| thread nel sistema operativo
LINUX:
Linuxthreads

LinuxThreads:
Caratteristiche

* Processileggerirealizzati a livello kernel

» System call cl one:

int clone(int (*fn) (void *arg), void *child_stack, int

flags, void *arq)

= E specificadi Linux: scarsa portabilita’!

» Libreria LinuxThreads: funzioni di gestione dei threads, in conformita’
con lo standard POSIX 1003.1c (pthreads):

» Creazione/terminazione threads
 Sincronizzazione threads:lock, [semafori], variabili condizione
» Etc.

> Portabilita

LinuxThreads
Caratteristiche threads:

— Il thread e realizzato a livello kernel (e” l'unita’ di schedulazione)

— | thread vengono creati all’interno di un processo (task) per eseguire
una funzione

— Ogni thread ha il suo PID (a differenza di POSIX: distinzione tra task e
threads)

— Gestione dei segnali non conforme a POSIX:
* Non c’e’ la possibilita™ di inviare un segnale a un task.
* SIGUSRL1 e SIGUSR2 vengono usati per 'implementazione dei threads e
quindi non sono piu’ disponibili.
Sincronizzazione:

— Lock: mutua esclusione (pt hr ead_nut ex_| ock/ unl ock)
— Semafori: esterni alla libreria pt hr ead <semaphore.h>
(POSIX 1003.1b)
— Variabili condizione : (pt hread_cond_wai t, pt hread_cond_si gnal)

Rappresentazione dei threads

e Il thread e l'unita’ di scheduling, ed e univocamente
individuato da un indentificatore (intero):

pthread t tid;

— Il tipo pt hread_t e’'dichiarato nell’header file
<pt hr ead. h>

LinuxThreads

e Creazione di threads:

#i ncl ude <pt hread. h>
int pthread create(pthread t *thread, pthread attr_t *attr,

void *(*start_routine)(void *), void * arg);

e Dove:

— thread: e il puntatore alla variabile che raccogliera’ il thread_ID (PID)
— start_routine: e il puntatore allafunzione che contiene il codice del nuovo thread

— arg: e il puntatore all’eventuale vettore contenente i parametri della funzione da
eseguire

— attr: puo essere usato per specificare eventuali attributi da associare al thread (di
solito: NULL):

» ad esempio parametri di scheduling: priorita” etc.(solo per superuser!)
« Legame con gli altri threads (ad esempio: detached o no)

* Ritorna : 0 in caso di successo, altrimenti un codice di errore (1=0)

LinuxThreads: creazione di threads

Ad esempio:

int A B;
void * codice(void *){ /*definizione del codice del thread */ .}
mai n()

{pthread_t t1, t2

pt hread_creat e(& 1, NULL, codice, NULL);
pt hread _create(& 2, NULL, codice, NULL);

» Vengono creati due thread (ditidt 1 et 2) che eseguono le istruzioni
contenute nella funzione codi ce:

— lduethread appartengono allo stesso task (processo) e condividono le
variabili globali del programma che li ha generati (ad esempio A e B).

LinuxThreads

* Un thread puo terminare chiamando:

void pthread exit(void *retval);

e Dove:

— retval : e il puntatore alla variabile che contiene il valore di

ritorno (puo” essere raccolto da altri threads, v.
pt hr ead_j oi n).

e E una chiamata senza ritorno.

o Alternativa: return() ;

LinuxThreads

* Un thread puo sospendersi in attesa della terminazione
di un altro thread con:

int pthread_join(pthread t th, void **thread_return);

e Dove:

— th: e il pid del particolare thread da attendere

— thread_return: e il puntatore alla variabile dove verra- memorizzato il
valore di ritorno del thread (v. pt hread_exi t)

Esempio: creazione di thread

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <pt hread. h>

void *nmy _thread process (void * arg)

{

int i;

for (i =0 ; i <5 ; i++) {
printf ("Thread %: %\n", (char*)arg, 1);
sleep (1);

}

pthread exit (0);

main ()

{

pthread t thl, th2;

I nt retcode;

I f (pthread _create(& hl, NULL, ny thread process,"1") < 0)

{ fprintf (stderr, "pthread create error for thread 1\n");
exit (1);

}

I f (pthread _create(& h2, NULL, ny_thread process,"2") < 0)

{ fprintf (stderr, "pthread create error for thread 2\n");
exit (1);

}

retcode = pthread join (thl, NULL);

if (retcode !'= 0)
fprintf (stderr, "join fallito %d\n", retcode);

el se printf(“termnato il thread 1\n);

retcode = pthread join (th2, NULL);
If (retcode !'= 0)

fprintf (stderr, "join fallito %d\n", retcode);
el se printf(“termnato il thread 2\n);

return O
10

Compilazione

* Per compilare un programma che usa i linuxthreads:

gcc -D REENTRANT -0 prog prog.c

—| pt hr ead

[aci anpol i ni @ci b48 t hreads]$ prog

Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead
Thr ead

1

2:

ENMNEDNMEDNMED

0

A W W NN DN PP O

4

termnato il thread 1

termnato il thread 2
[aci anpol i ni @ci b48 threads] $

Terminazione di threads

 Normalmente e necessario eseguire la pt hread_j oi n
per ogni thread che termina la sua esecuzione, altrimenti
rimangono allocate le aree di memoria ad esso
assegnate.

 In alternativa si puo “staccare” il thread dagli altri con:

i nt pthread_detach(pthread_t th);

> il thread rilascia automaticamente le risorse assegnatagli quando
termina.

12

LinuxThreads: MUTEX

Lo standard POSIX 1003.1c (libreria <pt hr ead. h>) definisce i
semafori binari (o lock, mutex, etc.)

— sono semafori il cui valore puo™ essere 0 oppure 1 (occupato o
libero);
— vengono utilizzati tipicamente per risolvere problemi di mutua
esclusione
— operazioni fondamentali:
* inizializzazione: pt hread _nmutex_init
* locking: pthread nutex | ock
* unlocking: pthread_nutex_unl ock

— Per operare sui mutex:

pt hread_nut ex_t : tipo di dato associato al mutex; esempio:
pt hread nmutex_t mux;

13

MUTEX: Inizializzazione

L'inizializzazione di un nut ex si puo realizzare con:

int pthread nutex init(pthread nutex t* nutex, const
pthread nutexattr t* attr)

attribuisce un valore iniziale all'intero associato al
semaforo (default: libero):
. mut ex : individua il mutex da inizializzare

e attr : puntaauna strutturache contiene gli attributi del
mutex; se NULL, il mutex viene inizializzato a libero (default).

— in alternativa , si puo’ inizializzare il mutex a default con la
macro:
PTHREAD MUTEX | NI ZI ALI ZER

— esempio: pt hread_mutex_t nmux= PTHREAD MJUTEX | NI ZI ALI ZER;

14

MUTEX: lock/unlock

Locking/unlocking si realizzano con:

i nt pthread nutex | ock(pthread nutex t* mnmux)
I nt pthread _nutex _unl ock(pthread mutex t* nux)

lock: se il mutex nux e occupato,il thread
chiamante si sospende; altrimenti occupa il
mutex.

unlock: se vi sono processi in attesa del mutex,
ne risveglia uno; altrimenti libera il mutex.

15

Esempio
#1 ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <pt hread. h>
#defi ne MAX 10
pthread mutex t M /* def.nutex condiviso tra threads */
int DATA=0; /* variabile condivisa */
int accessi 1=0; /*num di accessi del thread 1 alla sez critica */
int accessi 2=0; /*num di accessi del thread 2 alla sez critica */

void *threadl process (void * arg)
{ int k=1;
whi | e(k)
{
pt hread nutex | ock(&M\; /*prol ogo */
accessi 1++;
DATA++;
k=(DATA>=NMAX?0: 1) ;
printf("accessi di Tl: %\n", accessil);
pt hread_mut ex_unl ock(&M; /*epilogo */
}
pthread exit (0);

16

Esempio

void *thread2 process (void * arqg)

{ I nt k=1;
whi | e(k)
{
pt hread_nut ex_| ock(&M ;
accessi 2++;
DATA++;
k=(DATA>=NMAX?0: 1) ;

printf("accessi di T2:

pt hr ead_mnut ex_unl ock(&M ;

}
pthread exit (0);

/ *prol ogo sez.

critica */

%\ n", accessi?2);

/| *epilogo sez. critica*/

17

Esempio:

mai n()
{ pthread t thl, th2;
[* il nmutex e inizialmente |ibero: */

pthread mutex_init (&M NULL);
I f (pthread create(& hl, NULL, threadl process, NULL) <
0)
{ fprintf (stderr, "create error for thread 1\n");
exit (1);
}
I f (pthread create(& h2, NULL,thread2 process, NULL) < 0)
{ fprintf (stderr, "create error for thread 2\n");
exit (1);
}
pthread join (thl, NULL);
pthread join (th2, NULL);

}

18

Test

$
$ gcc -D REENTRANT -0 tlock lock.c -Ipthread
$./tlock

accessi di T2:
accessi di T1:
accessi di T2:
accessi di T1:
accessi di T1:
accessi di T1:
accessi di T1:
accessi di T1:
accessi di T1:

accessi di T1:

W 00 N o 0o A~ W N DN PPk

accessi di T2:
$

LinuxThreads: Semafori

« Memoria condivisa: uso dei semafori (POSIX.1003.1Db)

— Semafori: libreria <semaphore.h>
e sem.init: inizializzazione di un semaforo
e semwai t: wait
e sem post: signal

- sem t : tipo di dato associato al semaforo; esempio:

static semt ny_sem

20

Operazioni sui semafori

— sem. nit: inizializzazione di un semaforo
int seminit(semt *sem int pshared, unsigned int val ue)

attribuisce un valore iniziale all'intero associato al semaforo:

e sem individua il semaforo da inizializzare

« pshared : O, seil semaforo non e condiviso tra task, oppure non
zero (sempre zero).

« value : e’ ilvaloreiniziale da assegnare al semaforo.

— semt :tipo di dato associato al semaforo; esempio:

static semt nmy_sem

> ritorna sempre 0.

21

Operazioni sui semafori: sem_wait

— wait su un semaforo

int semwait(semt *sem

dove:
« sem individuail semaforo sul quale operare.

e la wait di Dijkstra:

> se il valore del semaforo e uguale a zero, sospende il thread chiamante

nella coda associata al semaforo; altrimenti ne decrementa il valore.

22

Operazioni sui semafori: sem_post

— signal su un semaforo:

I nt sem post(semt *sem

dove:
« sem individuail semaforo sul quale operare.

e la signal di Dijkstra:

» se c'e” almeno un thread sospeso nella coda associata al semaforo sem,

viene risvegliato; altrimenti il valore del semaforo viene incrementato.

23

Esempio: sincronizzazione

Thread 1 Thread 2

Fase?

» Imposizione di un vincolo temporale: la FASE2 nel thread 1 va eseguita
dopo la FASE1L nel thread?2.

24

Esempio: sincronizzazione
/* la FASE2 nel thread 1 va eseguita dopo |a FASELl nel thread 2*/
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <pt hread. h>

#i ncl ude <semaphore. h>

semt ny_sem

i nt V=0;

void *threadl process (void * arg)
{
printf ("Thread 1: partito!...\n");
/[* inizio Fase 2: */
semwait (&nmy_sem;
printf ("FASE2: Thread 1. V=%\n", V);
pthread exit (0);

25

void *thread2 process (void * arg)

{ int i;

V=99;

printf ("Thread 2: partito!...\n);

/[* inizio fase 1. */

printf (“FASEl: Thread 2: V=%\n", V);
| *

term ne Fase 1: sblocco il thread 1*/
sem post (&my_sem;

sleep (1);

pt hread exit (0);

26

main ()
{ pthread_ t thl, th2;
void *ret;

seminit (&mw_sem 0, 0); /* semaforo a 0 */

if (pthread create (& hl, NULL, threadl process, NULL) < 0) {
fprintf (stderr, "pthread create error for thread 1\n");

exit (1);

if (pthread create(&t h2, NULL, thread2 process, NULL) < 0)
{fprintf (stderr, "pthread create error for thread \n");
exit (1);

pthread_join (thl, &ret);
pthread_join (th2, &ret);

27

Esempio:

e gcc -D REENTRANT -0 sem sem c -I| pthread

e Esecuzione:

[aci anpol i ni @ci b48 threads]$ sem
Thread 1: partito!...

Thread 2: partito!...

FASEl: Thread 2: V=99

FASE2: Thread 1: V=99

[aci anpol i ni @ci b48 threads] $

28

Semafori: esempio

/* tre processi che, ciclicanente, increnmentano a turno (in
ordine P1,P2,P3) |la variabile V*/

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <pt hread. h>

#i ncl ude <semaphore. h>

#defi ne MAX 13

static semt m /* semaforo per |la nutua escl usione
nel |’ accesso alla sezione critica */

static semt s1,s2,s3; /* semafori per inporre
| " ordine di accesso (P1,P2,P3) alla
variabile V */

i nt V=0, F=0;
29

void *threadl process (void * arg)
{ int k=1;
whi | e(k)
{ semwait (&sl);
semwait (& ;

i f (V<MAX)
V++;

el se

{ k=0;

printf("T1l: % (V=%)\n", ++F, V);

}
sem post (&) ;
sem post (&s2);

}
pt hread exit (0);

30

void *thread2 process (void * arqg)
{ int k=1;
whi | e(k)
{ semwait (&s2);
semwait (& ;

i f (V<MAX)
V++;
el se
{ k=0;

printf("T2: % (V=%)\n", ++F, V);
}
sem post (&) ;
sem post (&s3);

}
pt hread exit (0);

31

void *thread3 process (void * arg)
{ int k=1;
whi | e(k)
{ semwait (&s3);
semwait (& ;

i f (V<MAX)
V++;
el se
{ k=0;

printf("T3: % (V=%d)\n", ++F, V);
}
sem post (&) ;
sem post (&s1);

}
pt hread exit (0);

32

main ()

{ pthread t thl, th2,thS3;

seminit (& 0, 1);

seminit(&s1,0,1);

seminit(&s2,0,0);

seminit(&s3,0,0);

If (pthread create(& hl, NULL, threadl process, NULL) < 0)

{ fprintf (stderr, "pthread create error for thread 1\n");
exit (1);

}

I f (pthread_create(& h2, NULL,thread2 process, NULL) < 0)

{ fprintf (stderr, "pthread create error for thread 2\n");
exit (1);

}

I f (pthread_create(& h3, NULL, t hread3_process, NULL) < 0)

{ fprintf (stderr, "pthread create error for thread 3\n");
exit (1);

pthread_join (thl, NULL);
pthread_join (th2, NULL);
pthread_join (th3, NULL);

34

Esecuzione;

[aci anpol i ni @ci b48 threads] $ semnl
T2: 1 (V=10)

T3: 2 (V=10)

T1: 3 (V=10)

[aci anpol i ni @ci b48 threads] $

35

LinuxThreads: variabili condizione

» Lo standard POSIX 1003.1c (libreria <pt hr ead. h>) implementa le
variabili condizione

Le variabili condizione (condition) sono uno strumento di
sincronizzazione che premette ai threads di sospendere la
propria esecuzione in attesa che siano soddisfatte alcune
condizioni su dati condivisi.

ad ogni condition viene associata una coda nella quale i threads
possono sospendersi (tipicamente, se la condizione non e’
verificata).
operazioni fondamentali:

 inizializzazione: pt hread _cond_ini t

e sospensione: pthread_cond_wait

* risveglio: pthread _cond_si gnal

Per operare sulle variabili condizione:
pt hread _cond_t: é il tipo predefinito per le variabili condizione.

36

Variabili Condizione: inizializzazione
L'inizializzazione di una condi ti on si puo realizzare con:

I nt pthread cond init(pthread cond t* cond,
pt hread cond attr t* cond attr)

dove
. cond : individualacondizione dainizializzare

e attr : puntaaunastrutturache contiene gli attributi della
condizione; se NULL, viene inizializzata a default.

NB: linux non implementa gli attributi !

— In alternativa, una variabile condizione puo0 essere inizializzata
staticamente con la costante:

PTHREAD COND I NI ZI ALI ZER
— esempio: pthread_cond_t C= PTHREAD COND | NI ZI ALI ZER;

37

Variabili condizione: wait

Un thread puo” sospendersi su una variabile condizione, se la
condizione non e’ verificata:

— ad esempio:
pt hread cond_t C= PTHREAD COND | NI ZI ALI ZER;
I nt bufferpi eno=0;

I f (bufferpieno) <sospensione sullacond. C>;

» Laverificadella condizione e una sezione critica!l

» Necessita di garantire la mutua esclusione:

e necessario associare ad ogni variabile condizione un mutex :
pt hread _cond t C= PTHREAD COND I NI ZI ALI ZER,

pt hread_nmutex_t M=PTHREAD MUTEX | NI Tl ALI ZER;
I nt bufferpi eno=0;

pt hread_nut ex | ock(&M ;
I f (bufferpieno) <sospensione sullacond. C>
pt hread_nut ex_unl ock(&M ;

38

Variabili condizione: wait

La sospensione su una condizione si ottiene mediante:

i nt pthread cond wait(pthread cond t* cond,
pt hread nutex t* nux);

dove:
— cond: e lavariabile condizione
— mux: e il mutex associato ad essa

Effetto:

il thread chiamante si sospende sulla coda associata a cond, e il
mutex mux viene liberato

=» Al successivo risveglio (provocato da una signal), il thread
rioccupera’ il mutex automaticamente.

39

Variabili condizione: signal

Il risveglio di un thread sospeso su una variabile condizione
puo essere ottenuto mediante la funzione:

i nt pthread cond_signal (pthread cond t* cond);

dove:
— cond: e lavariabile condizione.

Effetto:

« seesistono thread sospesi nella coda associata a cond, ne viene
risvegliato uno (non viene specificato quale).

e senonvisono thread sospesi sulla condizione, la signal non ha
effetto.

 realizzazione "signal_and_continue"

N.B. non e prevista una funzione ("..queue") per verificare lo stato della
coda associata a una condizione. 40

Pthread Condition & Monitor

« La condition permette di implementare politiche di
sincronizzazione mediante funzioni/procedure "entry",
realizzando meccanismi di accesso alle risorse
equivalenti a quelli forniti dal concetto di monitor
[Hoare'74]; differenze:

— 1 dati "interni" al monitor sono potenzialmente
accessibili direttamente da tutti | processi;

— la mutua esclusione delle funzioni/procedure entry
deve essere garantita esplicitamente dal
programmatore mediante lock/unlock su un mutex
associato al "monitor".

= necessita di autodisciplina da parte del programmatore !

41

Uso di risorsa condivisa a capacita limitata

 Per esemplificare I'uso della condition, si consideri il
caso di una risorsa che puo” essere usata, al
massimo, da MAX thread contemporaneamente.

* Realizziamo una politica di controllo degli accessi
mediante variabili condizione.

42

Esempio: uso di unarisorsa a capacita
limitata

* Introduciamo la condition Pl ENQ, sulla quale sospendere i thread
che vogliono accedere alla risorsa nel caso di capacita” esaurita.

* Sia Mil mutex associato alla condition Pl ENO.

* Introduciamo inoltre la variabile intera non negativa N_i n per
rappresentare lo stato della risorsa, cioe” il numero di thread che
stanno usando la risorsa.

#defi ne MAX 100

[*variabili globali: */

int N_.in=0;/* nunero thread che usano la risorsa*/
pt hread _cond_t Pl ENG

pthread nutex t M/* Mitex */

43

Struttura deil thread

Tre fasi:

1.

entrata: viene controllato lo stato della risorsa: in caso
di risorsa “piena” il thread si sospende sulla condition
PIENQO, altrimenti il numero dei thread N_in viene
incrementato. La fase di entrata e una sezione critica
(procedura entry).

uso della risorsa

uscita: terminato l'uso della risorsa, il thread deve
esequire la fase di uscita, nella quale viene
decrementato il valore di N_in ed eventualmente
risvegliato un processo sospeso sulla condition PIENO.
Anche la fase di uscita e una sezione critica (procedura
entry).

44

Codice thread

#defi ne MAX 100
/[* "monitor": contiene le variabili interne al nonitor */
t ypedef struct{

int Nin; /* valore iniziale 0*/

pt hread cond_t PI ENG

pt hread mutex t M
}non_ri sorse;

nmon_risorse R;
void entry Entrata(non_risorse *m /* Fase di Entrata: */

{ pthread nutex | ock (&m >M;
/* controlla | a condi zi one di sincronizzazi one: */

I f (m>N_in==MAX) pthread_cond_wait (&m >PlI ENO, &m >M;

/* aggiorna lo stato della risorsa */
m >N | n++;

pt hread _nut ex_unl ock (&m >M;

[* fine entrata*/}

<uso della risorsa>

45

void entry USCI TA(non risorse *n) /*Fase di Uscita:*/
{ pthread nutex | ock (&m>M;

/* aggiorna lo stato della risorsa */

m>N_in--;

pt hread cond_si gnal (&m >PI ENO);

pt hread _nut ex_unl ock (&m >M;

}

voi d *codi ce_generico_thread()
{ while(...)
{ entry ENTRATA(&R);
<uso risorsa>
entry USCI TA(&R) ;

}
return NULL;

}

mai n(){...<inizializzazioni> <creazione N thread>..}

46

Esempio: produttore e consumatore

Si vuole risolvere il classico problema del produttore e consumatore.

Progetto dellarisorsa (pr odcons) :

— buffer circolare di interi, di dimensione data (ad esempio, 16) il cui
stato e dato da:
 numero degli elementi contenuti: cont
* puntatore alla prima posizione libera: wri t epos
* puntatore al primo elemento occupato : r eadpos

— il buffer e'unarisorsa da accedere in modo mutuamente esclusivo:
» predispongo un mutex per il controllo della mutua esclusione nell'accesso al
buffer: | ock
— I thread produttori e consumatori necessitano di sincronizzazione in
caso di :

» buffer pieno: definisco una condition per la sospensione dei produttori se il
buffer e pieno (notful |)

> buffer vuoto: definisco una condition per la sospensione dei produttori se il
buffer e” vuoto (not enpt y)

Incapsulo il tutto all'interno di un tipo struct associato al buffer: 47
prodcons

Produttori & Consumatori:
tipo di dato associato al buffer

t ypedef struct
{
i nt buffer[BUFFER SI ZE] ;
pt hread _nutex t | ock;
I nt readpos, witepos;
I nt cont;
pt hread _cond_t notenpty;

pt hread cond t notfull;

} prodcons;

48

Produttore e consumatore

Operazioni sullarisorsa pr odcons:

— I nit: inizializzazione del buffer.

— I nseri sci : operazione eseguita da ogni produttore per
I'inserimento di un nuovo elemento.

— Estrai : operazione eseguita da ogni consumatore per
I'estrazione di un elemento dal buffer.

49

Esempio: produttore e consumatore

#i ncl ude <stdi o. h>

#i ncl ude <pt hread. h>

#def i ne BUFFER_SI ZE 16

t ypedef struct
{ int buffer[BUFFER_SI ZE] ;
pt hread _nutex t | ock;
I nt readpos, witepos;
I nt cont;
pt hread _cond _t notenpty;

pt hread cond t notfull;

} prodcons;

50

/*

Esempio:Operazioni sul buffer

Inizializza il buffer */

void init (prodcons *Db)

{

pthread nutex init (&b->lock, NULL);

pt hread cond init (&b->notenpty, NULL);
pt hread_cond_init (&bd->notfull, NULL);
b- >cont =0;

b- >r eadpos = O;

b->writepos = 0;

51

/*

Operazioni sul buffer

| nseri mento: */

void inserisci (prodcons *b, int data)

{

pt hread _nutex | ock (&b->l ock);
/* controlla che il buffer non sia pieno:*/
whil e (b->cont ==BUFFER_SI ZE)

pt hread cond wait (&b->notfull, &b->|ock);

/* scrivi data e aggiorna |o stato del buffer */
b- >buffer[b->witepos] = data;
b- >cont ++;
b->writepos++;
if (b->witepos >= BUFFER_SI ZE)

b->witepos = 0;
/* risveglia eventuali thread (consumatori) sospesi */
pt hread _cond_si ghal (&b->notenpty);
pt hread _nut ex_unl ock (&b->l ock);

52

Operazioni sul buffer

| *ESTRAZI ONE: */
I nt estrai (prodcons *Db)

{

I nt dat a;
pt hread nutex | ock (&b->| ock);
while (b->cont==0) /* il buffer e vuoto? */
pt hread cond wait (&b->notenpty, &b->lock);
/* Leggi |'elenento e aggiorna |o stato del buffer*/
data = b->buffer[b->readpos];
b->cont - -

b- >r eadpos++;
i f (b->readpos >= BUFFER _SI ZE)
b- >r eadpos = O;
/* Risveglia eventuali threads (produttori)*/
pt hread _cond_signal (&b->notfull);
pt hread_nmut ex_unl ock (&b->l ock);
return data;

53

Produttore/consumatore: programma di test

/* Programma di test: 2 thread
- un thread inserisce sequenzial nente max interi
- l"altro thread Ii estrae sequenzi al nente per stanparli */

#define OVER (-1)
#defi ne max 20

prodcons buffer;

voi d *producer (void *data)
{ int n;
printf("sono il thread produttore\n\n");
for (n = 0; n < max; n++)
{ printf ("Thread produttore % --->\n", n);
i nserisci (&buffer, n);
}
i nserisci (&buffer, OVER);
return NULL,;

54

voi d *consuner (void *data)
{ int d;
printf("sono il thread consumatore \n\n");

while (1)
{
d = estrai (&buffer);
if (d == OVER)
br eak;
printf("Thread consumatore: --> %\ n",

}
return NULL;

}

d);

55

main ()

{
pthread t th_a, th_b;
voi d *retval;

init (&buffer);

/[* Creazione threads: */
pthread create (& h_a, NULL,
pthread create (& h_b, NULL,

pr oducer,
consuner,

/* Attesa tem nazione threads creati:

pthread join (th_a, &etval);
pthread_join (th_b, &etval);
return O;

0);
0);
* [

56

Esempio: Ponte con utenti grassi e magri

Si consideri un ponte pedonale che collega le due rive di un fiume.

Al ponte possono accedere due tipi di utenti: utenti magri e utenti grassi.

* |l ponte hauna capacita_ massima MAX che esprime il numero massimo di

persone che possono transitare contemporaneamente su di esso.

* |l ponte e talmente stretto che il transito di un grasso in una particolare
direzione d impedisce I'accesso al ponte di altri utenti (grassi e magri) in

direzione oppostaad.

Realizzare una politica di sincronizzazione delle entrate e delle uscite dal

ponte che tenga conto delle specifiche date e che favorisca gli utenti
magri rispetto a quelli grassi nell'accesso al ponte.

magri magri
grass grass
N dx

=» duetipi di thread:
v'grassi
v magri

=» una coda per ogni tipo di
thread e per ogni direzione

57

Progetto della risorsa pont e:

lo stato del ponte e definito da:

 numero magri e di grassi sul ponte (per ogni direzione)
lo stato e” modificabile dalle operazioni di:

e accesso: ingresso di un thread nel ponte

 rilascio: uscita di un thread dal ponte

il ponte e'unarisorsa da acquisire e rilasciare in modo mutuamente
esclusivo:

» predispongo un mutex per il controllo della mutua esclusione
nell'esecuzione delle operazioni di accesso e di rilascio: | ock

| thread grassi e magri si possono sospendere se le condizioni
necessarie per l'accesso non sono verificate :

» una coda per ogni tipo di thread (grasso o magro)e per ogni direzione
per ispezionare lo stato delle code introduciamo:

» un contatore dei thread sospesi per ogni tipo di thread (grasso o
magro)e per ogni direzione

=>»Incapsulo il tutto all'interno del un tipo struct pont e

58

Grassi & Magri:
tipo di dato associato al ponte

t ypedef struct

{

int nmagri[2]; /* numero magri sul ponte (per ogni dir.)*/
int ngrassi[2];/* nunero grassi sul ponte (per ogni dir.)*/
pthread nutex t |ock;/*lock associato alla risorsa "ponte"*/
pthread cond t codamagri[2]; /* var. cond. sosp. magri */
pthread cond t codagrassi[2]; /* var. cond. sosp. grassi */
int sospM 2];/* nunero di processi magri sospesi*/

I nt sospd 2];/* nunero di processi grassi sospesi?*/

} pont e;

59

Produttore e consumatore

Operazioni sullarisorsa pont e:

— 1 nit: inizializzazione del ponte.

—accessonagri/ accessograssi . operazione

eseguita dai thread (grassi/magri) per l'ingresso
nel ponte.

—rilasciomagri/rilasciograssi:operazione
eseguita dai thread (grassi/magri) per l'uscita dal
ponte.

60

Grassi & Magri:

soluzione

#1 ncl ude <stdi o. h>

#i ncl ude <pt hread. h>

#define MAX 3 /* max capacita ponte */
#define dx O /*costanti di direzione*/
#define sn 1

t ypedef struct

{
int nmagri[2]; /* numero magri sul ponte (per ogni dir.)*/
int ngrassi[2];/* numero grassi sul ponte (per ogni dir.)*/
pthread nmutex t | ock;/*l ock associato al "ponte" */
pthread cond t codamagri[2]; /* var. cond. sosp. magri */
pthread cond t codagrassi[2]; /* var. cond. sosp. grassi */
int sospM 2];/* nunero di processi magri sospesi*/
int sospd 2];/* nunero di processi grassi sospesi*/

} pont e;

Grassi & Magri:
soluzione

/* Inizializzazione del ponte */
void init (ponte *p)

{

pthread mutex_init (&p->lock, NULL);

pthread _cond_init (&p->codamagri[dx], NULL);
pthread _cond_init (&p->codamagri[sn], NULL);
pthread_cond_init (&p->codagrassi[dx], NULL);
pt hread cond init (&p->codagrassi[sn], NULL);
p- >nmagri [dx] =0;

p- >nmagri [sn] =0;

p- >ngr assi [dx] =0;

p- >ngr assi [sn] =0;

p- >sospM dx] = O;
p- >sospM sn] = O;
p- >sosp{d dx] = O;
p- >sosp{d sn] = O;

return;

62

/*

operazioni di utilita : */

i nt sul ponte(ponte p); /* calcola il num di persone sul ponte */
int altra dir(int d); /* calcola la direzione opposta a d */

/*

Accesso al ponte di un magro in direzione d. */

voi d accessomagri (ponte *p, int d)

{

pt hread_nmutex | ock (&p->l ock);
/* controlla | e codizioni di accesso:*/
while ((sulponte(*p)==MAX) || /* vincolo di capacita */
(p->ngrassi[altra dir(d)]>0)) /*ci sono grassi in
di rezi one opposta */
{ p->sospM d] ++;
pt hread _cond _wait (&p->codamagri[d], &p->lock);
p->sospM d] - -;
}
/* entrata: aggiorna |lo stato del ponte */
p->nmagri [d] ++;
/* risveglia eventuali thread "onologhi" nella stessa dir. */
pt hread_cond_si gnal (&p->codanmagri[d]);
pt hread_nmut ex_unl ock (&p->l ock);

63

/*

accessograssi: Accesso al ponte di un grasso in dir.d: */

voi d accessograssi (ponte *p, int d)

{

pt hread_nmutex | ock (&p->l ock);
/* controlla le codizioni di accesso: */
while ((sul ponte(*p)==NMAX) ||
(p->ngrassi[altra_dir(d)]>0)]|
(p->nmagrifaltra_dir(d)]>0) ||
(p->sospM altra dir(d)]>0)) /*priorita ai nagri: Ci
sono magri in attesa in dir opposta */

{ p->sosp(d] ++;
pt hread cond wait (&p->codagrassi[d], &p->lock);
p- >sosp{d d] - -;

}

/* entrata: aggiorna |lo stato del ponte */

p- >ngr assi [d] ++;

/* risveglia eventuali thread "onologhi" nella stessa dir: */
pt hread cond_si gnal (&p->codagrassi[d]);

pt hread_nmut ex_unl ock (&p->l ock);

64

/* Rilascio del ponte di un nmagro in direzione d: */

void rilasciomgri (ponte *p, int d)

{
pt hread_mut ex_| ock (&p->l ock);

/* uscita: aggiorna |lo stato del ponte */
p->nmagri[d] --;

/* risveglio in ordine di priorita */

pt hread cond _signal (&p->codamagri[altra dir(d)]);
pt hread cond_si gnal (&p->codanmagri[d]);

pt hread cond signal (&p->codagrassi[altra dir(d)]);
pt hread cond_si gnal (&p->codagrassi[d]);
printf("USCI TA: magro in direzione %\ n", d);

pt hr ead_nut ex_unl ock (&p->l ock);

/*

Ri | asci o del ponte di un grasso in direzione d: */

void rilasciograssi (ponte *p, int d)

{

pt hread_mut ex_| ock (&p->l ock);

/* uscita: aggiorna |lo stato del ponte */

p- >ngrassi [d] --;

/* risveglio in ordine di priorita */

pt hread cond _signal (&p->codamagri[altra dir(d)]);
pt hread cond_si gnal (&p->codanmagri[d]);

pt hread cond signal (&p->codagrassi[altra dir(d)]);
pt hread cond_si gnal (&p->codagrassi[d]);
printf("USCI TA: grasso in direzione %\n", d);

pt hr ead_nut ex_unl ock (&p->I ock);

66

/* Progranma di test: genero un nunero arbitrario di thread
magri e grassi nelle due direzioni */

#define MAXT 20 /* num nmax di thread per tipo e per direzic
*/

ponte p;

void *magro (void *arg) /*codice del thread "magro" */
{ int d;
printf("sono un thread nmagro in dir. %\n\n",(char *)arg);
d=at oi ((char *)arg); /*assegno |a direzione */
accessomagri (&p, d);
| * ATTRAVERSAMENTQO */
printf("Magro in dir %l: sto attraversando..\n", d);
sl eep(1);
rilasciomagri (&p, d);
return NULL;

67

void *grasso (void *arg) /*codice del thread "grasso" */

{int d

printf("sono un thread grasso in direzione %\n", (char *)arg);
d=atoi ((char *)arg); /*assegno |a direzione */

accessograssi (&p, d);
sl eep(1);

printf("Gasso in dir %:

rilasciograssi (&p, d);
return NULL;

main ()

{
pthread_t th_M 2] [MAXT],
i nt NVD, NVSB, NG, NGS,
void *retval;

init (&p);

sto attraversando\n", d);

th_{J 2] [MAXT];

68

Creazi one threads:
printf("\ nquanti
scanf (" %",
printf("\ nquanti
scanf (" %",
printf("\ nquanti
scanf (" %",
printf("\ nquanti
scanf (" %",
/ * CREAZI ONE MAGRI
for (i=0;

pthread create (& h_Mdx][i],
| N DI REZI ONE SN */

In direzione dx? "
In direzione sn? "
I n direzione dx? ");
In direzione sn? "

I N DI REZI ONE DX */

/ * CREAZI ONE MAGRI
for (i=0;
pthread create (& h_Msn][i],
/ * CREAZI ONE GRASSI | N DI REZI ONE DX */
for (i=0;
pthread create (& h _Gdx][i],
/ * CREAZI ONE GRASSI I N DI REZI ONE SN */
for (i=0;
pthread create (& h_gsn][i],

magro, "0");

magro, "1");

grasso, "0");

grasso, "1");

69

/* Attesa tem nazione threads creati: */

[*ATTESA MAGRI | N DI REZI ONE DX */
for (i=0; i<NMD; i++)
pthread join(th Mdx][i], &retval);

[*ATTESA MAGRI | N DI REZI ONE SN */
for (i=0; i<NM5; i++)
pthread join(th _Msn][i], &retval);

[* ATTESA GRASSI | N DI REZI ONE DX */
for (i=0; i<NGD; i++)
pthread join(th Gdx][i], &retval);
[* ATTESA GRASSI | N DI REZI ONE SN */
for (i=0; i<NGS; i++)
pthread join(th _ Gsn][i], &retval);

return O;

70

/* definizione funzioni utilita :*/

I nt sul ponte(ponte p) /* calcola il numdi pers.sul ponte */
{
return p.nmagri[dx] +p. nmagri [sn] +p. ngrassi [dx] +
p. ngrassi[sn];
}

int altra dir(int d) /* fornisce la dir.

{
I f (d==sn) return dx;

el se return sn;

opposta a d */

71

Esercizio 1

Si consideri un castello di interesse storico.
L’'accesso al castello e’ consentito a due tipi di visitatori: adulti o bambini.

La visita al castello non puo™ avvenire in modo libero, ma deve essere sempre
guidata dal proprietario del castello. (Essendo il proprietario unico, e implicito
che in ogni istante ci puo” essere, al piu’, una ed una sola visita in atto.)

La visita assume caratteristiche diverse a seconda che I'insieme di visitatori da
accompagnare sia costituito da adulti oppure da bambini. Per questo motivo, il
gruppo di persone che partecipa ad ogni visita e” quindi un insieme omogeneo di
visitatori (cioe’: o tutti adulti, oppure tutti bambini).

Per ottimizzare I'utilizzo del castello ogni visita puo’ iniziare soltanto quando il
numero P dei partecipanti ha raggiunto un valore prestabilito PMAX.

Quando il gruppo dei partecipanti e* completo, la visita puo™ avere inizio attraverso
I'attivazione di un opportuno processo proprietario che rappresenta la guida di
ogni visita.

72

..continua

Al termine della visita, il processo proprietario provvede a far uscire i
partecipanti, e successivamente si pone in attesa di un nuovo gruppo di
visitatori da guidare nella visita successiva.

Alla fine di ogni visita, il tipo dei partecipanti della visita successiva viene
stabilito in base al numero e al tipo di visitatori in attesa; in particolare, detti
AS ed BS rispettivamente il numero di adulti in attesa ed il numero di
bambini in attesa:

« se AS>BS allora la prossima visita sara” per adulti;
 se BS>AS allora la prossima visita sara’ per bambini;

 se BS=AS venga data le precedenza ai bambini: la prossima visita sara” per
bambini.

Definire una politica di gestione del castello che tenga conto dei vincoli
indicati, e la si realizzi utilizzando la libreria pthread.

73

