nutex_init(pthread_nutex_t* nutex, const int DATA=0; /* variabile condivisa */
pthread_nutexattr_t* attr) int accessi 1=0; /*num di accessi del thread 1 alla sez critica */
int accessi2=0; /*num di accessi del thread 2 alla sez critica */
attribuisce un valore iniziale all'intero associato al void *threadl_process (void * arg)
semaforo (default: libero): { int k=1
« mutex : individuail mutex da inizializzare e
.) A e {
e attr : puntaaunastrutturache contiene gli attributi del pt hread_nut ex_| ock(&W; /*prol ogo */
mutex; se NULL, il mutex viene inizializzato alibero (default). accessi 1++;
DATA++;
o g » S Refefie{F ; k=(DATA>=MAX?0: 1) ;
in alteljnanva , Si puo’ inizializzare il mutex a default con la printf("accessi di Ti: vi\n*, accessil):
macro: pt hread_nut ex_unl ock(&V) ; /*epilogo */
PTHREAD_MUTEX_| NI ZI ALI ZER }
pthread_exit (0);
— esempio: pthread_nutex_t nux= PTHREAD MUTEX_| NI ZI ALI ZER; }
14 16

Esempio Test
voi d *thread2_process (void * arg) $
{ int k=1; $ gcc -D_REENTRANT -o tlock lock.c -Ipthread
whi | e(k) $./tlock
{ accessi di T2: 1
pt hread_nut ex_| ock(&\); /*prologo sez. critica */ accessi di Ti: 1
accessi 2++; accessi di T2: 2
DATA++; accessi di T1: 2
k=(DATA>=MAX?0: 1) ; accessi di T1: 3
printf("accessi di T2: %l\n", accessi?2); accessi di T1: 4
pt hread_nut ex_unl ock(&\); /*epilogo sez. critica*/ accessi di T1: 5
} accessi di T1: 6
pthread_exit (0); accessi di T1: 7
} accessi di T1: 8
accessi di T2: 3
$
17 19
Esempio:) i
LinuxThreads: Semafori
nai n()
{ pthread_t thi, th2 : : o : .
/* il mutex e inizialnmente libero: */ e Memoria condivisa: uso dei semafori (POSIX.1003.1b)
pt hread_mutex_init (& NULL);
|O§ (pthread_create(& hl, NULL, threadl_process, NULL) < _ Semafori: libreria <semaphore.h>
{ fprintf (stderr, “"create error for thread 1\n"); e sem.init: inizializzazione di un semaforo
exit (1); . semwait: wait
if (pthread_create(& h2, NULL,thread2_process, NULL) < 0) e sem post: signal
{ fprintf (stderr, "create error for thread 2\n");
exit (1); i i i i
- sem t : tipo di dato associato al semaforo; esempio:
pthread_join (thl, NULL);
pthread_join (th2, NULL);
static semt ny_sem
18 20

Operazioni sui semafori

— sem.i nit: inizializzazione di un semaforo
int seminit(semt *sem int pshared, unsigned int value)

attribuisce un valore iniziale all'intero associato al semaforo:

« sem individua il semaforo da inizializzare

« pshared : 0, seil semaforo non e’ condiviso tra task, oppure non
zero (sempre zero).

« value : e'ilvaloreiniziale da assegnare al semaforo.
- sem t : tipo di dato associato al semaforo; esempio:

static semt ny_sem

» ritorna sempre 0.

21

Operazioni sui semafori: sem_post

— signal su un semaforo:
int sempost(semt *sem

dove:
« sem individua il semaforo sul quale operare.

e’ la signal di Dijkstra:

» se c'e” almeno un thread sospeso nella coda associata al semaforo sem,
viene risvegliato; altrimenti il valore del semaforo viene incrementato.

Operazioni sui semafori: sem_wait

— wait su un semaforo
int semwait(semt *sem

dove:
« sem individua il semaforo sul quale operare.

e’ la wait di Dijkstra:

» se il valore del semaforo e’ uguale a zero, sospende il thread chiamante
nella coda associata al semaforo; altrimenti ne decrementa il valore.

22

Esempio: sincronizzazione

Thread 1 Thread 2

» Imposizione di un vincolo temporale: la FASE2 nel thread 1 va eseguita
dopo la FASEL nel thread2.

Esempio: sincronizzazione
/* la FASE2 nel thread 1 va eseguita dopo |a FASEl nel thread 2*/
#incl ude <stdio. h>
#include <stdlib.h>
#i ncl ude <pthread. h>

#incl ude <semaphore. h>

semt ny_sem
int Vv=0;

void *threadl_process (void * arg)
{
printf ("Thread 1: partito!...\n");
/* inizio Fase 2: */
semwait (&y_sen);
printf ("FASE2: Thread 1: V=%\n", V);
pthread_exit (0);

25

main ()
{ pthread_t thi, th2;
void *ret;

seminit (&wy_sem 0, 0); /* semaforo a 0 */

if (pthread_create (& h1l, NULL, threadl_process, NULL) < 0) {
fprintf (stderr, "pthread_create error for thread 1\n");

exit (1);

if (pthread_create(& h2, NULL, thread2_process, NULL) < 0)
{fprintf (stderr, "pthread_create error for thread \n");
exit (1);

pthread_join (thl, &ret);
pthread_join (th2, &ret);

) } 27
voi d *thread2_process (void * arg)
{inti; Esempio:
V=99;
e gcc -D REENTRANT -0 sem semc - pthread
printf (“Thread 2: partito!...\n);
/* inizio fase 1: */
printf (“FASEl: Thread 2: V=%\n", V); « Esecuzione:
he [aci anpol i ni @ci b48 threads] $ sem
termne Fase 1: sblocco il thread 1*/ .
Thread 1: partito!...
sem post (&ny_sen);
sleep (1): Thread 2: partito!...
pthread_exit (0); FASE1l: Thread 2: V=99
} FASE2: Thread 1: V=99
[aci anpol i ni @ci b48 t hreads] $
26 28

Semafori: esempio

void *thread2_process (void * arg)

{ int k=1;
/* tre processi che, ciclicanmente, increnmentano a turno (in whi | e(k)
ordine P1,P2,P3) |a variabile V/ .
{ semwait (&s2);
semwait (& ;
#i ncl ude <stdio.h> if (V<MAX)
#i ncl ude <stdlib. h> V4
#incl ude <pt hread. h> el se
#i ncl ude <semaphore. h> { =0
#define MAX 13 printf("T2: % (V=%d)\n", ++F, V);
static semt m /* semaforo per |a nmutua escl usione }
. o sem post (&) ;
nel | "accesso alla sezione critica */
sem post (&s3);
static semt si1,s2,s3; /* semafori per inporre }
|"ordine di accesso (P1,P2,P3) alla pthread_exit (0);
variabile V */ }
int V=0, F=0;
29 31
void *threadl process (void * arg) voi d *thread3_process (void * arg)
{ int k=1; { int k=1;
whi | e(k) whi | e(k)
{ semwait (&s1); { semwait (&s3);
semwait (&) ; sem wait (&) ;
if (v<MAX) if (V<MAX)
V++; V++;
el se el se
{ k=0; { k=0;
printf("Tl: %l (V=o)\n", ++F, V); printf("T3: %l (V=o@)\n", ++F, V);
} }
sem post (&) ; sem post (&) ;
sem post (&s2); sem post (&s1);
} }
pthread_exit (0); pthread_exit (0);
} }
30 32

main ()
{ pthread_t thil, th2,th3;

seminit (&m 0, 1);

sem.init(&s1,0,1);

seminit(&s2,0,0);

sem.init(&s3,0,0);

if (pthread_create(& hl, NULL, threadl_process, NULL) < 0)

{ fprintf (stderr, "pthread_create error for thread 1\n");
exit (1);

}

if (pthread_create(& h2, NULL,thread2_process, NULL) < 0)

{ fprintf (stderr, "pthread_create error for thread 2\n");

Esecuzione:

[aci anpol i ni @ci b48 threads]$ seml

T2: 1 (V=10)
T3: 2 (V=10)
T1: 3 (V=10)

[aci anpol i ni @ci b48 threads] $

exit (1);
}
if (pthread_create(& h3, NULL,t hread3_process, NULL) < 0)
{ fprintf (stderr, "pthread_create error for thread 3\n");
33 35
exit (1);
pthread join (thl, NULL); LinuxThreads: variabili condizione
pthread_join (th2, NULL); i i i
o * Lo standard POSIX 1003.1c (libreria <pt hr ead. h>) implementa le
pthread_join (th3, NULL); variabili condizione
— Le variabili condizione (condition) sono uno strumento di
) sincronizzazione che premette ai threads di sospendere la
propria esecuzione in attesa che siano soddisfatte alcune
condizioni su dati condivisi.
— ad ogni condition viene associata una coda nella quale i threads
possono sospendersi (tipicamente, se la condizione non e*
verificata).
— operazioni fondamentali:
« inizializzazione: pt hr ead_cond_i ni t
« sospensione: pthread_cond_wai t
« risveglio: pthread_cond_si gnal
— Per operare sulle variabili condizione:
pthread_cond_t : e il tipo predefinito per le variabili condizione.
34 36

Variabili Condizione: inizializzazione
L'inizializzazione di una condi ti on si puo realizzare con:

int pthread_cond_init(pthread_cond_t* cond,
pthread_cond_attr_t* cond_attr)

dove
¢ cond : individualacondizione dainizializzare
e attr punta a una struttura che contiene gli attributi della

condizione; se NULL, viene inizializzata a default.
NB: linux non implementa gli attributi !

— in alternativa, una variabile condizione puo essere inizializzata
staticamente con la costante:
PTHREAD_COND_| NI ZI ALI ZER

— esempio: pthread_cond_t C= PTHREAD_COND_| NI ZI ALl ZER;

37

Variabili condizione: wait
La sospensione su una condizione si ottiene mediante:

int pthread_cond_wait (pthread_cond_t* cond,
pt hread_mut ex_t* nux);

dove:
— cond: e’ lavariabile condizione
— nux: e’ il mutex associato ad essa

Effetto:
. il thread chiamante si sospende sulla coda associata a cond, e il
mutex mux viene liberato

= Al successivo risveglio (provocato da una signal), il thread
rioccupera’ il mutex automaticamente.

39

Variabili condizione: wait

Un thread puo” sospendersi su una variabile condizione, se la
condizione non e verificata:
— ad esempio:

pt hread_cond_t C= PTHREAD COND_I| NI ZI ALI ZER

int bufferpi eno=0;

if (bufferpi eno) <sospensione sulla cond. C>;

» Laverificadella condizione e’ una sezione critical

» Necessita' di garantire la mutua esclusione:

e’ necessario associare ad ogni variabile condizione un mutex :
pthread_cond_t C= PTHREAD COND_I NI ZI ALI ZER;
pt hread_nut ex_t M-PTHREAD MUTEX_| NI Tl ALI ZER;
int bufferpi eno=0;

pt hr ead_nut ex_| ock(&M ;
if (bufferpieno) <sospensione sulla cond. C>
pt hr ead_nut ex_unl ock(&M ;

38

Variabili condizione: signal

Il risveglio di un thread sospeso su una variabile condizione
puo’essere ottenuto mediante la funzione:

int pthread_cond_signal (pthread_cond_t* cond);

dove:
— cond: e lavariabile condizione.

Effetto:
* seesistono thread sospesi nella coda associata a cond, ne viene
risvegliato uno (non viene specificato quale).
* senon visono thread sospesi sulla condizione, la signal non ha
effetto.
« realizzazione "signal_and_continue"

N.B. non e’ prevista una funzione ("..queue") per verificare lo stato della
coda associata a una condizione.

Pthread Condition & Monitor

¢ La condition permette di implementare politiche di
sincronizzazione mediante funzioni/procedure "entry",
realizzando meccanismi di accesso alle risorse
equivalenti a quelli forniti dal concetto di monitor
[Hoare'74]; differenze:

— i dati "interni" al monitor sono potenzialmente
accessibili direttamente da tutti i processi;

— la mutua esclusione delle funzioni/procedure entry
deve essere garantita esplicitamente dal
programmatore mediante lock/unlock su un mutex
associato al "monitor".

= necessita’ di autodisciplina da parte del programmatore !

a1

Esempio: uso di unarisorsa a capacita’
limitata

 Introduciamo la condition Pl ENO, sulla quale sospendere i thread
che vogliono accedere alla risorsa nel caso di capacita” esaurita.

» Sia Mil mutex associato alla condition PI ENO.

« Introduciamo inoltre la variabile intera non negativa N_i n per
rappresentare lo stato della risorsa, cioe” il numero di thread che
stanno usando la risorsa.

#define MAX 100

/*variabili globali: */

int N_in=0;/* nunmero thread che usano |a risorsa*/
pt hread_cond_t PI ENO,

pthread_nutex_t M/* Mitex */

43

Uso di risorsa condivisa a capacita’ limitata

« Per esemplificare I'uso della condition, si consideri il
caso di una risorsa che puo” essere usata, al
massimo, da MAX thread contemporaneamente.

« Realizziamo una politica di controllo degli accessi
mediante variabili condizione.

42

Struttura dei thread
Tre fasi:

1. entrata: viene controllato lo stato della risorsa: in caso
di risorsa “piena” il thread si sospende sulla condition
PIENO, altrimenti il numero dei thread N_in viene
incrementato. La fase di entrata e” una sezione critica
(procedura entry).

2. uso dellarisorsa

3. uscita: terminato I'uso della risorsa, il thread deve
eseguire la fase di uscita, nella quale viene
decrementato il valore di N_in ed eventualmente
risvegliato un processo sospeso sulla condition PIENO.
Anche la fase di uscita e” una sezione critica (procedura
entry).

44

Codice thread

#define MAX 100
/* "nonitor": contiene le variabili interne al nonitor */
typedef struct{

int N.in; /* valore iniziale 0%/

pthread_cond_t Pl ENO

pthread_nutex_t M
}mon_risorse;

non_risorse R
void entry_Entrata(nmon_risorse *m) /* Fase di Entrata: */

pthread_nutex_| ock (&m>M;
/* controlla la condizione di sincronizzazione:*/

if (m>N_in==MAX) pthread_cond_wait (&m>PIENO, &m>M;
/* aggiorna lo stato della risorsa */
m >N_i n++;

pt hread_nut ex_unl ock (&m>M;
/* fine entrata*/}

<uso della risorsa>

Esempio: produttore e consumatore

Si vuole risolvere il classico problema del produttore e consumatore.
Progetto dellarisorsa (pr odcons):

— buffer circolare di interi, di dimensione data (ad esempio, 16) il cui
stato e'dato da:
« numero degli elementi contenuti: cont
* puntatore alla prima posizione libera: wri t epos
* puntatore al primo elemento occupato : r eadpos
— il buffer e’'unarisorsa da accedere in modo mutuamente esclusivo:
» predispongo un mutex per il controllo della mutua esclusione nell'accesso al
buffer: | ock
— ithread produttori e consumatori necessitano di sincronizzazione in
caso di:
> buffer pieno: definisco una condition per la sospensione dei produttori se il
buffer e* pieno (not ful I')
» buffer vuoto: definisco una condition per la sospensione dei produttori se il
buffer e” vuoto (not enpt y)

45 Incapsulo il tutto all'interno di un tipo struct associato al buffer: 47
pr odcons
Produttori & Consumatori:

voi d entry_USCI TA(mon_risorse *m) /*Fase di Uscita:*/ tipo di dato associato al buffer
{ pthread_nutex_| ock (&m>M;

/* aggiorna |o stato della risorsa */

m>N_in--;

pt hread_cond_si gnal (&m >PI ENO) ; typedef struct

pt hr ead_nut ex_unl ock (&m>M; (
}

int buffer[BUFFER_SI ZE] ;

voi d *codi ce_generico_t hread()
{ while(...) pthread_nutex_t | ock;

{ entry ENTRATA(ER); int readpos, witepos;

<uso risorsa>
entry_USCI TA(&R) ; int cont;
I}:et urn NULL: pthread_cond_t notenpty;
pthread_cond_t notfull;
mai n(){...<inizializzazioni> <creazione N thread>..} }prodcons;
46 48

Produttore e consumatore

Operazioni sullarisorsa pr odcons:

— I nit: inizializzazione del buffer.

— I nseri sci : operazione eseguita da ogni produttore per
I'inserimento di un nuovo elemento.

— Estrai: operazione eseguita da ogni consumatore per
I'estrazione di un elemento dal buffer.

49

Esempio:Operazioni sul buffer

/* Inizializza il buffer */

void init (prodcons *b)

{
pthread_nutex_init (&b->lock, NULL);
pthread_cond_init (&b->notenpty, NULL);
pthread_cond_init (&->notfull, NULL);
b- >cont =0;

b- >readpos = 0;

b->writepos = 0;

51

Esempio: produttore e consumatore
#i ncl ude <stdio. h>

#i ncl ude <pthread. h>

#defi ne BUFFER_SI ZE 16

typedef struct
{ int buffer[BUFFER_SI ZE] ;
pthread_nutex_t | ock;
int readpos, witepos;
int cont;
pthread_cond_t notenpty;
pthread_cond_t notfull;
} prodcons;
50

Operazioni sul buffer

/* |nserinento: */
voi d inserisci (prodcons *b, int data)
{ pthread_nutex_| ock (&b->lock);
/* controlla che il buffer non sia pieno:*/
whi l e (b->cont ==BUFFER_SI ZE)
pthread_cond_wait (&b->notfull, &b->lock);
/* scrivi data e aggiorna |lo stato del buffer */
b->buffer[b->witepos] = data;
b- >cont ++;
b->wri t epos++;
if (b->witepos >= BUFFER_SI ZE)
b->writepos = 0;
/* risveglia eventuali thread (consumatori) sospesi
pt hread_cond_si gnal (&b->notenpty);
pt hr ead_nut ex_unl ock (&b->l ock);

*/

52

Operazioni sul buffer

| *ESTRAZI ONE: */
int estrai (prodcons *b)

{ int data;
pt hread_nut ex_| ock (&b->l ock);
while (b->cont==0) /* il buffer e vuoto? */
pthread_cond_wait (&b->notenpty, &b->lock);
/* Leggi |'elenento e aggiorna |o stato del buffer*/
data = b->buffer[b->readpos];
b->cont - -;

b- >r eadpos++;
if (b->readpos >= BUFFER_SI ZE)
b- >r eadpos = 0;
/* Risveglia eventuali threads (produttori)*/
pt hread_cond_si gnal (&b->notfull);

void *consumer (void *data)
{ int d;
printf("sono il thread consumatore \n\n");

while (1)
{
d = estrai (&buffer);
if (d == OVER)
br eak;
printf("Thread consunatore: --> %l\n", d);
}
return NULL;

pt hread_nut ex_unl ock (&b->l ock); }
return data;

}

53 55
Produttore/consumatore: programma di test
/* Programma di test: 2 thread .
- un thread inserisce sequenzial mente max interi, main ()
I"altro thread |i estrae sequenzial nente per stanparli */ {

SIS €ER () pthread_t th_a, th_b;
ef1ne - H * .

#define max 20 voild =retval;

prodcons buffer; init (&buffer);

. . /* Creazione threads: */

2’0: gt E_"’d“”’ (vene “eitiey pthread create (&h_a, NULL, producer, 0);
printf("sono il thread produttore\n\n"); pt hread_creatg (&h_b, NULL, CORSUT 0);
for (n = 0; n < max; n++) /* Attesa tem nazione threads creati: */

{ primf (t'Thread produttore % --->\n", n); pthread_join (th_a, &etval);
; Imseriesl (@iier,)3 pthread_join (th_b, &retval);
inserisci (&buffer, OVER); return 0;
return NULL; }

}

54 56

Esempio: Ponte con utenti grassi e magri
Si consideri un ponte pedonale che collega le due rive di un fiume.

« Al ponte possono accedere due tipi di utenti: utenti magri e utenti grassi.

« Il ponte ha una capacita’ massima MAX che esprime il numero massimo di
persone che possono transitare contemporaneamente su di esso.

« Il ponte e’ talmente stretto che il transito di un grasso in una particolare
direzione d impedisce l'accesso al ponte di altri utenti (grassi e magri) in
direzione oppostaad.

Realizzare una politica di sincronizzazione delle entrate e delle uscite dal
ponte che tenga conto delle specifiche date e che favorisca gli utenti
magri rispetto a quelli grassi nell'accesso al ponte.

=> duetipi di thread:

magri

e /gr i
grass v'magri
sn + dx => una coda per ogni tipo di

thread e per ogni direzione

Grassi & Magri:
tipo di dato associato al ponte

typedef struct

{
int nmagri[2]; /* numero nmagri sul ponte (per ogni dir.)*/
int ngrassi[2];/* nunmero grassi sul ponte (per ogni dir.)*/
pthread_nutex_t |ock;/*l ock associato alla risorsa "“ponte"*/
pthread_cond_t codamagri[2]; /* var. cond. sosp. magri */
pthread_cond_t codagrassi[2]; /* var. cond. sosp. grassi */
int sospM2];/* nunero di processi negri sospesi*/
int sospd2];/* nunero di processi grassi sospesi*/

}ponte;

57 59
Progetto della risorsa pont e: Produttore e consumatore
Operazioni sulla risorsa pont e:

— lo stato del ponte e definito da:

* numero magri e di grassi sul ponte (per ogni direzione)
— lo stato e’ modificabile dalle operazioni di: B R o AAef IR .

« accesso: ingresso di un thread nel ponte —init: inizializzazione del ponte'

« rilascio: uscita di un thread dal ponte
— il ponte e'unarisorsa da acquisire e rilasciare in modo mutuamente q - A

esclusivo: —accessomagri /accessogr assl . operazione
» predispongo un mutex per il controllo della mutua esclusione eseguita dai thread (g rassi/magri) per I'ingresso
nell'esecuzione delle operazioni di accesso e di rilascio: | ock nel ponte
— ithread grassi e magri si possono sospendere se le condizioni ’
necessarie per I'accesso non sono verificate :

> gnacpda per ogni tipo di threaq (grassq 0 magro)e per ogni direzione —rilasci omagr i/ril asci ogr assi - operazione
— per ispezionare lo stato delle code introduciamo: ita dai th d i/ 3 I’ ita dal

» un contatore dei thread sospesi per ogni tipo di thread (grasso o eseguita aal rea (g rassi mag“) per luscita aa

magro)e per ogni direzione ponte.
=>Incapsulo il tutto all'interno del un tipo struct pont e
58 60

Grassi & Magri:

soluzione
#include <stdio. h>
#i ncl ude <pthread. h>
#define MAX 3 /* nmax capacita ponte */
#define dx O /*costanti di direzione*/
#define sn 1

typedef struct

int nmagri[2]; /* numero magri sul ponte (per ogni
int ngrassi[2];/* nunero grassi sul ponte (per ogni
pthread_nutex_t |ock;/*l ock associato al “ponte" */
pthread_cond_t codamagri[2]; /* var. cond. sosp. magri */

pthread_cond_t codagrassi[2]; /* var. cond. sosp. grassi */

dir.)*/
dir.)*/

T
int sul ponte(ponte p); /* calcola il

operazioni di utilita: */

num di persone sul

int altra_dir(int d); /* calcola |a direzione opposta a d */

/%
voi d accessomagri (ponte *p,

{

Accesso al ponte di un magro in direzione d: */
int d)
pt hread_nut ex_| ock (&p->l ock);
/* controlla le codizioni di accesso:*/
while ((sul ponte(*p)==MAX) || /* vincolo di capacita’ */
(p->ngrassif[altra_dir(d)]>0)) /*ci sono grassi in
di rezi one opposta */
{ p- >sospM d] ++;
pt hread_cond_wait (&p->codanagri[d], &p->lock);

p->sospM d] - -;

/* entrata: aggiorna |o stato del
p->nnagri [d] ++;

ponte */

ponte */

int sospM2];/* nunero di processi megri sospesi*/ /* risveglia eventuali thread "onol oghi" nella stessa dir. */
int sospd 2];/* nunero di processi grassi sospesi*/ pt hread_cond_si gnal (&p->codanagri[d]);
}ponte; pt hr ead_nut ex_unl ock (&p->l ock);
}
61 63
Grassi & Magri: / *accessograssi: Accesso al ponte di un grasso in dir.d: */
soluzione voi d accessograssi (ponte *p, int d)
/* Inizializzazione del ponte */ { pthread _nutex_lock (&p->lock);
Sy * /* controlla |le codizioni di accesso:*/
}’0' dinit (ponte *p) while ((sul ponte(*p)==MAX) ||
L . (p->ngrassifaltra_dir(d)]>0)]||
pt hr ead_nut ex_ini t (&p- >l ock, N_ULL) 8 (p->nmagri[al tra_dir(d)]>0) ||
p: E" eag,cong,! ni : Eﬁ :Cogamagr! {dx%) z&t; ; (p->sospMaltra_dir(d)]>0)) /*priorita’ ai magri: ci
pthread_cond_li ni ->codanegri|snj, H sono nagri in attesa in dir opposta */
pthread_cond_init (&p->codagrassi[dx], NULL); { p- >sospd d] ++;
pt hread_cond_i nit (&p->codagrassi[sn], NULL); pthread_cond_wait (&p->codagrassi[d], &p->lock);
p- >nmagr i [dx] =0; p->sospd d] - -;
p->nmagri [sn] =0;)* . . N
p->ngr assi [dx] =0; /* entrat a: aggi orna lo stato del ponte */
. o p->ngrassi [d] ++;
p- >ngr assi [sn] =0; % ; f " ir. o *
. d - o /* risveglia eventuali thread "onol oghi" nella stessa dir: */
p- >sospM dx] = 9% pt hr ead_cond_si gnal (&p- >codagrassi[d]);
p- >305F’g Zn} = 0; pt hr ead_nut ex_unl ock (&p->I ock);
p- >sosp x] = 0; }
p->sospd sn] = 0;
return;
}
62 64

/* Rilascio del ponte di un nagro in direzione d: */ /* Programma di test: genero un nunmero arbitrario di thread
magri e grassi nelle due direzioni */
void rilasciomagri (ponte *p, int d) #define MAXT 20 /* num max di thread per tipo e per direzi
{ o
pt hread_nut ex_| ock (&p->Iock);
/* uscita: aggiorna |o stato del ponte */ ponte p;
p->nmagri [d] --;
/* risveglio in ordine di priorita” */ void *magro (void *arg) /*codice del thread "magro" */
pt hread_cond_si gnal (&p->codanagri[altra_dir(d)]); { int d;
pt hread_cond_si gnal (&p->codanagri[d]); printf("sono un thread magro in dir. %\n\n", (char *)arg)
pt hread_cond_si gnal (&p->codagrassi[altra_dir(d)]); d=atoi ((char *)arg); /*assegno |la direzione */
pt hread_cond_si gnal (&p->codagrassi[d]); accessonmagri (&p, d);
printf("USCI TA: magro in direzione %\n", d); /* ATTRAVERSAMENTO */
pt hr ead_nut ex_unl ock (&p->l ock); printf("Magro in dir %l: sto attraversando..\n", d);
} sleep(1);
rilascionmagri(&p,d);
return NULL;
}
65 67
/* Rilascio del ponte di un grasso in direzione d: */ void *grasso (void *arg) /*codice del thread "grasso" */
int d;
void rilasci ogr assi (ponte *p, int d) { printf("sono un thread grasso in di_rezi_one Y%\n", (char *)arg);
{ d=at oi ((char_ *)arg); /*assegno |a direzione */
pt hread_nut ex_| ock (&p->Iock); if;g;?i?[ass' (&, d);
. . printf("Gasso in dir %l: sto attraversando\n", d);
/* uscita: aggiorna lo stato del ponte */ rilasci ograssi (&p, d);
p->ngrassi[d]--; return NULL;
/* risveglio in ordine di priorita” */ }
pt hread_cond_si gnal (&p->codanagri[altra_dir(d)]);
pt hread_cond_si gnal (&p->codanagri[d]);
pt hread_cond_si gnal (&p->codagrassi[altra_dir(d)]); main ()
pt hread_cond_si gnal (&p->codagrassi[d]); .
printf("USCI TA: grasso in direzione %\n", d); pihgeadRopu M| S PRGN B AT
int NVMD, NMB, NGD, NGS, i;
) pt hread_nut ex_unl ock (&p->l ock); voi d *retval ;

66

init (&);

68

g

Creazi one threads: */
printf(“\nquanti nagri in direzione dx? ");
scanf ("%", &N\VD);
printf("\nquanti magri in direzione sn? ");
scanf ("%", &NVB);
printf(“\nquanti grassi in direzione dx? ");
scanf ("%", &NGD);
printf("\nquanti grassi in direzione sn? ");
scanf ("%d", &NGS);
/ * CREAZI ONE MAGRI | N DI REZI ONE DX */
for (i=0; i<NVD; i++)
pthread_create (& h_Mdx][i], NULL, magro, "0");
/ * CREAZI ONE MAGRI | N DI REZI ONE SN */
for (i=0; i<NVS; i++)
pthread_create (& h_Msn][i], NULL, magro, "1");
/ * CREAZI ONE GRASSI | N DI REZI ONE DX */
for (i=0; i<NGD; i++)
pthread_create (& h_Gdx][i], NULL, grasso, "0");
/ * CREAZI ONE GRASSI | N DI REZI ONE SN */
for (i=0; i<NGS; i++)
pthread_create (& h_Gsn][i], NULL, grasso, "1");

/* definizione funzioni utilita :*/

int sul ponte(ponte p) /* calcola il numdi pers.sul ponte */
{
return p.nmagri[dx] +p. nmagri [sn] +p. ngrassi [dx] +
p. ngrassi[sn];
}

int altra_dir(int d) /* fornisce la dir. opposta a d */
{
if (d==sn) return dx;

el se return sn;

}
69 71
/* Attesa tenminazione threads creati: */ Esercizio 1
rAT(r'ESS NA?Q' | N_ E)I+;QEZI ONE DX */ Si consideri un castello di interesse storico.
or (i=0; i<NVD; i
pthread_join(th_Mdx][i], &etval); L’accesso al castello e’ consentito a due tipi di visitatori: adulti o bambini.
/*ATTESA MAGRI | N DI REZI ONE SN */ La visita al castello non puo™ avvenire in modo libero, ma deve essere sempre
for (i=0; i <NVB; i++) guidata dal proprietario del castello. (Essendo il proprietario unico, " implicito
'pt hr eadj oin(th Msnl[i], &etval); che in ogni istante ci puo” essere, al piu’, una ed una sola visita in atto.)
La visita assume caratteristiche diverse a seconda che I'insieme di visitatori da
[*ATTESA GRASSI |IN DI REZI ONE DX */ accompagnare sia costituito da adulti oppure da bambini. Per questo motivo, il
for (i=0; i<NGD ! _++) . gruppo di persone che partecipa ad ogni visita e” quindi un insieme omogeneo di
pthread_join(th_Gdx][i], &etval); visitatori (cioe: o tutti adulti, oppure tutti bambini).
/*ATTESA GRASS! | N DI REZI ONE SN */ Per ottimizzare I'_utilizzo_del c_astello ogni visita puo’ iniziare s_qltanto quando il
for (i=0; i<NGS; i++) numero P dei partecipanti ha raggiunto un valore prestabilito PMAX.
pthread join(th_dsn][i], &retval); Quando il gruppo dei partecipanti e* completo, la visita puo® avere inizio attraverso
i I'attivazione di un opportuno processo proprietario che rappresenta la guida di
} TR O ogni visita.
70 72

..continua

Al termine della visita, il processo proprietario provvede a far uscire i
partecipanti, e successivamente si pone in attesa di un nuovo gruppo di
visitatori da guidare nella visita successiva.

Alla fine di ogni visita, il tipo dei partecipanti della visita successiva viene
stabilito in base al numero e al tipo di visitatori in attesa; in particolare, detti
AS ed BS rispettivamente il numero di adulti in attesa ed il numero di
bambini in attesa:

* se AS>BS allora la prossima visita sara” per adulti;
* se BS>AS allora la prossima visita sara’ per bambini;

* se BS=AS venga data le precedenza ai bambini: la prossima visita sara” per
bambini.

Definire una politica di gestione del castello che tenga conto dei vincoli
indicati, e la si realizzi utilizzando la libreria pthread.

73

