
1

I Thread in Java

I threads in Java

• Ogni programma Java contiene almeno un singolo
thread, corrispondente all’esecuzione del metodo
main() sulla JVM.

• E’ possibile creare dinamicamente nuovi thread
attivando concorrentemente le loro esecuzioni
all’interno del programma.

Due possibilita` di creazione:

1. Thread come oggetti di sottoclassi della classe Thread

2. Thread come oggetti di classi che implementano l’interfaccia
runnable

• I threads sono oggetti che derivano dalla classe
Thread (fornita dal package java.lang).

• Il metodo run della classe di libreria Thread definisce
l’insieme di statement Java che ogni thread (oggetto
della classe) eseguirà concorrentemente con gli altri
thread.

• Nella classe Thread l’implementazione del suo
metodo run è vuota.

• In ogni sottoclasse derivata da Thread deve essere
ridefinito (override) il metodo run in modo da fargli
eseguire ciò che è richiesto dal programma

Thread come oggetti di sottoclassi della classe
Thread

class AltriThreads extends Thread {
public void run() {
<corpo del programma eseguito>
<da ogni thread di questa classe>
}

}

public class EsempioConDueThreads
{ public static void main (string[] args)

{ AltriThreads t1=new AltriThread();
t1.start();
<resto del programma eseguito

dal thread main>
}

}

Possibile schema

2

• La classe AltriThread (estensione di Thread)
implenta i nuovi thread ridefinendo il metodo run.

• La classe EsempioConDueThreads fornisce il main
nel quale viene creato il thread t1 come oggetto
derivato dalla classe Thread.

• Per attivare il thread deve essere eseguito il metodo
start() che invoca il metodo run() (il metodo run()
non può essere chiamato direttamente, ma solo
attraverso start()).

• JVM gestisce due thread concorrenti: il thread
principale associato al main ed il thread t1.

E se occorre definire thread che non siano
necessariamente sottoclassi di Thread?

Thread come classe che implementa l’interfaccia
runnable

Interfaccia Runnable: maggiore flessibilità à thread come
sottoclasse di qualsiasi altra classe

• implementare il metodo run() nella classe che implementa
l’interfaccia Runnable

• creare un’istanza della classe tramite new

• creare un’istanza della classe Thread con un’altra new, passando
come parametro l’istanza della classe che si è creata

• invocare il metodo start() sul thread creato, producendo la
chiamata al suo metodo run()

Esempio di classe EsempioRunnable che implementa l’interfaccia Runnable ed
è sottoclasse di MiaClasse:

class EsempioRunnable extends MiaClasse implements Runnable
{

// non e’ sottoclasse di Thread
public void run()
{

for (int i=1; i<=10; i++)
System.out.println(i + “ ” + i*i);

}
}

public class Esempio
{

public static void main(String args[])
{

EsempioRunnable e = new EsempioRunnable();
Thread t = new Thread(e);
t.start();

}
}

3

new

blocked

runnable

dead
new

start()

sospensione
riattivazione

terminazione
del metodo run()

Grafo di stato di un thread
Priorità e scheduling

• Preemptive priority scheduling con priorità fisse
(crescenti verso l’alto).

• MIN-PRIORITY, MAX-PRIORITY: costanti definite
nella classe thread.

• Ogni thread eredita, all’atto della sua creazione, la
priorità del processo padre.

• Metodo set-priority per modificare il valore della
priorità

JVM esegue l’algoritmo di scheduling:

• quando il thread correntemente in esecuzione esce
dallo stato runnable (sospensione o terminazione);

• quando diventa runnable un thread a priorità più alta
(preemption).

è JVM non supporta l’assegnazione della CPU per
quanti di tempo (round robin).

• SE:

– S.O. adotta round-robin: i thread di uguale priorità
vengono gestiti round robin (anziché FIFO).

– S.O non adotta round-robin: è possibile simulare
a programma tale comportamento. Metodo yield()
(cooperative multithreading).

• Trasparenza della JVM rispetto alla gestione dei
quanti di tempo: potenziale problema per quanto
riguarda la portabilità di applicazioni Java che
adottano diversi criteri di scheduling

4

Metodi per il controllo di thread

• start() fa partire l’esecuzione di un thread. La macchina
virtuale Java invoca il metodo run() del thread appena
creato

• stop() forza la terminazione dell’esecuzione di un thread.
Tutte le risorse utilizzate dal thread vengono
immediatamente liberate (lock inclusi), come effetto della
propagazione dell’eccezione ThreadDeath

• suspend() blocca l'esecuzione di un thread in attesa di
una successiva operazione di resume(). Non libera le
risorse impegnate dal thread (lock inclusi)

• resume() riprende l'esecuzione di un thread
precedentemente sospeso. Se il thread riattivato ha una
priorità maggiore di quello correntemente in esecuzione,
avrà subito accesso alla CPU, altrimenti andrà in coda
d'attesa

• sleep(long t) blocca per un tempo specificato
(time) l'esecuzione di un thread. Nessun lock in
possesso del thread viene rilasciato.

• join() blocca il thread chiamante in attesa della
terminazione del thread di cui si invoca il metodo.
Anche con timeout

• yield() sospende l'esecuzione del thread invocante,
lasciando il controllo della CPU agli altri thread in coda
d'attesa

I metodi precedenti interagiscono con il gestore della
sicurezza della macchina virtuale Java

Il problema di stop()e suspend()

stop() e suspend() rappresentano azioni “brutali” sul ciclo di
vita di un thread à rischio di determinare situazioni
inconsistenti o di blocco critico (deadlock)

• se il thread sospeso aveva acquisito una risorsa in maniera
esclusiva, tale risorsa rimane bloccata e non è utilizzabile
da altri, perché il thread sospeso non ha avuto modo di
rilasciare il lock su di essa

• se il thread interrotto stava compiendo un insieme di
operazioni su risorse comuni, da eseguirsi idealmente in
maniera atomica, l’interruzione può condurre ad uno stato
inconsistente del sistema

è JDK 1.4, pur supportandoli ancora per ragioni di back-compatibility,
sconsiglia l’utilizzo dei metodi stop(), suspend() e resume()
(metodi deprecated)

Si consiglia invece di realizzare tutte le azioni di controllo e
sincronizzazione fra thread tramite gli stumenti specifici per la
sincronizzazione (object locks, wait(), notify(), notifyAll()
e variabili condizione)

5

Sincronizzazione in Java

Modello a memoria comune:
I threads di una applicazione condividono lo spazio di
indirizzamento.

èOgni tipo di interazione tra thread avviene tramite
oggetti comuni:

– Interazione di tipo competitivo (mutua esclusione):
meccanismo degli objects locks.

– Interazione di tipo cooperativo:
• meccanismo wait-notify.
• variabili condizione

Mutua esclusione

• Ad ogni oggetto viene associato dalla JVM un lock
(analogo ad un semaforo binario).

• E’ possibile denotare alcune sezioni di codice che
operano su un oggetto come sezioni critiche tramite
la parola chiave synchronized.

èIl compilatore inserisce :

– un prologo in testa alla sezione critica per
l’acquisizione del lock associato all’oggetto.

– un epilogo alla fine della sezione critica per
rilasciare il lock.

Blocchi synchronized
Con riferimento ad un oggetto x si può definire un
blocco di statement come una sezione critica nel
seguente modo (synchronized blocks):

synchronized (oggetto x) {<sequenza di statement>;}

Esempio:
Object mutexLock= new Object;

…..
public void M() {

<sezione di codice non critica>;
synchronized (mutexlock){
< sezione di codice critica>;
}
<sezione di codice non critica>;

}

• all'oggetto mutexLock viene implicitamente
associato un lock, il cui valore puo` essere:

– libero: il thread può eseguire la sezione critica
– occupato: il thread viene sospeso dalla JVM in

una coda associata a mutexLock (entry set).

Al termine della sezione critica:

– se non ci sono thread in attesa: il lock viene reso
libero .

– se ci sono thread in attesa: il lock rimane occupato
e viene scelto uno di questi .

6

synchronized block

• esecuzione del blocco mutuamente esclusiva
rispetto:

– ad altre esecuzioni dello stesso blocco
– all’esecuzione di altri blocchi sincronizzati sullo

stesso oggetto

lock

Object ob

synchronized (ob){
………… ;

}t1

a) lock libero

lock

Object ob

synchronized (ob){
………… ;

} t1

a) lock occupato: t2
e t3 vengono inseriti
nell'entry set di ob

t2

t3

Entry set di un oggetto

Metodi synchronized

• Mutua esclusione tra i metodi di una classe

public class intVar {
private int i=0;
public synchronized void incrementa()
{ i ++; }
public synchronized void decrementa()
{i--; }
}

• Quando un metodo viene invocato per operare su un
oggetto della classe, l’esecuzione del metodo
avviene in mutua esclusione utilizzando il lock
dell’oggetto.

Sincronizzazione diretta: wait e notify

wait set: coda di thread associata ad ogni oggetto,
inizialmente vuota.

• I thread entrano ed escono dal wait set utilizzando i
metodi wait() e notify().

• wait e notify possono essere invocati da un
thread solo all’interno di un blocco sincronizzato
o di un metodo sincronizzato (possesso del lock
dell’oggetto).

7

wait, notify, notifyall

wait comporta il rilascio del lock, la sospensione del
thread ed il suo inserimento in wait set.

notify comporta l’estrazione di un thread da wait set
ed il suo inserimento in entry set.

notifyall comporta l’estrazione di tutti i thread da
wait set ed il loro inserimento in entry set.

NB: notify e notifyall non provocano il rilascio del lock:
è i thread risvegliati devono attendere.

èPolitica signal&continue: il rilascio del lock avviene
al completamento del blocco o del metodo
sincronizzato da parte del thread che ha eseguito la
notify

//Esempio: mailbox con capacita`=1
public class Mailbox{

private int contenuto;
private boolean pieno=false;

public synchronized int preleva()
{ while (pieno==false)

wait ();
pieno=false;
notify();
return contenuto;

}

public synchronized void deposita(int valore)
{ while (pieno==true)

wait();
contenuto=valore;
pieno=true;
notify();

}
}

//Mailbox di capacita` N
public class Mailbox {
private int[]contenuto;
private int contatore, testa, coda;

public mailbox(){
contenuto = new int[N];
contatore = 0;
testa = 0;
coda = 0;

}
public synchronized int preleva (){

int elemento;
while (contatore == 0)

wait();
elemento = contenuto[testa];
testa = (testa + 1)%N;
--contatore;
notifyAll();
return elemento;

}
public synchronized void deposita (int valore){

while (contatore == N)
wait();

contenuto[coda] = valore;
coda = (coda + 1)%N;
++contatore;
notifyAll();

}
}

Semafori in Java

• Java non prevede i semafori; tuttavia essi possono
essere facilmente costruiti mediante i meccanismi di
sincronizzazione standard.

• Le primitive P e V (wait e signal sui semafori) si
possono ottenere dichiarandole come i syncronized
methods all’interno della classe semaforo.

8

public class Semaphore {
private int value;
public Semaphore (int initial){
value = initial;

}

synchronized public void V()//signal sul semaforo
{ ++value;

notify();
}

synchronized public void P() //wait sul semaforo
{ throws InterruptedException

{ while (value == 0) wait();
--value;

}
}

wait¬ify

Principale limitazione :

• unico wait-set per un oggetto sincronizzato

ènon e` possibile sospendere thread su differenti
code!

Variabili condizione

• Nelle versioni più recenti di Java (versione 5.0)
esiste la possibilità utilizzare le variabili condizione.
Ciò è ottenibile tramite l’uso un'apposita interfaccia
(definita in java.util.concurrent.locks) :

public interface Condition{

//Public instance methods
void await ()throws InterruptedException;
void signal();
void signalAll();
}

• dove i metodi await, signal, e signalAll sono del
tutto equivalenti ai metodi wait, notify e notify_all,
(ovviamente riferiti alla coda di processi associata
alla condition sulla quale vengono invocati)

Mutua esclusione: lock

• Oltre a metodi/blocchi synchronized, la versione 5.0
di java prevede la possibilita` di utilizzare il concetto
di lock, mediante l'interfaccia (definita in
java.util.concurrent.locks) :

public interface Lock{
//Public instance methods
void lock();
void unlock();
Condition newCondition();
}

9

Uso di Variabili Condizione
• Ad ogni variabile condizione deve essere associato un lock,

che:

– al momento della sospensione del thread mediante
await verra` liberato;

– al risveglio di un thread, verra` automaticamente
rioccupato.

èLa creazione di una condition deve essere effettuata
mediante in metodo newCondition del lock associato ad
essa.

In pratica, per creare un oggetto Condition :

Lock L=new Reentrantlock(); //Reentrantlock è una
classe che implementa
l’interfaccia Lock

Condition C=lockvar.newCondition();

Monitor

Possiamo definire classi che rappresentano monitor:

• dati:

– le variabili condizione
– 1 lock per la mutua esclusione dei metodi "entry",

da associare a turre le variabili condizione
– variabili interne: stato delle risorse gestite

• metodi:

– metodi "entry"
– metodi privati
– costruttore

Esempio: gestione di buffer circolare
public class Mailbox
{ //dati:
private int[] contenuto;
private int contatore,testa,coda;
private Lock lock= new ReentrantLock();
private Condition non_pieno= lock.newCondition();
private Condition non_vuoto= lock.newCondition();

//Costruttore:
public Mailbox() {
contenuto=new int[N];
contatore=0;
testa=0;
coda=0;
}

//metodi "entry":

public int preleva()throws InterruptedException
{ int elemento;

lock.lock();
try
{ while (contatore= = 0)

non_vuoto.await();
elemento= contenuto[testa];
testa=(testa+1) %N;
--contatore;
non_pieno.signal ();

} finally{ lock.unlock();}
return element;

}

10

public void deposita (int valore)throws InterruptedException
{ lock.lock();

try
{ while (contatore==N)

non_pieno.wait();
contenuto[coda] = valore;
coda=(coda+1)%N;
++contatore;
non_vuoto.signal();

} finally { lock.unlock();}
}
}

Programma di test:
public class Produttore extends Thread
{ int messaggio;

Mailbox m;
public Produttore(Mailbox M){this.m =M;}
public void run()
{ while(1)

{ <produci messaggio>
m.deposita(messaggio);

}

}
}

public class Consumatore extends Thread
{ int messaggio;

Mailbox m;
public Consumatore(Mailbox M){this.m =M;}
public void run()
{ while(1)

{ messaggio=m.preleva();
<consuma messaggio>

}

}

public class BufferTest{

public static void main(String args[])
{ Mailbox M=new Mailbox();

Consumatore C=new Consumatore(M);
Produttore P=new Produttore(M);
C.start();
P.start();
...

}

