| Thread in Java

| threads in Java

« Ogni programma Java contiene almeno un singolo
thread, corrispondente all'esecuzione del metodo
main() sulla JVM.

* FE’ possibile creare dinamicamente nuovi thread
attivando concorrentemente le loro esecuzioni
all'interno del programma.

Due possibilita™ di creazione:
1. Thread come oggetti di sottoclassi della classe Thr ead

2. Thread come oggetti di classi che implementano I'interfaccia
runnabl e

Thread come oggetti di sottoclassi della classe
Thr ead

| threads sono oggetti che derivano dalla classe
Thread (fornita dal package java.lang).

Il metodo run della classe di libreria Thread definisce
I'insieme di statement Java che ogni thread (oggetto
della classe) eseguira concorrentemente con gli altri
thread.

Nella classe Thread I'implementazione del suo
metodo run é vuota.

In ogni sottoclasse derivata da Thread deve essere
ridefinito (override) il metodo run in modo da fargli
eseguire cio che e richiesto dal programma

Possibile schema

class Al triThreads extends Thread {
public void run() {
<corpo del programa eseguito>
<da ogni thread di questa classe>
}
}

public class Esenpi oConDueThr eads

{ public static void main (string[] args)
{ AtriThreads t1=new Altri Thread();
tl.start();

<resto del programma eseguito
dal thread main>

La classe AltriThread (estensione di Thread)
implenta i nuovi thread ridefinendo il metodo run.

« La classe EsempioConDueThreads fornisce il main
nel quale viene creato il thread t1 come oggetto
derivato dalla classe Thread.

» Per attivare il thread deve essere eseguito il metodo
start() che invoca il metodo run() (il metodo run()
non puo essere chiamato direttamente, ma solo
attraverso start()).

» JVM gestisce due thread concorrenti: il thread
principale associato al main ed il thread t1.

E se occorre definire thread che non siano
necessariamente sottoclassi di Thread?

Thread come classe che implementa I'interfaccia
runnabl e

Interfaccia Runnable: maggiore flessibilita > thread come
sottoclasse di qualsiasi altra classe

« implementare il metodo r un() nella classe che implementa
l'interfaccia Runnabl e

« creare un‘istanza della classe tramite new

« creare un'istanza della classe Thr ead con un’altra new, passando
come parametro l'istanza della classe che si € creata

« invocare il metodo st art () sul thread creato, producendo la
chiamata al suo metodo r un()

Esempio di classe Esenpi oRunnabl e che implementa l'interfaccia Runnable ed
e sottoclasse di M ad asse:

cl ass Esenpi oRunnabl e extends M ad asse inplenents Runnabl e

/1 non e sottoclasse di Thread
public void run()

for (int i=1; i<=10; i++)
Systemout.printin(i + “ " +i*i);
}
}

ublic class Esenpio
Fubl ic static void main(String args[])
Esenpi oRunnabl e e = new Esenpi oRunnabl e();

Thread t = new Thread(e);
t.start();

Grafo di stato di un thread

terminazione

start() del metodorun()
~
/' N\
new

sospensione

riattivazione
blocked)*

Priorita e scheduling

* Preemptive priority scheduling con priorita fisse
(crescenti verso I'alto).

* MIN-PRIORITY, MAX-PRIORITY: costanti definite
nella classe thread.

* Ogni thread eredita, all'atto della sua creazione, la
prioritd del processo padre.

* Metodo set - pri ori ty per modificare il valore della
priorita

JVM esegue I'algoritmo di scheduling:

» quando il thread correntemente in esecuzione esce
dallo stato runnable (sospensione o terminazione);

» quando diventa runnable un thread a priorita piu alta
(preemption).

= JVM non supporta I'assegnazione della CPU per
quanti di tempo (round robin).

* SE:

— S.0. adotta round-robin: i thread di uguale priorita
vengono gestiti round robin (anziché FIFO).

— S.0 non adotta round-robin: & possibile simulare
a programma tale comportamento. Metodo yield()
(cooperative multithreading).

« Trasparenza della JVM rispetto alla gestione dei
guanti di tempo: potenziale problema per quanto
riguarda la portabilita di applicazioni Java che
adottano diversi criteri di scheduling

Metodi per il controllo di thread

« start() fapartire 'esecuzione di un thread. La macchina
virtuale Java invoca il metodo r un() del thread appena
creato

« stop() forzalaterminazione dell’esecuzione di un thread.
Tutte le risorse utilizzate dal thread vengono
immediatamente liberate (lock inclusi), come effetto della
propagazione dell’eccezione Thr eadDeat h

» suspend() blocca I'esecuzione di un thread in attesa di
una successiva operazione di r esume() . Non libera le
risorse impegnate dal thread (lock inclusi)

« resune() riprende l'esecuzione di un thread
precedentemente sospeso. Se il thread riattivato ha una
priorita maggiore di quello correntemente in esecuzione,
avra subito accesso alla CPU, altrimenti andra in coda
d'attesa

« sl eep(long t) blocca per untempo specificato
(t i me) I'esecuzione di un thread. Nessun lock in
possesso del thread viene rilasciato.

¢ join() bloccail thread chiamante in attesa della
terminazione del thread di cui si invoca il metodo.
Anche con timeout

« yiel d() sospende I'esecuzione del thread invocante,
lasciando il controllo della CPU agli altri thread in coda
d'attesa

| metodi precedenti interagiscono con il gestore della
sicurezza della macchina virtuale Java

Il problemadi st op() e suspend()

stop() esuspend() rappresentano azioni “brutali” sul ciclo di
vita di un thread -> rischio di determinare situazioni
inconsistenti o di blocco critico (deadlock)

« se il thread sospeso aveva acquisito una risorsa in maniera
esclusiva, tale risorsa rimane bloccata e non € utilizzabile
da altri, perché il thread sospeso non ha avuto modo di
rilasciare il lock su di essa

« se il thread interrotto stava compiendo un insieme di
operazioni su risorse comuni, da eseguirsi idealmente in
maniera atomica, I'interruzione puo condurre ad uno stato
inconsistente del sistema

= JDK 1.4, pur supportandoli ancora per ragioni di back-compatibility,
sconsiglia I'utilizzo dei metodi st op(), suspend() e resune()
(metodi deprecated)

Si consiglia invece di realizzare tutte le azioni di controllo e
sincronizzazione fra thread tramite gli stumenti specifici per la
sincronizzazione (object locks, wai t (), notify(),notifyAl()
e variabili condizione)

Sincronizzazione in Java

Modello a memoria comune:
| threads di una applicazione condividono lo spazio di
indirizzamento.

=>»Ogni tipo di interazione tra thread avviene tramite
oggetti comuni:

— Interazione di tipo competitivo (mutua esclusione):
meccanismo degli objects locks.
— Interazione di tipo cooperativo:
* meccanismo wait-notify.
« variabili condizione

Mutua esclusione

« Ad ogni oggetto viene associato dalla JVM un lock
(analogo ad un semaforo binario).

» E’ possibile denotare alcune sezioni di codice che
operano su un oggetto come sezioni critiche tramite
la parola chiave synchr oni zed.

=> |l compilatore inserisce :

— un prologo in testa alla sezione critica per
I'acquisizione del lock associato all’oggetto.

— un epilogo alla fine della sezione critica per
rilasciare il lock.

Blocchi synchronized

Con riferimento ad un oggetto x si puo definire un
blocco di statement come una sezione critica nel
seguente modo (synchronized blocks):

synchroni zed (oggetto x) {<sequenza di statenent>;}

Esempio:

bj ect nut exLock= new bj ect ;

public void M) {
<sezione di codice non critica>;
synchroni zed (nutexl ock){
< sezione di codice critica>;
}

<sezione di codice non critica>;

« all'oggetto mut exLock viene implicitamente

associato un lock, il cui valore puo” essere:

— libero: il thread puo eseguire la sezione critica

— occupato: il thread viene sospeso dalla JVM in
una coda associata a mut exLock (entry set).

Al termine della sezione critica:
— se non ci sono thread in attesa: il lock viene reso
libero .

— se ci sono thread in attesa: il lock rimane occupato
e viene scelto uno di questi .

synchronized block

esecuzione del blocco mutuamente esclusiva
rispetto:
— ad altre esecuzioni dello stesso blocco

— all’esecuzione di altri blocchi sincronizzati sullo
stesso oggetto

Entry set di un oggetto

Obj ect ob

lock synchroni Zfed (ob) {

t

@
a) lock libero
Obj ect ob
t
2 @\ synchroni zed (ob){

a) lock occupato: t2
e t3 vengono inseriti
nell'entry set di ob

Metodi synchronized

Mutua esclusione tra i metodi di una classe

public class intVar {

private int i=0;

public synchronized void incrementa()
{0 ++ }

public synchronized void decrenmenta()

{i--7 1}
}

Quando un metodo viene invocato per operare su un
oggetto della classe, I'esecuzione del metodo
avviene in mutua esclusione utilizzando il lock
dell'oggetto.

Sincronizzazione diretta: wai t enotify

wait set: coda di thread associata ad ogni oggetto,
inizialmente vuota.

« | thread entrano ed escono dal wait set utilizzando i
metodiwai t () enotify().

* wai t enotify possono essere invocati da un
thread solo all’interno di un blocco sincronizzato
o di un metodo sincronizzato (possesso del lock
dell’'oggetto).

wait, notify, notifyall

wai t comporta il rilascio del lock, la sospensione del
thread ed il suo inserimento in wait set.

noti fy comporta I'estrazione di un thread da wait set
ed il suo inserimento in entry set.

noti fyal I comporta I'estrazione di tutti i thread da
wait set ed il loro inserimento in entry set.

NB: notify e notifyall non provocano il rilascio del lock:
=> i thread risvegliati devono attendere.

=> Politica signal&continue: il rilascio del lock avviene
al completamento del blocco o del metodo
sincronizzato da parte del thread che ha eseguito la
notify

/1 Esenpi o: mail box con capacita =1
public class Mail box{

private int contenuto;

private bool ean pi eno=fal se;

public synchronized int preleva()
{ while (pieno==false)
wait ();
pi eno=f al se;
notify();
return contenuto;

}

public synchroni zed void deposita(int valore)
{ while (pieno==true)
wai t();
cont enut o=val or e;
pi eno=true;
notify();

//Mail box di capacita’ N
public class Mailbox {
private int[]contenuto;
private int contatore, testa, coda;

public mailbox(){
contenuto = new int[N;
contatore = 0;
testa = 0;
coda = 0;
}
public synchronized int preleva (){
int elenento;
while (contatore == 0)
wait();
el enento = contenuto[testa];
testa = (testa + 1) %\
--contatore;
noti fyAll ();
return el enento;

public synchronized void deposita (int valore){
while (contatore == N)
wait();
cont enut o coda] = val ore;
coda = (coda + 1) %\
++contatore;
noti fyAll ();

Semafori in Java

» Java non prevede i semafori; tuttavia essi possono
essere facilmente costruiti mediante i meccanismi di
sincronizzazione standard.

* Le primitive P e V (wait e signal sui semafori) si
possono ottenere dichiarandole come i syncronized
methods allinterno della classe semaforo.

public class Semaphore {
private int value;
public Semaphore (int initial){
value = initial;

}

synchroni zed public void V()//signal sul senaforo
{ ++val ue;
notify();

synchroni zed public void P() //wait sul semaforo
{ throws I nterruptedException
{ while (value == 0) wait();
--val ue;
}

wait¬ify

Principale limitazione :

* unico wait-set per un oggetto sincronizzato

=>non e possibile sospendere thread su differenti
code!

Variabili condizione

« Nelle versioni piu recenti di Java (versione 5.0)
esiste la possibilita utilizzare le variabili condizione.
Cio e ottenibile tramite I'uso un'apposita interfaccia
(definitain j ava. util.concurrent. | ocks):

public interface Condition{

//Public instance nethods

void await ()throws |nterruptedException;

voi d signal ();

void signal ALl ();

}

« dove i metodi awai t, si gnal , € si gnal All sono del
tutto equivalenti ai metodi wait, notify e notify_all,
(ovviamente riferiti alla coda di processi associata
alla condition sulla quale vengono invocati)

Mutua esclusione: lock

» Oltre a metodi/blocchi synchronized, la versione 5.0
di java prevede la possibilita® di utilizzare il concetto
di lock, mediante l'interfaccia (definita in
java.util.concurrent.| ocks):

public interface Lock{

/1 Public instance nethods
void | ock();

voi d unl ock();

Condi ti on newCondi tion();
}

Uso di Variabili Condizione
» Ad ogni variabile condizione deve essere associato un lock,
che:

— al momento della sospensione del thread mediante
awai t verra’ liberato;
— al risveglio di un thread, verra® automaticamente
rioccupato.
=>La creazione di una condition deve essere effettuata
mediante in metodo newCondition del lock associato ad
essa.

In pratica, per creare un oggetto Condition :

Lock L=new Reentrantlock(); //Reentrantlock & una
cl asse che inplenenta
I"interfaccia Lock

Condi ti on C=l ockvar. newCondition();

Monitor

Possiamo definire classi che rappresentano monitor:
* dati:

— le variabili condizione
— 1 lock per la mutua esclusione dei metodi "entry",
da associare a turre le variabili condizione

— variabili interne: stato delle risorse gestite
* metodi:

— metodi "entry"
— metodi privati
— costruttore

Esempio: gestione di buffer circolare

public class Mail box

{ /ldati:

private int[] contenuto;

private int contatore,testa,coda;

private Lock | ock= new ReentrantLock();

private Condition non_pieno= | ock. newCondition();
private Condition non_vuoto= | ock. newCondition();

/'l Costruttore:

public Mailbox() {
contenuto=new i nt[N];
cont at or e=0;

t est a=0;

coda=0;

}

//metodi "entry":

public int preleva()throws InterruptedException
{ int elenento;
I ock. 1 ock();
try
{ while (contatore= = 0)
non_vuot 0. awai t () ;
el enent o= contenuto[testa];
testa=(testa+l) %\
--contatore;
non_pi eno. signal ();
} finally{ Iock.unlock();}
return el enent;

}

public void deposita (int valore)throws InterruptedException
{ lock.lock();
try
{ whi | e (contat or e==N)
non_pi eno. wai t ();
contenut o[coda] = valore
coda=(coda+1) %\;
++cont at ore;
non_vuot o. si gnal ();
} finally { lock.unlock();}

Programma di test:
public class Produttore extends Thread
{ int messaggio;
Mai | box m
public Produttore(Milbox M{this.m=M}
public void run()
{ whi | (1)
{ <produci nessaggi o>
m deposi t a(messaggi o) ;

}

}
}

public class Consumatore extends Thread
{ int nmessaggio;
Mai | box m
public Consumatore(Mailbox M{this.m=M}
public void run()
{ while(1)
messaggi o=m prel eva();
<consuma messaggi 0>

public class BufferTest{

public static void main(String args[])
{ Mai | box Menew Mai | box();
Consumat or e C=new Consumatore(M ;
Produttore P=new Produttore(M;
C.start();
P.start();

10

