
1

I thread nel sistema operativo
LINUX:

Linuxthreads

2

2

LinuxThreads:
Caratteristiche

• Processi leggeri realizzati a livello kernel

• System call clone:

int clone(int (*fn) (void *arg), void *child_stack, int

flags, void *arg)

è E` specifica di Linux: scarsa portabilita`!

• Libreria LinuxThreads: funzioni di gestione dei threads, in conformita`
con lo standard POSIX 1003.1c (pthreads):

• Creazione/terminazione threads
• Sincronizzazione threads:lock, [semafori], variabili condizione
• Etc.

Ø Portabilita`

3

3

LinuxThreads
• Caratteristiche threads:

– Il thread e` realizzato a livello kernel (e` l’unita` di schedulazione)
– I thread vengono creati all’interno di un processo (task) per eseguire

una funzione
– Ogni thread ha il suo PID (a differenza di POSIX: distinzione tra task e

threads)
– Gestione dei segnali non conforme a POSIX:

• Non c’e` la possibilita` di inviare un segnale a un task.
• SIGUSR1 e SIGUSR2 vengono usati per l’implementazione dei threads e

quindi non sono piu` disponibili.
• Sincronizzazione:

– Lock: mutua esclusione (pthread_mutex_lock/unlock)
– Semafori: esterni alla libreria pthread <semaphore.h>

(POSIX 1003.1b)
– Variabili condizione : (pthread_cond_wait,pthread_cond_signal)

4

4

Rappresentazione dei threads

• Il thread e` l’unita` di scheduling, ed e` univocamente
individuato da un indentificatore (intero):

pthread_t tid;

– Il tipo pthread_t e`dichiarato nell’header file
<pthread.h>

5

5

• Creazione di threads:

#include <pthread.h>

int pthread_create(pthread_t *thread,pthread_attr_t *attr,

void *(*start_routine)(void *), void * arg);

• Dove:
– thread: e` il puntatore alla variabile che raccogliera` il thread_ID (PID)
– start_routine: e` il puntatore alla funzione che contiene il codice del nuovo thread
– arg: e` il puntatore all’eventuale vettore contenente i parametri della funzione da

eseguire
– attr: puo` essere usato per specificare eventuali attributi da associare al thread (di

solito: NULL):
• ad esempio parametri di scheduling: priorita` etc.(solo per superuser!)
• Legame con gli altri threads (ad esempio: detached o no)

• Ritorna : 0 in caso di successo, altrimenti un codice di errore (!=0)

LinuxThreads

6

6

Ad esempio:

int A, B;

void * codice(void *){ /*definizione del codice del thread */ …}

main()

{pthread_t t1, t2;

..

pthread_create(&t1,NULL, codice, NULL);

pthread_create(&t2,NULL, codice, NULL);

..

}

Ø Vengono creati due thread (di tid t1 e t2) che eseguono le istruzioni
contenute nella funzione codice:

– I due thread appartengono allo stesso task (processo) e condividono le
variabili globali del programma che li ha generati (ad esempio A e B).

LinuxThreads: creazione di threads

7

7

LinuxThreads

• Un thread puo` terminare chiamando:

void pthread_exit(void *retval);

• Dove:

– retval:e` il puntatore alla variabile che contiene il valore di
ritorno (puo` essere raccolto da altri threads, v.
pthread_join).

• E` una chiamata senza ritorno.

• Alternativa: return();

8

8

LinuxThreads

• Un thread puo` sospendersi in attesa della terminazione
di un altro thread con:

int pthread_join(pthread_t th, void **thread_return);

• Dove:

– th: e` il pid del particolare thread da attendere
– thread_return: e` il puntatore alla variabile dove verra` memorizzato il

valore di ritorno del thread (v. pthread_exit)

9

9

Esempio: creazione di thread

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void *my_thread_process (void * arg)
{

int i;

for (i = 0 ; i < 5 ; i++) {
printf ("Thread %s: %d\n", (char*)arg, i);
sleep (1);

}
pthread_exit (0);

}

10

10

main ()
{

pthread_t th1, th2;
int retcode;
if (pthread_create(&th1,NULL,my_thread_process,"1") < 0)
{ fprintf (stderr, "pthread_create error for thread 1\n");

exit (1);
}
if (pthread_create(&th2,NULL,my_thread_process,"2") < 0)
{ fprintf (stderr, "pthread_create error for thread 2\n");

exit (1);
}
retcode = pthread_join (th1, NULL);
if (retcode != 0)
fprintf (stderr, "join fallito %d\n", retcode);

else printf(“terminato il thread 1\n);

retcode = pthread_join (th2, NULL);
if (retcode != 0)
fprintf (stderr, "join fallito %d\n", retcode);

else printf(“terminato il thread 2\n);
return 0;

}

11

11

Compilazione
• Per compilare un programma che usa i linuxthreads:

gcc -D_REENTRANT -o prog prog.c –lpthread

[aciampolini@ccib48 threads]$ prog

Thread 1: 0

Thread 2: 0

Thread 1: 1

Thread 2: 1

Thread 1: 2

Thread 2: 2

Thread 1: 3

Thread 2: 3

Thread 1: 4

Thread 2: 4

terminato il thread 1

terminato il thread 2

[aciampolini@ccib48 threads]$

12

12

Terminazione di threads

• Normalmente e` necessario eseguire la pthread_join
per ogni thread che termina la sua esecuzione, altrimenti
rimangono allocate le aree di memoria ad esso
assegnate.

• In alternativa si puo` “staccare” il thread dagli altri con:

int pthread_detach(pthread_t th);

Ø il thread rilascia automaticamente le risorse assegnatagli quando
termina.

13

13

LinuxThreads: MUTEX

• Lo standard POSIX 1003.1c (libreria <pthread.h>) definisce i
semafori binari (o lock, mutex, etc.)

– sono semafori il cui valore puo` essere 0 oppure 1 (occupato o
libero);

– vengono utilizzati tipicamente per risolvere problemi di mutua
esclusione

– operazioni fondamentali:
• inizializzazione: pthread_mutex_init
• locking: pthread_mutex_lock
• unlocking: pthread_mutex_unlock

– Per operare sui mutex:
pthread_mutex_t : tipo di dato associato al mutex; esempio:

pthread_mutex_t mux;

14

14

• L'inizializzazione di un mutex si puo`realizzare con:

int pthread_mutex_init(pthread_mutex_t* mutex, const
pthread_mutexattr_t* attr)

attribuisce un valore iniziale all'intero associato al
semaforo (default: libero):
• mutex : individua il mutex da inizializzare
• attr : punta a una struttura che contiene gli attributi del

mutex; se NULL, il mutex viene inizializzato a libero (default).

– in alternativa , si puo` inizializzare il mutex a default con la
macro:

PTHREAD_MUTEX_INIZIALIZER

– esempio: pthread_mutex_t mux= PTHREAD_MUTEX_INIZIALIZER ;

MUTEX: inizializzazione

15

15

• Locking/unlocking si realizzano con:

int pthread_mutex_lock(pthread_mutex_t* mux)
int pthread_mutex_unlock(pthread_mutex_t* mux)

– lock: se il mutex mux e` occupato,il thread
chiamante si sospende; altrimenti occupa il
mutex.

– unlock: se vi sono processi in attesa del mutex,
ne risveglia uno; altrimenti libera il mutex.

MUTEX: lock/unlock

16

16

Esempio
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#define MAX 10
pthread_mutex_t M; /* def.mutex condiviso tra threads */
int DATA=0; /* variabile condivisa */
int accessi1=0; /*num. di accessi del thread 1 alla sez critica */
int accessi2=0; /*num. di accessi del thread 2 alla sez critica */

void *thread1_process (void * arg)
{ int k=1;

while(k)
{

pthread_mutex_lock(&M); /*prologo */
accessi1++;
DATA++;
k=(DATA>=MAX?0:1);
printf("accessi di T1: %d\n", accessi1);
pthread_mutex_unlock(&M); /*epilogo */

}
pthread_exit (0);

}

17

17

Esempio

void *thread2_process (void * arg)

{ int k=1;

while(k)

{

pthread_mutex_lock(&M); /*prologo sez. critica */

accessi2++;

DATA++;

k=(DATA>=MAX?0:1);

printf("accessi di T2: %d\n", accessi2);

pthread_mutex_unlock(&M); /*epilogo sez. critica*/

}

pthread_exit (0);

}

18

18

Esempio:

main()
{ pthread_t th1, th2;
/* il mutex e` inizialmente libero: */
pthread_mutex_init (&M, NULL);
if (pthread_create(&th1, NULL, thread1_process, NULL) <
0)

{ fprintf (stderr, "create error for thread 1\n");
exit (1);

}
if (pthread_create(&th2, NULL,thread2_process,NULL) < 0)
{ fprintf (stderr, "create error for thread 2\n");
exit (1);

}
pthread_join (th1, NULL);
pthread_join (th2, NULL);

}

19

19

Test

$

$ gcc -D_REENTRANT -o tlock lock.c -lpthread

$./tlock

accessi di T2: 1

accessi di T1: 1

accessi di T2: 2

accessi di T1: 2

accessi di T1: 3

accessi di T1: 4

accessi di T1: 5

accessi di T1: 6

accessi di T1: 7

accessi di T1: 8

accessi di T2: 3

$

20

20

LinuxThreads: Semafori

• Memoria condivisa: uso dei semafori (POSIX.1003.1b)

– Semafori: libreria <semaphore.h>
• sem_init: inizializzazione di un semaforo
• sem_wait: wait
• sem_post: signal

– sem_t : tipo di dato associato al semaforo; esempio:

static sem_t my_sem;

21

21

Operazioni sui semafori
– sem_init: inizializzazione di un semaforo
int sem_init(sem_t *sem, int pshared, unsigned int value)

attribuisce un valore iniziale all'intero associato al semaforo:

• sem: individua il semaforo da inizializzare
• pshared : 0, se il semaforo non e` condiviso tra task, oppure non

zero (sempre zero).
• value : e` il valore iniziale da assegnare al semaforo.

– sem_t : tipo di dato associato al semaforo; esempio:

static sem_t my_sem;

Ø ritorna sempre 0.

22

22

Operazioni sui semafori: sem_wait

– wait su un semaforo
int sem_wait(sem_t *sem)

dove:
• sem: individua il semaforo sul quale operare.

e` la wait di Dijkstra:
Ø se il valore del semaforo e` uguale a zero, sospende il thread chiamante

nella coda associata al semaforo; altrimenti ne decrementa il valore.

23

23

Operazioni sui semafori: sem_post

– signal su un semaforo:
int sem_post(sem_t *sem)

dove:
• sem: individua il semaforo sul quale operare.

e` la signal di Dijkstra:
Ø se c'e` almeno un thread sospeso nella coda associata al semaforo sem,

viene risvegliato; altrimenti il valore del semaforo viene incrementato.

24

24

Esempio: sincronizzazione

Ø Imposizione di un vincolo temporale: la FASE2 nel thread 1 va eseguita
dopo la FASE1 nel thread2.

Thread 1 Thread 2

Fase 1

Fase 2

25

25

Esempio: sincronizzazione
/* la FASE2 nel thread 1 va eseguita dopo la FASE1 nel thread 2*/

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <semaphore.h>

sem_t my_sem;

int V=0;

void *thread1_process (void * arg)

{

printf ("Thread 1: partito!...\n");

/* inizio Fase 2: */

sem_wait (&my_sem);

printf ("FASE2: Thread 1: V=%d\n", V);

pthread_exit (0);

}

26

26

void *thread2_process (void * arg)

{ int i;

V=99;

printf ("Thread 2: partito!...\n);

/* inizio fase 1: */

printf (“FASE1: Thread 2: V=%d\n", V);

/* …

termine Fase 1: sblocco il thread 1*/

sem_post (&my_sem);

sleep (1);

pthread_exit (0);

}

27

27

main ()

{ pthread_t th1, th2;

void *ret;

sem_init (&my_sem, 0, 0); /* semaforo a 0 */

if (pthread_create (&th1, NULL, thread1_process, NULL) < 0) {
fprintf (stderr, "pthread_create error for thread 1\n");

exit (1);

}

if (pthread_create(&th2,NULL, thread2_process, NULL) < 0)

{fprintf (stderr, "pthread_create error for thread \n");

exit (1);

}

pthread_join (th1, &ret);

pthread_join (th2, &ret);

}

28

28

Esempio:

• gcc -D_REENTRANT -o sem sem.c –lpthread

• Esecuzione:

[aciampolini@ccib48 threads]$ sem

Thread 1: partito!...

Thread 2: partito!...

FASE1: Thread 2: V=99

FASE2: Thread 1: V=99

[aciampolini@ccib48 threads]$

29

29

Semafori: esempio

/* tre processi che, ciclicamente, incrementano a turno (in
ordine P1,P2,P3) la variabile V*/

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <semaphore.h>

#define MAX 13

static sem_t m; /* semaforo per la mutua esclusione

nell’accesso alla sezione critica */

static sem_t s1,s2,s3; /* semafori per imporre

l’ordine di accesso (P1,P2,P3) alla

variabile V */

int V=0,F=0;

30

30

void *thread1_process (void * arg)

{ int k=1;

while(k)

{ sem_wait (&s1);

sem_wait(&m);

if (V<MAX)

V++;

else

{ k=0;

printf("T1: %d (V=%d)\n",++F, V);

}

sem_post(&m);

sem_post(&s2);

}

pthread_exit (0);

}

31

31

void *thread2_process (void * arg)

{ int k=1;

while(k)

{ sem_wait (&s2);

sem_wait(&m);

if (V<MAX)

V++;

else

{ k=0;

printf("T2: %d (V=%d)\n",++F, V);

}

sem_post(&m);

sem_post(&s3);

}

pthread_exit (0);

}

32

32

void *thread3_process (void * arg)

{ int k=1;

while(k)

{ sem_wait (&s3);

sem_wait(&m);

if (V<MAX)

V++;

else

{ k=0;

printf("T3: %d (V=%d)\n",++F, V);

}

sem_post(&m);

sem_post(&s1);

}

pthread_exit (0);

}

33

33

main ()

{ pthread_t th1, th2,th3;

sem_init (&m, 0, 1);

sem_init(&s1,0,1);

sem_init(&s2,0,0);

sem_init(&s3,0,0);

if (pthread_create(&th1, NULL, thread1_process, NULL) < 0)

{ fprintf (stderr, "pthread_create error for thread 1\n");

exit (1);

}

if (pthread_create(&th2, NULL,thread2_process,NULL) < 0)

{ fprintf (stderr, "pthread_create error for thread 2\n");

exit (1);

}

if (pthread_create(&th3,NULL,thread3_process, NULL) < 0)

{ fprintf (stderr, "pthread_create error for thread 3\n");

exit (1);

34

34

pthread_join (th1, NULL);

pthread_join (th2, NULL);

pthread_join (th3, NULL);

}

35

35

Esecuzione:

[aciampolini@ccib48 threads]$ sem1

T2: 1 (V=10)

T3: 2 (V=10)

T1: 3 (V=10)

[aciampolini@ccib48 threads]$

36

36

LinuxThreads: variabili condizione

• Lo standard POSIX 1003.1c (libreria <pthread.h>) implementa le
variabili condizione

– Le variabili condizione (condition) sono uno strumento di
sincronizzazione che premette ai threads di sospendere la
propria esecuzione in attesa che siano soddisfatte alcune
condizioni su dati condivisi.

– ad ogni condition viene associata una coda nella quale i threads
possono sospendersi (tipicamente, se la condizione non e`
verificata).

– operazioni fondamentali:
• inizializzazione: pthread_cond_init
• sospensione: pthread_cond_wait
• risveglio: pthread_cond_signal

– Per operare sulle variabili condizione:
pthread_cond_t: è il tipo predefinito per le variabili condizione.

37

37

• L'inizializzazione di una condition si puo`realizzare con:

int pthread_cond_init(pthread_cond_t* cond,
pthread_cond_attr_t* cond_attr)

dove
• cond : individua la condizione da inizializzare
• attr : punta a una struttura che contiene gli attributi della

condizione; se NULL, viene inizializzata a default.

NB: linux non implementa gli attributi !

– in alternativa, una variabile condizione può essere inizializzata
staticamente con la costante:

PTHREAD_COND_INIZIALIZER
– esempio: pthread_cond_t C= PTHREAD_COND_INIZIALIZER ;

Variabili Condizione: inizializzazione

38

38

• Un thread puo` sospendersi su una variabile condizione, se la
condizione non e` verificata:

– ad esempio:
pthread_cond_t C= PTHREAD_COND_INIZIALIZER;
int bufferpieno=0;
...
if (bufferpieno) <sospensione sulla cond. C>;

Ø La verifica della condizione e` una sezione critica!
Ø Necessita` di garantire la mutua esclusione:

e` necessario associare ad ogni variabile condizione un mutex :
pthread_cond_t C= PTHREAD_COND_INIZIALIZER;
pthread_mutex_t M=PTHREAD_MUTEX_INITIALIZER;
int bufferpieno=0;
...
pthread_mutex_lock(&M);
if (bufferpieno) <sospensione sulla cond. C>
pthread_mutex_unlock(&M);

Variabili condizione: wait

39

39

• La sospensione su una condizione si ottiene mediante:

int pthread_cond_wait(pthread_cond_t* cond,
pthread_mutex_t* mux);

dove:
– cond: e` la variabile condizione
– mux: e` il mutex associato ad essa

Effetto:
• il thread chiamante si sospende sulla coda associata a cond, e il

mutex mux viene liberato

è Al successivo risveglio (provocato da una signal), il thread
rioccupera` il mutex automaticamente.

Variabili condizione: wait

40

40

• Il risveglio di un thread sospeso su una variabile condizione
puo`essere ottenuto mediante la funzione:

int pthread_cond_signal(pthread_cond_t* cond);

dove:
– cond: e` la variabile condizione.

Effetto:
• se esistono thread sospesi nella coda associata a cond, ne viene

risvegliato uno (non viene specificato quale).
• se non vi sono thread sospesi sulla condizione, la signal non ha

effetto.
• realizzazione "signal_and_continue"

N.B. non e` prevista una funzione ("..queue") per verificare lo stato della
coda associata a una condizione.

Variabili condizione: signal

41

41

Pthread Condition & Monitor
• La condition permette di implementare politiche di

sincronizzazione mediante funzioni/procedure "entry",
realizzando meccanismi di accesso alle risorse
equivalenti a quelli forniti dal concetto di monitor
[Hoare'74]; differenze:

– i dati "interni" al monitor sono potenzialmente
accessibili direttamente da tutti i processi;

– la mutua esclusione delle funzioni/procedure entry
deve essere garantita esplicitamente dal
programmatore mediante lock/unlock su un mutex
associato al "monitor".

ènecessita` di autodisciplina da parte del programmatore !

42

42

Uso di risorsa condivisa a capacita` limitata

• Per esemplificare l’uso della condition, si consideri il
caso di una risorsa che puo` essere usata, al
massimo, da MAX thread contemporaneamente.

• Realizziamo una politica di controllo degli accessi
mediante variabili condizione.

43

43

Esempio: uso di una risorsa a capacita`
limitata

• Introduciamo la condition PIENO, sulla quale sospendere i thread
che vogliono accedere alla risorsa nel caso di capacita` esaurita.

• Sia M il mutex associato alla condition PIENO.

• Introduciamo inoltre la variabile intera non negativa N_in per
rappresentare lo stato della risorsa, cioe` il numero di thread che
stanno usando la risorsa.

#define MAX 100

/*variabili globali: */

int N_in=0;/* numero thread che usano la risorsa*/

pthread_cond_t PIENO;

pthread_mutex_t M;/* Mutex */

44

44

Struttura dei thread
Tre fasi:

1. entrata: viene controllato lo stato della risorsa: in caso
di risorsa “piena” il thread si sospende sulla condition
PIENO, altrimenti il numero dei thread N_in viene
incrementato. La fase di entrata e` una sezione critica
(procedura entry).

2. uso della risorsa

3. uscita: terminato l’uso della risorsa, il thread deve
eseguire la fase di uscita, nella quale viene
decrementato il valore di N_in ed eventualmente
risvegliato un processo sospeso sulla condition PIENO.
Anche la fase di uscita e` una sezione critica (procedura
entry).

45

45

Codice thread
#define MAX 100
/* "monitor": contiene le variabili interne al monitor */
typedef struct{

int N_in; /* valore iniziale 0*/
pthread_cond_t PIENO;
pthread_mutex_t M;

}mon_risorse;

mon_risorse R;

void entry_Entrata(mon_risorse *m) /* Fase di Entrata: */
{ pthread_mutex_lock (&m->M);

/* controlla la condizione di sincronizzazione:*/
if (m->N_in==MAX) pthread_cond_wait (&m->PIENO, &m->M);
/* aggiorna lo stato della risorsa */
m->N_in++;
pthread_mutex_unlock (&m->M);
/* fine entrata*/}

<uso della risorsa>

46

46

void entry_USCITA(mon_risorse *m) /*Fase di Uscita:*/
{ pthread_mutex_lock (&m->M);

/* aggiorna lo stato della risorsa */
m->N_in--;
pthread_cond_signal (&m->PIENO);
pthread_mutex_unlock (&m->M);

}

void *codice_generico_thread()
{ while(...)

{ entry_ENTRATA(&R);
<uso risorsa>
entry_USCITA(&R);

}
return NULL;

}

main(){...<inizializzazioni>; <creazione N thread>..}

47

47

Si vuole risolvere il classico problema del produttore e consumatore.

Progetto della risorsa (prodcons):

– buffer circolare di interi, di dimensione data (ad esempio, 16) il cui
stato e`dato da:

• numero degli elementi contenuti: cont
• puntatore alla prima posizione libera: writepos
• puntatore al primo elemento occupato : readpos

– il buffer e`una risorsa da accedere in modo mutuamente esclusivo:
Ø predispongo un mutex per il controllo della mutua esclusione nell'accesso al

buffer: lock
– i thread produttori e consumatori necessitano di sincronizzazione in

caso di :
Ø buffer pieno: definisco una condition per la sospensione dei produttori se il

buffer e` pieno (notfull)
Ø buffer vuoto: definisco una condition per la sospensione dei produttori se il

buffer e` vuoto (notempty)

Incapsulo il tutto all'interno di un tipo struct associato al buffer:
prodcons

Esempio: produttore e consumatore

48

48

Produttori & Consumatori:
tipo di dato associato al buffer

typedef struct

{

int buffer[BUFFER_SIZE];

pthread_mutex_t lock;

int readpos, writepos;

int cont;

pthread_cond_t notempty;

pthread_cond_t notfull;

}prodcons;

49

49

Produttore e consumatore

Operazioni sulla risorsa prodcons:

– Init: inizializzazione del buffer.

– Inserisci: operazione eseguita da ogni produttore per
l'inserimento di un nuovo elemento.

– Estrai: operazione eseguita da ogni consumatore per
l'estrazione di un elemento dal buffer.

50

50

Esempio: produttore e consumatore
#include <stdio.h>

#include <pthread.h>

#define BUFFER_SIZE 16

typedef struct

{ int buffer[BUFFER_SIZE];

pthread_mutex_t lock;

int readpos, writepos;

int cont;

pthread_cond_t notempty;

pthread_cond_t notfull;

}prodcons;

51

51

/* Inizializza il buffer */

void init (prodcons *b)

{

pthread_mutex_init (&b->lock, NULL);

pthread_cond_init (&b->notempty, NULL);

pthread_cond_init (&b->notfull, NULL);

b->cont=0;

b->readpos = 0;

b->writepos = 0;

}

Esempio:Operazioni sul buffer

52

52

/* Inserimento: */
void inserisci (prodcons *b, int data)
{ pthread_mutex_lock (&b->lock);
/* controlla che il buffer non sia pieno:*/
while (b->cont==BUFFER_SIZE)

pthread_cond_wait (&b->notfull, &b->lock);
/* scrivi data e aggiorna lo stato del buffer */
b->buffer[b->writepos] = data;
b->cont++;
b->writepos++;
if (b->writepos >= BUFFER_SIZE)
b->writepos = 0;

/* risveglia eventuali thread (consumatori) sospesi */
pthread_cond_signal (&b->notempty);
pthread_mutex_unlock (&b->lock);

}

Operazioni sul buffer

53

53

/*ESTRAZIONE: */
int estrai (prodcons *b)
{ int data;
pthread_mutex_lock (&b->lock);
while (b->cont==0) /* il buffer e` vuoto? */

pthread_cond_wait (&b->notempty, &b->lock);
/* Leggi l'elemento e aggiorna lo stato del buffer*/
data = b->buffer[b->readpos];
b->cont--;
b->readpos++;
if (b->readpos >= BUFFER_SIZE)
b->readpos = 0;

/* Risveglia eventuali threads (produttori)*/
pthread_cond_signal (&b->notfull);
pthread_mutex_unlock (&b->lock);
return data;

}

Operazioni sul buffer

54

54

/* Programma di test: 2 thread
- un thread inserisce sequenzialmente max interi,
- l'altro thread li estrae sequenzialmente per stamparli */

#define OVER (-1)
#define max 20

prodcons buffer;

void *producer (void *data)
{ int n;
printf("sono il thread produttore\n\n");
for (n = 0; n < max; n++)

{ printf ("Thread produttore %d --->\n", n);
inserisci (&buffer, n);

}
inserisci (&buffer, OVER);
return NULL;

}

Produttore/consumatore: programma di test

55

55

void *consumer (void *data)
{ int d;

printf("sono il thread consumatore \n\n");

while (1)
{

d = estrai (&buffer);
if (d == OVER)

break;
printf("Thread consumatore: --> %d\n", d);

}
return NULL;

}

56

56

main ()
{

pthread_t th_a, th_b;
void *retval;

init (&buffer);
/* Creazione threads: */
pthread_create (&th_a, NULL, producer, 0);
pthread_create (&th_b, NULL, consumer, 0);
/* Attesa teminazione threads creati: */
pthread_join (th_a, &retval);
pthread_join (th_b, &retval);
return 0;

}

57

57

Esempio: Ponte con utenti grassi e magri
Si consideri un ponte pedonale che collega le due rive di un fiume.

• Al ponte possono accedere due tipi di utenti: utenti magri e utenti grassi.

• Il ponte ha una capacita` massima MAX che esprime il numero massimo di
persone che possono transitare contemporaneamente su di esso.

• Il ponte e` talmente stretto che il transito di un grasso in una particolare
direzione d impedisce l'accesso al ponte di altri utenti (grassi e magri) in
direzione opposta a d.

Realizzare una politica di sincronizzazione delle entrate e delle uscite dal
ponte che tenga conto delle specifiche date e che favorisca gli utenti
magri rispetto a quelli grassi nell'accesso al ponte.

magri

grassi

magri

grassi

sn dx

è due tipi di thread:

ügrassi

ümagri

è una coda per ogni tipo di
thread e per ogni direzione

58

58

Progetto della risorsa ponte:

– lo stato del ponte e`definito da:
• numero magri e di grassi sul ponte (per ogni direzione)

– lo stato e` modificabile dalle operazioni di:
• accesso: ingresso di un thread nel ponte
• rilascio: uscita di un thread dal ponte

– il ponte e`una risorsa da acquisire e rilasciare in modo mutuamente
esclusivo:
Ø predispongo un mutex per il controllo della mutua esclusione

nell'esecuzione delle operazioni di accesso e di rilascio: lock
– i thread grassi e magri si possono sospendere se le condizioni

necessarie per l'accesso non sono verificate :
Ø una coda per ogni tipo di thread (grasso o magro)e per ogni direzione

– per ispezionare lo stato delle code introduciamo:
Ø un contatore dei thread sospesi per ogni tipo di thread (grasso o

magro)e per ogni direzione

èIncapsulo il tutto all'interno del un tipo struct ponte

59

59

Grassi & Magri:
tipo di dato associato al ponte

typedef struct

{

int nmagri[2]; /* numero magri sul ponte (per ogni dir.)*/

int ngrassi[2];/* numero grassi sul ponte (per ogni dir.)*/

pthread_mutex_t lock;/*lock associato alla risorsa "ponte"*/

pthread_cond_t codamagri[2]; /* var. cond. sosp. magri */

pthread_cond_t codagrassi[2]; /* var. cond. sosp. grassi */

int sospM[2];/* numero di processi magri sospesi*/

int sospG[2];/* numero di processi grassi sospesi*/

}ponte;

60

60

Produttore e consumatore

Operazioni sulla risorsa ponte:

– init: inizializzazione del ponte.

– accessomagri/accessograssi: operazione
eseguita dai thread (grassi/magri) per l'ingresso
nel ponte.

– rilasciomagri/rilasciograssi: operazione
eseguita dai thread (grassi/magri) per l'uscita dal
ponte.

61

61

Grassi & Magri:
soluzione

#include <stdio.h>
#include <pthread.h>
#define MAX 3 /* max capacita ponte */
#define dx 0 /*costanti di direzione*/
#define sn 1

typedef struct
{
int nmagri[2]; /* numero magri sul ponte (per ogni dir.)*/
int ngrassi[2];/* numero grassi sul ponte (per ogni dir.)*/
pthread_mutex_t lock;/*lock associato al"ponte" */
pthread_cond_t codamagri[2]; /* var. cond. sosp. magri */
pthread_cond_t codagrassi[2]; /* var. cond. sosp. grassi */
int sospM[2];/* numero di processi magri sospesi*/
int sospG[2];/* numero di processi grassi sospesi*/

}ponte;

62

62

Grassi & Magri:
soluzione

/* Inizializzazione del ponte */
void init (ponte *p)
{

pthread_mutex_init (&p->lock, NULL);
pthread_cond_init (&p->codamagri[dx], NULL);
pthread_cond_init (&p->codamagri[sn], NULL);
pthread_cond_init (&p->codagrassi[dx], NULL);
pthread_cond_init (&p->codagrassi[sn], NULL);
p->nmagri[dx]=0;
p->nmagri[sn]=0;
p->ngrassi[dx]=0;
p->ngrassi[sn]=0;
p->sospM[dx] = 0;
p->sospM[sn] = 0;
p->sospG[dx] = 0;
p->sospG[sn] = 0;
return;

}

63

63

/*operazioni di utilita`: */
int sulponte(ponte p); /* calcola il num. di persone sul ponte */
int altra_dir(int d); /* calcola la direzione opposta a d */

/* Accesso al ponte di un magro in direzione d: */
void accessomagri (ponte *p, int d)
{ pthread_mutex_lock (&p->lock);
/* controlla le codizioni di accesso:*/
while ((sulponte(*p)==MAX) || /* vincolo di capacita` */

(p->ngrassi[altra_dir(d)]>0)) /*ci sono grassi in
direzione opposta */

{ p->sospM[d]++;
pthread_cond_wait (&p->codamagri[d], &p->lock);
p->sospM[d]--;

}
/* entrata: aggiorna lo stato del ponte */
p->nmagri[d]++;
/* risveglia eventuali thread "omologhi" nella stessa dir. */
pthread_cond_signal (&p->codamagri[d]);
pthread_mutex_unlock (&p->lock);

}

64

64

/*accessograssi: Accesso al ponte di un grasso in dir.d: */

void accessograssi (ponte *p, int d)
{ pthread_mutex_lock (&p->lock);
/* controlla le codizioni di accesso:*/
while ((sulponte(*p)==MAX) ||

(p->ngrassi[altra_dir(d)]>0)||
(p->nmagri[altra_dir(d)]>0) ||
(p->sospM[altra_dir(d)]>0)) /*priorita` ai magri: ci

sono magri in attesa in dir opposta */
{ p->sospG[d]++;

pthread_cond_wait (&p->codagrassi[d], &p->lock);
p->sospG[d]--;

}
/* entrata: aggiorna lo stato del ponte */
p->ngrassi[d]++;
/* risveglia eventuali thread "omologhi" nella stessa dir: */
pthread_cond_signal (&p->codagrassi[d]);
pthread_mutex_unlock (&p->lock);

}

65

65

/* Rilascio del ponte di un magro in direzione d: */

void rilasciomagri (ponte *p, int d)
{

pthread_mutex_lock (&p->lock);

/* uscita: aggiorna lo stato del ponte */
p->nmagri[d]--;
/* risveglio in ordine di priorita` */
pthread_cond_signal (&p->codamagri[altra_dir(d)]);
pthread_cond_signal (&p->codamagri[d]);
pthread_cond_signal (&p->codagrassi[altra_dir(d)]);
pthread_cond_signal (&p->codagrassi[d]);
printf("USCITA: magro in direzione %d\n", d);
pthread_mutex_unlock (&p->lock);

}

66

66

/* Rilascio del ponte di un grasso in direzione d: */

void rilasciograssi (ponte *p, int d)
{

pthread_mutex_lock (&p->lock);

/* uscita: aggiorna lo stato del ponte */
p->ngrassi[d]--;
/* risveglio in ordine di priorita` */
pthread_cond_signal (&p->codamagri[altra_dir(d)]);
pthread_cond_signal (&p->codamagri[d]);
pthread_cond_signal (&p->codagrassi[altra_dir(d)]);
pthread_cond_signal (&p->codagrassi[d]);
printf("USCITA: grasso in direzione %d\n", d);
pthread_mutex_unlock (&p->lock);

}

67

67

/* Programma di test: genero un numero arbitrario di thread
magri e grassi nelle due direzioni */

#define MAXT 20 /* num. max di thread per tipo e per direzione
*/

ponte p;

void *magro (void *arg) /*codice del thread "magro" */
{ int d;

printf("sono un thread magro in dir. %s\n\n",(char *)arg);
d=atoi((char *)arg); /*assegno la direzione */
accessomagri (&p, d);
/* ATTRAVERSAMENTO: */
printf("Magro in dir %d: sto attraversando..\n", d);
sleep(1);
rilasciomagri(&p,d);
return NULL;

}

68

68

void *grasso (void *arg) /*codice del thread "grasso" */
{ int d;
printf("sono un thread grasso in direzione %s\n", (char *)arg);
d=atoi((char *)arg); /*assegno la direzione */
accessograssi (&p, d);
sleep(1);
printf("Grasso in dir %d: sto attraversando\n", d);
rilasciograssi(&p,d);
return NULL;

}

main ()
{
pthread_t th_M[2][MAXT], th_G[2][MAXT];
int NMD, NMS, NGD, NGS, i;
void *retval;

init (&p);

69

69

/* Creazione threads: */
printf("\nquanti magri in direzione dx? ");
scanf("%d", &NMD);
printf("\nquanti magri in direzione sn? ");
scanf("%d", &NMS);
printf("\nquanti grassi in direzione dx? ");
scanf("%d", &NGD);
printf("\nquanti grassi in direzione sn? ");
scanf("%d", &NGS);
/*CREAZIONE MAGRI IN DIREZIONE DX */
for (i=0; i<NMD; i++)

pthread_create (&th_M[dx][i], NULL, magro, "0");
/*CREAZIONE MAGRI IN DIREZIONE SN */
for (i=0; i<NMS; i++)

pthread_create (&th_M[sn][i], NULL, magro, "1");
/*CREAZIONE GRASSI IN DIREZIONE DX */
for (i=0; i<NGD; i++)

pthread_create (&th_G[dx][i], NULL, grasso, "0");
/*CREAZIONE GRASSI IN DIREZIONE SN */
for (i=0; i<NGS; i++)

pthread_create (&th_G[sn][i], NULL, grasso, "1");

70

70

/* Attesa teminazione threads creati: */

/*ATTESA MAGRI IN DIREZIONE DX */
for (i=0; i<NMD; i++)

pthread_join(th_M[dx][i], &retval);

/*ATTESA MAGRI IN DIREZIONE SN */
for (i=0; i<NMS; i++)

pthread_join(th_M[sn][i], &retval);

/*ATTESA GRASSI IN DIREZIONE DX */
for (i=0; i<NGD; i++)

pthread_join(th_G[dx][i], &retval);

/*ATTESA GRASSI IN DIREZIONE SN */
for (i=0; i<NGS; i++)

pthread_join(th_G[sn][i], &retval);

return 0;
}

71

71

/* definizione funzioni utilita`:*/

int sulponte(ponte p) /* calcola il num.di pers.sul ponte */

{

return p.nmagri[dx]+p.nmagri[sn]+p.ngrassi[dx]+
p.ngrassi[sn];

}

int altra_dir(int d) /* fornisce la dir. opposta a d */

{

if (d==sn) return dx;

else return sn;

}

72

72

Si consideri un castello di interesse storico.

L’accesso al castello e` consentito a due tipi di visitatori: adulti o bambini.

La visita al castello non puo` avvenire in modo libero, ma deve essere sempre
guidata dal proprietario del castello. (Essendo il proprietario unico, e` implicito
che in ogni istante ci puo` essere, al piu`, una ed una sola visita in atto.)

La visita assume caratteristiche diverse a seconda che l’insieme di visitatori da
accompagnare sia costituito da adulti oppure da bambini. Per questo motivo, il
gruppo di persone che partecipa ad ogni visita e` quindi un insieme omogeneo di
visitatori (cioe`: o tutti adulti, oppure tutti bambini).

Per ottimizzare l’utilizzo del castello ogni visita puo` iniziare soltanto quando il
numero P dei partecipanti ha raggiunto un valore prestabilito PMAX.

Quando il gruppo dei partecipanti e` completo, la visita puo` avere inizio attraverso
l’attivazione di un opportuno processo proprietario che rappresenta la guida di
ogni visita.

Esercizio 1

73

73

..continua

Al termine della visita, il processo proprietario provvede a far uscire i
partecipanti, e successivamente si pone in attesa di un nuovo gruppo di
visitatori da guidare nella visita successiva.

Alla fine di ogni visita, il tipo dei partecipanti della visita successiva viene
stabilito in base al numero e al tipo di visitatori in attesa; in particolare, detti
AS ed BS rispettivamente il numero di adulti in attesa ed il numero di
bambini in attesa:

• se AS>BS allora la prossima visita sara` per adulti;

• se BS>AS allora la prossima visita sara` per bambini;

• se BS=AS venga data le precedenza ai bambini: la prossima visita sara` per
bambini.

Definire una politica di gestione del castello che tenga conto dei vincoli
indicati, e la si realizzi utilizzando la libreria pthread.

